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Abstract

Auto- and cross-covariance expressions for the anomalous potential of
the Earth and its first and second order derivatives are derived based on three
different degree-variance models.

A FORTRAN 1V subroutine is listed and documented that may be used
for the computation of auto- and cross-covariance between any of the following
guantities: (1) the anomalous potential (T), (2) the negative gravity disturbance/r,
(3) the gravity anomaly (Ag), (4) the radial component of the gradient of Ag, (5)
the second order radial derivative of T, (6), (7) the latitude and longitude com-
ponents o the deflection of the vertical, (8), (9) the derivatives in northern and
eastern direction of Ag, (10), (11 the derivatives of the gravity disturbance in
northern and eastern direction, (12)-(14) the second order derivatives of T in
northern, in mixed northern and eastern and in eastern direction.

Values of different kinds of covariance of second order derivatives for
varying spherical distance and height ar e tabul ated.
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1 Introduction

In this report we will derive expressions for the covariance functions of some
guantities related to the anomalous potential of the Earth (denoted T). The quantities
which we will consider are values of linear functionals applied to the anomalous poten-
tial, e.g. the normal derivative at a specific point on the surface of the Earth.

Covariance expressions for such quantities may be derived from one single
covariance function, namely the covariance function of the anomalous potential

cov(Ts, Tq).

This function yields for two points, Pand Q, outside the Earth the covariance between
the values of the anomalous potential at these two points. It may then as well be regarded
as afunction of Por Q. The linear functionals, which correspond to quantities between
which we want to obtain the covariance, can then be applied to this function. This oper-
ation will furnish us with the covariance between the quantities.

Covariance functions of quantities, which included first order derivatives of T
have earlier been derived (e.g. Tscherning and Rapp (1974)). These covariance
functions were required, e.g. when combining gravity anomalies and deflections of the
vertical for the determination of approximations to T using the method of |east squares
collocation, see Tscherning (1974).

It has now become possible to measure second order derivatives of T inan air-
craft. This fact makes these quantities more applicable for several geodetic purposes
than the similar quantities measured at the surface of the Earth because topographic re-
ductions are not needed.

The method of |east squares collocation should, as advocated by Moritz (1974), be
well suited for the filtering of the measurements and for their use in combination with
other data for the determination of T. But the knowledge of the covariance expressions
for these quantities and between these quantities and other kinds of data is required.

Unfortunately the estimation of the basic covariance function, cov (Tp, Tq) iS
difficult both in theory and practice. In Tschernmgand Rapp (1974) the covariance
function is chosen as the function which in between a set of models fits the available data
the best possible. Another criterion for the choice could have been the usefulness of the
covariance function when applied in least squares collocation, i.e. the numerical prop-
erties o the covariance function.

These properties do not stand out clearly in the statistical model for |east squares
collocation. But we may as well regard the method as a functional -analytic approximation
method (see Krarup (1969)). Here the choice of the covariance function is clearly seen as
being equivalent to the choice of a norm or inner product in afunction space. The
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approximation, which is determined, will fulfill a minimum condition. It will have the
least norm between the functions, which agree with the given (filtered) measurements.

The norms, which correspond to the covariance models discussed in Tscherning
and Rapp (1974), correspond to inner products, which include derivatives of different
order, (e.g. Tscherning (1973)). Therefore, the use of some d these different covariance
functions will have the effect, that the approximations will fulfill different minimum con-
ditions, i.e. be smooth in different ways. In this report we will therefore not recommend
a specific model, but develop covariance expressions based on models with different
numerical characteristics.  The final choice of model should then wait until the corres-
ponding covariance functions have been used in numerical tests.

The covariance function of the anomalous potential is here chosen to be rotational!:
invariant, and it will be harmonic in each variable Pand Q. It may then be expressed as
the sum of a Legendre series:

0 £+1
R:a
cov(Te, Tq) = /T Uz(TaT) <rbr'> P!'(cos ¥)
l=o

where o, (T, T) are so-called potential degree-variances, Py(cos¥) is the £'th order
Legendre polynominal, R, is the radius of a sphere totally enclosed in the Earth, r

and r’ are the distance of P,Q respectively from the origin and ¥ is the spherical distance
between P and Q.

The different .numerical properties are reflected in the behavior of the degree-
variance for £ going to infinity, (e.g. Tscherning (1973)). We will here consider three
types of degree-variances, namely % (T, T) decreasing towards zero like 1/.Q%1/4% and

1/4%, c £ eq. (17)).

Let the point P have spherical coordinates (¢, h, r)= (latitude, longitude, distance
‘from the origin) and let us denote partial differentiation with respect to a variable, e.g. r,

by a capital D having the variable as subscript: Q.

We may then express the quantities between which we have chosen to develop co-
variance expressions by the following (linear) functionals applied on T:

(1) =T/ vy , the height anomaly, equal to the value of the evaluation
functional applied on T,(=T{P)anddivided by the reference
gravity,

(2)  -D,T* %: , the radial derivative (divided by r),

(3) Ag=-QT - % T(P) , the (freeair) gravity anomaly,

(4) D.(dg) , the gravity gradient,



(5) DIT , the second order radial derivative,

(6) £= _D(DT/(r y) the latitude component of the deflection o the vertical,
(7 n :—DhT/(r 7y *cosy), the longitude component of the deflection of the vertical,

(8) —(D(pAg)/r s the derivative of Ag with respect to ¢,
(9) —(DAAg)/(r'coscp) , the derivative of Ag with respect to h,
(10) (DD T)/r
(11) (DD T)/(r * cos ),
(12) (D T)/r%,
(13)  (D,DyT)/(x® cos ),
(14) (D} T)/(r*cose”),
From the covariances between these quantities, it is possible to compute co-
variances of all other first or second order derivatives of T. The covariance of the value
o the Laplace operator at P with some other quantity at Q, for example, may be computed

using the covariances between the quantities given in equations (2), (5), (8), (12)and (14),
because

1

2
2 D(pT—

lall‘lm__;_'l_z_

(15) AT=DfT+ %:-D,.T+ DQT+ T cos @ Di T.

(The covariance between two quantities, where one of these is the quantity AT = 0, will
naturally always be zero. This fact can be used for the numerical checking of the com-
putations).

The technique used for the derivation of the covariance expressions is quite simple,
and follows the technique presented in Tscherning and Rapp (1974) closely. Though, we
have chosen to derive equations as general as possible. This appeared to be an advantage,
when the equations were programmed in FORTRAN IV.

The point of departure is an expression for cov(Ts, Tq). The expressions for
other quantities are then found by applying the linear functionals related to these quantities
“n this expression.

The function cov(Ts, Tq) IS given by the choice of the radius R, of a Bjerhammar-
Sphere and of a set of potential degree-variances o, (T,T), . (cf. Tscherning and Rapp
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(1974, page 2)). Wewill, as in that publication, prescribe a rule for the general behavior
of the degree-variances, by adopting a certain degree-variance model. For the first n
(where n isan integer > 0) degree-variances a correction to the model degree-variance

is alowed, so that, for example, the model degree-variance plus the correction is equal
to an empirical determined degree-variance:

(16)  cov(TsTo)= ) 04 (T, 1) s* "1 B, (1
{=0

8

+ ‘Z o, (T,T)SM1Pz(t),

b=0

where the superscripts ¢ and m stands for " correction™ and ""model'* respectively,
s=Ry/(r* r')and t= cos .

The finite sum can be computed using a simple recursion algorithm and the infinite
sum can (dependingon the choice of model) be evaluated using a corresponding analytic
expresssion.

The application of the functionals (1) (14) may be divided in two steps, namely by
first performing the necessary differentiations with respect to r and r' and then with re-
spect to the other spherical coordinates. The two following sections will deal with this
problem. In section 4 we will discuss a FORTAN TV subroutine, which may be used for
computations and we will finally in section 5present tables of covariances and discuss

methods for the evaluation of the reliability of the computed quantities. An appendix con-
tain the listing of the subroutine and an example of a FORTRAN |V program using the sub-

routine.

2 The second and lower order radial derivatives of cov(Tp ,Ts).

We will here regard model (potential) degree-variances of 'the form

b

(17) o}:,i= ATT (b+ky)?,
§=0

where the superscript i (=<1, 2 or 3) is a "model" number. A, jsaconstant in units of
(m/sec)*.

The quantities k; will all be integers greater than an integer p. The degree-
variances of degree |ess than -p will have to be zero, when p is negative. For example,
let the smallest ky be equal to -2. Then p will be equal to -3, and the model degree-
variances of degree 0, 1 and 2 will be equal to zero.



(Note; that the models 1, 2,3 regarded here correspond to Tscherning and Rapp
(1974, p. 30) model 3,4,5 withk,= -2 and ky= -1 for model 1, ko= -2, ky= -1, k,=i ¢
for model 2 and ko= -2, ky = -1, ky= i and ks= j for model 3and A=A, * 10*7/R{ for Re
given in meters).

The degree-variances may be expressed by a sum of partial fractions

b
18) o =4 Z e, /(4+ ky,
=0

where
t

(19) =TT  1/(k.-ky).
nzé)’ m;éj

(Thismay easily be verified using induction after i).

Hence, using eq. (16) we have

a

i -]
(20) covy (Tp,Tq) = 2 O'Z‘Sz-*-l‘ Pl, (ty+ Aq z Z CJ/(Z+kJ)‘SZ+1P£ t).
L=o0 I=0 g=p

The infinite sums in eq. (20) are equal to closed analytic expressions, Fy, (cf.
Tscherning and Rapp (1974, section 8)):

(21) F,=Z 1/(8 + ) s*+1e P, (t).
z:

P

Hence
: . e i.
— c 2+1 !
(22) .COV,. (TP,TQ)~ z 0y ¢S Pz (t)‘*‘ A, CJFkJ‘
L =0 =0

The covariance function dapends only on r and r’ through the quantity s= (RZ/(r* r)). So
the effect of performing adifferentiation with respect to r or r' will be a simple multi-
plication of the degree-varianceswith the degree plus an integer constant, and division with
rorr'. We have for example

=Dy (covy(T,Tq)) = covy(-D; T, Tq)

-~

o 1 ©
— l : o . 2+1 . 2+1 !
= LZO(MI)% s** pﬁ(t)ﬂiﬂazocJ ;:p(z+1)/(z+k,) s Pz(t)J



s
1

= %{ (}L+1)0‘ y SM1 P,(t)+ Ay z c,(l—k,)y 1/(z+kj)s1’+lpp(t)
L=0 ~ )

T y=0 £=v
(23) 1 oo
L+1
+ }: Cy z 8 Pz t)

§=0 L=v

n 4

-1 Sﬁ (J@+1)0‘c b+ P (ty+ Ay y

r Lo

Fo 1=0

+ C;+1S°) ’
where we have put
1 . .
Cj :C.’(l" kj) fOI‘ JS 1

i

01”1:}‘ c; and

Subsequent differentiations with respect to r and ¢’ will produce terms such as

(24) C%+n+1 ¢ Sm! m= 1’ 2,
where
- 4+1
25 Se= LY. s P (t
(25) J,Z Xt
=P

and g is the total number of differentiations performed with respect to r and r'.

This is a fortunate situation, since the computation of radial derivatives of

cov(Tr, Tq) then only becomes slightly more complicated than the computation of the
function itself.

Another for tunate factis that some of the quantities ¢y become zero. In the
above equation (23)



N

1 -
c’“_é.. Cy
j=0

will be equal to zero (thisiseasily verified using eq. (19)). This means, that the term
S,-; never will occur, i.e. we will only have to compute the functions Se, S, and S,

when q= 4.

In several o the linear functionals we have chosen to consider ¢.f. eq. (1)-(14))
the radial derivative will occur together with the evaluation functional applied to T and
divided by r, T(P)/r. The only effect hereof is, that the degree-variances are multiplied
by a constant £+m instead d by E+ 1. For the gravity anomaly we have for example

m=-1

For the covariance functions we will consider, up to four factors,(£+ m) may occur.
(Four factors will occur when the second order radial derivaiive occur in both P and Q).
Table 1 shows the factors which occur for the functionals given by eq. (1)-(14).

Table 1

Table o factors (E+m) which occur, when applying
the functionals given in egq. (1) (14).

Equation Factor Number of
number differentiations
1 none 0
2 L2+1 1
3 £-1 1
4 £-1)(4+2) 2
5 Za+1)(z+ 2) 2
6 none 0
7 none 0
8 -1 1
9 a-1 1
10 atl 1
11 atl 1
12 none 0
13 none S0
14 none 0

L et us therefore regard operators D, which multiply the degree-variances by
#+m and terms independent of E or k, by zero, and let us then compute the factors
ch for 0<j si+qg. These factors will occur when the operator is applied q times, each
time with different m-values:, m,, m,, ms and m,.

We get:



(26) Lyt g, my-k

P R T Zrk
£+my)(m, -k) (m,, - k)(m, - k)
(27) Dy, (Da, ( z+k1 ))= m; - k+ 4+k1
"k 1 —'k
(28) Dna(Dua(Dml(‘zi_k' )= k(L+mg)+ (‘+m3)<mi+k)(m* )

k£~ km, i- k& - m_k - mk+ m; m,

(mz - k) (m,, -k)(m, - k)
* 4+k

(m3 -K) (ks -k)(my -k)
L+k

-kL+k(k - (m; + my+ my))+ + Iy My

and

1
(29) D!4(DI3(DED (Dml ( W N))

(£+my)(ma-Kk)(m, -k)(m; -k)
L2+k

= (ﬁ+ m,)(-k £+ k(k-(m, + my + ma))) +

= -k 4%~ Lk((my + my+ my+m, )-k)-k(k(k-(m; + Mg+ Mg+ my )+
my My + My Mg+ My My + My My + Mg My +M3 My )+ My MMy

. (m, - k)(ma -k)(m, - k)(m; -k)
4+k

q
In Table 2 we have then the coefficients cy:



Table 2

Table o the coefficients c: to the functions F, and S,
for different order of differentiation q.

Function: F, So S, S,
q

i=ko - k4 i+1 i+2 i+3
0] c, 0 - 0 0
1] cy(my-ky) !0 _ 0 0
2| cj(my-ky) -}: ¢,k 0 0

N 3 '
3| cf(ms-ky) Z‘ cyky(k,- Z‘ m, c‘:'_l_ll 0
a=1
’ < 2 é" 1
- -1
4| cj(m,-ky) y cy(-kykytky - T my)+ ‘/—‘ \ m,Iy)) Ch) itz
1o [ETN f)
n=1 =1 p=n+l

The expressions for the coefficients chl , chg, cqi+3 may be simplified somewhat,
depending on the degree-variance model. For the different models we have the following
equations, which may be verified by straight forward computations:

Mode 1:



Model 3:

Putting

we have

Model 1.

Model 2:

=0 i=o
3
-y eyki=1
J=0
q 3 4
I=Zmn and J=z y m,m,
a=1 =1 p=n+4l

cg=cg=c:=1,
3
Cg=cgz—kok1 +I,

c‘;=k§+kok1 +kf - (ko +ky) I+ J,

10



Model 3:
=cf=cB=c®=ct=0
c: =1
Let us use the equations and the Table to derive the covariance function of the gravity

anomalies for Modd 1 having p= 3, k=-2, k= -Lfor Model 2 having in addition kz = i
and for Model 3 having in addition kz=j. Using eq. (3)we have

, 2 2
covy(dg, Ag')= (-D; - T EVe)o(-Dr/ - 7 EVq) covy (Tp, Tq),

where EVy, EVy are the evaluation functionals at P, Q respectively, i.e. EVe (T)= T(P)
and EVy (T)=T(Q).

