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ABSTRACT 

This report f irst  develops a new anomaly degree variance model by considering 
potential coefficient information to degree 20, and updated values of the point anomaly 
variance (1795 mga12), the 1' block variance (920 mga12) and the 5' block variance 
(302 mga13, the variances being given with respect to the Geodetic Reference System 
1967. This new model was computed assuming that anomaly information was given 
on a sphere of radius 6371 km with the mdius of the best fitting Bjerhammer sphere 
found to be 6369.8 km. 

This new model and several other models were used to develop closed expres- 
sions for the covariance and cross-covariance functions between gravity anomalies, 
geoid undulations (or height anomalies), and deflections of the vertical. It is shown 
how these global covariance expressions can be modified for use as  local covariances 
and for use when mean anomalies a r e  being considered. A Fortran subroutine is 
provided for the determination of the covariance values implied by the recommended 
anomaly degree variance model. 
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1. Introduction 

In carrying- out the a i m a t i o n  of gravime t r ic  dependent quantities using the methods 
of l ea s t  squares  collocation (Moritz,  1972) we need to have an analytical function that 
can be used to determine the covariance functions for  such quantities a s  anomalies,  de- 
flections of the vertical,  geoid undulations etc.  Generally speaking a numerical covariance 
function for  anomalies can be determined from anomaly data. The resultant function can 
be considered by de t e rminhg  a model for the anomaly degree variances.  Tscherning (1972) 
has  shown how such anomaly degree variance models may be used to determine the covar- 
iance models fo r  several  gravimetr ic  quantities. Since we need the best  es t imates  of our  
covariance models for  the application of leas t  squares  collocation, i t  is appropriate that 
we use  the la test  available data in determining our  models. In addition we a r e  now at  a 
stage where refinements in anomaly degree variance modeling, beyond that used by Rapp 
(1973) can be considered. 

The purpose of this report  is to describe recent  computations made and subse- 
quent analytical work that leads to improved analytical covariance models. 

0 
LI .  P r e l  iininarv Eauations 

In this section some of the relevant formulas to be used in la te r  sections will 
be presented. 

We f i r s t  consider ou r  covariance function which fo r  the purposes of this report  
will be considered as stationary and isotropic. Then we can follow the standard defini- 
tion (Heiskanen and Moritz, 1967) of the anomaly covariance as the mean product ( a t  a 
given distance) of the anomaly pa i r  AgF, AgQ . Thus: 

On a plane the distmce, o r  anomaly separation i s  usually specified by some l inear  dis- 
tance (such a s  20 km).  If we deal with data on a sphere  we usually considered the dis- 
tance to be defined as $ a spherical a r c  s o  that we a r e  interested in values of C($). At 
$= 0,  C($) becomes the anomaly variance. F o r  the estimation of C($) f rom anomaly data 
given on the surface of a sphere,  we can wri te  (Heiskanen and Moritz, 1967, p. 258): 

where 8 is a polar angle (0 a t  the north pole), X is the longitude and a i s  an  azimuth. 



We will obtain from (2), a point anomaly covariance function if the Ag values 
a r e  point anomalies o r  we will obtain a mean anomaly covariance function (for a 
specific block size) if the Ag values a r e  mean anomalies. In practice the sphere is 
not completely covered by anomalies so  that m expression that may be used to compute 
the covariance between any two functions f J  and fk given in blocks on the sphere whose 
a r ea  is A and A, respectively may be written: (Kaula, l966 a ,  p. I. B. 7). 

- 
In our case f j  = Ag (8, h )  and f, =Z(B', h') where the overbar signifies a mean anomaly. 
If the anomalies a r e  given in equal area  block (3)  becomes: 

where n is the number of products taken a t  a given spherical distance $. In practice 
the distance \li to which a special product a t  distance l/rj, is determined by the equation: 

where A$ is a suitably chosen range. In our numerical results to be discussed later,  
A$ was specified to be f .  

A more fundamental covariance function than that of the gravity anomalies is 
that of the disturbing potential, K(P, Q). We generally do not estimate K(P, Q) from 
numerical data, but rather consider the following series representation for it: (Moritz, 
1972, p. 88): 

where: U' a r e  the degree variances of the anomalous potential; 
R is the radius of the Bjerhammar sphere; 
r, r' a r e  the geocentric radii to points P and Q which a r e  separated 
by a spherical radius $. 

For convenience we let: 



In the case that we a r e  dealing with information at the approximate surface of the 
earth, it is convenient lo take rr'; R: where R, is n mean earth radius. Then: 

We then can write: 
m 

We can also write the anomaly covariances in a series expression a s  (Moritz, 1972, 
p. 89): 

where c R  a r e  the anomaly degree variances. A s  written, equation (10) would yield a 
point anomaly covariance. In order to obtain a mean anomaly covariance we can use 
the R functions of Meissl (1970, p. 23) or the qR functions of Pellinen (1966). Using 
BR. t i e  modification of equation (10) yields: 

where P and Q now refer to anomaly blocks. BR is defined a s  follows: (Meissl, 1970, 
p. 24): 

where $, is the circular cap radius of the mean anomaly block whose covariance is to 
be computed. We have (for example): 

Since we usually deal with rectangular blocks of dimension so, the corresponding 
can be found simply by equating the areas of the circular cap and the square blocks. 
Assuming a plane figure we write (for small blocks only): 



Since gravity anomalies a r e  related to the disturbing potential by the following 
equation (valid in a spherical approximation which is the case considered here): 

where T is the disturbing potential, we can relate the anomaly degree variances (cA ) 
m d  the degree variances of the anomalous potential (oa) by: 

Analytic models for either ua, o r  cA have been described by Lauritzen (1973), 
Tscherning (1972), by Rapp (1973a) and implicitly by Kaula (1966b, p. 98). 

The inverse of equation (10) is: 

Equation (16) is written assuming C($) is a point anomaly covariance function referring 
to a sphere whose radius is R,. If C($) is a point anomaly covariance function, then 
(16) with C($) replaced by c($) will yield a mean anomaly degree variance 3, which is 
related to ca through the BQ equations; 

Thus, knowing c($) we can find G from (16) and cA from (17) knowing the size of the 
anomaly blocks to which C ($) refers. Specifically we can write: 

3. Numerical 1' Covar iance Functions 

We first  s tar t  our numerical determinations by the estimation of the covariance 
function for 1° (approximately) equal area anomalies. One degree covariance functions 
have been previously estimated for JI values from 0' to 7" by Kaula (1966~)  and by 



Rapp (1972). The values found in the past studies were based on analyzing 1" anoma- 
lies within a 5' equal area anomaly so that product pairs in adjacent 5' blocks were 
not computed nor were product pairs hr distances greater than $ approximately 7" were 
considered, In addition, a programming e r ror  made the results of Knula 'and Rapp 
somewhat crroncous. 

Bccausc of the limitations of previous estimations of the l0 covariance function 
it was decided that it was appropriate to compub a global l0 covariance function. The 
starting point was a recent collection of 29960, 1°x l0 equiangular mean free-air 
anomalies that was obtained by updating a l0 X l0 mean anomaly se t  supplied by the 
Defense Mapping Agency - Aerospace Center. The updating was carried out using 
additional data along the lines of a previous update as  described in Rapp (1972). These 
anomalies were all referred to the gravity formula of the Geodetic Reference System 
1967. The 1°x 1' equiangular tape was then converted to a set  of 21828 (approximately) 
equal area anomalies. The subdivisions of these anomalies was such that the latitude 
increment was 1' while the longitude increment was some integer degree of such size 
tkat the block was approximately equal in area to a 1°x  l0block a t  the equator. The 
covariances were computed using equation (3) with the A$ in equation (5) of l0 . The 
results of this computation a r e  given in Table A of the appendix. In this table the 
following quantities a re  given: number of product pairs, average $ (in degrees),co- 
variance (mga12). For further use the 181 values given in Table A were interpolated 
to determine a covariance a t  0.5 degree intervals. This interpolation was carried 
out using an Aitken-Lagrange interpolation using 20 points as  implemented through 
subroutine DALI (and DATSG) of the B M  System/36O Scientific Subroutine Package 
(H20-0205-3), Version 111. The resultant 361 values a r e  given in Table One, being 
identified as  the unmodified C($) values. The plot of this covariance function is 
shown in Figure One. 

From these unmodified C($) values we can compute the smoothed anomaly 
degree variances from equation (16). Such values a re  shown for degree 0 through 10 
in Table Two where S and R are  taken to be one (causing a maximum er ror  of l.ess 
than 5%). In addition val.ues of CL from the recommended set  of potential coefficients 
given by Rapp (1973b) a r e  given for comparison purposes. 
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Table Two 

Slnoothcd Anomaly Dcgree Varianccs (cQ) As 
Computed With 1' Free Air Anomalies 

and From a Current Potential Coefficient Set 

CQ ca 
Degree from l0 anomaly data from potential coefficients 

(Rapp, 19 7 3b) 

- 
If the gravity formula were that of a mean earth ellipsoid, the zeroth degree 

variance should be zero. This is essentially the case here with the fact that the y, 
and the flattening of the GRS67 a r e  quite close to be current best estimates of these 
parameters (Rapp, 1974). The anomalies taken on a global scale should have no 
first  degree anomaly degree variance. The non-global l0 anomalies that we have 
imply through the covariance function a small one of 2.3 mga12. 

The anomaly degree variances from the potential coefficients should be re1 iable 
a t  the lower degrees because of the accurate determination of low degree potential 
coefficients thrmgh satellite orbital analysis. Comparison of these values with that 
implied by the covariance function indicates poor agreement for degrees 2,3,6 and 9. 
This disagreement may be related to the fact that the 1' anomalies cover only 50% of 
the earth's surface and we cannot hope to find good low degree information from such 
limited coverage. 

However, for future analysis it is important that we use a 1' covariance function 
that is characteristic of the real world especially a t  low degrees. To develop such a 
covariance function we modify the covariance function computed from the anomalies 
by imposing on the modified function the CQ values to degree 10 as  listed in Table Two 



(as computed from potential coefficients). To do this we first remove the effect of 
the % values listed in Table Two and then add back the covariance contribution from 
the c values, in both cases using equation (11) setting RR 2nd S equal to one. In a 
effcct we carry  out the following modification to obtain a modified 1' covariance 
function: 

The modified covariance function is shown in Table One being labeled Modified C($). 
This modified covariance function is plotted in Figure One. 

Smoothed anomaly degree variances were developed from this modified 
covariance function where were then converted to Che actual degree variances using 
equation (16A). These results and values of OQ for one degree blocks and s - @ + ~ )  
a r e  given in Table B of the appendix. 

From Table One, using the modified covariance function of the current estimate 
for the variance of a 1' anomaly is 919.66 mga12, o r  a root mean square value of 
f 3 8 . 3  mgals with respect to the gravity formula of the Geodetic Reference System 1967. 

4. A Five Degree Anomaly Variance 

For  purposes of obtaining models of anomaly degree variance using procedures 
such as  described in Rapp (1973a) we need to estimate the variance of the 5' anomalies. 
This can be done in two ways. The f irst  procedure is by the numercal  integration of 
the 1' modified covariance function according to equation (7-82) of Heiskanen and 
Moritz (p. 270). This leads to an estisrate of 305 mga12. The second procedure is to 
compute the variance directly from the 5' anomalies. This was done by f irst  predict- 
ing 5' equal area  anomalies using the methods described in Rapp (1972) but with the 
more current 1 ° x  1' set. The variance compukd by this procedure from the 1354 
predicted anomalies was 298 mga12. We adopt for further use the variance of 5 degree 
anomalies as 302 mga12 with respect to the gravity formula of the Geodetic Reference 
System 1967. 

5. The Point Anomaly Variance 

The value of C, is an important quantity as it is a scaling factor far many 
representations of the point anomaly covariance function. C, has been treated a s  
both a local o r  regional quantity, o r  a global quantity. On a regional basis C, is 
the variance of the point anomalies in some defined area.  Thus, it will change from 
area  to area.  The global CO value is considered to be representative of the gravity 
field of the whole earth. The estimation of C, on a global basis is not straight 



forward since we do not have global gravity coverage. The only global point covariance 
function numerically estimated is that given by Kaula (1959) where he used gravity data 
that was current to 1958. During the 16 years since the compliation of gravity data a s  
used by Kaula, a considerable amount of additional data has become available. Thus, 
a new computation of global point covariance seems appropriate and is needed. Such a 
computation can only be done through some organization that has access to the gravity 
data holdings. For this report we do not have the fac ilities o r  funds to carry  out a 
computation of a point covariance function. However, we can use several procedures 
to determine C,, the quantity so fundamental to the analytical representation of a point 
covariance function. 

5.1 Method One 

One method to estimate CO is to consider the relationship between a point 
covariance function (C(d)) and the variance (G$) of anomalies given in blocks of size 
so. One convenient relatlonsh ip is given by Hirvonen (1962) : 

where 

J 2  GFO = W C (d) d r  

W =  (2n - 8 r  + 2r2) r  when O<r< l 

W = (21-,- 4 - 2r2 -i- 84- -8 tan-l/-) r where l <  r<J2 

If we represent C(d) in the form of: 

C (d) = C', f (d) 

we can solve (19) and (20) for C, : 

The value of I can be obtained for various representative f(d). 

