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ABSTRACT

This report first develops a new anomaly degree variance model by considering
potential coefficient information to degree 20, and updated values of the point anomaly
variance (1795 mgal®), the 1° block variance (920 mgal®) and the 5° block variance
(302 mgalz), the variances being given with respect to the Geodetic Reference System
1967, This new model was computed assuming that anomaly information was given
on a sphere of radius 6371 km with the radius of the best fitting Bjerhammer sphere
found to be 6369.8 km.

This new model and several other models were used to develop closed expres-
sions for the covariance and cross-covariance functions between gravity anomalies,
geoid undulations (or height anomalies), and deflections of the vertical, It is shown
how these global covariance expressions can be modified for use as local covariances
and for use when mean anomalies are being considered. A Fortran subroutine is
provided for the determination of the covariance values implied by the recommended
anomaly degree variance model.
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1. Introduction

In carrying out the estimation of gravimetric dependent quantities using the methods
of least squares collocation {Moritz, 1972) we need to have an analytical function that
can be used to determine the covariance functions for such quantities as anomalies, de-
flections of the vertical, geoid undulations etc. Generally speaking a numerical covariance
function for anomalies can be determined from anomaly data. The resultant function can
be considered by determining a model for the anomaly degree variances. Tscherning {(1972)
has shown how such anomaly degree variance models may be used to determine the covar-
iance models for several gravimetric quantities. Since we need the best estimates of our
covariance models for the application of least squares collocation, it is appropriate that
we use the latest available data in determining our models. In addition we are now at a
stage where refinements in anomaly degree variance modeling, beyond that used by Rapp
(1973) can be considered.

The purpose of this report is to describe recent computations made and subse-
quent analytical work that leads to improved analytical covariance models.

2, Preliminary Equations

In this section some of the relevant formulas to be used in later sections will
be presented.

We first consider our covariance function which for the purposes of this report
will be considered as stationary and isotropic. Then we can follow the standard defini-
tion (Heiskanen and Moritz, 1967) of the anomaly covariance as the mean product (at a
given distance) of the anomaly pair Ag,, Ag,. Thus:

C(P, Q) = cov (Agp, Agy)= M(Agr, Ag) (1)

On a plane the distance, or anomaly separation is usually specified by some linear dis-
tance (such as 20 km). If we deal with data on a sphere we usually considered the dis-
tance to be defined as ¢ a spherical arc so that we are interested in values of C(}). At
=0, C(¥) becomes the anomaly variance. For the estimation of C(}) from anomaly data
given on the surface of a sphere, we can write (Heiskanen and Moritz, 1967, p.258):

2 m r 2
c) = 17 j 1

—_ —_— ‘ e, e,,lededd /9
am J a0 8=0 20 Y =0 Ag(8,X) Ag(8,A")sin 2 da 2)

where 8 is a polar angle (0 at the north pole), X is the longitude and o is an azimuth.



We will obtain from (2), a point anomaly covariance function if the Ag values
are point anomalies or we will obtain a mean anomaly covariance function (for a
specific block size) if the Ag values are mean anomalies, In practice the sphere is
not completely covered by anomalies so that an expression that may he used to compute
the covarijance between any two functions f, and f, given in blocks on the sphere whose
area is A, and A, respectively may be written: (Kaula, 1966a, p. I. B. 7).

CW)=——" (3)

In our case f,= Ag (8, 1) and £, = g (8',\/) where the overbar signifies a mean anomaly.
If the anomalies are given in equal area block (3) becomes:

z £yt

n

C(y) = (4)
where n is the number of products taken at a given spherical distance . In practice
the distance § to which a special product at distance ¥, is determined by the equation:

¢-%<¢Jx<4’+é§ (%)

9
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where AV is a suitably chosen range. In our numerical results to be discussed later,
Ay was specified to be P,

A more fundamental covariance function than that of the gravity anomalies is
that of the disturbing potential, K(P, Q). We generally do not estimate K(P, Q) from
numerical data, but rather consider the following series representation for it: (Moritz,
1972, p. 88):

o VAR
- R
KP,Q-) ¢(& ) Bosy (®)
g=0
where:; g, are the degree variances of the anomalous potential;

R is the radius of the Bjerhammar sphere;
r,r’ are the geocentric radii to points P and Q which are separated
by a spherical radius y.

For convenience we let;

_ R
ST o ()



In the case that we are dealing with information at the approximate surface of the
earth, it is convenient to take rr’' = R® where R, is a mean carth radius. Then:

(BT

We then can write:

O: 4+l
K(P,Q) =) a,8" P, (cosy) (9)
{=0

We can also write the anomaly covariances in a series expression as (Moritz, 1972,
p. 89):

CR,Q= ) c,5" 7P, cosy) (10)
=0

where c,are the anomaly degree variances. As written, equation (10) would yield a
point anomaly covariance. In order to obtain a mean anomaly covariance we can use
the R, functions of Meissl (1970, p. 23) or the g, functions of Pellinen (1966). Using

Bys tﬁe modification of equation (10) yields:

[oe)
— _ 5 g+2
CP,Q)= Z By ¢y s Pz(cosw) (11)
=0
where P and Q now refer to anomaly blocks. B, is defined as follows: (Meissl, 1970,
p. 24):

1 1
B, = "P,_, (cosi) - P}m(coswo)] (12)

1 -cosyy 24+1 @ " 4-12

where {, is the circular cap radius of the mean anomaly block whose covariance is to
be computed. We have (for example):

Bo=1 ' (12A)
B, =% sintpcot Y (12B).
Since we usually deal with rectangular blocks of dimension s°, the corresponding g

can be found simply by equating the areas of the circular cap and the square blocks.
Assuming a plane figure we write (for small blocks only):



45 = °//m = 0. 564s° (13)

Since gravity anomalies are related to the disturbing potential by the following
equation (valid in a spherical approximation which is the case considered here):

BT _ 2 4 14

ar R

where T is the disturbing potential, we can relate the anomaly degree variances (c;)
and the degree variances of the anomalous potential (gy) by:
Rz
9y~ (£-1)3 4 (19)

Ag =

Analytic models for either g,, orc /) have been described by Lauritzen (1973),
Tscherning (1972), by Rapp (1973a) and implicitly by Kaula (1966b, p. 98).

The inverse of equation (10) is:

cy= ’2'&%'1' s~ (4*2) Jr:C(w) P, (cosy) siny dy (16)

Equation (16) is written assuming C({) is a point anomaly covariance function referring
to a sphere whose radius is R,. I C(Y}) is a point anomaly covariance function, then
(16) with C(¥) replaced by C(¢) will yield a mean anomaly degree variance Cy, which is
related to cy through the 8, equations;

Sy=85¢c (17)

Thus, knowing C () we can find ¢ from (16) and ¢, from (17) knowing the size of the
anomaly blocks to which C (y) refers. Specifically we can write:

_24+1 1 ‘J"“ — ‘
=2 ,Bis(j“Z) , C (NP (cosy)sinydy (16A)
3. Numerical 1° Covariance Functions

We first start our numerical determinations by the estimation of the covariance
function for 1° (approximately) equal area anomalies. One degree covariance functions
have been previously estimated for ¢ values from 0° to 7° by Kaula (1966¢) and by



Rapp (1972). The values found in the past studies were based on analyzing 1° anoma-
lies within a 5° equal area anomaly so that product pairs in adjacent 5° blocks were

not computed nor were product pairs br distances greater than § approximately 7° were
considered. In addition, a programming error made the results of Kaula and Rapp
somewhat erroncous,

Because of the limitations of previous estimations of the 1° covariance function
it was decided that it was appropriate to compue a global 1° covariance function. The
starting point was a recent collection of 29960, 1°x 1° equiangular mean free-air
anomalies that was obtained by updating a 1°x 1° mean anomaly set supplied by the
Defense Mapping Agency - Aerospace Center. The updating was carried out using
additional data along the lines of a previous update as described in Rapp (1972). These
anomalies were all referred to the gravity formula of the Geodetic Reference System
1967. The 1°x 1° equiangular tape was then converted to a set of 21828 (approximately)
equal area anomalies. The subdivisions of these anomalies was such that the latitude
increment was 1° while the longitude increment was some integer degree of such size
that the block was approximately equal in area to a 1°x 1°block at the equator. The
covariances were computed using equation (3) with the Ay in equation (5) of 1°. The
results of this computation are given in Table A of the appendix. In this table the
following quantities are given: number of product pairs, average ¥ (in degrees),co-
variance (mgal®). For further use the 181 values given in Table A were interpolated
to determine a covariance at 0.5 degree intervals., This interpolation was carried
out using an Aitken-Lagrange interpolation using 20 points as implemented through
subroutine DALI (and DATSG) of the IBM System/360 Scientific Subroutine Package
(H20-0205-3), Version III. The resultant 361 values are given in Table One, being
identified as the unmodified C(¥) values. The plot of this covariance function is
shown in Figure One.

From these unmodified C(}) values we can compute the smoothed anomaly
degree variances from equation (16). Such values are shown for degree 0 through 10
in Table Two where s and Bare taken to be one (causing a maximum error of less
than 5%). In addition values of ¢y from the recommended set of potential coefficients
given by Rapp (1973b) are given for comparison purposes.

)
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-31.99
-33.69
36,24
-40,40
-47.02
-54.,21
=-54,64
41,72
-37,87
~72.83

-6,75

-7.02

~8430
-10.55
-12.27
~-12.26
-12.81
~15.66
~-17.89
-18.15
-17.72
-17.40
-17.80
-19.01
-19.49
-18,33
-17.32
-17.64
-18,88
-21.28
~23.93
-26.30
-27,49
-27.39
-28.23
-32.30
-36.39
-38,93
~406.16
-40.59
-41.08
42,45
-444,38
~47.,14
=-51.48
-58,26
-65.58
-66,11
~53,26
-49,.46
-84,43
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Table Two

Smoothed Anomaly Degree Variances (c,) As
Computed With 1° I'ree Air Anomalies
and From a Current Potential Coefficient Set

- (mgalz)

cy cy
Degree from 1° anomaly data  from potential coefficients
(Rapp, 1973b)

0 0.07 --
1 2.3 -=
2 26.2 7.5
3 58.3 33.9
4 16.0 19.2
5 26.3 21.6
6 36.0 18.9
7 22.8 18.8
8 12.6 10. 4
9 20.0 11.1
10 9.3 11.4

-

If the gravity formula were that of a mean earth ellipsoid, the zeroth degree
variance should be zero. This is essentially the case here with the fact that the 9,
and the flattening of the GRS67 are quite close to be current best estimates of these
parameters (Rapp, 1974). The anomalies taken on a global scale should have no
first degree anomaly degree variance. The non-global 1° anomalies that we have
imply through the covariance function a small one of 2.3 mgal®,

The anomaly degree variances from the potential coefficients should be reliable
at the lower degrees because of the accurate determination of low degree potential
coefficients thraugh satellite orbital analysis. Comparison of these values with that
implied by the covariance function indicates poor agreement for degrees 2, 3,6 and 9.
This disagreement may be related to the fact that the 1° anomalies cover only 50% of
the earth's surface and we cannot hope to find good low degree information from such
limited coverage.

However, for future analysis it is important that we use a 1° covariance function
that is characteristic of the real world especially at low degrees. To develop such a
covariance function we modify the covariance function computed from the anomalies
by imposing on the modified function the c, values to degree 10 as listed in Table Two

11
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(as computed from potential ccefficients). To do this we first remove the effect of
the ¢, values listed in Table Two and then add back the covariance contribution from
the ¢y values, in both cases using cquation (i1) setting B, and s equal to one. I
effect we carry out the following modification to obtain a modified 1° covariance
function:

10

C¥)a C(¥lona * Z(t«'ﬁ(mT - cz(m))%(cosw) (18)
2=1  oerr)

The modified covariance function is shown in Table One being labeled Modified E(q;).
This modified covariance function is plotted in Figure One.

Smoothed anomaly degree variances were developed from this modified
covariance function where were then converted to the actual degree variances using
equation (16A). These results and values of 8, for one degree biocks and s~€+?)
are given in Table B of the appendix.

From Table One, using the modified covariance function of the current estimate

for the variance of a 1° anomaly is 919.66 mgal®, or a root mean square value of
+30.3 mgals with respect to the gravity formula of the Geodetic Reference System 1967.

4, A Five Degree Anomaly Variance

For purposes of obtaining models cof anomaly degree variance using procedures
such as described in Rapp (1973a) we need tc estimate the variance of the 5° anomalies.
This can be done in two ways. The first procedure is by the numer.ical integration of
the 1° modified covariance function according to equation (7-82) of Heiskanen and
Moritz (p.270). This leads to an estimate of 305 mgal®. The second procedure is to
compute the variance directly from the 5° anomalies. This was done by first predict-
ing 5° equal area anomalies using the methods described in Rapp (1972) but with the
more current 1°x 1° set. The variance computed by this procedure from the 1354
predicted anomalies was 298 mgal®. We adopt for further use the variance of 5 degree
anomalies as 302 mgal® with respect to the gravity formula of the Geodetic Reference
System 1967,

5. The Point Anomaly Variance

The value of C, is an important quantity as it is a scaling factor for many
representations of the point anomaly covariance function. C, has been treated as
both a local or regional quantity, or a global quantity. On a regional basis C, is
the variance of the point anomalies in some defined area, Thus, it will change from
area to area. The global C, value is considered tc be representative of the gravity
field of the whole earth. The estimation of C, on a giobal basis is not straight

12



forward since we do not have global gravity coverage. The only global point covariance
function numerically estimated is that given by Kaula (1959) where he used gravity data
that was current to 1958, During the 16 years since the compliation of gravity data as
used by Kaula, a considerable amount of additional data has become available. Thus,

a new computation of global point covariance seems appropriate and is needed. Such a
computation can only be done through some organization that has access to the gravity
data holdings. For this report we do not have the facilities or funds to carry out a
computation of a point covariance function. However, we can use several procedures
to determine C,, the quantity so fundamental to the analytical representation of a point
covariance function.

5.1 Method One
One method to estimate Cy is to consider the relationship between a point

covariance function (C(d)) and the variance GZ,) of anomalies given in blocks of size
s”. One convenient relationship is given by Hirvonen (1962):

2
G2 =I/ WC (d)dr (19)
0

where d= rs’
W= (21 - 8r+ 2r°)r when 0<r<1
W= (27— 4- 2r® +8/7°-1 -8tan™'/T?- 1) r where 1<r</2
If we represent C(d) in the form of:
C(d) = G, £f(d) (20)

we can solve (19) and (20) for C, :

G? 2
CO = —./—250__ = _GL (21)
Wi(d)dr I
0

The value of I can be obtained for various representative f(d).

Many representations of the point covariance function have been suggested.
Many of these representations are summarized in papers by Groten (1966), Lauer
(1971), and Jordan (1972). For the purposes of this paper we have used three models.
These are:

13
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(1) C(d) = Cqe ™ '22)
fi(d)

-d/c
d )e /e (23)

(2) C(d) = Cq (1 s

B o

£ (d)
(3) C(d)=Co (1+d(@, + d(ag + d(ag + d(a,+ d(as)))))) (24)

TS S s e

f2 (d)

The ¢, and c; values were obtained from fitting the Kaula (1959) point covariance
curve to a distance of 1.5°. We found ¢, = 0°.897 and c, = 1°.88. Beyond a distance of
1.5°, the point covariance would not be represented well by equations (22) and (23) with
the above constants. The constants of equation (24) were obtained by a least squares
polynomial fit using the Kaula point covariance function to 8°. We found:

a, = -.9816195
ap = .4894498
a, = -.1149583
a,= .0126057
ag = -.000523222

For these models, the root mean square fit to the observed covariance function was
+30 mgal®, +75mgal®, and +28 mgal® for models 1, 2 and 3 respectively, For s°=1°,
values of I (computed by numerical integration), and Cy(taking G3 = 919,66 from
Table One) are given for each of the models in Table Three.

Table Three
Estimation of C, from 1°
Anomaly Block Variances

Model I Co

1, equation (22) .64185 1433 mgal®
2, equation (23) .66491 1383 mgal®
3, equation (24) .62595 1469 mgal®

Using weights based on the root mean square fits to the point covariance curve, the
estimated Cy from this analysis is 1447 mgal?.

14




5.2 Method Two

A more direct method for determining C, is through the analysis of the actual
point gravity anomalics. Such an analysis is not a straight forward one since the
anomaly data is not uniformly distributed over the earth. Since certain areas (such
as land areas) have, in general, denser anomaly coverage than ocean areas, and
since free-air anomalies are correlated with land elevations or ocean depth, special
care needs to be taken in the analysis of a set of point gravity anomalies for C, .

