Alternative Methods to Smooth the
Earth's Gravity Field

by

Christopher Jekeli

Report No. 327

Geodetic and Geolnformation Science
Department of Civil and Environmental Engineering and Geodetic Science
The Ohio State University
Columbus, Ohio 43210-1275

December 1981




Roports of the Department of Geodetic Science and Surveying

Report No. 327

ALTERNATIVE METHODS TO SMOOTH TEE EARTH'S GRAVITY FIELD

by

Christopher Jekeli

Prepared for

KNational Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20770

Granit No. NGR36-008-161
OSURF Project 783210

The Ohic State Universiiy
Department of Geodetic Science and Surveying
1958 Neil Avenue
Columbus, Ohic 43210

December, 1981



Abétract

Convolutions on the sphere with corresponding convolu-
tion thoorems zye developed for one- and two-dimensional
functions. Some of these results are used in a study of
igsotropic smoothing coperators cor filters. Well known filters
in Fourier spectral analysis, such as the rectangular, Gaussian,
and Hanming filters, are adapted for dataz on a sphere. The
low—pass filter most often used on gravity data is the rec-
tangular (or Pellinen) filter. However, its spectrum has
relatively large sidelobes; and therefore, this filter passes
a considerable part of the upper end of the gravity spectrum.
The spherical adaptations of the Gaussian and Hanning filters
are more effieient in suppressing the high-frequency eompon-—
ents of the gravity field since their {requency response
functions are sgtrongly itapered at the high frequencies with
no, or small, sidelobes. Formulas are given for practical
implementation of these Maew™ filters, including a demon-
gtration thal the large negative gidelobe of the Pellinen
response can cause 180° shifts in the smoothed function.
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1. Introduction

To the statistician the word "mean” denotes the value
to be expected when sampling a given population of walues.
Statistically, the expected value is nothing more than one
of several constant parameterz that describe the popuiation.
When the gecdesist speaks of a mean gravity anomaly {or mean
geoid undulation) he does not consider the entire terrestrial
population of gravity ancmalies, and yet it serves as a consit-
uent descriptor of the earth's gravity field. The mean gravity
anomaly is, in the most general terms, defined e&s the (poasibly
weighted) average of a subpopulation of anomalies distributed
over a particular region of the earih's surface, for example,
over a block delimited by pairs of latitude and longitude lines.
The total number of regions of a given size which together
form the earth's surface is finite, but there exists an infin-
ite number of ways to partition the surface into regions
of. one size (for example, by simply changing the location
of the zero meridian). Consequently, the set of corresponding
mean anomazlies (the "moving averzge™) forms a new infinite
population which reflects the characteristics of the total
gravity field to some degree of detail. It describes a field
that, more or less, is a generalization of the actual field,
representing the deminant or essential features and suppressing
unnecessary or unwanied details.

The following mathematical trestment seis the stage
for tkhe study of the different weighting schemes that can
be used teo define the mean gravity anomaly, thus meking the
above loose statements more rigorous. This can be accomplished
effectively ornly by representing the gravity anomaly in terms
of its spectrum, which is the set of coefficients in its
representetion by a series of spherical harmonic functions.
This definition of the spectrum necessitates the approximation
of the earth's surface by a sphere only if the specira of
the terrestrial anomaly aand the anomaly on a sphere external
to the earth (e.g. for satelldite applications) are to be
consistent. Otherwise, a spectrum is definable for any surface,
approximating the earth, that can be mapped onto the unit
sphere using a one-to-cne correspondence. The gravity anomaly
enters the discussion only as an example, since any of the
geodetic gquantities, indeed any functiorn that is expandable
in spherieal harmonics, would serve equally well. .

2. Convelutions on the Sphere

The first part of this paper shows how several conhcepts
of spectral theory common in electrical engineering and com-
munication theery can be applied and understood in physical
geodesy (see also Robertson, 1978; Kauls, 1959, 19587). The
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subsequent formulas by themselves are not new in geodesy,
however they are viewed from the standpoint of spectral theory
which acts to unify several diverse areas of physical geodesy.

Since geodetic dats pertaining to the gravity field
are obtained either on the earth's surface (approximately
spherical) or by earth-orbiting satellites (approximately
circular orbits), it becomes computationally expedient to
consider functions in terms of spherical coordinates. Note,
however, that for certain local studies the plane may serve
as a sufficient approximation of the earth's surface, in
which case two-or three-dimensional Cartesian coordinates
are more appropriate (Moriiz, 1966; Rayner, 1971; Breakwell,
1879; see also Jordan (1978) who develops an interesting
syanthesis of the global and loecal situations). The Cartesian
coordinates are particularly attractive due to the ease with
which the Fourier itransforms can be computed.

Let F(9,%) be 2 function defined on the unit sphere
(the scale of the sphere iz immaterial). & , A are the
usual spherical coordinates, being respectively the polar
angle {(colatitude) and the longltude. In analogy to the
familiar Fourier transform, applicable to Ffunctions defined
in rectangular cocrdinates, we define the two-dimensional
"Legendre traznsform" as

Ly [F] = & Ff P800 Tp(0,0) do = 1, (1)

where o represents the unit sphere (0£A 227, 020 <w),
do = ging d) d) , and where, for n20 ,

cOosSmA |,

- _ = mz2 0
Yomisd) = Pn!m|(COSB) lsinlmil, m< 0 (2

These are the (surface) spherical harmeonic functions, which
satisfy the following orthogonality property:

1 = _$1 if n =% and m=k
F o Ia Tom(8eR) Tpp (0, 2)do = {o if n#L or m#k (3)

Ir the mathematical literature the Ypm 2are sometimes defined
using the exponential of a complex angle; however, the use of
the sipusoidal fuactiong as in (2) is more common in physical
geodesy. The Ppyp are the fully normalized associated Legeadre
functions:



{2n+1)(n-m)!
£m {n+m)!

ﬁnm(cuse) = an(cosﬁ} (4%

where e¢=1, eyp=%2 , m#0 , and where Ppplcost) =gin®g-

4m
d{cosg ¥ PoCeosld), and tho P, are the well known Legendre
polynomials. The set of coefficients {fpp} , by definition,
constitutes the (spherical Legendre) spectrum of F . As

noted in the introduction, a different spectrum can be defined
b¥ replacing (not & formal change of variable) the geocentric
colatitude by the complement of either the geodetic latitude
or the reduced latitude. 8ince any function defined on the
sphere is intrinsically periodie in both variables 8 and A
the spectrum is a discrete (but penerally infinite) set of
numbers {(gsee Papoulis, 1976, p.%0).