Many representations of the point covariance function have been suggested. 
Many of these representations a r e  summarized in papers by Groten (1966), Lauer 
(1971), and Jordan (1972). For the purposes of this paper we have used three models. 
These are:  



The c, and c, values were obtained from fitting the Kaula (1959) point covariance 
curve to a distance of 1.5'. We found c,= 0O.897 and c, = 1°.88. Beyond a distance of 
1.5', the point covariance would not be represented well by equations (22) and (23) with 
the above constants. The constants of eq~~at ion (24) were obtained by a least squares 
polynomial fit  using the Kaula point covariance function to 8'. We found: 

For these models, the root mean square fit to the observed covariance function was 
s30 mga12, k75 mga12, and i-28 mga12 for models 1, 2 and 3 respectively. For so =l0, 
values of I (computed by numerical integration), and C!,(taking G$ = 919.66 from 
Table One) a r e  given for each of the models in Table Three. 

Table Three 
Estimation of C, from 1' 
Anomaly Block Variances 

Model I CO 

1, equation (22) .M185 1433 mga12 
2, equation (23) .66491 1383 mga12 
3, equation (24) .62595 1469 mga12 

Using weights based on the root mean square fits to the point covariance curve, the 
estimated CO from this analysis is 1447 mga12. 



Method Two 

A more dircc t method for dctcrmining C, is through the analysis of thc actual 
point gravity anomalics. Such an analysis is not a straight forward one since the 
anomaly data is not uniformly distributed over the earth. Since certain areas  (such 
a s  land areas)  have, in general, denser anomaly coverage than ocean areas ,  and 
since free-air anomalies a r e  correlated with land elevations o r  ocean depth, special 
care needs to be taken in the analysis of a set  of point gravity anomalies for Co.  

In our analysis we basically considered a point variance by elevation range, 
and then converted these individual variances in to a global e s  tirnate of CO by form- 
ing a weighted mean with weights being based on the percentage of the earth's surface 
lying within the elevation range. 

As the f i rs t  step in this procedure the Defense Mapping Agency Aerospace 
Center considered a set of 2,253,122 point free-air anomalies whose elevation o r  
depth was known. Elevation ranges of 100 meter increment were chosen. For all  
anomalies falling within each range, the mean anomaly, the mean square anomaly 
and the mean elevation from the points, was determined. The mean square anomaly 
was compuced a s  the sum of the square of the anomalies with the elevation range 
divided by the number of anomalies within the range. In subsequent discussions this 
quantity will be referred to a s  the variance of the range. This terminology is not 
specifically correct  a s  a variance is usually defined with respect to a quantity whose 
mean is zero. In fact, the anomaly mean within a range will not be zero, but it will 
be zero o r  close to it on a global basis. This data by ranges is shown in Table Four. 

In order to form a global estimate of CO , we now need to know how elevations 
a r e  distributed on the actual earth. To do this we considered mean elevations in 1654 
5' equal area  blocks and 64800, 1°x  1' mean elevations. From this data the p rcen-  
tage of the earth's surface within a given elevation range could be found. The results 
found for the 5' and l0 data a re  shown a s  the last  two columns in Table Four. The 5' 
results a r e  shown as a matter of Merest only, as the 5' subdivision is too large for 
the purposes needed here. We should note that all 0.0's given in Table Four with the 
exception of the mean anomaly for the 100 to 200 meter range indicate no data was 
available for the quantity. The l0 subdivision is also not sufficiently small for the 
most accurate work as  can be seen from the fact that certain elevation ranges for 
which there was point elevations data were not represented in the data from the 1" 
mean elevation data. 

The weighted variance (or C, ) was then determined a s  follows: 



Table Four 
Anomaly Variance and Related Information by Elevation Range 

Elevation Range 
(meters) 

-14100 -14000 
-11200 -11100 
-10800 -10700 
-10700 -10600 
-10600 -10500 
-10500 -10400 
-1 0400 -1 0300 
-1 0300 - 10200 
-10200 -10100 
-10100 -10000 
-10000 -9900 
-9900 -9800 
-9800 -9700 
-9700 -9600 
-9600 -9500 
-9500 -9400 
-9400 -9300 
-9300 -9200 
-9200 -9100 
-9100 -9000 
-9000 -8900 
-8900 -8800 
-8800 -8700 
-8700 -8600 
-8600 -8500 
-8500 -8400 
-8400 -8300 
-8300 -8200 
-8200 -8100 
-8100 -8000 
-8000 -7900 
-7900 -7800 
-7800 -7790 
-7700 -7600 
-7600 -7500 
-7500 -7400 
-7400 -7300 
-7300 -7200 
-7200 -7100 
-7100 -7000 
-7000 -6900 
-6900 -6800 
-6800 -6700 
-6700 -6600 
-6600 -6500 
-6500 -6400 
-6400 -6300 
-6360 -6260 
-6200 -6100 
-6100 -6000 

No. of point 
Anomalies 

0 

Pomt anom. Mean sq. 
mean anomaly 

w@s) (mga12) 
0.0 0.0 

-213.1 45611.6 
-3OOe8 90650.3 
-277.3 76895,3 
-285.0 81.253.5 
-282e4 79833.0 
-270.6 74429.2 
-290.3 85035.7 
-283.4 80914,O 
-252.3 80402.3 
-279.8 79255.9 
-276.4 76443-4 
-273.5 77105.5 
-260.5 70629.0 
-267.7 73083.8 
-248.8 6416180 
-241.9 63265,9 
-259.2 66675.0 
-231.9 56997-3 
-243.2 61142,7 
-236-8 57878-9 
-242,4 61454.6 
-222.6 52069,2 
-227.8 54300.5 
-222.1 51648,5 
-225.5 52099.5 
-249.9 63345,2 
-220.6 50153.0 
-214.7 47255.5 
-221.0 51087,R 
-231.6 57988.7 
-211.2 47870.1 
-207.7 46967.6 
-204.2 45255,4 
-205.3 46034.8 
-214,8 51871.4 
-180.2 35771.0 
-168.6 31597.3 
-158.3 28832.5 
-180.4 38391.0 
-154.1 27775.9 
-160.3 30243.8 
-131.8 21597.5 
-119.5 18588.8 
-119-5 18717.8 
-105.5 15090.3 
-93.0 12701.3 
-779 2 9847.8 
-57.7 6841.8 
-32.4 4002.0 

Average of 
pt. elevations 

(meters) 
0.0 

-11113.0 
-10750. h 
-10674.0 
-10592,O 
-10425.2 
-10353.8 
-10228.4 
-10149.4 
-10065.4 
-9947.7 
-985H.6 
-9743.8 
-9645.9 
-9546.7 
-9446.1 
-3347.8 
-9247.8 
-9147.5 
-9041.5 
-8956,7 
-8853.9 
-8764.4 
-8667,9 
-8551.8 
-8440.7 
-8360.1 
-8259,2 
-8 148.5 
-8048,O 
-7952.1 
-7856.2 
-7759,5 
-7654.5 
-7551.2 
-7446.8 
-7337.9 
-7250.2 
-7151.5 
-7054.5 
-6949.7 
-6851.3 
-6744.5 
-6658.1 
-6546.2 
-6454.0 
-6349.6 
-4246.4 
-6116.7 
-6049.2 

Percentage of earth's 
surface within range 

1°data 5"data 
0.002 0.0 
0.0 0.0 
0.0 0.0 
0. 0 0.0 
0.0 0-0 
0. 0 0.0 
0.0 0 . 0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0 . 0 0. 0 
0.0 0.0 
0 . (? 0.0 
0 . 0 0.0 
0.0 0.0 
0.0 0-0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0-0 0-0 
0.0 0 . 0 
0.0 0.0 
0 . 0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0-0 0.0 
0.0 0.0 
0.0 0.0 
0.002 0.0 
0.0 0.0 
0.002 0.0 
0.002 0.0 
0.0 0.0 
0.0OY 0.0 
0.003 0.0 
0.002 0.0 
0.014 0.0 
0.007 0.0 
0.002 0.0 
0.005 0.0 
0.009 0.0 
0.024 0.0 
0.010 0.0 
0.027 0.0 
0.054 0.0 
0.153 0.0 
0.321 0.3 







5018.6 
5103.8 
5235.8 

0.  0 
0.0 
0.0 
0.0 
I). 0 
0.0 
0.0 
0.0 



where (Co ) i  is the variance for  each of the elevation ranges and Pi is the percentage 
of the ear thvs  surface area  having that elevation range a s  estimated from the l0 mean 
elevation dain. Values of CO a s  estimated from (25) using all the data, and data from 
just the positive and negative elevations a r e  given in Table Five. 

Table Five 

Estimates of C, 

Kaula (1959) 1201 
Table Three 1447 
Equation (25), all  data 179 5 
Equation (25), negative elevations 1772 
Equation (25), positive elevations 1860 
Based on all anomalies without 1644 
consideration of elevation ranges 

For our future needs we select the CO = 1795 mgala a s  the best estimate. A truer 
value may even be larger than this a s  certain high variance values found in certain 
elevation ranges a re  not represented in the 1795 figures a s  our elevation data was 
not sufficiently detailed to tell us what percentage of the earth 's  surface l ies within 
these elevation ranges. The 1795 value should be more reliable than the value of 
1447 estimated from Table Three, a s  a certain smoothing has taken place in deriving 
the Table Three estimates. In addition, it was necessary to make assumptions on 
the shape of the covariance curve in deriving the values for Table Three. 

6. Anomaly Degree Variance Modeling 

At this point we will develop a model for the anomaly degree variance which 
in turn will prove of value in deriving a closed expression for the covariance function 
of the disturbing potential. and other gravimetric quantities. The basic procedures fo r  
this modeling have been discussed by Rapp (1973a). However, we introduce for this 
paper the S term and the BR term. 

We f i rs t  postulate an anomaly degree variance model of the following form: 

This model had originally been suggested by Tscherning. Best estimates for the A 
and B parameters a r e  to be found subject to the following data: 



1. Anomaly Degree Variances Determined From Potential Coefficients 

The values of cl  that a r e  used here a r e  fo rk=3  to 20 a r e  those found from the 
least squares collocation solution for potential coefficients a s  described in Rapp (1973b). 
These values a r e  given in Table Five. 

Table Five 
Anomaly Degree Variances From 

Potential Coefficients (Rapp, 1973b) 

(m@" ) 

No formal standard deviations were attached to these values of c 
R' 

These values of cR can be directly used with (25 A).  

2. Anomaly Block and PO int Variances 

We have previously determined the block variances for 1' and 5' equal area  
blocks. These values can be related to cR values through equation (11) which is re- 
written for the variance (i.e. $ =  0) as:  

Equation (26) i s  also valid for point anomalies recalling that in this case PR equals one. 

In (26) the summation is started from R =  0 but in fact we a r e  trying to model cR 
from degree 3. Thus, we carry  out the summation to degree 3 but we must modify our 
point and block variances by essentially removing the c, value. From Rapp (1973b) 
c, = 7.5 mga12. The modified data is shown in Table Six. 



Table Six 
Modified* Point and Block Variances 
For Anomaly Dcgrec Variance Fitting 

Size Modified 
Variance 

Point 1788 mga12 
l0 912 " * ,  

5O 295 " 

*to refer to a complete second degree field 

The adjustment procedure was carried out by first trying to determine best 
estimates of A and B for equation (25) by using the data of Table Five and the block 
variances of Table Six. The value of PR needed in (26) was computed using a $ value 
determined from equation (13). Tests indicated the summation to m in (26) could 
safely be replaced by a summation to (4) (180' )/g0 o r  to 720/g0. Various runs 
were made with different S values to determine a proper value such that the summation 
to m (o r  in practice a high number such a s  50,000 o r  100,000) would come close to 
the modified point variance of 1788 mga12. (It was found that for an accuracy of 0 .1  
mgals it was sufficient to ca r ry  out the point anomaly summation to R = 16000 while 
for a 0.001 mgal accuracy the summation should be carried to about A = 30000). 

For theoretical reasons to be seen later, the B unknown in equation (25A) 
should be an integer. To produce such an unknown we first  made an adjustment 
letting A and B adjust freely. The resultant B found was 24.03. We then repeated 
the adjustment, fixing B at  24 exactly. In this adjustment the two block variances 
were given weights of 1/100. All anomaly degree variances except for degree 3 
and 4 were given weights of l/. 64. At degree 3 a weight of l/. 08 was used while 
a t  degree 4 a weight of i/. 16 was used, These weight assignments were made only 
to assure a reasonable fit to the data and were not based on relative accuracy consi- 
derations of the data. 

We give in Table Seven the parameters of the final model. 

