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ABSTRACT

An autonomous spaceborne gravity gradiometer mission is being
considered as a post Geopotential Research Mission project. The
introduction of satellite gradiometry data  to geodesy is expected to
improve our solid earth gravity models. This study explores the
possibility of utilizing gradiometer data for the determination of
pertinent gravimetric quantities on a local basis. The analytical
technique of least squares collocation is investigated for its usefulness
in local solutions of this type. It is assumed, in the error analysis, that
the vertical gravity gradient component of the gradient tensor is used
as the raw data signal from which the corresponding reference
gradients are removed to create the centered observations required in
the collocation solution. The reference gradients are computed from a
high degree and order geopotential model. The solution can be made in
terms of mean or point gravity anomalies, height anomalies, or other
useful gravimetric quantities depending on the choice of covariance
types. Selected for this study were 30°x30° mean gravity and height
anomalies. Existing software and new software are utilized to implement
the collocation technique. It was determined that satellite gradiometry
data at an altitude of 200 km can be used sucessfully for the
determination of 30°x30° mean gravity anomalies to an accuracy of 9.2
mgal from this algorithm. It is shown that the resulting accuracy
estimates are sensitive to gravity model coefficient uncertainties, data
reduction assumptions and satellite mission parameters.
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I. INTRODUCTION

Gravimetric geodesy is in the midst of a period of rapid growth.
During the last twenty-five years, geodetic information has grown
formidably, primarily due to the application of space technology. With
proper guidance and funding, this trend will continue at a pace
unimaginable to those scientists involved at the beginning of the space
age. Currently, many countries have offerred support for the rapid
growth of geodctiic science. In the United States, geodetic progress is
made by many government agencies, universities and private
corporations who are involved in a wide variety of projects. Perhaps
the largest civilian endeavor is one under the auspices of the National
Aeronautics and Space Administration known as the The Geodynamics

Project. The objectives of this project, as outlined in NASA [1983], are:

"(1) to contribute to the understanding of the solid Earth, in
particular the processes that result in movement and
deformation of tectonic plates; and

(2) to improve measurements of the Earth’s rotational dynamics

and its gravity and magnetic fields".

These two objectives are inextricably related and perhaps a third

objective could be included;

(3) to form a useful geophysical information data base for the use
of studies in advanced Earth geophysics as well as absolute

and comparative planetology.

Thus the primary objectives could be reformed into the single sentence:

The primary goal of The Geodynamics Project is to formulate solid-Earth




models which more accurately depict the geophysical nature of our

planet.

Several types of observable phenomena exist which contribute to the
formulation of solid-Earth models. Two 8such phenomena are the
geopotential fields, the gravity and magnetic fields of the Earth. In
this study, the gravity field is highlighted as the phenomenon of basic
interest. An interesting number of by-products, or applications, can be
made from the study of the Earth’s gravitational potential (or, for short,
the geopotential). These applications are nicely summarized in the NRC

publication, Applications of a Dedicated Gravitational Satellite Mission

(National Academy of Science [1979]).

The rationale for improving and increasing the knowledge of the

Earth’s geopotential comes from many sources. Some examples include:

Geophysics: Gravity information is used to infer isostatic information to
supplement and constrain tectonic models. Geoid
undulations can be correlated with density anomalies to

constrain mantle convection models.

Oceanography: Highly accurate geoid models when used with altimetric
data yield precise knowledge on the sea surface
topography which is useful in the determination of local
ocean circulation patterns. With altimeter measurements
over a period of time, a fourth or dynamic dimension can
be included which may improve the understanding of the

meteorological/ocean circulation interface.

As can be seen from these few examples, improvements in gravity field
knowledge have strong repurcussions within the geophysical community
which can ultimately contribute to a unified earth model. There are
certain geodetic applications which would benefit from improved

gravitational potential knowledge. The major impetus stems from the




need to improve the accuracy of artificial satellite ephemerides. Many
NASA projects being considered rely heavily upon how accurately a
satellite orbit can be determined. Altimetry projects (such as TOPEX),
mapping projects (such as MAPSAT), and other remote sensing missions

are some examples of missions requiring precise orbits.

With this brief introduction, some examples supporting the rationale
for gravity model improvements have been mentioned. It is then
worthwhile to describe a few of the projects currently under

consideration to directly improve our gravity field knowledge.