In our analysis we basically considered a point variance by elevation range,
and then converted these individual variances into a global estimate of C, by form-
ing a weighted mean with weights being based on the percentage of the earth's surface
lying within the elevation range.

As the first step in this procedure the Defense Mapping Agency Aerospace
Center considered a set of 2,253,122 point free-air anomalies whose elevation or
depth was known. Elevation ranges of 100 meter increment were chosen. For all
anomalies falling within each range, the mean anomaly, the mean square anomaly
and the mean elevation from the points, was determined. The mean square anomaly
was computed as the sum of the square of the anomalies with the elevation range
divided by the number of anomalies within the range. In subseyuent discussions this
quantity will be referred to as the variance of the range. This terminology is not
specifically correct as a variance is usually defined with respect to a quantity whose
mean is zero. In fact, the anomaly mean within a range will not be zero, but it will
be zero or close to it on a global basis. This data by ranges is shown in Table Four.

In order to form a global estimate of C,, we now need to know how elevations
are distributed on the actual earth. To do this we considered mean elevations in 1654
5° equal area blocks and 64800, 1°x 1° mean elevations. From this data the percen-
tage of the earth's surface within a given elevation range could be found. The results
found for the 5° and 1° data are shown as the last two columns in Table Four. The 5°
results are shown as a matter of interest only, as the 5° subdivision is too large for
the purposes needed here. We should note that all 0.0's given in Table Four with the
exception of the mean anomaly for the 100 to 200 meter range indicate no data was
available for the quantity. The 1° subdivision is also not suffic iently small for the
most accurate work as can be seen from the fact that certain elevation ranges for
which there was point elevations data were not represented in the data from the 1°
mean elevation data.

The weighted variance (or C, ) was then determined as follows:

y P (Co )y
T

e

i

COZ
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Table Four
Anomaly Variance and Related mformation by Elevation Range

Point anom. Mean sq. Average of Percentage ofearth's

Elevation Range No. of point mean anomaly  pt. elevations surface within range
(meters) Anomalies (mgals) (mgal®) (meters) 1°data 5°data
-14100 -14000 0] 0.0 0.0 0.0 0.002 0.0
-11200 =-11100 1 -213.1 45411.6 -11113.0 0.0 0.0
-10800 -10700 5 -300.8 50650, 3 -10750.6 0.0 0.0
-10700 -10600 1 =-277.3 76895.3 -10674,0 0e0 0.0
-10600 =-10500 2 -285.0 81253.5 ~-10592.0 0.0 0.0
-10500 -10400 5 -282.4 79833.0 -10425.2 0.0 0.0
-10400 -10300 13 =270.6 T4429,2 -10353.8 0.0 0.0
-10300 -10200 8 -290.3 85035, 7 -10228.4 0.0 0.0
-10200 -10100 12 -283.4 80914,0 -10149.4 0.0 0.0
-10100 -10000 9 -282.3 80402.3 -10065.4 0.0 0.0
-10000 -S900 22 -279.8 79255.9 -9947.7 0.0 0.0
-9900 ~-9800 7 -276.4 16443, 4 -9858,6 0.0 0.0
-9800 -9700 11 -273.5 T77105.5 -9743.8 0.0 0.0
~-9700 -9600 19 ~260.5 70629,0 ~-0645,9 0.0 0.0
-9600 ~9500 16 =-267.7 73083.8 -9546,7 0.0 0.0
-9500 -9400 21 -248,.8 64161.0 ~9446.1 0.0 0.0
-9400 -9300 27 -241.9 63265.9 -9347,8 0.0 0.0
=9300 -9200 17 —259.2 68675.0 -9247,.8 0.0 0.0
-9200 -9100 22 -231.9 56997.3 -9147.5 0.0 0.0
=-9100 -35000 24 -243.2 61142.7 -9041.5 0.0 0.0
-9000 -8900 30 -236.8 57878.9 ~-8956.7 0.0 0.0
-8300 ~-8800 24 =-242.4 61454.6 -8853.9 0.0 0.0
~8800 -8700 36 ~222.6 52069,2 -8T764.4 0.0 0.0
-8700 -8600 28 -227.8 54300.5 -8667.9 0.0 0.0
-8600 -8500 43 -222.1 51648,5 ~-8551.8 0.0 0.0
—-8500 -8400 56 -225,.,5 52099.5 -8440.7 0.0 0.0
-8400 -8300 386 -249.9 63345,2 ~-8360.1 0.0 0.0
-8300 -8200 130 ~-220.6 50153.0 -8259,2 0.0 0.0
-8200 -8100 156 -214.7 47255.5 -8148,5 0.0 0.0
~8100 =-8000 239 -221.0 51087.8 -8048,0 0.0 0.0
-8000 =-7900 277 -231.6 57988, 7 -7952.1 0.0 0.0
-7900 -7800 310 =211.2 47870.1 -7856.2 0.002 0.0
-7800 =7700 220 =-207.7 46967.6 -7759.,5 0.0 0.0
=7700 ~7600 210 -204,2 45255, 4 -7654,5 0.002 0.0
-7600 =7500 265 -205.3 46034.8 -7551.2 0.002 0.0
=-7500 -7400 313 -214.,8 51871.4 -7446,.8 0.0 0.0
-7400 ~-7300 417 -180.2 35771.0 ~-7337.9 0.008 0.0
~7300 -7200 478 -168.6 3159743 -7250.2 0.003 0.0
-7200 -7100 506 -158.3 28832.5 -7151.5 0.002 0.0
=7100 -7000 359 -180.4 38391.0 -7054.5 0.014 0.0
-7000 -6900 407 -154,1 27775.9 -6949,7 0.007 0.0
-6900 —-6800 358 -160.3 30243.8 -6851.3 0.002 0.0
-6800 -6700 473 -131.8 21597.5 -6T744,.,5 0.005 0.0
-6700 -6600 465 -119.5 18588.8 -6658,.1 0.009 0.0
-6600 -6500 530 -119,5 18717.8 -6546,2 0.024 0.0
-6500 -6400 706 -105,5 15090.3 -6454.,0 0.010 0.0
-6400 =-6300 796 °~ =93.0 12701.3 -6349,6 0.027 0.0
-6300 -6200 978 -77.2 9847.8 -6246.4 0.054% 0.0
-6200 -6100 1311 -57.7 6841,.8 -6146.7 0.153 0.0
-6100 ~=6000 2596 ~32.4 4002,.0 ~604G9,.2 0.321 0.0
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-6000
-5900
-5800
-5700
-5600
-5500
-5400
-5300
-5200
-5100
-5000
-4900
-4800
-4700
-4600
-4500
-4400
-4300
-4200
-4100
-4000
-3900
-3800
-3700
-3600
-3500
-3400
-3300
-3200
-3100
-3000
~-2900
-2800
-2700
-2600
-2500
-2400
=2300
-2200
=2100
-2000
-1900
-1800
-1700
-1600
-1500
-1400
-1300
-1200
-1100
-1000

-900

-300

-700

-600

=5300
-5800
-5700
-5600
-5500
-5400
=5300
-5200
=5100
-5000
-4900
-4800
-4700
-4600
~4500
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=-4300
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-3800
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-800

~-700

-600
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4024
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10061
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14512
14791
15930
16687
16185
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16412
16153
16000
14261
12350
12568
11377
11111
11122
10887

5948

9982
10272

9574

9899
11356
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11480
12194
13157
13830
13583
19490
10858
10449
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12676
12963
11371
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10452
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9917
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-27.3
-22.5
-17.8
-14,?2
-13,0
-11.7
-12.0
-12.2
-13,6
-12.7
-11.9
-14,6
-13,9
-13,2
-12,2
_12.3
-10.6
-12.1
-15.1
-11.0

-8,7
-10,3

-7.6
T4

-7.9
-6.8

-7.1
-5,0

-5.,0
-7.6
-10,2
-10.6

-9, 4
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-15,4
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3215.6
1786.2
1319.7
1287.4
1143.5
110644
1113.8
1245.1
124347
1231.6
1370.6
1401.8
1350.3
1433.0
1243,0
1431.1
1550.4
1588.8
2402.4
1709.1
147646
1705.2
1732.4
1861.9
208647
2061.3
1974.4
1920.2
1884,6
2039.3
2075,9
2138.0
2080.9
2353.4
2107.7
3254.9
3024.0
3135.1
2133.6
1803.5
1713.2
2125.1
2522.1
2308.1
1964,9
2023.2
2321.7
2407.0
2397.7
224645
222142
264045
2043.0
2294.5
2636.4

-5946,8
-5847.2
-5750.8
-5550.1
-5450,9
-5350.6
-5248,2
-5147.5
-5051.1
-4950,5
-4849,1
~4750.2
-4651.0
~4551.%
—4352.9
-4251.1
-4149.5
-4050.4
~-3949,8
-3851.0
-3751.4
~3650.7
-3550.7
-3451,0
-3350.6
-3250.4
-3151.1
-3050.1
-2950.7
-2848,7
-2748.9
-2651.8
-2544,1
-2451.,0
-2351.8
-2251.8
=-2147.7
-2048.7
-1951.6
-1851.6
-1751.1
~1649,8
-1549,.,9
-1453.0
-1350.6
-1252.6
-1151.8
-1051.6

-949 .4
-848,.,5

-752.6
-650.6
-547.9

0.292
0,502
0.697
0.983
1.446
1,170
1.478
2.130
3.033
2.766
2,222
2.395
1.815
2.027
2.115
2.102
2.013
2.578
2,366
2.435
1.649
1.930
l.626
1,404
1,647
1.282
1.220
1.339
1.219
1.673
0.829
0.765
0.874
0.453
0.570
0.909
0.421
0.439
1.018
0.559
0.288
0.682
0.330
0.302
0.563
0.241
Ne.252
0.504
0.7251
0.436G
0.383
0.331
0.288
0.400
0e459

0.120
0.181
0.403
0,562
0.833
1.0%9
1.688
1.620
2.111
1,738
2.816
2.085
2.459
24300
1.613
2.0b9
2866
2.051
2.514
2,053
2.129
2.204
1.929
2.398
1.299
2.092
1.449
1.318
1.167
1.091
N.914
0,967
0.714
0,837
0«558
1.047
0. TR9
1.332
0.593
D.615
0538
0,322
0.659
0438
0D.790
0.673
0.547
0.721
0.431
0,892
N0.766
0.720
0.661
0e 570
Ca604



=500
~400
~300
=200
=100

100
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600

700
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900
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1300
1400
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1700
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2700
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2900
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3200
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3500
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4400
4500
4600
4700
4800
4900

~400
=300
=200
=100

100

200

300

400

500

600

700

800

900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1500
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000

12816
16341
19910
37357
85482
404177
227862
172980
106121
86419
51225
35994
29210
26750
23329
23078
26348
26176
30036
23156
17911
15296
12868
11550
12138
13163
10544
8208
4939
4006
3547
2661
2150
1721
1331
1098
869
771
654
596
362
585
566
680
406
281
234
149
208
136
101
87
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12.3
12.2
19.1
33,7
374
42.5
50.8
55.4
57.5
58,3
14,4
78.4
87.3
88.8
94,5
80.5
103.0
82.6
91.5
93.5
102.6
105.8
117.9
134.6
151.4
114.6
137.4
149.5
163.6
198.3
111.5

247065
2490.7
1938.9
1756.5
1713,.2
1345,0
8§07.1
801.3
970.9
1054.6
1345,5
1580.4
1654.3
1540.9
1540.5
1416.9
1193,.7
1214.8
930.2
1165.4
1557.4
1671.9
1610.2
1842.9
1683.3
1638,.8
1886.8
2766.9
3644,2
4236,7
5041.9
5229.0
6384.3
T472.,7
8846,3
10269.7
11715.8
11760.3
13293,2
11545.6
16509.2
10158.4
11237.4%
10670.7
15102.7
13003.0
16503.9
23227.6
26309.9
16198.7
20794.3
24966,3
29051.9
43451.1
46485,9
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-447,7
-348,5
-249,7
-141.3
-49,1

40.6
147.8
245.2
347.6
448,2
546,7
647.9
748.6
849,5
948,9
1048.9
1154.8
1251.9
1348.5
1448.3
1548, 4
1648.0
1749.1
1849,7
1951.7
2049.5
2146.8
2247.9
2346,1
2450.8
2547.8
2647.4
2748.3
2846,7
2947.7
3048.9
3147.4
3249.9
3348,9
3449,6
3549, 2
3660.7
3743,8
3844,9
3944 ,7
4052.3
4148.8
4242 .6
4344,9
4447.5
4548,0
4637.7
4736,6
4834, 6
4961.1

0.394
0.696
0.772
1.0732
3,151
3,557
3.961
3.431
2.960
2e424
1.812
1.497
1.210
1.109
1.054
0.889
0.773
0.689
0.506
0.451
0.368
0.272
0.238
0.219
0.183
0.171
0,153
0.091
0.078
0.062
0.068
0.075
0.044
0.033
0.035
0.037
0.030
0.022
0.033
0.026
0.022
0.027
0.022
0.031
0.028
0.040
0.034
0.024
0.024
0.029
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0.034
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252.5 63756.2 5018.6 0.037

5000 5100 1

5100 5200 4 82,2 18374.4 5163.8 0.028
5200 5300 1 268, 4 72038.6 5235.48 0.037
5300 5400 0 0.0 0.0 0.0 0.020
5400 5500 0 0.0 0.0 0.0 0.016
5500 5600 0 0.0 0.0 0.0 0.012
5700 5800 0 0.0 0.0 0.0 0.004
5800 5900 0 0.0 0.0 0.0 0.002
5900 6000 0 0.0 0.0 0.0 0.002
7000 7100 0 0.0 0.0 0.0 0.002
8900 9000 0 0.0 0.0 0.0 0.002
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where (C,), is the variance for each of the elevation ranges and P, is the percentage

of the earth's surface area having that elevation range as estimated from the 1° mean
elevation data. Values of C, as estimated from (25) using all the data, and data from
just the positive and negative elevations are given in Table Five.

FolARNReE e ¢,
Method C, (mga]?)
Kaula (1959) 1201
Table Three 1447
Equation (25), all data 1795
Equation (25), negative elevations 1772
Equation (25), positive elevations 1860
Based on all anomalies without 1644

_consideration of elevation ranges

For our future needs we select the C, =1795 mgal® as the best estimate. A truer
value may even be larger than this as certain high variance values found in certain
elevation ranges are not represented in the 1795 figures as our elevation data was
not sufficiently detailed to tell us what percentage of the earth's surface lies within
these elevation ranges. The 1795 value should be more reliable than the value of
1447 estimated from Table Three, as a certain smoothing has taken place in deriving
the Table Three estimates. In addition. it was neeessary to make assumptions on
the shape of the covariance curve in deriving the values for Table Three.

6. Anomaly Degree Variance Modeling

At this point we will develop a model for the anomaly degree variance which
in turn will prove of value in deriving a closed expression for the covariance function
of the disturbing potential and other gravimetric quantities. The basic procedurés for
this modeling have been discussed by Rapp (1973a). However, we introduce for this
paper the s term and the 8, term.

We first postulate an anomaly degree variance model of the following form:

A(L -1
_AL-T) (25A)

4 X 2)(1B)

This model had originally been suggested by Tscherning. Best estimates for the A
and B parameters are to be found subject to the following data:
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1. Anomaly Degree Variances Determined From Potential Coefficients

The values of ¢, that are used here are for4=3 to 20 are those found from the
least squares collocation solution for potential coefficients as described in Rapp (1973b).
These values are given in Table Five,

Table Five
Anomaly Degree Variances From
Potential Coefficients (Rapp, 1973b)

(mgal®)

4 Cﬁ, A CJL
3 33.9 12 4,8
4 19.2 13 11.7
5 21,6 14 5.5
6 18,9 15 7.3
7 18.8 16 6.5
8 10.4 17 5.7
9 11.1 18 10.7
10 11.4 19 11.0
11 8.4 20 8.9

No formal standard deviations were attached to these values of Cz'

These values of c, can be directly used with (25 A).

2, Anomaly Block and Point Variances

We have previously determined the block variances for 1° and 5° equal area
blocks., These values can be related to ¢, values through equation (11) which is re-
written for the variance (i.e. ¥ = 0) as:

(26)

=0
Equation (26) is also valid for point anomalies recalling that in this case R, equals one.