*

The inﬁerse Legendre transform is then defined as

hod n

LZl[fnm] = I Poofm T80 = Feo,) {5)
n={ m=-n

The last equality follows only if ¥ is continucus, but

the series converges under less stringent conditions (Hohson,
1985, p.342). Equations (1) and (5) express a duality between
a function and its spectrum. Given the function, its spectrum
is unigue; and conversely, & given spectrum determines the
function uniquely as long as the series (5) converges. Def-
initicns {1) and (5) differ from thozse of Robertson (1878},
but the symmetry of the abcove transforms is too stroung to
resist. Unfortunately, this requires some sacrifice in symmetry
for the one-dimensional Legendre transform and its inverse
(=0 in (1) and (5)):

-
Ly [F] = 22“”;“ F(6) P (cos8) sind d8 = I_ (6)
Lz" [£.1 = nEO /Zn¥l £ P (cosd) = F(0) (7)

The coefficients {f,} constitute the spectrum of ¥ when

the basis functions are the zero-order fully normalized as-
sociated Legendre functions. Since a one-dimensional function
defined on a ecircle is more conveniently transformed using

the Fourier transform, the one-dimensional Legendre transform,
rer se, will not be considered further. Any function depending
only on & is to be regarded here as a function defined

on the sphere and independent of X ; 'thus if 8F/a: = 0 ,
then TF(8) = F(&,3) . Its spectrum, as given by (1), is

{£p,} = {fn}



The spectrum of a funcilicn defined on & sphere depends
on the orientation of the coordinate system. Coasider the
rotation of the coordinate system by the Euler angles o
B, ¥ (see Fig. 1}. Diverting momentarily to Cartesian
coordinates x,¥,Z, the spherical harmonics are homogencous
polynomials (Kellogg, 1933, p.139), which under limnear transfor-
maptions, such as rotations, transform into homogeneous poly-
nomials of the samg degree. The maximal set of independent
spherical harmonics of depgree n comprises the 2n+l harmonics
of degree n  and orders k , k=-n ,..., n . Hence the
transformed sphericgl harmonic Ypp{y,5) in the new coordinate
system can be expressed as a linear combination of the harmonics
Ynk(e,l) s k=-n ,..., n:

n
Yomh,EY = kE Cogemn €¢#B,Y> ¥, (0,3) (8)
=—I

where the Cprpy are coefficients depending on the Euler
angles {(see alsc Muller, 1968; and Kaula, 1952), Cushing
{1975, p.596) gives the transformation coefficients explic-
itly, but for spherical harmonics defined with the exponentiazl
of complex multiples of the longitude. Adapting this result
to the definitien of the sphericel harmonics as given by

{2), it is only a matter of careful manipulation to derive

m
rﬂ—[(-l)kcﬂm+c2km], K>0, m>0
EI
m
(-1) c?m . k=0, m>0
Yem
m
1Y )2 s _ "1, k<0, m2 0
Chkm = 2eq -kn kan
(9)
-0F sp o St ., k>0, m<o0
V2 So , k=0, m<o
—(—1)kcfkm+cgm , k<D, m<o0
\
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where

cEm = cos{ke + my) d;m (B)
S = Sintke + my) a4l (B) (10)
and k- K-m
dﬂm(fﬂ S /Eﬂiﬂi:gﬂ_ﬁ;: (1+ cosf) 2 (1-cosB3) 32
n+m 1
P 1O K ™ oss )™ (1 4 cosBy’
2 L=0

The sum in (11) incledlng the antecedent power of 2 ig the
Jacobi polynomial P, "m*_ “B)  (gosR) . Note that both
integers kX and m can assume pogsitive as well as negative
values and they must be taken literally in the context of

each of the foregoing expressions (e.g. if k, m < 0 , then

-k , -m are positive, and the argument of aint(ka-+my) isg
negative, etec.). Firally, we note that the binomial coef-
ficients in the expre551on for the Jacobi polynomial are
defined such that (¥) = , if g*p , so that the summation
extends only over thgse indlce ¢ for which

max(0, m+tk) < & < min({n+k, n+m) ; (12}

for any kX, m. If ¥=0 , then

.
(-1® —— coska [(-1)%d] (8)+d” (8], k>0 , mz0
m
(;2 ap (8) , k=0 , m>»0
£m
4(—1)"’ 1 sin|k|u{(-1)kdfmﬁs)+dﬁm(s)], k<0 , mz0
¥ 2e
e = m
nkm
sinka[(-1)" dff (8) -d",_(8)] , k>0 , m<o0
0 » k=0 , m<0Q
L coska[~(~1>*d" @)+ 4l (8)] , k<0 , m<o0
(13)
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And it =X, B=8, ¥=0, m=0 (see Figure 2}, then we
obtain the familiar addition theorem for Lepgendre polynomials:

n
_ 1 T O
Pyleosh) = oy 1 Y (6,00 T 00,00 (14)
m=-n
where cosy = cosP cosf + sing sinf cos(x —3X).

" An important concept in signal and time series analysis,
arising also freguentliy in geodesy; is the concept of con-—
volution. For example, the Stokes functior convolved with
the gravity anomaly results in the geoid undnlation {(see
Robertson (1978} for other examples). The convolution of
Ltwo one-dimensional funetions F , G defined on the real
line is formulaled as

Ll

H(X) = (G * F) (x) = ] G(x~-x) F(x) dx {15)

-3

The convolution theorem jn Feourier anazlysis is well known
(Bath, 1974, p.79); it states that (aside from a constant
factor} the (Fourier}) spectrum of the cenvolution H is

the product of the (Fourier) spectra ¢f F and G . The
process of cenvolution in the space domain is thuzs transformed
inte the computationally simpler process of multiplication

in the frequency domain, A similar result heléds for convo-
lutions on a sphere.