Table Seven 
Parameters of Anomaly Degree Variance Model 

A = 425.28 mga12 
B = 24 (exact) 
S = 0,999617 

We give in Table Eight a comparison of the anomaly degree variances from Table Five 
and those a s  computed from Equation (25A)ming the A and B values given in Table 
Seven. 



Table Eight -- 
Anomaly Degree Variances (mga12) 

Original Equation Original Equation 
Table 5 ( 2 5 4  (2 5A) 

8 The root mean square difference between the original and adjusted values was +4.0 mgal . 
The 1' residual block variance from the adjusted model is 841 mga12 with the 5' residual 
dock  variance being 360 mga12 a s  compared to the corresponding values of 912 mga12 
and 295 mga12 a s  given in Table Six. By summing (26) with & =  1 to a sufficiently high 
degree (50000) the point variance implied by this model is 1788 mga12. If we wished, 
at this point, the covariance functions implied by this new anomaly degree variance 
node1 could be computed by substitution of the model into equation (10) or  (11). This 
:ype of computation will be postponed until the discussion of the closed covariance 
flmc tion express ions. 

- 
i r Relationship Between the Covariance Function of the Anomalous Potential and 

Covariance Functions of Gravity Anomalies o r  Deflections of the Vertical 

As explained e. g. in Moritz (1972, p. 97), covariance functions of quantities 
related to the anomalous potential can be derived from the covariance function of the 
anomalous potential K(P, Q). The covariance between two quantities A and B, derived 
by applying a certain operation on T can be found by applying the same operation on 
K ( P ,  Q). Moritz calls this fact "the law of propagation of c o v a r i a n ~ e s ~ ~ .  We have above 
used the law to derive (15), and thereby the relation between K(P, Q) and C(P, Q). In 
the following we will derive the relationship between K(P, Q) and the covariances of o r  
between the height anomaly 5 ,  the free-air gravity anomaly Ag and the two deflection 
components 5 and 7. 

We will use the same notation for the covariance functions as used in Moritz 
(19721, i.e. cov(A, B) for the covariance of the two quantities A and B. The relation- 
ship between the gravity anomaly and the anomalous potential is given above in (14). 
For the three other quantities we have the well known relations: 



where y is the reference gravity, r the distance from the center of the Earth, the 
latitude and X the longitude. It will for most purposes be sufficient to work in 
spherical approximation. But we will not restrict ourselves to consider only points 
on the surface of the Earth. 

On the surface of the Earth r is substituted by a mean Earth radius (R,), y by 
a mean gravity value (G), and cp by the geocentric latitude. For a point outside (or  
inside) the surface of the Earth, we will substitute for r the radius of a sphere e.g. 
including the same volume as  an ellipsoid confocal with the adopted reference ellip- 
soid and passing through the considered point. (Thus, we will still  call this quantity 
r). The reference gravity can then be substituted by k ~ / r "  and cp again with the 
proper geocentric latitude. (In practice cp is just treated as if it was equal to the 
geocentric latitude) . 

We W ill introduce a more compact notation for the partial derivative with 
respect to an independent variable e.g. r: 

and for the second order partial derivative with respect to r and t: 

The formulae (27), (14), (28) and (29 ) becomes then: 



Using the law of propagation of covariances given by Moritz (1972, p. 97) applied to 
equations (30) - (33) we find: 

cov(qp , C v  ) = -DAK(P, &)/(GIG r cos a) 

cov(qp , qQ) = D;): K(P, Q)/(G'. G rr' cos? cosu'), (42) 

- =ere  the quantities marked with an apostrophe refer to Q and the unmarked quantities 
- - - -  -=:;I- to P. 



The covariances involving the deflections components ((38) - (44)) a r e  most 
easily expressed end computed) a s  derivatives with respect to the cosine of the 
spherical distance $ between P and Q. (We will from now on only regard isotropic 
covariance functions K(P, Q), i.e. so  that (9) always is valid and hence K(P, Q) only 
depends on $, r and r'). 

Putting t = cos $, DtK(P, Q) = K' and D ~ K ( P ,  Q) =K" we get: 

Hence 

Note, the common factors K' and K' I in (47), (48) and (49), i. e .  , the three covariance 
functions cov(Cp, Cp cov(5, , qQ) and cov(q, , qQ ) can easily be computed a t  the same 
time. The covarianee functions (38) - (44) a r e  used in actual prediction computations 
involving deflections either a s  observed quantities o r  as  quantities to be predicted. 
.These covariance functions a r e  not anymore isotropic. Then for theoretical discussions 
it is more convenient to regard the covariances, where one o r  both of the quantities 
a r e  either the longitudinal ( R )  or  the transverse component (m) of the deflection of the 
vertical. This type of covariance function will be isotropic and will have a simple 
relation to K(P, Q). 



Pole 

Figure 2. 

Spherical triangle (Pole, Q, P )  with the deflection components (S,?) and ( A ,  n$! shown 
as vectors.  

In Moritz (1972) the relationships between K(P, Q) and the covariance functions 
a r e  expressed in te rms of derivatives with respect  to $. We will express  the relations 
in te rms of derivatives with respect to t = cos $. 

Let the azimuth between P and Q be  a. Then we have (cf. figure 2 ) :  

R, = cos a.(-&) + ~in rn ( - r )~ )and  

Using (38) and (39) and the law of propagation of covariances, we get: 

1 
cov(Ap, c Q )  = ( c o s a *  D t K'+ s in or* DXt K'*- COS ID ) / (G G'* r) and 

(P 

1 
cov(m, , c 9 ) =  ( s i n a * D  t * K 1 -  cos@!* D$*K'*-  v COSCO 

) /(G G'* r). 

we have 

I D , t = c o s ~ * s i n y  - s i n y * c o s ~ ' * c o s ( X ' - X ) = s i n $  * c o s a  and 

hence 

cov(Ap, CQ ) = sin $ K'/ (G G'* r) and 



For the covariance with the gravity anomaly we get in the same way (using the law 
of propagation of covariations and (14)) 

2 
cov(R,, AgQ) = +(D, K' + K') sin / / (G r) 

The expressions for  COV(R, ,  R Q  ), cov ( R , ,  mg ) and cov (m,, q) a r e  derived in a very 
simple way in Moritz (1972, p. 109). We repeat the results expressed a s  derivatives 
o f t .  

cov(4,  LQ ) = -D; K/(G G' r r') = ( t  l K<sin2$ * K")/(G G'. r r) (55) 
.+ 

cov(4 ,q)= 0 and (56) 

cov(q,, q ) = - D $ ~ / ( s i n  $0 G a G' r r') =K'/(G *G'* r r'). (57) 

From the formulae (51) - (57) several intersting consequences of the imposed isotropic 
property can be seen. The deflection components a t  P a r e  independent of the height 
anomaly and the gravity anomaly in P. The transverse component of the deflection in 
P, q is independent of cQ , & and LQ . For 5,  this implies, that 5, is independent of 
qQ for rq = ' and r)p independent of 5Q for X = X'. . 

Finally we will conclude that the basic quantities to be comp ted in the evaluation Y of the expressions (34) - (49) and (51) - (57) a r e  K, K', K", &K'+ F K and 
cW&9 4). 

8. Closed covariance function expressions. 

In this section we will consider different models for the degree-variances and 
explain how closed expressions for corresponding covariance functions can be obtained. 
We will distinguish between different types of degree-variances and hence between 
different covar iance functions models. Thus we W ill S till cons ider only isotropic 
models. A subscript k will be used to distinguish between the models. Then we can 
define ak,i (A, B) to be the degree-variances of degree 1 in the k'th degree-variance 
model, i. e. so that the corresponding covariance function becomes : 



/ R  ' 
-.~;here I and J are  either 0 o r  1. (Note, that for I=J=l we have ( ) * ( -7 )  = S). 

. r 

For the already introduced quantities cl and c r ~  we then hnvc: 

The corresponding covariance functions become, using (9) and (10) 

m 
-7 

covk(TP, TQ ) = ) ok$ (T, T ) S ~ + ' P ~ ( ~ )  and 
U 

The relationship (15) becomes: 

In the following we will also consider the degree-variances aktj(Og, T) of the covariance 
function covk (Ag, , TQ) which is related to the covariance (36) by: 

Using ( 3 6 )  and (59) we get: 

Hence, using (58) we see that I =  l and J =  0 and that 

U,$(&, T) = o k 9 j  (T, T) and 



(Note, that the introduced notation can' t be used for covariance-func tions involving 
deflections. These covariance functions can be expressed a s  the sums of series  in 
I$(t) and P:(t) (apostrophe mean differentiation with respect to t), and not on the form 
(58) a s  a se r i e s  in P Q ( ~ )  and S'+'. ) 

Five diifcrcnl models of the anomaly degree variances will be discussed below, 
i. e . , k W ill take on valucs 1 ,  2, . . . 5. 

in 'l'scherning (1972), analytic models have been described for  covariance 
function having anomaly degree-var iances equal to: 

where A,, A2, and A, ( and below A, and A,) a r e  positive constants of dimens ion mga12. 
These types of models have been further considered by Rapp (1972a). 

1 For it-j = - and i * j  - B/R we can write (69): 
B 

As indicated above, the covariance functions corresponding to models 1, 2 and 3 can 
be represented by closed expressions. /By closed expression we mean expressions 
which only contain a finite number of terms). This is also true for  model 4 and 5: pro- 
vided we place some restrictions on B o r  i and j. F i rs t  of all the resulting degree- 
variances have to be greater  than o r  equal to zero for Q greater  than 2. Hence, B and 
i, j will have to be greater  than -2. And the technique used below for the derivation 
will imply that we have to restr ict  B and i, j to integer values and that we also will 
have to require that i is unequal to j and that all  three quantities a r e  greater  than -1. 



We wilhl not consider the covariance functions derived using the model (65) 
because the anomaly degree-variances a re  unrealistic. Thus, the model leads to 
very simple closed express ions for the covariance functions, which can be found, c. g. 
~LI Tscherning (1972). 

The technique we will use for the derivation of the closed covariance expressions 
is very simple. The covariance functions can be split into components which, upon 
multiplication by appropriate constants will yield the covariance function. These 
components can be expressed as: 

F =  S ' + ~ P ~ ( ~ )  and 

1 
F~ = 1 - s R + l p  t for i>0 R +  i R (  ) 

1 R + 1  C R +  i 
s pR(t) for i ro ,  and 

a s  the f i rs t  and second derivatives of F o r  Fi with respect to t, 

F: F#: F:, F:'. 

We have for example (using (59) (61) and (67)): 

The closed expression for the function F can be derived using the well known formula 
(Heiskanen and Moritz, 1967, eq. 1-80): 



m 

F =  S *  s ip  (t) = 
S 

L R ,/l- 2st + S"' 
R= 0 

The denominator will be one of the basic quantities in the following derivations, so we 
will use: 

M = l - L - S *  t and 

We then have: 

1 
The functions F, can be derived by multiplying F o r  by an appropriate power of S and 
integrating the expression with respect to S. 

Using: 

we see, that by integrating 

we should be able to find F,. We have by (72) 

i-  l P (t) for i>O and by (73): 
a = 0  

R +  i 



-. - ~e integrals : 

an be found in integral tables as Gradshteyn-Ryzhik (abbreviated below to G. R. ), (1965). 

From these basic integrals, F, can be computed using recursion formulae. We will 
- .  :m t consider negative powers of S. 

Using G.R. 2.268 we get: 

2nd hence 

where a-, , a-, a r e  integration constants. From G. R. 2.266 we have: 



The constant a,, is determined requiring (78) to be zero for S equal to zero. 

s - l ~  - r - 
O - J  s * E  

J g =h C + h ( 4 )  i a-, , 
S N 

hence a-, = &(4) and then: 

Then we can compute F-, and F-, . 

1 t - - 2 +- - Q(t)*an(s)  + (Q( t ) . (h   a an(^)) - 3ts + 1 
2s2 S 2s2 L +  a-,) 

2 
The constant a-, can now be determined. Because h 3 is zero for S equal to zero, we 
must have: 

The limit can be determined using the rule of 1'Hospital %wo.times. Note first,  that 
D, L =  ( S - t ) / ~ .  We then get 



and hence : 

We then get: 

2 l - t2 F-, = S((-3t2s2+ 2ts + 1 - (3ts i 1) L)/2+ (P, (t) *h E +  - ) s2) 
4 

For  the evaluation of covariance functions involving deflections, we have to compute 
/ I  I 

F;, F:, F:,, F-,, F- , and F> (where again the apostrophe means differentiation 
with respect to t = cos (I). 

We will f i rs t  compute some auxiliary quantities: 

Hence from (84) we get by differentiation: 



For F,1 we get using (86) 

and for  FAp we get by (87,) 



- 
-.:E closed expressions for Fl, i>  0 can be found using another recursion formula, 
1 . 2 .  3.263. We will treat this case in a more general way, because in this case we 
- IL: to derive expressions not only for i =  1, 2 and 3 but for i =  1 to m .  ~t is also 
--- - -  - t.,sary - -  to have a recursion formula well suited for actual computations. 