In (26) the summation is started from £= 0 but in fact we are trying to model ¢,
from degree 3. Thus, we carry out the summation to degree 3 but we must modify our
point and block variances by essentially removing the c, value. From Rapp (1973b)

c; = 7.5 mgal®. The modified data is shown in Table Six.
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Table Six
Modified* Point and Block Variances
For Anomaly Degrec Variance Fitting

Size Modified

variance
Point 1788 mgal®
1° 912 "
5° 295

*to refer to a complete second degree field

The adjustment procedure was carried out by first trying to determine best
estimates of A and B for equation (25) by using the data of Table Five and the block
variances of Table Six. The value of 8, needed in (26) was computed using a { value
determined from equation (13). Tests indicated the summation to » in (26) could
safely be replaced by a summation to (4) (1800)/6O or to 720/6°. Various runs
were made with different s values to determine a proper value such that the summation
to » (or in practice a high number such as 50,000 or 100, 000) would come close to
the modified point variance of 1788 mgal®. (It was found that for an accuracy of 0.1
mgals it was sufficient to carry out the point anomaly summation to £ = 16000 while
for a 0,001 mgal accuracy the summation should be carried to about 4 =30000).

For theoretical reasons to be seen later, the B unknown in equation (25A)
should be an integer. To produce such an unknown we first made an adjustment
letting A and B adjust freely. The resultant B found was 24.03. We then repeated
the adjustment, fixing B at 24 exactly. In this adjustment the two block variances
were given weights of 1/100. All anomaly degree variances except for degree 3
and 4 were given weights of 1/.64. At degree 3 a weight of 1/. 08 was used while
at degree 4 a weight of 1/.16 was used. These weight assignments were made only
to assure a reasonable fit to the data and were not based on relative accuracy consi-
derations of the data.

We give in Table Seven the parameters of the final model.

Table Seven
Parameters of Anomaly Degree Variance Model

A=425.28 mgal®
B = 24 (exact)
s =0.999617

We give in Table Eight a comparison of the anomaly degree variances from Table Five
and those as computed from Equation (25A)using the A and B values given in Table
Seven.
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Table Eight
Anomaly Degree Variances (mgal®)

Original Equation Original Equation
Table 5 (254) (254)
3 33.9 31.5 12 4.8 13.0
4 19.2 22.8 13 11.7 12.5
5 21.6 19.6 14 5.5 12.1
6 18.9 17.7 15 7.3 11.7
7 -18.8 16.5 16 6.5 11.4
8 10.4 15.5 17 5.7 11.1
9 11.1 14.7 18 10.7 10.8
10 11.4 14.1 19 11.0 10.5
11 8.4 13.5 20 8.9 10.2

The root mean square difference between the original and adjusted values was +4.0 mgalg.
The 1° residual block variance from the adjusted model is 841 mgal® with the 5° residual
slock variance being 360 mgal® as compared to the corresponding values of 912 mgal®

and 295 mgal® as given in Table Six. By summing (26) with B, =1 to a sufficiently high
degree (50000) the point variance implied by this model is 1788 mgal®. If we wished,

at this point, the covariance functions implied by this new anomaly degree variance
model could be computed by substitution of the model into equation (10) or (11). This

sype of computation will be postponed until the discussion of the closed covariance
function expressions.

T, Relationship Between the Covariance Function of the Anomalous Potential and
Covariance Functions of Gravity Anomalies or Deflections of the Vertical

As explained e. g. in Moritz (1972, p. 97), covariance functions of quantities
related to the anomalous potential can be derived from the covariance function of the
anomalous potential K(P,Q). The covariance between two quantities A and B, derived
by applying a certain operation on T can be found by applying the same operation on
K(P,Q). Moritz calls this fact '"the law of propagation of covariances., We have above
used the law to derive (15), and thereby the relation between K(P, Q) and C(P, Q). In
the following we will derive the relationship between K(P, Q) and the covariances of or
between the height anomaly {, the free-air gravity anomaly Ag and the two deflection
components € and 7.

We will use the same notation for the covariance functions as used in Moritz
(1972), i.e. cov(A, B) for the covariance of the two quantities A and B. The relation-
ship between the gravity anomaly and the anomalous potential is given above in (14).
For the three other quantities we have the well known relations:
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1 AT
R AN ——.. 29
n cosp*y*r O\’ (29)

where v is the reference gravity, r the distance from the center of the Earth, « the
latitude and X the longitude. It will for most purposes be sufficient to work in
spherical approximation. But we will not restrict ourselves to consider only points
on the surface of the Earth,

On the surface of the Earth r is substituted by a mean Earth radius (R,), ¥ by
a mean gravity value (G), and ¢ by the geocentric latitude. For a point outside (or
inside) the surface of the Earth, we will substitute for r the radius of a sphere e. g.
including the same volume as an ellipsoid confocal with the adopted reference ellip-
soid and passing through the considered point. (Thus, we will still call this quantity
r). The reference gravity can then be substituted by kM/r® and ¢ again with the
proper geocentric latitude. (In practice ¢ is just treated as if it was equal to the
geocentric latitude).

We will introduce a more compact notation for the partial derivative with
respect to an independent variable e.g. r:

3
D: = or ’
and for the second order partial derivative with respect to r and t:
a'&
arot

3 _
Drt_

The formulae (27), (14), (28) and (29) becomes then:

£=T/G (30)
Ag=-D,T- 2T (31)
1
€= - Go 7 DcpT and (32)
. SR o
M=~ G-rcosgp D) T. (33)
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Using the law of propagation of covariances given by Moritz (1972, p. 97) applied to
equations (30) - (33) we find:

cov (T, R)=K(P,Q) (34)

2
cov(Ags, Agq) = C(P,Q) =D, Dy K(P,Q) + = * D/K(P, Q) + 25
)

2 D.K(P, @+ — K (P, Q),

r rr

cov(Ags, Cy) = (-DK(P, Q) - ZK(P, Q) 7 » (36)
cov(Cs,Cq)= K(P,Q)/(G* G), (37)
cov(g ,Cq) = -D,K(P,Q)/(G* G+ 1), (38)
cov(ne ,Gg) = ~DyK(P, Q) /(G'G* r* cos o) (39)

cov(E, &)=D D /K(P,Q) /(G'*G*r*1r)=D? o K(P, Q)/(G*G" rr’y, (40)

o ©
cov(Ep ,Mg) = D;;(K(P, Q)/ (G’ s coswl. r*G), (41)
COV(Ne sMg) = DiXK(P,Q)/(G" Gerr’ cosop * cos@'), (42)

2 r 7
cov(Agr, &) = D,y (coV(Ags , Cg)) /' = D s (DK(P, Q)+ TK(P, Q)/(GT") (43)

cov(Ags,Mq) = Dy (cov(Age, Gy )Y/ (r”* cosa’) =D, /(D K(P, Q)+ ’
(44)

2 K(P, QV(G'r’ cosy'),
r

=zere the quantities marked with an apostrophe refer to Q and the unmarked quantities
mzizr to P.
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The covariances involving the deflections components ((38) - (44)) are most
easily expressed @nd computed) as derivatives with respect to the cosine of the
spherical distance | between P and Q. (We will from now on only regard isotropic
covariance functions K(P, Q), i.e. so that (9) always is valid and hence K(P, Q) only
depends on ¥, r and rj.

Putting t= cos §, D,K(P,Q)=K’ and DZK(P, Q) =K'’ we get:
o . ’
D K=yt K

— . /

Hence

D;(D/K=Dmt' let-K"+DchP,t'K' (45)
D2, K=D t*Dyst*K+D? ,t+K’ 46
A ® A " O ) (46)
DiA,K= Dyt * Dy toK "+ Dik,t-K'. | (47)

2
-D (cov (Agr s Ty)) = Dyt * (DR K(P, Q) + 3 DK(P, Q) (48)

2
-Dy/(cov(Ag, T)) = Dy, t*(DFK(P, Q) + 7 D:K(P, Q) (49)

Note, the common factors K’ and K’ in (47), (48) and (49), i.e., the three covariance
functions cov(gs, &, ), cov(Es yMmq) and cov(ns, 1g) can easily be computed at the same
time, The covariance functions (38) - (44) are used in actual prediction computations
involving deflections either as observed quantities or as quantities to be predicted.
These covariance functions are not anymore isotropic. Then for theoretical discussions
it is more convenient to regard the covariances, where one or both of the quantities

are either the longitudinal (£) or the transverse component (m) of the deflection of the
vertical. This type of covariance function will be isotropic and will have a simple
relation to K(P, Q).
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Pole

Figure 2.
Spherical triangle (Pole, Q, P)with the deflection components (§,m)and (£, m) shown
as vectors.

In Moritz (1972) the relationships between K(P, Q) and the covariance functions
are expressed in terms of derivatives with respect to ¥. We will express the relations
in terms of derivatives with respect to t= cos .

Let the azimuth between P and Q be . Then we have (cf. figure 2j:

L = COS Oo(-Ep) + SIn0w(-Mp)and

(50)
mp = Sinoe(-€p) ~ cos @« (1)
Using (38) and (39) and the law of propagation of covariances, we get:

cov(dp , Cq) = (cosOi® D<Pt *K'+ sin o+ Dyt -K'-Fl()gw)/(G «G'+r)and
cov(me ,Cq)= (sSina* D(Pt *K'-cosa- Dyt+ K’ .colsa))/(G - G'rr).

Recause '
t=sine* sin o +CoSm* cosw * cos (N - )l)

we have
Dyt=coso sing’ -sing * cosg’ * cos (A’ -\)=siny * cos @ and
D>\t =COS ¢p * COS ;o' sin (X' -\ = cosg* siny ¢ sing,

hence
cov(dp, Cq)=siny +K'/(G*G'* r) and (51)
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cov(mp, Gq) =0 (52)

For the covariance with the gravity anomaly we get in the same way (using the law
of propagation of covariations and (14))

2

cov(Ls, Agg)=+(D; K'+ TK') esiny/(G* 1) (53)

cov(m,, Agq)= 0 (54)
The expressions for cov(4p, £q), cov(£p, my) and cov (mp, my) are derived in a very
simple way in Moritz (1972, p. 109). We repeat the results expressed as derivatives
of t.
cov(fP’ !’Q): _D1fr K/(G - G’ ey e r’)= (t . K,"Sin?]lr . K“)/(G - G’. T~ rl) (55)
cov(l,my) =0 and (96)
cov(me, Mmg) = -DyK/(siny+G* G’ *r+1')=K'/(G+G'* r - 1. (87)
From the formulae (51) - (57) several intersting consequences of the imposed isotropic
property can be seen. The deflection components at P are independent of the height
anomaly and the gravity anomaly in P. The transverse component of the deflection in
P, m, is independent of 4, Ag, and £,. For &, this implies, that &, is independent of
Mg for @ =0 "and ne independent of €, for A= ).

Finally we will conclude that the basic quantities to be compyted in the evaluation
of the expressions (34)- (49) and (51) - (57) are K, K’, K", D,K'+ ~ Kand
cov(Agr, Agy)-

8. Closed covariance function expressions.

In this section we will consider different models for the degree-variances and
explain how closed expressions for corresponding covariance functions can be obtained.
We will distinguish between different types of degree-variances and hence between
different covariance functions models. Thus we will still consider only isotropic
models. A subscript k will be used to distinguish between the models. Then we can
define 0y, (A, B) to be the degree-variances of degree £ in the k'th degree-variance
model, i.e. so that the corresponding covariance function becomes:

cov,{(A,B) = (

==

>| (?’)J i °k-»‘3(AsB)Sz+1Pz(t) , (58)
%=

0o
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no

/R’
where I and J are either 0 or 1. (Note, that for I=J=1 we have (%) . (—): 8)

For the already introduced quantities 9 and o, we then have:
¢y Oy, 4 (Ag, Ag) and
0y = 0y, (T, T).

The corresponding covariance functions become, using (9) and (10)

covi(Tey Ty )=

[~-is

Oy (T, T)S£+1P£(t) and

(59)
L=0

covy (Agp, AZ) :Z Oy, 4 (A8, Ag)S’@JrzP’@(t)
f=e (60)
R\ /R\ T 241
~(3) (%) ), ounibe 0™ pn.
d=0
The relationship (15) becomes:

2

R
Ok, ¢ (T, T) = (217 O, g (A8, L) (61)

In the following we will also consider the degree-variances oy y(Ag, T) of the covariance
function covy (Agp, Tq) which is related to the covariance (36) by:

COVy(Agp To) = COV(Ag 5 o) * G

Using (36) and (59) we get:

@ a

Cov, (A, Tq) = —D,(Z O 4 (T, T)S£+1P£(t)> - % (? Oy 4 (T, T)S£+1P£(t)>
L=0 =0

Sr~18

‘ 4-1 2+1
T e IO

(62)
0
= %ﬂ;o}(,g (T, T) ‘3; s“l%(t).
Hence, using (58) we see that I=1 and J= 0 and that
Oy 0 (88, T) = 00 (T, T) » L2210 and (63)
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kaz (Ag’T)S£+1P2/(t)' (64)
[¢]

cov, (A, B)= &

T i~18

{Note, that the introduced notation can't be used for covariance-functions involving
defiections. These covariance functions can be expressed as the sums of series in
P}J(t) and P'é(t) (apostrophe mean differentiation with respect to t), and not on the form
(58) as a series in Py(t) and s*1,)

Five different models of the anomaly degree variances will be discussed below,
i.e., k will take on values 1, 2, ... 5.

In Tscherning (1972), analytic models have been described for covariance
function having anomaly degree-variances equal to:

oy, 4 (A, Bg)= A, (£-1)%, 2>1 S (65)
Oz, 4 (Ag, 8g)= Ay (4-1/4, £>1 and (66)
03,4 (Ag’ Ag)=A3(£— 1)/(2"2)9 £>2, (67)

where A,, Az, and A, ( and below A, and Ag) are positive constants of dimension mgal®.
These types of models have been further considered by Rapp (1972a).

4-~1
0,4 (48, Bg)= A, TLF("__Q)_()ELB) and (68)
s, £ (A8, A8) =Ag (£-1) s 4>2 (69)

(£-2) (L+B+BL°)

For i+j = 13 and i+j= B/B we can write (69):

- As (4-1)
GS,E(Ag9 Ag) 8 (£-2)(4+1) (£+)) . (70)

As indicated above, the covariance functions corresponding to models 1, 2 and 3 can

be represented by closed expressions. (By closed expression we mean expressions
which only contain a finite number of terms). This is also true for model 4 and 5, pro-
vided we place some restrictions on B or i and j. First of all the resulting degree-
variances have to be greater than or equal to zero for £ greater than 2. Hence, B and
i, j will have to be greater than -2. And the technique used below for the derivation
will imply that we have to restrict B and i, j to integer values and that we also will
have to require that i is unequal to j and that all three quantities are greater than -1.
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We will not consider the covariance functions derived using the model (65)
because the anomaly degree-variances are unrealistic. Thus, the model leads to
very simple closed expressions for the covariance functions, which can be found, e.g.

in Tscherning (1972).

The technique we will use for the derivation of the closed covariance expressions
is very simple. The covariance functions can be split into components which, upon
multiplication by appropriate constants will yeld the covariance function. These

components can be expressed as:

Z , (0 and (71)
_ 1 £2+1 .
Fy = z I S P, (t) for i>0 (72)
4=0
1
F,=z - s]“lP (ty for i<0, and (73)
L+ i 2
f=-1+1

as the first and second derivatives of F or F, with respect to t,
FI FH FI FH
» ’ 19 i -
We have for example (using (59) (61) and (67)):

covy (Tp, ) = z (1- 1) - 2) Sz+1

2 ( 1 _ 1 \‘SZ—‘_]‘P t
z L-2 -1 / 5 (1)
=3

s "R (F- - (F_; -s°B (1))

The closed expression for the function F can be derived using the well known formula
(Heiskanen and Moritz, 1967, eq. 1-80):
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F=s-?sPt)=—. (74)
- o T-2st+ s%
=0

The denominator will be one of the basic quantities in the following derivations, so we
will use:

L= /T-2st+s8,

M=1-L-s*t and ‘ (75)

N=1+L-st.
We then have:

=5
F=71 .
1
The functions F, can be derived by multiplying F or T, by an appropriate power of s and
integrating the expression with respect to s.
Using:
. SZ+i
J' gh+i-1gg= -, 4+1i>0
L+1i
o

we see, that by integrating

si-1 ¢ L+i-1 76

= S - f
=) P, (1) )
=0
we should be able to find F;. We have by (72)
- L !
s! 1F1= y = P (t) for i>0 and by (73): (77)
Lo 4+i 2
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$lEs ) -P i)~ ) B, i0. (78)
ZA='O,E¥_1 ﬁz-"l ﬁ: /@—:O Z+1
The integrals:
b
J'SI— ds, i=-2, -1, 0, 1, 2 (79)

-an be found in integral tables as Gradshteyn-Ryzhik (abbreviated below to G, R.), (1965).

