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Abstract

The theory of sequential |east squares collocation, as applied to the
determination of an approximation T to the anomalous potential o the Earth T,
and to the prediction and filtering of quantities related ina linear manner to T,
is developed.

The practical implementation of the theory in the form d a FORTRAN
IV program is presented, and detailed instructions for the use o this program
are given.

The program requires the specification of (1)a covariance function
o the gravity anomalies and (2) a set of observed quantities (with known stan-
dard deviations).

The covariance function is required to be isotropic. It is specified
by a set of empirical anomaly degree-variances all of degree |l ess than or
equal to an integer | and by selecting the anomaly degree-variances of degree
greater than | according to one of three possible degree-variance models. The
observations may be potential coefficients, mean or point gravity anomalies,
height anomalies or deflections of the vertical. A filtering o the observations
will take place simultaneously with the determination of T.

The program may be used for the prediction of height anomalies,
gravity anomalies and deflections of the vertical. Estimates of the standard
error o the predicted quantities may be obtained as well.

The observations may be given in a local geodetic reference system.
In this case parameters for a datum shift to a geocentric reference system
must be specified. The predictions will be given in both the local and the geo-
centric reference system.

T may be computed stepwise, i.e. the observations may be divided
in up to three groups. (Thelimit of three is only attained when potential
coefficients are observed, in which case these quantities will form the first set
o observations.) Each set of observations will determine a harmonic function
and Twill be equal to the sum o these functions.

The function ?’determined by the program will be a (global or local)

solution to the problem of Bjerhammar, i.e., it will be harmonic outside a
sphere enclosed in the Earth, and it will agree with the filtered observations.
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1. Introduction.

The theory of least squares collocation has been discussed extensively by
Krarup (1969), Moritz (1972, 1973), Lauritzen (1973), Grafarend (1973)and
Tscherning (1973). Collocation was originally introduced by Krarup (1969) as a
method for the determination of the anomalous potential using different kinds of
observations. Primarily Moritz (1972) has extended the theory to a wider field.
This report will only consider the use of |east squares collocation for the deter-
mination of the anomalous potential, T and the estimation of quantities dependent
on T,

We will regard the problem of the determination of T as being equivalent
to the solution of the Bjerhammar-problem, i.e. the determination of a function,
harmonic outside a sphere totally enclosed in the Earth and regular at infinity,
which agrees with observed values of e. g. gravity anomalies and deflections of
the vertical.

It is not required, that the observations and the solution agree exactly.
The observations will contain a certain amount of "noise™, the magnitude of which
is specified by an estimated standard error.

L east squares collocation will filter out some of this noise, and the
solution will agree exactly with the filtered observations.

Having determined a solution, ?, to the Bjerhammar problem, this
function can naturally he used to compute geoid heights (or more correctly,
height anomalies), gravity anomalies or deflections of the vertical in points in
the set of harmonicity. Hence, by solving the Bjerhammar problem, we have
implicitly also solved e. g. the problems of interpolation or extrapolation (pre-
diction) of gravity anomalies or deflections and the problem of astrogeodetic or
astrogravimetric geoid computation.

An Algol-program, which used this approach was published in Tscherning
(1972). The program could only handle a very limited amount of observations.
In the FORTRAN 1V program presented in this report, we have taken advantage
of the availability of a computer (IBM System 370), which has large core storage
and fast peripherial units (disks), so that very large amounts of data can be
treated. Thus, the use of FORTRAN IV, which does not have variable dimension-
ing of arrays, has required that certain (arbitrary)limits have been put on e.g.
the number of observations, which the program can handle.



In section 2 we will present the basic equations o |east squares collocation as
applied to the Bjerhammar problem. We will also discuss the method of step-
wise collocation, which differs somewhat from the p ocedure described by
Moritz (1973). All the observed quantities must be in the same reference system.
This requirement is discussed in section 3. The main lines o function o the
FORTRAN IV program is described in section 4. The most important details
are given in the following section, which especially discusses the subprograms
used. Input and output options are described in sections G and 7 respectively,
and the final section 8 contains some recommendations and conclusions. The
FORTRAN program, an input and an output example are contained in an ap-
pendix.
r

References ar e given by author name and year, with one exception:
Heiskanen and Moritz, Physical Geodesy, will be referenced only by PG,
because references to this book occur frequently.



2, The Basic Equations

There are two ways o approach to least squares collocation. A mathe-
matical (functional analytic) and a statistical. The mathematical approach is the
most well founded and without dark spots. But itsappreciation requires a math-
matical background, which not yet is common among geodesists. The statistical
approach is with a first glance less difficultand gives a sufficient insight. This
means, that a geodesist, well educated in the theory and application o |east
squares adjustment, will be able to use the method.

We will, without hereby having questioned the intellectual ability o the
reader, use the statistical approach in the following presentation o the basic
equations o least squares collocation.

2.1 L east sauares collocation.

Let us suppose, that T is an element d a sample space H o functions
harmonic outside a sphere totally enclosed in the Earth. We will denote the
probability measure of H by ¢, Let the random variables Y» be the mappings,
which relate a function in H to the value o the function in the point P, i.e.

Y (T)=T(P). The variables Y, will then form a stochastic process with the
set o harmonicity as index set (provided P fulfills some basic requirements see
e.g. Grafarend (1973)). The covariance between two random variables Yp, Yq
will be denoted cov(Ts,Tq), because Yx(T) = T(P) and Y, (T)= T(Q). Itis equal
to:

(L) cov(Tp,TQ)=j Yo(T)* Yo(T)d2

H

We will require, that the variance cov(Ts ,Ty) is finite.

Example. Following Meissl (1971), the probability measure & may be
defined by specifying the distribution of the random variables, Y, which maps
T into its coefficient v,_ in a development of T asa series in solid spherical har-
monics. Let ussuppose that this random variable has a Gaussian distribution
with mean value zero and variance o, (T, T)//24+1, only depending of the degree
L, we will then have

@ R? L+1
cov(Tp,Tq) = z o, (T, T)* ( /> P, (cos V),
£=0

r°r



where ¥ is the spherical distance between Pand Q, r and r' the distance of P and
Q from the origin, R the radius of the (Bjerhammar)-sphere bounding the set of
harmonicity and B, (cosy) the Legendre polynomial o degree £.

The constants oy(T, T) are called the (potential) degree variances. The co-
variance function will be isotropic, i.e. invariant with respect to rotations of
the pair of points P and Q around the origin*

From the random variables Y, we may form a second order stochastic
field. This field consists of all random variables, which are linear combinations
or limits o linear combinations o a finite number o these random variables and
which have finite variance, (cf. e.g. Parzen (1967), page 260).

Their covariances can all be derived from the covariance (1). Let us
regard

Y=a1Yp +83Y,,  Y(T)= ayT{P1)+ 8, T(P;).
Then
cov(Y(T), Tq) = J Y(T)* Yq (T)dd =a1f Yo (T)* Yo(T)d?

H H

+aej Ypa(y)-YQ(T)dé = a; COV(Tpl, Tq )+a2'cov(Tp2, Tq ).

H
And generally for quantities s; and sy, where

(2) sy =Y((T), 53 = Yy(T)
we have

(3) cov(syssy)= Yy (cov(Tp,Sy))= Yy (Y (cov(Te,Ty))).
(Wehave here implicitly presupposed, that cov (Te,s,) regarded as a function of
Pand Y, (cov(Te, Tq)) regarded as a function of Q, are elements of the sample

space H, i.e. that they are harmonic. This will be proved below).

The equation (3) is the so called law of propagation of covariances,
Moritz (1972, page 97).



We will denote

cov(sy, s;), C={cy} aqxqgmatrix,

(4) cyy

cov(Ts, 5,), Ce= {ces1} @aq-vector and

(5) cey

(6) Cay = COV(S, Sy), C,= {cs1} 2 g-vector.

(Wewill below use subscripted quantities in brackets, { } to denote vectors or
matrices. In case the limit(s) of the subscript(s) are not obvious, the upper
limit(s) will be indicated by subscripts, i,e. C={cy]} ).

We will have to regard one more kind of random quantities (independent
of the above discussed), namely the random noise, n. A random variable will
be associated with each of the random variables Ys;. They are all supposed to be
Gaussian distributed with mean value zero, known variance (denoted o) and un-
correlated. The covariance matrix, which hence is a diagonal matrix, will be
denoted D= {d,,}, dy = 0

Following Moritz (1972), the basic equation of "observation'" is

(7) x=AX+s"+n,
where x is the measurement or observation, s’ the corresponding "signal" and n
is the noise. x, s’ and n are g-vectors, where q is the number of observations.
The n-vector X comprises n parameters, and A isaknown gx m matrix.

Let us now assume, that we want to estimate the outcome s of a stochastic

variable Y, , given a set o observed quantities x, Denoting C = C+D we obtain from
Moritz (1972, eq. (2-38)and 2-35))

©) X=(A CHAyTA'C x
where the superscript T means transposition.

The corresponding estimate o the error o estimation mf(of s) and Eyx (of
X) are, cf. Moritz (1972, eq. (3-38)and (3-33))



(10) mf = CSB _C:E—lcs + h: AExxAThe ’
(11) Ex= (A C7A)7
with h, = Cla“l and C,s is the variance o s.

The program presented in this report can only handle the non-parametric
(i.e. X=0) case. But the general equations are presented here, so that we later
on can point out the main changes, which will have to be made in order to
incorporate the parameters X.

The special case we will consider here can then be described by the follow-
ing equations:

(12) s =C’C*x and
(13) m;‘; = ng —C:—é—l Cs

Thefiltered observations s'are obtained from (12) by substituting CTfor

Ci.

The equations (12) and (13) differ from the equations given by PG(eq. (7-63)
and (7-64))only in that C has been substituted for C and that we are not restricted to
consider only gravity anomalies.

The quantities we want to consider here are potential coefficients, gravity
anomalies, deflections o the vertical and height anomalies. They areall (at
least in spherical approximation) expressible as either linear combinations or
limits d linear combinations of values o the anomalous potential. We will pre-
suppose, that the variances of the corresponding stochastic variables all are
finite. Equation (3) is hence valid for these kinds of quantities.

The value of the Laplace operator A, applied on T and evaluated in a point
Pin the set d harmonicity,

ATP =0
Is related to a stochastic variable, Ypr,» Thisvariable will also belong to the

stochastic field (variance zero) and we "will have for an arbitrary stochastic
variable Y, :



(14) cov(s, ATp) = A(cov(s, Tr))=0.

Hence, the covariance between a quantity s and the value d the anomalous
potential in P isa harmonic function (regarded as a function of P).

Let us now assume, that we want to estimat the value of T in a point P
from a set of observations x= {x,}, i=1,...,q. We then have from (12),

(15) T(P)= C; C  x= {cov(Tp,si)}T{cov(si,sj)+d“}"1 {x,].

Introducting the solution vector

(16) b= {b}=C'x

we have

Q
(17) T (P)= Cr b= {cov(Ts 80} {by )= S‘ cov (Te,54)by

1=|

Using (A)we see that
q

(18) AP% = Ap (cov(Tp, 51))*by=0
$

>~

i

1
i.e. T (P)is a harmonic function.

By also requiring, that the functions in the sample space H are regular at
infinity, it can be shown, that T(P) is regular at infinity as well.

We have then obtained a solution to the problem of Bjerhammar, if we
can prove, that the §y= s, = x, for o (ordy;)=0. But this is easily seen,
because

(19) gi :Ysi ("E(P)):z Yﬁl (COV(TP,SJ)).bJ
=1

={cov(sy, s‘,)}T {cov(sy,s. )}t ix, }={0,...,0,1,... 0} {Xk }=s4.
(1 at i'th positions)

This fact makes available an easy test of a collocation program. The used obser-
vations are predicted and it is checked, that the predictions agree with the obser-
ved values (and that the estimates of the error of prediction are zero).



2.2 Equations for the covariances o and between gravity anomalies,
deflections of the vertical, height anomalies and potential coefficients.

The relation (3) between the signal and the anomalous potential has been
given in Tscherning and Rapp (1974), eq. (30)-(33))in spherical approximation
for gravity anomalies, height anomalies and deflections of the vertical. We
have for the height anomaly in P

(20) C=T(P)/v,

the latitude component of the deflection of the vertical
(21) €= —D(pT(P)/(y-r),

the longitude component of the deflection o the vertical
(22) n=-DyT(P)/(y "1 cos o),

the point (free-air) gravity anomaly
(23) Ag= -D,T(P) - % T(P)

and the mean (free-air) gravity anomaly
(24) Og = -IlnggdA,

where r is the distance from the origin, ¢ thelatitude, X thelongitude, y the
reference gravity and A the area over which the mean gravity value is computed.

We may, as explained in Tscherning and Rapp (1974, section 10) repre-
sent mean gravity anomalies by point anomalies in a certain height above the
center of theareaA. For this reason we will not in the following distinguish be-
tween mean and point gravity anomalies. The program is able to use all the
quantities (20)-(24)as observed quantities for the computation of T. The same
kind of quantities may also be predicted by the program.

One more kind of quantities, potential coefficients, can be used, though
only as observed quantities. The given coefficients will generally be the
coefficients of the potential of the Earth, W, expanded in spherical harmonics
and not the coefficients of the anomalous potential. Denoting the normal potential
by U we have

T(P)= W(P) - U(P)




and for W and U expanded in fully normalized spherical harmonics

2
w Z . _ _
(25) W(P)=l-{?M~ (1+; (%) z P, (c08 8)(S,, *sinmA+ T, * cosmA))
=1 n= 0

]
+ % (resin®)®  and

2

m a ez. JQE — w . 2
(26) U(P)="4 (1-421 <;) Tits Fes(cosO)+om (rsing)”,

where w is the speed of rotation of the Earth, 6=90°-¢«, kM the product of the
gravitational constant and the total mass of the Earth, the coefficients §zm and
C,, the potential coefficients, and ﬁm(cosﬁ) an associated Legendre polynomial,
normalized so that

™
2 /2 cosmA
27 I I f ), (COS 6) )?sin6 do dA=1.
0 -1/2 sinm A

The coefficients Jgg in (26)are given in PG, (eq. (2-92)).
For the potential coefficients we then have the following equation

a'kM'§z sinm\

m 1 —
(28) _ = i Ij (T+U)'me(cos 8) { dew,
w

a'kM'Cﬂn cosmaA

where wis the surface o the sphere with radius equal to the semi major axis a
and with center in the origin. (Weare now denoting two quantities by w, but since
they are used in a different context, we hope, that no confusion is caused).

In the program it is possible to use one of three different kinds of
(isotropic) covariance functions, which we below will distinguish by a subscript k,
k=1, 2or 3. They are all specified by a so called anomaly degree-variance
model, i.e. by the coefficients oy, 4 (Ag, Ag) of degree £ greater than a constant |
of the covariance function of the gravity anomalies developed in a Legendre
series:

! 2 A+2 ©
— A R

(29) covy (g, 0m,) = Z 0, (8g,4g) ( r) P£<cos¢)+z Ok, £(08,48)
4=0 L=+

9



{cont'd) T

where r’ is the distance of Q from the origin, R the rad|us of the Bjerhammar
sphere, {= the spherical distance between P and Q and o, (Ag Ag) are empirically

determined coefficients.

The three different kinds of covariance functions correspond to three of
the five anomaly degree-variance models discussed in Tscherning and Rapp

(1974, section 8). The models arefork=1,2 and 3:

A (4-1)
(30) 0y, (Bg,08)= T4 s 4>121,

A (L-1
(31) 0Oz (Ag,Ag)=—i;§-2———) , £>122  and

As(2-1)
(32) O34 (08:08)= o gipy ¢ 47122

whereA,, k=1,2 and 3 are constants of dimension mgal® and B is a positive
integer (denoted IK in the program).

A part d the specification of the degree-variance model is the value of
the radius o the Bjerhammar sphere. In the program this quantity is specified
through the ratio R/R, , where R, is a mean Earth radius, (equal to 6371.0 km

in the program).

The covariance function d the anomalous potential may be expanded in a
similar way in a Legendre series, cf. Tscherning and Rapp (1973, eq. (144)),

el

!
(33) cove(Te, To= ) &, T)s* " Byt)+) G (T, Ds** P, (1)

£=0 ’ Z:H'l
R2
where t=cos §, s= — and
rr

3

R
S'IQ(T,T): e 6(AgaAg)’ ZSI, £>1
(£-1)°
(34)
Rg
(o T, T Ag,Ag), 4>1.
i ( )= (- l)z%k( g,4g) I

(Degree-variancesof degree zero and one will always be equal to zero.)

10



We rearrange (33):

]
A 24+
(35) covy(Tp,Tq)= Z % - 0y,0 (T, T))s Pﬁ}(t)
L=0
e g+1
+ch,z(T,T)s P, ().
4=0

Denoting

(36) €L (T, T)= %(T T) -0y, (T, T) , 251,

. X |
(37) COVk(Tp,TQ)—‘S- €y, (T, T)S b Pﬂ,(t) and
4=0

L

4+1
(33) covi(Tr, To)=) 0yt (T, T)s” P, ()
4=0 '

we will have

(39)  covy(Tp, Tq) = covk (Tr, Tq) +covy (T, Tg ).

From this covariance function all the other covariance functions can be derived
using the "law of propagation of covariances', eq. (3)and the equations (20)-
(24) and (28) relating the observed quantities to the anomalous potential.

Due to the linear relationship (39)we generally have for two arbitrary
random variables Y, and Y,

(40) COVy (Sy, Sj) = COVL(Si ’Sd)+ COV(:(S:i ,sj)

wheres; = v;(T)and sy = Y, (T).

(s For either sy equal to Age or C» and s; equal to 4gy or Sq can the quantity
covy " !, s,) be represented by a closed expression, cf. Tscherning and Rapp
(1974, equations (105)-(107), (115)-(117)and (130)-(132)).

11



For the other part, cov,(S1,s,) we have (from Tscherning and Rapp 11974
equations (145)-(150)and (50)))

Do L 1 4+l
41) covy (Ce, o) = Z €4 (T, T) ey " S Pz(t)
f=0

. § R
(12) covy (G, bg)=) €t (Ts0ms" " By (0)

4=0

7 and
riey

|
L*e
(43) covL(Agp,AgQ)=E €ed (Ag,Lg)s Pf,(t)

=0
with
(Jl—-l}
€ (T, 0g) = R ‘€0 (T, T) and

2

£-1
€y,4 (Ag,Ag) = Ll?-}— Ek,f, (T?T)'

Covariance functions, cov(sy, s;) where either s, or s, isa deflection
component can not explicitly be found in Tscherning and Rapp (1974). But using
the equations (20)-(24)we get (K= K(P, Q)= cov, (Tr s Tq)):

(44) cov(p,8q)= 'DapK/(y ey r')

= -D t* DK/(y*y's 1),

(45) cov(l,Mq) = ~DyK/(¥ *¥'* r'*cos )

= ~Dyt* DK/(y 7y * x'* cos )

(46) cov(Er,4gq)= -D,y* (cov (Agp, Tq))/(¥Y*T)

= =Dt * De(cov (bgry Tq )}/ (¥*T)

12



(47) cov(np, bgq) = =Dy (cov(hge, Tq))/ (¥ * T * cos o)

= -Dyt * Di(cov(Age, Tq))/(¥* T * coS «)

(48) cov(Ep, &) =-Dw’(COV(§P,€Q))/r’

(D} t* DK +D £+ Dst DEK)/(y *x+ v ')

(49)  cov(Es, M) =—DCD(cov(ip,nQ))/r=(Dx/DQPt'DtK+D®t'DXt°DfK)

/(coseg *y'*r' *y+r) and

(50) cov(ne,me) = -Djy(cov(Er,Mg))/(X*cOS w)
=(Di)\/ t* DK +Dyt* Dy st e D{K)/(r*y coswr’* Y+ cos o)
Applying these equations on cov, (T, Tq), (39) shows, that the quantities we need
to determine are (apart from the derivatives o t with respect to the latitude and

longitude):

(51) DK = D (covy (Tp, Tq))+Dy (cOVy (Tp , T )),
(52) DZK= Df(cov! (Tr, Tq))+D? (covy (Tr, Tq)) and
(58) Di(cov(Agp, Tq))= Dt (covy (Agp, Tq))+Dy(covy (Agp, Tq))
The last term in each of the equations (51)-(53)are identical to Tscherning and

Rapp (1974, eq. (108)-(110), (118)-(120)and (133)-(135))for k=1,2, 3.

For the first term in each of the three equations we have, using (41), (42)
and (43):
!
f+1
(54) Dy(covy (Tp, Tyg)) = Y €L (T, T)s ¥ Pff(t)
4=0

13



t
. 1l
(55) D (covl(Tr,Tq))= ) €4,g(T, D) "B (1) and
g=0

/

1
R

(56) Dy (COVk(Tr,bg)) = — ) € (0TS B (0,
4=0

with 1>£’(t): D:By(t) and P;(t): Dsz(t).

The sums (54) - (56) are evaluated in the program (subroutine PRED) using
the recu sion algorthm given in Tscherning and Rapp (1974, section 9).

To avoid numerical problems for P near to Q, the following expressions
are used for the evaluation of t and the derivatives of t with respect to o and «":
(denoting: dX=X-X and dop= 0 -o):

(57) t=cosy=sing* sing +cose* coss ¢ cos (d\)

=cos (dp) ~COSp* COSyp’ *(1 = cos(dX))

=1~ 2(si P (dn/2)+ cos 1 * oS’ * Sin(dA/2))

(58) Dyt=cose: sing'-sing* cos o cos (A\) = -sin(dp)+2cos ¢’ * sing * Si nZ(d\/2),
(59) Dyt=sin(dyp)+2cosep: sing'si n? (a\/2) and

(60) D‘; QP't =COStp * COS¢' +Sine * sing’* cos (dA)=cos(dw)~(1-cos(d)) * sino* sing’

=cos (dy)-2sin® (d\/2)* sing* sing .

We will now introduce a compact notation for the normalized surface
harmonics, which will facilitate the presentation of the covariances between the
coefficients of T developed in spherical harmonics and other quantities. Denoting

14



P, (cosB) sinmA, m>0
_) e
(61) V(6,2

=0l

l ‘(cos f)cosmA, m=<0
o

and the coefficients & T developed in spherical harmonics by vy, We have

1 a’
(62) Vie© I IT(P)‘ TI+T *Vp, (8,A)dw
w

where r =ain this integration and P is on the surface of the sphere d radius a.
From equations (28) we get

1
Cpo+dy, *(24+1)° for m= 0 and Aeven,
(63) v ,=a*kM: §£m for m> 0,

C}a'm' for m< 0.and m= 0 and £ uneven

We will now compute the covariances covy (v, _,S;) Where s, is either v,,
&, M, Ag, or Gg. These covariances are not explicitly used in the program,
so we will not distinguish between the different covariance models, but denote
the degree-variances by 0y (T, T), 0,(T,4g) and 0y (Ag, Ag).

From eg. (62)and (33)we get

1
(64) cov(Te,v,,)= 7= | CoV(Te,Te)* V,_ (8, X)% + duw

w

= 1 1 . oy 1
i 4”@0 0y (T, T)S**2 By(t)* v, (0, X) T dee
w

Using the well known summation formulae, (PG(~-81"))

b
(65) Puhi=gi ), Ver(®X)* Ve (00X,

j=-1

and the orthogonality property of the surface harmonics, we get
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] i
_1 (_RE\'* 1 v 6T\ .
(66) cov(Tp,Vzm)—41T (ZGi(T,T)-\;Ta) 21+12 Vig(0,A)* Viy(8,X)

w i=0 j=“l
;o0 1
'\ (8,A) ,dw

R> L+1
=GE(T’T).<I"3.> '22_'_1‘\/;&‘”(9,)\).

Again using (62) and the orthogonality property we see, that

2 L+1 4 at ,
(67) cov (v, V!&m):4ﬁ»[(%(T’T)<;_a-> 20+1 Vzm(e,A)> (r/)—"f;iV“(E):?\ )>dw

) Rz L+1
foz(T,T)Q';E) * 9941 fori=4L and j=m
l 0 otherwise.

Thus, the covariance of two differentanomalous potential coefficients is zero
and their variance is equal to the degree-variance multiplied by a constant
depending on R, a and the degree 4.

The other covariance functions can be derived using (66) and (20)-(23):

_ Ra Z‘l‘l
(68) cov(Ce,V, )= G (T, T) a (Fiz )V, (&N/(* (24+1)),

R2\2+1
(69) cov(ép,Vzm)=—GZ(T,T)'a'<§TI-,) DY, (B V(7 (24+1)
2 £+1 ’
R
(70) cov(‘np,vh)=—%(T,T)'a'<m> Dx%m(e,k)/(r"y'coscp-(2Z+1))
and
_ .2 R2 JL+1R
(1) covidg,v, ) =q0e, 1) F(=) TV, @n/@e
- 0e1) 2 ( BNV G 60 /2
=0,(T, M(4-1) 2 (=)' v, (. 0/24+1).
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2.3 Stcpwise collocation.

The solution o the normal equations (8) and (9) may be a difficult numeri-
cal task even when using a large computer, when the number of unknowns is
greater than afew thousands.

Moritz (1973) uses the term sequential collocation when the observations
are divided in two or more groups and when the corresponding normal equations
then are solved by inverting only the submatrices containing the covariances
between the observations within one group.

Let us first consider an example, where the observations have been
divided in two groups containing m, and m, observations respectively:

(z)
(12) x= | x3} ,

wherex, isam, vector and x; a m, vector of observations. The covariance
matrix is then divided in four submatrices accordingly:

( Cin Cis

(13) C-=
1 Ca Cx

and the vector of the covariances between the quantity s to be predicted and the
observations becomes

(14) Ch=1{Ci1, Cps ).

Hence, according to Moritz (1973, eg. (1-22)) we have
~ AT -l T -1 -1 -1 -1
(75) 8= CeCii X1+ (Caa— Cs1C11 C1oH(C2p-Ca1 C11 C1a)  (X%2-C: C1y X1)

Let us regard the case where we want to estimate T(P). Denoting

(76) by=Cy' %
~ T
(77) Ty (P)=Cpy * by
(78) d1X;=X3-Cyy Cp1 X = X~Cypy °by
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- -1
(719) d3Cz3=Cp-Cs1 Chi Cips 41 Cog = Crz = Cp1Ci1 Caz
(80) by =d,Ci3dyx, and

(81) Ty(P)=dy ng * bz,

we see that

~ ~

T(P)= T, (P) + To(P)

Hence, we are by using stepwise collocation, getting an estimate T which is
equal to the sum o two other estimates.

The first estimate AT}(P) is computed by (76)and (77) from the observations
x; using the original covariance functions. The residual observations d; xz (78)is
then computed. Then the second estimate T, (P) can be obtained from (80) and (81)
using the covariances of the residual observations, d,C,, and d,Ce, (79). (Supposing
the "oise' matrix D to be zero we easily see

cov(d; Xgq s &y Xay) =vcov(x2, - {cov(xa , xvlj)}T {cov(xyy, xu) T {x 3,
- %y ~{eov(xgy, x2) ) {eov(xg, %) 7 {xic D)
=°°V(Xés s Xay)-{COV(Xg sxlj)}T {cov(xyys Xk 17t {eov(xug, xg1) )
which is nothing but the i, jth element of the matrix d;C.;.)

The formulae (76)-(81) can be generalized as to describe a partition of the
observations into more than two groups. Such equations can for example, ‘be
found in Moritz (1973, eq. (5-1)-(5-14)). We will here use a slightly different
type of general equation.

For a partition in k groups,

X3 X1

. L]
X= . y X ¥

Xk Xim‘

and with
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(18a) 4 dyTe =T -2 dL_IC:wa

dzcuz {COV(ngxks dngn)} k=1,...,m,

(793.) ﬁ dsz; = {COV(dsz, d,@XH)} ] = 1, ceeg My

| 4,Css= {cov(dﬂs, dpxip)} i=1,...,my
and
(802)  by=d,;_,Cir* di_X

we have the estimates T, (P)and §; based on the residual observations d;., x;
(i.e. onall sets o observations with subscript less than i):

i (P)= d;-1Chy * by
(81a)
S¢= di_)_C:g b bi

and the final estimates

(82a) {
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(Asusual, the linear equations corresponding to (80a) are denoted the normal-
equations and b, the solution to the normal equations.)

One of the main advantages achieved by using stepwise collocation is
according to Meritz (1973, page 1), that the normal equation matrices to be in-
verted are smaller than the original C matrix. Thus, as may be realized from
equations (79) and (80), the total storage requirements are not diminished. So,
when using a computer, which has peripheral storage units with fast access,
stepwise solution of the normal equations is of no real advantage.

Thus, aconsiderable simplification of the computations may be achieved
when the residual covariances d;Cy; and dgC,, (79a) can be computed analytically.
In this case, only the by vectors (80a) are needed for the representation of T, and
for the computation of p edictions. The residual covariance may naturally be
computed analytically, when the datasets are uncorrelated, i.e. when d;C1:=Cuy,
But the possibility for analytical covariance also exists, when the first dataset
X, consists of potential coefficients.