-. 
A -  :wve (using G.R. 2.263): 

Zsaiizing that: 

rtunately we can use the recursion formula for the computation of D, Fl = F: and 
I ~ F ~ =  F:' as well. 

Iifferentiating (96) we have: 

and F:,, = (D,L+( 2i-1)(F1 -+ t-I() - m- F:,). - 
S i S 

- .  - ~xferentiating one time more: 



S 
with D,L=- - and @ L =  - s2 

L F 

As in the case where i was less than o r  equal to zero, we must now compute the f irst  
two terms in the recursion formula, i. e. 

&l9 F:', G, Q! and G'' 

Using G. R. 2.2641 we get 

and hcnce, by (96) 

Computation of the limites of the integrals for S-. 0 give us the integration constants: 

a, =-a/1(2-2t) and 

= - t h  (2-2t)-1. 

Hence 

which can be verified by multiplying the numerator and the denominator by (l-s+L). 
The las t  expression for F$ is the best suited for numerical use, because it avoids 
dividing by zero for Jr = 0. 

For F, we get: 

1 1 
= , (L+t0 q ++ ) = - (L-l+t*li$). 

S 

The f i rs t  and second derivatives of E and G becomes: 



(l-S+L) . (-2s)(-S/L) = 2sZ 
( l+s+L)  (l-s t L )  ( l+S+L)(l-s+L)L 

2s2 s2 
-- - s2 

(1t.L-tS)*Id*2 (1-1 L- ts )*L L*N ' 

f 1 1 ts  
l$ = - S (-S/L+ t K'+ F,) = - - + - + F,/~ 

L L6N 

/ I  1 
= - (-s2/L3 + 2 ~ :  + t F:') 

S ( 104) 

We will now derive the relations between the functions Fi and the covariance models 
2 ,3 ,4  and 5. 

Model 2. 

Using (59), (61), 166), we get: 

1 
= A 2 * R 2 ( c  R - l  S R /  l p a ,  it)' 



and by (73), (84) and (86) 

2 =A, IIa s [ l  - L t (ts - 1)h - 
N l '  

In the same way, we get using (64), (63), (66) and (84) 

and by (60), (66), (73), (74) and (84): 

The covariance functions inv lving deflections of the vertical will, as  mentioned above 8 
contain K;, K;' and - Q K ~  - K:. 

Differentiating (105) gives: 

K; = A,R~(F:~  + sZ - F:) and '108) 

K: = A ~ R ~ ( F ' ~ ~  - F:') (109) 

2 
Because -D& - - K; = covz (&gp, TQ ) we get by differentiating (106): r 



Combining the three last  equations with (55), (57), (51), and (53) we get the following 
equations, which can be evaluated using equations (88) - (91). 

cov,(Rp, RQ)  = ( t o  K; -sin2$ K~ ' ) / (G*  G1*r r') 
(111) 

Model 3. 

From (59), (61) and (67) we get: 

=A3 R' 1 1 A+1 
( A -  1)(A-2) 

and then using (73) : 

For  the covariances between the gravity anomaly and the anomalous potential we get 
using (62), (63), (67) and (73): 



And for  cov, (A&, bgQ ) we get using (6O), (67), ( Y l ) ,  (73) and (74): 

The formula (115) becomes using (86) and (87): 

2 
cov3(Tp , q) =A3Ra r -s(~+ts * h )+s3 Q, (t) + s(M(3tsr 1)/2 

This is the correct  version of the formula given by Lauritzen (1973, p. 82), in which 
the quantities here called M and N have been interchanged and the factor is missing. 

Explicit expressions can be written down for (116) and (117) as well, using (86) and (87). 
But generally it is easier  to camp* the values of (86) and (87) separately and then 
evaluate the covariances using (115)-(117). 

The derivatives necessary for the evaluation of the covariances involving deflections 
((38) - (44) and (51) - (57)) becomes by differentiating (115) and (116): 



I I I1 
which then can be evaluated using the formula for F&, F:, , F-l, and F-, , (90) - (93). 

Combining the three last equations with (55),  (57), (51),  and (53) we get: 

F," 
C O V ~  ( R p ,  cQ) =-sin$ * K ; / ( G * G ' * ~ ) = A ~  - /(F:, + 3ts3 - sin Ji (124) 

r e G e G  

Model 4. Using again (59) and (61) and now (68) we get 

Unfortunately we will now have to introduce one more notation related to the degree- 
variances . We will define : 



All the quantities (127) - (129) a r e  unitless quantities, and we have e. g. using (127), (61) 
and (68): 

R2 1 1 
743R(T,T)= - 

(h-1) '4, a * R a  - (R-l)(R-2)(Q+B) 

This quantity can be partitioned as  follows: 

hence using (126), (127j, (72) and (73) we get: 

- - 
A, R2 [ (B+1) F-2 - ( ~ + 2 )  ( F - ~ - S ~  p2 (t)) 

(B+2) (B+l) 

- - 

Correspondingly we get using (128), (68) and (63): 

1 1 
- L ] and hence using (64), (72) 

(k 'T)= (a-2)(k+B) B+2 L R-2 j,+B 

and (73): 



For T,,R (&, r%g) we get in a similar way using (129) and (68): 

- - B+l + 1 -  1 
(B+2) (R+B) (B+2)< R -2) 

and hence using (60), (72) and (73) 

We will now differentiate (130) and (131) getting fke formula necessary for the compu- 
tation of the covariances involving deflection S ; 

A, Ra s2 3s3t 
K"' = (B+2) (B+l) [ ( ~ + l )  F:, - ( B + ~ ) ( F ' ~  -3 t s3)+~;  - B+1 - -1 B+2 

(I33) 

K"' = 
A,* R2 

(B+2)(B+1) [ ( ~ + 1 )  F!: - ( ~ + 2 )  (F!!~-~S~)+F;'- - B+2 3s3 1 

The formula (1 33) -(l35) can be evaluated using (90)-(93) and the recursion formula (97) 
and (98) with the !'initial valuesr1 given by (101)-(104). 



c 0 v 4 ( m p ,  mg )=I(:/(GeG'*r* r') (137) 

and finally: 

Model 5. Using (127), (61) and (69) we get: 



1 r j+2-i-2 
- -. i+l-j-l  
- 

1 

j-i L(R-z)(i+z)(j+z)' ( R - l ) j + l ) i + l )  + (R+i)(R+l)(i+2) 

l 3'. - (R+j)(j+l)(j+2) j-i 

and by (128), (63) and (69) 

- 1 - -  +'[ 1 - 
R-2 j-i (j+2)(R+j) (R+i)(i+2) 

and finally by (129) and (69) 



and hence u s i n g  (59), (72) and (73) we get: 

COVE (TP ,TQ )=Kg (P, Q ) = A ~ * R ~ [  1 CO 1 R + 1  
(i+2) (j+2) 

+'( 1 ( F I - T - -  S s a t  sap t 1 S - ( j+l ) ( j+z)  
- 

j-i ( i+l ) ( i+2)  i+1 i+2 (FJ - j 



(141) 
cont'd 

and by (60) 
W 

The covariances (140)-(142) can then be evaluated using (86), (87) and the 
recursion formula (96) with "initial valuesf1 (99 and (100). As in the other models b it is necessary to compute K:, K: and - 4 ~ ' ~  - F ~ L  to find the expressions for the 
covariance functions involving deflections of the vertical. The formulae can be de- 
rived by differentiating (140) and (141) and later  evaluated using the proper recursion 
formula exactly as explained in model 4. 

Note in the equations (140), (141) and (142) the denominators a r e  equal to j-i, i+2, 
j+2, i+l, j + l .  The occurence of these and similar quantities a re  the reason for the 
above mentioned restrictions on i and j (and B). 

The above described expressions for the closed covariance functions can also be 
used in cases, where a set  of empirical degree-variances a re  used in connection 
with degree-variances defined through one of the models (65)-(69). In this case, 
the basic covariance function cov (Tp , TQ ) is represented by, e. g. 



where &R(T, T) are the empirically determined degree-variances as would be computed 
from equation (15). We will  distinguish between the above mentioned covariance 
functions covk(A, B) and this new type of covariance function by a subscript E, i.e., 
cov, (Tp, Tp ) is equal to expression (143). We rewrite (143): 

Noting, that the relations (61) and (63) are valid for empirical degree-variances as  
well, we find using (60), (63), and the relations (34) - (37), (51), (53), (55) and (57) 

n a +l 
covE(Rp , R g  ) = (1 (%(T, T)-q.,a(T, T)) S ( t * $ ( t ) - ~ i n ~ J I * ~ ~ ' ( t ) ) / ( ~ * ~ ' ~ r * r ' )  R 



and finally 

where pl(t) and $'(t) a re  the Rtth order Legendre polynomial differentiated with respect a 
to t one and two times respectively. 

We now define (Q through the following equations: 

Ca ( 'I" T) = &Q (T, T) - o,,e (T? T) 

We can then see, that the covariance functions (144)-(150) involves the summation 
of finite series. 

and 



Recursion algorithms for the summation of those three types of se r ies  will be given in 
the .next section. 

Using the above developed expressions (144)-(150) it is possible to compute covariance 
functions of and between height anomalies, gravity anomalies and deflections of the 
vertical corresponding to the recommended model for the anomaly degree-variances. 
This is possible because we have selected the value B in Table Seven (p. 22 ) equal to 
the integer 24. 

A 
Using the empirical determined value of udAg, &) = 7 . 5  mga12 (cf. Table Two) we can 
then, for example, write down an expression for the covariance functions of the 
anomalous potential: 

where the factor 10-l0 is used to convert the covariance into units of m4 /sec4, supposing 
R in units of meters. 

h a similar  way we can write down the expressions for the covariance functions, 
COVE (A&, Ss), COVE (&P,  &Q ), COVE (&p , Jq ), COVE (Sp,  & q ) , ~ ~ ~ ~  ( J P ,  Jq  ) and cov, ( m p , q ) .  

We have computed values of the covariances for varying spherical distance Jr and for P 
and Q lying on the surface of the Earth and 500 km above the surface of the Earth 
respectively. See tables 9 and 10 and figures 3-9. 

The radius of the Bjerhammar sphere, R, has been determined as: 
.L 

~ = ~ i i b l e  7 R, = (0.999617y 6371.0 km=  6369.8 km. 

The quantities r and r' a r e  computed by adding the actual height above the reference 
ellipsoid (here 0 and 500 km) to the adopted mean Earth radius, R,. 

The subroutine presented in the appendix has been used for the computation of the 
given values. 



Table 9 
Covariance between various quantities computed using the anomaly degree 

variances of model 4 and a, (Ag, Ag) = 7 .  5mga12 a t  the surface of the sphere 
approximating the earth (R, = 6371km). 

Covariances Between 

Agb,&q f k p S J q  & P S q  J P ,  R ,  n b , q  J P ,  Lq L P ,  LQ 
Jr mga12 mgal* arc  sec mgal* m a rc  sec2 arc  sec2 arc  sec * m  m2 

d-' 0.0' 1795.0 0.0 452.3 45.3 45.3 0.0 926.1 
0 30.0 801.8 67.3 434. R 19.2 27.1 7.3 925.0 
1 0.0 572.7 59.9 417.7 14.1 21.7 11.7 922.4 
1 30.0 4 5 2 - 6  54.2 402. 3 11.5 18.7 15.1 9lH.H 
2 0.0 375.5 49.8 388.3 9.8 16.7 18.0 914.1 
2 30.0 320.9 46.2 375.4 8.6 15.2 20.4 909. 1 
3 0.0 279.9 43,3 363.3 7.7 14. 0 22. h 903.3 
3 30.0 247.6 40.9 352.0 7.0 13.1 24.6 896. Y 
4 0.0 221-6  38.8 341.3 6.4 12 .3  26.4 890.0 
5 0.0 181.9 35.4 321.3 5.5 11.0 29.6 . 874.9 
6 0.0 152.8 32.8 303.0 4.8 10.0 32.4 858.2 
8 0.0 112.8 28.9 269.8 3.7 8.6 36.9 870.7 