Churchill and Dolph (1954) defined the eonvolution
of two one-dimensional functions whose specira are given
by the Legendre transform. Since functions depending only
on § here are to be regarded as two-dimensional functions
cn the unit sphere, but independent of 3 , the following
definition of convolution differs from theirs:

_ _ 1 2m =
H(B) = (G*F) (8) = _[ﬂ j’n G(y) F{9) sine ds dv  (16)

where cosy = cosb cosB + sind sind cosv . The wariable v
igs part of the definition of the convolution and is necessary
to derive a corresponding convelution theorem. Let {In} »
{gn} be the (Legendre} spectra of T and G , respectively.
Then with the sdditicen theorem (14) we have

oo

Gly)y = n£0 £ Pnu (cosy)
.7 _E 7T Y (B
= E 0. }_ ¥ o8 w3 ¥ (8,5 (17)
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for arbitrary X . In this and all following derivations

the uniform convergence of the inverse transforms is presumed,
50 that the summation and integration may be freely inter-
changoed. Therefore

- n
H(-e_) = E £n E 7 (E’E)
0=0 YZO+1 m=-n
T =0 p=g M7 ¥ (183
V= =

Substituting (2), the integral on the right side is zero
unlezs m=0 ; hence with (&)

HEy = § Stn 5 (cosh) (19}
n=0 /2n+1 ns
The {(Legendre) spectrum of H is therefore ———l—- fn gn .
YiZn+l

not exactly the product of the spectra of F and G as
in the case of the Fourier transforms.

The convelution of a longitude-independent function
G with a funetion ¥ of both variables may be defined as

a7
H(B,T) = (6 * F) (8,T) = & 1 6 F(o,1) sins ds as

(203
where in this case

cosy = cosf cosB + sind sind cosl{i - 1) {(21)

The corresponding convolutien theorem is established by sub-
stitutivg {(17) with v=X-% into {(2C}:

LS n
) En ¥ (8,5 & F(8.,% Y_(8,3) d
nto T pin (R F [ TED T30 do

H(B, %)

Df E:l gn fom - 5.3
En__mm § (§ %) (22)
n=0 m=—n J¥n¥T P

H

where (1) was used. The spectrum of H is therefore



(233

a result differing considerahly from the one-dimensional
Fourier analogue. The analogy is almost completely lost
because the gpectrum of G is actually the set {gpyl ,
which consists only of zonal coefficients, i.e. g, =g, and
gnm=0 s 1if m#F0O .

In the area of functional analysis, the coavelution
integral (20) is viewed as an operator,

. 1 X
P gzl oo ¢ a (24)
with an asscciated kernel G . Thus 'r=H . If the result

of. operating on a function ig 2 scaled version ef the function
itself, then it is known as an eigenfunction; the scale
factor is ealled the eigenvalue:

I'F = fF (25}

Recognizing the set {Yi =1 1if di=n and j=m ; y-jzﬂ
if i<n or j#m}! as %he spectrum of the spherieal ﬁarmonic
function Ypy , the spectrum of the convolution Y, is
(using {23)3

1

1 —— &, if i=n and j=m
gy ¥ 7 Yan+l
Y2ivl J 0 s if i#a or j#Fm
(263
(26) i=s the spectrum of the functicn 1 _ Zn ?nm s+ 50 that
van+l
TY = _.._..!‘_..__.. = T (27}

e

Therefore, from this slightly different perspective, the
eigenfunctions and corresponding elpenvalues of the operator
{24} are respectively the spherical barmonic functions
¥om(8,4) and coefficients g,/ /Zn¥l (cf. Meissl, 1971}.

Finally, a similar definition holds for the coonvolution
of two fupctions defined on the sphere, each depending on
two variabkles:

H(E,X) = (G+F) (5,1) = o= [[ G(b,E) F(8,)) do  (28)
g
—-0-



where | , £ &are spherical coordinales, colatitude and
longitude, in a system rotated by the angeles B , ¥ ; see
Fig. 2. A comparatively simple relationship among the specira
of two functionsg F{B,A) and G ,A> and their convelution
(equations (23)) dees not exist. If we subslitute the trans-
formation (8) with the Euler angles wo=%, B=8, y=0

into the spectral repressntation of G , then (28) becomes

oo i1
HGEE) = & [ 5 8 mpp Y05 FO ) &
g n=0 m=-n
7T h 5,0 & I
= g Com(®:2) 7= F(B,A) ¥ . ¢8,%)d
nED m=§n om & nkm 4T - : nk
«© n I _
= 1 @I 1 &y fax Cugn 6.5 (29)

n=0 m=-n k=-n

The following is a formal derivation aof the equaticn
for the spectrum of H , excludes a practical method of com-
puting it, and can be omitted without loss of continuation.
The final result is given by equations (37) threugh (41).
Considering (13), we may write

o n coskl y 20 and m>9; or, k<0 and m=<
C . (8,2) = &_ (8) _
nkm km sin|klA , k <0 and m> 0; or, k>0 and m<

(302

where the definition of 4&},.(§) can be inferred from {13). We
note here only that, according as k+m is either even or _
odd, 6Bn{f) is an n-th degree polynomisl in <osf or sind
times a similar polynowmial of degree n-~1, This is verified
by noting that the expression for dR,(5) (equation (11),
B=6) contains only factors of the form (1 - ecgsi)n-P.
(l+coed)? (m+k even), or sinfd (1 - cosd)-P~z {l-bcosﬁ)g_%
{(m+k odd), where p=8— %{ktm} 2 0 (always). The Coym(8,4)
are therefore analytic functions and ¢can be expanded as series
of spherical barmonics:
oo i
Coem(®s2) = 1 1 & Y., (8,1 (313

120 jenj Ldmm "3

By {1) and (5)

1 Wn .-, fooskX = cosjh
“ine = @ 4 S ® (arkin) P;| 3] Ceos® (sinfj;x) do

(327



InvoXking the orihogconality of the sinusclds, we have

¢ P iFRm>0Y, J#-kim<
Cijnm = - (33)
£ ho— - o _ ‘
_Zk Io 6 1em(B) Pi|k| (cosB)sinfdl ; j=k(m>0), j=-k(m<!

{33)
Hence, because i cannct be less than k| , (231} becomes

=

anm{g’i) ) Il l‘;ik*nm ?ik*(é’x) (34)
i=|k
where k*={sign of m)- k . Substituting this into (29) yields
o I n o B o
ROOR nz—'ﬂ m=E—n k=§n ;;=Eiklgnm Tok Cikenm Yipr(822)
{35)
= n
Now it is easily recognized that, symbolically, ¥ ! =
pt - n=0 m=-n

3 therefore, by f{irst transposing summation signs,
m=-c n=|m|
we have

oo n n o o n & =

i3 1 ?k|

n=0 m=-n k=-n i=

il

=

|| v
o

=

ey

=

[ h

]
-t
=

=]

s

=]

1
1

= i e n
= 1 1 1
i=0 k=-i n=lk| m=-n (36)
It can then be verified that
P 1§03
H(F,x) = ¥s Y., {6,% (37)
’ i=0 k=-i n=|k| me—np ~ikPm “ikTC

where

x - lgnm fnk Ciknm * T 2 0
iknm
,gnm fn,—k Ciknm * ™ < 0 (385

1l



anagd

i
- —.E\;.]:g n g e 13 i 73
% knm 5 & ka (5> Piiki(coaﬁ) sinf af (39)
Finally,
— = i
120 k=3 1K ik
where
w0 n
h = E Xs (41)
ik n=¥k] m=—n iknm

The set {hjxy} is the spectrum of the convolution (28),
The evaluation of hjp , given the specira of F and G ,
involves an infinite summation, as well as the computation
of the integrals (38).