The matrix C,, iSin this case adiagonal matrix with diagonal elements
equal to the sum of thequantities given in (67) and the error variances of the
observed coefficient, cvim. We will suppose, that all the variances are the same

for the same degree, R, and denote this variance by o5 ().

The elements of the vector b, are equal to the observed coefficient divided
by the corresponding diagonal element. Let us then suppose, that potential
coefficients up to degree | have been observed. The estimate T is then (cf. eq. (66),
(67)and (77)):

N
(83a) T1(P)=Z Z a'(’;; 0, (T, T)* Vp, (9»’\)5‘;1:{ ’
L=z w==~} |
R2Z+g
ol « O (T, T), 52
r(v:@m/(a <a> 25+1 "0y (z)))

a 2I&Jr2212+1

SN 2 a
Denoting Vb—Vzm/(l-FO’v(lo)(R m ) we have

! £
(83p) %I(P)=2 a Z V“- 1 (8.



Using equations (66), (67)-(79)and (85b) we easily see, that the residual obser-
vations (78), d;x, are nothing but the oxiginal observations, but now referring to a
higher order reference field, U, = U+ T;.

For the i, j'th element o d,Cs, we get from (GG) and (79), supposing e.g.
that sy, = T(P), sz; = T(Q) and that x,,, xz; are the corresponding observed values
(and P different from Q):

2 L+ ! J 4+1

o (ED) mo-Y Y ()

2 =2 ==}

(84) cov (dy 8y, disyy)=

=
nE\ 18

2 f4+1
(T T) R LG (T, T) .
20+1 w’“) (a(a°r'> ST e EN) )/ &
cl+2
R oy(T, T)
<a) 2021 *Ov(H)
] ’e © ﬂ .
Z 0, (T, T)s z(t)+ ;‘ 0T, T)s *1PZ(t),
b=z L=1+1

with

2l+2
24+1

(85) .dlcr’e(T, T)=0 (T, T)(1-1/(1+02(4) /(a

0, (

This quantity is zero for 62(4) equal to zero. The covariance function (84) is
in this case a local I'th order covariance function, cf. Tscherning and Rapp
(1974, Section 9).

It is supposed in the program, that the error variances o2 can be either
disregarded or that they only depend on the degree. The program will, in the
latter case, require that the quantity
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_ggz_'j_l)g.
(86) o, (Q.AD= doa(T, 17° g2

is specified. The quantity will be treated as if it was an empirical degree-variance.

We have here seen, how we in one case explicitly can derive expressions
for the covariance, cov(dixs, dixXz;). Anolher method would he simply to estimate
a covariance function for the rcsidual. observations ¢, x;. However, the program can
only use three types of covariance functions, and they are all isotropic.

We are then restricted either to divide the observations x in groups of
quantities, which are nearly uncorrelated or to find a kind of observations, which
we can treat like the potential coefficients.

The potential coefficients are (ina general sense) weighted mean values of
the anomalous potential. Mean gravity anomalies are also mean values, weighted
with a function, which is equal to one in the considered area and zero outside.

A mean gravity anomaly fieid will represent an amountdf information which
iS equal to the amount of information contained in a set of potential coefficients of
degree less than or equal to an integer I. The magnitude of | will depend on the
size of the area over which the mean anomaly is computed. 1 will be large when
the area is small and small when the areais large. (I will be zero when the
area is the whole Earth and infinite when we are dealing with points). An estimate
of the degree may be Hund in the following way: The total number d equal area
mean anomalies of a particula size is theoretically equal to the total area of the
Earth divided by the area of the basic mean anomaly. Let us call this number N.
For the perfect recovery of N guantities we need a set of coefficients of degree
up to N2+ This method of estimation will give us N~ 202 for 1° equal area anom-
alies. The degree may also be estimated in a more empirical way. This can be
done by first estimating the empirical covariance function of a set of residual ob-
servations (gravity anomzlies) d;xs. The first zero point of the empirical. co-
variance function (regardedas a function of the spherical distance ¥) will then
give a reasonable estimate o the degree (cf. Tscherning and Rapp, (1974, Section

9)).

As an example, the program described in this report was used to compute
residual point gravity anomalies in a 2°30'x 3”40' square in the state of Ohio,
U.S.A. The data set x did consist o three groups. The set x, was a set of po-
tential coefficients of degree upto andinclusive of 20, given by Rapp (1973, Table
6). xp consisted of 157 1°x 1° mean gravity anomalies surrounding the area and
X; was a set of 420 point gravity anomalies, spaced as uniform as possible with
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adistance of 73' inlatitude and 10" in longitude between the points. The data-
sets x;, and x; was regarded as errorless.

The covariance function recommended by Tscherning and Rapp (1974)
was used (i.e. given by eq. (32) with B= 24 and A, = 425 mgal ) The covariances
d;Cs, s, Can then be computed using a corresponding local 20'th order covariance
function (i.e. with degree-variances of order uptoand inclusive of 20 equal to
zero), cf. (84).

The function i"l is then computed without actually solving any normal
equations. We have (cf. (832) and with o%(£)=0):

3 .@+1
CPl 2 §‘ 0 (T, T)*V (9 >\) 22_'_1 *bigu s
=2 n=_4
24+2
- z(R , 9T, T)
b =y /@5 (R) ST

We will now, as mentioned above represent the mean gravity anomaly as a point
anomaly in acertain height 11 above the center of the area. Let us denote this
point by Q and its distance from the origin r'. (Wehave in this case used
h'=r"- R =10.5 km, cf. Tscherning and Rapp (1974, Section 10)).

The residual anomaly is then, cf. eq. (78a) and (71):

L

dy Xoy = Xy - z z COV (Xays Vg ) Prg,
L=2 p=-f

£
=xgd-z' 2 %(T,T)(z—l)f-, < R ,> (6 >x) 1 Pl
f=

2 m=-
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=% - (- 1o B@ - 2, R@),

i.e., the mean anomaly computed with respect to the higher order reference
field Ur= UsT,. (Theprogram does not use this equation for the computation o
the residual anomaly. The contribution from T, is evaluated using the actual
length of the gradient o U, , see the description o the subroutine IGPOT, Section

5.4).

The residual obscrvations d;x, was then used to determine Tg, this
time by actually solving a set & normal equations, obtaining the solution vector
ba.

The residual point gravity anomalies were then computed by

dgXs=Xs - dy Clg * by - Clg » b,

cf. (78a). The term CIS * b, isagain here the change due to the higher order
reference field U;.

The empirical covariance function was computed using d,xs by taking the
sample mean of the products of the residuals sampled according to the spherical
distance between the points o observation. The size o the sample interval was
75'.  The covariance function

81.8 mgal®*(4-1) g4z
A = . !
cov(Age, Agy) > (L-2)(2+24) S Pﬂ(cos ¥,
{=2.05

with R/R. = 0.9998 was found to have the same zero point as the empirical covariance
function, see Figure 1.

We then see, that the two mentioned methods give nearly the same estimate
of theinteger L This agreement should merely be taken as an illustration and not as
a proof. It shows one o the many kinds of coinputaticns the FORTRAN program can

perform.

The choice d a proper covariance function is a delicate task, but we point
out that the presented program may use three different degree-variance models
and hence be useful in test computations using different covariance functions.
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The program may compute Tin up to three steps. The different possibil -
itiesare illustrated in Table 1. Note, that potential coefficients alwaysform a
separate data set, which will be the data set x, .

Table 1

Different: options for the Computation of T

Number Dataset May Contain: N
of steps Xy %o Xa T =
1 Potential coefficients ﬁ
1 €,7,C, 8¢, Bg _ T
2 Potential coefficients g,m,C,0g, Og Ty+Tg
2 g’n’g’ﬂg’Z\_g §9n9€9Ag9Z_g- Tl+:‘£‘2 ~
3 Potential coefficients g,n,C,0g, &g €,m,C,08,0g Ty +Tg+ Ty
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3. Data Reqguirements.

In this section the data requirements will be discussed. The precise
specifications are given in Section 6.

Three types of information are needed for the determination of T: obser-
vations, information about the reference system of the observations and a co-
variance function.

3.1 The Observed Quantities,

The observed quantities we want to use are (@) potential coefficients,
(b) point or mean free air gravity anomalies or measured gravity values,
(c) height anomalies and (d) deflections of the vertical.

The potential coefficients available will generally all be of a degree less
than 25. There has then only been reserved space in core store for up to 625
coeflicients.

The program accepts potential coefficients, which are fully normalized
and multiplied by 10°, The coefficients can naturally only be used, when a value
of kM and the semi major axis a are specified.

An observation (different from a potential coefficient) will be given by
(Dthe geodetic latitude and longitude, (2) a potential difference, (ageopotential
number, for example), conve ted into a metric quantity e. g. by dividing the dif-
ference with the reference gravity and (3) the measured quantity. The height
above the reference ellipsoid is regarded as unknown except, naturally, when
ititself isthe observed quantity.

A1l measured gravity values will have to be given in the same gravity
reference system or a correction must be known. Measured gravity values are
converted to free-air anomalies. The orthometric height must hence be known.
The geodetic latitude (whichis used to evaluate the normal gravity) would princi-
pally have to be given in a geodetic reference system consistent with the gravity
reference system (i.e. with the same flattening and semi major axis as used for
the computation of the coefficicnts in the expression for the normal gravity). But
the variation of the normal gravity with respect to the latitude is so small, that
this requirement can be neglected here. The point or mean gravity anomalies will
all have to be free-air anomalies. They must all refer to the same normal gravity
field. If they are not all given with respect to the same gravity base reference
system, the correction to be applied for the conversion must be known.
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A mean gravity anoinaly will be represented as a point gravity anomaly at
a pointof a certain height, h, above the center of the area over which the mean
value is computed. This height is specified by the ratio, RP between the sum of
this height and the mean Earth radius R. and the mean Earth radius, i.e.

(87) RP= (Re+ h)/R..

A height anomaly will have to be given in the same reference system as the
geodetic latitude and longitude. This will generally require, that a height anomaly
obtained through an absolute position determination and given in a geocentric ref-
erence system must be transferred back to a local geodetic refe ence system,
before it can be used in the program.

We are, with observed deflections o the vertical, faced with a complicated
problem. The deflections are equal to the difference between the astronomical
coordinates o a point on the geoid and the geodetic coordinates of a point on the
reference ellipsoid (multiplied with cosine to the latitude for the longitude difference).

We have hereby implicitly introduced assumptions about the mass densities
in between the geoid and the astronomical station. To avoid this, the deflections
should have been given at the proper height (i.e. the height o the observation
stations).

Thus, heights of astronomical stations are seldom found recorded together
with the deflections. But if the heights are actually recorded, the program will
treat the deflections as quantities, which have not been reduced to the geoid.

The astronomical coordinates may carry systematical errors due to sys-
tematic differences between star catalogues or due to the neglect of corrections
for polar motion. The observations may be corrected for known systematical
errors, if they can be specified in the same way as a datum shift, i.e. by specify-
ing the corrections in the latitude and the longitude components at a certain point.
Systematic errors in the height anornalies may be corrected in the same manner.

In Section 2.2 we mentioned, that the equations which related the obser-
vations and the anomalous potential was given in spherical approximation. This
means, e.g. that all points onthe surface of the Earth are regarded as lying on
the mean Earth sphere. This fact has been used in the program to speed up the
computations. This is done by using the fact that the quantities

T D' or, ag sty and gag,agstte
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will be the same for a group of input data.

Data which actually are observed above the surface of the Earth must be
grouped so that they all refer to a sphere with radius equal to a mean height o
the points plus the mean Earth radius, R,. Asfor mean gravity anomalies, the
height is specified in the program through the value of the quantity RP, (ey. (87)).

The standard deviations of observations, different from potential coef-
ficients,will have to be given in meters for the height anomaly, in mgal for gravity
observations and in arc sec for deflection components. The standard deviations
may be specified (1)individually for the single observations, (2)for a group of
observations or (3) as being zero for all observations.

3.2 The Reference Systems.

We have to know the parameters specifying the geodetic coordinate system.
The program requires the semi major axis, a, and the flattening, f, to be specified.

The gravity formulae may then either be given (Lthrough the values of kM,
w, a, and f, (2) by specifying that the international gravity formulae and the Pots-
dam reference system has been used or (3) that the Geodetic Reference System
1967 has been used. One of the three excludes the others.

The covariance functions which can be used, will all have the degree-
variances of degree zero and one equal to zero. This implies, that we, in the
computations, have to use the best possible kM value and a geodetic coordinate
system which has origin coinciding with the gravity center of the Earth, Z-axis
parallel to the mean axis of rotation and Z-X-plane equal to the mean Greenwich
meridian plane.

We will also require the global mean value of the gravity anomalies, the
height anomalies and the deflections to be zero. This requirement implies, that
we have to use the best possible semi-major axis. The geodetic latitude and
longitude may then be transformed into such a reference system by specifying the
new kM, a, fvalues, the translation vector, the scale change and the three rota-
tion angles for the rotations around the X, Y and Z axes respectively.

The approximation T will be given in the same reference system as the one
specified through the transformation parameters, i.e. in a geocentric reference
system. Predictions will be given in both the original and the new reference
system.
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3.3 The Covariance Function.

We explained in Section 2.2 how an isotropic covariance function can be
specified through (1)a set of empirical anomaly degree-variances of degree less
than or equal to an integer I, 69, (Ag, Ag) and (2) an anomaly degree-variance model
for the degree-variances oy, g (Ag,Ag) for R greater than I.

The values of the empirical degree-variances will depend on the radius of
the Bjerhammar sphere, R. We have, therefore chosen to specify these quantities
on the surface of the mean Earth, i.e. the quantities

2f+4

689 5 eete)=(5) 5 0ele

must be given together with the ratio R/R,. The quantities (88) must be given in
units of mgale.

The anomaly degree-variance model isfor k=1 and 2 specified through
the constants A, and A, (eg. (30)and (31))and for k= 3 through the constant Ag
and the integer B (eq. (32)).

Thus, in the program the models ar e specified not through the constants
A,, k=1,2 o0r 3, but through the variance of the point gravity anomalies on the
surface of the Earth.

This quantity is then used for the determination of A,. We have from

(29):
i X R 2i+2
(89) cov(Agr,Agp)= \l oy (Ag,bg)* (R—e> P/Z,(l)
L=o
® R 2l+z
+ Z Ok, 4(08s Ag)(R—e> P, (1)
L=141
1 : Ay(L-1)
Let us now, for example regard model 2, i.e. oz,4 (Ag,AQ)= =2~ "7 | Then
(£-2)
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[ 24+2

el L+2
(90) A2=(cov(Agp,AgP)—/Y g’k (bg,Ag) <ﬁli) )/Q (i:.;) <1§ ) >
tmo L=1+1 ’

The infinite sum may be computed by the formula given in Tscherning and Rapp
(1974, Section 8), and A, (and in the same way A, or A) can then be found.

We will finally mention, that the ratio R/R, is used by the program for the
computation o the radius of the Bjerhammar sphere.
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4, Main Lines o Function of the Program.

In Section 2 we mentioned that the program could be used to estimate T
from maximally three sets of observations x,, x, and x;. T would then be equal
to the sum of up to three harmonic functions, T, ) Tp and Tg. The limit of three
was only attained, when potential coefficients formed the first set o observations,
Xy »

We will here clescribe the function of the program, when we are in this
situation, i.e. when we have three datasets x,, x; and X3, and x, is a set of
potential coefficients.

The flow of the program is illustrated in Figure 2. Several logical vari-
ables determine the flow. Thelogical variable LPRED will e.g. be "false" until
the estimation of ? is finished and will have the value "true', when predictions
are computed.

The program will start by intializingdifferent variables. It wiil require
information about the reference systems dof the observations and use this infor-
mation to select e. g. the proper formulae for the normal gravity.

When the reference system is not geocentric or when the normal gravity
does not correspond to a proper kM value, the necessary transformation elements
and the kM value must be given.

The next step is then to read in the observations x,, the potential coef-
ficients. The normal equations (12) will not have to be solved in this situation,
cf. Section 2.3. T, is represented by (83).

The following two steps, where we explicitly use the equations for collocation,
will be denoted Collocation | and Collocation 1I. We will first have to specify the
covariance function and observations used in Collocation I:

The covariance function for the residual anomalies d, x, must be specified
through the selection of an anomaly degree-variance model and contingently by
specifying a set of low order empirical. deg ee-variances.

The observations x, (andlater x) may be subdivided in different files
according to format, kind of observed quantity etc. Each single observation is
first transformed to a geocentric reference system (if necessary). Then the
residual observation is computed, by subtracting the contribution from T, from
the observed value. After the input of afile, the value of alocal variable LSTOP
will be input, which will signify if more files belonging to x, will have to be input.
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Figure2

Flow-Chart of Program.

The main flow is determined by the values of the following logical variables:

LTRAN = coordinates and observations must be transformed to a geocentric

reference system and gravity observations must refer to a gravity
formulae consistent with the refe ence system.

LPOT = potential coefficients from first set of ""observed' quantities.

LCREF = second set of observations (or third when LPOT is true) will be
used, and the harmonic function computed by Collocation | will be
used as an improved reference filld. LCREF is initialized to be
false and will get its final value after Collocation I is finished.

LPRED = predictions are being computed.
LGRID = the predictions are computed in the points of a uniform grid.
LERNO-= the error of prediction must be computed.

LCOMP= compare observed and predicted values (an observed value is input
together with the coordinates of the point of prediction).

Tnitializations:
I.CREF=F, LPRED=T

reference system o observations /
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variance model to be used
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Figure 2
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After the last file has been input, the vector d, x, is stored on a disk.
The coefficients of the normal equations are then computed and stored on the
disk as well.

A subprogram NES, which only uses a limited amount of core store, will
then compute the solution vector b, and in this way T, is determined.

- The solution vector may be output on punched cards, so that the function
T, can he retrieved without computing the coefficients of (and solving) the normal
equations.

Collocation I is now finished. It is then possible either to start the compu-
tation of predictions or to start Collocation II, A logical variable LCREF is used
to distinguish between the two situations. Thus, LCREF will have to be true in
this case, because we have decided to describe the situation, where three data-
sets ar e used.

The covariance function of the residual observations d.xs is then first
specified. It isdone in the same way as for the covariance function used in
Collocation I, though the kind of anomaly degree-variance model used will have
to be the same.

The different files of the dataset x, can then be input. Each observations
isfirst transformed to a geocentric reference system. Then the contribution from
T, and T, is computed, so that finally d.x, can be stored. The coefficients of the
new normal -equations can then be computed and the equations solved. Again, here
the solution b; may be output on punched cards. (Incaseb, or b, had been com-
puted in previous runs of the program, their respective values would have been
input and the coefficients of the normal equations are then not computed.)

When the equations have been solved, the reduced normal equation matrix is
retained on a disk, so that errors of estimation can be computed, using equation (13).

The estimate of the anomalous potential is then, cf. eq. (82a)
T(P)= Ty (P)+ T (P)+ Ta(P),
with T, (P)given by eq. (83),
By

Tz (P) = y COV(d]_ Tp N dl XBI ) * bli and

1=1
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I Iy

Ta(P)= ) cov(daTr,dzXay) * Doy

1=1
cf. eq. (81a).

The prediction of a height anomaly, a gravity anomaly or a deflection
component can now be computed using eq. (82a). The computation is based upon
exactly the same type of information as was used for the computation of T. and
and Ts, i.e. geodetic latitude and longitude, and a height. The program itself
may generate lists of coordinates. Such a list is generated, when the logical
LGRID is true. The list will consist of coordinates of points lying inagrid. The
grid is specified by its south-west corner, and the number and magnitude of the
grid increments in northern and eastern direction. The heights of the points are
specified by the ratio RP (equation (87)).

The prediction of a quantity, e.g. a gravity anomaly will then be computed
by first determining the difference between the anomaly given in a geocentric
reference system and the reference system of the observations, Ago The contri-
bution Ag1 is then evaluated from T1 and the contributions from T, and T using
(81a), i.e.

Agy =

COV(di_iAg N di__lxu)‘b”, i:2,3-
3 .

n~isg

1

The predicted value is then, (cf. eq. (82a)):

Ag=A0go+ Agy + Agpy + Ags

Predictions of other quantities are computed in the same way. A special facility

for the comparison of observed and predicted quantities can be used, when the
logical LCOMP is true. The differences between observed and predicted quantities
are in this case, computed together with their mean value and variance. A sampling
of the differences is done in intervals of a specified magnitude.

The processing time (or more correctly, the central unit processing time)
will vary depending on (1)the covariance function used, (2)the number of cbserva-
tions and (3) the number of quantities to be predicted and estimates of errors to be
computed. The program has been used for a variety of test computations, though
never with more than 500 observations. The used processing times for a number
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of situations are presented in Table 2. The computations were all made on the
IBM system/370 model 165 computer of the Instruction and Research Computer
Centcr, Ohio State University. The so called Fortran H-extended compiler

(IBM (1972))was used for the compilation o the program. The normal equations
were stored on an IBM model 3330 disk.

Table 2

Examples of Processing Times for Different Input Data and Covariance Functions.
Potential Coefficients of Degree up to 20 Used.

Collocation | Collocation I1** Predictions | Total pro-
cessing time
Covariance | Order of local | Number of |Order of local | Nuniber of | Number of

Model covar.fct. I | Agused |covar.fct. | Ag | E,m| bg €| C m  sec
1 20 157 11730 |36 0 43

2 20 157 117|30 {36 0 43

2 20 157 110 117 30382 |36 2 31
3* 20 157 110 117 303|182 136 3 2

2 20 157 160 117 303182 136 2 57
3* 20 157 160 117 30382 {36 4 09
2 20 157 110 117 30 { 303({52 {36 2 54
3* 20 157 110 117 30 | 303{52 |36 4 09

* B= 24 in Model 3

**Normal equations not computed and solved in Collocation I.
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5. The Storing o the Cocfficients of the Normal Equations and the Function
of the Subprograms,

We will in this section discuss in more detail the function d an important
part of the main-program and the different subprograms which have been used.
However, the most detailed description is found in the appendix, where the FOR-
TRAN program, which includes a large number of comment statements, is repro-
duced.

5.1 The storing o the normal equations.

The IBM system 370 model 165 computer o the Instruction and Research
Computer Center of the Ohio State University makes available a 630K !byte) core
storage for a usual program. Let us suppose, that we have used 180K for the
storing of the program and variables different from the coefficients o the normal-
equations. We are then left with 450K bytes, which can be used to store these quan-
tities. When the coefficients are represented as double p ecision variables (8 bytes),
it is then possible to store 450x* 1024/8=57600 coefficientsin the core.

A system of equations with N unknowns, and afull symmetric coefficient
matrix plus a constant vector o length N+I will totally occupy (N+2)x (N+3)/2
8 byte positions. This implies, that we maximally can seclve a system of equations
with 336 unknowns, if we want to store all the coefficients in the core.

The solution to the problem is naturally to divide the upper (or lower) tri-
angular part o the matrix in blocks, which then are stored on a disk and later
read into core storage when needed. The subdivision in blocks can be made in
several ways. In case we wanted to compute the inverse matrix, the optimal
subdivision seems to be a subdivision in squares submatrices, as used by Karki
(1973). It isunnecessary to compute the inverse matrix for our purpose. The
solution vector b (16) and the estimate of the error of prediction (13) may both be
computed without using the inverse matrix. It is enough to compute the so .called
reduced matrix LT,

©9l) C=L+ 1L

where L is alower triangular matrix, cf. Poder and Tscherning (1973). The
computation o L' is most easily programmed, when the upper triangular part of
C is subdivided in blocks, which contain a number of consgcutive columns, stored
in a one-dimensioned array with the diagonal element having the highest subscript
cf. Figure 3.
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Block Number
1 2 3 ¥ 5 [ T & 9 (o 12 (5171451 (} 17

96

19
PN

Number of |ast row stored 2\3§~
in block 2%
N

Figure 3. Blocking of 400 x 400 matrix

It isnecessary, that two blocks can be stored simultaneously in the core storage,
i.e. the maximum block size is then 225K or (450/2) + 1024 /8 = 28800 double pre-
cision coefficients. This number is then also the upper limit for the dimension
of the normal equation matrix, N. (Anotherlimit is set by the magnitude of the
disk unit used. For the IBM model 3330 disk used here, N will have to be less

than circa 5000).

We have in this program edition preferred to limit the total storage re-
quirements to 252K (which for the present operative system gives a reasonable
turn-around time). Thus, 90K can be used for the storing of the required two
blocks and for the buffer area necessary for the transfer between core store

and disk.
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Onadisk it is practical to block data in groups which occupy an integer
number of tracks. We have then chosen to work with data partitioned into blocks
of size 4800+8 bytes, covering three tracks and to use a buffer area o 1200+8
bytes. The total area occupied in core storage is hence 2x(38400) + 9600 bytes
or nearly 86K. (Thedisk discussed is, as mentioned above, an IBM model 3330
disk). Figure 4 shows the number of tracks used as a function of the number o
observations, N.

Tracks

;

1000 ¥

500 +

N , oSN
T &

300 600 900 1200 1500

Figure 4. Number of tracks used on an IBM model 3330 disk unit for a varying
number of unknowns, N (12800 bytes used on each track),
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When a coefficient of the normal equation matrix C (eq. 12) i s computed
(subroutine PRED) it will first be stored in an array C of dimension 4700 (the
last 100+8 bytes are used to hold two catalogues). Where the array C isfilled
up with as many columns as possible, the content will be transferred to the disk
and stored in a direct access dataset (see IBM (1973, page 67)). The constant
vector of observations, x is stored together with the coefficients, as if it was an
extra column. The ficticious diagonal element of this column will contain the
normalized square sum o the observations.

As mentioned above, the last 100«8 bytes of a block are used to hold two
catalogues. The first catalogue contains the subscripts of the diagonal elements
of the columns stored in the block. The second contains the subscript of the
last zero element encountered in a column, starting the inspection of a column
from the top. This catalogue may especially be used when C is a sparse matrix
(e.g. when potential coefficients are not necessarily stored). In this program C
will always be a full matrix, so the catalogue entries are just equal to zero.
(Their value may be changed by the subroutine NES, in case singularities are
encountered).

5.2 Solution of the Normal Equations and Computation of the Estimate of the
Error of Prediction, Subroutine NES.

The equations are, as mentioned in Section 5.1, solved by first computing
the upper triangular matrix L?(cf. (91)). This method is the well known Cholesky's
factorization method.

We obtain, from (15)and(91) by aleft multiplication with 1.7}

(92) L+ x=L""b=b

The algorithm for the computation of the elements of L , Lyyis

i-1
1
(93) Lyy=——(Cyy - 2 Lys Lyy)
Z”

k:l
and nearly exactly the same for the computation of the elements by of (92):

1 151'
—‘é—i—i (Xi = Z_,

k=1

(94) by=
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i.e. the algorithm (93) will compute (92), when x is regarded and stored as an
extra column of the matrix C. When b' has been computed, b can easily be
obtained from (92) by a so called back-substitution procedure. We note, that
we have (cf. eg. (6)and (13)):

95) CICC, =Cl(@)y L7 Ce= (L™ *Ca)(L7 Co).

Then, using the algo ithm (93) for j= m+lwithc , substituted for c.y, we will
obtain the quantity L-'C, for i=1,...,m. By defininganelement c, 5.3 = Css
and using (93) for i=m+| we will have computed the quantity m? (13).

The sub outine NES uses these algorithms for the computation o the vector
b and the quantity mZ. The elements of L are stored in the positions on the disk,
where earlier the coefficients of the upper triangular part of C were stored.

The matrix C is theoretically, always positive definite. Thus, mistakes may
be made, which make C non positive definite. The Choleskys algorithm (93) will
not work in this case, because the diagonal element of L, £,;, is computed by taking
the square- root of equation (93), where both sides have been multiplied with £ .
The occurence of anegative quantity

{i=1

5= cyg- z et
r k=1
will not stop the execution of the program. NES will regard the column and corres-
ponding row as deleted, and by will be put equal to zero.

Cholesky's method is very favorable numerically. But the proper use of
the method requires that the sum o the products £ %, in (93)are accumulated in
avariable, which in this case would be in quadruple precision. The final product
sum would then have to be rounded properly to double precision. Unfortunately
rounding is not Bone by simply requiring the quadruple precision variable to be
stored in a double precision variable, but supplementary statements have to be
used. Thus, the solution vector b, is here obtained by computations performed
in double precision only, which in this case anyway, gives a satisfactory number of
significant digits.

3
. . . . N\ )
The solution vector b, is obtained in 0. 7* \—1-1\8—0/' seconds, where N is the
dimension of the normal equation matrix.
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5.3 Transformation Between Reference Systems, Subroutine ITRAN.