10  0.0 86.1 26.2 240.2 2.9 7.5 40.5 778.9 
12  0.0 66.9 24.0 213.2 2.3 6.7 43.3 7 3 3 - 7  
14 0.0 52.2 22 .3  188.3 1 7 6 .  l 45.4 685.9 
16  0.0 40.6 20.8 165.1 1.2 5.5 47.0 636.0 
18  0.0 31.1 19.4 143.4 0.7 5.0 48.0 584.8 
20 0.0 23.2 18.2 123.2 13 3 4.6 413.6 532.7 
22 0.0 16.5 17.0 104.2 -0.0 4.2 48.7 480.2 
24 0.0 10.9 15.9 86.5 -0.4 3.9 48.5 427.1 
26 0.0 6 .0  14.8 69.9 -0.7 3.5 47.9 375.7 
28 0.0 1.8 13.8 5405 -1.0 3.2 47.0 124.5 
30 0.0 -1.7 12.7 40.2 -1.2 3.0 45. R 274.4 
35 0.0 -8.6 10.3 90 2 -1.8 2.4 41.7 156.2 
40 0.0 -12.9 7.9 -15.2 -2.2 1.8 36.3 50.5, 
45  0.0 -15.4 5.6 -33.3 -2.4 1.4 30. i -38.7 
50 0.0 -16.3 3.5 -45.6 -2.5 1.0 23.4 -110.8 
55  0.0 -15.9 1 7 -52.6 -2.5 0. 7 16.6 -164.7 
60 0.0 -14.5 0.0 -54.8 -2.4 0.4 l -200.5 
65  0.0 -12.4 -1.3 -53.0 -2.2 0.1 3.9 -219.2 
70 0.0 -9.8 -2.4 -47.9 -1.9 -0.1 . -1.5 -222.2 
75  0.0 -6.9 -3.2 -40.3 -1.5 -0.2 -6.1 -211.8 
80  0.0 -4.0 -3.6 -31.0 -1.2 -0.3 -9.7 -190.3 
R5 0.0 -1.1 -3. R -20.9 -0.8 -0.4 -1.2.3 -160.4 
90 0.0 1 ,b  -3.8 -10.6 -0.4 -0.4 -13.9 -124.9 
9 5  0.0 3.9 -3.5 -0.8 -0.1 -0.5 -14.5 -86.5 

100 0.0 5.7 -3.0 7.9 0.2 -0.5 -14.3 -47.5 
105 0.0 6.9 -2.4 15.2 0.5 -0.4 -13.3 -10.2 
1.10 0.0 7.6 -1.7 20.7 0.7 -0.4 -11.7 23.7 
115 0.0 7.7 -0.9 24.1 0. R -0.3 -9.7 52.7 
120 0.0 7.2 -0.1 25.5 0.9 -0.3 -7.5 76.0 
125 0.0 6. 2 0.6 24.9 0.9 - 0 . 3  -5 .2  93.0 
130 0.0 4.7 1,. 2 22.5 0 .  R -0.1 -2.9 103.9 
135 0.0 2.9 1.7 18.5 0.7 -0.0 -0.9 108.9 
140 O e O  0.8 2.1 13.4 0.6 0.0 0.9 108.9 
145 0.0 -1.4 2.3 7.4 0.4 0.1 2.2 104.7 
150 0.0 -3.7 2.4 1.1 0.2 0.2 3.0 97.5 
155 0.0 -5.8 2.3 -5.2 0.1 0.3 3.4 88.7 
160 0.0 -7.7 2.0 -11.0 -0.1 0.3 3.4 79.3 
165  0.0 -9.3 1.6 -15.9 -0.2 9.4 2.9 70.7 
170 0.0 -10.5 1.1 -19.7 -0.3 0 .4  2.1 63.8 
175 0.0 -11.3 0.6 -22.1 -0.4 0 .  4 1.1 59.4 
180 0.0 -11.5 0.0 -22.9 -0.4 0.4 0.  0 57.8 
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Table 10 
Covariances between various quantities computed using the anomaly degree 
variances of model 4 and & , ( A ~ ,  Ag) = 7 . 5  mgala a t  a height 500 km above the 

earth (r = R, + 500 km). 
Covariances Between 

&P &q &P, Q Q  &B 59 I P ,  QQ W , ~ Q  Q P , ~ Q  

4 mga12 mgal0arc sec mgalem arc  seca a rc  sec2 arc secam 
0 . 0' 64.1 0.0 162.2 4 .3  4 .3  0. 0 

30.0 64.0 0.6 162 .1  4.3 4.3  1 .) 
0.0 63.7 1. 3 161.6 4 .3  4 .3  Le5 

30 .0  63. 2 1.9 161.4 4.2 4.4 3. r 
0.0 62.5 2.5 l b0 .7  4.2 4.3  4 .4  

30.0 61.7 3.1 159.9 4.1 4.3 h .  7 
0. 0 60 .7  3.7 15H.9 4.1 4.7 7 . 4 

30 .0  59.5 4.2 157.7 4. O 4.7 H . 5  
0 . 0 5H.3 4 7 156.4 3.4 4.3 9 . 7  
0.0 55.5 5.7 153.4 3.7 4.1 11.9 
0.0 52.4 6 .5  149.8 3.6 4.  0 14.  0 
0 .0  46.0 7. 7 141.5 3 .  l 3.4 17.9 
0 . 0 39.7 R .  9 132.1 7 .7  3.7 31.3 
0. 0 33.7 8 .9  121.9 2.3 3.5 74.7 
0 . 0 28.3 9.2 111 .3  1.9 3.3 26.6 
0.0 23.5 '3. 2 100.5 1.5 4.1 78.6 
0. 0 lq .  l 9 . 1  89 . H 1.2 7.q 30.7 
0 ,n  15.3 R. Y 79.2 n. H 7. H 3 1  . 3  
0.0 11 .9  8 . 7 68.9 0 .  5 ?. 6 32. l  
0.0 8.9 8.4 58. H 0. 3 2.4 37. 6 
0.0 6. 3 R. 0 49.2 n.0 2.7 37 . r  
0 .0  3 .9  7.6 40.1 -0.3 3.1 37.6 
0. 0 1.9 7.2 31.4 -0.4 1.4 37.2 
0 .0  -7.2 6. 0 11.9 -0.9 l .  h 30.2 
n. 0 -5.0 4.8 -4.1 -1.2 1 . 3  77.1 
0.0 -6. 7 3 .5  -16.5 -1.5 1.0 73.1 
0.0 -7.6 3 . 3  -25.4 - l .  6 0. 7 l h . 5  
0.0 -7. P 1.3  -31.0 - 1 2  0. 13.X 
0.0 -7.3 0. 3 -33.5 -l  . 6 0. 3 9.0 
0. n -6 .5  -0.5 -33.4 -1.5 0.1 4.5 
0.0 -5.3  -1.2 -31.0 -1. 3 0.0 0.4 
0.0 -3 .9  -1.7 -27.0 -1.1 -0.1 -3.2 
0. 0 -2.5 -2.0 -21.7 -0. 9 -0 .3  - h .  l 
0.0 -1.0 -2.2 -15.6 -0. h -0.3 -8. 3 
0.0 0.3 -2.2 -9.3 -0.4 -0.3 -9.8 
0. n 1.5 -2.0 -3.1 -0.2 -0.3 -10. h 

0.0 2.5 -1.8 2.6 0.1 -0 .3  -10.H 
0.0 3.2 -1.4 7.5 0.2 -0 .3  -10. 3 
0.0 3. 6 -1.0 11.3 0.4 -0.3 - c ) .  4 
0.0 307 -0.6 13 .9  0.5 -0 .3  -8.7 
0 .0  3.6 -0.2 15.3 0.5 -0.2 - h .  7 
0-  0 3.1 0 .3  15.5 0.6 -0. 3 -5.1 
0.0 7 .5  0.6 14. 6 0.5 -0 .1  -3.5 
C). 0 l .  6 0 .9  12 .7  0.5 -0 .1  -7.1 
0.0 0.6 1 .2  10.0 0.4 -0 .0  -0. 
0. 0 -0.4 1.3 h. 7 0.3 0. o 0 .  3 
n. o -1.5 1 . 3  3.2 0. 2 o.  1 1 . c 
0.0 -7. 5 1 .3  -0.4 0.1 n .  I I . 4  
0. 0 -3.5 1 .1  -3.7 -0.0 0 . 1  l .  h 
n. 0 -4.7 0.9 -6 .5  -0.1 o. 7 1 . 4  
0.0 -4.8 0.7 -H. 7 -0. 7 0 .7  I .  1 
0.0 -5.2 n. 3 -10 .0  -0. a 0. 7 0.6 
0 . o -5.3 o . 0 - I  0 .5  -0 .3  0.7 0 . n 
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m g a h a r c .  sec. 

Maximum value for $ = 3.4' equal 
to 70.5 

Figure 4 

Graphs of two covariance functions of the gravity 
anomaly Agp and the longitudinal component of 
the deflection of the vertical R Q  for varying spherical 
distance $ between P and Q. 

cov~(Ag,  a,), P and Q on the surface of 
the Earth. - COV,(A@, R,), P and Q both 500 km above 
the surface of the Earth. 



m e 1  * meters Figure 5 

Graphs of two covariance functions of the gravity 
anomaly Agp and the height anomaly cQ for varying 
spherical distance 9.  

C O V ~  (Agp, cQ ), P and Q on the surface of the 
mean Earth. - COVE ( Agp , cQ ) , P and Q 500 km above the sur- 
face of the mean Earth. 



arc.  s ec  a 

Figure 6 

Graphs of two covariance functions of the longitudinal 
components ( a,, a,), of the deflection of the vertical 
for varying spherical distance $. 

cov, ( a,, 1, ) , P and Q on the surface of the 
mean Earth. (Maximal value = 45.3 a r c  sec" 
not shown on graph). 

:c cov, ( a,, aQ ), P and Q 500 km above the surface 
of the Earth. 



arc. sec. 
Figure 7 

Graphs of two covariance functions of the transversal 
components of the deflections of the vertical m, and m~ 
for varying spherical distance $. 

cov, (q, q), P and Q on the surface of the 
mean Earth, (maximal value = 45.3 arc  sec2 
not shown on graph). - c o v ~ ( m ~ ,  ), P and Q 500km above the sur- 
face of the Earth. 



arc. sec. * meters  

Figure 8 

Graphs of two covariance functions of the longitudinal 
part  of the deflection of the vertical ( R p )  and the height 
anomaly (CQ) for varying spherical distance +. 

C O V E ( R P  , CQ),  P and Q on the surface of the 
mean Earth. 

-WC++ cov, ( R,, CQ ), P and Q 500 km above the 
surface of the Earth. 





9. Application of the Covariance Models for the Representation of Local 
C svariance Functions. 

Local covariancc functions of point o r  mean gravity anomalies may be estimated 
by formulas similar  to (3) and (4)applied on the gravity data in a certain limited area.  
Thus, the anomalies must be ceniered, i.e. the mean value over the considered a rea  
will have to be subtracted. 

Disregarding gravity information outs ide the cons idered a rea  and subtraction 
of the local mean value correspond heuristically to disregarding the information 
contained in the low order harmonics. 

We will here define a n'th order local (isotropic) covariance function a s  a 
covariance function, which can be derived from the covariance function of the 
anomalous potential (158) using the law of propagation of covariances: 

where the superscript n is the order of the local covariance hnction an( i the subscript 
l< is an integer used (as before) to distinguish between the different degree-variance 
models. Thus K",P, Q) is in fact a special case of the models cov, ! Tp, TQ ) cons idered 
above, having ail  degree-variances up to and inclusive of degree n equal to zero. 
We can then rewrite (158): 

a= 0 
For the quantity E (T,T) defined in (151) we have: 



Then we can use the expressions (145)-(150) to write down the different covariance 
functions derived from (158): 

11 

- sinY $ 1 &,Q (T, ~)s~+~P;'(t))/(G*G'*rer'), 

i = o  
and 

n 
/P R +l 

cov; ( J P ,  Ag, ) = c ~ ~ ~ ( R ~ ~ A & ) -  ; L ? O*,A (kg, T)s P; (t)) sin$*R/'G*rbr') (164) 

The evaluation of the terms derived from the "globalrr covariance function covk (T, , TQ ) 
have been explained in the preceding section. We will then have to evaluate the sums 
of the series ( l%) ,  (155) and (156), which a r e  series in the Legendre polynomials 
P (t),  their f irst  derivatives ~ ' ( t )  and their second derivatives P1'(t), respectively. a a a 
This kind of series can be evaluated easily without explicitly evaluating the functions 
Pi(t), ~ ' ( t )  and pil(t). The technique i s  similar to the so called Homer-procedure for 
the evafuation of a usual polynomial: 



We can express this procedure through a recursion algorithm with t e rn s :  

where the recursion starts  with b,+,=O and where the vahe  of 2 7 , l l t )  is equal to the 
final recursion term b,. The first, second (and higher order) derivatives of Pol(t) 
can be evaluated using recurs ion a s  well. The recursion formulas aye found by 
differentiating (166) 

and the derivatives will be polt( t)  = bh and pol"(t) = b i  

This type of algorithm,which s k t s  by accumulating the high order terms a re  
espec id ly  useful when t is less  than one, i. e .  when a usual evaication of i!' and 
multiplication with aR contingently wodd add a small number to already accumulated 
terms. The essential point in the procedure is the simple fact that, 

i. e .  , that there exists a recursion formula for the kfictlon tA. 

It is well known, that we have a simple recursion formuis fm- :he Legendre poly- 
nomials PA(t). By inspecting the formula for the covarianca functions, we also note 
the term s k + 1  o r  sR+2 ,  which becomes smaller and smaller for R increasing, 
because s is less  than 1. So we can hope to find simple recursion formulas for the 
sums (l54), ( l 5  5) and (1 56), which furthermore should behave well numerically. 