For Model 1we have co=1, ¢c;=-1, m, = m, = -1 and hence

Co = +1(-1+2)(-1+2) = +1,
?= ~1(-1+1)(-1+1) = 0,
0F = +(-2* (-1)-(-1))= 1,

cov; (Ag, Ag) = Ay (F-, + So) L .

re.

For Model 2we have co= 1/(i+2), ¢, = -1/(i+ 1),c, = 1/((i+1)(i+2)) and again
m; = m, = -1: Hence

ch=cy, C2=0, c¥=(i+1)/(i+2)
c3 = 2/(1+2)- 1/(i+1)- i/((i+ 1)(i+2))=0
and
1 i+1 1

2 Fetip T T

covy(Ag, Ag")= A, (

‘cf. Tscherning and Rapp (1974, eq. (132)).
Finally for Model 3 we have
Co=1/((+2)(3+2)), ¢ =-1/((i+1)(+1)),

4 .
%= Wd+1)(+2)(- 1), ea=1/(G+1)(+2)(j 1)),

hence



c5 = co,
Z=0
2= 1/((i+2)( - 1))
3= 1/((+2)(i-1))
¢y = 2/((i+2)(j +2)-1/((i+1)(j +1))
-/ DE+2)G 1)) J/(GHIE+2)(G - 1)
=0
and
covs (Ag, Ad) = As (F-, ((i+2)(3+2))-[F2 Kuir LG +1fy

r oo b A

[ ,j i
+F /((i+2)(§-1) + Fy /((5+2)(G -1)))

rery 7
cf, Tscherning and Rapp (1974, eq. (141)).

We will end this section by writing down the analytic expressions for Fy and S;.
The basic equation is

@ ?—-1
4+l £4+1
(30) So=2 s¥t Pz(t)=s/L—2 ¥t P, (),
4=v 4=0
where
5
(31) L= (1-2st+s%) .

Introducing the quantities
(32) N=1+L -st
M=1-L-st
and computing the derivatives

D, (1/1) = E gst-1 P (=D, L/L® = (t-8)/12,
Pty

12



Dy (s(t-5)/L%)= ) £°B)(D)st-1

=1

= ((t-2s)L°- s(t-s)(s-t)L* 3)/L®
= (t- 25)/1% + (s-t)®s * 3/1°
= (t- 25 +3s)/L° +3s (- 1)/1°

=(t+s)/L3+3s(t*- 1)/1°,

we get
-] P;l P)
(34) Sl:z 25t lp y=s"t-s)/1%- Y ss*tlpy
. 2 b 2
d=» L=1
and
2 4+1 P £+|
B 2 - ) 2 By _ 2
(35) sg_z\L RS =sP((t+s)/L0+38(°-1)/1°) zz B (ms
=p =1

Using Tscherning and Rapp (1974, eg. (99), (100) and (96))we get the following
equations

pP—-1 f/+1
(36) Fi=tn + ( I sL))-z 1/(#+1)s" B (Y
L=0
P -1
(37) F,=(L-1+t* F})/s- y 1/(£+2)sz+1P£(t)
4=o0
and the recursion formulae
(38)  Fip1= (L+@i-1t* FY -~ (i-1)/s+ Fi-y)/(s-1),

where the superscript 0 indicates, that p=0 in the equation, i.e.

P—1
(9 Fias B - ) 1esivnstt e,
4=0

From Ibid. (eq. (84)- (87))we get
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P~1

(40) F°=s'£?m(2/N)—z 1/@-3“11}@),
L=1
P 41
(41) Fo=s(M+tse o 2/N)- ) 1 1 p(v),
L=2
(42) Foo = s(M(3ts +1)/2+ (P, (t)s = 2 (2/N) +s(1 - t°)/4))
p—1
- z 1/(£—2)s'¢’+1P£(t).
E:S

(There does exist a recursion formula similar to equation (38) for negative j, but we
will not write it down, because we will not consider models, where j isless than -2.)

Combining all these equations, we are now able to compute radial derivatives of
up to second order of the covariance functions corresponding to model 1, 2, and 3.

3. Derivatives with respect to the latitude and the longitude.

We will now consider the computation o the covariance between quantities where
at least one includes differentiation with respect to one of the coordinates ¢, X, @ or X.
Let us suppose, that the necessary differentiations with respect to r or r' have been
executed. Let usfor example consider the computation of

cov(Dy, DXT/(r2 cosp), Ad) = 1/(r*cos @)D, Dy cov (T, , Ag’).

©
The quantity cov (T», Ag) will depend on the coordinates ¢, X, ¢, X' through the variable

(43) t= cosy = sing sin@ + cos¢ cos¢’ COS(AA),
M=X"-X.

Therefore, the computation of the derivatives with respect to the latitude or longitude, can
be divided in a computation o the derivatives o t (up to order four) of a radial derivative
of cov(Tp, Tq) and a subsequent multiplication with derivatives of t with respect to the
latitude and the longitude. We will in the following denote the quantity which remains to
be differentiated with respect to t by K. An integer superscript or a number of apos-
trophes will indicate the order o differentiation, i,e, DZK=K"=K,.

14



It is worthwhile to systematize the derivatives of t in some way. We will do
this by associating different integers with the different kinds of differentiations. Basically
we will associate the integers 0 and 1 with no differentiation at all, and the integers 2 and
3 with differentiation with respect to the latitude (in P or Q) and the longitude (in P or Q),
respectively. The idea is now, to associate with the differentiations with respect to €. g.
¢ and X the sum o the two integers, namely 5, with this second order derivative.

The derivatives may be computed in both P and Q, but the order of differentiation

is maximally two, and the total number of differentiations is hence maximally four. The
kinds of differentiation may then be characterized by four integers:

(i) kind o first differentiation in P (none, D(p, Dy)

3) " second " in P (noneand no first, none, D,,, DA)
k " first " i e, D, D

(k) irs inQ (non 0 )\)

(m) second " in Q (noneand no first, none, Dy Dy)-

The following algorithm will then associate a unique integer d with the appropriate deriva-
tiveof t

(&) only one first order derivative:

in P: d=1i
inQ: d=6+(k-1)+1

(b) two derivatives:
both in P: d=1i+j
bothinQ: d=6+ (k+m-1) +1
inPand Q: d=j+6 (k-1)

(c) three derivatives:

onlyonein P: d=i+6 (k+m-1)
onlyoneinQ: d=i+j+6(k-1)

and
(d) four derivatives:

d=i+j+6 k+m-1).

15



The integer 17, will for example, be associated with the derivative Dw DADA’ (1).
The relationship between the derivatives and the integer d is shown in '
Table 3.

Table 3

The integer d associated with the derivatives of t
with respect to o, X, ¢ and X"

none [ !
. | 2 ]
in Q Dy | Dy | D? D, Dy | Dy
none in P 1 7 13 | 19 i 25 31
D 2 8 | 14 1201 26 32
©
D, 3 9 15 | 21 | 27 33
|
D° 4 |10 16 | 22 28 34
(%)
Dy,Dy, s 11 | 17 | 23 | 29 a5
Di 6 |12 | 18 | 24 30 | 36

We will now write down the general equations for the derivatives of K with
respect top, X, ¢ and X. Let the variables x,y, z and v denote any one of these
(though only two of them can be the same variable in our case).

(43) D.K= Dyt*Ky,
(44) DyDyK=D,Dyt* Ky + Dyt* Dyt* K,,
(45) DDy DK Dyyz t* Ky + Dgt® Dyt* Ky

+ (Dyzt* Dyt + Dyt * Dy, t) K, +Dgt* Dyt * D, tKs,
(46) DyDyD; Dy K= Dyt * Ky + [Dyggw t * Dzt + Dy t * Dyt
+ Dyt Dyt + Dyt * Dyt + Dyt * Dy t+ Dygt * Dy t
+Dy;t* Dy t]* Kg + [Dyt* Dyt Dt + Dyt e Dyt e Dyt
+Dyyt* Det * Dyt + Dt * Dyt* D t+ Dyt e Det* Dot
+Dgyte Dyt Dyt]* Kz+ Dyt Dyt *D,t* Dot K,
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We note, that in order to compute a derivative o e.g. 3'th order, all the
de ivatives of 3'th and lower order of t are needed Therefore, when we e. g. differ-
entiate K with respect to (o, &', X'), the derivatives of t with respect to all three vari-
ables, (@, X), (&, X), (a ), o, & and X are needed. This enables us to write down
a general algorithm based on the assignment of the integers 0, 1, 2 and 3 to the variables
i, j, kand m. But we have to introduce two more variables j, and m, as to distinguish
between the kind of differentiation we are performing in itself (©, ©'. X' above) and the
lower order differentiations.

Let us suppose that the derivatives of t are evaluated and stored in an array d
with subscripts from 1to 36, cf. Table 3. The integers i, j,k and m are then associated
with the variables x, y, z and v used in eq. (43)-(46).

We then have:

(a) Only one differentiation (either i or k are equal to 2 or 3, respectively 1
and j, mare zero):

D,K = d(i+6(k-1)) * K, ,

(b) two differentiations (j or m are equal to zero, inwhich case jl| or ml will be
one and otherwise equal to j, m respectively).

D,y K= d(i) d(j1)d(6(k-1)+1)d(6(m1-1)+ 1)K, +d(i+j +6(k+m-1))K, ,

(c) three differentiations (either j or mare equal to zero, in which case j| or
m1l will be one),

Dyy. K= d(i+j+6(k+m-1))K; + (d(i+j)d(6(k+m-1)+1)+d(i+6(k~1))d(j1+6(m1-1}))
+ d(i+6(m1-1))d(j1+6(k-1)))K, +d(i)d(j1)d(6(k-1)+1)* d(6(m1-1)+1)K,
(d) four differentiations (i; j, k and mare all greater than 1),
Dyy.v K= d(i+j+6(k+m-1))K; +(d(i+j+6(k-1))d(6(m-1)+1)+d(i+6(k+m-1))* d(j)
+ d(j+6(k+m-1))d(i)+d(i+j+6(m=-1))d((k-1)6+1)
+ d(i+j)d(6(k+m-1)+1)+d(i+6(k-1))d(j+6(m-1))
+ d(i+6(m-1))d(j+6(k-1)))K,
+ (d(1+))d(6(k-1)+1)d(6(m-1)+1)+d(i+6 (k-1))d(j)d(6(m=-1)+1)

+ d(i+6(m~-1))d(j)d(6(k-1)+1)+d(j+6(k-1))d(i)d(6(m-1)+1)
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+d(j+6(m-1))d(1)d(6(k-1)+1))d(6(k+m-1)+1)d(i)d(j))Ks
+ d(i)d(j)d(6(k-1)+1)d(6(m-1)+1)"K,.
We will now explicitly calculate the 36 different de ivatives of t, i.e. the values
of the array d.
diy=1
d(2) = D@t= cos® sin® -sin® cos @ COS (AN = ¢s - sce,
d(3) = Dyt= cospcos ¢ sin(A\) = ccs,
d(4)= Dfpt: -sing sing’ - cosy cosp cos(AA) = -t,
d(5) = D«J D)tt: -sinocos ¢ sin(A\) = -scs,
d(6)= DZt: - cos® cose’ cos(AA) = -ccc,
&(7) = D<P't: sinpcos ¢ -cos@sing’ cos(AA) = sc-csc,
d(8)= D, D, t=cos@cos¢ +sin@sing cos(AN) = cc+ ssc,
d(9)=Dy Dy t= - cos@sing sin(AA) = -css,
d(10) = Dj?D‘P' t= -sinocos ©® +cos@sing cos(A)) = -sc+Csc,
d(11) = DAD(DD(p,t:singo sin¢' sin(A\) = SSS,
d(12) = DiD(p: t= cos@sin¢’ cos (AA) = csc,
d(13) = DA' t= -cos@cos’ sin(AA) = -ccs,
d(14) = D(pD)\'t= sin@cos ¢ sin (AX) = scs,
d(15) = DyDy’t = cos¢ cos¢ cos (AA) = ccc,
d(16) = D;Dxt=cos @cos¢ sin(AA) = ccs,
d@1n) = D(pDADXt= -sinocos ¢ cos(A\)= -scc,
d(18) = D§ D, t= cos(pcos¢’ sin (AA) = ccs,
d(19) = Df;,t: -singsine' - cosvcos cos(AA) = -t,
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d(20) = D@ng. - -cosysin® +sinpcos qo'cos (AX)= -cs + scc

d(21) = DXD;P't: -cosvcos ¢ sin(AA) = -ces,

d(22) = D;Dé.b sinosine’ +cosvcos @ cos (AA)= t,
d(23) = Diququo' t= +sinocose sin(AA) = scs,
d(24) = D§( D:‘p.t = +cosocos© cos (AA) = ccc,

d(25) = Dy Dy t= cos¢sin® sin (AN) = CSS,

d(26) = D¢D¢,D>\,t=—sin<osinco’ sin (&A) - 888,

d(27) = Dy Dy Dy-t=-cosgsing cos(AA)= -csc,

d(28) = D’ D ,Dy.t= -cospsing’ sin(A}) = -ess,

® P
d(29) = D(pDAD@’DA’t: sinPsin® cos(AA) = ssc,
- 2 - _ . 7 . — _
d(30) = DADQD'DXt_ cos@sing sin (AA)= -css,

d(31) = Da, t=-cos@cos ¥ cos(AN) = -ccc,
d(32)=D_D,,t=sinocos ©'cos (AA) = sce,
d(33)= DkDi't= -cosocos @ sin (AA)= -ces,
;,t =coswcos @ cos (AA) = ccc,
d(35) = Dy Dchf\.t= sinwcos© sin (AX) = SCS,

d(34)=D°D
()¢

d(36) = D; D; t =coswcos ¢’ cos (b)) = ccc,

where cs = cososin®’, cc=cospcos¢’ etc. In Table 4 the derivatives are presented on
aform corresponding to Table 3.
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Table 4

Derivatives of t with respect to ¢, X, ¥ and X

d(i+j+6(k+m)) k+m
i+j 1 2 | 3 4 5 | 6
SC ] -t CSS -cce
1 1 -CcSc
cs cc scs -CS
2 -scc | SsC scc -88s | scc
3 CCS -css| cce -cecs ! -¢sc | -ceSs
-sc :
4 -t csc | ces t " -¢ss | ccc
i
5 -scs [SSS -scc | scs ssc SCS
{
6 —-ccc: csc ccs ccc -cSS cccC

The general form of K is

1

q q q q k /B

(47) K= ( z CyFy, + Craa So+cCy+g Sy +Cyy38)/(r ¢ (T)))
§=0

+asum of afinite Legendre series,

cf. section 2, where k and m are the order of differentiationwith respect to r and r' and
g=k+m. ThetermS isonly present when k= m=2 and will hence never have to be
differentiated with respect tot. Inasimilar way we see, that only when q is equal to 3,
IS it necessary to compute D;S; and only when q is equal to 2 it may be necessary to
compute DS Se.