We pointed out in Section 3, that it was necessary to transform the co-
ordinates and measurements into a geocentric reference system. This transfor-
mation is performed for the coordinates, the deflections and the height anomaly

by the subroutine ITRAN.

The subroutine uses the euclidian coordinates X, Y, and Z for a point
with geodetic latitude ¢ and longitude A and with the ellipsoidal height equal to zero.

These coordinates are then transformed into geocentric coordinates,
Xys Yy, Zy by

Xy AX 1 € -e X
(96) {Y,p = 4AYy + (1+A4L) * 9-¢; 1 €ar *+ 3Y
Z'l AZ 62 "63 l Z y

where (X, AY, AZ) are the coordinates of the center of the old reference ellipsoid
given in the new coordinate system, AL the scale change and (C,, C,, C,) the three
infinitesimal rotations around the X, Y, Z axes respectively.

The new geodetic latitude ¢, and longitude A, of this point is computed
using the ite ative procedure given in PG (p.183). This computation will also
furnish us with the change in the height anomaly, which is identical to the height
of the point (X, Y1, Z;) above the ncw reference ellipsoid.

The change in the deflection components ar e then determined using the
differences ¢, - ¢ and X, - X.

A contingent correction for systematical errors in the deflections or the
height anomaly (cf. Section 3.2), specified by the changes 8§,, 6ny, 060~ in a
point with coordinates oo, Ao, iS computed by the subroutine using the equations
given in PG (eq. (5-59)).

5.4 Computation of the Normal Gravity, the Normal Potential and the Contri-
butions from the Potential Coefficients. Subroutines GRAVC and IGPOT.

The normal gravity may be given in two ways. Either by a gravity formula
or by specifying a normal gravity field, from which the gravity formulae then can
be derived, (cf. PG, Chapter 2). The only gravity formulae which can be used is
the international gravity formulae, PG (cq. (2-126)and (2-131)). The normal
gravity fields which can bc used, are those for which the reference ellipsoid is an
equipotential surface, i.e. it is specified by the values of kM, a, f and w.
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We may need to kuow the reference gravity in two situations. Firstly
when free-air anomalies are computed using measured gravity values and secondly,
when we want to compute the change in the gravity anomalies due to the use of a
new reference system.

The subroutine GRAVC will compute and store the constants (PG, Section
2.10) necessary for the computation o the normal gravity in one or two reference
systems. The constants used to compute the value of the normal potential (J,,
n<5in eq. (26)) and the change in the latitude component o the deflection o the
vertical € due to the curvature of the normal plumbline (PG(5-34)) are computed as
well. When the height exceeds 25 km, the derivatives of the series (26) with
respect to the latitude and the distance from the origin, will be used for the compu-
tation o the normal gravity and the change in &. Thus, this method d computation
can, unfortunately, not be applied when the international gravity formulais used.

The values of the normal gravity, the normal potential and the change in &
are computed by calling separate entries to the subroutine. The subroutine IGPOT
computes the value of the potential W(P) and the three components o the gradient
o the potential, the value of kM, aand w, cf. eq. (25).

Let us, as usual, define V by

w? .
W=V+ g (r°cos 8)~.

The coefficient modification method is used for the computation o the values
of V and the gradient of V. This method uses the fact, that the derivative o a har-
monic function with respect to euclidian coordinates again is a harmonic function.
The potential coefficients of the (three) new harmonic functions D,v, DyV, and D;V
are computed by means o a recursion algorithm given in James (1969, eq. (3)and
(4)). The recursion algorithm is identical to the algorithm used for the evaluation
of the values o the solid spherical harmonics. This fact simplifies the computations
very much. It furthermore makes it unnecessary to store the three sets of modified
potential coefficients. They are computed for each call of the subroutine from the
original potential coefficients. The algo ithm may easily be modified to compute
higher order derivatives (without extra storage requirements). Thus, the algorithm
may also be used in case the program is extended to use second order derivatives
as observed quantities.

The value of the potential and the gradient is used to compute the residual
observation dyx,; :

The value of the potential is used together with the value of the normal
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potential (ascomputed by GRAVC) to compute a residual height anomaly. The
gradient is used to compute the residual gravity anomalies and deflection compo-

nents:

i

(972)  dyag= Agy - ((DxW)2+ (DyWy + (D;W)*)” = %),

1
(97b) d, €, = £ - (arc tan (D,W/((D,;W)2+ (DyW)%)%) - gy
(97c) 7 = My - (arc tan (DyW/DyW)-Ay) * cosopy ,

where % is the normal gravity, ?pd is the geodetic latitude plus a correction for
the curvature o the plumbline and X, the longitude.

The components o the gradient used in (97a) are evaluated in a point with
height equal to the orthometric height plus the distance h, between the reference
ellipsoid and an equipotential surface of U,= U+ T, with potential equal to the
potential of the normal potential, U on the ellipsoid. The separation b, iS computed
by evaluating T, /¥ on the eliipsoid. The other gradieuts are evaluated in the height
equal to the orthometric height.

55 Computation of,Euclidian Coordinates, Conversion of Angles to Radians,
Subroutines EUCLID, RAD.

The subroutine EUCLID computes the euclidian (rectangular) coordinates for
a point with geodetic coordinates p, X, h (ellipsoidal height) given in a reference
system with semi-major axis a and second eccentricity e by the equations PG (5-3)
and (5-5).

RAD converts angles given in either (1)degrees, minutes, arc seconds,
(2) degrees and minutes, (3) degrees or (4) (400) grades into units d radians.
Other options may easily be added.

5.6  Subroutines for Output Management and Prediction Statistics, HEAD, OUT
and COMPA.

The output requirements are discussed in Section 7. The main require-
ment is, that a determination of T must be as well documented as possible. ?
may be computed in several ways, cf. Table 1. This implies, that the output may
vary in just as many ways.
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An array OBS is used for the storage of the observed quantities, the resid-
ual observations, the contributions from the different sets of observations and the
predicted quantitics. The storage sequence of these quantities is determined by
BEAD, which also will print proper headings. The coordinates of an observed or
predicted quantity and the quantities stored in OBS are printed on the line printer
by OUT, which also will punch a part of this information when requested (see Sec-
tion 7).

COMPA uses the content of OBS for the computation of prediction statistics.
The difference between observed and predicted quantities are sampled in classes
defined by a specified class width. The number of differences in each class is
printed by COVA after the final predictions have been computed. The samplingis
done separately for Ag, & and 1. No sampling is done for C.

5.7 Subroutines for the Computation of Covariances, PRED and SUMK,
PRED computes:

(a) the vector d;~,Csor d;., Cy, (cf. eg. (78a) and (82a)).

(b) acclumn of the upper triangular part of the normal equation matrix
(eq. (80a)) d;Cyy or

(¢j the product sum d,s = dszT *by, (cf. cg. {812)).

The subroutine may theoretically work even when the observations (different
from potential coefficients) are divided in more than two groups, as long as the
total number of observations do not exceed 1600 minus the number of groups minus
one.

When the observed quantity is a pair of deflections of the vertical it is very
easy to compute the two corresponding columns o the upper triangular part of C
at the same time. This is due to the similarity of the equations for the covariances
(44)-(50)for € and . Thisfact is used in the subroutine.

We mentioned in Section 3.1, that it would facilitate the computations if the
observations were grouped according to common characteristics, i.e., e g. gravity
anomalies on the surface of the Earth inthefirst group, deflections in the second
group, gravity anomalies in 10 km's height in the third group, etc. The group
characteristics (thetype of observation and the quantity RP, ($7)) are stored in two
arrays INDEX and P, which will also contain the subscripts of the first observation
in the group within the total set of observations and a quantity related to the square
root of the variance of the observations. This quantity is used for the scaling of
the normal equations (inwhich all the diagonal elements will be equal to one).
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The covariances are computed using the equations given in Section 2.2.
Thus, for degree-variance model 3, the covariances will be evaluated using the
subroutine SUMK as well. This subroutine computes the sum of the infinite series

1 4-2

(4+B)°  D? P ()3
3

1 s"lntpﬂ(t) and

T i~18

which are needed for the computation of the quantities covg (s, s,), cf. eq. (39)and
Tscherning and Rapp (1974, eq. (130)- (135)).
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6. Input Specifications,

We can divide the input data in different (sometimes overlapping) groups:

(A)

(B)
(C)

(D)
(E)

Data (generally true/false values of logical variables) determining
the flow of the program (LTRAN, LPOT, LCREF, LGRID, LERNO,
LSTOP),

Data specifying selected input/output options,

Data specifying the reference systems used for coordinates and obser-
vations,

Data specifying the degree-variance model used,

Data used for the determination of T (i.e potential coefficients, gravity
values, deflections, etc.) and solutions to normal equations, and

(F) Data used to specify which quantities we want to predict.

The input flow is roughtly sketched in Figure 5. The position o the
integers 1-5 in the diagram indicates the beginning of the input data belonging to
one of the 5 groups described below:

1

up to
one
repetition

® Figure 5. The Input Flow.
() Input data of category

(A)-(F)mentioned in text.

Up to 8 repetitions, when the input data
has significantly different characteristics

Unlimited number of
|t repetitions

Y




The input consists exclusively o data on 80-column punch-cards. We will
describe the content of each card, but not the format of the card. Instead, the for-
mat statement number will be given (in brackets) together with a two to five digit
number, e.g. 3.013. This number will be used to identify the corresponding card
shown in the input example, Appendix B.

We will divide the data in 5 categories:

(1) Data of type (A), (B)and (C), i.e. data describing the reference
systems used,

(2) Datad type (A), (B)and (E), where the data d type (E) are the
potential coefficients,

(3) Datadf type (A), (B)and (D), i.e. data related to the degree-
variance models,

(4) Data of type (A), (B)and (E), where the data of type (E)are obser-
vations of gravity anomalies, measured gravity values, height anom-
alies and deflections of the vertical,

(5) Data of type (A), (B)and (F).

The first digit in the identifying number will be the number of the category
to which the card belongs. The other digits are used to indicate to which group
or subgroup within the category the card belongs. In case an input situation de-
pends on the content of e.g. the card 3.01 and there are two different input pos-
sibilities, the two cards will have the numbers 3.011 and 3.012 respectively.
(Dataof type (A)and (B)will, as mentioned above, in many cases be the true or
false value o alogical variable. The function of a logical variable can be explained
by writinge. g.: LE isalogical variable, which is true when XXX and false other-
wise. Thus, we will in several cases below simply write LE = XXX.)

Category 1. (Thenumbers in brackets are, as mentioned above, the corresponding
format statement numbers).

1.0 (105) The (trueor false) values of five logical variables: LTRAN=the
observations must be transformed to a new reference system, LPOT=

potential coefficients are part of input data (observation data. set x; ),
LONEQ = output the coefficients of the normal equations on the line
printer, LLEG= output a legend of the tables, which will be printed and
LE = the standard deviations of the observations to be input (otherwise
they are set equal to zero).
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1.1 (103) A text of maximally 72 characters included in apostrophes, which
identify the reference system of the observations.

1.2 (120) The semi-major axis (meters)and the inverse of the flattening of
the Geodetic Reference System. The value o two logical variables,
LPOTSD = the gravity are given in the Potsdam system and LGRS67 =
the gravity data are given in the Geodetic Reference System, 1967.

In case the gravity data are not in the Potsdam system or in GRS 1967, input of:

1.21  (121) The product of the gravity constant and the mass of the Earth
(kM) in units of meters®/ sec.

When LTRAN is true input of:

1.3 (131) The new semi-major axis (meters), the new kM (meters3/sec2),
the inverse flattening, the translation vector (dX, dY, dZ) (meters), dL=
one minus the scale factor, the three rotation angles (c,, ¢,, C,) (arc sec)
and the value o alogical variable, LCHANG, which is true when the
deflections and the height anomaly are to be corrected for a systematic
error. (Thecorrection must be given as a change 6g,, 6n,, 6, at a
point with coordinates p X,, cf. Section 5.2).

When LCHANG is true, input of:

1.31 (133) ¢, and A, in degrees, minutes and arc seconds, 6£,, 6y in arc
seconds and &4 in meters.

Category 2 Datadf this category are only input, when LPOT (card1.0) is true.
The values of kM and a, input on card 2.1, will have to be the best
available estimates, cf. Section 3.2. They must be identical to
the values input on card 1.3, when LTRAN is true.

2.0 (103) A text o maxiinally 72 characters, describing the source of the
potential coefficients.

2.1 (137) kM (meters®/sec"), a (meters), the normalized coefficient Ca,0
multiplied by 10°, the maximal degree of the coefficients and the value o

alogical variable, LFM, which is false, when the coefficients C,,are
punched on a separate card, and "C—U , §u on the same card in a sequence
increasing with i and j, and true when the coefficients are punched in the
same sequence, On a number of cards, but with a fixed number of coef-
ficients on each card. The first coefficient will, in both cases, have to
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be C,, (evenwhen this is zero) and all cards must have the same format,
asgiven by 2.1. All the coefficients have to be fully normalized and
multiplied by 10°.

2.2 (103) The format of the cards on which the coefficients are punched
(in brackets).

2.11 (formatas given by 2.2). When LFMis false, the coefficients with C;,q
on one card and C,, and S,, on one card.

212 (formatas given by 2.2). When LFM s true, the coefficients in a se-
quence increasing with i and j on a number o cards.

Category 3.  We can select one o three anomaly degree-variance models, by
giving the variable KTY PE the value 1,2 or 3, cf. Section 2.2
eg. (30), (31)and (32).

3.0 (102) KTYPE

When KTYPE is equal to 3:

3.01 (107) IK=thevariable B in equation (32).

The degree-variance model is then specified by giving

(a) the ratio R/R, between the radius of the Bjerhammar sphere and
radius o the mean Earth,

(b) the variance o the gravity anomalies on the surface o the Earth
(VARDG2), (from which the constant A, in the equations (30)-(32)
are computed, cf., e.g. equation (90)),

(c) either the "order'" IMAX of the local covariance model to be used
or a zero, which will indicate, that empirical anomaly degree-
variances are used, and in this case

(d) the empiricgl anomaly degree-variances, given on the surface of
the Earth, og(Ag, Ag), (88).
3.1  (101) R/R., VARDG2 (in mgal®) and IMAX.

When IMAX is equal to zero, input of the maximal degree, IMAXO of the degree-
variances & (Ag, AQ).
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3.11

3.12

3.13

(102) IMAXO

(103) The format of the degree-variances. These must be punched on
one or more cards, sequentially from degree 2 to IMAXO.

(format as given on card 3.12). The quantities Gg(Ag, Ag) in units of mgal®.

Categary 4. Input of up to 9 datasets with significantly different characteristics.

4.0

4.1

One dataset can, for example, be two separate datasets punched
differently, but both being gravity anomalies on the surface of the
Earth. Another dataset may consist of mean gravity anomalies, all
with the same format. Before each separate dataset, there will

be input of 2 or more cards specifying the characteristics of the
dataset.

All the records in a dataset must, be punched in the same way.

There are the following restrictions (or options): A station number
may be punched. In this case it must be the first datafield on the
card and maximally occupy seven positions. The next two data-
fields must contain the latitude and the longitude (in an arbitrary se-
guence). When the height is given, it must be punched in the next
datafield.

The following (up to four) datafields will have to contain the observed
quantity (or quantities in case of pairs of deflectipn components) and
its standard deviation. When the observation isgpair of deflections,
they have to be punched in the same sequence as the latitude and the
longitude are punched. In the last datafield the value of the logical
ILSTOP has to be punched, generally false (= blank), but true for

the last record in the dataset.

(103) Theformat of the records (inbrackets).

(202) INO=1 when a station number is punched, 0 otherwise, ILA = the
number of the datafield occupied by the latitude, ILO= the number of the
datafield occupied by the longitude (ILA and ILO will be equal to 1, 2 or

3), an integer IANG specifying the units used for the latitude and the
longitude (1for degrees, minutes, arc. sec., 2for degrees and minutes,

3 for degrees and 4 for 400-grades), |H=0 when the height is zero and

not punched and otherwise the number of the datafield in the record in
which the height is punched (generally 3 or 4), I0BS1 = the datafield number

o the first observation in the record, 10BS2 = the clatafield number of the
second observation (zerowhen there isonly one observations), the
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411

4.12

4.2

value of an integer IKP, specifying the kind of observation: 1 for height
anomalies, 2 for measured gravity or gravity anomalies (point or mean),
3 for pairs of deflections, 4 for the latitude component € and 5 for the
longitude component 7.

Then the ratio RP (87) between the sphere on which the observations are
situated and the mean Earth radius and finally 5logical variables: LPUNCH =
punch observations together with the difference between the observed quantity
and a possible contribution from the potential coefficients and a contribution
from Collocation I, LWLONG= longitude is measured positive towards west,
LMEAN = the gravity is a mean value, LSA = the standard deviations are the
same for all observations, LKM= true when the height is in units of kilo-
meters and false when the height is in meters.

When the observation is a height anomaly it will have to be given in units
of meters, and when it is a deflection component in arc seconds. But
when the observation is a gravity anomaly or a measured gravity quantity,
it is possible to specify tivo constants DM and DA, which when DA is first
added and the sum multiplied with DM will bring the observed quantity into
units of mgal,

(203) DM, DA and alogical variable LMEGR, which is true, when the ob-
servation is a measured gravity value.

When LA is true, the records of observations will not contain a standard
deviation of the observed quantity, and the standard deviation will then have
to be input separately:

(212) the standard deviation of the observations. Then the observations
are input record after record, not exceeding a total number of 1598.

(format given on card 4.0). Input as specified on card 4.1, last record
with LSTOP equal to true.

When LSTOP is true, alogical variable with the same name (i.e. LSTOP) is input.
It is true when the | ast dataset is the final dataset used in Collocation | or i,
Thefinal card will hence have the value true (T) punched in the first datafield. On
this card, in this case, the values of two other logical variables can be punched.

4.3

(230) The value of LSTOP, and when LSTOP is true, the values of two
logical variables, LRESOL = input the solutions to the normal equations

(they must then have been produced in a previous run of the program) and
LWRSOL = punch the solutions to the normal equations.
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When LSTOP is false, the input process will be repeated from card 4.0. When
LSTOP is true and LRESOL is true, input of the solutions to the normal equations:
First an identification card is read, then the solutions:

4.31 (361) Input of solutions, i.e. the cards produced in a previous run of
the program, where the logical variable LWRSOL was true.

When the set of observations is the first one (the variable LC1 isfalse),
input of alogical variable LCREF, else jump to 5.0.

4.4 (230) LCREF= a new set o observations, which will be used in collocation
II, will have to beinput,

For LCREF = true, jump back to 3.1.

Category 5.  Data specifying quantities to be predicted. This specification will
naturally have to be done in much the same way, as when the obser-
vations were specified. We need coordinates and some variables,
which specifies tile type of quantity to be predicted. There are then
two possibilities, which are distinguished by the true and false value
of the variable LGRID.

When LGRID isfalse, we will proceed in exactly the same way as
above, dealing with data of Category 4. The quantities to be pre-
dicted will be specified by a list of coordinates and 2 or more
cards specifying format and type of quantity to be predicted.

The list of coordinates may in fact be a list of observed quantities,

which we want to compare with the quantities to be predicted. If
this is the case, a logical variable LCOMP has to be true.

When LGRID is true, the predictions will have to take place in
points which form a grid. The south-west corner of the grid

will have to be specified together with the distance between

the mesh points in northern and eastern direction and the num-

ber o mesh points having the same longitude and the same latitude.

5.0 (200) Input of the logical values of LGRID, LERNO= estimate of error o
prediction is wanted and LCOMP= compare predicted and observed quan-

tities.

First time LCOMP is true, two constants used to specify the sampling width for
afrequency distribution o the difference between observed and predicted gravity
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anomalies (VG) and deflections (VF) must be input (e.g. equal to 2.0 mgal and
0.5 arc. sec.). (Thedifferencesare sampled in 21 groups.)

5.01 (203) VG and VF.
When LGRID is true:

5.02 (201) Coordinates (latitude and longitude in degrees and minutes) of the
south-west corner of the grid, the increments in latitude and in longitude
(minutes), the number of increments in northern and in eastern direction,
the value of the IKP giving the type of quantity to be predicted (see 4. 1),
RP (see4.1),LMAP= print the predicted quantities on the line printer
with all values which are predicted in points with the same latitude on
one line and all values predicted in points with the same longitude above
each other, LPUNCH = punch coordinates, predicted quantity and when
LERNO is true the estimated error, LMEAN= gravity to be predicted
is a mean value.

When LGRID is true, jump to card 5.1.

Now, when LGRID is false, we may input lists of coordinates just as above:

5.030 as 4.0 (format of records)

5.031 as 4.1, with the following changes; When LCOMP is true, LPUNCH will
mean the same as in 4.1 and the error of prediction will be punched when
LERNO is true. When LCOMP is false, the predicted quantity as given
in the new and in the old reference system will be punched together with
the error of prediction, when LERNO is true. The logical variable LSA
has no function in this phase of the computations.

When no observed quantity is contained in the record, both I0BS1 and
IOBS2 will have to be put equal to zero. Thus, in this case the record
will have to contain the height. (The program requires the presence of

at | east one datafield between the datafields occupied by the latitude and
the longitude and the datafield occupied by the logical variable LSTOP).

When IKP = 2 (weare predicting gravity quantities):
5.032 as 4.11

5.033 input as specified by 5.030.
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5.1 The value of LSTOP, true when no more quantities are to be predicted.
When LSTOP isfalse, jump to 5.0.

An input example is printed in Appendix B.
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7. Output and Output Options.

The output from the FORTRAN program has been designed with the purpose,
that the determination of T and subsequent predictions should be as well documented
as possible. This means, that nearly everything, which is used as input also will
be output.

There are a few exceptions:
(a) data of type (A) and (B) (cf. Section 6) are not printed,
(b) the potential coefficients are not printed,

(c) a measured gravity value is not printed, but the corresponding free-air
anomaly IS,

(d) more than two decimal digits of coordinates given in minutes or seconds
and of observations are generally not reproduced.

With these exceptions all input of type (C)to (F)are printed with proper headings
on the line printer.

We will now distinguish between non-optional and optional output. The out-
put can be made on two units, unit 6 the line printer and unit 7 the card punch. Non-
optional output is output on the line printer exclusively.

Non-optional output:

-A program identification is printed giving date of program version.

-The used mean Earth radius and the reference gravity used on the sphere in
equations (20)-(22)is printed.

-The equatorial gravity and the potential of the reference ellipsoid as computed
from the constants specifying the reference systems.

-The residual observations d,-,x,, and if meaningful: the contribution from the
datum transformation, from the potential coefficients, the first dataset (Collocation
I) and the second dataset (Collocation IT) and the sum o these contributions,

-The mredicted quantity and if meaningful: the contributions from the datum trans-
formation, the potential coefficients, Collocation | and II.

-The solutions to the normal equations,

-The estimated variance d the residual observed and predicted quantities, and

~-Error messages in case e.g. certain array limits are exceeded.
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Optional output on the line-printer:

-A legend o the labels of observations and predictions, (LLEG=true),

-The difference between observed and predicted quantities (LCOMP= true),

-The estimated error d prediction (LERNO = true),

-A primitive "map" of the predictions (LGRID= true and LMAP= true). (The
predicted quantities multiplied by 100 will be printed with the values predicted
in points with the same latitude on one line and the values predicted in points
with the same longitude above each other, see the '"map', Appendix C, page 125.)

-Mean value and variance of difference between observed and predicted quantities
and table of distribution of the differences samples according to specified sample

width (LCOMP is true).

Optional output on the card punch:

-The solutions to the normal equations b, and b, (LWRSOL= true)

-the observed quantities and the residual observations (LPUNCH= true),

-the predicted quantities, the estimated error (LERNO-= true), the difference
between observed and predicted quantities (LCOMP= true), and when LCOMP
is false, the predicted quantity in the original and the new reference system.

The solutions to the normal equation can be used as input to the program,
cf. Section 6, input specification No. 4.31.

An example of the output on the line printer is given in Appendix C.
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8. Recommendations and Conclusions.

A development of a computer program as the one presented here is a task,
which can be continued for years. But at some point it is necessary to stop and
present a fully documented program version, even if it is obvious that improve-
ments can be made.

Most of the recent ideas and investigations in the field of least squares
collocation are used in the program. Hence, the program may principally be
used for

-the determination of an approximation to the anomalous potential, T and

-prediction and filtering of gravity anomalies, deflections and height
anomalies.

The determination of T may be improved in several ways. The program
should be changed so that other types of data as e. g. density anomalies, satellite
orbit perturbations, and gravity gradients can be used as observations and pre-
dictions. The program should also be able to predict potential coefficients. The
covariance models, which can be used in the program are all isotropic. The use
of a non-isotropic covariance model may improve the determination of T.

In Section 3.2 it was pointed out, that the data had to be given in a geo-
centric refe ence system. Thus, the necessary translation parameters may be
estimated by including these quantities as parameters X, cf. eqg. (7)and (9),
Tscherning (1973) and Moritz (1972, Section 6).

It is also possible to add new data to an original set of observations, with-
out having to compute and invert the full covariance matrix. This type of compu-
tation is denoted sequential collocation cf. Moritz (1973). This feature may very
easily be incorporated in the program, especially because o the flexible design
of the subroutine NES (cf. Section 5.2 and the comments given to the subroutine
in Appendix A).

The determination of potential coefficients and datum shift parameters may
also be incorporated without difficulties. But the other proposed improvements
can not be made before the theoretical background and the necessary algorithms have
been devel oped.
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Appendix

A.

B.

C.

The FORTRAN 1V program.
An input example.

An output example.
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Appendix A.
The FORTRAN IV program.

Theprogram is written in the language FORTRAN 1V, cf. BM (1973). It may
be run on an IBM model. 370 computer equipped with an B M model 3330 disk
unit. The program may be compiled and executed using the catalogued pro-
cedure FORTXCLG, cf. IBM (1972, p. 89) using the following job control
language statements:

//  EXEC FORTXCLG, PARM. FORT='OPT(2)',
// TIME. FORT=(,30), REGION=252K
/IFORT. SYSINDD*

.

program statements

/IGO. FT 08F001 DD DSN=DASET, UNIT=SYSDA,
// SPACE=(12800,920), DISP=(, DELETE), DC B=(DSORG=DA, BUFNO=1)

//GO. SYSIN DD *

input data
/*
//
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PROGRAM GEODETIC COLLOCATI(iIN; VERSION 20 APR,y 1974, FORTRAN IV, (IFKM
360/70) . PROCGREAMMED BY CeCo TSCHERNINGy DANISH GEODETIC INSTITUTE/ [EPS.
GEODETIC SCIENCEe OSUa

THE PROGRAM COMPUTES AN APPROXIMATINN TO THE ANNMALOUS POTENTIAL OF
THE EARTH USING STEPWISE LEAST SQUARES COLLOCATION. THE METHOD REQUI-
RES THE SPFCIFICATION OF (1) ONE Oh TWQ (AND IN A SPFCIAL CASE THREE)
SETS OF OBSERVED QUANTITIES WITH KNOWN STANDARD DEVIATIONS AQD (2) ONE
OR TWO COVARIANCE FUNCTIONS.

THE COVARIANCE FUNCTIONS USFD ARE ISOTROPIC, THEY ARE SPECIFIED BY A
SET OF EMPIRICAL ANOMALY DEGREE~VARIANCES OF PEGRFF L E S THAN AN
INTEGER VARIAERLE IMAX, AND EY A ANOMALY DEGREFE-VARIANCE MODEL FOR THE
DEGREF-VARIANCES OF DEGREF GRFATHER THAN IMAX.

THE OBSERVATIONS MAY BF POVENTIAL COEFFICIENTS, MEAN OR POINT GRAVITY
ANOMALIES s HFIGHT ANOMALIES AND DEFLECTIONS OF TYE VERTICAL. A FIL-~
TERING OF THE OBSERVATIONS TAKES PLACE SIMULTANESUSLY WITH THF DETER-
MINATION OF THE ANOMALOUS POTENTIAL.

THE DETERMINATICN IS MALE IN A KRUMBER GF STEPS ENUAL TO THE NUMBER (OF
SETS CF OPSERVATIONS. WHEN POTENTI AL CCFFFICIENTS AFE USEDs WHLL THE-
ESE FORM A SEPERATE SET AND THE TOTAL NUMBER QOF SETS MAY IN THIS CASE
AMOUNT TO THREE,

EACH DATASET (EACH STEP) WILL DETERMIUE A HAGMONIC FUNCTIOMN, AND THE
ANOMALCUS POTENTTAL WILL BE EQUAL TO THE SUM OF THEESE (MAXIMALLY
THREE) FUNCTIONS.