From these basic integrals, F; can be computed using recursion formulae. We will
‘irst consider negative powers of s.

Using G.R. 2.268 we get:

E: - L + (2i~-3) " t Eis _ i-2 'dS , >0, (80)
st L (i-1)st-1 (i-1) si-11,  (i-1)J si-2g,
and hence
ds L ds
L s i e (81)
_—..ds - .-_L Et(_l"._;_tv[‘_gs_ \ lJ% 1+ a
1, T 2s® T o ‘s s L) 2Js L OB
'82)

ds
+ L+ — + 8
L+ Bt S 8
where a_,, a_, are integration constants. From G.R. 2.266 we have:

+in(s)+n(4) + a4

ds 2-2ts+2+ L 2
= -n oy — 2
JS-L S Taa pm'l—ts+L
(83)

=in I—\Iz-wm(s) +on(4)+a_,
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The constant a_, is determined requiring (78) to be zero for s equal to zero.

d
s” OJFS.S st Q/nzN n(4)+a_,,

hence a_-, = n(4) and then:

s E=m 2 . (84)
N

Then we can compute F_, and F.,.

s2F., = Z"S'——P(t)"é*t'g’”_‘r + a_g
=3

= -1——L-|-t'?/ng+a_2= 1_':S-L+1;'0/ng or (85)
8 N 8 N '
- 2
F.,=s8(M+ts+in ﬁ)' 86)
sT3F :m Sz_zpt—j<l+t Ba (Y t)ds+j—£—+a
-2 Z 7-2 0= 28 g s?1, °°s
=3
1 3ts
T 552 +;- B (t)+fn(s) + (Ba(t)" @n —+an(S))- L+ a_y)

= (1+2ts-(3ts+1) - 1)/(25°) * B ()0 2+,

2
The constant a_, can now be determined. Because /n % is zero for s equal to zero, we
must have:

lim l1+2ts-(3ts+1). L
8 =0 252

= _a_a

The limit can be determined using the rule of 1'Hospital two times. Note first, that
= (s-t)/L. We then get
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lim 1+2st-(3ts+1)«L  lim -3t L-(3ts+1)(s5-t)/L+2t
50 2s° 50 4s

= 1im 3t (s-t)/L - (6ts + 1 - 3t%) /L (3ts® 1 5 -3t%s - {)(s-t)/L%)/4

80

and hence:

We then get:

2 - 2
Fop = 5((~3t2s%+ 2ts + 1 - (3ts+ 1) =L)/2+ (By (t) *¢n N+1—£— ) =57

2
=s((1-ts-L)(3ts +1)/2+s> (R (t) * I I%I— + I;t )) 87)

=g(M * {3ts +1)/2+s2(P9__(t) *én -12;1+(1 —tz)/4)).

For the evaluation of covariance functions involving deflections, we have to compute
Fo, Fé,’, Fl,, Fi’l, F.,, and Fi’e (where again the apostrophe means differentiation

with respect to t= cos {).

We will first compute some auxiliary quantities:

S 1. s
DtL__'j_;, Dt(i)‘ ia,
—as 8o (-L

DM=-s+ S T
DN =- -%=—S(1+L)/L

Hence from (84) we get by differentiation:
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9 2
R=s+pun § = SR -9 (Tt 1)

" -N(-8/L) - L(-s(1+L)/L 1+L)/L
FO — Sa( ( (?L.N)g ( ) )_ + S( NQ) >

:Sg(N--!~L(1+L) N 1+L > _ 3(N+L + 2+L >
L% N° L*N? L3N LN

For F_, we get using (86)

1

Fl,= s(DyM+TFp+t* Fp)

S~
~

Zl=

s(s(1-L)/L+ K, +t+s® (ﬁ +

1,
LN

)

2 =

= g° ((1—L)/L+Q/n %+t . s(

FY = s(DEM+2R+t* Fy)

3
_ (8 2/ 1 1 . N+L 2+L
-s(G 2t (g ) e (B Ee))

3
=s3<.1_3+M+ts(_i_ + Q.@L))
L L'N L3N (L*N)®

and for F., we get by (87)

B, = S (DM (3t5 +1)/2+ M + 2 + 5% (3t+0n & + Ry(t) Dl = - 1/2)]

.- _ 3 2 co( L L1
= s®[(3ts +1)(1 L)/(2L)+2 M +s(3t P/nN+I§(t) S(LN+N> t/2)]

1+L >

= sz[% ((3ts+1)/L+2—7ts—3L>+s<3t'Q/nI% + B (t)‘s<
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R - sg[é<L'Js—(3ts+1)(—s/L) 7S%§j>'s(3@n_ + gt L

L? L°N
B (t)"s - _1\?2(-13) LS/L)(_LI\T ;;(sa&)/m > (93)

= ss[<%+§isﬂia.l -7>é+3ﬁ/n %+6ts i+§ + Dty <<1+.L > L—l— >>1

Tz losed expressions for F, i> 0 can be found using another recursion formula,
z. ?.. .263. We will treat this case in a more general way, because in this case we
WEILI L0 demve expressions not only for i=1, 2 and 3 but for i=1 to~, 1t is also

essary to have a recursion formula well suited for actual computations.

‘l

Tz nave (using G.R. 2.263):

siliis si- 11'L Llel)tJPS 1 i 11)j51 -2 or 94
sl‘r-lj Si}iis ) (L+(21_1)t.511_1 rsi'ids i (1;1) . sil-zf Si_idS).li (95)
=zalizing that:
F="7 for i>0
S
z get
R = (Lol R Ry (96)

= ‘rtunately we can use the recursion formula for the computation of D, F;, = Fi and

== Tk = F, as well,

“ifferentiating (96) we have:

and
is (97)

Fi,1= (D,L+(2i-1)(F + t- #)-S—l “FL)

Zifferentiating one time more:
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F/{,= (D L+<2i-1><2F{+t-Fi’>-<i—'SlJ CF) . i—fs (98)

S 5 s°
with D,L=- 7 and DfL=- =5 .

As in the case where i was less than or equal to zero, we must now compute the first
two terms in the recursion formula, i.e.

E.s E_l9 Fllls ng FEI and FEH
Using G.R. 2.2641 we get

K= j d—i +a8, =0n(2°-L+2+5-2t) + a,
and hence, by (96)

_Lppsds . L rds
lg»s[ L+a2]-S[L%tJ‘L+aa]

Computation of the limites of the integrals for s— 0 give us the integration constants;
a; =-n(2-2t) and

ay = -ton (2-2t)-1.

Hence

e () - 22, ).

99
1-s+L (99)
which can be verified by multiplying the numerator and the denominator by (1-s+L).
The last expression for K is the best suited for numerical use, because it avoids
dividing by zero for § = 0,
For E, we get:
_ 1 _ 1
k= 3 (L+t* K +ag ) = S (L-1+t*K). (100)

The first and second derivatives of § and E becomes
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. (1-s+L)  (=28)(- s/L) 2g°

101
(1+s+L) (1- s+L) (1+s+L)(1-s+L)L ( )
. 282 . SE - Sz
(1+L-ts)*L*2 (14L-ts)*L  L*N
1 2 FN(=8/L)- L(-s/L-8)] _ 2 [ 1+L-ts+L+L%
R=s 1PN° =S LT IE R . (102)
_ SB [1'+ L n 1 7
L’N°  Ner?
’ 1 f 1 ts
= = (~-s/L+t*RKR+F)=- =+ —+JK/s 103
12 s ( B 1) L LN 1/ (103)
B = é (-s®/L° + 2F + t =F;) (104)
We will now derive the relations between the functions F, and the covariance models
2,3,4 and 5.
Model 2.

Using (59), (61), 66), we get:

COVL(Tys T)=Ka(P, Q) = Y 2 00T, T)+s? 1

L t)

@ 2

R ¢+1
=), oys Ot (8> Agys" e
4=z




and by (73), (84) and (86)

2 2
covy' T, Ty) =Ag R® [(E., +tsz-FO]=A2 R3[s(M+ts*ln = +ts)~s+fn x|

N
(105)
3 2
=A,R® * s[1-L+(ts - 1) N 1.
In the same way, we get using (64), (63), (66) and (84)
& ® JL+ 1
R JL 1
covy (Ts, Bg ) =7 z Ozy (Ag, T Pz(t) =A3'R'<'§r) Z
: ,@,=2
(106)
3 2
=Ays = ¢ (By-ts®)=A,s — + s(fn =~ ts)
and by (60), (66), (73), (74) and (84):
> L-1 4+2
covy (Age, Agq) = zz 7 S P}Z(t)
L=2
@ ) S,@"}‘l
—A . ! 2+1 - —-_— 107
A, S(ZS Pt z Pz(t)> )
L=2 b=2
- < 2"
=A,s(F-s-ts®-( Fy-s°t))=A, -1-0n N)
The covariance functions invglvmg deflections of the vertical will, as mentioned above
contain K3, Kg and -D,Kg - 7 Ks.
Differentiating (105) gives:
= A,R®*(F/, +5° - B)) and ‘108)
= A,R¥F) - 7)) (109)

2
Because -D Kz- = —-covg (Age, Tq) we get by differentiating (106):
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7 2 7 Rg 7 2
-D.Kg - ~Kg = Ay 7 (S - %) '110)

(57), (51), and (53) we get the following

Combining the three last equations with (55),

equations, which can be evaluated using equations (88) - (91).
covy(Lp, 2g) = (t Kb -sin®y «K2)/(G* G *r - 1)
(111)
‘A‘—R—a‘t(l 2 -~ 17 (_l
=Ag r-r'( (F -8°~Fp)-sin®§+/F-; - ' ))/(G*G)
RB
COVg (mp , g ) 7Kg /(GG ror’) = Ay 7/ (FLy -7 - F5)/(G+G) (112)
] 2
cov, Ly Cq)=sin} » Ky /(G*G'* 1)=A, — (FL,-s®-Fg)*siny/(G*G') (113)
2 1 N
cova( Ly, Agy)=Ag" R , *(Fs -s®)* sin § * 1_428, sin{(F; - s°) (114)
r'r -G G
Model 3.
From (59), (61) and (67) we get:
c 2 2+1
cova(T, B) =Ka(P, Q)= ) —— <051 (Ag,Ag)s”  B,'Y
i2s (4- 1)®
£+1 _ zy <_1_ R SR S|
=A, R z ooy S RO=AR) (35 e TR
L=3
and then using (73):
(115)

covy(Tp, Ty) = AgR® ¢ [ F_ 5 - (F-y - 5° Pa(t))]

For the covariances between the gravity anomaly and the anomalous potential we get

using (62), (63), (67) and (73):
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2 [ow)
1
=A3R—/Z 7" e b (116)

And for cov,(Ags, Agq) we get using (60), (67), (71), (73) and (74):

A el 2+1
s¥*2pty=A, SLZS B, (%)

] =3

cova(Ag ,Agy) = A, N
A
2=

1 gitlp (t)] (117)

—Ag* s [E—s—szt—sspa(t)+F_g1
L 4

The formula (115) becomes using (86) and (87):

2 2 s
covy (T, ) =AsR (:—S(M+ts-£7/n ~7 JFSS Ry () + 8(M(3ts+1)/2

+83 (P, (t) I 1%+(1—t3)/4))] (118)

2 siny 2 M
:AaRao[Sa(Pz(t)(l‘i‘Q/ﬂ N)-{- 4 )_Saatmm+s(3t5_l)nz_]

This is the correct version of the formula given by Lauritzen (1973, p. 82), in which
the quantities here called M and N have been interchanged and the R® factor is missing.
Explicit expressions can be written down for (116) and (117) as well, using (86) and (87).
But generally it is easier to compue the values of (86) and (87) separately and then

evaluate the covariances using (115)-(117).

The derivatives necessary for the evaluation of the covariances involving deflections
((38) - (44) and (51) - (57)) becomes by differentiating (115) and (116):
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Ki =A,RP[F.,+ 3s%t-F.,] (119)

Ky =A,RP[F,+3s° -F,] and (120)
2 A, * R®
DK} - ZK§=D,covs(bges B)=" 5 * Flay (121)

which then can be evaluated using the formula for F.'.l, F.’_g s F'.fl, and Filg , (90) - (93).

Combining the three last equations with (55), (57), (51), and (53) we get:

cova(Ley fo) =(t* Ko -sin®¢ *KZ)/(G*G " r- 1) (122)
1
=Ag + 8¢ [t(FL, + 3ts> FLy) - sify (FL, + 3s® -F.1 )] * ey
COVs (Mp, My) =K45/(G+G *r*1’)= Ay s(FL, +3ts® - FLy), (123)

2
covg (Lp, Cg) =Siny *K5/(G*G'*1)=Ag R J(FLy+3ts® =F'))*siny (124)

r-G*G
. 12 . e 1
covy(be, Agy)=sin§(-DyK'- ;,K 3/(Gr) =Agz*s*siny* F.p* P (125)
Model 4. Using again (59) and (61) and now (68) we get
> _R? 2
COV4(TP’%):K4(Ps Q):> 204117/(Ag’ Ag)'s +1P17,(t)
4=3
- 1
A JR2, . LAt L,
AuE ) g2 ies) S RY:
l=3
Unfortunately we will now have to introduce one more notation related to the degree-
variances. We will define:
Tk,f/(TsT) = Uk,f/(TsT)' Ak R RB ’ (127)
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1
AR

Tk,f/(Ag’ T)'_'o'k,f/(A-gv T) and (128)

1
Ty, L (88, A8) =0y 4 (Ag, Ag) A (129)

All the quantities (127) - (129) are unitless quantities, and we have e.g. using (127), (61)
and 68):

2

R 1 1
(1-1)2 Ou 4 (88 88) * AR = (4-1)(£-2)(41+B)

T, 4 (T, T) =

This quantity can be partitioned as follows:

_1[1 17 1 /.1 1>1/11
T (T T 775 L 72 _Q—IJ_B+2(E—2—E+B “ B+l \1&-1‘%3)

1 [B+1 B+2 1 ]

(B+2)(B+1) 4-1 4+B
hence using (126), (127), (72) and (73) we get:
_ gh+1 +1
covy(Th ;) =K, (P, Q) = B+2) B+1)[Z i P, (t)- B (t)
S
Z yr LR AC)
(130)
_ AR ) ) -
= Bz | B Fea - (B42) (Fyms° Py (1)
s st s%Py(b)
e BT B417 Ba2 ]
Correspondingly we get using (128), (68) and (63):
_ 1 _ 1 1 1 .
Ty, (A8, T)= 12178 B2 lLi3 " m] and hence using (64), (72)

and (73):
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< 1 1 _4+1
“Valbgr To) = 4, *—[Z Tz P(t)_ B Pﬁ(t)]'B+2

(131)

_ AR®
" r(peg) L Fem (Fem

For 7,4, 4 (Ag, bg) we get in a similar way using (129) and (68):

o 4-1 4-2+41 1 /1 1y 1
4£(Ag,Ag) (£ 2)(}2,+B) (,Q,..QJ)(}Z,-F}Z',)~ L+B "\0-2 JZ+B) B +2

Bl 11 <B+1 L1 )
(B+2)(4+B) (B+2){L-2) (B+2) M +B £-2
and hence using (60), (72) and (73)

x

A, (Y Bl pa2) C 1 g 2
cov, (Age, A2 ) = (B+2)< £+B Rt + 275 + t))

(132) ‘
2 3 /

~AS [(B+1)(F3——' - ii_i__P&LQ)_*_EE]
(B+2) B B+1 B+2

We will now differentiate (130) and (131) getting the formula necessary for the compu-
tation of the covariances involving deflections;

A, 8% 388t
K, = ]

(B+.2)(B+1)[(B+1 ~2 = (BH2)(E, -3t8%)+Fa - 577 = T (133)

A, R®
K] =——=f———— | (B+1)E/, ~(B+2)(F,~38%)+F4 - —
4 (Bt K-z (

(B+2)(B+1) B+2 ] (134)

2 AR? - s? 3%t -
-D,K"~ 7K/, = Di(cov(Ag, Tq)) rTA(B_Tz_)L* 2~(Fs-B1q B+2)J (135)

The formula (133)-(135) can be evaluated using (90)-(93) and the recursion formula (97)
and (98) with the 'initial values'™ given by (101)-(104).