Table 5 shows, which terms we will need to differentiate in the different degree-
variance models and what is the maximal order of differentiation we need to compute.
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Table 5

Order of differentiation and kind of quantities
which have to be differentiated with respect to t

Order of radial differentiation. g

Maximal order of 0 1 2 3 4
differentiation with
respect to t 4 3 2 1 0

Degree-variance

model
1 F, | Fy | Fy,S0 | Fy,80,51 | Fyr50,51,5,
2 Fy, | Fy | Fy Fy, S0 Fy,50,5
3 Fy | Fy ' Fy | F, Fy,So

We will hence have to compute expressions for the 1'th to 4'th derivatives of Fy,
of the I'th and second derivatives of S, and of the 1'th derivative of S, and not to forget,
the 1'st to 4'th derivatives of the sum of the finite.Legendre series,

The derivatives of the sum of a finite Legendre series
(48) s=z az'sz+1Pz(t)

may be computed easily using a simple recursion algorithm, cf. Tscherning and Rapp
(1974, p. 67). For

€= (24+1)/(L+1)" s, £y, =~ (4+1)/(4+2) * s®
and
(49) by=egtby,  + 1By o+ 2y With byi3=Db,4,=0,
we have
(50) S=b°. So

The derivatives of Swith respect to t are then computed by a recursion algorithm
obtained by differentiating eq. (49):
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1 1 Ll
bp=eg(by  Fthy D+ 1 Do
2_ 1 2 . 1.3

by=ep(@by Yy )+ E 1 Pha

and generally with the superscript q indicating the order of differentiation
tot:

q -t . 38 Y 1d
(51) bz—ez(q bﬂ+1+t bz+1)+f£+1 b£.+2 R
and still
(52) S%=bg* s.

For the expressions F, and S, we must do the hard work of differentiating the
expressions up to four times.

Let us first differentiate 1/L:
Dy (1/L)=s/L°,
DZ(1/1) = 3s%/18.
Hence from eg. (30) we have

P~ 1
63  DiSo=s/1- § Pl
[——Jo

P =1
Gy Dis=ss/0- Y S A0
L=0

and fromeq. (34)
p-1

(55) D. S, = s®(1/1® +3(t-5)s/L°) - }: !,s'e

o1

t 1
P t L)
( )

From the computation of the derivatives d Fy; we will need the following
derivatives.

(56) D(1/(L'N')) = s(i/L* *2 N5)+j/(L‘+1 N’+1)+j/(LiN3+1)),
where we have used

DyL=-s/L and DN= -s/L-s.
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From Tscherning and Rapp (1974, section 8) we have the following derivatives o
F; (wherewe have left out the finite series part);

(57) D, Fo=8* Dy (¢n(2/N)) = s*(1/(LN) + 1/N),
(58)  DEFo=s®((N+L)/(L°N®)+ (2+L)/(LN))
= s2(1/L2N) + 1/(L®N®)+ 2/(L * N®)+1/N?).
Using eq. (56) we get
(56) D} Fo = s*[3/(L°N)+1/(1L°N%)+ 1/(L*N?)+ 2/(L*N®)
+2/(12N%)+2/(L3N3)+2/(L3N?)+ 4/(L*N?)
+4/(L*N®)+2/N> +2/(LN%)]
= s*[3/(L°N)+3/(L3N?) + 3/(L*N?)+6/(L®N?)
+ 2/(L2N)+6/(LN*)+2/N%

=s*[(3/L°+ (3(1 +1/L)/L% +2(1+(3+(3+1/L)/L)/L}/N)/N)/N)]

(60) Di Fo = 38° [5AL” N)+1/(1° N2)+1/(LEN?)+ 3/(1° N ?)
+2/(LBN®)+2/(L*N®)+4/(L°N?)+2/(L*N3)+ 2/(I1° N?)
+4/(L°N®)+6/(LN*)+6 /(12 N*)+2/(L° N3)+2/(1L3N*)
+2/(LAN*)+2/(L2N®) + 6/(LN*) + 6/(L°N*)+2/N*+2/(LN*)]

=38°[5/L" N)+4/(L° N®)+5/(L°N?)+4/(L3N?)
+ 8/(L*N®)+4/(1° N°)+12/(L2N*)+ 8/(L®N*)
+ 2/(LN*)+8/(LN*)+2/N*]

= 3s®[(5/L7 +((4+5/L)/1° + (4+(8+4/L)/L)/ L®

+(2+(8+(12 +(8+2/L)/L)/L)/L)/N)/N)/N) /N 1.

V¢ then have using eq. (41) and (42) (and eq. (40) without the finite sum):
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(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

where

P=1
DiF_y= s(DiM+t* D Fo+ Fg) - z 1/(1z~1)sIerl Dth(t),‘

L =2
: = 4+1
D{F_, = s(DM+tDfFo+ 2D, Fo) - Z 1/(4-1)s DfI;l(t),
=2
P~1 2 1
DYF.y = S(D{M+(D{ Fo + 8D{Fo) - ) 1/(2-1)s™ " D{B(t),
£ =2
Pl £+1
D! F_, = S(D¥M+ tD¥ Fo+4DS Fo) - z 1/(4-1)s"" DfPL(t),
f=2

D.F_, = s[D, M(3ts +1)/2+ M3s/2 + 5(P, (t)D, Fo+ 3t Fo

p-1
£+1
-st/2)] - z 1/(4-2)s"* 1D B (1),
1,:3 .

D{F_, = s[DfM(3ts +1)/2 + 35Dy M +5(P, (t)D§ Fo+ 6tDy Fo

p-1

+3Fo-5/2)] - Z 1/(4-2)s
L:s .

£+1
Dsz it)s

D! F_, = s[D§ M(3ts +1)/2+9sD; M/2 +5(Pg (1) Df Fo

Pp-1
+9(IDFFo+ Dy Fo))l- 3 1/(4-2)s** D3 (1),
L=3

Di F_, = s[D} M(3ts +1)/2 + 6sD; M + S(Pa (t) D§ Fo +12tD? Fy

p=1
+18Ds Fp)] - z 1/(2-2)s
i=a

£+1
"7 DiBy (1),
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(692) D M= -s+s/L,
(69b) DiM=s*/13,
(69¢) DiM= 3s°/1%,
(69d)  DiM=15s*/17.

From Tscherning and Rapp (1974, eq. (101))and from eq. (36) we have

P-1
DR =sYL® M- ) 1/(4+1s* 1D B, ),
=1

DfF =5 (1/(L3N?) + 1/(LN?) + 1/(NL?))

P—1
- z 1/¢+1s 1 pfp (1)
L=2 4

and hence, using eg. (56), we have

(70) Dy Fy = s*[2/(L*N®) + 2/(L®N®) + 2/(13N®)

+1/(12N%) + 2/(LN®)2ALPN®) +1/(N?1L3) +1/(N® L + 3/(NL®)]

Pl P
- Y 1/(2+1)s
1=3

t f;()

=s*[3/(L*N®)+4/(L2N®) +2/(L2N?) + 2/(1L2N?)

-1
+2/(LN%)+3/(NL°)] - v* 1/(,¢+1)s“1 Dfpa(t)
L=3

=s*[(3/L%+((2+3/L)/L%+ (2 + (4 +2/L)/L)/N)/N)/(NL)]

P-~1 .
=) Vst ioie o,
£=3
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(11) - D¥F, = s°[12/(1°N?)+6/(L*N3) +6/(1°N®)
+8/(L*N2)+12/(L2N*) +12/(L®N*) +6/(L° N°®) + 6 /(1 N¥)
+6/(L*N*)+6/(L°N®) +4/(L®N®) +4/(L*N?) +2/(L®N?)
+6/(LN" +6/(LEN") +15/(L"N) +3/(1°N®) +3/(L°N?)]

p-1
- }: 1/(z+1)s“1D‘§P£(t)
f=a

=355 [5/(L' N) +5/(LEN?) +6/(L*N3)+4/(L°N®) +6/(L°N*)

+6/(LPN*)+2/(L*N*) +2/(L®N®) +2/(LN*) +3/(L° N ?)]

P-1
- Y vyt inie
f=4

=38"[(5/L° +((3+5/L)/L* +((2+(6+4/L)/L)/L°

),./i : !“:’

(74 (6+(6.+2/1)/L) /@81y /N) /N)/(NL)]

P;l
- Z 1/(4+1)s¥*t D} B, ().

L=<

Then we have from eq. (37), (wherethe superscript 0 again denotes that p=0 in the
equation for Fy)

P -1

(72) D, F; = (-S/L+tDy F{ + FJ)/s - E 1/(1z+2)s“1Dt P, (t),
4=1

) p-1 !,
(73) DPF, = (~s* /L3#D2 FS +2D, F$)/s - z 1/(4+2)s +1DfPL(t).
=2
: =5 4+1
(14)  DYF, = (-3s°/L° + tD} F 2+ 3D° F$)/s - z 1/(4+2)s" " D@,
4=3
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P=1 .
)
(75) D} F, = (-155* /L7 +t* DY FY+4D3FS)/s- ) 1/(4+2)s

L=y

+1
D;’Pz(t),

and finally the recursion algorithm (cf. eg. (39)):
(16)  DyF$,y= (DiL+@i;1)(kD: ™" F$+ tD; F})

~(i-1)/s* D{FS_1)/(i*s),

where

(772) D,L= -s/L
(77b) D{L= -s°/1°
(T7¢c) DiL= -3s°/1°
(77d) DiL=-15s*/L7.

Combining all the equations given in section 2 and 3, we are now able to compute
the covariance functions of the quantities (1)~ (14) corresponding to the degree-variance
models1, 2 and 3. The practical set up of the computations is described in the following
section.
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4. The subroutine COVAX.

For the computation of the covariancesa FORTRAN TV subroutine
named COVAX has been designed and tested on the TBM system/370 computer
of the Ohio State University Instruction and Research Computer Center. Tests
were carried out for all three degree-variances models, for all combinations of
the quantities given by eq, (1)- (14) and for a representative sample of points
P and Q outside the Bjeshammar-sphere.

Fortunately a very good numerical control is available due to the fact,
that the covariance functions where one of the quantities is the anomalous poten-
tial are harmonic functions. A numerical evaluation of the Laplace equation us-
ing eq, (15) will therefore give a result, which will indicate the order of the
round off errors, We will inthisway have a check o the numerical evaluation
of all covariances between quantities given by eq. (1)- (14) in one point and by
eqg. (2), (5), (6), (12) and (14) in the other. For the other covariance func-
tions only errors occurring while using these e g. in least squares collocation
may unveil programming errors.

The tests showed, that fhe round off errors depended on the complexity
of the used degree-variance model. But only in extreme cases did the relative
error exceed 107%. This occurred when big values of k,(>500) were used in the
model degree-variances (eq. (17))and when the difference between the radius of
the Bjerhammar-sphere and the mean radius of the Earth was small (500m). The
round off errors did generally decrease for increasing altitude. However, when
the subroutine was tested with one o the quantities k, = 1500 and with the points
of evaluation both situated in a height of 250km, overflow occurred.

This was caused by applying the recursion formulae eq. (38), where
in each recursion step a division with a quantity | ess than one (s = R,>/(r* "))

takes place.

It was therefore decided to allow the use of the expression eq. (16) in

high altitudes, but only carrying the summation up to some finite limit. The
choice of summation limit and of the height in which this possibility should be
used will depend on the numerical characteristics of the actual computer used.

The following procedure may be used t choose these limits:
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(A)

(B)

Compute the values of the covariances which make up the Laplace
equation for all quantities given by eq. (1)~ (14) in altitudes from

e, g, 0km to 1000km in steps of 25km using P identical to Q; ({=0).
These values will show the magnitude of the error occurring while
using the closed expressions.

The height in which the value of the Laplace equation exceeds e, g.
the value obtained at the surface of the Earth or inwhich overflow
occurs may then be chosen as the "critical height”, h,, .

Compute in the height some kilometers below h,, the same covar-
iance quantities using the closed expressions and eq, (16) with vary-
ing summation limits. The summation limit may then be chosen by
requiring that fhe difference between the values obtained using the
closed expressions and the finite series is of the same numerical
magnitude as the error observed when evaluating the Laplace equa-
tion using the closed expression.

The.final version of COVAX (which islisted in the appendix) includes the

possibility for the use of the finite series. The subroutine will therefore (besides
the specification of the degree-variance model, etc.) require the specification of
alogical variable LSUM, whichistrueincaseeg. (16) will have to be used and
false otherwise, It furthermore requires the specification of the value of hanax

and of the summation limit,

The computations require in all cases the specification of three different:

kinds of quantities

the radius of the Bjerhammar-sphere, R,, the model degree-vari-
ances o} (T, T), the degree-variance corrections o7 (T, T), (cf. eq.

(16) ), thevalues of LSUM, h,, and the summation limit.

the kind of quantities between which the covariances are to be com-
puted, and

the coordinates of the points P and Q inwhich the quantities are
evaluated and (insome cases) the reference gravity.
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The subroutine has been designed accordingly, having three parts, each
with a separate entry (COVAX, COVBX, COVCX). (A reader unfamiliar with
terms such.as ''subroutine', "entry", etc. should consult e g [IBM (1973, p. 96) ).

The subroutine requires the specifications to be given in the following way
(whereall specifications labelled "a", 'b', '"c'" must be done before the call of
COVAX, COVBX,and COVCX, respectively).

(- 1) The degree-variance model is specified by giving the degree-variance
model number (1, 2, or 3).

(a-2): The model degree-variances are specified by giving the value of A;
(cf. eq. (17)) inunits of (m/sec)*, of ks for model 2 and of k, and
k, for model 3 The subroutine uses fixed values for ko (= -2) and
ki (= -1). The choice o these quantities are in principle arbitrary,
but the values have given good result in the analytic representation of
empirical covariance functions, (cf. Tscherning and Rapp (1974, sec-
tion 6)). The subroutine requres k, and k, to be positive (>0) when
used. The lower summation limit p of eq. (20) hes therefore been
fixed to 3 in the subroutine.

(a-3): The radius of the Bjerhammar-sphere is specified by giving
SO = (RE /R'b)zs

where Re has been chosen to 6371, 0km,
(a-4): For the degree-variance corrections there are three possibilities:

(). A number of degree-variance corrections are used (maximal degree Ny).
These are generally not known and will depend on the-actual values speci-

fiedin (a-1) = (a-3). What is known is-on the other hand the empirical
anomaly degree-variances at the surface of the Earth,

L+2
"z(Ag, dg) - So+ .
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(1.

(Im.

1) :

(c-1):

(c-2):

These will have to be transferred to COVAX together with the value
of N1 = N+ 1 The subroutinewill compute the degree-variance
corrections in units of (m/sec)* using

RS+ 107° gy (4g, Ag)

- oy (T, T
- 1) 2, ( )

oy(T, T) =

for £> 2 and with oy(dg, Ag) in units of mgal®.

For £2=2, we simply use the same expression with the model degree-
variance equal to zero. All terms of degree 0 and 1 are supposed to
be equal to zero.

No degree-variance corrections areused. This is indicated by assign-
ing the variable N1 the value of the summation limit p (=3).

The degree-variance corrections of order up to aninclusive N are equal
to minus the value of the model degree-variances. A representation of

alocal covariance function may be obtained in thisway (cf. Ibid (1974,
section 9) ). A logical variable LOCAL :is used to indicate that this pos-
sibility has been chosen, (It must have assigned the value truein this
case and falsein cases (1) and (II) ).