POTENTIAL COEFFICIENTS WILL DETERMINE A FUNCTIOMN EQUAL TO THE COFFFI-
CIENTS MULTIPLIED BY THE CORRESPONDING SOLID SPHERICAL HARMONICS. THE
UP TO TWO SETS OF DATA DIFFERENT FRPM POTENTIAL COEFFICIENTS WILL
FACH RE USED TO DETERMINE CONSTANTS B{I}. THE COPRESPONNDING HARMONIC
FUNCTIONS ARE THEN FQUAL TO THEESE CONSTANTS MULTIPLIED 8Y TYE COVA-
RIANCE BETWEEN THE OBSERVATIONS AND THE VALUE OF THE ANGMALQOUS POT-
ENTIAL IN A PCINTs Pa

THE MAIN FUNCTION OQF THF PROCRAM IS, BESIDES THE COMPUTATION OF THE
CONSTANTS (0 S THE PREDICTION GF THE QUANTITIES 2ZFTA, DELTA G, KSI
AND ETA IN POINTS Q. THE PREDICTED VALUE IS EQUAL TO THE PRODUCT SUM
OF BUI} AND TEE COVARIANCE EETWEFN OBSERVATION NO.I AND THE QUANTITY
TC BRF PREDICTED.

REF(A): TSCHERNINGsC.C. AND R.H.RAPP: CLQOSED COVARIANCE FXPRESSIONS
FOR GRAVITY ANOMALIES, GEQID UNDULATIONS, AND DEFLECTIONS OF
THE VERTICAL IMPLIED BY ANOMALY DEGREE-VARIANCE MODELS. DEP-
ARTMENT OF GFODETIC SCIENCF, THE OHIO STATE UNIVERSITYs
REPORT NO. 208, 1974,

REF(B): TSCHERNING4+CeCe: A FORTRAN 1V PRGGRAM FOR THE DETERMINATION
OF THE ANOMALOUS POTENTHN AL USING STEPWISE LEAST SQUARES COL-
LOCATION,s DEPARTMEMT OF GEQDETIC SCIENCF, THE DOHIO STATE UNI-
VERSITY, REPORT NO. 212, 1974,

REF(C): HFISKANEN W.A. AND H.MORITZ: PHYSICAL GFOLESY, 1067,

REF(D): JAMES; ReWe: GEOFHYSeJsReASTR.SOC.s (1969) 17, 305.

IMPLICIT INTEGER({I,JsKyMeN)y LOGICAL(L)REAL *B{A-H,0-Z)}
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COMMON/PR/SIGMA(250),SIGMAD(250) ,B(160N)},P(42]),

¥SINLAT(1600) ,COSLAT(1600) yRLAT(LIENN) GRLONG(IE00)},COSLAP,SINLAP,

%RLATP yRLONGP 3y PP 4PRETAPyPREDPyPWyLONFCO, LNKSIP 4LNETAP,LDFFVO L NDFP,

HLGKPy LNGR 4LKEQL yLKFC3yLKNEL s IVIaNI 4 NRGKTYPE,INDEX(47)
IN /PR/ AKF STORED: DEGREE~VARIANCES (SIGMA,SIGMAO), THE CONSTANTS
B(I}y TWO CATALOGES OF OBSERVATIONS (2 AND 1 NDEX), LATITUDE AND COS,
SIN HERENDF AND LONGITUDE OF THE ObSERVATIOM POINT (SINLAT,COSLAT.PLAT,
RLONG) y CCRRESPONDING QUANTITIES FOR PDINT OF PRENICTION (P), RATIO RP
BETWEFN RADIUS OF SPHERE GN WHICH P IS SITUATED PND RB, TWO VARTABLES
IN WHICH PREDICTICNS AREF ACCUMULATED (PRFOP,PRETAP), A QUANTITY RELA-
TED TO TwE VARKIANCE OF THE OPSERVATIONS CR PREDICTIONS {PW), LOGICAL
VARTAELES USED TO DISTINGUISH BETWEEN DIFFERENT PREDICTION SITUATIONS
AND COVAR TANCE MODELS.

COMMON /CRW/WDBES(1£00)

IN /CPW/ ARE STORED THE APRIDRI STANDARD DEVIATIONS AS LONC AS THEY
APE NEEDED. THE STORAGE LOCATIONS ARE LATER USED FOR OTHER PURPQRSFS.

COMMON /EUCL/XeYyZ o XY XY240ISTR,01ISTZ
C IN //EUCLID/ APE STORED: THE EUCLIDIAN COORDINATES 0OF A POINT, THE
C DISTANCE aND THF SGQGUARE OF THE DISTANCE FROM THE Z- AXIS XY, XY3 AND
C THE CISTANCE AND THE SQUARF OF THE GISTANCF FROM THF ORIGIN DISTO AND
C DIST?.

COMMON /NESOL/C(4T00) yNCAT(100) yISZE{IND0) 4 NBL{310)4MAXBL, 1D

C IN /NESQOL/ ARE STORED: TWE ARRAY C USED TO TRANSFER TYE COEFFICIENTS
C OF THE NORMAL FQUATIONS AND THE SOLUTIONS TO AND FTOM DISK-~STOPAGE,
C NCAT, ISZE AND NBL HOLDS INFORMATION ABQOUT THE STORAGE SEQUENCF OF THE
C
c
C

OOOO0COOO0OO0

oM el

COLUMNS,; MAXEL IS THE NUMBER (OF BLNCKS OF SIZE C+NCAT+ISZE USFD NN THF
DISK* 1Q POINTS ON THE TRACK ON THE DISK AREA IN WHICH DATA IS TO EE
STOPED OR RETRIVED.
COMMON/OUTC/K29 K3y Kayg U K214 TUY s TANG, LPUNCH,LOUTC o LNTRAN, LNERNQ
%y LK30
COMMON /CHEAD/TA9IByIHyIP IT,IA14IB1,IP14y1T1,1C1,IC11,K1,10BS1,
*10BS2,LPCT4LC1,LC24LCREF,LKM
IN /0UTC/ AND /CHEAL/ ARE STORED INFORMATION USED TO HAYDLE THE DIF=-
FERENT 1/0 SITUATIONS.
COMMON/NOBSER/OBS(20)
COMMON /DCON/DO+D1,02,D3
COMMON /SCK/IKy1KO,1K1,41K2,IKA

(@ Ne]

DIMENSION IMAP(400) +FMT(9)3WP(5)+C1(1600),C2(1600)4+C32(1500)
*y COFF (630)
EQUIVALENCE (C(1),C1{1)),(C{1601),C2(1)),(C(3201),C3(1))

DATA REZGM/6371.003,3.98019/,LNEQ,LT
¥y LDEFF 4y LFyLGRIDyLERNOSLCOMP 4 LCOMZLWLONGy LPRED/ 2%, TRUE .y 8% ,FALSE.
*/ g NOgNAT g NLAZIC ISy ISOyI1sJR/6X0,42%2/

THE DIRECT=ACESS FILE DEFINED HERE IS USED FOR THE STORAGE 0OF THE
COEFFICIENTS OF THE NORMAL EQUATIONS. IT CAN HAVE UP T3 310 RECORDS
OF NT%3200 4-PYTE WORDS EACH. THE LIMIT IS ONLY DETERMINED BY THE DI-

OO0
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c

c
C

C
C

COOOOO0

MENSION DF THE ARRAY NRL {IN THE COMMON BLOCK /NESDL/}.
DEFINE FILE EB(920,3200,U,1Q}

INITIALIZATION OF VARIARLES, WHICH ARE 1IN COMMON BLDCKS.

DO = 0.0D0
D1 = 1.0D0
D2 = 2.0D0
D3 = 3.000
P(1} = DO
PL21} = DO

COSLAT(1600} = DI

SINLAT(1600) = 0O

RLAT{ 1&00) = DO

RLONG({1600G) = DO

CLA = PO

WP{1} = REXx®Z/GM

W = RE*%2 /CM¥Z206264.80600

WP(2) D1

WP{3)

WP (4)

WP(5)

BT =0

1P = 0O

LNERND = LT

LCPEF = LF

LC1 = LF

LC2 = LF

INDEX{1) = O

Do 1200 1
1700 SIGMAOL(L)

===

1, 250
DO

HEADINGS AND DEFINING CONSTANTS,
WRITE(6+104])

104 FORMAT(!1CGEODETIC COLLOCATIONSVERSION 20 APR 1974.%'//}
WRITE(6,113}

113 FORMAT(*ONDTE THAT THE FUNCTIONALS ARE IN SPHERICAL APPROXIMATION®
*/? MEAN RADIUS = RE = 6371 KM AND MEAN GRAVITY 981 KGAL USED.?)

INPUT OF 5 LOGICAL VARIABLESy LTRAN = COORDINATFS ARE T0! SE TRANS=
FORMED TO NEW RFFERENCE SYSTEMs LPOT = POTEYTIAL COEFFICIENTS ARE TO
BE USED AS FIRST SET OF GBSERVATIONS, LONEQ = OUTPUT COEFFICIENTS OF
NORMAL EQUATIONS ON UNIT 69 LLEGN = OUTPUT LEGEND OF TABLES OF DORSFR=
VATIOYS OR PREDICTIONS AND LE = TAKE ERRORS OF OBSERVATIONS INTO AC-
COUNT.

READ({5+105)LTRANyLPOT LONEQ+LLEGLE
BO5 FORMAT(5L2)

LNTRAN = .NOT.LTRAN

LNPOT = NOTLLPOT

IF {(4NOT.LE) WRITE(6,118)
118 FORMAT(' ERRORS IN CBSERVATIONS ARE NOT TAKFN INTO ACCOUNT. ')
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| F (LLEG) WRITF(64114)

114 FORMAT(*OLEGEND OF TABLES OF QESERVATIONS AND PREDICTINNSzt,/,
¥ 0BS = ORSERVED VALUE (WHEN BOTH COMPONENTS 0OF DEFLECTIONS ARF?/,
** UBSERVE[L ETA BFLOW KSI)y DIF =THE DIFFEREMCEF BETWEEMN O3 SFRVFD!/,
' AND PRETICTED VALUF, WHEM PREDICTIONS ARE: COMPUTFD AND RLSE'/,
%' THF RESIDUAL GBSERVATION, ERR = FSTIMATED ERRQOR OF PRENICTIONS/,
*¥¢ TRA = CONTRIBUTICN FROM DATUM TRANSFORMATICON, POT = CONTRI='/,
¥' BUTION FROM POTENTIAL COEFFICIENTS, COLL = CONTRIBUTION FROME/,
¥t COLLOCATION DETERMINED PART OF FSTIMATE, WHEN THERE ONLY HASH!/,
9 PEFY USED ONE SET QF GBSERVATIONS (DIFFERENT FROM POT.COFFF,.)®/,
¥ COLLYI = CONTRIBUTION FROM ESTIMATE OF ANOMALNUS P0OT. DETER=-'/,
¢ MINFD FSOM FIRST SET OF OBSERVATIONS, COLLZ2 = CONTRIBUTION®/,
%t FROM ESTIMATE OBTAINED FROM SECOND SET OF ORSFRVATIONS, PRED=Y/,
%¢ PREDICTFD VALUE IN NEW REFFRENCE SYSTEM, WHEN PREDICTIONS APE'/,
** COMPUTECD AMD FLSE THE SUM OF THF CONTRIBUTIONS FROM THF PNDT.%/,
%¥?* COEFFICIENTS AND FIRST ESTIMATE OF ANOMALOUS POTENTIAL. AND'/,
%1 PRE[~TRA = PREDICTIPN PR SU¥ OF CONTRIEBUTINANS IN THF OLL ReE=%/,
' FERENCE SYSTEM.")

C INPUT OF DATA OF REFERFYCF SYSTEM.
WRITE(64,106)
106 FORMATI{'OREFERENCE SYSTEM:')
C INPUT OF TFXT DESCRIBING REFERENCE SYSTEM (MAX.72 CHARACTERS).
READ(5:103)FMT
WRITE (64 FMT)
C INPUT OF SEMI-MAJOR AXIS (METERS)s 1/FLATTENINGs VALUE OF TWO LOGICAL
C VARIABLES, LPGTSD = GRAVITY IN POTSDAM SYSTFM AND LGRS67 = GPAVITY RE=-
C FER TO GRS 1967.
READ(54120)AX14F0O4LPOTSD,LGRSGT
120 FORMAT(F1l0.1,F10.5,2L2)
F1 = D1/FN
E21 = F1*%{(N2-F1)
IF (LPOTSD.ORLLGRSETY GO TO 1021
C INPUT OF GM OF PEFERENCF- SYSTFM OF ORSERVATIONS.
READ(5,121)CM1
121 FORMATI(D15.8)
1021 IF{.NOT.LGRSET) CALL CRAVC(AX14F1,GM1,+0,LPOTSDUREFC,05RFF)
| F (LGRS6ET) CALL GRAVC(6378160.0D0,01/298.247T17D0,3.96603D14,0,
*®LFeURFFO,GREF)
WRITE(64122}AX1+FO,GREF(UREFOQ
122 FORMAT(*QOA =8, F10.1,t Mo/,
x®® 1/F I'QFIO'S/p
*? REFLGRAVITY AT EQUATOR =%",F12.2+' MGAL'/,
U POTENTIAL AT REF.ELL. =9 4F12.2+% M¥X2/SECH*2Y/,
%% GRAVITY FORMULA:Y)
IF (LPOTSD) WRITE{(64123)
IF (JNOT.(LPOTSCOF LGRSET)IWRITE(6,4124)GM]
123 FORMAT(® INTERNATIONAL GRAVITY FORMULA, POTSDAM SYSTEM.')
124 FORMAT(Y COEFFICIENTS COMPUTED, USING GM =*,D15.8/)
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C

IF (LOGRSETIWRITE(E,125)
125 FORMAT(* GRS 1967 USED.Y)

LNTP = LNPOT.ANDLLNTRAN
IF (LNTP) GO TO 1030
IF (LNTRAN) GO T0O 1097

INPUT OF TRANSFOPMATION ELEMENTS: NEW SEMI-MAJOR AXIS (AX2, MEFTERS),
NEW CM (GM2, METERS®¥Z/SECH%2], 1/FLATTENING, THE COORDINATES NF THE
CENTER QF THE REFERENCF ELLIPSOID { THE TRANSLATION VECT2R) (DX,DY.NZ)
IN METERSs THF CHANGE DL IN SCALE, AND THF ROTATION ANGLES EPSI1, EPSZ.
EPS3 ARCGUND THE X,Y,Z AXES IN ARCSEC. THEN THE VALUF OF A LOGICAL
VARTABLE LCHANG, WHICHY IS TRUE, WYEN WHEN TUE DEFLECTIONS AND THF
HEICHT ANOMALIES (BUT NGT THE CCORDINATES) HAVE TN BE CHANGED. THIS
CHANGE MUST BE GIVEN AS A CHANGE IN THE NEFLECTIONS AND THE HEICHT
ANOMALY IN A PGINT WITH COBRDINATES (LATO, LONGO}.

THE COCRDINATES MUST BF INPUT IN DFGRFES, MINUTES AND SFCONDSe FOL-
LOWED BY THRE TRANSFORMATION ELEMENTS IN KSIe ETA AND ZETA (DKSIOs
DETAO,DZETACY IN ARCSEC ANO METERS.

READ(Es131)AX23GM23F230LsDXsNYDZ4EPS]1,LEPS2,EPS3,LOHANG
131 FORMATIFI04Y D157 eF1054D1Ca2/3FT4143F6,2,L2)
WRITE (65 122VAX2 sGM2,,F 24 0L DX DY DZEPSLFPS2,EPS3

132 FORMAT ('O NFEW A NEW GM NEW 1/F%/,
¥F10.1,015.7,F10.5,//
% DL oX Dy D2 4/ sD10e2:3FT7cle/ /s
*V  EPSY1  EPS2 EPS3%,/+:3F6.2)
F2 = Dl/F2

E22 = F2%(D2-F2)
CALL GRAVCIAXZ4F2+GM2415,LFUREFO,GREF)
WRITE (63125 )GREF,UREFQ
135 FORMAT{'0 NEW REF, GRAVITY AT EQUATOR=',F12.25% MGAL",/
' NEW POTENTIAL AT ELLIPSOID =f,F12.2,% M¥%k2/SECX%2%,/)
IF (NOT.LCHANG) GO TO 1022

READ(S5,133)I0LAT MLAT4SLAT,IOLONsMLON,SLON,DKSIO,DETAQ,DZETAD
133 FORMAT{ZI3yFHe24213yF6a2s2F62)

WRITE(6+134) IDLAT yMLAT, SLAT s IDLONSsMLON, SLON,DKSIOZDETAN,DZRETAD
124 FORMAT('ODREFLECTIONS AND HEIGHT ANOMALIES CHANGED INt4/,

*f  LATITUCE LONGITUDE BY CKSI DETA DZETA',/,

*¥213:F6.292129F66233F7.2)

CALL RAD(IDLATsMLATsSLAT,RLATO,1)

CALL RALG(IDLON,MLON,SLONyRLONGO,1)

1022 CALL ITRAN(DX DY,DZ,EPS1,EPSZ,EPS23,DLAX2,E22,RLATORLONGO,

*DKSIOsDETAOSDZETAO, LCHANG)

GO 7O 1008
1097 E22 = E21
AXZ = AX1

1008 IF (LNPQOT) GO TO 1020
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C

c

Cc
Cc
Cc

INPUT OF TFXT DESCRIBING SOURCE OF THE POTENTIAL COEFFICIENTS (MAX. 73
CHARACTERS) .
READ(5,103)FMT
WRITE(&,130)
130 FORMAT(*OSOURCE OF THF POTFNTIAL COEFFICIENTS USED:')
WRITE(6,FMT)

INPUT OF GM (METERS**32/SEC*#%2), A (METERS), THE NORMALIZED CONEFFICIENT
CF DEGREE TwD AND OPCEP ZERC (TRE SECOND DEGRFE ZONAL HARMNONIC) MUL-
TIPLIED 8Y 1.0D6y THE MAXIMAL DEGREE OF THE COEFFICIENTSy A LCGICAL
VARITABLE, TPUE WHEN THE COEFFICIEYTS ARE PUNCHED WITH A FIXED NUMBER
ON EACH CARD AND FALSE, WHEN THF COEFFICIENTS OF THE ZOMAL HARMONICS
ARF PUNCHED SEPERATLY ON ONE CARP AND TYE 0OTHFR COFFFICIENTS WITH THE
COEFFICIENTS OF THF SAMF CROER AND DEGREE ONE ONE CARD. IN BOTH CASES
MUST TWE COEFFICIENTS EF PUNCWRED ACCORDING TO INCREASING DEGREF AND
ORDER. ALL COEFFICIEYTS MUST EE NORMALIZED AND MULTIPLIED BY 1.0D6.

READ(54+137)GMPAXsCOFF(5) JNMAX LFM
137 FORMAT(D15.83,F11414F10e4,14,L72)

WRITE (649128)GMP,AX s COFF (5 ) yNMAX
138 FORMATI('O GH A CCFF (5) MAX.DEGREE?",/

*¥015:.84F11e19F10e4,14)

I F (NMAX.LT.24) GO TO 1009

WRITE(6,140)
140 FORMAT(* YMAX TOO BIG.')

GO TO 9969

1009 NZ = (NMEX+1)*%x2
INPUT OF FQORMAT OF COEFF.

READ(5,4102)FMT
IF (LFM) CO TG 1225
READ(S FMT) (COFF(L),
M =9
DO 1224 J = 34 NMAX
IJN = JM+1
IM = JUN+2*J
READ(5,FMT)}COFF (JUN)
JN = JN+1

1224 READ(S5FMTY(COFF(I),y 1
GG TO 1226

1225 READ(S,FMT)(COFFIT), 1

1226 DO 1034 1 = 1, 4
COFF(I1+N2) = DO

1034 COFF(1) = GO

6y 9)

[}

i

JNy JM)

6y N2)

CALL IGPOTI(GMP, AXCRFFyNZ2+4,NMAX)
[F (.NOT<LTRAN) CALL GRAVC(AX+F1,GMP4154LF,UREFQ,GRFF)

COLLOCATION SECTICON: INITIALIZATION OF VARIABLES.
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1050 N = O
WKITE(E45109)
109 FORMATI*OSTART OF CCLLOCATION It}
INPUT CIF THF INTEGEP KTYPE OETERMINING TYPE OF DEGREE- VARIANCE MODEL
USFD FOR DEGREE-VARIANCES OF NEGREE CREATHER THAY IMAX (SEE BELOW) s
KTYPE MAY BE EQUAL TO 1, 2 AND 3 CORRESPONDING TO THE DEGREE~VARIANCE
MUDELS 1y ? AND 24 CFe REF(B}y SECTION 2.2
READ(5,10Z)KTYPE
LKEQY KTYPE.FQ.1
LKEQ3 KTIYPE.EQ.3
LEKNEL = «NOT.LKEQL
IF (KTYPE.LT.3} GO TO 1036
READ(5.,107) IK
107 FORMAT{I4)
IF (KTYPE.LE.,O 0OR. KTYPE.GE«.4) GO TO 9999

INITIALIZATION OF VARIABLES | N COMMON BLOCK /SCK/.
IKO = IX-~-1
IK1 = IK+1
IK2 = IK+?2
TKA = IK2*%1K1

1026 WRITE{E,141)
141 FORMAT{'NTHE MODEL ANOMALY DEGREE-VARIANCES ARE EQUAL TO%/,
¥ Ax(I-1)/%)
GO T0 (103741038,1039),KTYPE
1027 WRITE(6,:142)
142 FORMAT(®+1,9X t1.")
G0 1O 1000
1038 WRITE(&5143)
143 FORMAT(v+°%,9X,0(1~2},7")
GO TO 1¢€Q00
1039 WRITEL(6,144) 1K
144 FORMAT(®+ 00XV {((I~2)%x([+%414,%)),.%)

1000 CNR = DN
NO 1035 1 = 1y 250
1035 SIGMA(N) = ©O

SESQES = 0O
SUMSIG = DO
SUMRST = DO
ivi = -1
MAXC1 =1

INPUT OF CONSTANTS USED FOR THE FINAL SPECIFICATION OF THE DEGREE-VAR-
IANCE MODfL. R = RATIO EBETWEEN THE BJERHAMMAR SPHERE RADIUS AND THE
MEAN FARTHY RADIUS, VARDCZ = VARIANCE OF TKE GRAVITY ANOMALIES AND IMAX
WHICH IS EQUAL TO THE OFDER OF TWE LOCAL COVARIANCE FUNCTION USFD.
THUS IMAX=0 INDICATES, THAT WE ARE USING A GLOBAL COVARIANCE FUNCTION.
IN THIS LAST CASE 4 SET OF EMPIRICAL ANOMALY DEGREE-VARIANCES OF ORDER
UP TO IMAXO CAN DE INPUT, THEESE DEGREE-VARIANCES WILL HAVE TO BE
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C GIVFN ON THE SURFACE OF THE MEAN EARTH, CF.REF(BR),EQ.(2P).
READ(5,101)R, VARDG2 ,IMAX
101 FORMATI(KFG .6 4FT.2,414)
|F (ReGTeD]l ¢NRoe VARDG2eLTeD0ORIMAXLTL0) GO TO 9999
LZERD = IMAX «NE. O
IMAX] = IMAX+1
IF(LZFRO)GO TO 1040
C INPUT OF THF FQRMAT OF, THE HIGHEST DEGREE OF, AND THF EMPIRICAL AND-
C KALY DEGREF-VARIANCES IN UYITS OF MGAL%%2,
102 FORMAT (129
READ(5,102) IMAXO
IMAX = IMAXO
IMAX1 = IMAX+]
READ(S, 102) EMT
103 FORMAT(QAR)
READ(S5,FMT) (SIGMA(I), 1 = 2, IMAX1)
C NOTE THAT THF DFCREF-VARIANCE OF ORDER 1 |S STORED IN SIGMA(I+1).

DO 1001 I = 3, IMAX1
1001 SUMSIG = SUMSIG + SIGMA(I)
1040 | F (IMAX1+1S.LT«250) GO TG 1002
WRITE(&4108)
108 FORMAT(® SUBSCRIPTS 0§ ARRAY SIGMA EXCEEDS ARRAY LIMIT, STNP.*)

GO TO 99ga
C
1002 S = R*%R
$2 = Sx%S§
RL = (D1-R)*(DLl+R)
S1 = RL

RLNL = DLOG(RL)
|F (IMAX.LT.2) GO TO 1004
RI = DFLOAT{IMAX)
DO 1003 J = 3, IMAX
GO TO (1101,1102,1103),KTYPE
1101 RA = (RI-D1}/RI
GO TO 1105
1102 RA = (RI-D1}/(RI-N2)
GO TO 1105
1103 RA = (RI-D1)/({(RI-D2)%(RI+]IK))
1105 SUMRST = {SUMRST+RA)*S
1003 Rl = RI- D1
C
SUMRST = SUMRST*E2
1004 DIF = VARNGZ-SUMSIG
IF (DIF.LT.DO) GO TO G999
C COMPUTATION OF THE NORMAL1ZING CONSTANT Ay CF. REF.{B) PARA. 3030
GO TO (11064+1107,1108)4KTYPE
1106 RA = RLNL+S/RL=-S2/D2
GO TO 1110
1107 RA = B1/RL-S2*%RLNL-S2-S-D1
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60 TO 1110

1108 CALL SUMK{S:SZ2;RLsS1sDIsRAJWyPW LT, LT}
Re ={=S2%RLNL+IKI*RA)/FIK2

1110 A = DIF/{RA=SUMRST]

IF {IMAX .LT. 3} GO TO 1006
IF (LKEQL) SIGMAO{3+1IS) = SiGMA(3}-A%S2/02

S = §2

RT = D3

RI1 = D2

DN 1005 1 = 4, IMAXI
ST = SIx§

GO TO (1111,1112,1113}4KTYPE
1111 RA = DI/{KI%RI11)
GO TO 1115
1112 RA = 1/{RI1IX{(RI-D2}}
CO 70 1115
1113 RA = 1/{RI1%(RI-D2}1*{R1+IXK))
1115 SIGMAO(LI+ISY = SIGHMA{I)/{RI1%*%2)~A%RA%RS]
RI1 = RI1
1005 RI = RI1+0D1
C THE DEG.VAR., 0OF TWE COVARIANCE FUNCTION OF THE ANDMALCUS POTENTIAL
C ARE STORED IN THE FIRST PART OF SIGMA (SUBSCRIPT 1 TO IMAXIRY} FOR COL-
C LOCATIGN I AN IN THE LAST PART (SUBSCRIPT IS=IMAXIR+3 T IS+IMAX1)
C FOR COLLOCATION 1T1.
C
1006 U0 = D2-DLI/DFLOAT{IMAX1+1)
C
110 FORMAT(YNRATIN ®/RE = VoF9. 64/
¥t VARTANCF OF POINT GRAVITY ANOMALIES FyF10.2,% MGALX%Z ¥/
C THE FACTOR A PeF10624°% MGAL*®¥Z ')
AO = A/(S5*S)
WRITE(&.110)R:VARECG2, A0
111 FORMAT(13:* EMPIRICAL ANCMALY DEGREE-VARIANCES FOR DEGREE > 149/,
¥ (IN UNITS OF MGAL*¥2):t)

Hon

IF{LZFRO)GD TO 1014
WRITE{&;111)1IMAX
WRITE(64FMT) (SIGMA(L)y 1 = 34 IMAX1)
GO TO 1015
C
1014 WRITE(64112)IMAX
112 FORMAT( 14,' DEGREE-~VARIANCES EQUAL TG ZERO')
c
C INPUT OF ORSERVATIONS OR COORDINATES OF PREDICTION POINTS.
1015 WRITE(4,225)
225 FORMAT{®*C OBSEFRVATIONS:Y'/)
IFILNEQ)IGD TO 2006
C
C INPUT OF LOGICALS DEFINING TYPE OF PREDICTION QUT-PUT. LGRID IS TRUE,
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C
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oNsoNoNoNoNoNoNoNORa N

WHEN PREDICTICNS SHALL BE MADF IN PQINTS CF A UNMIFORM GRID, LFERND IS
TRUE WHEN THE ESTIMATED ERRPR OF FREDICTION SHALL PE CNMPUTED. LCOMP
1S TRUF, WHEN OBSERVED AND FRENDICTED VALUES SYALL BE COMPAIRED.

2000 REAND(E,4,200)LGRID,LFFNO,LCOMP

200 FORPMAT(3L?)
1F («NDT.(LERNDLANDLLRESOL)) GO TO 2002
LERNO = LF
WRITE(64226)
226 FORMAT(' =*#%% ERRQR WILL NOT BE COMPUTED, REQUIRED YFQ NOT STORED.
KA ¥)

2002 LCOMP = LCOMP LAND.(.NOT.LGRID)

| F (LCOMOR«({NOTLLCOMP)Y) GO TO 2005

LcoM = LT
INPUT OF SCALE FACTCRS, USED FOR TABLE OF DISTRIBUTION OF DIFFERENCE,
SEE SUBROUTINE CONMPA.

READ(5,203)VG,4VF

CALL COMPA(VG,VF)
VG IN MGAL AND VF IN ARCSEC.