NASA is currently considering two types of instruments to be used
in a gravity field measurment campaign; Satellite-to-Satellite tracking
(SST) techniques are to be used in the Geopotential Research Mission
(GRM); and satellite gravity gradiometry utilizing cryogenic technology is
to be used in a follow on mission. The Satellite-to-Satellite tracking
instrumentation is described in APL [1983] and a proposal for recovering
geopotential information is discussed in Colombo [1984]. Satellite borne
gravity gradiometers (the instrument of primary interest in this work)
are summarized in Wells [1984]. Instrument descriptions and

gradiometry theory will be discussed in the next chapter.

It should be stressed that the two types of instrumentation (SST
and gradiometry) are not competitive with one another. Rather, they
are complementary since they are individually sensitive to different
wavelengths of the gravity field. This is evident in Figures la and 1lb
which were generated by the rapid error analysis procedure described
in Jekeli and Rapp [1980]. The graph illustrates mean gravity anomaly
accuracy estimates from the six month GRM mission as well as those from
a six month gradiometry missions. It can be seen in Figure la that
higher resolution is achieved when the sensitivity of the instrument is
increased. Higher resolution is also achieved when the satellite altitude
is lowered (Fig. 1b) such as proposed in the space shuttle tether system
(NASA [1984]) which would allow for altitudes near 140 kilometers. Thus
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if the GRM project is fully supported, then the follow-on gravity
gradiomeiry mission, if it is also supported, will be under strict
instrumentation and altitude requirements in order to make significant

improvements in spatial resolution.

In this work, the prospect of utilizing local (as opposed to global)
gradiometry data for the estimation of mean gravity anomalies and
height anomalies is explored. The theoretical foundation is supplied by
least-squares collocation theory. The idea of using only local
information was advanced due to the substantial computer effort
required in global solutions. The purpose of this work is to test a local
collocation algorithm for its accuracy, dependability, and ease of

operation.

The next chapter introduces the satellite gravity gradiometer (SGG)
concept along with the units and coordinate systems involved. Mentioned
too, are the design concepts, likely mission profiles, and a review of
previous reduction methods. In chapter three, the general theory of
collocation as applied to the local gradiometry reduction is expounded.
The use of a high degree and or&er geopotential model will be explained.
Chapter four presents .the results of the error analysis and ensuing
discussion. The final chapter attempts to provide a perspective of this
work by drawing conclusions and suggesting alternative lines of

investigation.




2. REVIEW OF GRADIOMETRY, ITS INSTRUMENTS AND METHODS

2.1 Concepts and Theory

The basic theory behind gradiometers has been known since the
early days of torsion balances, when around 1900 a Hungarian physicist,
Roland E8tv8s, developed a working variometer. Torsion balances had
wide spread use during the 1920's for geophysical exploration. Their
use declined due to the introduction of the more economical gravimeter.
However, torsion balance measurements are still being made today but
they are rapidly becoming obsolete with the influx of high technology

gradiometers and inertial systems.

In order to intuitively appreciate the concepts underlying
gradiometry, it may be worthwhile to discuss the theory, units and
physical interpretation behind this system. A gravity gradiometer is
capable of sensing and recording the values of the spatial second
derivatives of the gravitational potential. The discussion begins by
recalling that the potential is a scalar quantity having SI-units of
m2g™3, The first spatial derivative of the potential is generally
associated with gravitation which is an acceleration quantity or vector
quantity having units of ms~2, Acceleration can be intuitively described
as the rate of change of an object’s velocity. The second spatial
derivative of the potential is also a vector quantity which has units of
8”2, These units may seem physically meaningless at first, but it is
easy to recognize that the second spatial derivative allows for a
description of the spatial variation of the gravitational acceleration. For
instance, the unit most often associated with these second derivatives is
the Ebtv8s (denoted E). One E8tv8s is 10~° s~2 which can be thought

of as 10° ms~?/m. In words, this means that one E8tv8s is a change of




10~® ms~? over a one meter distance. In more familiar gravity units,

one EBtv8s is equivalent to a 0.1 mgal change over one kilometer.