By using (133)-(135) we can write down the covariance functions (55), (57), (51), and (53).
We get:
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cov, (Ley &) = (t*Kg - sin® YKV /(G » G’ »re1)

(136)
Sp L . [t- (B+1)F’ (B42)(F 4 -3ts®)+ R - S - S5t )
(B+2)(B+1) -2 - B+l B+2
o ) y . 3s® 1
+ sin®y <(B+1)F'-a ~(B+2)(F2, -35")+F'~ B+2 ﬂ "Geg'’
cov4(mp,mq)=K;/(G'G"r' r’) (137)
- Ayrs / ! 3 l_.SLz_ - 387t
 (B+2)(B+1)G*G’ [(B+1)F‘3_(B+2)(F‘1'3ts B g B+2]
cov, (Lp,Cq) = siny * Ki /(G*G" 1) (138)
- Ay R® . ! ! -8ts3)+ R
- EBETIET [(B+1)F_2 (B+2)(F.,-3ts®)+ R
s  3s%t ]
T B+1 B+2 ]
and finally:
4 i r2 ._}_ ;:
covy (e, Agy) =siny * (-Dy/ Ky - K Ger (139) i
(B+2)*G [ -e- (B B+2)] !
Model 5. Using (127), (61) and (69) we get:
_ R 1 1
4 (T, ) = 7gy 9 (88 88) 3= = oy sy (15 )

A 1 - L
j—i.[ (L -1)(£-2) (L +1) (1-1)(1&-2)(1“]')]
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_ 1 1 1 1
'“j—-_'[<(ﬂ—2)(i+ 5 T DD (/L+i)(1+1)(i+2)>

—

Y A KR WS —
(£-2)(G+2)  (A=1)(+1) (L 1H(+1)(j+2)

__1__ _j+2-i-2 i+1-j-1 1
1L -2y 2)G+2) T (411 (i+1) T (AH)(L+1)(i+2)

- 1 }
(L+)(§+1)(j+2)

) 1 _ 1 1
(£-2)(1+2)(j+2)  (L-1)(i+1)(j+1) [ (4+1)(i+1)(i+2)

| 1 ] 1
S P

and by (128), (63) and (69)

1 1 1 1 1 1
5,4 (82, T)= ey tleetl

S [ 1 1 ]
4-2  j- (J+2)(£+J) (4+1)(i+2)

and finally by (129) and (69)

4=1 1r

i+l
Ts,ﬂ(AgvAg)_ (2,—2)(2/4'1)(2/'*‘]') J_——i_——z )

j+1 1 1

j+2  4+] (1—2)(j+2)]
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1

= +
(£-~2)(i+2)(§12)  j-i

Lpil 1 g1, 1
l,i-a-z L+i j+2 JZ,—Fjj‘

and hence using (59), (72) and (73) we get:

2+1

0oVs (Tr 4 To)=Ks (P, Q)=A5'Ral:(i+z>1(j+z> ) 325 B
=3

(1+1)(]+1)

T i s'“l t
VA | Pz()
z:

3

—l-f <(1+1 )(

1

Z £2+1
i+2) L+1i S Pz(t)
=3

@©

T (G+1)(5+2)

1‘ g4+l Pz(t)ﬂ

L L)

L3

=AR®

1

j=1 < (i+1)(i+2)

_ 5%t

|20 2 G

1 ( s st sPP.(b)

(F-, s> P, (t))

1

j+1

by (62)

ik

2 L+
covs (8gs, T4 BT 15" eyt (1) Z ek

=3
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(140)

(141)




. —\ 0 1 112
J J J J J (141)
?
1 s Ea_t_ S P t> J cont'd
= i+2 (F‘ T i T i1 i+2 /
and by (60)
-1 o1 442
COVS(AgP’AgQ):AEL(1+2)(J'+2)Z 72° 5
4=3
(142)

=Ags|—L— F, +_1_<L+_1<F .5 .82 P
(i+2)(j+2) =i Nie2 NV T 12 >

The covariances (140)-(142) can then be evaluated using (86), (87) and the
recursion formula (96) with "initial values" (99£and (100). As in the other models
it is necessary to compute K;, K'SI and -D,K's - ?Ké to find the expressions for the
covariance functions involving deflections of the vertical. The formulae can be de-
rived by differentiating (140) and (141) and later evaluated using the proper recursion
formula exactly as explained in model 4.

Note in the equations (140), (141) and (142) the denominators are equal to j-i, i+2,
j+2, i+1, j+1. The occurence of these and similar quantities are the reason for the
above mentioned restrictions on i and j (and B).

The above described expressions for the closed covariance functions can also be
used in cases, where a set of empirical degree-variances are used in connection
with degree-variances defined through one of the models (65)~(69). In this case,
the basic covariance function cov (T, Tq) is represented by, e.g.
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n x

A £+1 ‘ £+1
) GUTDS TR+ 0t (T, T)s” TR (143)

L=0 f=n+1

where &y(T,T) are the empirically determined degree-variances as would be cemputed
from equation (15). We will distinguish between the above mentioned covariance
functions cov, (A, B) and this new type of covariance function by a subscript E, i.e.,
covg (Tp, Tq) is equal to expression (143). We rewrite (143):

- L+1 - £+1
Cove(Tr» Tg) =y (8, (T, T) =02 (L, TN B0 +) oa(r, m)s* Tr
£=0 =0 (14:4:)

- A 2+1
(0, (T, T) = 0,4 (T, T))8" " By(t) + cov,(Tp, Ty).

4=0

Noting, that the relations (61) and (63) are valid for empirical degree~variances as
well, we find using (60), (63), and the relations (34) - (37), (51), (53), (53) and (57)

cove(Bgs +To) ={Z (& (88, )0y, 4 (8, T)r Zs* 1 () rc0v, (ep , To), (145
g=o
cove(Agr, Ag) = z (G, (88, A8)~Cy,1 (A8, ag)s” +2Pz(t)+covk(AgP, Ag) (146,
4=0
covg(zp,ﬁqp(i (%(T,T)—ck,f,(T,T)) g +1(t-P£( —sinye P )>/(G'G"r~r')
4= 0
+Covy (£p, 4q) (147
- (tz QT ) - G (T s P (9 -sin “) (BT, T) - Gt (T, T))
4=0 g=o

£+1 >/(G G-r-r)+covk(ﬂp»ﬂq)
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COVe (M, My (ﬁ( , )=0%, (T T)) Je+1P’5(t)>/(G'G'-r-r')

L=0 (148)
TCOVy (M, My )
covE(zp,zQ)=sm¢<2 (0, (T, T) ~ 0y (T,T))Sz+1132(t)> /(GG r)tcov( e, ) (149)
=0
and finally
B

A 1 R ,

cove(£s , Agy)= Sin W(Z (0,(A8) T) -0y 0 (Ag, T)s " + 7 P} () )/ (G*) a0
+eov, (Ls, Agy)

where P,(t) and P"( ) are the £'th order Legendre polynomial differentiated with respect

to t one and two times respectively.

We now define g through the following equations:

€,( T,T)= G, (T, T) =Gy 0 (T, T) (151)
¢, (A8, T)=0 (8g,T)~ 0y, 4 (Ag,T) and (152)
€, (08, Ag) = G (Ag, Ag) - Oy (Ag, ) (153)
We can then see, that the covariance functions (144)-~(150) involves the summation
of finite series.
: 441 - : 2+
Z €, (T, T)s” 7P (t), Z €,(T, Ag (t),Z ¢(bg,Ag)s” P () (154)
4=0 4=0 =0
2 L+ L+1
2 € (T, T)s 2 (T, Ag)s zt (155)
21=O :

and
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n

Z EE(T,T)SJL“LlP!'z'(t) (156)
4=0

Recursion algorithms for the summation of those three types of series will be given in
the next section.

Using the above developed expressions (144)-(150) it is possible to compute covariance
functions of and between height anomalies, gravity anomalies and deflections of the
vertical corresponding to the recommended model for the anomaly degree-variances.
This is possible because we have selected the value B in Table Seven (p. 22 ) equal to
the integer 24,

A
Using the empirical determined value of o4Ag, Ag) = 7.5 mgal® (cf. Table Two) we can
then, for example, write down an expression for the covariance functions of the
anomalous potential:

cove(Tp, Tq)= 7.5+ 107°+ R +¢° 'Pz(t)+A-1O"1°-RBZ
1=8

1 2 +1
(L-1)(4-2)(4+24) 5 ’ B,®

=7.5+ 107 R?:5%+ P, (t)+cov(Ts , Tp ),

0 10

where the factor 1 is used to convert the covariance into units of m* /sec*, supposing

R in units of meters.

In a similar way we can write down the expressions for the covariance functions, :
cove (Ag, Cq)s cove (Ags, 88), cove (Agr s ), €OV (Cpy £q),C0Ve (L5, £q) and covg (mp, my).

We have compuied values of the covariances for varying spherical distance { and for P
and Q lying on the surface of the Earth and 500 km above the surface of the Earth
respectively. See tables 9 and 10 and figures 3-9.

The radius of the Bjerhammar sphere, VR, has been determined as:

R=/s,

1
table 7 Do =(0.999617F « 6371.0km= 6369.8km.

The quantities r and r’ are computed by adding the actual height above the reference
ellipsoid (here 0 and 500 km) to the adopted mean Earth radius, R,.

The subroutine presented in the appendix has been used for the computation of the
given values.
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Table 9
Covariance between various quantities computed using the anomaly degree
variances of model 4 and oz (Ag, Ag)= 7.5mgal® at the surface of the sphere
approximating the earth (R,= 6371km)

Covariances Between

AgP’AgQ AgP’f’Q Agp,gq EP’ 'G’Q mP’InQ »QP ’gq QP’QQ

¥ mgal® mgal-arcsec mgal'm arcsec® arcsec® arcsec'm m>

¢ 0.0'" 1795.0 0.0 452,3 45,3 45,3 0.0 926.1

0 30.0 801.8 6763 434,8 19.2 27,1 7.3 925.0

1 0.0 572.7 59.9 41747 14.1 21.7 11,7 922 .4

1 30.0 452.6 54,2 402.3 11.5 13.7 15.1 918, R

2 0.0 37545 49,8 388,3 9.8 16.7 18.0 914.3

2 30.0 320.9 46,2 375.4 Be b6 15,2 20,4 90Y.1

3 0.0 279.9 43,3 363,3 Te7 14.0 22.6 G03.3

3 30.0 247. 6 40.9 352.0 7.0 13,1 2446 8Y6.9

4 0.0 221.6 38,8 341.3 6.4 12.3 2belt 890,0

5 0.0 181.9 35.4 321.3 5.5 11.0 29,6 - 8BT74.9

6 0.0 152.8 37.8 303.0 4,8 10.0 32.4 858,2

8 0.0 112, 8 28.9 269.8 3,7 Be O 3649 820471
10 0.0 86,1 26.2 240,2 2.9 7.5 40.5 T78.9
12 0.0 66,9 24.0 213,2 263 6e 7 43,3 733,7
14 0.0 52,2 22.3 188.3 1.7 b.1 45 .4 685,9
16 0.0 40,6 20.8 165,1 1.2 545 47,0 636,40
3 18 0.0 31.1 19.4 143,.,4 0.7 5.0 48.0 584.8
20 0.0 23.2 18,2 123,2 De3 4,6 48,6 532.7
22 0.0 16.5 17.0 104, 2 -0.0 4,2 48,7 480.2
24 0.0 10.9 15,9 86.5 -0.4 3,9 48,5 42741
26 0.0 6.0 14.8 69,9 =07 3.5 47.9 A75.7
28 0.0 1.8 13.8 54,5 -1.0 3.7 47,0 A24,5
30 0.0 -1.7 12.7 40,2 -1.2 3.0 45,8 274 .4
35 0.0 -8.6 10.3 9,2 -1,8 2e4 41.7 156.2
40 0.0 -12.9 7.9 -15.2 -2.2 1.8 36.3 5069
4% 0.0 -15.4 5,6 -33,3 -2k l.4 30,1 ~38.7
50 0.0 -16.3 3.5 -45,6 ~-2.5 1.0 23.4 -110.8
55 (0.0 -15.9 lo7 -52.6 ~2e5 O.7 16,6 -164,7
60 0.0 -14.5 0.0 -54,.8 -2¢4 0.8 10.0 -200.5
65 0.0 ~-12.4 -1.3 -53,0 -2.2 0.1 349 -219.°2
70 0.0 -9,.8 -2.4 -47,9 -1.9 -0.1 -1.5 -222.2
75 0.0 -6.9 -3,2 -40,3 ~1.5 -0a2 ~6e1 -211.8
80 0.0 4,0 -3,6 -31.0 -1.2 -0.3 ~-9,7 -190.3
8% 0.0 -1.1 -3.8 =209 -0.8 -0.4 -12.3 -160.4
90 0.0 l.6 -3.8 -10.6 -0e4% -0e4 -13.9 -124.9
95 (0.0 3.9 -3.5 -0.8 -0.1 -0.5 -14,5 ~-B6.5
100 0.0 S5e7 -3,0 7.9 0.2 -0.5 -14.3 -47,5
105 Q.0 6.9 —-2.4 15.2 0.5 ~0.4 -13.3 -10.2
110 0.0 Teb -1.7 20.7 0.7 -0.4 -11.7 23.7
115 0.0 Te7 -0.9 2441 0.8 -0.3 -9.7 5247
120 0.0 T.2 -0.1 25.5 0.9 -0.3 -75 T6.0
125 0.0 62 0.6 2449 0.9 -0.7 5.2 33,0
130 0.0 4,7 1.2 22.5 0.8 -0.1 —2e9 103.9
135 0.0 2.9 1.7 18.5 0.7 -0.0 -0.9 108.9
140 0,0 0.8 2.1 13.4 0.6 0.0 0.9 108.9
145 0.0 ~-1le4 263 Tet& O.4 O.1 2e2 104.7
150 0.0 -3.7 2o l.1 0.2 0.2 3.0 97.5
155 0.0 -5.8 2.3 ~5.2 0.1 0,3 delt B8, 7
160 0,0 -T.7 2.0 -11.0 -0.1 0.3 3.4 79.3
165 0,0 -9.3 l.6 -15.9 -0.2 Dets 29 T0. 7
170 0.0 -10.5 1.1 -19,7 -0,3 0.4 2.1 63.8
179 0.0 -11.3 0.6 -22.1 -0.4 .4 l.1 59.4
180 0.0 -11.5 0.0 -2249 =04 O.4 De 0 57.8
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Figure 3

Graphs of two covariance functions of the gravity
anomalies Ag,, Ag, for varying spherical distance {.

cov; (Ag,Ag), P and Q on the surface of the
mean Earth.

covg (Ag, Ag), P and Q 500 km above the sur-
face of the mean Earth.
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Figure 4

Graphs of two covariance functions of the gravity
anomaly Ag, and the longitudinal component of

the deflection of the vertical £, for varying spherical
distance | between P and Q.

cove(Age Lq), P and Q on the surface of
the Earth.

covg(Age, £q), P and Q both 500 km above
the surface of the Earth.




L9

375 1

125 §

mgal * meters

Figure 5
Graphs of two covariance functions of the gravity
anomaly Ag, and the height anomaly {, for varying
spherical distance §.

cove(Ag,0q), P and Q on the surface of the
mean Earth.

cov: (Ag,Cq), P and Q 500 km above the sur-
face of the mean Earth.
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Figure 6

Graphs of two covariance functions of the longitudinal
components (£p, £q), of the deflection of the vertical
for varying spherical distance .

covg(4Lp, L), P and Q on the surface of the
mean Earth. (Maximal value = 45. 3 arc sec®
not shown on graph).

cove(Lpy 4q), P and @ 500 km above the surface
of the Earth.
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Figure 7

Graphs of two covariance functions of the transversal
components of the deflections of the vertical m, and m,
for varying spherical distance {.

covg(mp, my), P and Q on the surface of the
mean Earth, (maximal value = 45. 3 arc sec®

not shown on graph),

cove(mp, Mg ), P and Q 500km above the sur-
face of the Earth,

90° 135/_,,_/——
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Figure 8

Graphs of two covariance functions of the longitudinal
part of the deflection of the vertical (£p) and the height
anomaly (Cq) for varying spherical distance y.

covg(4p,Cq), P and Q on the surface of the
mean Earth.

X%%— coVg({4p,Cq)s P and Q 500 km above the
surface of the Earth.




19

=225 -

900 +

675

450 -

225 +

s S

meters?