2005 LNERNO = JNOT .LERNDO

LMAP = LF
LMEGR = LF
DM = D1
DA = DO
1IF{.NOT.LGRIDIGE TO 2006
INPUT oF cecneinefES (LaTITUDE,LONGITUDE IN DEGREES AND DEC. 0OF M
TES) OF SOUTH-WEST CORNER OF GRID, MAGYITUDE OF GYID INCREMENTS | N
NORTHERN AND EASTERN DIRECTIOYS (MINUTES), NUMBER 0OF INCREMFNTS | N
THE SAME DIPECTIONS, THE VALUE OF IKP: (1 FOR ZETA, 2 FOR DELTA
Gy 3 FOR KSIy 4 FCR FTA AND 5 FOR (KSI+ETA)), RP = THE RATIC B8ETWEEN
THE RADIUS OF THE SPHERE ON WHICH TYE POINTS CF PREDICTION ARE SITUA-
TED AND RE, THE VALUE OF LMAP, WMICH IS TRUE, WMEN THE PREDICTIONS
SHALL BE PRINTED AS A PRIMITIVE MAP? THE VALUE OF LPUNCH, WHICH IS
TRUE WHEY THE PREDICTIONS SHALL BE PUNCHED AND THE VALUE OF LMEAN,
TRUE WHEN THE PREDICTED QUANTITIES ARE MFAN VALUES (BECAUSE THIS IM-
PLIES? THAT THEY ARE REPRESENTED AS POINT VALUFS IN A CFRTAIN HEIGHT).
READ{54201) IDLACySLAC +IDLOC ySLOC +GLA,GLO ¢NLAGNLDy IKP,RPyLMAP,
*LPUNCH,y LMEAN
201 FORMAT(?( 159F642) 32F7.24214412,F10.7,3L2)
IF (NLA.GT.19 .OR. NLO.GT.19 .OR. IKP.EQ.5) LMAP = .FALSE.
LWLONG = LF
LGRP = IKP.EQ.2

NAI = 0
NOI = 0O
IinBsS2 =0
IH = 0
H =D0

IF («NOT.LMEAN) H = (RP-D1)*RE
LKM = H.GE.1.0D4
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HO = H

0BS(i) = K
IF (LKM} 0OBS({1} = W%l .,00-3
LSTOP = LT
TANG = 2
NO = O
2001 SLAT = NAT*CGLA+SLAC
SLON = NOI%GLO+SLOC
ISLA = SLAT/60+0,10-2
ISLO = SLON/60+0,10-2

IDLAT = ICLAC+ISLA
IDLON = IDLOC+ISLO
SLAT SLAT=-60% ISLA
SLON SLON=-6O* ISLO
NE = NO+1
H = HO
IF {(NOI JFQ. NLO}Y GO TO 2003
NO1l = NQI+1
GO TO 2004
2003 NOI = O
NAI = NAaI+1
2004 IF(NAT.NE.0O oCR. NQI «NEs 1)GC TO 2031
GO 1O 2007

ion

INPUT OF DONE PATA-SET OF OBSERVATIONS OR COORDINATES OF PREDICTINN
POINTS. ALL RECORDS MUST EE PUNCKHED IN THE SAME WAY, THERE ARE THE
FOLLOWING RESTRICTIONS AND GPTIONS: A STATION NUMABER MAY BE USED, BUT
I T MUST OCCUPY THE FIRST GATAFIELD 0ON THF RECORD. THE TWO NEXT DATA=-
FIELDS MUST CCONTAIN THE GEODETIC LATITUDE AND LONGITUDE ( IN AN AREI-
TRARY ORDER}. IN CASE THE HEIGHT IS GIVEN, MUST IT BE PUNCHED IN TVE
NEXT DATAFIELD. THE FOLLOWING UP TO FOUR DATPFIELDS WILL WAVE TO
CONTAIN THE OBSERVED QUANTITY (GR QUANTITIES WHFN A PAIR 0OF DEFLECTI-
ONS ARE CESFRVED) AND CONTINGENTLY THE STANDARD DEVIATIONS (WHEN LE IS
TRUE AND LSA 1S FALSE), A LIST OF COCRDINATES OF PQINTS WILL HAVE TO
CONTAIN A HEIGHYT QR A FICTICICUS OBSERVATION. T“E LAST DATAFIELD HAVF
TO HOLD THE VALUE OF A LOGICAL VARIABLE LSTOPs TRUE FOR THE LAST
RECORD IN THE FILE AND FALSE {I.E. BLANK) OTHERWISFE.

INPUT OF THE FORMAT OF THE RECORDS HGLDING THE OBSERVATION OR THE CO-
DRDINATES GF THE PREDICTICN PGQINT.
2006 READ(5,103)FKT

IYPUT OF VARIABLES SPECIFYIYG THE CONTENT OF THF RECORDS. INQ = 1y
WHEN THE STATION NUMBER | S PUNCHED, O DTHERWISE, 1LA, ILO THE NUMBER
OF THE DATAFIELDS QOCCUPIED FY THE LATITUDE ANC! THF LONGITUDE RESPEC-
TIVELYs IANG SPECIFYING UNITS OF ANGLES (1 FOR DEGREES, MINUTES* ARC-
SECONDS, ? FOR DEGREES, MINLTES, 3 FOR GEGREFS AND 4 FOR 400-GRADES],
lu= THE NUMBER OF TYE DATAFIELD “QOLDING THE HEIGHT (ZERO WHEN NO
HEIGHT IS CONTAINED), IORS1, I10BS2 = THE DATAFIELD NUMBER OF THE FIRST
AND THF SECOND OBSERVATION, RESPFCTHVELY (Z&R1J WHEY NA FIRST OR SECOND
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OBSERVATINN)y IKPy SPECIFYIYG THE KIND OF NBSERVATION, (1 FOR ZETA, 2
FOR MEASURED GRAVITY* POINT OR MEAN GRAVITY ANOMALIFES, 3 FOR KSI, 4
FOR ETA AMD 5 FNR PAIR OF DEFLECTIONS (KSILETA) OR (ETALKSI),(IN THE
SAME ORDER AS THE LATITUDE AND THE LOKNGITUDE))e.
TUEN TYE PATIC RP (CF.REF(B),y EQ.{87)) BETWEEN THE SPHERE ON WHICH THE
OBSERVATIONS ARE SITUATED AYD RE, THE VALUES OF 5 LOGICAL VARTABLES:
LPUNCH = PUNCH 08S. OR PRFDICTED VALUE AND CONTIMGFNTLY THEIR DIFFE-
RENCE* LWLONG = LONGITUDE IS PGSITIVE TOWARDS WEST, LMEAN = THE DYED-
1CTED OR OBSERVED QUANTITY 1S A MEAN VALUE* LSA = ALL OBESFRVED CUAN-
TITIES “AVE TYE SAME STANDARD DEVIATIONS AND LKM = THE HEIGHT 1S IN
UNITS OF KILOMETERS,
READ(5,202) INOs ILAy ILOy IANGyIHyI0BS1,410BS24IKPoRPSLPUNCH, LWLONG
¥y LMEAN,LSAyLKHM
202 FORMAT(EI34F10.7,5L2)
GM = D1
DA = DO
LGRP = IKP.EQ.2
| F {LGRPI READR(54203)DCMsDAyLMEGR
LMEGR | S TRUf, WHEN THE MEASURED GRAVITY VALUE IS INPUT. DM AND DA ARF
AN ADDITIVE ANC A MULTIPLICATIVE CONSTANT* RESPECTIVFLY, WHICH CAN BF
USED TO CONVERT INPUT VALUES TO MGAL CR CORRECT FNOR A SYSTEMATICAL
FRROR .
203 FORMAT(2F10.2,L2)
INPUT OF STANDARD DEVIATLON.
I F (LSA) READ(5,212)WM
212 FORMAT(F6.2)

2007 LRFPEC = IKP.FQ.5

INITIALIZATION GF VARIABLES I N COMMON BLOCK /PR/.

LONECD = (NOT.LREPEC
LNKSIP = [KP.NE.3 .AND. LONECO
LNETAP = IKP.NE .4 <AND. LONECO
LDEFVP = IKP +GTs 2

LNDFP = «NOT.LDEFVP

LNGR = «NOT.LGRP
LREPEC IS TRUF, WHEN TWO COLUMNS CAN BE COHPUTED AT THE SAME TIME.
LNSKIP, LNETAP | S TRUE, WHEN THE OBSERVATION OR REQUESTED PREDICTION
IN P IS NOT KS1 PESP. ETA.

LZETA = IKP.EQ.1

LKSIP = «NOT.LNKSIP

IF (RP,LT.R) RP = D1
CHECK? THAT POINT IS NOT INSIDE THE BJERHAMMAR—~SPHERE.,

COMPUTATION OF CONSTANTS USED T0O NORMALIZE THE NORMAL-EGQUATIONS n0R
SCALE THE ESTIMATES OF THE ERR(RS OF PREDICTION.

NI = MAXC1
P(JR) = D1
P(JR+1) = RP

INDEX (JR+1) = IKP
PW = D1
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casLaP = D1
SINLAP = DO
RLATP = ©O
RLONCP= D0

CALL PREDN(SsSREFUCsAISe1599 3 JRs1s1 s IMAXIZLFyLFsLT)
PW = C{MAXC1)

IF (PWGCT.LO) PW = DSCRT(PW)

P{JR} = PW

W = WP{IKP)

IF (LNGR)} W = WH*RP*RP

IF {LZETA) W = W*RP

PWO = PR*W

PW2 = PWO%PWQ

IF (LCREF) JVL = =1

OUTPUT OF HEACIYG AND INITIALIZATION OF VARIABLES.
LINVDE = LONECODOR.(IOBS2.EG.0)0R(INBS1.LT.108BS2)
LOUTC = LNEG.OR.LCOMP
| F (LMEFAN) WRITE(6:20%)
205 FCORMAT(*OTHE FOLLOWING QUANTITIES APE MEAN-VALUES, AND ARE REPRESE
*NTED AS PUINT VALUES IMN A HEIGHT R.TY)
| F (RPoGT 1+03006ANDW (LKSIP.ORLCRP) <ANDL(LTRANSCR.LPNT]} e AND,
¥LPOTSD) WEITE{&5204)
204*FURMAT('O** WARNING: THE HEIGHT MAY BE TCO BIG FOR THE COMPUTATION
NDFty/+®* THE REFERENCE GRAVITY OR THE CYANGE IN LATITUDE *%!')

CALL HEAD{IKPLONECO,PWOyRP)
INITIALIZATION OF LOGICAL VARIAEBLES USED TG DETERMINE WHICH QUANTITIES
WE WILL HAVE TO ADD TOGETHER TO FOPM THE FINAL OUTPUT OR TO DETERMINE
WHICH QUANTITIES WILL BE INPUT.

LADRA = IB.NE.TA

LADDBC = IB.NELIC1

LADDBP = IB.NE.1P

LADBPR = LADDBP-AND.LREPEC

LTYB = LTRANAND.{IT.NE.IB)

LTEB = LTRAN.AND(IT.FQ.18B)

LOEL = LEAND.(NOT.LSA).AND.LONECOD
LOE2 = LEAND<l{ «NOT.LSA).ANDLLREPEC

K1 “AS PEEN INITIALIZED BY THE CALL OF 'HEAD' IT IS EQUAL TO THE NUM-
BER OF QUANTITEESREAD IN TO TWE ARRAY O0BS.

IF (LDEL) K1 = Kl+1

| F {(LOE2)} K1 = K1+2

|F (LGRID} GO TO 2031
IF {LCOMP) CALL COMPB(IKP,LNGFR,LREPFC,LONECO)
INPUT OF CDORDINATES OF OBSERVATION OR PREDICTION POINTS 4YD CONTIN-

GFNTLY THE OESFRVED QUANTITIES AND THEIR STANDARD DEVIATIONS.
Id = TANG*2+INO-1
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2023
2024

2025

2026
2027
2028
2029

C
2030

GO TO(20244,2025,2026,2027,202842029,2028,2029),1J

READ(S5yFMT) IDLATyMLAT ySLAT 1OLON ¢MLONSSLON(DOBS(I)5I=14K1),LSTOP
GOTO 2030

READ(SFMTIND 4 IDLAT yMLAT 4 SLAT S IDLONSMLONGSLON, (OBS( 1) 41=1,K1),
*LSTOP

GO TO 2020
READ(S5,FMT)IDLAT,SLAT,IDLON,SLON,(OES(I),1=1,K1),LSTOP

GoOTOh 2030
READ(S+FMTINOsIDLATSSLAT, IDLONSLON, (OBS(1)4I=1,K1),yLSTNP

GOTO 2030

READ(S,FMT)SLAT ySLONy (OBS(1)41=14K1)4LSTOP

GO TO 2030

READ(S,FMTINOGSLAT,,SLON, (CBS(1)9I=1,K1),LSTOP

IF(ILA LT. ILO)GC TO 2031

C CORRECTING IYVERTED ORDER JF LAT. AND LONG*

2050

C CCR
c (IS
2051

I = IDLAT
IDLAT = ICGLGN
IDLON = 1

I = MLAT

MLAT = MLOCN
MLON = 1

AQ = SLAT
SLAT = SLON
SLON = AOQ

CALL RADUIDLAT MLATSLAT,RLATP,IANG)

I F {LWLONG.AND, IANG.LE.2) IDLON = —=IDLON
| F (LWLONG.ANDIANG.GT.2) SLON = -SLON
CALL RAD(IDLON,yMLON,SLONyRLONGP ¢ IANG)
COSLAP = DCOS(RLATP)

SINLAP = GSIN(RLATP)

IF (LGRID) GO TO 2049

(LOE1) WOBS(N+1) = 0OBS(K1)
(LCE2) WOBS(N+1) = DBS(K1-1)
(LOE2) WGBS(IN+2) OBS (K1)

(IH.NE.O) GO TO 2050
(LREPEC) CBS{12) = 0BES(2)

0BS(2) = DBRS(1)

0BS(1) = 0O

GO TO 2051

0B8S(12) = DBS(3)

| F {(LWLCNGoAND. IKP.GTo3) 0OBS(12) = -QRS(12)
RECTING THF OBRSERVATION BY AN ADDITIVE AND MULTIPLICATIVE CONSTANT
USED ONLY FOR GRAVITY OBSERVATIONS).

OBS(2) = 0BS{2)*DM+DA

H = 08S(1)

IF (LKM) H = H%x1.0D2

M T T T m

C CONVERSION OF HEIGHT INTO METERS.
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2049 | F {LNGR} GO 10 2056
C

IF (“.6GT.25.002 . AND( NOTLPOTSD)ICALL EUCLID(COSLAP,SINLAP,

¥RLONGP sH,E215AX1)
CALL RGRAVI(SINLAP,H,0CREF)
C COMPUTING THE GRAVITY ANOMALY.
IF (LMFGR) OBS(?2) = OBS{Z)}-GREF
C
2056 IF (LINVDE} GO TO 2032
0B1 = 08S(12)
0B8S{12} = 0BS({(2)
OBES{2) = Obl
IF {NOT.LELNDR.LSA} GO TC 2032
WM = WORS({N+1)
WOBS({N+1) WCESIN+2)
WOBS(N+2} = WM

2022 OES{IE) = DO
IF {(LREPEC) DOBS({IB1} = DO
IF {LNTP} GO TO 2055

IF (LNTRAN) GO TDO 2063

CALL EUCLID(COSLAP,SINLAPRLONGPDO,E21,4AX11
CALL TRANS{SINLAPCOSLAPJRLATPRLONGP,IKP,IT}
IF {(LNGR} GO TO 205z

GREF1 = GREF

IF (HoGEL25.0031 CPLL EUCLID(COSLAPSINLAPJRLONGP Y, E22,AX2)

CALL RUGRAVISINLAP,H,.15,GREF)
08S(1T) = GREF1-GREF
I F {LPOTSOY OBS{IT) = OBES{IT})-13,7D0
GREF1 = GREF
C
2053 IF {(LNPOT)Y GO TO 2055
IF {LNGR} GO TO 2054

O0O0O0

Bt COMPUTED AT THIS HEIGHT,
CALL EUCLIG{(COSLAP,SINLAP;RLCONGP,D0,E22,AX2}

CALL SPOTI(RLATP+COSLAPyRLONGP+1,114GREFUREFD,D0)

H = H+0BS(11)

2054 CPLL EUCLID(COSLAP,SINLAP,RLONGP,Hy,E22,AX2)
IF {LZFTA) CALL UREFER{UREF+15,H)
IF (LKSIP) CALL CLAT(CLA,15,H,RLATP}

CALL GPOT(RLATP,COSLAPyRLONGP+IKP,IP,GREF,UREF,CLA)

IF (LADDBP) OBS{IB) = 0O8S(IRI+0OBS(IP)
IF (LADBPR) OBRS(IBl} = OBS(IB1}+0DBS(IP1)
2055 IF (oNOTLCREF) GO TO 2052
C

FOR GRAVITY ANOMALIES WE USEs THAT THE NEW REF. POTENTIAL GIVES A BET-
TER ESTIMATE 0OF THE GEOMETRIC HEIGKHT, SO THAT THE NEW REF.

GRAVITY CAN

C THE VARIAFLE IVI IS USED TO INDICATEa THAT THE DEGREE- VARIANCES5 STORED
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C

C

IN SIGMA WILL “AVE TO BF CHYANGCED FPPM COLLOCATION B TO COLLOCATION Il
C THE VALUE IS TRANSFERREND TO PRED BY THE COMMON BLOCK /PR/.

2052

CALL PRED(SRySREFRyUROUy AR 3030425 IOBSRyNIKkyIMAXIRZLT+LFsLF)
Ivi = -1

OBS(IC1) = PRFDP*W

I F (LADDBC) OBS(IB) = OFS(1B)+DBS(IC1)

IF (LONECO) GO TP 2052

OBS(IC11) = PRETAPXW

IF (LADDBC) 0OBS(IEl)= OBS(IBL)I+OBS(ICIL)

I F (LPREL) GO TO 3021

C STORING CUCGRDINATFS AND RIGHT-HAND SIDE OF NORMAL-EQe.s N COUNTS THE
C CCOLUMNS AND IC THE STATIONS.

C

C

2033

N = N+1

IC = IC+1

IF (LTNB) OBS(IU) = OBS({IE)=GES(IT)
IF (LTEEB) OOGS(IU) =-QFS(IT)

IF (LK30) 0BS{3) = CGBS(2)-0BS(IU)
0B1 = OBS(K2)/PWO

B(N) = 081

IF (LSA) KWOBSIN) = WM

SSOBS = SSOBS+OQR1*%2

I F (LONECC) GO TC 2033

I F (LTNB) 0OBS(1Ul) BS(IB1)-OBS(ITY)
IF (LTEB) OBS(IUl) -QES{IT1)

I F (LK30) D08S(13) = 0BS(12)-08S(IUl)
OB2 = OBS(KZ21)/PWG

SSOBS = SSOES+0B2%%2

N = N+1

B(N) = 0OB?2

I F (LSA) WOBS(N) = WM

IF (N.LE.15%98) GO TO 2060

CHECK OF NUMEER OF OBSERVATIONS NOT EXCEEDING ARRAY LIMIT

229

2060

WRITE(64229)
FORMAT(* NCMEER OF OBSERVATIONS TOO BlG. #*%% STOP %%%?t)

COSLAT(IC) COSLAP
SINLAT(IC) SINLAP
RLAT(IC) = RLATP
RLONG(1C) = RLONGP
CNR =RLATP*IC+CNR

C OUTPUT OF DBSERVATIONS,

c

230

CALL OUT(NO,IDLAT +MLAT,SLAT,IDLON,MLON, SLON, LONECO)
IF(.NOT.LSTOP)GO TO 2023

FORMAT(3L2)
READ(5,230)LSTOP,LRESOL, LWRSOL

IF (LRESOL<AND.LWRSOLI GO TO 9999
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C
C FSTABLISHING A CATALOGUE OF THE DBESERVATIONS MAXIMALLY 9 SETS ALLCWED.
INDEX(JR) = IC+1
JR = JR+2
IF (INDEX({JR=3) «NE. IKP «0ORs (DABS{P(JR-3}~RP}.GT.1.0D0=-7))}
¥G0O TO 2034
JR = JP-2
INDEX(JP,— 1) = INDEX(JR+1)
2034 |F ({JR-]IT} .LT. 19} GO T0O 2035
WRITE(6,298)
298 FORMAT (¢ ORSERVATIONS ARRANGED TOO COMPLICATED *)
60 TO 6999
2035 HF (.NOT.LSTOP) GO TO 2nné
C
C END OF INPUT CF QBRSERVATIONS. M
C NUMBER CF (NEBESFRVATION PLINTS.
108S = IC-1&0

1

NUMBER OF OBSERVATIONS, 103S =

N = N-IS&D
N1 = N+1}
B{N1+1S0) = SSORS
C
[F (NDT.LF) CO TO 20326
WRITE(6s297)Y(WOES(I+ISO), 1 = 14 N)
297 FORMAT({'OSTANDARD DEVIATICNS OF TYE OESERVATIONS IN THE SAMF SEQUFE
*NCE'/+® AND IN THE SAME UYITS AS THE OBSERVATIONS:Y /("' ®,10F8.21}])
C
2036 |F (LRESOL)Y GO TO 322¢&
C
IF (LDEFF)} GU TO 20327
LDEFF = LT
NT = 3
IDIMC = 4700
C IN THIS PRDGRAM=VERSION, THE ARRAY C HAS DIMENSION IDEYC AYD 1ITS
C VALUES ARE STGRED OR RETRIVED FPOM UNIT 8 BY NT READ O WRITE NOPERA-
C TIONS.
C
C SETTING UP A CATALOGUE OF THE NORMAL EQUATIONS
C NB IS THE RECNRD NUMBER, IC COUNTS THE NUMBER OF COLUMNS WITYIN A
C RECORD,y AND THIS NUMBER | S STORFD IN NCAT{100}. YCAT (I) WILL CONTAIN
C THE SUBSCRIPT OF THE DIAGONAL FLEMENT OF COLUMN I-1, AND ALL THE
C FLEMENTS OF ISZE WILL BE ZERO BECAUSE WE WORK WITH A FULL MATRIX
C NBL(I) CONTAINS THE NUMBER OF THE LAST COLUMN IN RECORD 1-1. NOTE
C THAT MAXIMALLY S8 CPLUMNS MAY BE STORED I N ONE RECORD
2027 NBT = |
NBL(1}=0
N5 =1
1C=0
11=0
C
DO 2304 | = 14 N1
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IC=1C+1
ISZE{IC)=0C
NCAT{IC)=11
HI = I1+1
I2=11+1+1

IFU{I2eLELIDIMC)aANDe (I cNEGNLI)ANDL(ICaLEL98)) GO TO 2304
NCATB IC+1}) = 11

IF{I.NE.N1} GO TO 23203

[2=12+N1+1

IF(I2.LE.IDIMC) GO TO 2301

C SECURING THAT THF LAST COLLUMN + ONE MORE CAN BE STORED IN THF SAME
C RECORD.

OO0

MAXC
MAXC2 IS THF SUBRSCRIPT PF THE FICTICIODUS DIAGONAL FLEMENT OF THE RIGHT
HPND SIBDE (IN WHICH THE SQUARE-SUM OF THE NORMALIZED OBSERVATIONS IS
STORED) .

NCAT(10Q)Y=1C-1
WRITE(GENEBT+2)C3+NCATLISZE
NET = NET4NT
NB=NB+1
NBL{NB)=T=-1
NCAT(2)=N1
11=N1
iC=1
IS THE SUBSCRIPT OF THE DIAGGNAL ELEMENT OF THE CAST COLUMN, AND

2301 MAXC = 11-N1

MAXCZ2 = 11

C STORING THF RIGHT- HAND SIDE.

2302
C
2303

299

2304

C

D0 2307 J=1,N1
CIMAXC+J) = B(J+1SO)

11=0

NCAT(100)=IC

10 = NET
WRITE(E'IQ)IC,NCAT,ISZE
NBT = NBT+NT

iC=0

NE=NS +]

NBL(NB) =1

| F (NB-LE.309) GO TO 2304
WRITE (64299)

FORMAT(®' RESERVED AREA PN FILE 8 TOO SMALL?Y)
GO TO ¢99¢

CONTINUE

MAXBL=NB-1
MAXPLT = (MAXBL-1)*NT+1

C COMPUTATION DF ELEMENTS OF NORMAL EQUATIONS (EQUAL TO THE COVARIANCE
C BETWEEN THE OBSERVATIONS). THE COEFFICIENTS ARE STORED IN THE ONE-OI-
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OO0 O

c

C

C

MENSIONAL ARRAY Cy COLLUMN AFTFR COLLUMN,THE DIAGONAL ELEMENT HAVING
THE HEIGHEST SUBSCRIPT,

INITIALIZING VARIABLES:

NI IS IN MAIN THE SUBSCRIPT OF THE FIRST ELEMENT OF COLUMN NC 1 CBRRAY
C. IN THE SUBKOUTINE PREDy NI IS THE SUBSCRIPT OF THF ELEMENTS DOF THF
COLUMN, NB IS THF MNUMBER OF THE BLOCK IN WHICH THE COVARIANCFS ARE
STORED AND 11 IS TEE NUMBER 0OF TWE LAST CPLUMQ STORED IN TWE BLOCK.
ICNEXT IS THE NUMBER OF THE FIRST COLUMN WITHIN A GROUP OF DATA WITH
THE SAME CHARACTERISTICS. (THE CHARACTERISTICS ARE GIVEN BY THE ARRAYS
INDEX AYD P {SURSCRIPTS JC AND JC+11}.

NI =1

NC = 1

Je = I1
ivli =-1
NBE=1
I1=NB8L(2)

READ{EBINTICI,;NCATHISZE
FING(B®1)

NBT = 1

ICNEXT = IS0O+1

DO 3100 JC = 1, I0OBS
iCC = IC+1¢n

COSLAP = CGSLAT(ICC)
SINLAP = SINLAT({ICC)
RLATP = RLAT(ICCY
RLONGP = RLONCG(ICC)

IF{ICC .NE. TCNEXTIGO TGO 3003

| KP = INDEX{JC+1}
INITIALIZATION OF VARIABLES IN COMMON BLOCK /PR/.

PW = P(JC)

RP = P{JC+1}

ICNEXT = INDEX({JC)

JC = JC+2

LREPEC = TKP <EQ. 5

LONECO = NOT.LREPEC

LGRP = JKP.EQ.Z2

LNGR = o NOT.LGRP

LNKSIP = TKP.NE.3 -AND. LONECO
LNETAP = IKP.NE .4 ANDs LONECQ
LDEFVP = |[KP «GT. 2

LNDFP = .NOT.LDEFVP

PHO = PWXWP({IKP)
I F {LNGR) PWO = PWOX*RP%RP
IF {IKP.FQ.1) PWD = PWO*RP

3003 LBST=LREPEC,AND{NC:EQ.11)

AS WE FOR LREPEC=TRUE ARE COMPUTING TWQO CCLUMNS AT THF SAME TIME, WE
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C MUSTy IN CASE THE SFCOND CCLUYN IS THE FIRST ONE IN THE NFXT RECNRD
C STORE THIS ONE TEMPORARY IN ARRAY B, THE PROBLEM WILL ONLY QCCUR WHEN
C WE ARE SETTING UP THE NORMALEQUATIONS. LBST = B- STORE*

CALL PRED(SySREF UCyA+ISyISOsIT2IC,NCyIMAXLSLFoLBSTHLT)

ND = Ni=1
DIA = C(ND)
IF (LE) C(ND) = DIA+(WOGS(NR=1}/PWQO)*%2
IF (LONECO) GO TO 3020
IF (LE) DIA = DIA+(WOEBS(NR)/PWO)*x*2
IF (LEST) E(NR) = DIA
I F («NCTLLBEST) CINI+NC) = DIA
THE PPECEDING STATEMENT ASSURES, THAT THE DIAGONAL ELFYENT CNORRESPQON-
DING TO ETAP BECOMES EQUAL TO THAT OF KSIP.
NC = NC+1
N1 = NJ+NC

[N @)

C
3020 | F (NC«LTelleANDJNC.LT.N} GO TO 3100
C
C STORING THE CORFFICIENTS OF THE NORMAL-EQ. ON FILE 8y RECORD NS,
10 = NBT
WRITE(B'IG)C NCAT,,ISZE
IF (+NOT.LONEQ) GP TO 3200
C
C OUTPUT OF COEFFICIFNTS OF NORMAL- EQUATIONS,
WRITE (6,380)IN8
380 FORMAT('OCOEFFICIENTS OF NORMAL- EQUATIONS* BLOCK *4I44/)
11 = NI- |
IF (NBJ.EG.MAXEL) I1 = MAXC2

WRITE(64381)(C{K)y K = 1, I1)
381 FORMAT(' ',10FB.4)
3200 NBT = NBT+NT

NE=NB+1

NI=1

I F (NC.NE.N) 11 = NBL(NB+1)

| F (NB.GT.MAXBL) GO TO 3201
READ(ARYIQ)ICL
READ(RYIQICZ
READ(E'IQIC34NCAT,1S2E
C WE HAVE TO READ THE WHOLE CONTENT OF BLOCK NB INTO ARRAY C, RFCAUSE
C WE MUST BE SUPE TYAT TWE RIGHT=-HAND SIDE (WHICY ALREADY IS STORED)
C IS PLACED CDRRECTLY.,
FIND(EENBT)
C
2201 IF («NCT.LRST) GO TO 3100
C
DO 3202 K=1,4NC
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3202 C(K} = pBlr+ISO)
NI = NC+1
3100 NC = NC+1
END OF LOOP FORMING NORMAL-FEQUATIONS.