A general treatment of this type of summation problem is given in Clenshaw 
(1955, p. 118) (also valid for many other well known series a s  e. g. Chebyshev ser ies  
o r  Neumann series of Bessel functions). He regards the sum of a series: 

for which there exists a three-term recursion formula between the functions p (t): 
R 



The coefficients e and fR may be dependent of t a s  well a s  on R. R 

He proves, that the recurs ion algorithm: 

with b,,, - b., l = 0, will furnish us with the sum (l69), so  that 

S .= bopo(t) +h (p, (t) + eopo(t)) 

after  n + 1 recursion steps. 

In the example above (165), we have fR=O, eR=-t  and then we get from '171) 

b = t - b  + a  and S , = b o + b l ( t + ( - t ) ) = b o  
R R + 1  R 

a s  stated above in (166). 

By differentiation of the recursion formula (171) and the formula (172) we get 



, 

Thus, by multiplying (174) with s " ~  we get: 

a +2 2a+1 R -1-1. a * s 2  a 
S P ( t ) - a + l  P p )  + a+l (S P a (t)) =O , a+ l 

and thereby in fact a recurs ion formula for the functions 

which then directly can be applied on the ser ies  (154)-(156). 

The quantities eQ and f a  in (170) becomes: 

Using (176) and that p&) = s -P,(t) =S and p, (t) =s2 t,  we get: 

pi ( t )=s2  and 

(t) = 0 

Then by (177)-(182) and (171)-(173) we get the following recursion formula for the 
quantities (154)-(156)(with a equal to u,,j(T, T), u , ,~(Ag,  T) o r  U,$ (Ag, &) - S  

respectively): 
a 



and finally: 

I /  2a+1 I I b R =  - R +2, with 
R +l 

We would like to point out, that the recursion formulas (183)-(188) a r e  valid for the 
computation of sums of a usual Legendre-series. The formulas can be obtained from 
equations (183)-(188) simply by putting S equal to one. 

The subroutine presented in the appendix has been used to compute cov~O(Agp, RQ) , 
c0vt0 ( & p , C Q  ), COV:~(AP, R Q ) ,  C O V : ~ ( ~ ~ ,  q), ( R p  , CQ ) and C O V ~ ~ ( C P  , CQ ) for 
spherical distance $ varying with p increlnents from 0' to 25' . The values a r e  
shown in table 11. (The degree-variance model defined by the constants given in 
Table 7 has again been used.) 

The analytic local covariance functions model discussed above can be used to find 
approximations for the empirical determined local covariance functions. Such a 



Table 11 
Covariances between various quantities computed from the local 

20th order covariance functions using the anomaly degree variances 
of model 4. 

Covariances Between 

&P, JQ 

mgal* arc sec 
0.0 

64.2 
53.8 
45.2 
37.9 
31.5 
26.0 
21.1 
16.8 
13.0 

9.6 
4.7 
4.1 
1.9 
0.1 

-1.4 
-2.6 
-3.5 
-4.1 
-4.5 
-4.7 
-4.7 
-4.5 
-4.2 
-3. A 
-3.3 
-2.7 
-2.1 
-1.5 
-0.9 
-0.4 

0.2 
0.7 
1.1 
1.4 
1.7 
1.9 
2.0 
2.0 
2.0 
1.9 
1.7 
1.5 
1.3 
1.0 
0.7 
0.5 
0.2 

-0.1 
-0.4 
-0.6 

&P 9 CQ 
mgal * m 
88.3 
71.2 
55.3 
42.0 
30.9 
21.5 
13.8 

7.5 
2.3 3 

-1.7 
-4.7 
-6.9 
-8.3 
-9.1 
-9.4 
-9.2 
-8.7 
-7.9 
-6.8 
-5.7 
-4.4 
-3.2 
-1.9 
-0.8 

0.3 
1.3 
2.1 
2.7 
3.2 
3.5 
3.7 
3.7 
3.6 
3.4 
3.0 
2.6 
2.1 
1.6 
1.1 
0.6 
0.0 

-0.5 
-0.9 
-1.3 
- l .  h 
-1.8 
-2.0 
-2.1 
-2.1 
-2.0 
-1.9 

AP, 
a rc  sec 

mp, 9 
a rc  seca 
34.5 
16.3 
11.0 

8.0 
6.1 
4.6 
3.6 
2.8 
2.1 
1.6 
l . ?  
0.9 
0.5 
0 . 3 
0.2 
0.0 

-0.1 
-0.1 
-0.2 
-0.2 
-0.2 
-0.2 
-0.2 
-0.2 
-0.3 
-0.2 
-0.1 
-0.1 
-0.1 
-0.1 
-0.0 
-0.0 

0, 0 
0. D 
0.0 
0. D 
0. 1 
0. l 
0.1 
0.1 
0.1 
0.1 
0.0 
0.0 
I). 0 
0 . 0 
0.0 
0.0 
0.0 

-0.0 
-0.0 

J P ~ ~ Q  
arc  sec m 

0. 0 
4.4 
5.9 
h. 5 
6. 5 
6.3 
5.8 
5.7 
4.5 
3. H 
3.1 
2.4 
1.7 
1.1 
0.6 
0.1 

-0.3 
-0.6 
-0.4 
-1.1 
-1.2 
-1.3 
-1.3 
-1.3 
-1.2 
-1.1 
-0.9 
-0.8 
-0.6 
-0.4 
-0.2 
-0.1 

0.1 
0.7 
0.4 
0.5 
0.5 
0.6 
0.6 
0.6 
0.6 
0.6 
0. 5 
0.5 
0.4 
0.3 
0 .  2 
0. 1 
0.0 

-0.1 
-0.1 



covariance function (of e. g. point gravity anomalies) differ from a global covariance 
function by having another (generally smaller)  value for spherical distance I) equal 
to zero and by having its f i r s t  zero point occurring fo r  a much smaller spherical 
distance. We will denote this distance by Jr,, i .e .  cov~(Agp  , A & ) =  0 for the 
spherical distance between P and Q equal to $, and all points P and Q with smaller  
spherical distance W ill have a p s i  tive covariance. 

Note in Table 11, that the $, value is equal to 3'37'. The f i rs t  zero point for 
cov, (bap & ) was (cf. Table 9 ) equal to 29'. It is  a general trend (which can be 
verified for the here discussed degree-covariance models by computational 
experiments), that the f irs t  zero point Jr, occurs a t  decreasing $ values for in- 
creasing order  of the local covariance function. Table 1 2  shows the value of $, 
for cov:(Ag, , A  a ) for various n values. Note in the table, that the f i r s t  zero 
point will occur between I) = 0 and Jr =90°/n. 

Table 12 

The spherical distance of the f i r s t  zero point ($,) for  some 
n '  th order  local covariance functions of gravity anomalies . 

The degree-variance model used is given by the constants of Table 7. 
I 

By inspecting the graph of an empirically estimates local covariance function it is 
generally possible to find it 's  f i r s t  zero point. The corresponding order  of the local 
covariance function can hence be estimated by determining a n greater  that go0/$, 
for which the two zero points a r e  as  near  to each other  a s  possible. The local 
covariance function cov," (Agp, A&) can then he fitted to the estimated covariance 
function by multiplying the degree-variances of the adopted model by the ratio be- 
tween the emmica1 determined variance and the value of COVE (L!& Agq) (i. e. 
the value for  $ = 0'). 



10. Representation of covariance functions of mean gravity anomalies. 

We will in this section regard the covariance function of mean gravity anom- 
alies and discuss a representation of these by a certain related point gravity covariance 
function. 

In section 2 above we described how covariance functions of different kinds of 
mean gravity anomalies can be represented by a covariance function of mean gravity 
anomalies, meaned over a spherical cap. 

The relation between the degree-variances of this spherical cap mean gravity 
covariance function and the degree-variances of the point anomaly covariance is 
(cf. equation (11)): 

where the quantities RA are  given by equation (12). From this equation we have that 

because PR (cos$,) is less than o r  equal to one for all $,. 

Hence (for $, # 0) : 

Therefore it is not necessary to carry  out the summation of the series representing - 
C ( P ,  Q) to the same height degree a s  for the series representing C(P, Q). The 
recursion formula (172) may in this case, be well suited for computation of mean 
anomaly covar iance values. 

Unfortunately, none of the degree-variance models (65)-(6g) result in closed 
expressions for C (P, Q). But we may get an intuitive feeling of how a possible 
representation can be obtained by regarding the graphs of the two point anomaly 
covariance functions in Figure 3 and compare these with the graph of the mean 
anomaly covariance fune tion in Figure one. The graphs of the mean anomaly co- 
variance function will either lie in between or  near the graphs of the two point 



anomaly covariance functions. In fact, by varying the height of the points P and 
Q, points Q1 and Qa can be found for which the anomaly covariance function 
C (Q, , Q, ) gives a good approximation to e . g. the 1' X l0 mean anomaly covar iance 
function. Table 13  gives the mean square variation of the point anomalies for 
some values of the height of Ql (%,) and Q, (h,) above the surface of the Earth. (The 
values have been computed using the subroutine presented in the appendix). 

Table 13 

Table of the point anomaly variance C(Q,Q,) for different heights equal to h2 

The height, bg , corresponding to the value .(P, Pj = 9l9.6Ci for the l u x  1' mean 
anomaly covariance (Table One) has been estimated to be 11). 4 km. 

For the point anomaly covariance functions for points Q, and Q, in this height we 
have : 

using C(Q, , Q)  a s  a representatior, for C(P, Q), where P and Q a r e  on the surface 
the Earth, we a r e  approximating 



i. e. we a r e  approximating 
a4+e 

,a+4 

In Tbbb 14 values of f12 and (&) a are  presented corresponding to the l e x  1" 

mean anomaly covnrimce function. The values of $ has been obtained by squaring the 
values given in Table B of the appendix. 

Table 14 

Values of R' and J 
f i  

( Re:/$t4for b = 1 0 . 4  km and $,,=OU, 564 

Table 14 shows the similarity between the R; terms and the (R,/(R, +h)) terms for 
the specific $, and chosen. 

Table 15 gives values of (1) the empirical 1" equal area mean gravity anomaly - - 
covariance function a s  taken from Table one, and designated a s  cov (kp, Aq ), 
(2) the pokt  gravity and point height anomaly covariance functions cov, (&, , 
k3) P C O V ~ ( < ~ ~ ~  CQ2 ) for hQ1 = = 10.4 km and (3) the (circular - - cap, $,= ? 564) 
mean gravity and height anomaly covar iance functions covM &) , COVM (cP, - 
Ss). The subscript M indicates, that we have used the anomaly degree variance 
model of table seven, with U,(&,&)= 7 . 5  mgal". The table shows a reasonable 
good argument between the empirical determined covariance function and the two - - 
functions cov, (&,, hg4) and cov, h,). We also see, that it is reasonable 
to use the point height anomaly covariance function C O V ~ ( < ~ , ,  cQa) for the repre- 
sentation of the mean height anomaly. 



- Table 15 _ _  . 

Values of the empirical 1' X 1' mean gravity anomaly covariance function and related 
point and (spherical cap) mean gravity and height anomaly covariance functions. 



Using the 5' equal area  mean gravity anomalies estimated from the l0 X 1' 
anomalies used for the empirical covariance functions given in section 3 , and with 
the procedures described by Rapp (1972) we have computed empirical covariance 
values using equation (4). The values a r e  shown a s  plusses in Figure 10. This 
covariance function can be represented by a spherical cap mean anomaly covariance 
function with $, = 2.' 821 (cf. section 2). Values a r e  shown in Figure 10 as  small 
circles as computed from equation (11) with the anomaly degree variance model 4 
with 0,2(&, Ag) =7.5and the summation taken to n =  144. For a hei ht of 98.45 km E the point anomaly variances becomes equal to the variance of the 5 ~ 5 '  equal area  
mean gravity anomalies, 298.3 mgals . The graph of this covariance function is 
shown as a solid line in Figure 10 a s  well. Again, we can observe a good agree- 
ment between the different covariance function. 



Figure 10 

Graph of point gravity covariance function 
covM(&,, A&,) for hQ3 = b4 = 98.45km. 

+ Empirical determined 5" X 5' mean gravity 
anomaly covar iance values. 

o Spherical cap mean anomaly covariance 
values for  4, = 2O. 821. 



11. Summary and Conclusion 

Least squares collocation is a method of estimating various gravimetric depen- 
dent quantities through knowledge of the covariances between such quantities. This 
report has developed a new model for anomaly degree variances from which covariances 
for various quantities can be derived with closed formulas. Thus, these covariances 
between anomalies, height anomalies or (geoid undulations), deflections, etc. , a re  
all solf-consistent since they a r e  derived from a single starting point, an anomaly 
degree variance model. 

The covariances implied by the results of this report a re  basically global 
in nature. This arises from the manner in which the anomaly degree variance 
model was developed where consideration was given to low degree information concern- 
ing the earth's gravitational field, and the global variances of point 1" and 5" gravity 
anomalies. It is shown, however, in Section 7 how the global covariance functions 
can be easily modified to obtain local covariance functions. In addition, mean covari- 
anee fbnctions can reasonably be approximated by the point covariance functions 
evaluated for certain heights above the surface of the earth a s  explained in Section 9. 