The kind of quantities between which the covariances is to be computed
Is specified by storing the values of the equation numbers defining the
corresponding linear functionals (eq. (D~ (14)) in specific array ele-
ments, (cf. comment-statementsincluded in COVAX).

The coordinates of the points P and Q are specified indirectly by giving
the sines and cosines to the latitude of P and Q and o their longitude
difference A X.

The referencegravities of P and Q must be given in units of m/sec?.
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How the explicit specifications actually are done are described in all
detail in the subroutine itself through comment-statements. In order to clarify
the use of the subroutine, the transfer of information and allocation o storage
space for arrays a program calling the subroutine has been included in the ap-
pendix together with an in- and output example. A flowchart of the program
Is shown in Figure 1

The program has been used for the computation of all covariance values
in Table6 and 7. The values given in the tables are shown with five digits be-
hind the decimal point. Thiswill not in all cases correspond to the actual num-
ber of correct digits, but they are shown in order to facilitate the comparison of
results obtaining using different computers or FORTRAN compilers.

F should be noted, that the program uses a very simple expression for
the reference gravity, namely

¥y = GM/r®.

For actual production type computations other expressions for the refer-
ence gravity should be considered, including expressions with and without the con-
tribution from the rotation of the Earth.

WeVill finally.mention, that Algol-procedures, corresponding to COVAX
may be obtained on request from the Danish Geodetic Institute.

-32-



Figure 1
Flow-chart of the calling program.

The following logical variables determines the flow:

LTEST = test-outputis needed,

LAST1 ;\Iogical variables, true when quantities input simultaneously are
LAST2 =

LAST 3 = J the last specification, which will be input within the program-loop.
F = false

T = true

I nput: \ Specif. of degree-variance model and 7/

empirical anomaly degree-variances, LAST lj——<_'

Faayer]

I nput: Specif. of number of values in output table (NCOV),
Equidistance and azimuth between P and Q,LLAST 2,

I nput: \Specif. of kind of covariance to be computed
and of the height of P,Q LLAST 3

|

[(1=0, MT MT+‘|

- F 1:;/

~J

¥
Output: Table LAST LAST 2>~<LAST 1)
YT

6I6P
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Table 6a.

Table of covariances between quantities evaluated at points P and Q at

the surface'of the Earth, having spherical distance ¢ and an azimuth of zero degrees
from P to Q. The degree-variance model recommended by Tscherning and Rapp
(1974, table 7) with 0, (Ag, 4g) = 7.5 mgal® was used,

Quantity given by equation:

Y (3) L@ (5) (8) (9)
H ° ’ ,1 ' mgala ’ E2 B2 E2 Ea
. |
O 0. N 1795, 00667 TTMRL,9452F 095, J4ne’ DER G RECE] BbErx,rryR]
0 2.50 1AN4_ 935494 £G5,35412 704 19401 42 J9RE2Y  1NBR, 77430
0 5,00 1L£1%,82070 105,9%16F 108.49560 —25%,2R]1(14 =57 ,4LE24
0 7.50 123R.N4626 29.15054 30.R84237 ~145,87968 173,81532
G 10.n0 1189,51949 10.26&5% 11.51%2%  =91,97655 101.,326198
N 12.50 1111.14205 3. 57847 4, RH5426 ~H2,69912 b5, RY350
0 15,00 104hA,L6944 1.29%8C 2.09110G =£5,2R62Y 4€,0277Y
N 17.50 991,6090% N,13473 0.80534 —34,15740 3%, 83242
0 20.00 944,14362  —-0,4]1308 0.16%21 =26,63622 P KRE2EL
0 22.50 902,.43505 -N, 67351 -0.16976 =21.,32494 20.31415
N 25,00 RAS5,42950  —(,7900¢ —0. 343288 —17,43G57 16,35412
0 27.50 R31,9%43%2 -N.83151 ~0.43202 ~16,5]1405 13.42094
C 1'0.00 £01.76657  —(,822GC —0.47202 =12.,25770 11.19095
0 32.50 774,188%59 —N.B1316  —0.4RL4LG —10,4LR1%3 Y,45813
0 25,00 T&8,86AC0 =0, THP2Z -0.4810k -5 ,05066 B, 0K646
N 37.50 725,49469 “0.74630  —0.46RAD -7.90355 6.98322
C 40.00 T03,82267  ~0.T0RXG =0.45110 ~6.95128 £.06349
0 42.50 683,64565 ~0,67047 —0e43103 -6.15807 5434076
0 65,00  £64,79275 ~(.6%267 -0.40590 ~-5,490%5 4.72101
1 0.0 572.74180 -0.45151 -0.29280 -3.05700 2.51518 .
1 20.00 452,6%643  —0,25007 ~-0.1521?2 -1.30715 1.00790
7 0.0 375,55500 -N,1541% -0.08416 -0,70123 0.51593
3 0.0 279, RAL5T  =0.0715] —0.026Y & -0.2R7207 00,1465
& 0.0 221.60306 —0,03885 -0.00591 ~0,143~7 0.09541
5 0.0 1R1.RR20T7  =(.0232¢< 0.00214  ~0.08%47 C.05428
10 0,0 Bb, 14307 -0.00375 0.N0976 -0,01450 0.00907
15  0.n bl DK261 ~C.001%% 0.0071¢ -0, 00507 0.00%16
25 0.0 2,35914  -0,00091 0.00190 -0.00150 0.00081
X5 040 —H8e54RT74  ~(.0010] -0.0014¢ -0.00078 C.00027
45 0,0 =15,37408 -0. 00098 -0.00323 ~-0.00050 N.00006
55 0.0 ~1h,RG3HR -C.000R) -0.00%71 -0.00022 -0.00003
£5 0.0 -12.44514  -0,00053  =0.00320 -0.00016 -0.00007
75 0.0 —6.94649  —C,0002] -0.00206 -0.0000% -0, 00009
-2 0.0 -1.05760 0.00009  -0.00075 0.0000%  =0.00008
“5 0.0 3,8RN4LD Ce0003] 0.0004% -0.00014 0.00006
"5 0.0 6.94307 0., 00042 0.001327 -0.00014& 0.00003
115 0.0 74 6RIED 0.,00041 0.0017% -0.0001y -0.,00001
75 00 6.17001 0.00029 0.00157 -0.00020 -0.,00004
35 oun 2.8646=7 C.0000¢ 0.00096 -0.0001¢% -0, 000084
l«5 0.0 -1.43769 -0.00016 0.00007 -0,00019 -0, 00011
-5 0,0 -5, TORKG -C.0004C -0.00086 -0.0001n -0, 00014
A5 0.0 —9,311%6° =0.0005R -0.0N16A3 -0.00017 -0.00015
| P75 0.0 =11.26327  =(.0006%  -0.00207  -0.00017 -C.CC016
aJ20 0.0 =11.51674  =0,000NT0 =0.00213  —0,00016  =0,00016

=34
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5. Reflections over the choice of covariance function

In Tscherning and Rapp (1974) a specific covariance function is recommended
(degree-variance model 2 of the present report, (R, /R:)° =0.999617, k, = -2,
k,=-1 k, =24and A, /R,®=42524 mgal®). Auto-covariance values for the
quantities defined in eq. (3) - (5)and (8) - (14) are tabulated in Table 6a, b for vary-
ing spherical distance $.

The covariance function was chosen, so that it, in between several models, gave
the best representation of different kinds of empirical free-air gravity anomaly data
(aglobal 1° mean anomaly covariance function, the mean square variation of the
point anomalies, etc.).

But will the covariance functions of other quantities be appropriately repre-
sented by expressions derived from the recommended model ? Unfortunately, this
can not be answered at present, because no globaly distributed samples of gravity
dependent quantities other than gravity anomalies are available.

In Ibid. (section9) it is explained, how a local covariance function may be repre-
sented by removing a number of the lower order degree-variances and by choosing a
value for the constant A, (ineqg. (17)) so that the empirically determined mean square
variation of the local anomalies and the value derived from the 'model' covariance
function becomes identical.

Such a local covariance function eq. (78a) was determined for the State of Ohio,
U.S.A., (cf. Tscherning (1974, page 25) ).

(78a) cov(Tp, Tq) = {81.8 mgal®) R g4l
(£-1) (2-2) (£+24)

P, (cosy),
L=205

(R /Re)® = 0.9996

In Southern Ohio measurements of second order horizontal derivatives have been
carried out in alittle more than 300 points (Badekas (1967) ). The following quantities
were observed:

2 < 2 3 -] 2
(Dpr W)/r, (Dy 4 W)/(cosper), (D W)/r° - (D) W)/(cos®p«r°), and

2-(D§m“’)/(cosqo- r® or equivalently the corresponding derivatives (or linear com-
bination of derivatives) of the anomalous potential, T.
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Covariance functions between any of these latter quantities will be azimuth
dependent, so they can not be used directly for the estimation of empirical covar-
iance functions. But the two quantities,

(D:Dr T)/r and (DirT)/(r * COS()

may for each hvo points of observation be split intoa longitudinal and a transversal
component in the same manner as done for deflections of the vertical (cf. Tscher-
ning and Rapp (1974, figure 2) ). Doing this, it was possible to compute three local,
empirical covariance functions, namely the auto-covariance functions of the longi-
tudinal and transversal components and the cross-covariance function between the
components. The covariarce values were obtained (after first having subtracted the
mean values from the two basic quantities separately) by computing the mean values
of all products of quantities observed in points having a spherical distance falling

. . . ' 1 1
within one of the sample intervals (0 - % . 71-'-1% , 1% -2 é— , etc.).
The empirical values are shown in the figures 2a, b, and c.

Using the covariance function given by eq. (78a) corresponding covariance values
were computed. They are shown in fig. 2a, b, c aswell, and it appears that the val-
ues are significantly different. The 'model' mean square variation of the anomalies
Is much bigger than the empirical and the 'model’' auto-covariance values have a
much faster decrease than the empirical values.

We may then hope, that we by varying the parameters determining the 'model*
covariance function will arrive to a model, which gives a better fit to the empirical
data. A decrease in theradius of the Bjerhammar-sphere, for example, will re-
duce both the variation of the point gravity anomalies and the variation of the second
order derivatives. The effect will be relatively bigger for the second order deriva-
tives than for the gravity anomaly. Hence, by simultaneously increasing the constant
A of eg. (17) and decreasing the radius of the Bjerhammar-sphere we may hold the
mean square variation of the gravity anomalies fixed and arrive to a proper value for
the mean square variation of the two second order derivatives we have regarded.
Changing the ratio (R /Re)® from 0.9996 to 0.9994 and A./RZ from 82 to 100 mgal® we
arrived to a model covariance function, which then at |east has consistent values for
the two mean square variations. Covariance values derived from this final model
covariance function (7§b) are shown infig. 2a, b, and c as well.

<=}

(0 1501 101, o
f=205 (L~1)(a-2)(at+24)

(78b) cov(Te, To) =
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Figure 2a, b, c.

Local empirical and "model" covariance values for the lon-

gitudional and transversal components of the quantities given by eg. (8) and (9).

400

200

Fig. 2a. Autocovariance values of the longi-
tudional components.

++ empirical values (Southwest Ohio)
— values computed using the function (78a)

< values computed using the function (78b).
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Fig. 2b. Autocovariance values of the trans-
versal components.

Legend as for Fig. 2a,
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Fig. 2c. Crosscovariance values for the longi-
tudional and the transversal components. Only
the empirical values are shown, because the

other functions are 0.
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By describing this small investigation we wish to call attention to the compli-
cated problem of deriving covariance functions, which sufficiently well represent
the actual variations of the gravity field.

Let us finally regard three covariance functions, each using a different degree-
variance model (eq. (17), i=1, 2, and 3), each having the same corresponding mean
square variation of the point anomalies of 1795 mgal® and each giving a reasonabl e fit
to the empirical degree-variances o order 3 to 20, (cf. Tscherning and Rapp (1974,
Table 5) ). The parameters which remain to be fixed are then for all three models
the radius R, (or equivalently theratio s = (R°/R°) ), for model 2 in addition the
integer k, and for model 3 in addition the integers k, and k;. By varying these
parameters we then arrived to the values given in Table 7a (the covariance functions
A, B, and D), (Thevalues for model 2 are naturally identical to the values given in
Ibid. (Table7)).

In each model the contribution from degree £ to the variance of the anomalies
is equal to

_& 2 i 1 Rb 24+4
(79) R2(-D° T (R ,

§=o

_Inorder to make the terms of degree greater than 20 add up to the same figure
(1795mgal® minus the sum of the degree-variances of orders | ess than and equal to
20 (Ibid. (Table 5)) ), the radius of the Bjerhammar-sphere will have to be the smal -
lest for model | and the biggest for model 3 (asit also appears from Table 7a).

Table 7a. Quantities defining the covariance functions (A) - (D), (cf. eq.
(16) and (17) ), used to compute the mean square variations given in Table 7b.

Covariance | Deg. var. R; A/R? k, |[ka [ |02(Ag, 2g)
function model Re mgal® mgal

A 1 0.996004 7.2 2 7.5
B 2 0.999617 425.3 | 24 2 7.5
C 2 0.999617 425.3 + 24 20

D* 3 0.9999 465110.0 13 {1100} 2 7.5

* Model D used with LSUM true, £z, = 25km and the summation limit
equal to 300.
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Table 7b. Mean square variations of different quantities for varying height
computed using four different covariance functions, defined by the constants
given in Table 7a,

Quantity given by equation:

Height Cov. (1) (3) (4) (6)

km  fct. m? mgal® E? (arc sec)®
0 A 606,26265 1795,07333 5648,37KT73 43,42127

¢ R G26,593277 1795,0069> TOR4, 59527 45,30798

0 C 13.31572 1519,620n7 TN84,48715 34,53K820

0 D 1304,4K%0646 1795,0029% 8995,0613% 47.652%4
10 A 600,44125 1NNE, 53705 96.53272 25.R6525
10 R 917.6487A $21,9012¢ 79.15527 26.,062806
10 C 11.73505  666,43502 7G6. 04504 15.55471
10 ) 1291.66R22 1090 ,BG6E6 64,79279 31.91158
100 A 559,45831  200,A60616 0.79982 7.23262
100 R R49,5MN341 295,0K82°5 0.70200 11.14269
100 C 4,73447  101,.41301 0.63592 2.60397
100 £ 1191.,82157 40E&,69105 0.79292 15.76414
250 A 508,34093 79. R1504 0. 06446 3.99956
250 R 760,72519 138,9904¢ 0.08271 boRGY LG
250 C 1.36335 Ib. 10806 0.05031 0.51966
250 D 1059,7545%59 204 ,5063% 0.10628 10.0758%
500 A 443 ,978A8 34,38415 0. 00DR94 2.46515
500 R bLR RE4TH 6L, DRGR( 0.01458 4,29061
500 C N.22216 1,919%3 0.00341 0.06475
500 D 892, 75725 97.,4685) 0.02061 6.38635
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Table Th, (cont)

Quantity gi ven by equation:
Height | Cov. (8) (10) (12) (13)
“km | fet. E? E® E® E®

0 A 2772.54346  274,75402 205, 64801 68,.54853

0 R A6AR, BRG] 2H4LZ,AXRTE P656.T2Y945  HEH,.5T7h6G

0 G 353R8,29401 354%,569598 2656, 685960 KRB5.56123

0 D 4494 , 267497 4498 ,6%57) 2373,15291 1124,38=75
10 A 47,7503 48, LLBLE 36.20364 12.06741
10 R 39,20790 3G,71037 29.6R674 9.89510
10 C 39, 16503 39, 64940 29. 64516 9,8R143
10 D 47.050K0G 32,5231 24,30158 8.09%94
100 A 0.37R894 0.,40927 0.30081 0.10015
100 R N.32826 C.3629C 0.26497 0.08814
100 C D.301R0 0.32423 0.23880 0,07956
100 D 0,36772 0.41121 0.29975 0.094G 45K
250 A N, 02842 0.03467 0.02458 0.00813
250 R N.N%559 C.04520 0.03177 0.01047
250 o N.02314 0.02598 0.0189? 0.0N630
250 N 0. 046519 0.05R64 0.04090 0.01349
500 A N, NN353 N. 00533 0.00355 0.00115
500 B N, D056 C.0088] 0.00582 0.00189
500 C N.00154 0. 0N1T7HK 0.00179 0.00043
500 N N, 007 H% 0.0125€ 0.00R2% 0,00267
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Without considering the magnitude of the radius of the Bjerhammar-sphere,
one would conclude, based on the difference in the behaviour of the degree-var-
iances for increasing degree, that the mean square variation of the second order
derivatives would be much smaller using model 3 than model 1. However, from
Table 7b and 7c it appears, that thisis not the case. The mean square variation
of the second order derivatives derived using the covariance function labeled A,
(and which uses degree-variance model 1), has the smallest values. Thisis due
to the dampening effect of the quantity (R, /Re)® ineq. (79).