CALL MESINI;0;05-TRUE::PHW)

PUNCHING: NUMBER OF OBSERVATICN POINTS, NUMBER OF OBSERVATICONS, DIF-
C FERENCE BETWEEN SQUARESUM MOF OB8SERVATIONS AND NORM OF APPROXIMATION,
C A CHECK-NUMBER (KEF) CNRy AND FINALLY THE SOLUTIONS AND THE SCQUARFE=SUM
C OF THE OBSERVATIONS.
IF (LWKRSOLIWRITE(7,361)I0BSN1sPH,CNRy(C(J+MAXCY,y J = 14 NI}
361 FORMAT(2I5.2015.73/4(4D20C-13))
GO TO 3229
C
€ INPUT OF SOLUTIONS.
2228 MAXC = ©
READ(S5,:361)IoN1ICsPWCNRCo {CLJ+MAXCY sd = 1, N1}
C CHECK OF SOLUTIONS CORRESPOND TO OBSERVATIONS. ‘
IF {IOBScEQ.IANDN1.EQeNIC.AND.DABS{CNRC-CNR).LTA0.1D0)G0O TO 3229
WRITE(6435¢4)
354 FORMATI(* SOLUTIONS DO NCT CORRESPOND TO INPUT DATAs STOP. ')
GO TO 9969
3229 WRITE(6,4300)
200 FORMAT(®OSOLUTIONS TO NORMAL EQUATIONS: '/}
WRITE(6,301)(C{JI+MAXC)}s J = 15 N)
301 FORMAT{1X.5D17.10)
IF (LRESOL) WRITE(6,362)
262 FORMAT(®*OTHF SOLUTIONS HAVE BEEN COMPUTED IN A PREVIOUS RUN.®}

¢
MAXC2 = MAXC+NI
WRITE(64253)NsC{MAXCZ)4PW
353 FORMAT(*ONUMBER OF EQUATIONS =%,14,/ .
*¢ NORMALIZED SQUARE-SUM QOF ORSERVATIONS =¥,D13.64/ 5
¥ NORMALIZED DIFFERENCE BETWEEN SQUARE-SUM 0OF%/
CBSERVATIONS AND NORM CF APPROXIMATION =%,D13.64/)
C
C STORING SOLUTIONS DIVEDED BY A COMMON FACTOR.
NI =P
JRNEXT = 1S0+1
JR = 11

DO 3032 1 = 1, I0OBS
IF ((I+I50) NELJRNEXTY GO 70 3030
IKP = INDEX(JR+1}
LONECO = IKP .L7s 5
JRNEXT = INDEX(JR)
PW = P{JR)
JR = JR+2
4030 IF (LONECD} GO TCO 303%
BI(NI+IS0O) = C(MAXC+NI/PW
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(@]

OO0

[@Ne)

C
C
C

NI = NI+l
3031 BINI+TS0) = C(MAXC+NI)}/PW
3032 NI = NI+l

IF (LCY) GO TO 311G

LCl = LT
INPUT OF LCPEF, WHICH IS TRUE WHEN ONE MORE SET OF NBSERVATIONS
SHALL BE INPUT AND USED FOR THE ESTIMATION OF ONF MORE HARMONIC FUNC-
TION.

READ(54230)LCPFF

IF («NOT.LCRFF) GO TO 3110

STORING AWAY THE NECESSARY CONSTANTS FOR COLLOCATION I

SR = S

SREFR = S

URO = U0

TGRSR = 10BS

AR = P

IMAXIR = IMAX1

NIR = N1
INITIALIZING VARIABLES FOR STAR1 OF COLLOCATION I1I.

'S = IMAX+3

I1 = 22

JR = 22

IC = NIR+2

N = 1C

IS0 = 1IC

INDEX(21) = IC
WRITF({6,y345)

345 FORMAT(*OSTART OF COLLOCATION IIz:*/)
GO TO 1000

INITEALIZIYG VARIABLES FOP. PREDICTION. MAXC1 IS THE SUBSCRIPT AOF THE
FIRST ELEMENT IN THE COLUMN FORKING THE RIGHT-HAND SIDE,
3110 LPRED = LT

LNEQ = LF

LE = LF

LC2 = LCREF

MAXCL = MAXC+1

INDEX(41) = 0O

JrR = 241

WRITE(6,344)
344 FORMAT('1 PREDICTIONS:'/)

GO0 TO 2000

3021 NI = MAXC
CALL PRED(S,SREF,U0,A+1S,1S0,1I,10BSyN1,IMAXT,4LT,LF,LERNDO)
I F (LNFRNQ) GD TO 3022

C(MAXC2) = D1
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C STORING TYE NEW RIGUT-HAND SIDE ON FILE 8y SO THAT THE ERROR OF PRE-
C DICTION CAN BE COMPUTED.

IQ = MAXBLT

WRITE(SPIOQ)C,NCATGISZE
C COMPUTATION OF EPROR OF PREDICTION,.

CALL NES{N1;NsOyoFALSE.yORS{K2)})

OBS(K2) = 0BS{K2)*PyZ+0.1D=-6

IF {0BS{K2) .GT. 0.1D-9) 08S{K2) = DSQRT(CBS(K2})

3022 IF {LONFCOD} GO TO 3026
IF (LNERNO) GO 70 2024
FIND{8*MAXBLT)
DO 3025 J = 14 N
3025 CIMAXC+J) = C(MAXCZ2+J)
CIMAXC2) = DI
10 = MAXBLT
WRITE(BYICIC,NCAT,ISZE
CALL NES(NLsNsOyoFALSE.,,0BS{KZL))
OBS{K21) = 0CBS({K21)*PW2+0.10-6
IF (0BS{K211e6GTo0.10-9}) 0OBS({KZ1) = DSQRT({DOBS(KZ1))
3024 OBS(IAL)Y = PRETAPHW
IF (LADBA) 0BS{IB1)
IF (LTRAN) 0OBS(IUL)
302¢ OBS(IA) = PREOP*W
IF {LADBA) OBES(IB)
IF {LTRAN) OBS(IU)}

ORS(IB1)+0ES({IAL)
OBS(IBL1)-08S(1T1)

NDBS({IBI+0ES(TA)
0BS{IB}-0ES{IT)

C
IF (LCOMP) CALL COMPC{IU}
C
CALL OQUTI{ND,IDLATsMLAT, SLAT,IDLON,MLON, SLON,LONECD)
| F (LMAP) IMAP(NO) = 0BS(IU)I*100
IF(LGRID .ANDas NAIl oLE. NLA) GO TO 2001
C
IF {(.NOT.LMAP) GO TO 3045
C

K = NLA+1
WRITE(64360) IDLACSLAC, IDLOC,SLOCGLASGLO
360 FORMAT('1MAP OF PREDICTIONS: */f COORDINATES OF SOUTH-WEST CORNER */
%%  |ATITUDE LONGITUDE AND SIDE LENGTH LAT.  LONG, */
% D M D M M MY/2(144F642)92F8424//)
DO 3044 J = 1, K
WRITE (65250)
350 FORMAT(t0 *)
NAP = NO-NLO
WRITE(6,352) (IMAP(I)s I = NAP, NO)
352 FORMAT(® ®,2015)
3044 NO = NAP-1
¢
3045 IF (.NOT.LSTOP) GO TO 2023
C
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READ(5,230)L5TOP
I[F {NDT.LSTGP) GO TO 2000

[F (LCOM) CALL OUTCOM

9999 STOP
END

SUBROUTINE NES(NNSIIFCyIIFRyLESyPW)

THE SUBROUTINE WILL? USING THE CHOLESKYS METHOD:

(1) COMPUTE THE REDUCED MATRIX L CORRESPONDING TO A SYMMETRIC POSITIVE
DEFINITE (NN-1)*(NN-1) MATRIX Ay, WHEN THE TIFC COLUMNS AND IIFR
PCWS OF L ARE KNOWN, (L*LT = A, LT THE TRANSPOSED OF L)«

(2) COMPUTE THE REDUCED NN-1 VECTOR (L**-1)%*Y.

(3) COMPUTF THE DIFFFRENCE FPW = YN=YTx(A%x%*-1)%Y,

(4) SGLVE THE ECVATIOYS LT*X = (L%%=1)*Y,(THE SO CALLED BACK~-SOLUTION}

THE REDUCEG RCWS AND COLUMNS CF L (THERE MAY BE NONE)y THF CORRES-
PCNDING UNREDUCED UPPER TRIANCULAR PART OF A, THE NN-VECTOR FORMED
BY Y AND YN FORMS AN UPPER TRIANGULAR NNXNN-MATRIX.
THE MATRIX IS STORED COLUMNVIZE | N NT*MAXBL RECORDS OQF A DIRECT ACCESS
FILE (UNIT NUMEER &). THE YT RECORDS (NT®12£00 BYTES) CONTAINS AS MANY
CCLUMNS AS POSSIELE IN THE FIRST 8%(NT-1)*1600+8%1500 BYTES CORRESPON-
DING TO THE DIMENSION OF THF ARRAYS C AND CR. THE LAST B0O BYTES
OF THE NT RECOPDS HOLDS TWO CPTALOGES {INTEGER ARRAYS) NCAT AND ISZE
{NRCATs IRSZT RESPECTIVELY). WE WILL CALL THE NT RECORDS A BLOCK.
WHEN THE CCONTENT OF A BLOCK HAS BFEN TRANSFERRED F«Gs TO Cy NCAT,
1SZEy WE HAVE THF FOLLOWING SITUATION. THE COLUMNS ARE STORED IN C
FROM THE FIRST ELEMENT DIFFERENT FROM ZERC TC THE DIAGONAL ELEMRENT.
NCAT(I) IS THE SUESCRIPT CF TYE DIAGONAL FLEMEWT 0f COLUMN I-1 AND
ISZE(I) IS THF NUMBER OF IGNJORED (SAVED) ZEROES IN COLUMN I. YCAT(100)
IS THE NUMBER OF CDLUMNS STORED IN THE RECQORD.
NEL(1) IS EQUAL TO THE NUMBER OF THF LAST COLUMN STQORED IN RECORD I-1.
(1) TO (3) ABOWE WILL ALWAYS PE EXECUTED, BUT (4) WILL ONLY BF EXE-
CUTED WWEN TYE LOGICAL LBS IS TRUE* TYE EXECUTION OF (1), (2) FUD (4&)
| S EQUIVALEYT TO THF SOLUTION OF THE EQUATIONS A¥xX=Y, THE SALUTIANS
WILL BE STORED IN THE ARRAY C IN THE POSITIONS ORIGIYALLY OCCUPIED BY
Y AND WILL BE TRANSFERRED TO MAIN THR0OUGH THE COMMON BLOCX,
IN CASE A NUMERICAL SINGULARITY CCCURS IN COLUMM NUMBER JDs THE COLUMN
1S DELETED BY CHANGING THF CATALOGUE ISZE AND THE ELEMENTS IN ROW JD
AND THE JD®*TH EZLEMENT OF TYE SOLUTION VECTOR IS PUT EQUAL TO ZERD.

IMPLICIT INTEGER(IsJsKeMyeN)y REAL *&(A~H,0-Z),LOGICAL(L)

COMMON /NESOL/C(4700) 4NCAT(100) 4 1SZE(100),NBL(310)4MAXBL,ID

COMMON /CPRW/CR1(1600)

DIMENSION CR{4700}),NRCAT(100),IRSZE(100)

EQUIVALENCE (CR(1),CR1(1))

NT = 3
NOTEs THAT 1Y CASE YT IS CHANGED, WILL IT ALSO BE YECESSAPY TN CHANGE
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THE DIMENSION OF THE ARRAYS C AND CR.

N = NN
1FR=11FR+1
IFC=11FC+1
IF (IFR.GT.IFC) WRITE(6510)
10 FORMAT(! ERPOR IN CALL, IFR.GT.IFC .°

g

REDUCTION OF COLUMNS 1FC TO N. FLEMENTS. WHICH ARE ALREADY REDUCED,
ARE STOKED IN CR [EXCEPT FOR JBL=KBL}. ELEMENTS9 WHICH ARE GOING TO BF
REDUCEDs ARE STCRED IN C.

FIND FIRST ACTUAL RECORD AND ROW/COLUMN.
JEF=0

200 JBF=JEF+1
IFINBL{JEF+1).LT.IFC) GO TO 20C0

It. = NBL(JEF)

JF = IFC-IL

JTF = JUBF*NT-NT+1
JTL = JTF

ID = JTF

FIND(E*ID)

KBF = 0
201 K6F = KEF+1
IF (NBL{KEF+1}.LT.IFR) GO TO 201
KLO = NBL{KBF)
KF = IFR=-KLO
KFO = KF
KTF = (KBF~1)*NT+1

READ RECORD JPL FROM FILE. THE ARRAY C WILL CONTAIN AT LEAST ONE UNRE-
DUCED COLUMN.

DO 280 JBL=JBFsMAXBL

READ(B'IDIC,NCAT,ISZE

FIND(B®KTF)

NC=NCAT({100)

JO=NBL{JBL)

KL KLO

iD KTF

DO 270 KBL = KBF, JBL
LREC=KBL.EQ.JBL

READ(B8®| DICRsNRCAT,IRSZE
NR=NRCAT(100)

KO=KL

KL=KL+NR
MR=MAXO (KO, IIFR)

IN ORDER TO MINIMIZE THE NUMBER OF TRANSPORTS TO AND FROM FILE 28, WE
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DO NOT ({GENERALLY) COMPUTE PLL THE REDUCED ELEMENTS OF ONE COLUMN, BUT
ONLY THE ELEMENTS IN ROW KO+1 TO KL. (K6 BS THE NUMBER OF THE LAST
COLUMY IN THE PREVIOUS RECORD* KL THE NUMBER OF THF LAST IN THE ACTUAL
RECORD. }

D0 260 J=JF¢NC
1SZ2=ISZE(J)
WE CHECH THAT THFRE ARE ELEMENTS (UNREDUCED) DIFFERENT FROM ZERD IN
COLUMN J WITH SUBSCRIPT GREATHER THAN OR FQUAL TO KL.
IF (KL.LE.ISZ2) GO TO 260
THE SUBSCRIPT OF THE ELEMENT IN CCLUMN J4sROW K IS NCAT(J)+K=-ISZF(J)c
THE DIFFERENCE NCAT{(J)-ISZE(J) IS STORED IN THE VARIABLE ICO.
THE SAME DIFFERENCF FOR COLUMN (ROW) K IS STORED IN IRO. TYE ELFMENT
JUST BEFORE THE FIRST ELEMEYT TD 8E REDUCED WILL HENCE HAVE SUBSCRIPT
1=1CO+MAX(KO,IIFR,1S8Z)« KG IS THE ABSOLUTE ROW NUMBER-
ICC = NCAT(J)-1SZ
JO=J0+J
NRO=MINO(JD,KL)-KO
| F {MR.GE.ISZ) KFS
IF (MR.LT.ISZ) KFS

KF
1SZ2-K0+1

DO 250 K = KFSy NRO

KD = KG+K
K1 = KD-
I = ICO+KD

I 1S THE SUBSCRIPT OF THE COEFFICIENT TO BE REDUCED,

GSUM = 0.000

IRSZ=IRSZE(K)

IRO = NRCAT(K)-IRSZ

QCI=CI11!)

KF1=MAXO(IIFR,1SZ,IRSZ)+1
IRSZ = KD INDICATES THAT COLUMN KD CONTAINS A NUMFRICAL SINGULARITY.
THE ELEMENTS OF RCW KD IS PUT EGUAL TO ZERO

IF (IRSZ .FQe. KD) QCI = QSuM

IF(KF1.GT.K1) GO TO 245
| F {(LREC) GO TO 235
REDUCTION OF ONE COEFFICIENT
DO 230 M = KF1, K1
230 QSUM = QSUM+C(ICO+M)%CR{IRO+M)
GO TO 245
235 DO 240 M = KF1l, K1
240 QSUM = QSUM+C{IRO+M)*C(ICO+M)
245 QC1 = QCI=-0QSUM

IF(LREC}) GO TO 246

C(l) = QCI/CR(IRO+KED)

GO TO 250
246 | F (JDJNEWKD) C(I) = QCI/C(IRO+KD)
250 CONTINUE
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[IF(NOGTLREC.OR (JDNF KD} eORWJUDEQN} GO TO 260

TEST OF NUMERICAL STABILITY
QCIZ = QCL/C(I)%*2
IF (QCl2 .GT. 0.1D-16) GO TO 251
WRITE(6,20)JDsQCI2
20 FORMAT(* NUMERICAL SINGULARITY IN ROW NO.?'5154%s TEST QUANTITY =%,
¥017.10}
ISZE(J)=JD
THE COLUMN 1S DELETED.
GO TO 260

251 C{I1) = DSERT(QCID)
260 KF =1
270 CONTINUE

REDUCED ARRAY C BACK TO FILE. FIRST CCLUMN | N NEXT RECORD IS NOW TWHE
FIRST STORED, BUT FIRST REDUCED COLUMN IS AGAIN COLUMN KFO IN REC. JBF
ID =JTL
WRITE(GBVIDICsNCAT,ISZE
JTL = JTL4NT
JF=1
KE=KFO

IF(JBLNEMAXBL}Y GO TO 280
PW = @C1
IF(.NOT.LBS) GC TO 280

BACK-SOLUTION. NOTE THAT TYE VARIABLE I AT THIS MOMENT |S THE SUB-
SCRIPT OF THE DIAGONAL ELEMENT 0OF THE CQOLUMN CONTAINING THE RIGHT- HAYO
SIDE. I WILL SUCCESSIVELY TAKE THE VALUZ OF THE SUBSCRIPT 0OF THE ELF-
MENT IN RCIW M QF THIS COLUMN, AND THE SOLUTION WILL BE STORED IN C{I).

M = N

KTL = {(MAXBL-1)*NT+1

ID = KTL

DO 277 KB= 1,MAXBL
READ(BFIDICR NRCAT, IRSZE
KTL = KTL=NT
ID = KTL
I|F (KTL.GT.0) FIND{B®ID)
NR=NRCAT(100)
THE COLUMN CONWTAINING THE RIGHT=HAND SIDE | S SKIPPED,
IF(KB,EQs1)NR=NR~1
Kl=NR+1
IF{NR.EQ.0} GO TO 277
DO 276 K=14NR
WE STEP BACKWARD (M} FRCM COLUMN N-1, TAKING THE NR COLUMNS FR0OM EACH
RECORD SUCCESSIVELY.
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I-1
=1
M=1
IR=NRCAT(K1)
Kl=K1-1
IRSZ=1RSZF{K1)
MR=M=]RSZ
| F (MR.GT.0) GO TO 373
N CASE A COLUKN HAS BEEN DELETED, THE UNKNOWN IS PUT EQUAL TO ZERO*
C(I}) = 0.0DC
GO TO 276
THE (UN)KNOWN C(I} IS COMPUTED (ONE EQUATION WITH ONE UNKNOWN) .
273 C1 = C(1)/CR(IR)
C(I) = c1

o

I
1
M

IFIMR.EC.1) GO TO 276

pQ 274 MP=2,MR
IR I'S THE SUBSCRIPT OF THE ELEMENTS OF COLUMN M, RUNNING FROM THE
DIAGONAL-1 UP TO THE SUESCRIPT OF TYE FIRST ELEMENT DIFFERENT FROM
ZERO. IC IS THE SUBSCRIPT OF THE ELEMEYTS ON THF PIGHT-HAND SIDE [N
THE SAME ROW AS CR(IR).

IR=IR~-1

IC=IC-1
THE CONTRIBUTIGN FROM THE (UNJIKNOWN C(B) 1S SUBTRACTED FROM THE QUAN-
TITIES ON THE RIGHT-HAND SIDE.
274 C(IC) = C(IC)-CI*®CR(IR)

276 CONTINUE
277 CONTINUE
THE SOLUTIONS ARE NOW ALL STORED IN C FROM C(NCAT(N)+1) TO C(NCAT(N+1)
-1). THEY ARE TRANSFERRED TO 'MAIN' THROUGH TWE COMMON BLOCK NESOL.
280 CONTIYUE

RETUQN

END

SUBROUTINE ITRAN(DX0YysDZsEPS1,EPS24EPS34DL4AX2,E22,RLATO,
¥RLONGO,DKSIOLDETAQ,DZETAQ,LCHANG)

TRANSFORMATIGN OF GEODETIC COORDINATES AND CORRESPONDING DEFLECTIONS
OF THE VERTICAL AND HEIGHT ANOMALY, WHEN THF COORDINATE SYSTEM IS
TRANSLATE9 BY (DX,DY,DZ)y ROTATED (EPS1,EPS2,EPS2) AROUND THE X,Y,2
AXES RESPECTIVELY AND MULTIPLIED EY 1+DL.

WHFN LCHAYG 1S TRUE, THERE |S FUTHERMOEE A CHAYGF IN THE ASTROANOMICAL

COORDINATES AND IN THF HEIGHT SYSTEM, GIVEN AS A CHANGE OF THF DE=~

FLFCTIONS OF THF VERTICAL AND THE HEIGHT ANPMALY IN A POINT HAVING

COORDINATFS RLATO AND RLONGO.

IMPLICIT INTEGER(1), REAL *8{A-H,0=Z), LOGICAL(L)
COMMON /0OESER/08BS(20)
COMMON /EUCL/XyYyZ9XY4XY2,DISTO,DIST2
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DO = 0.0DD

DI = 1.0C0C

RADSEC = 206264 .80600
EPS1 = EPS1I/RADSEC
FPS? = EPS2/RADSEC

EPS3 = EPS3/FADSEC
IF {NOT.LCHANG)Y GO TO 60

SINLAOC = DSIN(RLATN)
COSLAO = LCOS{RLATO)
RETURN

ENTRY TRANS{SINLAP,COSLAP,RLATP4RLONGP,IKP,IT)

INPUT OF COS AND SIN 70O LATITUDE, LATITUDE, LONGITUDE (RADIANS),
TKP SIGNIFYING WHICH KIND OF CHANGE IN THF OBSERVATIOMNS WE WANT TO

CCMPUTE AND IT EQUAL TC THE SUBSCRIPT IN THE ARRAY OBS IN WHICH THE
RESULT IS RETURNED.

1T1 = 17

IF (IKPLEC.5) ITL = IT+10
DKSI = DO

GETA = DO

DZETA = DO

St = D1+DL

X1 = X

Y1 =Y

X = DX+SI*{X+EPSI*Y~EPS2%7)
Y = DY+S1%{Y-EPS1*X1+EPSE3%*Z)
Z = DZ+SI%{Z+EPS2xX]1-EPSZ%YL)

XKY2Z = X¥X+Y%Y
XY = DSQRT{XY2)

DISTZ = XY2+2%Z
DISTO = DEQRT(D1IST2)
RLONG = DATANZ(Y4X)

COMPUTATION OF TYE NEW GEODETIC LATITUDE, CF REF(C) PAGF 183.

S = AX2/DEQRT{D1-E22*SINLAP=%%2)
DH = DO

RLATI = RLATP

RLAT = RLATL

RLATL = DATAN2(ZXY-E22%S*COSLAP)
COSLAP = DCOS(RLATL)

SINLAP = DSIN{RLATY)

S = AX2/DSQRT(D1-E22%SINLAP*%*2)
DH = XY/COSLAP-S

S1 = (RLATI-RLAT)®2/{RLATI+RLAT}
IF (DABS(S1).CT. 0.1D=-8) GO TQ 70
DLO = (RLONG-RLONGP)I*RAGSEC

DLA = (RLATI-RLATP)}*RADSEC

RLONGP = RLONG

RLATP = RLAT1

IF («NOCT.LCHANG} GO TO 69
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CF. RFF{C) PAGE 208, FORMULA (5-59)
COSDLO = LCOS(RLONGF~=RLONGO)
SINDLE = LSIN(RLONGP—RLONGO)
GO TO (61+759624+634,£2),IKP
61 DZETA = (~{COSLAOX*S ULk P-SINLAN*COSLAP*COSDLN) *DKSIO~CASLAPXSINDLN
*kDETAO)¥AX2/RADSEC+(SINLAOYSINLAP+COSLAOXCOSLAP®(COSDLO)Y*DZETAQ
GO TO 6%
62 DKSI = (COSLAPRCOSLAO+SINLAPH*SINLAOXCOSDLO) *DKSIO=SINLAPXSINDLOX
*DETAO~(SINLANKXCOSLAFP-COSLAQXS INLAPXCOSDLO)%RADSEC*DZETAO/AX2
IF (IKP.NE.5) GO TO &9
62 DETA = SINLAO*SINDLO*DETAO+COSDLO*DETAO+COSLAO*SINDLO*RADSEC
*%DZETAQ/AX2

69 GO TO (714754724734 72)sIKP
71 OBS(IT) = DZETA+DH

GO TO 75
72 0OBS(IT) = DKSI-DLA

| F (IKP.NELS) GO TOD 75
73 0OBS{IT1) = DETA-DLO*COSLAP
75 RETURN

END

SUBROUTINF GRAVC(AX3F+GMs I4LPOTSDyUREFyGAMMA)
THE SUBROUTINE COMPUTES FIRST BY TuE CALL OF GRAVC TWE CONSTANTS TO EE
USED IN THE FORMULA F09 THE YDRMAL GRAVITY, THE FORMULA F04 THE NCRMAL
POTENTIAL AND THF CHANGE IN LATITUDE WITH YFIGHT. CDYSTAQTS RFELATED TO
TWO DIFFERENT REFERENCE FIELDS MAY B8E USED. THEY ARE STORED IN THE
ARRAY FG I N THE VAR1ABLES SUBSCRIPTED FRCM 1 TO 15 FNR TYF FIRST
FIELD AND FRCM 16 TO 30 FOP THE SECOND ONF. THE ARPRAY FJ CONTAINS THE
ZOYAL HARMONICS, WITH SIGN OPPOSITE TOQ THE USUAL CONVENTICNS, CF
REF{C)s EQs (2-92).

IMPLICIT INTEGER(I)y REAL *8(A=HsM-Z), LOGICAL(L)

COMMON /DCON/DOLD1,4D2,4D2

COMMON /EUCL/X9Y9Z XY +XY2,DISTO,DIST?2

DIMENSION FG{30),FJ(30)+LP(2)

D4 = 4,000

D5 = 5.0D0

OMEGAZ = (0.7292115150~4)%%2

LP(1+1/15) = JNOT.LPOTSD

E2 = FXx(D2=F)

AX2 = AXxAX

FG{I+14)

FG(I+15)

AX
CM

1F (LPOTSD) GO TO 1501
DO 1550 J = 1, 15
1550 FJ(J+I) = DO
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FJ{I+1}) = D1

E = DSQRT{E2}*AX
EMZ2 = E2/(D1-E2)
BX2 = AX2={D1-£2)

BX = DSQRT(BX2)

M = OMEGA2*AX2%BX/GM
F2 = F%F

FM = F*M

TA = DATAN2(E,BX)

E2 = E2%AX2

IS THE QUANTITY PEF(Cls EQe{2~58)a
Qo ({D1+D3*BX2/E3)*TA-D3%*BX/E} /D2
DO 1581 K = 1, 5
Kz = 2%K
DK = DFLOAT(K)
DKZ = D2*DX
FU(I+K2+1) = (=1)#%IO:D3#E2%RKX(D 1-DK+D5HDK*{D1-D2/15.0D0%M*E/ (BX
¥ %Q0) ) /D3 /LOK2+11#%{DK2+03) )

C GAMMA IS THE NORMAL GRAVITY AT EUQATORy CF. REF(C),y EQ. (2-105A} AND
C (2-70). THE FIVE FOLLOWING COEFFICIENTS ARE FOUND IN REF{C) EQ.
C (2-115) AND ({2-124}.

C CF.

C CF.

1501

c

CAMMA =(GM/IAXREX}—(D2/D2+D3%*EM2/14 ) *OMEGA2*AX}*]1.0D5

FGUI+1) = GAMMA

FG{I+2) = ~F+D5x=M/D24+F2/D2-26%FM/T+15%M%kM/D4
FGlI+4) = (~F2+D5*FM) /D2

FC{I+3) = ~DOZ%GAMMAX*(DI1+F+M)/AX

FG(I+5) = D2%GAMMAX{D2*F-DS5%M/D2)/AX

FG{I+6&6) = D3*CAMMA/AXZ2

REF(C)e FQo (2-118})+({2~119).