Figure 9

Graphs of two covariance functions of the height
anomalies (, ,(, for varying spherical distance ¥.

cove (Cp »Cq)s P and Q on the surface of the
mean earth.

covg ‘Cp,Cq), P and Q 500 km above the surface
of the earth.
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9, Application of the Covariance Models for the Representation of Local
Covariance Functions,

Lecal covariance functions of point or mean gravity anomalies may be estimated
by formulas similar to (3) and (4)applied on the gravity data in a certain limited area.
Thus, the anomalies must be centered, i.e. the mean value over the considered area
will have to be subtracted.

Disregarding gravity information outside the considered area and subtraction
of the local mean value correspond heuristically to disregarding the information
contained in the low order harmonics.

We will here define a n'th order local (isotropic) covariance function as a
covariance function, which can be derived from the covariance function of the
anomalous potential (158) using the law of propagation of covariances:

(e

coV} (Tr, To) =K (P, @ = ) 0t (T,T)s” " By(h) (158)

f=n+1

where the superscript n is the order of the local covariance function and the subscript
k is an integer used (as before) to distinguish between the different degree-variance
models. Thus K;(P,Q) is in fact a special case of the models cove (Ts, Tg) considered
above, having all degree-variances up to and inclusive of degree n equal to zero.

We can then rewrite (158):

K (P,Q):Z 0,4 (T, T)s’“rl By(t) —Z O, (T, T)s“lp (t) (158A)
g=0 . i=0 2
= (=04, (T, s 1B (9 + Ky (P, Q)
i=0

For the quantity € (T,T) defined in (151) we have:

EQ/(T» T) = -O'k,Z(T, T)
and hence:

€08, T) =-0y,g (88, T) and

€,(08, 88) = -0, 4(A 8, Dg)-
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Then we can use the expressions (145)-(150) to write down the different covariance
functions derived from (158);

n

‘ R 4+1
covy (Ag , Tg) = covy (Ag, Tq) - ‘;z ok,ﬂ(Ag, T)s Pﬂ(t)’ 159)
4=0
\'_*, L+2
covl(Ag, 8gy) =covi(Lg, Agy) -/ Oy, 4 (88, Ag)s I})L(t)' 160)
£=0

COVE(Lp, dq) = covy(Lp,y Lq)- (t ) oy b(T, T)s z+l%(t)

®~1=

0 ' (161)
Cw T 210
~-sin 'JIZGk,g(T,T)s ft))/(G G'erery,
g=0
COVy (Ms, My )=COVy(Mp, My ) —<z G,z (T, T)s’“1 (t))/(G°G’° r'r') (162)
g=o0
COVE (L0, L) =00vy (L5 Ca)-sm¥() 0t (T, sV RI(1) ) /(GG (169)

£=0
and

s - 1N ,
covy (Lo, Agy )=COVy(Lp, Agq)- <T Oy, 4 (g, T)SJL+ p}z (t)) sing¢*R/‘G rer) (164)
=o

The evaluation of the terms derived from the ''global' covariance function covy(Te, Ty)
have been explained in the preceding section. We will then have to evaluate the sums
of the series (154), (155) and (156), which are series in the Legendre polynomials
Pz(t), their first derivatives P (t) and their second derivatives P ‘(t), respectively.

This k1nd of serles can be evaluated easily without explicifly evaluating the functions
By(t), P '(t) and P}z (t) The technique is similar to the so called Horner-procedure for
the evafuatlon of a usual polynomial:

Pol(t)=a,t*+a__,t"*+a _.t° Z+...+4a, t+a
n n=1 n—2 1 o]

(165)
=( e (@ptrag_y)t+ag)tr L ra) )t+ag
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We can express this procedure through a recursion algorithm with terms:

bz::b‘g"_l .t"‘a‘g 'Y (166)
where the recursion starts with b,, ;=0 and where the value of Pol(t) is equal to the

final recursion term b,. The first, second (and higher order) derivatives of Pol(t)

can be evaluated using recursion as well. The recursion formulas are found by
differentiating (166)

by=1by,, *t+ by, 1167)
by=bjsr v t+2b) ., (168)
and the derivatives will be Pol’(t)=bg and Pol(t) = by

This type of algorithm,which starts by accumulating the high order terms are
especially useful when t is less than one, i.e. when a usual evaiuation of t'e and
multiplication with a, contingently would add a small number to already accumulated
terms. The essential point in the procedure is the simpie fact that,

t£+1_ (o t£== 0

i.e., that there exists a recursion formula for the function t’g.
It is well known, that we have a simple recursion formula for the Legendre poly-
nomials By(t). By inspecting the formula for the covariance functions, we also note
the term s&+1 or s4+2 , which becomes smaller and smaller for 4 increasing,
because s is less than 1. So we can hope to find simpie recursion formulas for the
sums (154), (155) and (156), which furthermore should behave well numerically.

A general treatment of this type of summation problem is given in Clenshaw

(1955, p. 118) (also valid for many other well known series as e.g. Chebyshev series
or Neumann series of Bessel functions). He regards the sum of a series:

Sa=) 24Pt (169)
9=0

for which there exists a three-term recursion formula between the functions pﬁ(t):

Bt e p(O+Ep,_ (t)=0 (170)
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The coefficients e, and f}& may be dependent of t as well as on 4.

He proves, that the recursion algorithm:

by —eyby = fyrilyintay

with by,g = b,41= 0, will furnish us with the sum (169), so that
S 1= boPo (t) +y (B (1) + €oPo (1))

after n+1 recursion steps.

In the example above (165), we have f}&:O, e}&:—t and then we get from ‘171)
bz=t 'b;z+1+ a, and S, =bg +by (t+(~t)) = by

as stated above in (166).

By differentiation of the recursion formula (171} and the formula (172) we get

/ / / /
bﬁ,z _eﬁ,bﬁ/+l_e£bﬁ/+l- fﬁ/+lbﬁz+2 _fﬁ,'{'lbﬁﬁ'z ’

b -2f

7 _ 41 i 1,7 1
b;&~—ezb£+1—eb ~2eﬁ,bf1+1_f b ,Q,+8—

7 7
94 +1 L+1 ﬁ,+2”fg,+1 ;z,+1bﬁ,+1

and
S! = Dbl pg (t) +bePo (t) + by (Py (t)+eoPoa(t))

+by (P (H)+e5Po(t)+eopo(t)) and

11 7 17
S, =boPo(t) +boDo (£) +2bgpo (t)+by (Py (£) €oPo (1))

+2b5 (D7 (£)+6 Do (£) +€oDb(t)+hy (Py (£)+e6Po (1) +e4 Ba (1) +2€6 D5 (1))

For the Legendre polynomials we have the well known recursion formula:

P 2041 teP (t t P ()=0
- o fa 4+ — =
72 L+1 AR L+1 7"
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242

Thus, by multiplying (174) with s we get:
2+2 20+1 e ges® ) _ )
s I}+1(0- 741 Ls(s P+ 73 (s B(t) =0, (175)

and thereby in fact a recursion formula for the functions
_J A+l
B0 =s"""By(0),
which then directly can be applied on the series (154)-(156).

The quantities e, and fﬂ, in (170) becomes:

24+1
= stes and 176a
LT (17e2)
1-s®
f,= 951 (176D)

Using (176) and that py(t) =s*P4(t) =s and p, (t) =st, we get:

, 0 20+1 .
%" a1 T (177)
el = (178)
) !
f,= f,'=0 (179)
Po(t) = Po(t) =0 (180)
py(t)=s® and (181)
Py (=0 : | (182)

Then by (177)-(182) and (171)-(173) we get the following recursion formula for the
quantities (154)-(156)(with a, equal to o, 4(T, T), Oy p(Ag, T) or 0y 4 (A8, AZ) *S
respectively):
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b - -ezbz-q-l"f b +a

£ 2+1 L+3 2 (183)
241 (4+1)-s°
S a1 USthya T (4+2) Byiatdy
S, =bgy*s +b1(s2 t-(st)s)=by°s , (184)
1_24+1 20+1, 0 (A1) 2 .y
I S bz+1+ 71 tes bz+1 I S b2+2 ,,,,,
(185) =
2 £ +1)s® =
J2L seb! _ @S B
£+1 £+1 4 (4+2) 4+2
Sn=Dbp s (186)
and finally:
1 24+1 ; 7 fﬁ"*'l{ s® . .
b= 101 S (2bz+1+t bz+1 - (1+2) b£+2, with (187)
Sy=bg + s (188)

We would like to point out, that the recursion formulas (183)-(188) are valid for the
computation of sums of a usual Legendre-series. The formulas can be obtained from
equations (183)-(188) simply by putting s equal to one.

The subroutine presented in the appendix has been used to compute cov:®(Ags, £q),
covi® (Agp,Cq)s COVEY(Le, Lq), €OV, (Mp,Mmg), coVy® (£ ,Cq) and covi (Ce ,Cq) for
spherical distance  varying with 2~ increments from 0° to 25°. The values are
shown in table 11. (The degree-variance model defined by the constants given in
Table 7 has again been used.)

The analytic local covariance functions model discussed above can be used to find
approximations for the empirical determined local covariance functions. Such a
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covariance function (of e.g. point gravity anomalies) differ from a global covariance
function by having another (generally smaller) value for spherical distance § equal
to zero and by having its first zero point occurring for a much smaller spherical
distance. We will denote this distance by ¥, i.e. covy(Ag ,Agy)= 0 for the
spherical distance between P and Q equal to ¥, and all points P and Q with smaller
spherical distance will have a positive covariance,.

Note in Table 11, that the ¥, value is equal to 3°37'. The first zero point for

cove (Agp, Agy) was (cf. Table 9 ) equal to 29°. 1t is a general trend (which can be
verified for the here discussed degree-covariance models by computational
experiments), that the first zero point {; occurs at decreasing { values for in-
creasing order of the local covariance function. Table 12 shows the value of ¥,
for cov}(Ags ,A g ) for various n values. Note in the table, that the first zero
point will occur between §=0 and {=90°/n.

Table 12

The spherical distance of the first zero point (y,) for some
n'th order local covariance functions of gravity anomalies.
The degree-variance model used is given by the constants of Table 7.

Order (n) Uy Order (n) ¥,
20 3°37! 140 35!
40 2° 55! 160 30!
60 1°18’ 180 27!
80 59' 200 25'
100 48" 220 22
120 40" 240 21

By inspecting the graph of an empirically estimates local covariance function it is
generally possible to find it's first zero point. The corresponding order of the local
covariance function can hence be estimated by determining a n greater that 90°/y,
for which the two zero points are as near to each other as possible. The local
covariance function covy (Ag;, Ag,) can then be fitted to the estimated covariance
function by multiplying the degree-variances of the adopted model by the ratio be-
tween the emprical determined variance and the value of covy (2g,Ag) (i. e,

the value for ¢y =0°).
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10. Representation of covariance functions of mean gravity anomalies,

We will in this section regard the covariance function of mean gravity anom-
alies and discuss a representation of these by a certain related point gravity covariance
function.

In section 2 above we described how covariance functions of different kinds of
mean gravity anomalies can be represented by a covariance function of mean gravity
anomaljes, meaned over a spherical cap.

The relation between the degree-variances of this spherical cap mean gravity

covariance function and the degree-variances of the point anomaly covariance is
(cf. equation (11)):

G (88, Ag)= B7 o= B * 0y (Ag, Ag) (189)

where the quantities BJZ are given by equation (12). From this equation we have that

1 1
B'Q,: l_cos¢0 * Z'Q,-}.l [Pﬂ'_l(cosqIO)— %+1(COS¢O)]

1 1
< 1=cosy, © 22+1 * 2

because P, (cosyy) is less than or equal to one for all {,.
Hence (for §,#0):

%_1412. B£= 0.

Therefore it is not necessary to carry out the summation of the series representing
C(P, Q) to the same height degree as for the series representing C(P, Q). The
recursion formula (172) may in this case, be well suited for computation of mean
anomaly covariance values.

Unfortunately, none of the degree-variance models (65)~(69) result in closed
expressions for C(P, Q). But we may get an intuitive feeling of how a possible
representation can be obtained by regarding the graphs of the two point anomaly
covariance functions in Figure 3 and compare these with the graph of the mean
anomaly covariance function in Figure one. The graphs of the mean anomaly co-
variance function will either lie in between or near the graphs of the two point
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anomaly covariance functions. In fact, by varying the height of the points P and
Q, points @; and @z can be found for which the anomaly covariance function
C(Q,,Q,) gives a good approximation to e.g. the 1° x 1° mean anomaly covariance
function. Table 13 gives the mean square variation of the point anomalies for
some values of theheight of Q, (hy,) and Q; (hy,) above the surface ofthe Earth. (The
values have been computed using the subroutine presented in the appendix).

Table 13

Table of the point anomaly variance C(Q,Q,) for different heights th equal to hy_

hy  C(Q Q) hy  CQn,Q)

km mgal® km mgal®

0 1795 80.0 343

2.5 1346 160.. 0 207

5.0 1148 320.0 108
10.0 931 640.0 46
20.0 715 1280.0 i4
40.0 515

The height, hy, corresponding to the value C(P, P)= 915.66 for the 1"x 1° mean
anomaly covariance (Table One) has been estimated tc be 10.4 km.

For the point anomaly covariance functions for points @, and Q, in this height we
have:

o 2 ta o 24+a 2d+e
C@@ = ) o (gp) B0 =) u(m) @Eom) B (190)
g=2 i=2

In using C(Q,,Qg) as a representation for E(P,Q), where P and Q are on the surface
of the Earth, we are approximating

o 2i+a

S o

CBerBe) =) ¢, B(%) B (191)
by %
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i.e. we are approximating
20+4

B, by (R,I?hq )

aﬂ+4‘
In Tabk 14 values of 62 and( Re ) are presented corresponding to the 1°x 17

R, thy

mean anomaly covariance function, The values of BE has been obtained by squaring the
values given in Table B of the appendix.

Table 14
. R 24 +4
Y -] —_ - N~
Values of Bzand( Re"’hq) for hy=10.4 km and {,=0" 564
R 2£,+4 R .3£+4
] 3 8
8 () A .
-] )

2 0.999 0.987 60 0.915 0.817
10 0.997 0.961 70 0.885 0.791
20 0.990 0.931 80 0.853 0.765
30 0.978 0.901 90 0.817 0.741
40 0.961 0.872 100 0.779 0.717
50 0.940 0.844 110 0.738 0.694

Table 14 shows the similarity between the 8} terms and the (R./(R,+ly)) terms for
the specific {, and hy chosen.

Table 15 gives values of (1) the empirical 1 equal area mean gravity anomaly
covariance function as taken from Table one, and designated as cov (Z_gp,fgq )s
(2) the poiat gravity and point height anomaly covariance functions covy (Ang ,
AgZyo) » covm(lops Cop) TOr hy, =hg, =10.4 km and (3) the circular cap, §,=2564)
mean gravity and height anomaly covariance functions covy (Agp, Agy), covy (Cp,
EQ). The subscript M indicates, that we have used the anomaly degree variance
model of table seven, with g,(Ag, Ag)= 7.5 mgal®. The table shows a reasonable
good argument between the empirical determined covariance function and the two
functions covy (Ags, Ag) and covy (Dg,, D&,). We also see, that it is reasonable
to use the point height anomaly covariance function covu(Cq,, Con) for the repre-
sentation of the mean height anomaly.
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Table 15 e -
Values of the empirical 1°x 1° mean gravity anomaly covariance function and related
point and (spherical cap) mean gravity and height anomaly covariance functions.

cov(Bge, Bga)  cova(Bgay, D)  cOV(Bgrs Ag)  cOV(CoysCes)  0W(Cr»Co)

mgal® mgal® mgal? m® m?