We have furthermore in Table 7b and 7c tabulated the values of the mean
square variations for different second order derivatives at different heights.
Note, that for high altitudes (whereonly the low order harmonics have an effect),,
the three models give approximately the same values. The values derived from
another covariance function (labeled C) can also be found in the tables. This co-
variance function is a local 20'th order covariance function corresponding to the
global covariance functionB. Itis, for thislocal covariance function, interest-
ing to see how little the mean square variations of the second order derivatives
differ from the values derived using the covariance function B.

(Wewill in this connection call attention to the investigations of the height
variations presented in Reed (1973, section 4) which are based on a degree-
variance model similar to model 2 of this report).

We have seen in this section how differently the four different covariance
functions may represent the variations of the gravity field at the surface of the
Earth and anyway be similar at high altitudes. Hence, for some purposes we
may be quite uncritical in our choice of covariance function, and for some pur-
.poseswe may discover, that we are not able to find an appropriate model.
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6. Conclusion

In this report we have derived covariance functions of second and lower order
derivatives of the anomalous potential and a FORTRAN IV subroutine for their nu-
merical evaluation is documented. The knowledge of these covariance functionsis
a necessity for many geodetic applications of these derivatives.

The covariance functions are given through the specification of different pro-
perties and parameters (rotational invariance, the behaviour of the degree-var-
iances when the degree goes to infinity, the radius of the Bjerhammar-sphere, etc.).
It is hoped, that it, in between the here discussed set of covariance functions, may
be possible to find global and local models representing the actual variations of the
gravity field. For the further study of this point, observations of second order deri-
vatives must be carried out in regions with different geological and topographical
conditions.

However, a covariance function (of equivalently a norm in a Hilbert space o
harmonic functions), may be chosen only of humerical reasons. Hence, a covar-
iance functions may be useful even when it does not represent the actual variations

of the gravity field. It usefulness will depend on e.g. the quality of the predictions
obtained using the function.
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Appendix

A. The FORTRAN IV subroutine COVAX.

B. An exampleof aprogram calling the subroutine, with a input and
corresponding output example.
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TEST OF COVARIANCE FUNCTION SUBROUTINES, PROGRAMMED BY C.C.TSCHERNING,

DEP,GEODETIC SCIENCE, OSU AND GEODAETISK INSTITUT,KOEBENMHAVN JUNE 75.

REFERENCES:

(A) TSCHERNING,(C.C. : COVARTANCE EXPKESSIONS FOK SECOND AND LOWER ORDER
DERIVATIVES OF THE ANOMALTUS POTENTIAL, REPORTS OF THE bLEP. OF
GEODETIC SCIENCE NG, 225,1975.

IMPLICIT REAL =8(A-H,0-7Z).LOGICAL (L)
COMMON /CMCOV/CT({12}4CR{51),SIGMAQ(300)sSIGMA({300),HMAX,K1(25)4N1,
*N24.LOCAL, LSUM
THE COMMON AREA IS USED FOR THE TRANSFER OF DATA TO AND FROM THE SUB-
ROUTINE COVAX,
DIMENSION COV(L1R1,7)4KP({T),KO(T),HP(T),HO(T)
FyKX(3),KY(3),1P(3),IN(3),LA(3)},5M(2001)
DATA GM, RE/2,G98D14,6371.00D3/
*y00401,02/0.0D00,1,000,2.000/+P1/3.1415926535D0/
RE 1S THE MEAN RADIUS OF THE EARTH AND GM |S THE PRODUCT OF THE GRAVI-
TATIONAL CONSTANT AND THE MASS OF THE EARTH.

WRITE(6,10)

10 FORMAT('OTEST OF COVARTANCE FUNCTION SUBRRQOUTINES, VERS. JUNE 75.°',
%¥//+" COVARTANCES BETWEEN QUANTITIES OF KIND KP,KQ ARE COMPUTED. ',
%¥/4' THE KINDS AND CORRESPUNDING UNITS ARE AS FOLLOWS: (E=EOTVOS!
ko 1)2t,/,

%=t (1) THE HEIGHT ANOMALY (METERS), (2) THE NEGATIVE RADIAL DER=',/
%4' IVATIVE DIVIDED BY THE RADIAL DISTANCE (E), (3) THE GRAVITY!',/,
*i ANOMALY (M5AL)s (6) THE RADIAL DERIVATIVE OF (3) (E),s (5) THE*/
%t SECOND ORDER RANDIAL DERIVATIVE (E)y (6),(7) THE LATITUDE AND',/,
%% THE LONGITUDE COMPONENTS OF THE DEFLECTIONS OF THE VERTICAL'4+/»

¥t { ARCSECONDS)s (8),(9) THE DERIVATIVES OF (3) IN NUORTHERN ANDt',/,
*t EASTERN DIRECTICN, RESPECTIVELY (E)y (10),(11) THE DERIVATIVE?',/
%¢% OF (2) IN THE SAME DIRECTIONS (E)y (12)-(14) THE SECOND ORDER',

%/,' DERIVATIVES IN NUORTHERN, (NORTHERN, EASTERN) AND EASTERN' +/.,

! DIRECTIONS, RESPECTIVELY (E)a'y//)

INPUT OF THE VALUE OF A LOGICAL VARIABLE, LTEST, TRUE WHEN TEST OUT-

PUT 1S NEEDED.
READ{5, 11 JLTEST

11 FORMAT(LZ)

INPUT OF QUANTITIES SPECIFYING THE DEGREE- VARIANCE MODEL TO BE USED IN
THE FOLLOWING SEOQUENCE: THE RATIO BETWEEN AN ADOPTED BJERHAMMAR-SPHERE
RADIUS (RB) AWD RE, SOUARED, THE QUANTITY A{I) IN REF(A),EQ.(17), DI-
VIDED BY RB=%2 [N UNITS OF MGAL#**2, THE INTEGEKS K(2),K(3) OF EQ

(17), WHEN APPLICABLE* OTHERWISE A ZERO, THE YALUE OF A LOUGICAL VARI-
ABLE* LOCALs TRUF,WHEN THg DEGREE-VARIANCES UP TO-ANO INCLUSIVE DEGREE
N ARE ZERO AND FALSE WHEN EMPIRICAL ANOMALY DEGREE-VARIANCES UP TO
ORDER N WILL BE INPUT, THE INIEGER N, THE INTEGER KT EQUAL TO THE
DEGREE- VARIANCE MDNEL NUMBER {142 OR 3)sy THE VALUE OF THE LOGICAL
VARTABRLF LSUM, WHICH |S TRUE WHEN A FINITE LEGENDRE SERIES (MAXIMAL
DEGREF 2000) MUST 8F USED FOR THE EVALUATION OF COVARIANCES IN ALTI=-
TUDES GREATHFR THAN HMAX AND CGTHERWISE EQUAL TO FALSE, THE VALUE OF
N2 (WHICH MUST BE LESS THAN OR EQUAL TO 2000). THE VALUE OF THE HEIGHT
HMAX | N METERS, AND FINALLY THE VALUE OF LASTl, TRUE, WHEN THE LIST
OF INPUT PARAMETERS 1S THE LAST ONE.

100 READ{549)SsAsKI({3)KI(4),LOCAL NoKT,LSUM,N2,HMAX,LAST1
9 FORMAT(2014.7,215,L2,215,L2+15,D14.7,L2)
IF tN2.LT.2) N2 = 2
| F (N2.GT.2001) N2 = 2000
N2 = N2+1
KI(5) = KT
WRITE(G6412)SsAKI(3),KI(4),NKT
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12 FORMAT{YOPARAMFIFRS SPECIt-YING THE MODEL DEGREE-VARIANCES:';/v
%0 Sy A =',2D14.7./4 ' KO-K34N,KT= -2 -1%,415/)
IF (LSUM) WRITF(6.6)HMAX,N2
6 FORMAT(* WHEN THE HEIGHT OF ONE OF THE POINTS OF EVALUATION IS ABO
*VE 1,D14.7,' METERS',/,' WILL THE CNVARIANCES HE EVALUATED BY MEAN
"%S OF A LEGENDRE SERIES HAVING 'y I54' TERMS. ')
RB2 = RE*REx=S
LMOOEL = N EQ.0

Cl(8) = A*RB2x1.0D-10

cI1(1o0) =S
CONVERTING THE CONSTANT A INTO UNITS OF (M/SEC)%%4 AND SUBSEQUENT
STORING 0OF A AND S IN THE ARRPY (I ACCORDING TO THE SPECIFICATIONS
GIVEN I N COVAX.

IF (N.NE.,O) GO TO 101
N EQUAL TO ZERO IMPLIES, THAT ALL DEGREE- VARIANCES ARE EQUAL TO THE
MODEL DEGREE-VARIANCES. THIS AGAIN IS EGUIVALENT TO HAVING THE DEGREE-
VARIANCES OF DEGREE 0,1,2 EQUAL TO ZERO, LE. THE CUVARIANCE FUNCTION
USED IS A 2'-ORDER LOCAL COVAKIANCE FUNCTION.

LOCAL = .TRUE.

N = 2

101 N1 = N+I
INPUT OF EMPIRICAL ANOMALY DEGRFE- VARIANCES IN UNITS OF MGAL%*%2,
IF(.NOT, LOCAL)IREAD(S5,13)(SIGMAO(T)s 1 = 11 N1}
13 FORMAT{12F6.7)
IF { NOT.LOCAL)WRITE(6,7)(SIGMAO(TI)}, 1 = 1, N1)
7 FORMAT(' EMPIRICAL ANOMALY DEGREE-VARIANCES I N UNITS OF MGAL=%*2:"%,
*%/,25(12F6.2/7))

N2 = 2001

CALL COVAX(SM)
THE ARRAY SM OCCIJRRTNG IN THE CALL OF COVAX IS USED TO STORE THE
DEGREE- VARIANCES WHEN LSUM IS TRUE. THE DIMENSION OF THE ARRAY IS
TRANSFERRED TO THE SUBROUTINE BY MEANS OF THE VARIABLE N2 OCCURRING
IN THE COMMON AREA /CMCOV/.

CONVERSION OF ANOMALY DEGREE- VARIANCES TO POTENTIAL- DEGREE- VARIANCES
WRITE(6,8)}(SIGMAD(T), 1 = 1, N1}
8 FORMAT('OMODEL DEGREE- VARIANCE CORRECTIONS:t¢,/,50(6(1X,D11.4},/}))

KPP=0

KGO=0
INPUT OF QUANTITIES SPECIFYING THE OUTPUT TARLE. THE TABLE WILL CON-
TAIN MT COLUMN? OF COVARIANCES OF KINDS KP, KO (TO BE INPUT SUBSEQUE-
NTLY) COMPUTED IN POINTS P AND 0. EACH COLUMN WILL CGNTAIN NCOV VALUES
CORRESPONDING TO O MOVING IN AN AZIMUTH (ALFA) IN STEPS OF LENGTH DT
(MINUTES). THE SPECIFIGCATION CONSIST OF MNCOV, DT, ALFA IN DEG.sMIN.,
SEC AND A LOGICAL, LAST2, WHICH IS TRUE WHEN THIS IS THE LAST SPECI-
FICATION FOR THE DEGREE-VARIANCE MODEL UNDER CONSIDEKATION
102 READ(S,14)NCOV,UT, IDEGyMIN,SEC4LAST2
14 FORMAT(IS,F7.2,15,12,F6.2,L2)

CALL RAD(ALFA,IDEGyMIN,SEC,1)

RT = &0.0%DT/206264.806

LPOLE = DABS{ALFA)«LT.1.00-640R.DABS{ALFA- PI}.LT.1.0D=6

|F (LPOLE) GO TO 103

CA DCOS(ALFA)
SA DSIN(CALFA)
103 IF (LTEST) WRITE{(6415)NCOV,DT,IDEG,MIN,SECsALFA
15 FORMAT('ONCOV,DT,DEG,MIN,SEC,ALFA=',14,F6.2,15,13,F6.2,D14.6)
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IF (NCOV.LE.181) GO TO 104

NCOV = 181

WRITE(6,37)

FORMAT(* NCOV TOO BIG, FIXED TO 181."')

104 MT = MT+1

INP
WHI

IF (MV,NE.O.AND.MV.NE.3) GO TO 112
UT OF INTEGERS KP AND K8 SIGNIFYING THE KIND OF QUANTITIES BETWEEN
CH WE WANT TO COMPUTE THE COVARIANCES. THE VALUES OF KP,KQ MUST BE

EQUAL TO THE EQUATION NUMBERS OF REF(A), WHICH DEFINES THE QUANTITIES

(1)
ON

MET
RIA
TAB

- (14).