FG{I+11) = {(D2%F-M=F2)/D3+D2%FM/21.0D0
FG{I+12) = ~L4*F2/DS5+D4*FM/T.0D0
REF(C)y EQe (2.861).

UREF = GM*TA/E+OMEGAZ2=*AX2/D3

G0 TO 1502

GAMMA = 97804%9.0D0C
UREF = 62629787.0D0
FG{1} = GAMMA

C CONSTANTS USED IN INTERNATIONAL GRAVITY FORMULA, CF.REF{C),(2=-126),

c (2-

1502

131) AND (2-128).

FG(4) = 4%0.0000059
FG(2) = 0.0052884=FG(4)
FG{2) = -0.30877724D0
FG(5) = 0.0004520600
FG(6) = 7.265D0-8

FG(I1+13) = (FG(1+2)Y+FG(I+4})%6.47512D=2
FG{I+7) = UREF
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C FG(I+8) CONTAINS THE THIRD DERIVATIVE OF THE NORMAL GRAVITY.
FG(I+&) = D4&*FG(I+6)/(AX*L3)
RETURN

ENTRY RGRAV(SINLAP,Hs I4GREF)
IF (HeGT.25.003 JAND. LP(1+1/15)) GO 10 1504
COMPUTATICN 0OF THE REFEPENCE GRAVITY IN UNITS OF MGALy CF. REF.(C)y
PAGE 77 AND 79. H MUST PE 1IN UNITS OF METERS.
SIN2 = SINLAP*SINLAP
GREF = FG(I+1)*(D1+FG(I+2)*SIN2+FG(I+4)*SIN2*SINZ)
# +(FGUI+3)+FG(I+5)%SINZ+(FG(I+6)—=FG(T+8)*H)*H)*H
RETURN

[@Ne@!

ENTRY CLAT(CLA, I H,RLATP)

LKSI = +TRUE.

I1F (H.GT.25.0D03 AND. LP(1+1/15)) GO TO 1504
COMPUTATION OF THE CHANGE I N THE DIRECTION OF THE GRADIENT WITH HEIGHT
CFs REF{(C) EC. (5-34).

CLA ==FG{1+13)%H*x(ZxXY)/DIST2

LKSI = .FALSE.

RETURN

OO0

ENTRY UREFER(URFF,I4H)
CCMPUTATION NF THE VALUE OF THE NORMAL POTENTIAL* CF. REF(C)y EQ.
(6-14) AND (6-15).

LZETA = «TRUE.

|F (DABS(H).GT+1.00-3) GO TG 1503

UREF = FG(I+7)

RFTUQN
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1504 LZETA = .FALSE.

Z/DISTC
XY/DISTO
FG(I+14)
FG(1+15)
DO
DO

1503 T
U
AX
GM
Al
AQ
Bl DO
BO o
DAl = DO
DAC = DO
S = AX/DISTO
TS = T*%S
§2 = S*S
K =11
C1 12.000
Cco 11.000

C
C SUMMATION OF LEGENDRE- SERIES REPRESENTING THE NORMAL POTENTIAL. BO
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C WILL HOLD THF ODERIVATIVE WITH RESPECT TO THF DISTANCF FROM THE NRIGIN
C AND ULAOQ ¥¥E CERIVATIVE WITH RESPECT TO THF LATITUDE AFTER THE FINAL
€ RECURSICN STFP.

00 1553 J = rp 11

FJK = FJ(K+1)

C3 = 2-D1/CO
c4 = coxsz/C1
A2 = &l
Al = AO
AO = C3%TSHAL~C4*A2+F JK
I F {LZETA) GO TO 1555
C
DA2 = D&l
DAL = DAOD
DAO = C3%(S*AI+TS*DAL )=C4%xDA2
R2 = B1
BP = 50
BO = C2*TS*B1~C4*B2+FJK*CO
1555 C1 = CO
CO = C0-D1
1583 K = K- |
C

IF {LZETA) GO TO P554
C GP IS THE DERIVATIVE OF THF NORMAL GSAVITY WITH RESPECT TO DISTO
C (THE DISTANCE FROM THE ORIGIN) AYD GL IS THE DERIVATIVE WITH RESPECT
C TO THE LATITULE, CF. REF(C) EQ. (6~20%) AND (6-22).

GL = (GM*DAQ/DIST2-CMEGAZ*DISTO®T}*U
GP = —GM*BO/DIST2+0MEGA2*DISTO*U%U
GZ = THGR+U*GL

GREF = DSCRT{GR*GR+GL*GL)
IF (LKSI)} CLA ==(DARSIN(-GZ/GREF)-RLATP)*206264.806D0
LKSI = FALSE.
GREF = GREF*1,.0D5
RETURN
£54 UREF = GM*AO/DISTO+UMEGAZ2*XY2/D2
RETURN
END

ot

SUBROUTINE IGPOT(GMsAX;COFF,M,NMAX)
THE SUBROUTINF COMPUTES THE VALUE OF THE GRAVITATIONAL POTENTIAL AND
THE THREE FIRST ORDER DFRIVATIVFS IN A POINT P HAVING GEODETIC CONR-
DINATES RLATP(RLONGP AND EUCLIDIAY COORDINATES XsYsZe. THE POTENTIAL IS
REPRESENTED BY A SERIES IN QUAST-NORMALIZED SPYERICAL HARMONICS ,YAVING
COEFFICIEUTS OF HIGHEST DEGKEEF NMAXs ALL STORED IN THE ARRAY CNFF.
THE ALGORITHM USED IS DESCRIBED IN RFEF(D).

IMPLICIT INTEGER(I.JyKyMeN}, LOGICAL(L), REAL *8{A-H,0-2)

COMMON /EUCL/X3Y9sZ4XY 9$XY2,DISTO,DI1IST2

COMMON/DBSER/DBS(20)

OO0
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DIMENSION F{55)4G(55),A(25)4B(25),COFF(M)

THE ARRAYS P AND B ARE USED TO KNLD THE VALVES OF THE SOLIN SPHERICAL
HARMONICS OF LIFFERENT DEGREES, THE SUBSCRIPT OF A DR B IS EOQOUAL TO
THE ORDFR~1.
THE ARRAY CCFF CONTAINS THF FULLY NORMALIZED COEFFICIENTS OF THF PNT-
ENTIAL DEVELOPED IN A SERIES OF NORMALIZED €0OLID SPHERICAL HARMONICS
UP TO AND INCLUSIVE DEGREE NMAX AND FOUF OQUMMY CODCFFICIENTS FQUAL TOQ
ZERO. THE COEFFICIENTS WILL BE QUAZI-NORMALIZED BY THE SUBRRDUTINE.
F AND G CONTAINS SQUARF=ROOT TABLES USED IN THE RECURSION PRO-
CECURE. GM IS THE PRCONDUCT OF THF GRAVITATIONAL CONSTANT AND THF MASS
CF THE EARTH (METERS*%3/SEC**2), AX THE SEMI-MAJOP AXIS (METERS),
OMEGA2 THE SQUARF OF THE SPEED OF ROTATION.
INITIALIZ ING CONSTANTS.

OMEGAZ2=(0.7292115160=4) %%2

RADSEC = 206764 .80600

DO=0,000

D1=1.000

D2 = 2.000

NMAXL=NMAX+]

N3=AMAX+3

N4 = ZENMAX+3

oNoNoNoNoNONONONONONONON@]

THE ZERO 0ORGER COEFFICIENT IS PUT EQUAL TO ZERO AND TvE CONTRIBUTICN
FROM THIS TERM 1S FIRST USFDy WHEY THE CONTRIBUTION FROM ALL DTHER
DEGREES HAS BFEN ACCUMULATED.

COFF(1) = DO

OO0

OO0

SETTING UP A SQUARE=-ROQT TAELE.
F(1) = DO
G{1) = PO
DO 1031 N = 1, N4
DN = DFLOATI(N)
FIN+1) = DSCRT(DN®{DN=D1))
1031 G{N+1) = DSOKTI(DN)

C THE COEFFICIENTS ARE GOOING TO BE QUASI- NORMALIZED.
1J =1
DO 1033 I = 1, NMAX
DN = G(2*x(1+1))*1.006-6
Nz = 2%]+1
DO 1032 J = 1,4 V?
1032 COFF(IJ+d) = COFF(I1J+J)=*DN
1033 1J = I1J+N2
SQ2=G(2)
RETURN
C
EYTRY GPOT(RLATP,COSLAP,RLONGP,1KP,IP,GREF,UREF,CLA)
C THF SUBROUTINE |S HERE USFD TO COMPUTF HEIGHT—ANOMALIFES, GRAVITY-AND-
C MALIES AYD DEFLECTIOYS (KSIs ETA OR {(KSI1,ETA))}, CORRESPONDING T0O THF
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C VALUE OF

C FOR
c

C a{n)

o

7001

[KP THE RESULT IS

IKP = 5,

= 17;9959

ir1 = 1P
IF {IKP.EQ.5)
U=xX/DISTO
v=Y/DISTO
W=Z/D1ST0
ADIVR=AX/DISTO
POT-DO
DX=DC
DY=00
DZ=D0
1S NOw
ALl}=D1
B(1) = CO
FACT- Pl
ADIVRI=D1

IPB = IP+10

DO 7001 1
A{1)=D00
B(I1=D0

= 2y N3

DO 7010
€1 =D1
Al=DO0O
B1 = DO
gz = NO
DAL=DO
De1=DO
DEZ2=D0
DX0=D0
DYO=D
DzZ0=D0
POTO=00
C =no
IS=(I=-1)*x{I-1)+1

I=14NMAX1

£z = D1

CO = sSQ2

AZ2=A01)
DAZ2=COFF(IS1
IPLUSJ=1
IPLUS1I=I+1
IMINIJI=]1+2
I§=IS+1
ARFAC=ADIVRI/FACT

DO 7005 J=1,IPLUS1
IPLUSJ=IPLUSI+]
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IMINJ1I=IMINJ1-1
JPLUS1=J+1

ALFA = F{IPLUSJ}*C1

ALFA? = ALFA%C2

BETA = F(IMINJ1)*CO
GAMMA=G(IMINJL) *G( TPLUSJ)

POTO=POTO+AZ%*DAZ+B2%DB2

A0=Al

Al=A2

A2=A{JFLUS])

B0O=RB1

B1=82

B2=B(JPLUSL])

ALAO=ALFAZ*AQ

BEA2=DETA%AZ

ALEO=ALFA®ED

BEB2=BETA*E2
AJ=(Ux(ALAO—EBFA2)-VX({ALBO+BEBZ)) /D2+CGAMMAXAL *YW
BJ=(U*(ALRO~BEBZ)+V*( ALAQ+REA2)) /D2 +GAMMA%B ] %W
AlJ)Y=AJ

BE(J)=E8J

DAO=DA1
DA1=DAZ
DC2 = COFF(IS)
DBO=DB1
DB1=DB2
DB2 = COFF(IS+1)
ALBO=ALFAXDED
BEB2=tETA*LR2
ALAQ=ALFAZ*DAO
BEA2=BETA*DA2
DX0=DX0+{(ALAQO-BEAZ2) *AJ+{ALBO-BEB2)*BJ
DYO=NYO+(ALAO+BEAZ ) ¥3J~ (ALBO+BEB2)*Ad
DZO=DZ0+GAMMAX®(DA1*AJ+DELI*BJ)
IS=1S+2
Cl =D1/CO
C2 = D2-C
Co = b1
7005 C = D1

POT=PQT+ARFAC*PQOTO

FACT=FACTx]

ARFAC=ADIVRI/FACT
C DX4DY4DZ IS THF VALUE OF THE FIRST DERIVATIVES OF THE PQTENTIAL WITY
C RESPECT TO X,sYyZ.

DX=DX~-ARFAC%®DXO

DY=DY—-ARFAC*DYO(
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ODZ=DL-ARFAC#NZ0

C

7010 ADIVR I=ADIVRI*ADIVR

C

C CONTRIBUTION FROM ROTATIDONAL POTENTIAL.
ROTX=0OMEGA2%*X
RGTY = OMEGAZXY
RCTPOT = DMEGAZ /D2%XY2
POT = (D1+POT)}%GM/DISTO+RETPQAT
AO=CGM/DIST2

DX = (U=DX/D2}*A0-ROTX
DY = (V-DY/D2}*A0-ROTY
DZ = (W-DZ)*A0

IF (IKP.LE.2) GP = DSQRT(UX*DX+DY*DY+DZ*DZ)
S THE GPAVITY IN P.

CO TO (7006470074 70N8,7009,7008) 4IKP

7006 OBS(IP) = (POT-UREF)/GP

C GP

RE TURN
7007 OBS(IP) = GP*x1.0D5-GREF
PETCQN
7008 OBS(IP) = (DATAN2(DZ,DSQRT(DX*DX+DY*DY))=RLATP}*RADSEC+CLA
IF (IKP.LT+4) RETURN
7009 OBS{IP1) = (DATANZ2(GY DX)~RLONGP)*RADSEC*COSLAP
RETURN
END

SUBROUTINE EUCLID(COSLAP,SINLAP,RLONG+H,E24AX)
COMPUTATION OF FUCLIDIAN CONRDINATES X9Y¥eZ » PISTANCF AND SQUARE OF

THE ORIGIN DISTO AND DIST2 FRCM GRODETIC COCRDINATES REFERRING TO AN
ELLIPSOID PAVING SEMI-MAJOR AXIS EQUAL TC AX AND SECOND EXCENTRICITY
Ez.

OOOOOO0

IMPLICIT INTEGER(EBuJsKsMeN)y PEAL *8(A-H,0-2)
COMMON /ZFUCL/XyY9ZyXY4XY24DISTO,DIST2
DN = AX/DSORT(1.0D0O-E2*SINLAP%*%21

Z = ({1.0D0-E2)*DN+H)*SINLAP

XY = (DN+H)*COSLAP

XY2 = XYxXY

DIST2 = XY2+ZI%Z

DISTO = DSQRT(DIST2)

X = XY%DCOS(RLONG)

Y = XY*DSIN(RLONG)

RETURY

END
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SUBROUTINF RAD(IOFG,MIN,SEC,RA,1ANG)
THE SUBRDUTINE CONVERTS FOR IANG
(2) DEGREES, MINUTES,

C
C NUTEST SECONDS,
C TO RADIANS

(3)

= 1429394 ANGLES

IN (1) DEGRFFS, MI-
DECREES AND (4) 400-DEGREES

IMPLICIT INTEGER(14J4KyMyN)yREAL *B8{(A-H,0-Z)

1 1

| F (IDEC LT« O JAND.
GO TO (1424344) s1ANG
SF =I*IDEC*2&600+MINX60+SEC
GO TO 5
SE=I*IDEG*36C0+SEC*60

GO TO 5

SE SEC*2600

GO TO &

SE = SEC*®3240

RA= 1xSE/206264 .£06D0

RE TUF?N

END

JANG oLTe 2) 1

SUBRDUTINE HEAD(IKP,LONFCQyFWO,4RP)
C OUTPUT OF HEADINGS AND INITIALIZATION OF

-1

THE FOLLOWING VARIABLES: 1A,
(ALL SUBSCRIPTS OF DIF-

C IByIP,1T,I11,I1A1,1IRB1,I1PY,IT},121,131,1C1,1C11
C FERENT GUTPUT QUANTITIES), KZ = K4 (SUEBSCRIPT BOUNDARI]IES FOR OUTPUT
C QUANTITIES), K1 UPPER LIMIT FOR QUANTITIES READ INTO 0BSa
IMPLICIT LOGICAL(L)}
COMMON/OUTC/K29K3 4K4s TUsKZ1 9 IUL s IANGy LPUNCHy LOUTC o LNTRAN,, LNERND
%*4LK30
COMMON /CHEALI/TA3IByIH, 1P, 1T, 1A1,161,IP1,1T1,IC1,IC11,K1,I08S1,
*¥I0CBSZ2 4 LPUTsLCY1y LC? 9 LCREF4LKM

LTRAN = JNOTLLNTRAN
LERNO = «NOTLNERND
K1 =0

IF (I0BS1.NELO) K1 = 1
GO TO (2008~2009~2010~2011~20lKP)
WRITE(64204)
FORMAT(®O
GO TO 201z
WRITE(&£,4205)
FORMAT{( 0
¥)
GO TO 2013
WRITE(6,206)
FORMAT('Q NO
GO TO 2012
WRITE(£,207)
FCRMAT (YO
60 TO 2013
WRITE(6,208)
FORMAT('O

2008

204 (M) )

NO LATITUDE LONGITUDE H ZETA

2009

205 (MGAL)?

NO LATITUDE LONGITUDE DELTA G

2010

206 (ARCSEC) *}

LATITUDE LONGITUDE KSI

2011

207 ETA (ARCSFC)Y)

NO LATITUDE LONGITUDE

2012

208 { ARCSE

NO LATITUDE LONGITUDE KST/ETA
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c

C

OO0OO0OCOOO0

*C)t)
[F {ITES2 NE. 0) K1 = 2
2013 IF {IH.NELOY KI = K1+1
HRITE(£426T)PW0E,RP
267 FORMAT(V4+7,560Xs? STWVAR. =',F6.2,%s RATIO R/RE

C3F10.T75% 4" )

GO TC* (20184201942020,2021) 4 IANG
2018 WRITE(¢,20G)

209 FORMAT(? D M S b M S M)
GO TO 2022
2019 WRITE(64210)
210 FORMAT{(® D M D M M)

GO TO 2022
2020 WRITE{&,211)

211 FORMAT(?® DEGREES DFGREES M)
GO TO 2022

2021 WRITE{64212)

212 FORMAT(® GRADES GRADES M)

2022 | F (LKM) WRITE(&,213)
213 FORMAT(*4"37Xs 'K?)

WF NOW COYPUTE THE SUBRSCRIPT {OF THE DIFFFQFYT CUANTITIESs WHICH WILL
BE STORED FOP LATER CQUTPUT IN THF ARRAY OBS. THF DIFFFRENCE BETWSEN
TUE NBSERVATICN GIVEN IN TYE OQRIGINAL AMD THE NEW REF.SYSTEM IN
OsS{ITY, THE CONTRIBUTINN TO THE REF.POT. FROM THE HARMOMIC EXPANSION
IN OBS(IP}, THE CONTRIBUTION FROM COLL.1 IN OBS(IC1) AND FROM COLL.IT
IN GBS({ICZ).
iIcl = 11
IF (LTRAN) GO TO 2105
IF(LPOT) GO TO 2102
IF (LC1) GO TO 2201
1B = 4
GO TO 2104
2201 IC1 = 5
| F (LC2) GO TC 2101
1E=5
WRITE(6,250)
250 FORMAT(®*+%,64X, "' PREDV)

GO TO 2104

2101 18=7
iC2=6
WRITE(64251)

251 FORMAT('+ *,63X, ' COLLY COLL2 PRED?® 1
GO TO 2104

2102 1IP=5
IF (LC1) cO TO 2202
IB = 5
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245

2202

252

2103

253
2104

2105

246

2205

254

2106

255

2107

247

2208

WRITE (6£4245)
FORMAT( "+ ,64X, " POT ')
GO 10 2104

1C1 = 6

IF (LC2) GO TO 2103

18=7

WRITE(4,252)

FORMAT( '+t 464Xy ' POT coLL PRED ')
GO TO 2104

IC2=7

1B=8

WRITE(6,42583) \

FORMAT('+'464KXy POT COLL1 CcoLLZ PRED')
K3 = 12=4

1U = I¢&
GO 10 2110
IT=5

IF(LPOT) C3 70 2107

IF (LC1) GO TG 2205

I8 = 3

WRITE(&,246)
FORMAT( '+ ',64X%, ' TRP ')
GO TO 2103

IC1 = 6
1IF (LC2) GO TO 2106

1B=7

WRITE(6,254) |

FORMAT('+%,63Xy  TRA PRED PRED-TRA')
GQ TO 2109

1C2=7

1B=¢

WRITE(6,255) |

FORMAT('+',63X, TRA  COLL1  COLL2 PRED
GQ T3 2109

IP=6

IF (LCl) GO TO 2208

IB = 6

WRITE (64247

FORMAT( '+ ',63Xs* TPA POT PCT-TRA')
& TO 2109

1C1 = 7
IF (LC2) GO TC 2108
IB=8
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256

2108

257
2109

2110

2112

260

2125

N
(o
(]

2127

262

2128

263

2135

WPITE(A,286)
FORMAT( 4% ,63Xs 0
GO 10 2109

TRA POT coLt

1C2=8

1B=9
WRITE(64257)
FCRMATE'+%,63X,?
K3=18-3

U = 16+1

TRA POT coLLl

IF (LC2) 1A = 1C2

IF (JNOTLLCREFY 1A = 1C3
IF (LOUTC)
IF(LERND)
K2=1

GO TO 3135

60 TN 2125
GO 10 2112

K2=2

WRITE{(6,260)
FORMATI Y+ 443X, ?
GO TO 2135
IF{K3.GT.0) GP TO
K2=2

WRITE (6+26&1)
FORMATI 47 43X, ? gest)
GO 19 2135

[ F (LFRNO)
K2=3
WRITE(6,262)
FORMAT (*+* 943X,y
GO 10 213%

GO T 7128

ngs DIF*)

K2 =4
WRITE(64262)
FORMAT({'+*,43X,?' O0OBS DIF
K4 = K?

LK30 = K3.GT7.0

IF (LONECO) GO TO 2111
IB1 IB+10

1U1 Iu+10

IAl IA+10

Iil IT+10

1e1 IP+10

IC11 = IC1+10

K4 = ?2*KZ-1

K2l = K2+10
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C

OOOCOOOOO0OO0OO0n

OO0

2111 RETUQY
END

SUBROUTINE OQUTINOIDLAT MLAT,SLAT, INDLON,MLON,SLON, LONC)

THE SUBROUTINE WRITES ON UNIT 6 (1) STATION NUMBER, (2) COPRODINATES,
(2} DESERVED VALUE (IN ORIG.REF.SYSTEM),(4) DIFFERENCE SETWERN N3SER-—
VED AND PREDICTED VALUE, (5) ERRQOK OF PREDICTION, (6) TRANSFORMATION
VALUE, (7) SPHERICAL HARMONIC SEPIES CONTRIBUTION, {8} RESULT OF COLL
I AND (9) COLL.II, (10) SUM 0OF QUANTITIES (7)~{9) AND (11) SUM NF (&6)-
(9) — ALL IF MEANINGFULL. IN CASE WE AKE DEALING WITH A PAIRK OF DE-
FLECTIONS, (LCONC = FALSF)y THE CORRESPONDING QUANTITES FOR ETA ARE
WRITTEN A LIVE BELOW.
WHEN LPUNCH |S TRUE, THE FOLLOWING OF THE ABOVE MENTINNED QUANTITIES
ARE WRITTEN ON UNIT 7% (1) AND (2}, AND WHEN LOUTC IS TRUE (3) = (%)
AND ELSE (11}, (10) AND (5).
IMPLICIT INTEGERUD¢JdsKsMyN)y LOGICAL(L) sREAL *8(A-H,0-7)
*COMMON/OUTC/1911,12,14¢121,131,IANG,LPUNC”;LGUTC,LNTRAN,LNERNO
o LKZ0
COMMON/DRSER/DBS(20)
DIMENSION CEN(10)
I F (DABS({SLAT) LT. O0.10~&) SLAT = 0.0D0
I F (DABS(SLON) «LTe 0L.10-6) SLON = 0,000
THIS IS DONE IN QORDER TO AVOID PRINTING OF SIGN, WYEN TWE ARC-SFCOND
PART IS NEAR 1O ZERJ,{0OR ZERQO |S REPRESENTED AY A SMALL NEGATIVE NUM-
BER).
I F (CES(1).GF.1.0D4) CES(1) = 9999 ,9D0
| F (0BS(1)LEFe~1.0D3)0BS(1) = ~899.,99D0
| F («NOT.LPUNCY) GO TO £&010
I F (LQUTC) GO TD 8007
OBN(1) = 0BS(1)
10 = 2
OEN(2) = DBS(14)
IF (LNTRAN} GO TO 8031
OBN{3) = 0OBS(14~1)
IO = 10+1
8031 | F (LNERNO) GO TO 8032
10 = 10+1

OBN(10) = OBSI(I)
8032 IF (LGNC) GO TO 8034
I0 = 10+1
OBN{IO) = O0BS(I31)
IF (LNTRAN) GC 70 8033
10 = 10+1
OBN(IQ) = CBS(I4+9)
8033 | F {LNERNQ) GO TO 8034
10 = J0+1
OBN(IO) = OBS(I21)
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6034

C
§007
8008

8000
c

8010
8000
800
£10

8001
£01

611

8002
802
£12

C

2004

€ out

C out

B804
g03
805

C THE

C INI

C

I2 = 10
GO 1O #0106

e 80GeE M = 1, 1
OBN(M) = OES{M)

IF (LOCNC) GO TO 801C
DO gONG M= 24 1
OaN(M+I~1} = OBS(M+10])

GO TD (8CUC,8001:8002.8C021,1ANG

WRITE(A,800IND, IDLAT e MLAT (SLAT,IDLOM; MLONSLON, (CBS () 4Jd=1,1)
FORMATLY *31T7492(155134F6e2) yFBo2¢2FT7e2:F6e294FTe2)

IF (LPUNCH) WRITE(T,RIOINGyICLAT MLATSLAT IDLONGMLON,SLON, {TBN{ S}
¥y J =1, 12} :
FORMATIIT2{143124F5.2)47FTe2)

GO TO EO0C4

WRITE(6 801N, IDLAT o SLATICLON,, SLONy {OFS{d) 3 J=1,1)

FORMAT(Y %,1742{1€64F6.2)3FB.242FTe23F6e244F7.2)

IF (LPUNCH) WRITE(T7+811)INCs IGLATySLATSIDLON,SLON, (OBN(J)JI=1,12)
FORMAT(IT74,2(155F6.2)s7F7.2)

GO TO B0O04

WRITE(6,802)IN0, SLAT»SLONL{OBS({J) 40=1,41)

FORMATI(Y *,1742F1%eQ3FHe232FTeZ29Fbaly4FT0e2)

IF (LPUNCY) WRITE(T7,812INOs SLATSSLONL(OEN(d) y J = 1, 12)
FORMAT(I742(F11.6)47F7.2)

IF (LK30) HRITELL,603}(0BSIU+4), J = 1,y I1)
PUT .OF TRA,POT,COLL1,COLL2,PREN,OR PREN+TRA

IF (LONC) RETURN
PUT OF (BS,DIFR DR ERR FCR ETA

IF(TIoGTel) WRITE(L,.RN4)(OES{J+10)9J=2,1)

IF (LX20.ANDTWaCGTel) WRITE(6,8031(0ES(Jd+14), J
IF (1aLF.1.ANDLLK20) WRITE(6,805)(0BS{J+1a), J
FORMAT(® 942X 92FTe24F642)

FORMAT( '+ ',62X46F7.2)

FORMATI(Y ?,62X,6F7.2)

RETURN

END

1, I1)
1, 11}

n

SUBROUTINE COMPA(VG,VF)

SUBROUTINE IS USED TO COMPARE OBSERVED AND PREDICTRED QUANTITIES.
IMPLICIT INTFGER(T ¢JyX oMy W)y LOGICAL(L) ,REAL*E(A-H,0-Z)

CNMMON /OERSER/DES(2C)

DIMENSION NUM(70),VARI(18)

DATA NUM,VARIDO/T0%0,19%0.00D0/
TIALIZING VARTABLES FOR PREDICTION STATISTICS.

RETURN
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ENTRY COMPR({IKP 4LNCFEsLREPEC,LONECOD)
IF (LNZR) GO 10 2041

SCALE = VG

GC TD 2047

SCALE = VF

SCALEZ = SCALE/Z

2041
2042

1KP=~2
1

IF (LONECO) T
IF (LREPECY T
INN = 1%22+1
INV = Ix6+1
RETURN

ENTRY CNMPC(IU)
J=0
NBES(J+2) = DES{J+2)-08BS (J+1U)
DO 20325 I=1,2
GO TO (3040,20461,3042),1
081l = 0BS(J+2)
GO 10 30472
081 = NES(J+1IL)
G0 TO 3042
2042 OF1 = (BS(J+2)
C 0B IS NOW ECUAL TO THE OIFFEFENCFE BETWEEN MEASURED AND PREDICTED
C GUANTITIES.

3028

2040

3041

C COMPUTATION

204% VAPT(INV+I=1)

3035 VARIUINV+1+2) =

0F SUH

C COUNTING NUMEER OF C
NUMINN) 41

NUM(INN) =
C

IND = (GAERS(ORY)

IF (DE1 «LT. DO)

IND = IND+11

AND

SCUARESUM FCR PREDICTION
VART{INV+]-1)+0R1

VARI({ INV+1+2)+(B1**?