Clearly, from the sbove discussions, the powerful convolu-
tion theorem of Fourier analysis cannot be adapted blindly
to two—dimensional spheriecal functions. Although the spectrum
of the spherical convolution zlso involves the products of
the specira of the functions being convolved, the rTelationships
are generglly not as straight forward as in the Cartesian
case.

To eonclude this section the Dirac delta function is
defined on the unit sphere. In the rectilinear casze, this
function, denoted &{x) , iz defined to bhe =zero everywhaere
on the real line except at a single point X such that for
a2 continucus function F(x)

Lol

] stz -Xx) F(x) dx = F(X) (42)

=X}

The spherical equivalent of §({x) is defined zimilarly,
but here we assume that it is also isotropie, i.e. indepen-
dent of the direction between the point of integration and
proint where it is nconzerc. Denoting it by D(#) , we have
{by definition) ’

41;7 fJ DCyY Feo,a) do = F¢B,T) . (43)
4]

where ¢ is the spherical distance between (8,i) and (§,X)
{see (21)). The spectrum of D(¢) is (see (1))

-12-



Y = é% {! D{y) ?nm($.ﬁ) giny dp O

0 , m#0 (44)

1 , T —
= = {; D) Pnﬂ(cosw) do , m=10
Hence, using (43},

d_ = ?ng(cosﬁ°} = yon+1 {45)

The operation azssociated with the delta funection is a con-
volution of the type (20). 1In the realm of functional analysis
in Hilbert space, D{y)} is an example of a reproducing kernel
{gee Krarup, 1969, p.43).

3. The Mean Graﬁity Anonaly

In this section some of the mathematical tools developed
above are implemented to study the smoothing of the gravity
field. The (point) gravity anomaly, with the standard spherical
approximation already applied, has the focllowlng series rep-
resentation {(Heiskanen and Moritz, 1987, pp. BS%, 108):

Ag(r,0,x) = v § (n-1) u:l;'r)“""2 ¥ ((":nmcosmx +§nmsium)§m{cos

n=0 m=0
{48)

where r is the distance from the center of the earth;

v =kM/R? iz an average value of gravity; kM is the prodnet
of the gravitational constant and the earth's mass; R is the
radius of the sphere that approximates the earth's surface;
and Cpyp s, 8pm =are constant, dimensionless coefficients.
Equation (46) may be rewritten in the more compact form as

pg(r,e,3) = 3 7 (™% a__ T ce,n) (47)

nm
n=0 m=-n

where the coefficients,

T(n-l} Enm s sz
A = _ (48)
Y(n-1)8_ ., m<o0

-153-



constitule the spectrum of the gravity anomaly on the sphers

of radius R . It is worth noting that the spectrum on a
sphoere of radius r=R; *R 1is given by the =et of coefficients
{(B{Rl }n+2 Anm} -

From the introductory remarks, the mean gravity anomaly
ig derived from the point anomaly by subjecting the latter
0 an averaging process. Mathematieally, we formulate this
by applying an operator (only isotropie operators will be
considered), such as,

a:%r- _gj' B{pI(+) do (49)
o

te the gravity anomalies within the region Ac on the earth's
surface. Pecause the kernel of this operator, B{Y)} , is
supposed to depend only on @ (i.e. the spherical distance
between the point of computation and the point of integration},
the region is necessarily a spherical cap centered at the
point of computation. By defining B{(#) =0 outside the

cap we obtain the following more general formulation of the
weighted average:

Ag(8.%) = fL J By 8g(8,1) do (50}
4]

The operator thereby becomes a member of the class of oper—
atorzs (24), and the operation itself is a convelution of
the type (20). For convenience, we may write the kernel

as a normalized weighting funection:

B(y) = 28 (51)
H‘{I w({) do
a

where |w($)| <1 for Os<ys<7 . Now Zet {b,} be its spec-
trum, i.e.

B(y) = § /2n+1 by, P (cosy) (52)
n=}

where, according to (6} and f?),

b, = yan+l f B(w) P (cosw) siny d¢ (53)

The convolution theorem, enunciated by eguations {22) and
{23), then directly provides the spectrum of the mean ancmaly

~14-



1
|=n
=

A
nm e nm

I
™
i

(54)

The constants R, are the eigeovalues of the averaging oper-
ator; or in the jargon of spectral theory, the frequency
response of the filter. In view of (54), |100 Bp| is the
bPercentage of an (n)th-degree harmonic coefficient that is
retained in the process of averagiung.

Averaging gravity ancmalies over a sphericzl cap is
not a typical operation in gecodetic practice. Rather, mean
anomalics are viewed as averages over spherical blocks (trape~
zolds) delimited by convenient global or local curvilinear
coordinate lines. The average over such blocks is characterized
by operators that are nonisotropic (see Pollack, 1973), and
the averaging process is then a convolution of the ganeral
type (28). The spectrum of sueh z mean is difficult to obtain
in terms of the point anomaly spectrum (see the previcus
secticn). Gaposchkin (1980) derived and studied a series
expansion of the mean over a trapezoidal hlock (however,
it is not a spectral representaztion as defined by {5)). Pollack
(1873} compared. the §, corresponding to isotrople operators
with the degre variances of the above mentioned nonisotropic
cperators., Recalling (41), it appears uncertain whether
a study of these depree variances is indicative of how the
spectrum of the anomaly is transformed in the averaging process.
When computing mean anomalies from the point anomaly spectrum,
the average over a block is frequently approximated by an
average over & cap having the area of the block {Rapp, 1977).
This approximation degrades with the elongation of the block
{e.g. ir the polar regions, where the meridional coordinate
lines converge). Some further study is indieated here, but
is beyond the scope of this paper.