0.0  919.7 919.7 848.0 916. 8 926.2

0.5  671.6 698. 2 749. 5 915.9 925. 3

1.0 493.4 530. 9 577. 8 913.7 923.0

1.5  368.2 429.2 455.7 910. 3 919. 5

2.0  285.4 360. 6 377.4 906. 2 915.1

2.5  236.1 310.4 322. 2 901.2 909. 9

3.0  211.4 272.0 280. 7 895.7 904. 2

3.5  200.7 241.5 248.3 889. 5 897.8

4.0  193.4 216.7 222.1 882.9 891. 0

5.0  155.9 178. 5 182.2 868, 2 875. 9

6.0  141.4 150. 3 153.0 851. 8 859, 2

8.0  117.4 111. 3 112.9 815.0 821.7
10.0 96.5 85. 1 86. 2 773.9 779. 8
12.0 74.6 66. 2 66.9 729.2 734.6
14.0 59. 8 51.7 52. 2 681.9 686. 7
16.0 46.0 40,2 40.6 632.5 636. &
18.0 37.0 30.9 31.1 581.7 585. 5
20. 0 29.3 23.1 23,2 530. 1 533. 4
22.0 21.6 16. 5 16.5 478.0 480. 8
24. 0 11.8 10.9 10.9 425.9 428.3
26.0 6.6 6.1 6.0 374.2 376, 2
28.0 0.5 2.0 1.9 323. 3 324, 9
30,0 -3.3 1.6 1.7 273. 6 274. 8
35.0  -12.7 -8.3 8.6 156.0 156. 4
4.0  -15.4 12,7 -12.9 51.2 50.9
45.0  -11.9 ~15.1 _15.4 -38.0 -38. 8
50.0  -17.9 -16.0 -16. 3 -109.9 ~111.0
55.0  -17.4 -15.7 -15.9 -163.6 -164.9
60.0  -12.5 -14.3 -14.5 -199.4 -200. 8
65.0 9.1 -12.3 -12.4 -218. 0 -219. 4
70.0 -8.8 9.7 ~9.8 -921.2 -922.5
75.0 6.1 -6.9 -6.9 -210.9 -212.0
80.0 5.9 -3.9 -3.9 ~189.6 ~190. 5
85. 0 6.0 -1.1 -1.1 ~160. 0 ~160.6
90. 0 -1.8 1.6 1.6 ~124.7 ~125.1
95. 0 1.5 3.8 3.9 -86.5 -86.6
100. 0 8.0 5.6 5.7 -47.7 ~47.6
105.0 9.4 6.8 6.9 -10.5 -10.2
110. 0 9.2 7.5 7.6 23,2 23.7
115.0 10.5 7.6 7.7 54.8 52.8
120. 0 7.0 7.1 7.2 75. 4 76.1
125.0 5.6 4.6 6.2 93.9 93.2
130. 0 10. 8 0.8 4.7 103. 4 104. 0
135. 0 8.8 -3.6 2.9 108. 5 109. 1
140. 0 1.8 5.9 0.8 108. 6 109.1
150.0 6.7 7.6 -3.7 97.5 97.6
160.0 6.1 9.2 7.7 79.6 79.5
170.0  -17.2 -10.4 -10.5 64,2 63.9
180.0  -72.8 -11.3 -11.5 58.3 57.9




Using the 5° equal area mean gravity anomalies estimated from the 1° x 1°
anomalies used for the empirical covariance functions given in section 3, and with
the procedures described by Rapp (1972) we have computed empirical covariance
values using equation (4). The values are shown as plusses in Figure 10. This
covariance function can be represented by a spherical cap mean anomaly covariance
function with y, = 2.° 821 (cf. section 2). Values are shown in Figure 10 as small
circles as computed from equation (11) with the anomaly degree variance model 4

with o5 (Ag, Ag) =7. 5and the summation taken to n= 144, For a height of 98. 45 km
the point anomaly variances becomes equal to the variance of the 5°x5° equal area

mean gravity anomalies, 298.3 mgal®. The graph of this covariance function is
shown as a solid line in Figure 10 as well. Again, we can observe a good agree-
ment between the different covariance function.

74



400

300

200

100

& mgal

Figure 10

Graph of point gravity covariance function

cov(Agyss L8y,) for hy, = hy, = 98. 45km.

Empirical determined 5”x 5° mean gravity
anomaly covariance values.

Spherical cap mean anomaly covariance
values for {, = 2°.821.




11, Summary and Conclusion

Least squares collocation is a method of estimating various gravimetric depen-
dent quantities through knowledge of the covariances between such quantities. This
report has developed a new model for anomaly degree variances from which covariances
for various quantities can be derived with closed formulas, Thus, these covariances
between anomalies, height anomalies or (geoid undulations), deflections, etc., are
all self-consistent since they are derived from a single starting point, an anomaly
degree variance model.

The covariances implied by the results of this report are basically global
in nature, This arises from the manner in which the anomaly degree variance
model was developed where consideration was given to low degree information concern-
ing the earth's gravitational field, and the global variances of point 1° and 5~ gravity
anomalies. It is shown, however, in Section 7 how the global covariance functions
can be easily modified to obtain local covariance functions. In addition, mean covari-
ance functions can reasonably be approximated by the point covariance functions
evaluated for certain heights above the surface of the earth as explained in Section 9.

Although several anomaly degree variance models and their corresponding
covariance functions are discussed, the model recommended was Model 4, defined
by equation (25A) and the constants of Table Seven. Numerical results from this
model are reported in the text as computed from a computer program utilizing sub-
routine COVA given as a Fortran program in the appendix. This latter program may
be used to evaluate needed covariances to be used in any applications of least squares
collocation involving anomalies, height anomalies, and deflections of the vertical.
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Appendices

Appendix A - Table A - Original 1° Covariance Results

Appendix B - Table B - Anomaly Degree Variances from the Modified
1° Covariance Function

Appendix C - Computer Program for subroutine COVA.
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Number of

Product Pairs

21828,
67757.0
109192.0
156505.0
231698,0
255476.0
316123.0
352844,0
410614.0
462226.0
488882.0
541557.0
579519.0
630360.0
664455,0
702812.0
755997,0
787650.0
B26509.0
860109.0
903486, 0
939201.0
975421.0
1015701.0
1042704.0
1092474,0
1114590.0
1156002.0
1179137.0
1218563.,0
1250747.0
1273942.0
1310993.0
1348712.0
1367757.0
1398827,0
1418730.0
1450340,0
1477700.0
1504202.0
1523277.0
1558690.0
1574082.0
1596818.0
1628569.0
1653239.0
1680734.0
1686870.0
1726841.,0
1741001.0

4}0
0.0
l.164
2,101
3.049
4.046
5.060
6.038
7.027
8.022
9.031

10.033
11.022
12.019
13.019
14,019
15.016
16.016
17.021
18.020
19.017
20.015
21.013
22.012
23.012
24.010
25.011
26,012
27,014
28,012
29.011
30.012
31.010
32,007
33.010
34,012
35.011
36.010
37.008
38.009
39.010
40.008
41.009
42.008
43.006
44,005
45,006
46,009
47.008
48.007
49,007

Table A

C(¥)

(mgal)®

996, 66
523,91
349,25
285,34
266.68
227.34
212.10
193.81
184,37
179.38
157.95
149.53
130,63
124,89
109.62
96.16
89,68
82.13
74.36
67.34
60.76
54,93
47,43
41,32
32.62
26.11
23.12
17.58
13.35
9.12
b. 69
2.96
1. 64
-0.51
-4.50
-7.22
-9.18
-9.94
-11.54
-10.81
-10.19
-10.18
-8.15
-8.61
-9,50
-11.61
-12.45
-13,82

~13.93.
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Original 1° Covariance Results

Number of

Product Pairs

1764605.0
1786245,.,0
1806095.0
1826864.0
1844149,0
1868090.0
1887521.0
1914884,0
1916381.0
1946611.0
1961243.,0
1975934,0
1990242.0
2009601.0
2026129.0
2027477.0
2050882.0
2051483,0
2071575.0
2079142,0
2077609.0
2094994.0
2105922.0
2101952.0
2105738,0
2102632.0
2116443,0
2110570.0
2115762.0
211775640
2113185,0
2117032.0
2105401.,0
2103280.0
2107743,0
2102737.0
2087672.0
2084487,0
2085244.0
2071837.0
2045875,0
2055334.0
2047715.0
2033495,0
2015615.0
2013437.0
2004502.0
1980606.0
1968387.0
1961354.0

qJO
50.006
51.005
52.005
53,005
54,004
55.003
56,003
57.005
58.005
59.004
60.005
61.005
62.003
63,003
64,004
65,003
66,002
67.001
(380 001
69.002
70.001
70.999
72.001
73.003
T4.002
75.001
16.000
77.000
17.999
784999
79.999
81.000
82,000
82.998
83.997
85.000
85,999
86.998
87.999
89.001

89,998

90.995
91,998
92,998
93.997
94,996
95.998
96.999
97.997
98,996

Cw)
(mgal)®

-17.40
"18007
-19.560
-20.37
-19.,37
-19.95
-20.25
-20.,02
~-18.34
-17.93
-18.71
-19.37
-18.59
-17.64
-18.51
-18.87
-19.63
-19.39
~-20.23
-21.42
-21.16
—-21.45
-22.20
-21.10
-~19.75
-20.06
-21.50
-21.97
-22.09
-20.67
-20.75
-20.98
-22.20
-21.60
-21.02
~21.26
-19.37
-18,26
~-17.64
-17.47
-16.56
-16.23
-14.73
-14,07
-12.31
-11.32

-9.30

-7.56

-5.72

-3.04



1948486.0
1934609.0
1920081.0
1900164,.0
1893305.0
1868003.0
1855030.0
1840927.0
1829592.0
1812532.0
1785540.0
1777238.0
1763249.0
1733448,0
1725795.0
1694670.0
1689370, 0
1667306.0
1643495,0
1625432.,0
1611598.0
1592001.0
1562632.0
1556133,0
1529283,0
1507415.0
1481503.0
1461365.0
1437710.,0
1416123.0
1390757.0
1365957.0
1348160.0
1312392.0
1299511.0
1268704.0
1242453,0
1210273.0
1182173.0
1163148.0
1128817.0
1105977.90
1077246.0
1048226.0
1014710.0
992000.0
960402.0
939550.0
306160.0
873340.,0

99,997
100.998
101,998
102.997
103.997
14,996
105,995
1G6.994
107.996
108.998
109,997
110,995
111.997
112.997
113.996
114.994
115,993
116,995
117.395
118.993
119.993
120,994
121.993
122,993
123.995
124.995
125.994
126,993
127.993
128,993
129,992
130.991
131.991
132.9990
133.990
134,992
135,993
136.992
137.990
138,989
139.990
140.988
141.990
142,991
143.988
144,987
145,986
146,989
147,991
148.988

-0.60
0.99
4,39
4,85
6.68
7.21
6,92
665

10.10

12.34

14.40

16,23

18.94

20.09

20436

22.09

21.49

22.06

21.43

20.82
21.89
23.02
22.46
20.39
19.34
20.00
18,47
18.46
18,96
20.20
21.32
19.60
16.58
14.76
15.17
14.09
12.43
7.48
6.10
4,28
2.79
0.51
0.04
=047
-1.77
-2.86
—-4,64
-6,20
-7.25
-7.19

81

852904.0
822165.0
789927.,0
769423,0
736964,0
717976.0
681178,0
657584,0
627832,0
600252.0
571041.0
538097.0
513528.0
485066.0
463013.0
427031.0
400307,0
376038,0
342830.0
316084,.0
282284.0
263998,0
234373,0
197286,0
174514.,0
138568,0
122845,0
84807,0
55162.0
31636.0
4922.0

149,987
150.989
151.987
152.985
153,986
154.987
155.988
156.987
157,987
158.987
159.986
160,983
161,980
162.978
163,984
164,984
165,982
166.983
167,983

-168.980

169,969
170969
171.980
172.976
173,965
174,944
175,952
176.959
177,912
178.836
179.854

-7.80
-4,83
-44,22
4,52
-4,96
~7.27
-5.12
~-5,01
1)
-7.10
~be (4
-H3.25
-12.24
~-12.73
-17.85
~17.72
-17.77
-19.51
-17.32
~-18.81
~23.79
-27.46
-28.,13
~-36.,25
~4(0411
-40.99
-44,19
-51.04
=64,50
-H7.54
-66.82
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Anomaly Degree Variances From The Modified 1

S42+2)

1.00077
1.00115
1.00153
1.00192
1.00230
1.00269
1.00307
1.00345
1.00384
1.00422
1.00461
1. 00499
1.00538
1.00576
1.00615
1.00653
1.00692
1.00730
1.00769
1.00808
1.00846
1.00885
1.00924
1.00962
1.01001
1.01040
1.01078
1.01117
1.01156
1.01195
1.01233
1.01272
1.01311
1.01350
1.01389
1.01427
1.01466
1.01505
1.01544
1.01583
1.01622
1.01661
1.01700
1.01739
1.01778
1.01817
1.01856
1.01895
1.01934
1.01973

B,

1.00000
0.99993
0.99993
0.99985
0.99976
0.99964
0.99949
0.9993°2
0.99913
0.99891
0.99867
0.99840
0.99811
0.99780
0.99746
0.99710
0.99671
0.99630
0.99586
0.99540
0.99492
0.99441
0.99388
0099333
0.99275
0.99215
0.99152
0.99087
0.99020
0.98950
0.98878
0.98803
0.98726
0.98647
0.98566
0.98482
0.98395
0.98307
0.98216
0.98122
0.98027
0.97929
0.97828
097726
0.97621
0.,97514
0.97404
0.97292
0.97178
0.97062

* from equation (16A)

C%* Ck*
(ngal®) (mgal®)
0.07 0.07
0.02 0.02
T.54 T.56
33,88 33,95
19.17 19.23
21.57 21.64%
18,87 18,95
18.77 18,86
10,42 10.48
11.05 11.12
11.43 11,51
14,10 14.22
3,12 3.15
9.47 9.56
5.76 5.82
7.58 T.67
9.93 10,07
8. 63 B, 76
B.,26 8640
T.67 7«80
l.16 l1.18
5.81 5«92
4,47 4,56
5093 6,06
6.19 6,34
9.24 9,49
1.96 2.02
4,73 4487
44,17 44,30
4,98 5.15
3,89 4,02
4,82 5,00
7.78 8.09
6.90 7.19
5.89 6,15
Te63 7.98
642 6,73
4,56 4,79
7«39 T 77
5. 64 595
5.41 5.72
545 5.78
6.46 6.87
5.01 5e34
5.56 5.93
Te54 8.08
2.81 3,02
5.78 be22
.64 3,93
5.51 5.96

+ Zrom equation (16) with s=1

Table B
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50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

¢ (4+2)

1.02012
1.02051
1.02090
1.02129
1.02168
1.02208
1.02247
1.02286
1.02325
1.02364
1.02403
1.02443
1.02482
1.02521
1.02561
1.02600

- 1.02639

1.02678
1.02718
1.02757
1.02797
1.02836
1.02875
1.02915
1.02954
1.02994
1.03033
1. 03073
1.03112
1.03152
1.03191
1.03231
1.03270
1.03310
1.03349
1.03389
1.03429
1.03468
1.03508
1.03547
1.03587
1.03627
1.03667
1.03706
1.03746
1.03786
1.03825
1.03865
1.03905
1.03945

B,

0.96943
0.96822
0.96699
0.96573
0.96446
0.96316
N0.96183
0.96049
0.95912
0.95773
0.95632
0.95489
0.95343
0.95195
0.95045
0.94893
0.94739
0.94582
0.94424
094263
094100
0.93935
0.93767
0. 93598
0.93427
0.93253
093077
0.92900
0.92720
0.92538
0.92354
0.92168
0.91980
0.,91790
0.91598
091403
0.91207
0.91009
0.90809
0.90607
0.90403
0.90197
0.89989
0.89779
0.89567
0.89353
0.89137
0.88920
0.88700

0.88479

°Covariance Function

(mgal®) (mgal®)
5.61 6,09
3.48 3,79
4,03 4,40
5.72 6427
4,00 4,39
4.65 5,12
4,15 4,59
44,34  4,.R1
5011 9468
5,46 6,09
2.88 3,2%
3.94 4,42
3,83 4,37
3.83 4,34
belb 4469
2.51 2.86
5,02 H.74
4,66 5.35
4,75 5,48
4,91 5,68
2.11  2.45
3.22 3.15
3.98 4,66
4,01 4.71
4,72 5.57
4,37 5418
2.77 3.79
4,88 5,33
4,12 4,94
3,01 3.63
6.36 T.70
3.93 4,77
5.17 6.31
5.42 6465
.44 4,24
4,80 5,94
6.24 TJ76
5,12 £.39
4,80 be 03
3,68 4,55
4e63 5,87
4,18 5,32
4,95 6,54
2.92 3.76
3.39 4,348
2,06 2.57
4,17 B.44
2.56 3,36
4,72 6,24
2.78 3.69



100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
1156
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

1.03985
1.04025
1.04064
1.04104
1.04144
1.0418¢4
1.04224
1.04264
1.04304
l. 04344
1.04384
1.04424
1.04464
1. 04504
1.04544
l. 04584
1.04624
1.04664
1.04704
1.04744
1.0478¢4
1.04825
1.04865
1.04905
1.04945
1.04985
1.05026
1.,05066
1.05106
l1.05146
1.051R7
1.05227
1.05267
1.05308
1.05348
1.05388
1.05429
1. 05469
1.05509
1.05550
1.05590

0.88255
0.38030
0.87803
0.87575
0.87344
D.87111
0.86877
0,86641
0.86403
0.86164
0.85922
0eB5H6T79
0.85434
0.85188
N.84939
O« R4690
0.84438
0.84184
0.83929
0.83673
0.83414
0.R3154
N.82893
0.82630
0.82365
0.82099
0.81831
0.81561
0.81290
0.81017
0.80743
0.80468
0.80191
0.79912
0.79632
0. 79351
0.79068
0.78783
0.78498
0.78210
0.77922
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3.81
2.58
3.31
2.86
3.62
2.00
3.47
3.08
3.27
3.19
3.27
3.06
4,21
3.55
2.47
2031
3.04
278
216
2.91
1.76
2.73
1.95
1.62
2.59
l1.48
2.73
1.92
2.94
l1.22
2.70
1.75
2.98
1.90
2.79
l1.62
1.05
1.16
2.49
0.90
1.15

5.09
3.46
4,7
3.39
4,95
2¢ T4
4,79
Ge27
4,58
4048
4,62
4,35
6412
5.12
3458
3.37
4,46
4,10
3.21
4,36
2.06
4413
2.98
2 e 49
4,00
2¢31
44,28
3.03
4,68
1.96
4436
284
4,87
3.13
4463
2«71
1.77
1.98
4,26
1.55
2.00




Appendix - Subroutine COVA

A subroutine COVA for the computation of the covariance of and between
height anomalies, gravity anomalies and the longitudinal and transveral components
of the deflections of the vertical is reproduced below.