Although several anomaly degree variance models and their corresponding 
covariance functions a r e  discussed, the model recommended was Model 4, defined 
by equation (25A) and the constants of Table Seven. Numerical results from this 
model a r e  reported in the text as computed from a computer program utilizing sub- 
routine COVA given as a Fortran program in the appendix. This latter program may 
be used to evaluate needed covariances to be used in any applications of least squares 
collocation involving anomalies, height anomalies, and deflee tions of the vertical. 
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Appendix B - Table B - Anomaly Degree Variances from the Modified 
1' Covariance Function 

Appendix C - Computer Program for subroutine COVA. 



Table A 
Original l0 Covariance Results 

Number of 
Product Pairs  

21828. 
67757.0 

109192.0 
156505.0 
231698.0 
255476.0 
316123.0 
352844.0 
410614.0 
462226.0 
488882.0 
541557.0 
579519.0 
630360.0 
66445 5 . 0 
702812.0 
755997.0 
787650.0 
826509.0 
8601 09.0 
903486.0 
939201.0 
97542 1.0 

1015701.0 
1042704. 0 
1092474.0 
1 1  14590.0 
1 1  56002.0 
1179137.0 
1218563.0 
1250747.0 
1273942.0 
1310993.0 
1348712.0 
1367757.0 
1398827.0 
1418730.0 
1450340.0 
1477700, 0 
1504202,o 
1523277.0 
1558690.0 
1574082.0 
1596518.0 
1628569.0 
1653239.0 
1680734.0 
1686870.0 
1726841.0 
1741001.0 

Number of 
Product Pairs  

1764605.0 
1786245.0 
1806095.0 
1826864.0 
1844149.0 
1868090.0 
1887521.0 
1914884.0 
1916381.0 
1946611.0 
1961243.0 
1975934.0 
1990242.0 
2009601.0 
2026129.0 
2027477.0 
2050882.0 
2051483.0 
2071575.0 
2079142.0 
2077609.0 
2094994.0 
2105922.0 
2101952.0 
2105738.0 
2102632.0 
2116443.0 
2110570.0 
2115762.0 
2117756.0 
21131fl5.0 
2117032.0 
2105401.0 
2103280.0 
2107743.0 
2102737.0 
2087672.0 
2084487.0 
2085244.0 
2071837.0 
2045875.0 
2055334.0 
2047715.0 
2033495.0 
2015615.0 
2013437.0 
2004502.0 
1980606.0 
1968387.0 
1961354.0 





Table B 
Anomaly Degree Variances From The Modified l0 ~ovar iance  Func 

4 
1 . 0 0 0 0 0  
0 . 9 9 9 9 8  
0 . 9 9 9 9 3  
0 . 9 9 9 8 5  
0 . 9 9 9 7 6  
0 . 9 9 9 6 4  
0 . 9 9 9 4 9  
0 . 9 9 9 3 2  
0 . 9 9 9 1 3  
0 . 9 9 8 9 1  
0 . 9 9 8 6 7  
0 . 9 9 8 4 0  
0 . 9 9 8 1 1  
0 . 9 9 7 8 0  
0 . 9 9 7 4 6  
0 .937  l 0  
0 . 9 9 6 7 1  
C ) .  9 9 6 3 0  
0 . 9 9 5 8 6  
0 . 9 9 5 4 0  
0 . 9 9 4 9 2  
0 . 9 9 4 4 1  
0 . 9 9 3 8 8  
0 , 9 9 3 3 3  
0 . 9 9 2 7 5  
0 . 9 9 2 1 5  
0 . 9 9 1 5 2  
0 . 9 9 0 8 7  
0 . 9 9 0 2 0  
0 . 9 8 9 5 0  
0 . 9 8 8 7 8  
0 . 9 8 8 0 3  
0 . 9 8 7 2 6  
0 . 9 8 6 4 7  
0 . 9 8 5 6 6  
0 . 9 8 4 8 2  
0 , 9 8 3 9 5  
0 . 9 8 3 0 7  
0 . 9 8 2 1 6  
0 , 9 8 1 2 2  
0 .98027  
0 . 9 7 9 2 9  
0 . 9 7 8 2 8  
0 .97726  
0 . 9 7 6 2 1  
0 . 9 7 5 1 4  
0 , 9 7 4 0 4  
0 , 9 7 2 9 2  
0 . 9 7 1 7 8  
0 . 9 7 0 6 2  

- 
CRt CA* 

(mgala) (mgal" ) 

0 .07  0 .07  
0 .02  0 . 0 2  
7 . 5 4  7 . 5 6  

33.88 3 3 . 9 5  
19 .17  1 9 . 2 3  
21 .57  2 1 . 6 4  
18 .87  18 .95  
18 .77  18 .86  
10 .42  19 .48  
11 .05  11 .12  
11 .43  1 1 . 5 1  
1 4 . 1 0  14 .22  

3 .12  3.15 
9 .47  9 , 5 6  
5 - 7 6  5.82 
7 . 5 8  7 .67  
4 .93  10 .07  
8 .63  8.76 
5 .26  8 .40  
7 .67  7 . 8 0  
1.16 1.18 
5 .81  5 .92  
4.47 4 .56  
5.93 6 .06  
6 .19  6 . 3 4  
9 . 2 4  9 .49  
1.96 2.02 
4 . 7 3  4 .87  
4 - 1 7  4 . 3 0  
4 .98  5.15 
3.89 4 .02  
4 .82  5 . 0 0  
7 .78  8 .09  
6 .90  7 . 1 9  
5.89 6 . 1 5  
7 . 6 3  7 . 9 8  
6 . 4 2  6 . 7 3  
4 .56  4 . 7 9  
7 . 3 9  7 .77  
5 .64  5 .95  
5 .41  5 .72  
5 - 4 5  5 .78  
6 - 4 6  6 - 8 7  
l 5 , 3 4  
5 - 5 6  5 .93  
7 .54  8 . 0 8  
2 .81  3.02 
5.78 6 .22  
3 . 6 4  3 .93  
5 .51  5.96 

* from equation (16A) 
82 

from equation (16)  with S = l 





Appendix - Subroutine C OVA 

A subroutine COVA for the computation o l  the covar iance of and be b e e n  
height anomalies, gravity anomalies and the longitudinal and transveral components 
of the deflections of the vertical is reproduced below. 

The FORTRAN IV language of the IBM 360/370 system has been used. 

The subroutine can only be used for  the compcltation of covariances 
corresponding to the degree-variance model given by equation (68). 

By the execution of a DATA statement, the quizniities s, A and B become 
equal to the values given in Table Seven. It is only necessary to change the values 
given in the DATA statement to obtain the covariances corresponding to a degree- 
variance model with other values of s, A and B. The subroutine can be used to 
compute covariance values corresponding to both a local nf ch order  covariance 
function and to a covariance func t ~ o n ,  which has some of the degree-variances 
equal to empirical determined values. 

The comments given in connection with the F o r ~ r a n  statements of the 
subroutine should give al l  details necessary for the application of the subroutine. 



S U B R O U T I N E  C O V A ( E P S r N 1 )  

T H E  S l l B R O U T I N E  C O M P U T E S  ONE O F  S E V E N  D I F F E R E N T  C O V A R I A N C E S  ( S E E  R E -  
L O W ) ?  U S I N G  T H E  A N O M A L Y  D E G R E E - V A R I A N C E  M O D E L  G I V E N  T H R O U G H  T H t  V A L -  
(JES O F  T A B L E  S E V E N  A N D  E Q U A T I O N  ( 6 8 ) e ( T H E  Q U A N T I T Y  S  I N  T H E  T A B L E  I S  
H E R E  C A L L E D  S E ) .  
T H E R E  A R E  T H R E E  E N T R I E S  T O  T H E  S U B R O U T I N E ,  W H I C H  H A V E  T O  B E  C A L L E D  I N  
T H E  S E Q U E N C E  C O V A ? C O V B  A N D  COVC.  

B Y  T H E  C A L L  O F  C O V A ,  T H E  K I N D  O F  C O V A R I A N C E  F U N C T I O N  T O  B E  U S E D  I S  
D E T E R M I N E D .  T H E R E  A R E  T H R E E  P O S S I B I L I T I E S :  
( 1 )  T H E  C O V A R I A N C E  M O D E L  F O U R  ( E Q U A T I O N S  ( 1 3 0 ) - ( 1 3 2 )  A N D  ( 1 3 6 ) - ( 1 3 9 ) )  

I S  U S E D  W I T H O U T  M O D I F I C A T I O N S .  I N  T H I S  C A S E  E P S  W I L L  B E  A  DUMMY 
A R R A Y  A N D  N 1  M U S T  B E  E Q U A L  T O  ONE. 
T H E  L O G I C A L  V A R I A B L E  M O D E L  W I L L  G E T  T H E  V A L U E  T R U E  I N  T H I S  C A S E ,  

( 2 )  A N U M B E R  ( N I )  O F  T H E  A N O M A L Y  D E G R E E - V A R I A N C E S  ( D E G R E E  Z E R O  T O  
N I - l )  A R E  P U T  E Q U A L  T O  E M P I R I C A L  D E T E R M I N E D  D E G R E E - V A K I A N C E S .  
T H E  D E G R E E - V A R I A N C E  O F  D E G R F E  K W I L L  H A V E  T O  B E  S T O H F D  I N  
E P S ( K + l )  ( I N  U N I T S  O F  M G A L * * 2 ) .  

1 3 )  THE D E G R E E - V A R I A N C E S  CIF DEGREE z E u n  T U  N = NI-i A R E  PUT EQUAL T O  
Z E K O e ( A N D  T H E  O T H E R S  A R E  T H E  S A M E  A S  A B O V E  D E S C K 1 H E D ) e  T H I S  M E A N S  
T H A T  A N  N ' T H  O R D E R  L O C A L  C O V A R I A N C E  F U N C T I O N  W I L L  B E  COMPUTED.  I N  
T H I S  C A S E  E P S  M U S T  H A V E  N Z  Z E R O  V A L U E S  STORED,  

I N  A L L  C A S E S  N 1  M U S T  B E  L E S S  T H A N  300 A N D  E P S  M U S T  H A V E  D I M E N S I O N  
N1 .  

I M P L I C I T  R E A L  * 8 ( A - H T O - Z )  
L O G I C A L  M O D E L ,  NOTDV N O T D D  
D I M E N S I O N  E P S C ( 3 0 0 ) v E P S ( l )  
D A T A  R E ? G M y A p S E I B ,  1 0 1 9  I 8 2 9  I B M l y E p S C (  ~ ) T E P S C ( ~ ) ? D O T ~ ~ T D ~ T D ~ T D ~ ~  

* D 5 ~ R A D S E C / 6 3 7 1 ~ 0 D 3 ~ 3 ~ 9 8 0 1 4 ~ 4 2 5 ~ 2 8 D 0 ~ 0 ~ 9 9 9 6 1 7 D 0 ~ 2 4 ~ 0 D 0 ~ 2 5 ~ 2 6 ~ 2 3 ~  
'$3*O. O D O , l a O D O t  2 . 0 D 0 9  3 e 0 D 0 9 4 0 0 D 0 v  l m O D 5 9  2 0 6 2 6 4 . 8 0 6 D O /  

I 0 1 2  = I B 1 3 k I B 2  
K A D S E 2  = R A D S E C * * 2  
R E 2  = R E * R E  
R B J 2  = R E Z I S E  
R B J  = D S Q R T ( R H J 2 )  
AM = A / D 5  
A M 2  = A M / D 5  

A  I S  I N  U N I T S  O F  M G A L * * 2 r  AM I N  U N I T S  O F  M G A L * M / S E C  A N D  A M 2  I N  
U N I T S  O F  ( M / S E C ) z c * Z .  R B J  I S  T H E  R A D I U S  O F  T H E  B J E R H A M M A K - S P H E R E .  