3.1 The Pellinen Mean

The equally weighted average of the gravity anomaly
over a spherical cap is defined as the integral of the anomaly
over the cap divided by the cap's area. For this simple
average (see also Pellinen, 1966), we have, in apreement
with (50} and (51),

i, 0= < b,
wole) =
0 , y, <= {55)
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¥y belng the radiuvs (generating angle) of the cap. Substi-—
tuting the resulting kernel,

By (V) T il
am jo ® sing dy (56)
into (33) yields
oI Yo
by, = _rendl I P (cos¥) sind a¥
n 1- cos¥e n
— Pn—l(COSqJ') - pn-]—I{C‘-OS]#n) (57)

y2ntl (1 - cos@g)

fbi which 8jdberg {(1979) has found the followlng recursion
formula: .

b
Bp = ——Pn_ o 201 o, B - D22 g
n ST n+1 " Ppaa ntl "P,_, , n3z2
BP“ =1 , BPl = %(l-l'COSIJJg) {58)

Fig. 3 depiets wp as a function of ¢ For ¢, =09564 ,

which corresponds to a cap whose ares equals the area of

a 1°x1° block at the equator. The ecoefficients Bpn are
shown in Fig. 4. Here (as im Fig. 5), for the sake of clarity,
the values of the smoothing factors g, (which are discon-
tinuwous functions defined only for integer values of n )

are traced by smccth curves.

The spectrum of the Pellinen mean has an infipity of
components, but the high-degree coefficients are clearly
diminished in magnitude and thus suppress the local strueture
0f the anomaly field. The first zero in the Fourier spectrum
of the analogous one-dimensional "rectangular™ Iilter occours
at n=7/p =319 for ¢, =09546 (Bath, 1974, p.218). This
formula is not applicable in the spherical case as Bppld, =
G3064) is first negative when n =389 . The major drawback
of this opergtor, viewed as a "low-pass™ filter, is the presence
of the large positive and negative "side lobes" in its spectrum.
That is, the filter admits, or passes, a considerable part
of the upper end ol the spectrum, even changing the sign
of some of the coefficients. This "rewversal of polarity”
counld transform minima of the point function into (false)
maxima of the mean function, and vice versa (Heolloway, 1858);
see section 4.

—16-



=]

3.2 The Gaussian Mean

This and the following weighting function are adaptations
of filters commonly found in electrical engineering (Harris,
1978, gives a good summary}. The Gaussian mean fakes itg
name from the bell-shaped normal (Gaussian} probability density
function that its weighting function resembles for small :

el = e@ll-cos®) 550, 0<pen (59)

- & e
= a 2 + Small

The dimensionless parameters "a' (identifiable with the inﬁerse
of the second moment o® of the Gaussian distribution) charac-
terizes the smoothing process. Since

f% § wa () do = ﬁ% (1 - e~ 22y (60)
o
the kernel becomes
zae—atl—cosw)

B.(y) = (61)
G 1__eaﬁé

and the eigenvalues of the corresponding operator are

bG 1 ae—a(l—y)
g = - =J- T Pn(Y) dy , y=cosy (62)
Gp vZn+l (1 -e7

for which the following recursion formula holds:

_ 2nt+l
BGI]+1 - = _"""—a BGn + BGn~l ] n 1
=2a
_ _l+e 1
e =1 Ba ST Tm T % (633

(63) 1s readily verified by applying the relationship Pﬁ+1(y} =
{2n+1) Pp{y) -Pp_4(y) in (62) and integrating by parts.

The function (55) is a global weighting function to be convolved
with gravity anomalies over the entire sphere. On the other
hand, resiricting the averaging process to a cap,
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WG('P) 1 U‘E_‘I"_li-‘n

-HWG('¢) =
0 ] ’pﬂ < lf—' E w ] (64)

leads to eligenvalues satisfying the following recursion formu-
la (see Appendix 4):

- - —a{l-y)
- _ 2ntl = e v .
BGn+1 - a2 Pon t Poyq * l_e—ail—ygs[pn—l(y°)"Pn+1(y°'
B> 0
- (1—Yu)
= — 5 _ 1l-y,e 2 1 _
oo =1 > Bo, T T SmOITRY T T w7 e T oosbe (68)

The eigenvalues #BG, (equation (62}) are all positiﬁe.
To prove this it is encugh to show that

= [t ay .
In—Le P(y)dy>03; nz0, a>0 (66)

Subztituting the uniformly convergent series expansion of

the exponential function, ¥ 1 (. o3k = jnt4 the integral
g
0

above yields =

. v 1 K k+n 1k
I, = kzn e FEDTRe1) Uy P dy (67)

where we note that by orthegonality
1 k
[ v P3>ay =0, x=0,..., n-1 (68)

and that ykPn{y} is an odd or even function according as
k+n is odd or even. HNow, Hobson (19465, p.40) derived

1 k _ k(k—l){k~—2)...(k—n+2)
L¥ 20 dy = S N e 1Y ()

(69)

This is always positive for k>n §{ hence 8ll terms of the
sum {67} are nonnegative, thus establishing the inequality
{66, The signs of the harmonie coefficients are consequently
preserved in the process of smoothing,

The same is not true for the welghting function (64}
as demonstraied in Fig. 5, The four cases shown here represent
soveral possibilities to choose the parameter "a", With
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Yo =075624 , each of the conditions Wglde) =0.5 W e ) =
0.1, and 30= ¢y, (where a=1/s?) produces different fre-
quency responses {(cases II, III, IV). Also shown {case I)
for comparison are the Bg, ecorresponding to the global
weighting function with the condition wg(0%564)=0.5 . The
weighting funections assccizted with these smoothing factors
are shown in Fig. 6,

Figures 5 and 6 suggest that as the cap-edge value of
the weighting function Wwg@) appreaches zero (it can never
equal zero), the oscillations of the corresponding frequency
responge decrease in magnitude. Furthermore, the smaller
"a'" is, the more the higher-degree harmonies are filterad
from the anomaly. Designing the Gaussian filter so as= te
have certain smocthing properties is therefore accomplished
by properly choosing values of "a"” and VYo . The selection
of "a' controls the essential bandwidth of the filter, i.e.
what frequencies should be passed; while the subsequent
cheice of ¢y controls the magnitude of the oscillations
of the frequency response function, The frequency response
of the Gaussian filter defined for data on the real line
is given by Helloway (1958, p.359) as