THE SAME PUNCH CARD INPUT OF THE HEIGHTS OF P AND Q AS WELL,(IN
ERS),AND OF A LOGICAL VARIABLE LAST3, TRUE WHEN THIS KIND OF COVA=-
NCES ARE THE LAST ONES TO && COMPUTED WITH THE CHOOSED FORM OF THE

LE. THREE SETS 0F VALUES MAY BE PUNCHED ON ONE CARD, CF. FORMAT
STATEMENT 15.
READ(S5,16)(KX{K),KY(K)y IP(K) s IO(K)yLA(K) 4K = 1 3)
16 FORMAT(3(213,218,L2))
MV = 0
112 MV = MV+]
KP({MT) = KX(MV)
KO(MT) = KY(MV)
HP(MT) = IP(MV)
HO(MT) = T0(MV)
LAST3 = LA(MV)
KIt6) = KP(MT)
KI(7) = KO(MT)

LNEW = KP(MT).NE.KPP,OR.KO(MT)},NE.KOQ

COMPUTATION OF CONS1ANTS NEEDED FOR THE COVARIANCE COMPUTATIONy WHICH

ARE

INDEPENDENT OF T AND THE HEIGHTS BY THE CALL OF COVBX.
I F (LNEW) CALL COVBX

KPP = KP(MT)

KOQ KQIMT)

IF (LTEST. AND. LNEW}
XWRITE(6,1T)ICIIK)sK=197) g (KI(K)4K=6425), ISIGMA{K) K=1,N1)

17 FORMAT('OCI: "'y 7D011eb4/s"' KI21,20134/4" SI:',5D11.4,/+59(4X,5D11.4/

%))

DO 120 M = 1+ NCOV

IF (MT.EQ.2) COV(M,1) = (M=1)%DT
RV = (M- 1)%RT

T = DCOS(RV)

RV IS EQUAL TO THE SPHERICAL DISTANCE BETWEEN P AND Q IN UNITS OF RAD-
IANS.
U = DSIN(RV)
I F (LPOLE) GO TO 105
SO = UxCA
CO = DSORT(D1-50 *S0)
SD = UxSA/CQ
CD = T/C0
GO0 TO 106
105 SD = DO
Ch = D1
IF (RV,GT«PI/D2) CD = -D1
CO =T
I =1
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I F (ALFA.LT.D0) 1 = -1

SO = uxl
C
C TRANSFER OF COORDINATE INFORMATION TO THE SUBROUTINE ACCORDING TO
C THE SPECIFICATIONS GIVEN IN THE SUBROUTINE.

106 CR(1) = T
CR(2) = HP(MT)
CR(3) = HO(MT)
CR(4) = DO
CR(5) = SQ
CR(6) = D1
CR(7) = CO
CR(8) = SD
CR({9) = CD

CR(10) = GM/{RE+HP(MT ) )%x%?2

CR(11) = GM/(RE+HO(MT) )%=

IF (LTEST)WRITE(6,18)S0Q,C0,SD,CD
18 FORMAT( *0S0.C0,58D,CD=1,4D12.5)

CALL COVCX(COV(MyMT))

C
IF («NOTLLTEST) GO TO 120
KK = KI(8)+1
NRITE(6'19)‘(CR‘[*8+K+3)'K=118)'I=19KK)
19 FORMAT('" CR: ", 8D11le4s/+4(4X,8D11044/))
120 CONTINUE
C
I F (LNOT.(LAST3.0R,MT.EQ.7)) GO TO 104
C

C OUTPUT OF A TABLE OF COVARIANCES.
WRITE(7,30)
WRITE(6,30)
30 FORMAT( ' ')
WRITE(6,20)IDEG,MIN,SEC
WRITE(7,20)IDEG, MIN, SEC
20 FORMAT( ' TARLE OF COVARIANCES: ', /,
%1 BETWEEN QUANTITIES OF KIND KP AND KQ, EVALUATED IN P+Q+',/,
%' HAVING SPHERICAL DISTANCE PSI, HEIGHTS HP, HQ',/,
%® AND AN AZIMUTH OF', 15, D', 13,' M',F6.,2,' SEC FROM P TO 0Q.1')
WRITE(6,30)
WRITE(7,30)
WRITE(6421)(KP(1),1=2,MT)
21 FORMAT( ! KP= t',6(16,5X))
WRITE(6422)(KN(T1),1=2,MT)
WRITE(7422)(KO(1),1=2,MT)
22 FORMAT(* KQ= ',6(1645X))
WRITE(6423){(HP(1),I=2,MT)
WRITE(7,23)(HP{1),1=2,MT)
23 FORMAT( HP=  1,6(1X,F10.1))
WRITE(6,24)(HOIT),1=2,MT)
WRITE(7424)(HQ(UT)y1=2,MT)
24 FORMAT(! HO=  1,6(1X,F10.1))
WRITE(6,26)
WRITE(7,26)
26 FORMAT(' PSI')

b0 113 K = 1, NCOV

RM = COV(Ks1)

1E = TDINT(RM/60,000)

RM = RM-60.0D0%*1E

WRITE(T7,25)IE,RM, (COVIK, 1)y 1 = 29 MT)
113 WRITE(6,25)IE4RM, (COV(K, I}y 1 = 29 MT)
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25 FORMATI(14,Fb.2,6F11.5)

MT = 1
IF (4NDT.LAST3) GO TO 104

IF (.NOT,LAST2) GO TO 102

IF (+NOT.LAST1) GO TO 100

STOP

END

SUBROUTINE RAD(RA,JDEG.MIN, SECy MODE)
IMPLICIT REAL%*8(A-H, 0~2)

DATA RS,PI1/206264,806D0,3.1415926535D0/
16 = 1

I'F (IDEG.LE.O .AND. MODE.ER.1) IG = -1
IDEG = IDEG®IG

IF (MODE.NE.I .0R. MIN .GE., 0) GO TO 20
IG = -1

MIN = MIN®IG

20 GO TO (30,40,50,60),M0ODE
30 RA =IDEG*3600.0D0+MIN*60.0D0+SEC
GO TO 70
40 RA =IDEG*3600.0D0+SEC*60.000
GO TO 70
50 RA = SEC*3600.00D0
GO0 TO 70
60 RA = SEC#*3240.0D0
70 RA = RA/RS
80 I F (DABS(RA).LE.PI) GO TO 90
RA = RA-2.0D0*PI*DOSIGN(RA+1.000)
GO TO 80
90 RETURN
END
SUBROUTINE COVAX({SM)
THE SUBRQOUTINE COMPUTES THE COVARIANCE BETWEEN TWO QUANTITIES OF A
KIND SPECIPIED THROUGH THE VALUE OF TWO INTEGER VARIARLES (STORED IN
KI(6) AND KI(7), SEE BELOW), THE QUANTITIES ARE EVALUATED IN TWO
POINTS* P AND Q, THE COCRDINATES OF WHICH ARE GIVEN IMPLICITLY B8Y THE
VALUES OF CR({1) - CRI(9).

THE COVARIANCE FUNCTION USED IS DEFINED ACCORDING TO A DEGREE- VARIANCE
MODEL AND A SET 0OF EMPIRICAL (POTENTIAL) DEGREE-VAHIANCES. THE UEGREE-
VARIANCE MODEL IS SPECIFIED THROUGH THE VALUES OF KI(1)=KI(5).C1(8)~-
CI(10) AND THE PARANMETERS N1 AND LOCAL OCCURRING IN THE COMMON BLOCK
/CMCOV/. EMPIRICAL ANOMALY DEGREE- VARIANCES WILL HAVE TO BE STORED IN
SIGMAO WHEN LOCAL 1S FALSE. ARD ARE USED FOR THE COMFUTATION OF RESI-
DUAL POTENTIAL DEGREE~VARIANCES, (SEE REF(A). EQ.(16)),

THE SUBROUTINE HAS THREE ENTRIES, COVAX. COVRX AND COVCX, WHICH HAVE
TO BE CALLFD IN THIS SEQUENCE.

8Y THE CALL OF COVAX, THE KIND OF COVARIANCE FUNCTION TO RE USED IS
DETERMINED. THE VALUE OF KI(5) WILL DETEKMINE THE DEGREE- VARI-

ANCE MODEL (142 OH =y CF.REF{A),EC.(17)) THAT WILL BE USED. THE OUAN-
TITIJES K(2),K{3) MUST HE STORED IN KI(3),KI(4)s, AND RE EOUAL TO ZERO
WHEN NOT USED (EG. . .KI(3},KI1{4&4) BOTH ZERO WHEN KI(5)=1). THE QUANTITY
A(I) MUST RE STOKED JN CI(8) IN UNITS OF (M/SEC)%%*&4, AND THE SQUARE OF
THE RATIO BETWEEN THE RADIUS OF THE BJERHAMMAR-SPHERE (RB) AND THE
MEAN RADIUS OF THE EARTH (RE) MUST RE STORED IN CI(10).

THERE ARE THEN THREE POSSIBILITIES:
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(1) ONE OF THE DEGREE- VARIANCE MODELS IS USED WITHOUT MODIFICATIONS.
THE SUMMATION LTIMIT P OF REF.(A}+EQ.(20) IS THEN FIXED TO 3.
BFECAUSE THIS IS EQUIVALENT TO REQUIRING THE FIRST 3 DEGREE-VARIAN-
AREA /CMCOV/ mMUST BE EQUAL TO 3 AND ,TRUE., RESPECTIVELY.

CES TO RE ZERO, THE VARIAPILES N1 AND LOCAL STORED IN THE COMMON

(2) A NUMBER (MNM1) OF THE ANOMALY DEGREE-VARIANCES (DEGREE ZERO TO
NI- 11 ARE PUT EQUAL TO EMPIRICAL DETERMINED QUANTITIES. THE ANO-
MALY DEGREE- VARIANCE OF DEGREE X WILL tAVE TO BE STORED IN
SIGMAO(K+1) IN UNITS OF MGAL®%2 WHEN CALLING COVAX, LOCAL MUST BE
EQUAL TO .FALSE.. COVAX WILL COMVERT THE ANOMALY DEGRE5-VARTANCES
INTO POTENTIAL DEGREE-VARTANCES,

(3) THE N1 FIRST DEGREE-VARIANCES (DEGREE 0 - N1-1) ARE EQUAL TO ZERO
THIS MEANS* THAT THE VALUES OF A (N1-1)-ORDER LOCAL COVARIANCE
FUNCTION WILL RE COMPUTED. LOCAL MUST HAVE THE VALUE .TRUE..

IN ALL CASES N1 MUST BE LESS THAN 300,

THE COVARIANCES WILL GENERALLY BE COMPUTED BY CLOSED EXPRESSIONS* BUT
THEY MAY IN CERTAIN CASES RE USELESS IN BIG ALTITUDES OF NUMERICAL
REALSGNS, CF. REF{A), SECTION 4 IN THEESE CASES MUST THE LUGICAL VARI-
ABLE LSUM BE TRUE AND THE VARIABLE KMAX MUST HAVE ASSIGNED A VALUE
EQUAL TO THE CRITICAL ALTITUDE. WHEN LSUM IS TRUE AND THE HEIGHT OF

P OR O IS GREATHER THAN HMAX, WILL THE SERIES REF(A), EQ.(16)s ABBRE-
VIATED TO DEGREE N2-1 BE USED FUR THE COMPUTATION OF THE COVARIANCES
THE VALUES OF LSUM, N2 AND HMAX WILL (IN THE SAME HAY AS FOR THE PARA-
METERS SPECIFYING THE DEGREE- VARIANCE MODEL) BE TRANSFEKRED TO COVAX
THROUGH THE COMMON AREA /CMCGV/, BUT AN ARRAY SM IS TRANSFERRED &S A
PARAMETER IN THE CALL IN ORDER TO ENAHLE VARIABLE DIMENSIONING (SPECI-
FIED BY THE VARIABLE N2 IN /CHCOV/).

THE CALL OF COVAX WILL ALSO INITIALIZE CERTAIN VARIABLES USED IN
SUBSEQUENT COMPIJTAT IONS.

THE CALL OF COVBX WILL FIX CERTAIN CONSTANTS USED FOR THE COMPUTA-
TIONS, WHICH ARE INDEPENDENT OF THE POINTS P AND Q. WHEN COVBX IS CAL-,
LED, THE KIND OF QUANTITIES BETWEEN WHICH THE COVARIANCE IS TO BE
COMPUTED MUST BE SPECIFIED. THIS IS DONE BY STORING IN KI(6) AND
KI(7) INTEGERS EQUAL TO THE EQUATION NUMBERS OF REF.A, EQ.(1)} - (14)
DEFINING THE QUANTITIES.

THE CALL OF COVCX WILL RESULT IN THE COMPUTATION OF THE COVARIANCE
WHICH 1S TRANSFERRED TO THE CALLING PROGRAM THROUGH THE VARIABLE coOv,
INFORMATION RELATFD TO THE COORDINATES OF P AND @ MUST BE STORED IN

THE ARRAY CR WHEN COVCX IS CALLEDs SEE BELOW.

REFERENCES:
(A) TSCHERNING,C.C.: COVARIANCE EXPRESSIONS FOK SECOND AND LOWER ORDER

DERIVATIVES OF THE ANOMALOUS POTENTIAL* REPORTS OF THE DEP. OF
GEODETIC SCIENCE NO. 225,1975,

{B) TSCHERNINGsC.C. AND R,H.RAPP: CLOSED COVARIANCE EXPRESSIONS
FOR GRAVITY ANOMALIES; GEOID UNDULATIONS* AND DEFLECTIIONS OF
THE VERTICAL IMPLIED BY ANOMALY DEGREE- VARIANCE MODELS. DEP-
ARTMENT OF GECODETIC SCIENCE, THE OHIO STATE UNIVERSITY
REPORT ND. 208, 1974,

IMPLICIT REAL =B({A-H,0-2), LOGICAL (L)

COMMON /CMCOV/CT(12}4CR(51},SIGMAO(300)},SIGMA(300) HMAX,KI(25) N1,
#N2, LOCAL,LSUM
THE COMMON BLOCK CONTAINS THE VALUES OF PARAMETERS USED FOR THE COM=-
PUTATIONS AND RETURN VALUES 0OF FUNCTIONS AND CONSTANTS, WHICH HAVE
BEEM USED IN THE COMPUTATIONS.,
PARAMETERS USED FOR THE COMPUTATIONS:
CI(8) = THE CUNSTANT A(I) OF REF.{A), EQ.(17) IN UNITS OF (M/SEC}*%4
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C1{10) THE SQUARF OF THE RAYI() BETWEEN THE BJERHAMMAR- SPHERE RADIUS
(RB) AND THE MEAN RADIUS OF THE EARTH (RE).

CR{1) COSINE OF THE SPHERICAL DISTANCE BETWEEN P AND O. .
CR(2),CR{3) THE HEIGHT OF P, O, RESPECTIVELY, (UNITS METERS},
CR(4),CR(5) SINE UF THE LATITUDE OF P, Q, RESPECTIVELY,
CR{6),CR(T7) COSINE OF THE LATITUDE OF P, 0O, RESPECTIVELY,
CR(8),CR(9) SINE AND COSINE OF THE LONGITUDE DIFFERENCE,
CR{10),CR{11) THF REFERENCE GRAVITY IN P, O, RESPECTIVELY (WHEN
USEDe OTHERWISE STORE 1.0D0}s (UNITS M/SEC*%2),
SIGMAQ(1)-STGMAO(NTI) MUST CGNTAIN THE EMPIRICAL ANOMALY DEGREE-
VARTANCES IN UNITS 0OF MGAL=*2Z,

KI(3) = K{2) OF DEG.VAR, MNDEL 2 OR 3,
KI(4) = K(3) OF DEG.VAR., MODEL 3, CF. REF.(A), EO.(17).
KI(5) = THE DEG.VAR. MODEL NUMBER., (EQUAL TO 1, 2 0OR 3},

KI(6),KI(7) THE INTEGER SPECIFYING THE KIND OF QUANTITY WHICH IS
ASSOCIATED WITH P, Q, RESPECTIVELY,
N1 = THE NUMBER OF EMPIRICAL DFGREE-VARTANCES USED (LOCAL =.FALSE.)
OR {ORDER+1) OF THE LOCAL COVARIANCE FUNCTION USED (LOCAL=.TRUE.}.
HMAX, N2, LSUM, HMAX 1S THE HEIGHT ABOVE WHICH THE LEGENDRE SERIES
OF MAXIMAL DEGREE N2-1 WILL BE USED FOR THE COMPUTATION OF THE CO-
VARYANCES WHEN LSUM | S TRUE. N2 MUST BE GREATHER THAN 2 AS WELL AS
GREATHER THAN N1,

RETURN VALUES:
Ci(l1}~Cl1(7), THE QUANTITIES C{J.0) OF REF.(A}, EQ.(47)s WITH
Cl(1) CI{KI(5)+1) = C(JyQ)y CI(5) = CIKI(5)1+2,0)
Cite) = C(KI(BI1+3,0), CI(7) = C(KI(5)+4,0),
CI(9) = RR=%2, CI(11),CI(12) QUANTITIES USED TO GIVE THE COMPUTED
COVARIANCFS THE PROPER UNITS
CR(ND*8+12), THE VALUES OF THE ND!TH DERIVATIVE OF THE SUM OF THE
FINITE LEGENDRE- SERIES, CF.REF.(A)s EQ.(20),(48) AND (52).
CR(ND*G+13) - CR(ND*8+19), THE VALUES OF THE ND'TH DERIVATIVES OF
THE FUNCTIONS F{-2), F(=1)s F(KI(3))}s F(KI(4))s, SO, SIr S2, CF. REF.
{A), EO. (42), (41), (39}, (29), (30), (24) AND (35),

SIGMAD(]) -~ SIGMAN(N]1) THE PUTENTIAL DEGREE- VARIANCE CORRECTIONS*
CF. REF,(A)y, EO.(16), (AFTER THE CALL OF COVAX).