The FORTRAN IV language of the IBM 360/370 system has been used.

The subroutine can only be used for the computation of covariances
corresponding to the degree-variance model given by equation (68).

By the execution of a DATA statement, the quantities s, A and B become
equal to the values given in Table Seven. It is only necessary to change the values
given in the DATA statement to obtain the covariances corresponding to a degree-
variance model with other values of s,A and B. The subroutine can be used to
compute covariance values corresponding to both a local n'th order covariance
function and to a covariance funct:on, which has some of the degree-variances
equal to empirical determined values.

The comments given in connection with the Fortran statements of the
subroutine should give all details necessary for the appiication of the subroutine.
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SUBROUTINE COVA(EPS,N1)}

THE SUBROUTINE COMPUTES ONE OF SEVEN DIFFERENT COVARIANCES (SEE BE-
LOW),y USING THE ANOMALY DEGREE-VARIANCE MODEL GIVEN THROUGH THE VAL-
UES OF TABLE SEVEN AND EQUATION (68).(THE QUANTITY S IN THE TABLE IS
HERE CALLED SE).

THERE ARE THREE ENTRIES TO THE SUBROUTINE, WHICH HAVE TO BE CALLED IN
THE SEQUENCE COVA,COVB AND COVC.

BY THE CALL OF COVA, THE KIND OF COVARIANCE FUNCTION TO BE USED IS

DETERMINED, THERE ARE THREE POSSIBILITIES:

(1) THE COVARIANCE MODEL FOUR (EQUATIONS (130)=(132) AND (136)-(139})
IS USED WITHOUT MODIFICATIONS. IN THIS CASE EPS WILL BE A DUMMY
ARRAY AND N1 MUST BE EQUAL TO ONE.

THE LOGICAL VARIABLE MODEL WILL GET THE VALUE TRUE IN THIS CASE.

(2) A NUMBER (N1} OF THE ANOMALY DEGREE-VARIANCES (DEGREE ZERO TO
N1-1) ARE PUT EQUAL TO EMPIRICAL DETERMINED DEGREE-VARIANCES.,
THE DEGREE=VARIANCE OF DEGREE K WILL HAVE TO BE STORED IN
EPS(K+1) (IN UNITS OF MGAL=%%*2),

{3) THE DEGREE-VARIANCES OF DEGREE ZERO TO N = N1-1 ARE PUT EQUAL TO
ZERO, ( AND THE OTHERS ARE THE SAME AS ABOVE DESCRIBED). THIS MEANS
THAT AN N'TH ORDER LOCAL COVARIANCE FUNCTION WILL BE COMPUTED. IN
THIS CASE EPS MUST HAVE N1 ZERO VALUES STORED. v

IN ALL CASES N1 MUST BE LESS THAN 300 AND EPS MUST HAVE DIMENSION

N1l.

IMPLICIT REAL *8(A-H,0-1)

LOGICAL MODEL,NOTD,NOTDD

DIMENSION EPSC(300),EPS(1)

DATA RE,GM,A,SE,B,1Bl,1B2, IBM1,EPSC(1),EPSC(2),D0,01,D2,D3,D%,
*D5,RADSEC/6371,003,3,98D14,425,28D0,0.999617D0,24.0D0,25,26,423,
#*3%0,0D0y140D0,2.0D04340D054%4.00D041.0055206264,806D0/

IBl2 = IB1*IB2

RADSEZ2 = RADSEC#?2

RE2 = REx*RE

RBJ2 = REZ*SE

RBJ = DSQRT(RBJ2)

AM = A/DS5

AMZ = AM/D5

A IS IN UNITS OF MGAL**2, AM IN UNITS OF MGAL*M/SEC AND AMZ IN

UNITS OF (M/SEC)=x%2, RBJ IS THE RADIUS OF THE BJERHAMMAR-SPHERE.,

MODEL = Nl.EQ.1

IF (MODEL) GO TO 20

WE WILL NOW COMPUTE THE MODIFIED (POTENTIAL) DEGREE-VARIANCES, CF.
EQUATION (151)a

IF (Nl1.LT.3) GO TO 20

DO 10 I = 3, N1

RI = DOFLOAT(I-1)

IF (T+EQe3) EPS(3)
10 IF (1.GT.3) EPS(I)

* RBUZ2*(EPS(T)/({RI=-D1)*%2)%1,0D-10~AM2/((RI-D1)*(RI=D2)*(RI+B)))

20 RETURN

EPS(3)%RBJ2%1.0D~-10
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ENTRY COVB(KTYPE)
BY THE CALL OF COVB, THE TYPE OF COVARIANCE TO BE COMPUTED IS DETER-

VALUE OF KTYPE, SO THAT WE GET THE COVARIANCE BETWEEN:

MINED BY THE

THE GRAVITY ANOMALY AT P AND THE GRAVITY ANOMALY AT Q

THE -

THE -

FOR KTYPE=1,

- - = = THE LONGITUDIONAL COMPONENT
OF THE DEFLECTION OF THE VERTICAL AT Q FOR KTYPE=2,

- AT P AND THE HEIGHT ANOMALY AT Q

FOR KTYPE=3,

THE LONGITUDIONAL COMPONENT OF THE DEFLECTION OF THE VERTI-
CAL AT P AND THE SAME TYPE OF QUANTITY AT O FOR KTYPE=4,
THE TRANSVERSAL COMPONENT OF THE DEFLECTION OF THE VERTI=

CAL AT P AND THE SAME TYPE OF QUANTITY AT

Q@ FOR KTYPE=5,

THE LONGITUDIONAL COMPONENT OF THE DEFLECTION OF THE VERTI-
CAL AT P AND THE HEIGHT ANOMALY AT Q@ FOR KTYPE=6,
AND THE HEIGHT ANOMALY AT P AND THE HEIGHT ANOMALY AT Q FOR KTYPRE=T.

THE VALUE OF KTYPE WILL THEN ALSO DETERMINE WHICH OF THE COEFFICIENTS

{(151)-(153), THAT WE WILL USE IN THE EVALUATION OF THE
AND Whether NO
TIMES WITH RESPECT TO

TIATION TWQ

LEGENDRE-SERIES

DIFFERENTIATION, DIFFERENTIATION ONE TIME OR DIFFEREN-

THE VARIABLE T TAKES PLACE, TWO

LOGICAL VARIABLES NOTD AND NOTDDL ARE USED TO DISTINGUISH BETWEEN THE

SITUATIONS,

IF (MODEL)
IF (KTYPE.
IF (KTYPE,
IF (KTYPE.
DO 30 I =
30 EPSCI(I) =

(§)
(%]

GO TO 35

EQ.1) IP = 2

EQ.2.0R KTYPEL.ENL.3) 1P =
6GT.3) IP =0

3y, NI
EPS(IN*((I-2)%D5/RBJ)*x]P

NOTDD = KTYPE.NE.S.AND.KTYPENE. 4

RETURN

ENTRY COVC(PSI,HP,HQ,COV)

BY THE CALL
POINTS P AND

tARTH. THE COVARIANCE

PRODUCTS OF MGAL, METERS AND ARCSECONDS.
T = DCOS(PSI)
U = DSIN(PSI)
T2 = T*T
Uz = U=y
RP = RE+HP
RO = RE+HQ
S = RBJZ2/(RP*RQ)
S2 = S%§
§S3 = S2*S§
TS = T%S
P2 = (D3%T2-D1)/D2
GP = GM/(RP%XRP)
GO =

M B
GM/ (RQ*RQ) 86

1

NOTD = KTYPE.EQ.1.0R.KTYPE.EQ.3.0R.KTYPF.EQ.7

(RADTANS)

0F COVC THE COVARIANCE OF TYPE KTYPE WILL BE COMPUTED FOR
0 HAVING SPHERICAL DISTANCE
THE HEIGHT OF P ABUVE THE EARTH AND HQ THE HEIGHT 0F Q
WILL BE RETURNED BY THE VARIABLE COV. UNITS ARE

PST, WHERE HP IS

ABOVE THE
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THE QUANTITIES L.M AND N ODEFINED IN EQ,(75) ARE HERE CALLED SL,SM
AND SNe Lxx2 = SL2,
SL2 = D1+S2-D2%TS

SL = DSQRT(SL2)

SL3 = SL2x%xSL

SN = D1-TS+SL

SM = D1-TS-S5L

SLN = SL*SN

SLNL = —-DLOG(SN/D2)

WHEN WE ARE COMPUTING A LOCAL N'TH ORDER COVARIANCE OR A COVARIANCE
FROM A GLOBAL MODEL WITH EMPIRICAL DEGREE-VARIANCES UP TO AND INCLU-
SIVE DEGREE N, WE WILL HAVE TUO COMPUTE THE SUM (154), THE SUM (155)
(WHEN NOTD IS FALSE) AND THE SUM (156) (WHEN NOTDD IS FALSE). (154)
WILL BE ACCUMMULATED IN BO, (155) IN D8O AND (156) IN DDBO.,

WHEN THE VARTABLE MODEL IS TRUE, BO, DBO AND 0ODBO WILL BE PUT EQUAL

TD ZERG.

BO = DO

D8O = DO

pDOBO = DO

IF (MODEL) GO TO 45
Bl = DO

bDB1I = DO

DDBY = DO

Ll = N1

RL1= DFLOAT(L1)

WE WILL NOW USE THE RECURSION FORMULAE (183),(185) AND (186), WHERE
THE TERM (176A) DIVIDED BY T IS CALLED EL AND FL1 IS THE TERM (176B)
FOR SUBSCRIPT L+1.

DO 40 I = 1, N1

EL = (D2%RL:I-D1)*S/RL1

FL1 = -RL1%52/(RL1+D1)
RL1 = RL1-D1

B2 Bl

B1 B0

BO = B1*EL*T+B2*FL1+EPSC(L1)
(

IF (NOTD) GO TO 40

DB2 = DBl

DB1 = DBO

DBO = EL*(DB1*T+B1l)+FL1%DB2

IF (NOTDD) GO TO 40

DDB2 = DDB1

bDDB1 = DDBRO

DDBO = EL*(DB1*D2+DDB1*T)+FL1%xDDB2

40 L1 = L1-1
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COMPUTATION OF CLOSED EXPRESSIONS. FIRST SOME AUXTLLIARY QUANTITIES.
FM1 IS THFE QUANTITY (86), FM2 IS (87), F1 IS (99) AND F2 IS (100)

4% DPL = D1+SL
DML = D1-SL
P31 = D3%TS+D1
BO = BO*S
FM1 = S%(SM+TS*SLNL)
FM2 = Sk (SMkxP31/D2+S2%(P2%SLNL+U2/D4))
F1 DLOG(D1+D2*S/({D1-S+SL))

F2 = {(SL-D1+T%F1)/S
IF (NOTD) GO TO 48

DBO = DBO*S
NDEM1 IS THE QUANTITY (90), DFM2 IS (92), DF1 IS (101) AND DF2 IS

(103).
DFM1 = S2% (DML/SL+SLNL+TS*(D1/SLN+D1/SN))
DEM2 = S2%((P31/SL+D2-7.000%TS=-D3%SL)/D2+S*(D3*T*SLNL

x +S%P2%xDPL/SLN)Y)

DF1 = S2/SLN
DF2 = =D1/SL+TS/SLN+F1/S
DL =-S/SL

IF (NOTDD) GO TO 48

DDBO = DDBO*S
DDFM1 IS THE QUANTITY (91), DDFM2 IS (93), DDF1 IS (102) AND DDF2 I5
(104).
DOFMI1

S3%(D1/SL3+D2%DPL/SLN+TS*(D1/(SL3%SN)+(DPL/SLN)*%2))

DDFM2 S3% ((6.0DO/SL+P31/SL3-7.0D0)/02+D3%SLNL+6.0DO*TS*DPL/SLN
* +P2%S2a ((DPL/SLN)®%2+D1/(SL3%SN) ) )

DOF1 S3%(DPL/SLN*x%2+D1/{SN*SL3})

DDF2 {-S2/SL3+D2%DF1+T=DDF1)/S

pDOL = -S2/SL3
WE CAN NOW USE THE RECURSION FORMULAE (96), (97) AND (98) FOR THE
COMPUTATION OF THE QUANTITY (73) CALLED FB AND ITS DERIVATIVES DFB
AND DDFB.

Hou

48 DO 50 I = 2, IBM1
RI = DFLOAT(I)
D12 = D2%RI-D1

DIl (RI=-D1)/S

FB = (SL+DI2%T=F2-DI1%F1)/(RI*S)

F1 = F2

F2 = FB

IF (NQTD) GO TO 50

DFB = (DL+DI2*(F1+T*DF2)=DI1%DF1)/(RI%S)
DF1 = DF?2 '

DF2 = DFB

IF (NOTDD) GO TO 50

DDFB = (DDL+DI2%(D2%=DF1+T%DDF2)-DI1*DDF1)/(RI*S)
DDF1 = DDF2
DDF2 = DDFB

50 CONTINUE 88
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IF (NOTD.ORJKTYPE.EQ.2) GO TO 60
FROM (133) WE HAVE:

DK = DBO+AM2%RBJ2%( IB1%DFM2~1B2% (DFM1=D3%T%S3)+DFR-52/1B1-D3%S3%T/
* 182) /1812 :
60 GO TO (61,62,63,64,65,66,67),KTYPE
EQUATION (132) AND (146) GIVES:
61 COV = S*RO+A¥S*(IBL*(FB-S/B~S2%T/1B1-S3%P2/1B2)+FM2)/1B2
GO TO 70 _
EQUATION (139) AND (150) GIVES:
62 COV = Ux(DBO%*RBJ/(RP%RQ)+AMxSH(DFM2-DFB+S2/1B1+D3%S3%T/182)/1B2)/
* GO*RADSEC
G0 TO 70
EQUATION (131) AND (145) GIVES:
63 COV = (BOXRBJ+AM¥RBJ2%({FM2-FR+S/B+52%T/IB1+S3%P2/1B2)/1B2)/
% (RP%GO) :
G0 TO 70
EQUATION (136) AND (147) GIVES:
64 COV = (T*DK/(RP*RQ)=U2%(DDBO/(RP*RO)+AM2%SH{ IB1*ODFM2~1R2%( DDEM1
*  ~D3%53)+DDFB-N3%S3/182)/1B12))%RADSE2/(GP*GO)
G0 TO 70
EQUATION (137) AND (148) GIVES:
65 COV = DK/{RP*RQ%*GP*GO)*RADSE2
GO TO 70
EQUATION (138) AND (149) GIVES:
66 COV = U%DK/(GP%GO%RP)*RADSEC
GD TO 70

AND EQUATION (37),

(130} AND (144) GIVES:

67 COV = (BO+AM2%RBJIZ2#*(IBL*FM2-1B2%(FM1-S3%P2)J4+FB~-S/B=S2%T/IB1~-S3x%P2
* /1B2)/1IB12)1/{GP=GQ)
70 RETURN
END
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