K
g = e_% %%
n (70

{where, 1f f denotes frequency, the relationship 925f=n
was used}. The similarity between Bg, (global filter)
and g, 1s shown in Table 1 and can be invoked to provide
an approximate wvalue of "a' given a desired value of Bn
for some n . For example, if the harmonic at degree #
is to be suppressed to 100fs% of its original value (less
than 100f,% of each subseguent harmonic will be passed),
then .

nZ
- n
® " TEIal7T, (71

Table 1: Legendre ﬁs. Fourier Gaussian Freguency Responses

a = 128235 a=13131
Gy, £n BGy, En
_n (equ.(63)) {(equ.(70) n (equ.{63)) | (equ.(70))
10 . 9908 - 99986 10 . 9958 L0962
20 L8901 L9803 20 L2075 . 9092
200 .B8549 . 3556 Fil+] .8049 L8072
400 . 53560 . 5359 100 L6807 L6833
a00 . 2451 L2457 1256 . 5490 .Db16
700 1476 148G 150 .4221 .4245
800 LOB2Z220 08246 200 . 2164 - . 2180
800 04235 .04250 250 09168 09256
1600 L02018 02026 350G L 058300 .009424
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3.3 The Hanning Mean

The weighting function

%(1+cos%1f—) SR IRT
wa(¥) =
e , Yo <= Yoo (T2}

resembles the Hanning filter whose desirable filtering charac—
teristics (Holleway, 1958; Bath, 1974, p.158) make it popular
in the disciplines where it is applicable. (See azlso (Wenzel
and Arabelos (1981) where the Hanning "window function™ (72}

is used to reduece the dintegration (“truncation”) error incurred
when performing an integraticn of a covariance function over
legs than the required interval, 0 3 ¢ £ n ., The spectrum

cf wp defined by them differs essentially from the definition
adopted here, but the speciral properties are similar.)

The eigenéalues of the corresponding Hanning smoothing
operator are given by

- w2~ o 1
BHn C wXI- 05&2)—2¢ﬁ [z (Ppogleosie) - Py (cosbolira

a 2>
BHU =1 (73)
where
o, = [Y° cosby P (cosy) siny dy , b = T3 (74)

A recursion formula for o (b#integer)} is derived in Appendix
B: it is

[(n+13%2-ph? Iun—[(n—2}" -b? le 5= (n+1)?Dy~(n-23°D +

n-2
-B(E_-E,_,) , n>3 (75

where
cesh
Dn = *é%:iwjlpn_l(ﬂoswu)"Pn+1(005$u)] « Oz 1
En = ginby, sing, P (cosyo) » D21 {76)
and
og = ibi [1-cosy, cosby, - bsind, sinbys]
ay = srpopy, [2 - 2¢0s20, cosby, - bsinZpe sinbys] (77)

a2 = grgopry L3 - Bcos3be cosbie - bsin3te sinb¥s] -1 a,
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The first zero of the Tourier specirum of the Hanning
filter cceurs at n=2w{, =638 , Tor W¥e¢ =09584 . TFor the
spherical adaptation, BYH,(de =07I564) first changes sign
at n=685F . Thereafter, the side lobes are ceomparatively
small. PFigures 4 and 3 show respectively the frequency reuponse
BHn and the corresponding weighting function wpy .

3.4 The Upward Continuatien {Pelsson) Operator

Functions harmonie in the space external io a sphere
centered at the coordinate origin attenuwate radially according
to r-(o+l) | yAp ig such an harmonic function (see equation
{46)), and the gravity anomaly field at satellite altitudes,
for example, is much smoother than at the earth's surface.
Therefore, for a fixed radius, r=R; , the upward continuation
operator acts like a smoothing operator with eigenvalues
{recall the comment after (48))

_ R p+2
Bml—(m} , n =z O (78

For the disturbing potential the exponent is n+1 , and for
the geold undulation it is n-13; in all eases Bug #1 ,

50 that, unlike the previous filters, this smoothirng process
does not leave the global average unaltered (uanless Agyq =0)
The corresponding smoothing kernel is

R .n+2

R_{) Pn(cns¢r} sy D2 <o

B (y) = ] (2n+l) ¢
n=0

s%(1 ~52)
Tl-—zscosw+szf5 ' {79

where & =R/R), and the familiar generating function for
Legendre polynomials was applied. (79) is nothing but =
times the kernel of Poisson's integral (Heiskanen ang Morit=z,
1967, p.35). Because the smoothing is biased {(the integral
of 47 By{y) over the unit sphere is not upity), 2 weighting
function satisfying equation (51) cannot be defined. However,
for purposes of compariscn, let

- _ Byy) _ (1-g)?
Wu(!b') - Buioi ~ TI-Zscas +s§‘-3fz (80)

Solving for s , we have

-y 1 v 4 2N oo Wb
5 = [wu 3 {y) cosp -~ +(2Wu (w}(l-cos¢)-—wu (P} sinypi? ]

-~ 2
cw, By -nT (81)
—Ah_



Although the entire gravity ancmaly field must, in theory,

be convelved with the kernel (79) to yield the smoothed field,

a specification such as Wwy(¥oe) = .01 renders the operation
practically a local one. With ¢ =y, =0%564 , equation (81}
gives s=0.997830613 (or if R=6371000m, then R=6384851m.)
W, and PRy, with this valuwe of s are shown in Figures 3

anpd 4.

The upward continuation produces a smoothed field with
a more substantial attennation of the low-degree harmonics,
but with a fairly weak taper in the high end of the spectrum,
Therefore, it is essentially different from, and lass useful
for smoothing than, the more conventioral (weighted) areal
averages.

3.5 The Ideal Filter

Ideally, the smoothing process should suppress the higher-
degree harmonics completely with perfect retention of the
lower-degree harmonics. This type of smoothing is automatically
implemented whenever a determination of the gravity field
consists of finding, through satellite technigues, the coef-
ficients of its series representation, Obviously, only a
finite number of coefficients can be found and the corresponding
truncated series represents a perfectly filtered field (neg-
lecting aliasing and measurement errors). The eipenvalues
of the operator that produces such ideal smoothing are

By, = _
n 0 , n>n (82)

where n  is the desired degree of truncation--the larger
1 is, the less smooth is the filtered field. If the operator
is global, the kernel is given by (see (52) and (54)}
n
By(y) = ] (20+1) P (cosy) {83)
n=_0

(It h , =« , Bj hecomes the spherical equivalent of the
Dirac delta function; see (45).)