SIGMA(4) - SIGMA(N]1), THE POTENTIAL DEGREE- VARIANCES MULTIPLIED BY
THE FACTORS GIVEN IN REF.(A)s TABLE 1. .

SIGMA(1) - SIGMA(3), THE DEGREE- VARIANCES OF DEGREE 0,142 MINUS
TERMS OF THE SAME DEGREES ACQUIRED FROM REF.(A)s EQ.(24),(35),(41)
-AND (42),

KI(8},KI(9) THE NUMBER OF DIFFERENTIATIONS IN RADIAL DIRECTION AND
WITH RESPECT T3 T = COS(SPHERICAL DIST.) TO BE PERFORMED.

KI(10) = KI(15) THE CONSTANTS I1,K.JsMyJ14M1 OF REF,(A), SECTION 2
KI(16) - KI(19) THE QUANTITIES M(1) - M(4) OF REF,(A), EQ.(26)-({29).
KI(20),KI(21) THE EXPCMENT (F THE REFERENCE GRAVITY,

K1(22),K1(23) THE EXPUNENT OF THE RADIAL DISTANCE AND

KI(24),K1(25) THE EXPUNENT OF COSINE OF THE LATITUDE* OF P, Q RES-
PECTIVELY WITH WHICH THEESE QUANTITIES ARE USED IN THE COVARIANCE
COMPUTATIONS.
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DIMENSION K7{15),K9(15),K11(15),K13(15},K15(15),K17(15).,K19(15),
¥K21(15),K23(15),C11(15)4KBEIS5) oL (T)4LN(T7)43CX(648)4SMIN2)
Z4C(6),VIH),ULB) GIE)P(E)R(6),551(4),D(36),RM[6),0(6)

C THE ARRAY SM IS USED 70O STORE THE DEGREE-VARTANCES WHEN THE LOGICAL
C VARIADLE LSUM IS TRUE., IN CASE THE SUBSCRIPT LIMIT IS CHANGED IS IT
C NECESSARY TO CHARGE THE VALUE UF THE VARIABLE N2 ACCORDINGLY.

C

EQUIVALENCE (CX(1,1),C(1)),{CX{1,2),VI1)),(CX(1,3),U(1)]),
FICX(144)oGl1) )0 (CX{TeD)gP (L)) (CX{1yO)sRILIIIH(ICX(147)4S8SS1(1)),

#{Cx{2:,8),852)

DATA DO.D1,D2,D3,RE/0.0D0.1.0D0,2.000,3.0D0,6371.0D3/
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HoKT/5%0,6%143%2,0/4KI/5%1,2134121312+¢34212+341/4K11711%042439340/
¥*K13/11%14243+43,1/4K15/0419¢-19-1+150,04-14-141,1,0,0,0,0/»
ZK1T/3%042+2910%0/,K19/144%0,14148%0/4K21/042+14242+14+1,7%2,0/,
¥K22/6%09 190414091904 14240/4KB/00101424,240,044%1,4%0/,
*C11/1.000,1.0D09,1,005,2%1.009,2%~-206264.80600,7*1,009,1.000/
THE ARRAYS K7 = K23 CONTAINS TARBLES OF QUANTITIES RELATED TO THE KIND
OF COVARIANCES ()1 = 14) wWHICH MAY BE COMPUTED., THE ELEMENT WITH SUBS-
CRIPT 15 IS DUMMY (RESERVED FOR PRGGRAM EXTENSIONS). THEIR ACTUAL VA-
LUES WILL AFTER CALL OF COVRX BE STORED IN THE ELEMENTS OF THE ARRAY
KI HAVING SURSCRIFTS R - 25.
K7 CONTAINS THE ORDER OF DIFFFKENTIATION WITH RESPECT TO T+K8 THE
ORDER OF DIFFERENTIATION WITH RESPECT TO THE RADIUS, GF.REF(A),TABLE
1. K9,K11,K13 THE KIND OF DIFFERENTIATIONS TO RE COMPUTED WITH RESPECT
TO THE LATITUDE (2) AND THE LONGITUDE (3)y CF.REF(A),SECTION 3. K15
AND K17 CONTAINS AN INTEGER, WHICH WILL BE ADDED TCI THE DEGREE, THE
SUM WILL THEN RE MULTIPLIED WITH THE DEGREE- VARIANCE OF THE CORRESPON-
DING DEGREE WHEN A& FIRST AND/(R SECOND DIFFERENTIATION HITH RESPECT
TO THE RADIAL ODISTANCE HAS TAKEN PLACE
C11 CONTAIN QUANTITIES USED TO GIVE THE COVARIANCES THE PROPER UNITS-

KT = KI(5)
KT1 = KT+]
1F (KT.LT.3) GO TO 15
DO 16 K = KT, 2
16 KI(K+2) = DO
15 KItl) = -2
KI(2) = -1

1F ((KT.LT.2) OR.(KT.EQ.3.AND.KI(4&).GToKI(3))) GO TO 17
ASSURING* THAT KI(4}.GT.KI(3), BECAUSE THIS FACT |S USED IN SUB-
SEQUENT COMPUTATIONS.

K = KI(3)

KI(3) = KI{4)

KI(4) = K

17 11 = KI1(3)

JJ = KI(4a)

SM(1) = DO

SM(2) = DO

N3 = N1
1(8)

1{10)
S%(RE%%2)

= RB2
RB2%*1,0D0-10

A
S
R
Cltls
R

00— O
HN~NI
O~ Il MO

INe)
)
o O

SIGMAO(1) = DO
SIGMAO(2) = DO
| F (LOCAL) SIGMAO(3) = DO
I F {.NOT.LOCAL) SIGMAQO(3) = SIGMAO(3)%RB2/S**4
IF (N1.LT.4) GO TO 14
DO 13 K = &, N1
I F (JNDT.LOCAL) T = SIGMAQ(K)%S%*(=K-1)%RB2
GO TO (10,11,12),KT
10 KK = 1
G0 TN 13
11 KK = K+Il=1
GO TO 13
12 KK = (K+I1=1)%(K+JJ-1)
13 SIGMAO(K) = (T=A%(K=2)/((K=3)%KK))/(K=2}%%2
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14 RETURN

oXe]

oNeXg]

o0

OO0

ENTRY COVBX
By THE CALL OF €COVBX ALL QUANTITIES NECESSARY FOR THE COMPUTATION OF
THE COVARIANCE, HUT INDEPENDENT OF THE POSITION OF THE POINTS P AND O,
ARE COMPUTED.

RR2 = CI(9)

Ci(ll) =D1

I F (KI(6).,E0.,15.0R.KI(7).EQ.15) GO TO 19

DO 20 M = 1, 2
K = KI{M+5)
FOR M =14 K IS EQUAL TO THE KIND EVALUATED IN P AND FOR M = 2 EQUAL
TO THE KIND FVALUATED IN O.
KI{M+9) = K9I(K)

KI(M+11) = K11(K)
KI(M+13) = K13(K)
RI{M+15) = K15(K})
KI(M+17) = K17(K)
KI(M+19) = K19{(K)
KI{M+21) = K21(K)
KT{M+23) = K23(K)

20 CI(11) = CI(11)*C11(K)

KQ = K
KP = KI(6)
KI{8) = KT(KP}+KT(KO)
KI(9) = KB(KP)+K8(KD)
19 ND = KI(8)
NR = KI(9)
ND AND NR ARE THE NUMBER OF DIFFERENTIATIONS WITH RESPECT TO T AND THE
RADIAL DISTANCES* RESPECTIVELY.

UPDATING THE DEGREE-VARIANCESs CF. REF(A)s TABLE 1.
SIGMA(1) = DO
SIGMA(2) DO
IF (LSUM) N1 = N2
DO 21 M = 3, N1

B = 01
00 22 1 =.1r 4

22 |F (KI{I+15).NE.O) R = B*x(M+KI{I+15)~-1)
IF (M,LE.N3) SIGMA(M) = SIGMAO(M)*B

| F (oNOT.LSUM,OR,M,FOQ.,2) GO TO 21
DO 48 K = 1, KT1
48 B = B/(M+KI(K)-1)
STORING THE MODIFIED DEGREE- VARIANCES OF DEGREE M- | I N SM{M)} AND AD-
OIND THE DEGREE- VARIANCE CORRECTIONS FOR M .LE. N3.
SM(M) = R+A
IF {MJLE.,N3) SM(M) = SM(M)+SIGMA(M)
21 CONTINUE
IF (N1,GT,2) SM(3) = SIGMA(3)
I F (LSUM} N1 = N3

EVALUATION OF THE QIJANTITIES C(JsNR), CF.REF(A), TABLE 2.
DO 23 K = 1, 7
23 CI{K) = DO

00 25 K = 1, KT1
CI(K) = DI
DO 25 KO = 1, KT1

.
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25 IF (K,NE.KQ) CI(K) = CI(K)/(KI(KQ)=KI(K))
CF.REF(A),EQ,(19). WE WILL THEN COMPUTE THE QUANTITIES GIVEN I N REF(A)
TABLE 2
IF (NR,LT.2) GN TO 29
KP = KI(16)+KI(17)+KI(18)+KI(19)
IF (NR.EQ., &) M = KI(16)=(KI(17)4KI(18)}+KI(19))+KI(17)%(KI(18)+
#K1(19))+KI(18)%K1(19)

GO TO (264,27+28)+KT
26 CI(NR+3) = D1

I F §NR,GT.2) CIINR+2) = KP+3
I F (NR.EQ.4) CI(NR+1) = M4+3%xKP+7
GO TO 29

27 |F (NR,GT.2) CI(NR+2) D1

(NR.EQ.4) CI(NR+1) =~=KI(3)+3+KP

I F
GO TO 29
I F
I F

28 (NR.EQ.4) CIINR+1) = D3
29 (NR.ED.0) GO TO 31
00 30 KP =1, 4
DO 30 K = 1. KT1
30 IF (KI(KP+15),NE,0) CI(K) = CI(K)})%*(KI(KP+15)-KI(K))

THE LOGICAL ARRAYS L AND LN REGISTER WHICH TERMS THAT WILL HAVE TO
BE EVALUATFD o RESPECTIVELY NOT EVALUATED IN REF.(A), EO. (47).
31 DO 38 K =1, 7
L(K) = DABS(CI(K)).GT.1.0D~15
38 LN(K) = .NOT.(L(K))

00 32 K =3, 7
DO 32 M =1, 3
| F (MyEQ.1eAND.KoGT.5.0Re (M+KI(K)=1).EQO.AND.K.LT.5.0R.LN(K))
*GO TO 32
GO TO (34434435,35,34,36,3714K
34 B = D1
GO TO 33
35 B = D1/(M+KI(K) ~1)
GO TO 33
36 R = (M- N
GO TO 33
37 B = (M=1)%{M=1)
33 SIGMA(M) = SIGMA(M)=A%CI(K)*B
32 CONTINUE
SIGMA(3) = SIGMA(3)-A%*CI(2)

ND1 = ND+1
ND2 = ND+2
RETURN

ENTRY COVCX(COV)
COMPUTATION OF THE COVARIANCE IN A SPECIFIC PAIR OF POINTS. THE VALUE
|'S RETURNED THROUGH THE PAKAMETFR COV.
THE COVARIANCES COMPUTED WILL BE IN UNITS CORRESPONDING TO THE KIND OF
QUANTITIES, IT.E. FOR KIND (1) METERS, (2) EOTVOS (E), (3) MGAL,
(4)s(5) £y (6):(7) ARCSECONDS, (B) - (14) E
THE FOLLOWING QUANTITIES MUST HE STORED IN THE ELEMENTS ©F THE ARRAY
CR WHEN COVCX | S CALLED: (1) COSINE TO THE SPHERICAL DISTANCE RETHEEN
P AND O, (2).(3) THE HEIGHT OF Pc Q RESPECTIVELY, (4).(5) SINE OF THE
THE LATITUDE OF P, O, RFESPECTIVELY, (6),(7) COSINE OF THE LATITUDE OF
P, Q, RESPECTIVELY, (8),(9) SINE AND COSINE 0OF THE LONGITUDE DIFFER-
ENCE. THF REFERENCE GRAVITY WILL HAVE TO BE STORED IN CR(10),CR(11}
FOR P, Q RFSPECTIVELY (WHEN USED, OTHFRWISE STORE 1.0},
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C
C

C
C
C

T = CR(1)

HP = CR{2)
HQ = CRI(3)
SP = CR(4)
SO = CR(5)
CP = CR(6)
CQ = CR(T7)
SD = CR(8)
'CD = CR(9]
RP = RE+HP
RO = RE+HO

IN HEIGH ALTITUDES AND WHEN LSUM IS TRUE WILL THE COVARIANCE BE COM-
PUTED BY P SUMMATION OF THE LEGENDRE- SERIES ABBREVIATED TO DEGREE
NZ-1

LSUMC = LSUM .AND. (HP.GT,.HMAX OR. HO.GT.HMAX)
COMPUTATION OF THE CONSTANT USED TO CONVERT THE COVAKIANCE INTO
PRQPER UNITS.