M O D E L  = N 1 - E Q .  l 
I F  ( M O D E L )  GO T O  20  

WE W I L L  NOW C O M P U T E  T H E  M O D I F I E D  ( P O T E N T I A L )  D E G R E E - V A R I A N C E S v  CF .  
E Q U A T I O N  ( 1 5 1 ) -  

I F  ( N l . L T . 3 )  GO T O  2 0  
DO 10 I = 3 7  N 1  
R I  = D F L O A T (  1 - 1 1  
I F  ( I . E Q . 3 )  E P S (  3 )  = E P S ( 3 ) * R B J 2 * 1 - O D - 1 0  

10 I F  ( I . G T . 3 )  € P S (  I )  = * R B J 2 * (  E P S (  I l / (  (RI-D1)**2)*:leOD-10-A-/( ( R I - D l ) * ( R I - D 2 ) * ( R I + 8 )  1 ) 

2 0  R E T U R N  



E N T R Y  C O V B (  K T Y P E  1 
B Y  T H E  C A L L  OF CClVB9 T H E  T Y P E  [ I F  C O V A R I A N C E  T O  HF C0I"IPIJ'TkD I S  I ) F T F R -  
M H N E U  H Y  T H F  V A L U E  O F  K T Y P E ,  S O  T H A T  WE G E 1  T H k  C I l V A K I A N C t  H E T  
T H E  G R A V I T Y  A N O M A L Y  A T  P  A N D  1 H E  G R A V I T Y  A N O M A L Y  A T  (.l F O K  K T Y P E = 1 ,  
T H E  - - - - -  T H E  L O N G I T U O I  O N A L  C O M P O N t N T  

O F  T H E  D E F L E C T I O N  O F  T H E  V F K T J C A L  A T  O F O R  K T Y t J E = 2 ,  
T H E  - - A T  P AND T H E  H E I G H T  A N O M A L Y  A T  O FOR K T Y P E z 3 ,  

T H E  L O N G I T U D I O N A L  C O M P O N E N T  O F  T H E  D E F L E C T I O N  OF T H E  V E R T I -  
C A L  A T  P  A N D  T H E  S A M E  T Y P E  OF Q U A N T I T Y  A T  Q F O R  K T Y P E = 4 ,  

T H E  T R A N S V E R S A L  CCIMPOMENT OF T H E  D E F L E C T I O N  O F  T H E  V F K T I -  
C A L  A T  P  A N D  T H E  S A M E  T Y P E  O F  Q U A N T I T Y  A T  fJ F O R  K T Y P E z 5 9  

T H E  L O N G I T I J O I O N A L  C O M P O N E N T  O F  T H E  D E F L E C T I O N  O F  T H E  V E K T I -  
C A L  A T  P  A N D  T H E  H E I G H T  A N O M A L Y  A T  Q FOR K T Y P E z 6 ,  

A N D  T H E  H E I G H T  A N O M A L Y  A T  P A N D  T H E  H E I G H T  A N O M A L Y  A T  Q F O R  K T Y P E = 7 ,  

T H E  V k L U E  O F  K T Y P E  W I L L  T H E N  A L S O  9 E T E K M I N E  W H I C H  OF  T H E  C O E F F I C I E N T S  
( 1 5 1 ) - ( 1 5 3 ) 9 T H A T  WE W I L L  U S E  I N  T H E  E V A L U A T I O N  O F  T H F  L E G E N D R E - S E R I E S  
ANCI Whether N O  [ l I F F f R f N T I A T I ~ l N T  D 1  F F E K E N T  I A T I ( 1  O N E  T I M E  OK D I F F E K E N -  
T I Q T I O N  TWO T I M E S  b ! I T H  R E S P E C T  TCI T H E  V A R I A B L E  T  T A K F S  P L A C E .  TWO 
L O G I C A L  V A Y I A H L E S  NOT11 AhlO NOTDI )  A K E  U S E D  T O  U I S T I N G I J I S H  B E T W E E N  T H E  
S I T U A T I O N S .  

I F  ( M O D E L )  GO T O  35  

35  N O T D  = KTYPE.EQ.  l,OR.KTYPE.E(3.3.OK.KTYPE,E(3.7 
N O T D D  = KTYPE,NE ,  5, A N D . K T Y P E . N E e 4  
R E T l J R N  

E N T R Y  C O V C ( P S I ~ W P P H O ~ C O V )  
R Y  T H E  C A L L  O F  C O V C  T H E  C O V A R I A N C E  O F  T Y P E  K T Y P E  W I L L  R E  C O M P U T E D  F O K  
P C I N T S  P A N D  0 H A V I N G  S P H E R I C A L  D I S T A N C E  ( R A D I A N S )  P S I ,  WHERE H P  I S  
T H E  H E I G H T  O F  P A H i J V E  T H E  E A R T H  A N D  H Q  T H E  H E I G H T  O F  Q A B O V E  T H E  
E A R T H ,  T H E  C B V A R I A N C E  W I L L  R E  R E T U R N E D  B Y  T H E  V A R I A B L E  CBV,  U N I T S  A R E  
P R ( 1 D U C T S  O F  M G A L y  M E T E R S  A N D  A K C S E C O N D S .  



THF Q U A N T I T I E S  LqM AND N  DFFINED I N  f Q b ( 7 5 )  ARE HERE CALLFI)  SLqSM 
AND SN. L**2 = S L 2 ,  

S L 2  = n l + S 7 - D 2 * T S  
SL = D S O R T ( S L 2 i  
S L 3  = SL2*SL 
SN = 01-TS+SL 
SM = D1-TS-SL 
SLN = SL*SN 
SLNL = -DLOG( SN/D2 

WHEN WE ARE COMPUTING A LOCAL N I T H  ORDER COVARIANCF OK A COVAKIANCE 
FROM A GLORAL MODEL WITH E M P I R I C A L  DEGREE-VARIANCES UP TO AND INCLU- 
S I V E  DEGREE N t  WE W I L L  HAVE TO COMPUTE THE SlJM ( 1 5 4 1 ,  THE SUM ( 1 5 5 )  
(WHEN NOTO I S  F A L S E )  AND THE SUK ( 1 5 6 )  (WHEN iQUTDD I S  FALSE) .  ( 1 5 4 )  
WILL  BE ACCUMMULATEO I N  BOY ( 1 5 5 )  I N  DBO AND ( 1 5 6 )  I N  DDBOe 
WHEN THE VARIABLE MODEL I S  TRUE, 807 DRO AND DD00 WILL  BE POT EQUAL 
TO ZERO, 

WO - no 
DBO = DO 
DDBO = DO 

ODEL 1 GO TO 4 5  

WE W I L L  NOW USE THE RECURSION FORMULAE ( 1 8 3 ) 9 ( 1 8 5 )  AND ( 1 8 6 1 9  WHERE 
THE TERM ( 1 7 6 A )  D I V I D E D  BY T  I S  CALLED EL  AN[) FLP I S  THE TERM ' ( 1 7 6 8 )  
FOR SUBSCRIPT L + l ,  

DO 4 0  I = 1 9  N 1  
EL = ( D Z * R L I - D P ) * S / R L S  
F L 1  = - R L l * S 2 / ( R L l + D 1 )  
R h 1  = RL1-D1  
B2 = B 1  
B 1  = R 0  
B 0  = B I * E L * T + B 2 * F L l + E P S C ( L l )  
I F  (NOTD)  GO TO 4 0  

DB2 = DB1 
D B I  = DRO 
DBO = E L * ( D B l * T + B 1 ) + F L l * D B 2  
I F  (NUTDD GO TO 40 

D 0 8 2  = DD81 
D D B l  = DDRO 
DDBO = EL*  ( DRl*D2+DDBl':T ) + F L I * D D B 2  

40 L 1  = L 1 - 1  



COMPUTATION [ IF CLOSED EXPRESSIONS. F I K S T  SOME A U X I  L L I A K Y  O I J A N T I T  I E S .  
FM% I S  THF Q U A N T I T Y  ( 8 6 ) ~  FM2 I S  ( 8 7 1 7  F 1  I S  ( 9 9 )  AND F 2  I S  ( 1 0 0 )  
45  DPL = D l + S L  

DML = (11-SL 
P 3 1  = D W T S + D l  
B 0  = BO*S 
FM1 = S* (  SM+TS*SLNL)  
FM2 = S * ( S M * P 3 1 / D 2 + S 2 * ( P 2 * S L N L + U 2 / D 4 ) )  
F 1  = D L O G ( G l + D 2 * S / ( D l - S + S L ) )  
F 2  = ( S L - D l + T * F l  ) / S  
I F  ( N O T D )  GO TO 48 

U 6 0  = DRO*S 
O F M l  'IS THE OIJANTITY ( 9 0 1 ,  DFM2 I S  (9.21,  D F 1  I S  ( 1 0 1 )  AND LaF2 I S  
( 1 0 3 ) .  

D F M l  = S Z * ( D M L / S L + S L N L + T S * ( D l / S L R I + D l / S N ) I  
DFM2 = S2* ( ( P31/SL+D2-7 .0DOl tTS-D3*SL ) / D Z + S *  ( D3*T*SLNL  * + S * P Z a t D P t / S L N )  ) 

D F 1  = S 2 / S L N  
DF2  = - D L / S L + T S / S L N + F l / S  
[)L = -S /SL  
I F  (NOTDD 1 GO TO 48 

DDFM2 = S3&?(  ( b. O D O / S L + P 3 l / S L 3 - 7 .  ODO / D ~ + D ~ : : c S L N L + ~ . O [ ) O : * T S * C D P L / S L N  * + P 2 e S 2 * (  ( D P L / S L N ) l : c * : 2 + D 1 / (  S L 3 * S N )  1 )  
D I l F 1  = S 3 * (  @ P L / S L N * * 2 + D l / (  SN'gSL3f ) 

DDF2 = ( - S 2 / S L 3 + 0 2 : * D F l + T * D D F l ) / S  
DDL = - S Z / S L 3  

WE CAN NOW {JSE THE RECURSION FORMULAE ( 9 6 ) .  ( 9 7 )  AND ( 9 8 )  FOR THE 
CnMP[JTAT I f lN  OF THE QUANTITY  ( 7 3 1  CALLED FH AND I T S  D E R I V A T I V E S  DFH 
AND DDFR. 

4 8  DO 5 0  I = 2, I R M l  
R I  = D F L O A T ( 1 )  
D 1 2  = D2:zRI-D1 
D 1 1  = ( R I - D l ) / S  
F B  = ( S L + D I Z * T ; \ F 2 - D 1 1 % F 1 ) / ( R 1 9 ~ S )  
F 1  = F 2  
F 2  = F 0  
I F  ( N O T D )  GO TO 5 0  
0 F B  = (DL+DI2*(Fl+T*DF2f-DIl*DFl)/(RI*S) 
D F 1  = D F 2  
D F 2  = DFR 
I F  ( N O T D D )  GO TO 5 0  
DDFR = ( D D L + U I ~ * ( D ~ * D F L + T * D D F ~ ) - I I I ~ * D D F ~ ) / ( R I * ~ )  
D D F l  = D 0 F 2  
DDF2 = OOFB 

5 0  CONTINUE 8 8 



1 F  (NOTD.OR.KTYPE.EO.2) GO T U  60 
C FROM ( 1 3 3 )  WE H A V E :  

DK = D B O + A M 2 * R B J 2 * (  IBl*DFM2-I52*~OFM1-O3*T*S3)+DFB-S2/IBl-~)3*S3*1~/ 
ht I B 2 ) / I R 1 2  

h0 GO TO (61 ,62?63 ,64 ,65 ,66 r67 ) ,KTYPE 
C E Q U A T I O N  ( 1 3 2 )  A N D  ( 1 4 6 )  G I V E S :  

h1 COV = S * R O + A * S * ( I R 1 * ( F B - S / B - S 2 * T / I R 2 ) + F M ? ) / I B 2  
GO T O  7 0  

C F Q U A T I O N  ( 1 3 9 )  AND ( 1 5 0 )  G I V E S :  
6 2  COV = O*( D B O * K R J / (  KP*KQ)+AM*cS:K( D F M 2 - D F B + S 2 /  I R 1 + D 3 * : S 3 * c T / I f 3 2 )  / 1 8 2 )  / * G(S*KADSEC 

GO T O  7 0  
C E W Q T I O N  ( 1 3 1 )  AND ( 1 4 5 )  G I V F S :  

63  COV = ( H O * R H J + A M * R H J ~ * ( F M ~ - F F ~ + S / B + S ~ * T / I R ~ + S ~ * P ~ / ~ B ~ ) / I R ~ ) /  
* ( RPI;:GQ ) 

GO T O  7 0  
C E O U A T I G M  ( 1 3 6 )  AND ( l L 7 )  G I V E S :  

A 4  CC)V = ( T r - D K / (  K P * K Q ) - U 2 h k (  DDRO/  (KP;:KQ i+AlYZ*S:::i I R 1 * D 9 F l u 2 - I R 2 * (  D o F M 1  
% - D 3 * S 3  ) + D D F 3 - 0 3 * S 3 / I R 2  ) / I B 1 2 )  ) * K A D S E 2 / (  GP*:GQI 

GO TO 7 0  
C E O U A T I O N  ( 1 3 7 )  AND ( 1 4 8 )  G I V E S :  

6 5  COV = D K / ( R P * R Q * G P * G O ) * R A D S E 2  
GO T O  7 0  

C E Q U A T I O N  ( 1 3 8 )  AND 6 1 4 9 )  G I V E S :  
66 COV = U * D K / (  GP*GQ*RP )hYRADSEC 

GQ T O  70 
C AND E Q U A T I O N  ( 3 7 1 ,  ( 1 3 0 )  A N 0  ( 1 4 4 )  G I V E S :  

67 COV = ~ B O + A M 2 * R B B 2 * ~ I B 1 1 * F M 2 - I B 2 * ( F M 1 - S 3 * P 2 ~ + F B - S / R - S 2 * T / I B 1 - S 3 * P 2  
.C .,- / I B 2 ) / I B 1 2 ) / ( G P * G O )  

70  R E T U R N  
END 