It is not possible to define a kermnel whose convelution
with gravity anomalies in a cap with rading O0<yy <71 vields
a perfectly filtered field, That is, a kernel with a finite
spectrum is analytic on the sphere and cannot be zerc over
any part of the sphere unless it is zero everywhere.
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3.6 Discrele Operators

The averaging process in metual practice deals with
discrete values of the gravity field--integrations such as
(50) are performed numerically often unsing simple midpoint
formulas:

_ M

R |
AE(8.1) = £ j:‘g_-l Bl ;) Ag(84,h5) 4o

3 (84)

where is the geocentric angle between points (§,%) and
(Bj,Aj) » (B-,lj) is the center point of the ares element

Ags 7 and is the total number of ﬁcj into which the

<31 0. has been partitioned. The above formula can be
rewritten as an integral by utilizing the Dirac delta function
D(¥) (see (43)):

H Lad
Ag(B,X)= (;11—,)32 B(v.> [f DEE) Ag(9,3) do do
= g

1

= (&)1 ( ) BOK ;) DCH) ﬂoj) 6g(e,2) do

[y 3=1
= (41;)11’ B(w,£) Aplo,r) do (85}
o
where cosﬁ-—=cﬂsﬁ cosd: + 3ind sind; cos{A -A3) and ¢ , §

are the coordinates of ghe polat (B,A})} in the sphericsl coor-
dinate system whose pole is the point (5,1} {see Fig. 7).

In Fig. 7, (84,253, j=1l,..., M are fixed points and
as the variable point“{(8,)) moves aver thesphere, its position
with respect to the point of computation (#,X) may be described
by the coordinates § , £ , whence the arpuments for the
kernel B . Note that B is zero unless (0,X) eccoincides
with one of the points (¢-,lj). Thus the operator is noniso-
tropic and the convolutioh ik of the type (28). This implies
that the frequency response of any of the filters discussed
in the previous sections, in practice, is not given by the
corresponding 8, . However, if the mumeriecal intepgration
is sufficiently accurate, the general characteristics of
the respoase are retained, as seen in the next section.
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pole of
{(8,1) system

{0,3)

Figure 7: The relationship of (8,1} to {Bj,l-)
and {%,%), equation (85). J

4. Smoothing a Simulated Gravity Field

In thig section the formulas for the various averaging
rrocesses are put into practice, illustrating, by an example,
the differences between the Pellinen, Gaussian, and Happing
averages in the space domain. For this purpose, a gravity
anomaly field was generated as a series of spherical harmonic
functions with coefficients: '

1

E}T [¢(180,180) =olution of Rapp (1978)],.n=2,...100
A =B I
nm G c -
n u f.aﬂ , n=101,..., 360 _ (86)

where the u,y are random numbers uniformly distributed on
the interval [-0.5, 0.5] and d, 1is their degree variaznce.
cyp is the degree variance of the gravity anomaly and is
modeled (Rapp, 1973) by

—2R—



n+2 nt+z

_ n-1
Cn"3‘405'ﬁ?i (.998006}

n-1
+140.08 rrptens (.914232)
{mgall? , n > 3 (87)

The (180,180} golution was derived from 1°x 1° mean gravity
anomalies, and the division by Bpn » being the frequency
response of the Pellinen averaging operator with ¢ =0°564,
effects a relatively smooth transition from the zctusl {orig-
inally mean) spectrum to the modeled (point) spectrum. The
smoothing of the coefficients by a Gaussian filter (a = 14000,

Yo =7} attenuates the upper spectrum to virtually zero at

n =360 (Bgseo =0.01), resulting in a less irregular field

for which the differences in the filters are better illustrated.

The gravity anomaly function definmed by {(86) was evaluated
ob two profiles near the eguater*: &#=11%5 , 085 < A £ 4295
{(see Figurez 10 and 11). This functioa was convolved with
the Pellinen smoothing kernel (s =19692, corresponding to
a cap having the area of a 3°x 3° block at the equator), the
Gaussian kernel (¢, =2%459, a =4887,27), and the Hanning
kernel (Yo = 21452), These latter choices for the cap radius
and the parameter '"a' yield Ffrequency responses that pass
generally the same band of frequencies ag the Pellinen average;
see Figure 8. The precise value of the cap rrdius was estab-
lished by requiring the cap to have the area of a finite
number of 025 x 025 bilocks arranged roughly in the shape
of a disk, as in Figure 9. The parameter "a" then follows
from the stipulated relationship 3Io= ¢, (¢? =1/a).

The mean gravity anomaly function, computed using the
amoothed coefficients BpApmr are plotted 1n Figures 10
and 11 (Pellinen vs. Gaussian averages) and Figures 12 and
13 (Pellinen vs. Hanning averages). The essential feature
of these comparison is the 180° phase shift of the Pellinen
average with respect to the point function at a wavelength
of about 2°, as prediected by the frequency response Bp
(in Fipure 8, @Bp, bhas a maximum negative value at n==972,
corresponding to a wavelength of about 360/n=2°1). The
Gaussian and Hanning mean fwmctions, on the other hand, repro-
duce more faithfully the peaks and valleys of the point funection,
as the corresponding frequency responses have either small
or insighificant negative values.

The aieraging process, in the practical situation, ig
performed on discrete values of the point function. Consider
the following discrete smoothing kernels

Bk(w_].)='1h(—‘f’-.j-)-_ , k=P, G, H - (88)
nk($n)

*(where ¢ =90°-4)
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1
A

Figure 9: 8Spheriecal caps of radii Pp=12692 and U,=2%459
defined as having the area of 36 and 76 0?0 = 0%°5
-025x 0?5 blocks, respectively. For the
similation, the coatiruous funetion is averaged
over the caps, and the disecrete function is
averaged over the block values.

cospj = sing singj + cosp COBY j cos(I-—lj)
$3+41 7 935 = Ajup - Ay = 05
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where

M
1
R (ko) = Hjil wk(lbj) ﬁoj (89)

and Ads; dis the area of the block containing a khnawa value

of the point function. (Yo} Is the discretized integral

of the weighting function over the cap (see (51)}; and althcugh
for the wyp{y) considered here, these integrals are evaluable
analytically, their discretization guarantees the unbiasedness
of the averaging process

. 1 ¥
Goeo g ) Bvp = D

In order to simulate the process of averaging, the coeff-
ficients (86) werec Synthesized on a 095=x 0°5 grid in the
equatorial region defined by -3°75 £ ¢ < 3975 , and
0225 < A £ 42275. The Pellinen, Gaussian, and Hanning smootbing
kernels were evaluated at ¢35 , j=1,..., M , where M
is the number of 075= 075 blocks in erch of the caps (see
Figure 9, Mp =36, Mg=My=7Y6}). Bubsequently, the average
gravity anomaly for each of the weighting functions (P,G,H)
was computed on the profiles ¢ =105, at 0°5 intervals,
using equation (84}). These '"moving averages" are plotted
against the original point function in Figures 14 and 15
(Pelliner vs. Gausszian averages) and Figures 16 and 17 (Pellinen
vs. Hanning averages). We note that, although the frequency
responses of the {discrete) operators are not precisely those
of Figure 8, the averaging characteristics illustrated in
these figures are essentially identical to those described
for the continucus {(isotropic) operators.