BS CF TYPE IKP.

+SCALF? ) /SCALE
IND = =IND

IF(IND.GTW21.0R.INDLLTLY1)IND=22

IMNG=IND+INN
NUMIND) =
IF (LONECQ)
IF {INN
INN = 47
INV = 13
J =10
GC 10 z202¢
INN = 24
INV = 7
RETURN

LEW)
[»]
1)
o

2029
C

ENTRY OUTCOM

C OUTPUT CGF

J =20

NUMEING) +1
GC TC
«FQe 47) GO TO 3036

z02¢9

PREGICTION STATISTICS.
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OO0

SUBROUTINE PRED(SS,SREF;UO0AA IS IS0, 1T, IC,NCyIMAXL 4LPREN,LRST,
¥LCST)
THE SUBROUTINE COMPUTES THE COVARTANCES BETWEEN A QUANTITY 0QOF TYPFE IKP
{YAVING COORDINATFS RLONGP,.&KLATP) AND IC OTHER QUANTITI®S HAVING COOR-
DINATES STORED IN THE ARRAYS RLAT,KLONG. INFORMATION ABOUT TYE XKIND DF
QUANTITIES ARE FOUND IN THE ARRAY INDEX AND Po
BECAUSE THE SUBROUTINFE MAY EE CALLED SEVERAL TIMFS FOR THE SAMF TYPE
OF QUANTITY SOMF COMMON VARIARLES ARE TRANSFERRED THRAOUGH /PR/. THE
INTEGERS IT AND 1S5 GIVES INFORMATICN AECUT FROM WHICH PLACE IN THE
DIFFERENT ARKAYS THE CCCORDINATES AND DEGREE-VARIANCES ARE TO BF PIICKED
UP (ACCORDING TO COLL.I QR 11}s THE COMPUTED CRVARIANCES ARE STORED IN
THE ARRAY C. THUS WHEN LBST IS TRUE, THEY ARE FIRST STORED IN ARRAY B
AND LATER TRANSFERRED TG Co
WHEN LCST IS TRUE, THE PROCECURE 1S USED TO COMPUTE EITHER THF COEF-
FICIENTS OF THE NORMAL Ed. OR THE VECTRR CF COVARIANCES USED IN THE
COMPUTATIGN CF THE ERROR COF PREDICTICN,
WHEN LPRED IS TRUE (COMP. 0OF PREDICTIONS), THE PRODUCT OF THE COVARIT-
ANCES AND THE SOLUTIONS 70 THE NIEKMAL-EQ.{FOUND IN B) ARE ACCUMULATED
IN THE VARIAELE PREDP (RESP., PRETAP}.
IMPLICIT INTFGERILsJsKoMyN)y LOGICAL(L),REAL *8(A=-H,0-2)
COMMON /NESOL/C{4700) sNCAT(100) 4 ISZE(1I00) 4 NBEL{ZI0)MAXBL, 1D
COMMON/PR/SIGMA(250); SIGMAQ(ZEQ) sB(1600) 4P (42),
*SINLAT(1600)3COSLAT(1600)PLAT(1600),RLONG(1600)4COSLAP,SINLAP,
*¥RLATP g RLONGP 3 RP ¢PRETAP, PREDP 4PLiy LONECO, LNYXSIP,LNETAPLLDEFVP,LNDFP,
¥LGRPyLNGR ¢LKECY oy LKECZ JLENELyIVIy NIy NRyKTYPE, INDEX(42)
COMMON /DCCON/DOWD1sDZ,D2
COMMON /SCK/IK:IKO,y1K151K2,IKA

LIMAX3 = TMAX1.LT.3

LNBC = «NOTLBST.ANDLLCST
JR = 11

NR = 150+1

JRNEXT = NR

PRETAP = DO

PREDP = DO

COMPUTATIGN OF THF COVARIANCE CORRESPONDING TO OBSERVATION IN P
AND DBSERVATICNS KUMBER 1 TO IC.

D0 3019 IR = 1y IC

IR = IR+]ISO

COSLAQ = COSLAT{IIR)

SINLAQ = SINLAT(IIR)

DLAT = RLATP-RLAT(IIR)

DLONG = RLONGP=RLONG(IIR)

SINDLA = DSIN{DLAT/D2 }%*2

SIDLO2 = DSIN{(DLONG/D2})%%2
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T IS COSINF TO THE SPHERICAL DISTANCE BFTWEEN P AND Q.CF.REF({B)
{57).

Tl = D2%{SINDLA+COSLAP*COSLAG*SIDLDZ}

T =D1-T1

(et N el

IF (TIRJNFSJRREXT) GO T Z005
GETTING INFORMATION ABCUT NEXT DATA-SET FROM CATALOGUE
JRNEXT = INGEX{JR)
IKOQ = INDEX(JR<+1)
PRW = P(JR)*PHW
SD = RP#*P(JR+1)
S = 8SS/SD
A = AA/LSD®SD)
S2 = S*§
JR = JR+2

(@]

LREPER = JKQ .EQ. 5

LNDFG = IKQW.LTe3

LNDER 1 LNDOFPo ANDo LNDFQ
LNONDD LINDFP.ORLLNDFQ

LGRQ = IKOEQ.2

IF (LGPP.,GR.LGRQ) IV = 1

IF (LGRPAND.LGRCY IV = 2
LIVO = (LNGR.AND.(.NOT.LGKQ})
IF {L1vO) IV =0

IF {IV.EQ.1IV1 AND. DABS(SREF-5}).LT.1.0D0-82) G2 TO 3005
IvMl = Iv-1

vl = 1V

non

SREF = §
IF {(LIMAX3) GO T0O 3008
C COMPUTATION OF DEGREE-VARIANCES OF NEW TYPE JF NECESSARY
IF (DABS(ESD-C1).CT.1.0D=-8) GO TO 2003
DO 3002 I = 3, IMAX1
2002 SIGMA(I+IS) = SIGMAOII+IS)Ik{(1-2)%*]1V
GO0 TO 3005
3003 SI = D1/(SD%%x3)
DO 3004 I = 3, IMAX]
SI = SI/SD
3004 SIGMA(I+IS) = SIGMAOQ(I+IS)I*{I-2)%*%x]Vyx%xS]
2005 LRERDW =LREPER
c
L) T*S
RLL = D1-D2*TS+S2

RL = NDSQRT{RLL)
RN = DI-TS+RL
RLNL = DLOG({D2/ON}

C
C SUMMATION OF LEGENDRE SERIES,CF. RFF(A) PAGE 66 F.
M = IMAX1
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Ul = uo
AD = DO
Al = DO
DAO = DO
DAY = DO
bpo = DO
DDl = DO

IF (LIMAX3) GO TO 3007
DO 3006 I = 1.,IMAX1

Uz = U1-D1

Ul = D2-G1/NFLOAT(M}

UtTsS = UL=*T

AZ = Al

Al = AQ

AD = UTSHAL=-U2%A2+SIGMA{M+IS)

M = M-1
EF{INDERIIGO TO 3006
C FIRST DERIVATIVES DF SERIES

AZ = DAL
DAY = DAO
DAO = UTS*DAL=-AZ*UZ2+A1xUl

ITF{LNONDDIGO T 3006
C SECOND DERIVATIVE OF SERIES

A2 = DD1
CDY = DOO
CDO = UTS*DD1-AZ¥U2+D2%DA1*U1
3006 CONTINUE
C

3007 DML = D1-RL
IF {LKEQL) GO TO 3120

T2 = T%T
P2 = (D3%T2-D1) /D2
SPz Se2xp2

DTS = D3*TS+N]
RM = DML-TS
RMZ2 = RM/Z
IF (LKFQ3) CALL SUMK({S;S243RLsRNeTyRL2yDRLZ,DDRL2yLNDERILLNONDD)
€ JuUMP TO COVARIANCE NOT INVOLVING DEFLECTIOCNS
3120 IF {LNDERI} GO TO 3014
DPL = DI1+RL
RNL = RL=%RN
IF (LXEQ3Y DKC = (DYS/RL+D2=-T7.0D0*TS=N3%RL) /D2
%* +D2%TSHR{LNL+SP24DP [ /RNL
C BELOW COMPUTATICN OF FIRST AND SECCND DERIVATIVES OF CLOSED PARTS COF
C K{P,Q) AND COVI{DELTA G(P)T(Q)) WITH RESPECT T0O ThE VARIABLE T, CFe.
£ REF{A} SECTION 8; EQ. (108)~{1101, {119}={121) AND (133)—-(135).
C
IF {1vMl) 3009,3008,3010
3008 GO 1O (32121,3122,2123),,KTYPE
3121 RLO = OPL/ARNL-D1
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3122

3123

2009

3126

3127

3128

31z3

3135

3010

C THE

C
3011

0 TN 32130

RLO = {DML*DTS/RL=TS)/D2+D3%RM2+D2HTSHRLNL+SP2¥DPL/RNL
GO TO 3130

R1LO = (DKC-DRLZ2}/IKZ

G0 10 3130

GO TO (317643127431283¢KTYPE

RLO = TS/RM+RLNL

GO 70 3130

RLO = {(D3%TS—D1I#RINL+{SP2=TS)*DPL/RNL+TS+DML*(D1-D3%RM2) /RL
GO 1D 2130

KB = DML/RL=-D3%TS+RLNL+TS*DPL/RNL

RLO = {IK1%DKC=IKZFDKR+DRLZ}/IKA

RLC = GAQ+A=SHRLO

IF (LNONDD) GO 1O 3010

IF [LKNE1} RL3 = RLL%RL

GO TO (2121:312242123)3KTYPE

RL1I = (D1+DPL#*=%2/RNL) /RN

GO T0 313E

RLYI = {(D3*TS=D1 1% (DZ%DFL/RNL+DI/{NZ2A*RL3} J+D3®{RILNL+0O1/RL)
+{SP2=TS )% (DPLADPLFRL+RN) F(RN¥%2%xRL3)-D1/02

GO 7O 2128

DDKC = (DTS/RLZ~T.000/D24D2%(RINL+D1/RLI+6.0DOXTS*¥DPL/RNL
+SP2&F ((DPL/PNL)**Z2+D1 /(RL3*RN})

DDKB = DI/RLE2A-DR+DZ2#DPL/RNL+TS*( (DPL/RNL)%*%2+D1/(RL3*RN})

RLYI = {IK1I*DDKC-IK2*DDKS+DDRL2)/IKA

RL1I = DDO+A®S2%KL1

LKSIQ = LREPER .0R. IKQ .FQ. 3

LETAD = IKQ EC. 4

SINDLO = DSIN{(DLONG)

SINDLA = DSIN(DLAT)

DERIVATIVE OF T WITH RESPECT TO THE LATITUDF IN P AND Q.
IF {¢NOTLLNKSIP) DLAP = —~SINDLA+D2%SINLAPX*COSLAC*SIDLO2

IF (LKSIQ) DLAQ = SINDLA+D2*%COSLAPXSINLAOXSIGLC2

IF{INETAPIGD TO 3012

C COVARIANCE BETWEFN ETAP AND OTHER FUNCTIONALS IN Q.

3012

IF{LNONCDICOVPQ RLO*SINDLO*COSLAQ

IF(LKSIQ) CnvPg SINDLOX{SINLAC*RLO-DLAQ*®CCOSLAO*RLY)
IF(LETAQ} COovPQ ~SINGLO*%*2%COSLAQ*COSLAPXRL1+4DCOS(DLONG)*RLO
IF (LONECO) GO TO 3012

IF{LBRST) BINR}=COVPQ/PQW

IF (LNBC) C{NI+NC} = COVPQ/PQW

IF(LPRED) PRETAP = PRETAP+B(NR)*COVPQ

IFILNKSIPIGO TC 3013

C COVARIANCE BETWEEN KSIP AND OTHER FUNCTIONALS IN Q.

IF{LNONDDICOVPY = =RLOXDLAP
IF (LKSIQ) COVPO = DLAPXDLAC*RLI+{DCOSIDIAT)
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c

C

C

¥=D2HS INLAPHSINLAQ®SINLO2)#RLO

3012 IF(LDEFVPIGD TO 3018

COVARIANCE BETWEEN KSIG,ETAQ AND GRAVITY OR HEIGHT ANOMALY
~RLO*DLAO
=RLO*SINDLO*COSLAP

3014

3034

IF{LET

IF(LKS
IF(LET
GG 10

IF (LK
RKC =
RKB =
IF {1V

C CFo.REF(A),

C

3015
3141

3142

3143

Ga 1O
RLO =
GO 1O
RLO =
GG 70
RLO =
GO TG

C CFREF{A),

c

2016
3146

3147

3148

G0 T0
RLO =
GO 10
RLO =
GG TG
RLO =
GO 10

C CF.REF{A),

C

C

3017
3151

3182
3152
3155

3018

GO TO
RLO =
GO 10
RLO =
GO T0
RLO =

coveQ

IF(LCS
Ir{LPR

AQYCOVPQ =

1931C0vPQ =
AQ)COVPQ =
3018

EQL)Y GO TO 2034
DTS#RM2+({D1-T2)1/4.000+4P2%RLNL) *S2
RM=SE2+TS*RLNL

3015,2016,3017

M1}

EC. {1085} ,(115)

{OLAPX¥COSLAPARLI-SINLAPXRLO}*SINDLO

AND {1307,

(31414314242142),KTYPE

DML+ (TS-D1}=RLNL

2155
RKC=-RKE
2158

{IK1*RKC—=1K2*RKB+RL2)} /IKA

3155

EQe{106) 40116}

AND (1311).

{31464+2147,3148),KTYPE

ELNL ~TS
3155

RKC

315%

(RKC—-RL2}/IKZ

2155

EQe{1071,(3117])

AND (1321).

{3151,3152,3153),KTYPE

DML /RL-RLANL
315%

DML/RL=TS=SP2+RKC

3155

(RKC+IK1%RL2}/IK?

= AQ+A%RLO

TICANI) = COVPQ/PQW

EDIFREDP =

NI = NI+l
NR = NP+1
IF {oNDT.LREROWOR{IC.EFQ.IR.AND.{.NOT-LPRED}}) GO TO 3019

LKSIO
LETAQ
LRERGW
o 10

»FALSE.
o« TRUE
= FALSE.
3011

o

PREDP+COVPQ*B(NR)
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aNaNeEaNaNeNel

C

c

3019 CONTINUE

END OF LOOPR COMPUTING A NR-1 VELTOR OF COVARIANCES.
RETURN
£np

SUBROUTINE SUMK55¢SE?RL,”;g;? RL2,DRL2,DDRL2LNDLNDD}
COMPUTATION OF THE SUM CF AN INFINITE LEGCENORE SERIES AND ITS FIRST
AND SECOND DERIVATIVES WITH PESPECT TO THE VARIABLE Ty CF. REF(A} EQ,
(72} s(96)~-{104) s THE SUM DIVEDED BY S IS RETURNED BY THF VARIABLFE
RLZs THE FIRST DERIVATIVE (OIVEDED BY S%S5$=S2) BY DRL2 AND THE SECOND
DERIVATIVE ({DIVEDED BY &S=52) BY DUORLZ.

THE SUM IS THF SUM OF THE TERMS 1/(T+IK)*Q**(I+1)*(LEFEMWQE POLYNDMIAL
JF ORDER I<EVALUATFD. IN Tj FROM THREE TO INFINITY,

IMPLICIT INTEGER(IsJeKeMelN}s LOGICAL(L),REAL *B(A-H,0=-7)

COMMON /SCK/TKe IKOs 1KY, 1KZ;51KA

COMMON /DCON/DOsGL,D2,0D3

RLO = DLOG{D1+D2*S/{D1-S+RL})

= {RL-D1+T*PLO}/S2
RLI = RL/S2
RLO = RLO/S
IF (LND) GO TO 901

DRLT = -D1/{RL%S)
DRLO = S/{TSU=»RL)
DRLYL = (~DL/RL+T#*DRLO+RLO)/S

IF (LNDDY 60 TO 901
RL3 = RL#*%3

DDRLI = -D1/RL3
DDRLO = S2#{{DI+RLI/{LTSL*RL)I%**2)4D1/{TSL*RL3}Y)
DDORLYL = ~D1/RL3+{D2*DRLO+T*DORLO}/S

801 DD 902 1 = 2, IKO
RI = DFLOAT(I}

D21 = {D2*RI-D1}/S
D11 = (RI-D1}/S2
RLZ2 = {(RLI+DZ21*T#¥RL1I~D11%#RL0O} /R1
RLO = RL1
RLY1 = RL2
IF (LND) GO TCO 902
FIRST ORUER DERIVATIVE WITH RESPECT TO T.
DRL2 = {(DRLI+D2I*{RLO+T*DRL1)-D11*DRLO)/RI
DRLO = DRL1
DRL1 = DRL2

IF (LNDD} GO TO 902
SECOND DERIVATIVE WITY RESPECT T Te

DDRL2 = (DDRLI+D21%*{D2%DRLO+T%DDRL1}I=DI14DDRLOY/R]
DDRLO = DPRLI
DDRLYT = DDRLZ

902 CONTINUE
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RL2 = RLZ-DI1/IK=S*T/IK1—(D3*%TxT=D1}*%S52/(N2%IK2)
I F (LND) GO TO 905
DRLZ = DRL2/S-D1/1IK1-D3%S*T/1K2
IF (LNDD) GO TO 905
DDRL2 = DDRL2/S2-D3/1IK2
905 RETURN
END
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Appendix B.

An input example.

The digital numbers written to the left of the input data correspond to the
numbers identifying the input specification given in Section 6.

The input example will produce the output shown in Appendix C. It corresponds

to the situation described in Section 4, i.e. where three datasets of observations
X), X,, and x5 are used for the determination of T.
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Appendix C.
An output example.

The output has been produced by the FORTRAN program using the input given in
Appendix B.
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GEOQDETIC COLLOCATION.VERSION 20 APR 1974,

MOTE THAT THE FUNCTIONALS ARE IN SPHERICAL APPROXIMATION
MEAN RADIUS = RE = 6371 KM AND MEAN GRAVITY 981 KGAL USED,.

LFGEND OF TABLFS OF DBSERVATIONS AND PREDICTIDNS:

DS = OBSERVED VALUE (WHEN POTH COMPONENTS NF DEFLECTIDNS ARE
OFSERVEC ETA BELOW KSI1), DIF =THE GIFFERENCE EETWEEN DOBSERVED
AND PPEDICTED VALUE, WYEN PREDICTIONS ARE COMPUTED AMND FLSE
THE PESIGUAL DBESECPVATION, FRR = ESTIMATED ER2QR OF PREDICTION
TRA = CORTRIBUTINY FROM DATUM TRANSFOPMATION, PNT = CONTRI-
PUTION FoOM POTENTIAL COEFFICIFNTS, COLL = CONTRIBUTION FROM
COLLOCATICN DGETFRMINED PART OF ESTIMATE, WHEN THERE ONLY HAS
BEEN USED ONE SET OF OBSFRVATIONS (DIFFERENT FROM POT.COEFF.)
COLLY1 = CONTRIBUTION FROM ESTIMATE OF ANOMALOUS POT. O€TER=-
MINED FROM FIRST SET nNF OBSERVATIONS, CGLL2Z = CONTRISUTION
FROM ESTIMATE OBTAINED FROM SFCOND SET OF QBSERVATIONS, PRED=
PREDICTFD VALUF IN NtW REFERENCE SYSTEM, WHEN PREDICTIONS ARE
COMPUTED AKND ELSE THE SUM 0F THE CONTPIEUTIONS FROM THE POT.
COEFFICIENTS AN FIRST ESTIMATE OF AYOMALDUS POTENTIAL, AND
PRED-TRA = PREDICTIDN DR SUM OF CONTRIBUTIONS IN THE OLD RE-
FERENCE SYSTEM

REFFREYCE SYSTEM
EUROPEAN DATUM. 1950,

A = 6378388.0 M
1/F = 297.00040

REF.GRAVITY AT EQUATOR = 978049.00 MGAL
POTENTIAL AT REF.ELL. = 62639787.00 M*x*2/SEC*%2
GRAVITY FORMULA

INTERNA TIONAL GRAVITY FORMULA* POTSDAM SYSTEM.

NEW A NEwW GM NEW 1/F
6378143.0 0.390601 2D+15 298.25000

oL DX DY D2
0.52D-05 ~111.1 -111.5 -142.6

EPS1 EPS2 EPS3
1.57 0.19 1.05

NEW REF. GRAVITY AT EQUATOR= 97R032.67 MGAL
NEW POTENTIAL AT ELLIPSOID = 62636916.84 M##2/SEC*%*2

DEFLECTIONS AND HFIGHT ANOMALIES CHANGED IN
LATITUDE LONGITUDE BY DKSI DETA DIETA
55 30 0.0 10 0 0O -1.00 1.00 0.0

SOURCE OF THE POTENTIAL COEFFICIENTS USED

R.H.RAPP, THE GEOPOTENTIAL TO (14,14) ETC.s JUGG, LUCERNE, 1967.

GM A COFF(5%} MAX.DEGREE
0.39860122D0+15 6378143.0 - 484.1803 8



a2l

START OF COLLOCATION I:Z

THE MODEL ANOMALY DEGREE-VARIANCES ARE EQUAL TO
A - ({1-2)%(i+ 24)).

PATIO R/RE L 0.999800
VARIANCE OF POINT GRAVITY ANOMALIES = 1600.,00 MGAL®M2
THE FACTOR A P 412.88 MGAL#%2

12 EHPIPICAL ANOMALY DEGREF~VARIANCES FOR DEGREE > 1,
(IN UNITS OF MGAL*%2):
0.0 0.0 0.0 0.0 0.0 0.0 0.0 151 17.7 13.7 84

OBSERVATIONS:

THE FOLLOWING QUANTITIES ARE MEAN-VALUES, AND ARE REPRESENTED AS POINY VALUES I N A HEIGHT Ro

NOY LATITUOE LONGI TUDE H DELTA G {MGAL) STeVAR. = 27.98, RATIO R/RE = 1,0015554,

D M D M M OBS DIF TRA POT POT-TRA
937269 56 30.00 9 0.0 0.0 18.00 -5.26 -6.69 16.57 23.26
937271 56 30.00 11 0.0 0.0 10.00 -13.19 -6.69 16.50 73.19
937273 56 30.00 13 0.0 0.0 27.00 3.93 ~6.69 16437 23.07
937289 55 30.00 9 0.0 0.0 26.00 3.50 -6.47 16.02 2250
9372¢%1 55 30.00 11 0.0 0.0 12.00 -10.43 ~6.48 15,96 22-43
937293 55 30.00 13 0.0 0.0 6.00 -16.32 -6.48 15.84 2232
937309 54 30.00 9 0.0 0.0 5.00 -16.67 -6.25 15.42 21.67
937311 54 30.00 11 0.0 0.0 10.00 -11.61 -6.25 15.36 2161
937313 54 30.00 13 0.0 0.0 2.00 -19.51 =6+25 15.25 21.51

STAKNDARD DEVIATIONS OF THE OBSERVATIONS IN THE SAME SEQUENCE
AND IN THE SAME UNITS AS THE OBSERVATIONS:
4.00 4.00 4.00 4 .00 4.00 4.00 4 .00 4.00 4.00

SOLUTIONS TO NORMAL EQUATIONS:

~0.98301161300~-01-0.57126957130+00 0.7692296487D+00 0.8015281184D+00-0.44450625120~01
=0.5063771168D+00~0.7147287184D+00 0.51066680190-01-0.5062347114D+00

TJHE SOLUTIONS HAVE BEEN COMPUTED IN A PREVIOUS RUN.

NUMEER OF EQUATION = 9

NORMALIZED SQUARE-SUM OF OBSERVATIONS = 0,178534D401
NORMALI ZED DIFFERENCE BETWEEN SQUARE-SUM OF

OBSERVATIONS AND NORM OF APPROXIMATION = 0,2196870400

a’



€21

START OF COLLOCATION IIs

RATIO R/RE
VARIANCE OF POINT GRAVITY ANOMALIES
THE FACTOR A
90 DEGREE-VARIANCES EQUAL 70 ZERO

DBSERVATIONS

0.

e

999e00

170.00 MGAL##2
65.83 MGAL#%2

NO LAT I TUDE LONGI TUOE H KSI/ETA (ARCSEC) STeVAR, = 195  RATIO R/RE = 1.0000000
D M S O H s M 08S O1F TRA POT COLL PRED PRED=~TRA
40216 55 58 39.68 9 49 54.90 0.0 =~5.13 <=3.99 0.86 =«0D.07 «~0.20 =0.28 <1.14
3.61 4.21 3.93 1.71 1.62 3.33 -0.60
40621 55 57 56.16 12 2 20.37 0.0 —=2.20 0.66 0.78 ~0.13 =1.95 =2.08 ~-2.86
-0.37 1.97 3.80 1.98 =0.52 l.47 <=2.34
40058 54 58 1.40 9 58 32.48. 0.0 ~5.13 =2.42 1.00 =0.25 =1.45 =1.71 =2.71
1.11 2.33 3.96 1.72 1.01 2.73 =-1.22
40606 54 42 54422 11 55 55.39 0.0 ~1.34 0.28 0.97 =0.34 ~0.32 -0.66 =1.62
1.00 2.11 3.85 1.96 0.78 ?2.74 -1.11
NO LATITUOE LONGI TUDE H ZETA (M) ST.VAR. = 0.37, RATI O R/RE = 1,0n00000,
O M S D M S H 0BS DIF TRA enT COoLL PQED PRED-TRA
28 55 52 38.51 12 50 38.93 0.0 20.40 -0.07 22.55 46,20 =3.18 43.02 20.47
NO LATITUDE LONGI TUOE H DELTA G (MGAL) ST.VAR. = 13.04, RATIO R/RE = 1.0000000
D M 0O H H oBs DIF TRA POT COLL PRED PRED-TRA
261301 56 4.90 10 034 70.60 37.49 21.61 —-6.60 16.32 ~T.084 9.28 15.88
700181 56 7.10 11 57.00 0.0 -5.70 =19.90 ~6.61 16.25 -8.66 7.59 14.20
4413 54 51.49 e 59.55 6.94 17.20 5.69 -6.33 15.61 -10.44 5.18 11.51
3163 54 50.23 12 0.01 17.63 14.89 8.68 -6.33 15.52 -15.64 -0.12 6.21
STANDARD DEVIATIONS OF THE DBSERVATIGNS IN THE SAME SECUFNCE
AND 1M THE SAME UNITS AS THE OBSERVATIONS:
0.30 0.30 0.30 0.30 0.30 0.30 0-30 0.30 0.0 020
0.20 0.20 0.20
COEFFICIENTS OF NORMAL~-EQUATIONS, BLOCK 1
1.0237 0.0 1.0237 0.0512 0.0032 1.0237 0.0005 =0.1358 0.0 1.0237
~-0.1228 0.0182 -0.0291 ~0.0662 1.0237 0.0181 0.0907 ~0.0632 -0.0597 0.0
1.0237 -0.0479 Q.0488 =-0.1348 ~0.0090 0.0547 0.0440 1.0237 0.0461 =0.0426
~0.NN89 0.0482 0.0419 -0.1278 0.0 1.0237 0.0009 ~0.0240 0.0746 ~0.3934
0.,0099 0.0168 =~0.1508 =-0.0662 1.0000 =0.2780 ~0.2589 =-0.0105 0.0898 =N.0968
~0.0015 0.0080 -0.0062 -0.0966 1.0002 ~0.0106 ~0.0787 ~0.3605 0.1171 -0.0051
-0.0048 -0.0378 ~0.0003 0.2441 -0.0298 1.0002 0.094%5 -0.0078 0.0047 0.0051
0.3743 -0.0333 -0.0132 0.0929 -0.0877 —-0.0413 ~0.0462 1.0002 -0.0014 0.0016
0.0936 0.0019 0.0081 ~0.0835 =0.3611 =0.1160 ~0.0386 -0.0461 =0.0444 ~0.0365
1.0002 -2.0488 22,1613 0.3411 1.0083 -1.2433 1.1969 0.1459 1.0804 ~0.1945
1.6571 ~1.5266 0.4366 0.6654 19.9161

SOLUTIONS TO NORMAL EQUATIONS:

~0.20011160360+01 0.2635906503D+01~0.37611424140+00 0.1916345175D401-0.1909074891D+01
0.13470935890+01 0.5735323703D+400 0.15419180570+01 0.1638187539D+401 0.16499035950+01

~0.1907160643D+01 0.1433248597D+01 0.13106388510+01

RUMBER OF FCUATIONS =

NORMALL1ZED SQUARE=-SUM OF OBSERVATIONS

13

= 0.1991610402

NORMALI ZED DIFFERENCE BETWEEN SQUARE-SUM OF

OBSERVATIONS AND NORM OF APPRUXIMATION

Be0,4244670201
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