CI(12) = CH11V/(CPExKI{24)%CO**KI(25)*¥RP&xKI(22)%RO*%xK](23)

%FCR{1T)HxKI(2Y)~CR(10}%=K1(20})

S = RB2/(RP*RQ)

$2 = S*§
ST = S=7
T2 = T*T
P2 = {D3%T2-D1)/D2

P3 (D3%ST+D1)/D2

INITIALIZING ARRAY ELEMENTS. NOTE THE USE OF THE EQUIVALENCYNG.
DO 50 K =1+ H

DO 50 M = 1,y ND2
50 CX(M,K) = DO

DO 51 K = 1+ ND2

C(K} = DO
51 D(K) = DO

DO 52 K = 1, 40
52 CR(K+11) = DO

SUMMATION AND DIFFERENTIATION OF THE LEGENDRE SERIES* CF.REF(A),EQ.
(49) AND (51).
I F (LSUMC) N1 = N2

Kl = M1
K2 = NI+1
K = N1-1

DO 54 M = 1, N1

Gl = (D2*K+D1)*S/K1
Gt = ~K1x%S2/K2

K2 = K1

K1 = K

K = K-1

IF («NOT.LSUMC) ST = SIGMA(K2)
IF (LSUMC) ST = SM({K2)

12 = 0
El =1
DO 53 1 = 2, ND2
B =D(1)
D(1) = Ct1)
C(I) = GI®(D(I)*T+E2%D(11))+GJ%xB+SI
SI = DO
12 = 11
53 11 =1

54 CONTINUE
I F (LSUMC) N1 = N3



C

C COMPUTATION OF THE QUANTITIES D(1)-D(36),CF.REF(A),SECTION 3,

| F (ND.,EO,0) GO TO 55
C

D(1) = D1

CS = CP=*SO

SC = SP%CO

SCC = sc=CD

CC = CP=CO

CCS = CC=SD

CSC = CS=*CD

D(2) = CS-SCC

D(3) = CCs

017) = SC-CSC

0113) = -CCS

I F (ND.EO.1) GO TO 55
C

D(4) = -7

SCS = SC=*SD

CCC = CCxCD

SS = SPxSQ

SSC = SS$*CD

CSS = CS=SD

D15) = -SCS

D(6) = -CCC

Di8) = CC+SSC

D{9) = -CSS

D(14) = SCS

D(15) = CCC

D(19) = -7

Dt25) = CsS

D(31) = ~-CCC

| F (ND.,EOQ.2) GO TO 55
C

SSS = S$S5=%S0

D(10) = -SC+CSC

D(11) = SSS

D(12) = CSC

D(16) = CCS

0117) = -SCC

D(18) = CCS

D(20) = -Cs+ScCC

0(21) = -CCS

D{26) = -SSS

D(27) = ~-CSC

D(32) = ScCC

D{33) = -CCS

}F (ND.EQ.,3) GO TO 55
C

Dtze) =T

D(23) = SCs

D{24) = CcCC

D(28) = -CSS

D(29) = SSC

D(30) = -CSS

0f34) = CCC

D(35) = SCS

D(36) = CCC

55 I F (LSUMC) GO TO 75

C

C COMPUTATION OF THE FUNCTIONS L=R{1),

C REF.{A),

EQ.

N=1/RN,

(31)-(33),(40) AND (774A).

=57~
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RL2 = D1-D2%ST+S82
RL = DSORT{(RL2)
R(1) = RL

RL1 = D1/RL

RN = D1/(D1+RL-ST)

RL2 = D1/RL2
RNL = RN%RL1

RM(2) = D1-RL~-ST
P(2) = S$*DLOG{DZ2#RN)

RL3 = RL2=RLI1

RL5 = RL3%RL2

$3 = S§2%S

R{2) = -S*RL1

I F (ND. EQ.0) GO TO 56

COMPUTATION OF THE 'DERIVATIVES WITH RESPECT TD T.

CF.

CF.

CF.

CF.

REF.(A), EQ. (77B),(69A),1(57).
R{3}) = -S2%RL3

RM(3) = -R(2)}-S

P{3) = S2#%{RNL+RN)

IF (ND.EQ.1) GO TO 56

REF.(A}, EQ. (77C),{69B),(58).

R{4) = -D3%53%RL5

RM(4) = -R(3)

Pl4) = S3%(RL3+(D1+(D2+RL1)*RL1})*RN)*RN
IF (ND.EQ.2) GO TO 56

REF.(A), EQ. (77D),(69C),(59).
RL4 = RLZ2#%RL2
RL7 = RL5%RL2

S4 = S2%S2
R(5) = -15.,0D0%S4*RL7
RM(5) = -R{4)

P(5) = S&*(D3%RLS5+((D3+D2%RL1)%RL3+D2%(D1+(D3+(D3+RL1)*RL1)*RL1)
*%=RN)*RN)=RN
IF (ND.EQ.3) GO TO 56

REF.{A), EQ. (69D).(60).

§5 = S4&4x%S
RL6 = RL4%*RLZ2
RM(6) = -R(5}

P(6) = D3%S5%((5.0DO*RLT+((4.,0D0+5.0D0*RL1}*RL5+((4.0D0+(8.0D0
¥+4,0D0%RL1)*RL1)*RL3+(2.0D0+{8.CD0+(12,0D0+(8.0D0+D2%RL1)*RL1)
%x%RL1)%RL1)%RN)=RN)=RN)*=RN)

56 IF (LN(2)) GN TO 58
COMPUTATION OF THE FUNCTION F- | AND ITS DERIVATIVES* CF. REF.(A),

EQ.

57

58

(41) AND (61) - (65).

Ul2) = S=(RM({2)1+T*P(2))

I F (ND2.LT.3) GO TO 58

DO 57 K = 3, ND2

U(K) = Sx{RM(K)+T*P(K)+(K=2)%P(K=-1))

IF (LN{1)) GO TO 60

COMPUTATION NF THE FUNCTION F- 2 AND ITS DERIVATIVES* CF. REF.(A) EQ.
(42)y AND [65)- (6R).

DO 59 K = 2, ND2
GO TO (61,61+462,63,64,65)4K

61 CY = S*(D1-T2)/4.0D0

GO TO 59

62 CY = =ST/02
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C

63

64

65
59

GO TO 59

CY = D3%P(2})-S/02

GO TO 59

CY = 9.000%P(3)

GO TO 59

CY = 18.0D0xP(4)

VIK) = SE(RM{K)#P34S5%((K-2)%D3%RM(K=1)/D2+P2%P(K)+D3*%T*P(K-1}*

*(K=2)+CY))

60

IF (LN({3)) GO TO 73

C COMPUTATION OF THE FUNCTION F] AND ITS DERIVATIVES, CF. REF.(A) EQ.
(36)s REF. (B)s FN.(101) AND REF. (A), EQ.(70),(71).

C

C

0(2) = DLOG(D1+D2%S/(D1=S4RL))

I F (ND.EO. 0) GO TO 66

0(3) = S2%RNL

| F (ND.,EO.,1} GO TO 66

O(4) = S3%((RL1+D1)*RN+RLZ)*RNL

IF (ND.E0.2) GD TO 66

0(5) = S&*(D3%RL4+((D2+D3%RL1)*RL2+(D2 +{4.,000+D2#RL1)%RL1)%RN)

%%RN)*RNL

I F (ND.EO.3) GO TO 66
0(6) = D3%S5%(5,0D0%RL6+((D3+5,0D0%RL1)I*¥RL4+((D2+(6.0D0+4,0D0*RL1)

#%RL1)*RL2+{6.0D0+(6.0D0+D2*RL1 ) =RL1 ) :RRL ) ¥RN) #RN) =RNL

¢ Fif ;e Re

i
=
{5

C COMPUTATION OF THE FUNCTION F2 AND ITS DERIVATIVES* CF. REF.{A), EQ.
C (3),(72)-{75).

66

67
68

49

CF.

69
70
71

73
CF.

CF.
72

P{2) = (RL-D1+T=%Q(2))/S
|F {(ND.EQ.O) GO TO 68
DO 67 K = 3, ND2

P(K) = (R(K-1)+T*0(K)+(K-2)%0(K-1))}/S
11 = 11-1

K1 =1

J1 = 11

IF (I1.GE.2) GO TO 49
00 49 M = 29 ND2
IF (11.EQ.0) G(M)
IF (I1.ED.1) G(M)
CONTINUE

IF (L{4)) 091 = JJ-1
IF (J1.LE.1) GO TO 71

0(M)
P(M)

REF,(A), EO. (38),(76).
00 71 K = 2, J}

DO 69 M 2y ND2

B = Q(M)

0(M) = P(M)

P{M) = (R{M=1)+(2%K=1)%((M=2)%Q(M-1)}+T*0(M))~K1/S*B)/(K*S)

IF (K.NE,11) GO TO 71
DO 70 M = 24 ND2

G{M) = P(M)

K1 =K

IF (LN({6)} GO TO 72
REF, (A)y, EQ. (34},(55),

$81(2) = S2%(T-S)=RL3
IF (ND.GT.0) SS1(3) = S2*(RL3+D3%*(T=S)*S*RLS5)

REF.(A), EQ. (35),
I[F (L{7)) SS2= S2x((T+S})*%RL3+D3%S*(T2-D1)=RLS)

ADDING THE DIFFERENT TERMS, CF. REF.(A)s EO, (22),(47),
TIPLIED BY RB**2 |IN UNITS OF MGAL%*%2, THE INTEGERS K{2),.,K(3) OF EO.
-
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75 DO 78 M = 2, ND2
CF. REF.lA), EQ. (50),(52),
C(M) = S*C(M)
CR(M%8 =4) = (C(M)
DO 78 K =1, 7
IF (LN(K)) GO TO 78
STORING THE TERMS FOR TRANSFER TO THE CALLING PROGRAM USING THE COMMON
AREA /CHCOV/. Mz 8+K =4 )
CR{M¥B+K ~4) = A*CX(MyK+]1)*CI(K)
IF (K. EQ,5) CR(Mx84K-4) = -CR{
C(M) = C(M)+CRI{M=B+K -4)
78 CONTINUE

INTEGERS SPECIFYING THE KINDS OF DIFFERENTIATION WITH RESPECT TO THE
LATITUDES AND/DR THE LONGITUDES, CF. REF.(A), SECTION 3,

1 = KI(10)
J = K1(12)
K = KI(11)
M o= KI(13)
J1 = KI(14)
M1 = KI(15)

COMPUTATION OF THE DERIVATIVES OF ORDER ND WITH RESPECT TO THE LATI-
TUDES AND THE LONGITUDES, CF. REF.(A), EQ. (43) - (46).
GO TO (80,81,82,83,84),ND] :
80 COV = C(2)
GO TO 85
81 COV = C(3)#D(I+6%(K-1))
GO TO 85
82 COV = D(I1)#D(J1)*D(6%(K=1)+1)¥D(6%(ML=1)+1)%C(4)+D(I+J+6%(K+M-1))
%%C(3)
GO TD 85 - A
83 COV =-D(I+J+65(K+M=1))%C(2)+(D{ 1+J)%D(6%(K+M=1)+1)+D(1+6%(K-1))
#5D(J1+6%(M1-1) ) +D( T+6%(M1=1))%D(J1+6%(K=1)))%*C(4)
#+D( 1)%0(J1)*D(6%(K-1)+1)%D(6=(M1=1)+1)*C(5))
Gh T0 85 :
84 COV = D(I+J+6%(K+M=T1))*C(3)+(D(I+J+6*(K=1))%D(63(M=1)+1)
#4D( 1465 (M=1+K) )=D(J)+D{ J+6% (K+M=1) ) %D (1) +D( [+J+6%(M=1))
%D ( (K=1)%6+1)+D (I+J)%0( 6% (K+M=1)+1)+D{ 1+6% (K=1))=D(J+6%(M=1))
40 ( [+65(M=1))=D(J+6%(K=1)1)%C(4)+(D(1+J)%D{ 6 (K=1)+1) %D (6% (M=-1)+1)
#4D{ 1+6%(K=1) 1D(J)*D (6% (M=1)+1)+D(I+6%(M=1))=D{J)*D (6% (K-1)+1)
24D J+6%(K=1) ) D( 1) %D (6% (M=1)+1)+D(J+6%(M=1) )*D( 1) %D(6%(K-1)+1)
4D 6% (K+M=1)+1)%D( 114D (J) )%C(5)+D(1)#D(JI)#D(6%(K~1)+11%D (6% (M-1)
%41)%C(6)

GIVING THE COVARIANCE THE PROPER UNITS.
85 COV = COVX(CI(12)

RETURN
END
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Output example:

TEST OF COVARIANCE FUNCTION SUBROUTINESy VERSe JUNE 75

COVARIANCES BETWEEN QUANTITIES OF KIND KP4KQ ARE COMPUTED,
THE KINDS AND CORRESPONDING UNITS ARE AS FOLLOWS: (E=EOTVOS):
(1) THE HEIGHT ANOMALY (METERS}, (2) THE NEGATIVE RADIAL DER-
IVATIVE DIVIDED BY THE RADIAL DISTANCE (E)s (3} THE GRAVITY
ANOMALY (MGAL)y (4) THE RADIAL DERIVATIVE OF (3) (E)e (5) THE
SECOND ORDER RADIAL DERIVATIVE (E)y {6)4(7) THE LATITUDE AND
THE LONGITUDE COMPONENTS OF THE DEFLECTIONS OF THE VERTICAL
(ARCSECONDS),y (8)+(9) THE DERIVATIVES OF (3) | N NORTHERN AND
EASTERN DIRECTION, RESPECTIVELY (E), (10},¢11) THE DERIVATIVE
OF (2) IN THE SAME DIRECTIONS (E)y (12)=(14) THE SECOND ORDER
DERIVATIVES I N NORTHERN, (NORTHERNyEASTERN) AND EASTERN
DIRECTIONSy RESPECTIVELY (E}e

PARAMETERS SPECIFYING THE MODEL DEGREE=VARIANCES:
SyA = 0.9996170D+00 0.4252800D+03
KO=K3 4N KT= -2 -1 24 0] 2 2

EMPIRICAL ANOMALY DEGREE-VARTANCES IN UNITS OF MGAL*%*2:
00 00 7.50

MODEL DEGREE-VARIANCE CORRECTIONS:
0.0 0.0 0.30480D0+405

TABLE OF COVARIANCES:

BETWEEN QUANTITIES OF KIND KP AND KQy EVALUATED IN PyQy
HAVING SPHERICAL DISTANCE PSI¢ HEIGHTS HP, HQ

AND AN AZIMUTH OF OD OM 060 SEC FROM P TO Qe

KP= 1 2 5 12 14
KQ= 1 1 1 1 1
HP= 0.0 0.0 0.0 0.0
HQ= 0.0 0.0 0.0 0.0
PSI .
0 0.0 926659371 1.15780 23419983 =10.44212 ~10.44
0 30,00 925.,47496 1.12971 12.93102 443459 =623

1 0.0 922.88515 1.10161 10.45730 =3.25429 -4499
1 3000 919.25573 1,07576 9.10668 =2.64768 -4430

TABLE OF COVARIANCES:

BETWEEN QUANTITIES OF KIND KP AND KQs EVALUATED TN PsQ,
HAVING SPHERICAL DISTANCE PSly HEIGHTS HPs HQ

AND AN AZIMUTH OF 0D OM 0.0 SEC FROM P TO Qe

KP= 3 2 5 12 14
KQ= 3 3 3 3 3
HP= 1000,0 1000.0 1000,0 1000 .0 100
HQ= 1000.0 1000.0 1000.0 1000.0 100
PSI
0O 0O 1551.47275 2665154 0911669904 —453,19798 453,19
0O 3000 791.63914 1.45146 53.,79638 4e37320 =55,26
1 00 568.76144 1.09365 22.32984 4.95074 =25 .09

0.0
0.0

212
701
980
748

0.0
0.0

798
665
328

I 30,00 450.,43329 0.90066 13.02381 4.00?_47 -15423596

~62-