Normally, the equally weighted (Pellineu) average, in
the example above, would be computed on a 3°x 3° grid. The
"polarity reversals " would then not be directly apparent,
Algo, if the errors of the original peoint data were statis-
tically uncorrelated, so would be the errors in the 3° Pellinen
meang, The propaged errors in the Gaussian and Hanning averages,
however, will be correlated if the caps are not disjcint.
Figure 18 shows the possible configurations for the above
example if the averages are compuied on a 3°xz 3% grid. Each
shaded region represents the overlap between two "caps" which
is responsible for the correlation. Assuming that all point
data have the same standard error ¢ with zero correlation,
the correlation in the means is given by

Lap
uziiqkfﬂ. Ji) 9, (B, Js3)

P (A,B) = (80

a, (A) ap(B)
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where Lap 1s the aumber of points Jji common to the two
"caps'", & and B {in Figure 18, Lap=4 , Lpc=20); and

' 1 Ve (a2 )00;
_ ) o= —k2¥AjZAVG
Ag(A23) = g B ) b0 AT (Yo ) .

ng being the central angle between the center of the "ecap"”
A and the peoint j ;3 and where

M
ak(a) =0 § q. (4,1 (92)
3=1

If ﬁcj and £y are constant, then

. Lap .
igl“k(wAji) wk(iji)
E wi {p.)
j=1 k J
With respect to Figure 18 and the above expample
pg(A,B) = 3.0 x 107¢ py(A,B) = 2.3 x 107"
{e4)

Il

pglA,C) = 3.2 x 1072, pylA,C) = 4.6 x 107

These are generally not considered significant correlations.

5. JConclusion

From its birthplace in electrical engineering, the appli-
cation of the spectral theory has spread to many unrelated
disciplines, becoming indispensable in the methodical analvsis
of large amounts of data. In geodesy, while there is the
complication of having to work on the sphers, many of the
basic cencepts of spectral theory are directly applicahble,
as in the study of smoothing cperators. The effects of the
different methods to smooth the gravity soomaly field can
be properly assessed only by ingspecting the spectrum of the
corresponding weighting function. It is shown that the mean

-1~



Figure 18:

The possible
configurations

for overlap of
two Yeaps"

centered on a
3°x 3° grid and
used for
Gaussian or
Hanning smoothing
{see Figure 92).
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gravity anomaly mcquires new ard different connotations when
various weighting schemes are introduced. By an example,

we saw that the excursions of the Pellinen freguency response
into the negative can cause 180° phase shifis in the smoothed
function (seeFigures 10-17). Furthermore, from Figures 4, 5
and 8 it ig wreadily evident that beth the Hanping and Gaussian
smoothing operators (with a suitable choice of the parameter
"a") do a better job of filtering the high-degree components
from the total field than the Pellinen operator, Finally,

it is moted that a truncated spherical harmonic series (e.g.
Npax = 180) cannot justifiably be characterized as a Pellinen,
or other, mean function, unless the coefficients of the smeries
are multiplied by the corresponding frequency response which,
in addition, muwst have no significant components beyond degrea

Dmax -
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Appendix A

Let

Yo = ' eV B () ay (a.1)
Yo

Substituting the relationship
{(20+1) P (y) = Py 4{y) - P; ,(¥) (4.2)

where the primes denote differentiation with respect to 3 ,
into {A.1) and integrating by parts results in

I ayo '
Yp = gpgg le  (Pp_q{¥ae) = P (ya)) - aly, 4 - "n-l’ga 3

Egquation (65) follows upon realizing that, with y=cosy ,
¥o =cosfy ,

ElGn__ 1 1

=

/B [ 2 (1-¥gy “5,
0

]

b, e 1) p (y3ay

ae” 2

ety n (A.4)

=]
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Appendix B

Let
Yo

o = L cogbil P (cosy) siny di (B.1)

Substituting (A.2) ianto (B.1} and integrating by parts yields

“a T Dn +‘§£¥I(6n-1 - 6n+1) (B.2)
where _

D = 1§§¥%E3 [P,_q{cos¥s) - P .q{cos¥o}] (B.3)
and

8, = jﬂ‘*’ﬂ sinby P_(cosy) sing dy (B.4)
Now from (Hobson, 1965, pp. 32-33),

-y PUY) L () - P, (v (B:5)

n n I n n

Hence

+1 -1 Ve . d
it Opoq = Spug) = = J, sioby siny g P (cosp)dy (B.6)

Again, integrating by parts, we obtain

n+l

grti On-1 = Sner) T
Yo :
—-%-n_+ %% f sinby cosy Pn(cosw) sgipp dyp + {% a, +{B.T)

which, upon substituting (n+1) P (?) + oP), ;(¥) = {2n+1)yP, (7).
as well as {B.2), gives after several man1pu1at1ons

(nt1)2 - K2 ni-p? _ :
Zn+1 Spe1 ~ Bn+T 5n~1 = F, - by (B.8)
where
E, = sinbje sine P, (cosps) (B.9)
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Equation (B.8) can be reformulated as

Zn+1

6po1 = Bpe1 = nZ-p? (841 = By + D) (B.10)

Combining this with (B.2), we have

2 2 = 2 -
{n“-b )an n Dn + bdn-l—l bEn {B.11)

and

[(n-2)* -b?la _, = (8-2)2 D , + b8 4 - bE o (B.12)

n-

The & *'s are eliminated by subtracting (B.12) from (B.11)
and suBstituting (B.10). fThis results in

[(n+1)? —bz]l:;11 = [{n-2)? -bzlun_z + (n+1 ¥ D, - (n-2 )y D 5+

~B(E, -E, 5, (B.13)

thus proving egquation (75),
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