The nine spatial second derivatives of the gravitational potential
constitute the "gravity gradient tensor" which is conveniently expressed

in matrix form by

Vi, V2 Vi,
Va: Vaa Vo, (I1.1)
Vsi Vsz Vs,

where V denotes the gravitational potential of a body and the subscripts
refer to the spatial derivatives (eg. V,, = #2V/ex}, V,, = 02V/ox,0x,,
etc.). The 1, 2, 3-subscripts refer to directions associated with an
orthogonal coordinate system. As long as the directions remain
orthogonal, then the gravity gradients along these directions must

satisfy Laplace’s equation,

3
LVij=0 (I1.2)
1=1

that is, the diagonal elements of the gravity gradient tensor are subject

to Laplace’s condition.

The formulation of the potential by spherical harmonics begins by
defining a geocentric coordinate system. Let the Xj,-axis of a geocentric
Cartesian coordinate system coincide with the mean rotation axis of the
earth. Next, let the X,-axis lie in the mean equatorial plane as well as
in the plane formed by the Greenwich meridian. The X,-axis completes
the right handed Earth fixed Cartesian system by lying in the mean
equatorial plane in the direction of longitude =/2. The geocentric
spherical ‘coordinates (¢, A, r) follow immediately which are defined as
shown in Figure 2. The earth’s gravitational potential can then be

written in spherical harmonic form as




Figure 2. Geocentric cartesian and spherical coordinate systems

Ld n
V¥, A, r) = M [1 +Z ( 8 )* Z (ComcosmA + Spmsiomh)Pog(sind)]
n=2 m=0

(11.3)

where Em,in. are the normalized pofential coefficients, ?m(sina) are
the norméiized associated Legendre functions, a is a mean equatorial
radiuge wvalue for the earth (e.g. 6378137 m for the 1980 Geodetic
Reference System) and r is the radial distance of the computation point
at latitude ¢ and longitude A. Similarly, an expression for the reference
gravitational potential can be written as
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N n
0, 4 0 = [14) (2] ) (imoosmr + Sigsinm\)Pan(sind)]
m=o0

n=a

(11.4)

where the primes denote reference potential coefficients which are

approximations to the Emns §mn‘ in equation (II.3).

The disturbing potential, in the present notation is, in the well

known formula,
T(¢, A\, r) = V(é, A\, ) — U($, A, r) (II.5)

The disturbing potential can also be written in a spherical harmonic

expansion as:

N n
T($, A, r) = gj [g [ % ]n ; (canmcosmk + egmsinmk)ﬁnm(sin;)

L n
+ Z [ -ra-‘ ]n Z (Enmcosm + §m81M)§nm(SiD;)]
n=2 m=o0
(I1.6)

where here the :Cpy and :Spm terms are the discrepancies between the
coefficients of the true field and the coefficients of the reference field.

That is, more explicitly,

Sanm = Enm - EI’un (11.7)
. 8§nm = §nm - §I’lm
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These discrepancies are better termed "coefficient errors" which implies
that the reference (or "model") coefficients are in error with respect to
the unknown "true" coefficients (Colombo, [1980]). Since the coefficient
errors cannot be found directly, they are approximated by the a
posteriori variances for the computed model coefficients. These errors

will play a significant role in the covariance computations discussed in
Section III.4.

Next, the spatial derivatives of the various potential expressions will
be examined. A connection between the well known principles of
gravimetric geodesy and the spatial derivatives will be highlighted to

provide an intuitive framework.

The first spatial derivatives of (II.3) can be related to the
components of gravity by (Heiskanen and Moritz [1967])

gxl = Vxl + ’xl, gxz = sz + ’xz, gxs = VXS + ’XS (II.B)

where ¢ denotes the centrifugal potential. Similarly, the components of

the reference (or normal) gravity are;

rx, T Ux, * 8 ovx, T Ux, + ¥x,, yx, = Ug, + ¥, . (I1.9)

3

The gravity disturbance, 3 is defined as the difference between the
true (measured) gravity, g and the reference (modeled) gravity 7,
(Heiskanen and Moritz [1967], section 6-1)

3=2-3 (1I.10)
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Then, in geocentric Cartesian coordinaf.es, the gravity disturbance

‘components are (since the centifugal potential terms cancel):

. _ oV U _ _‘0_T
Ox: T 3%, o, T 8T T T gy,
ay 2y oT
_ 8V _wu _ = 2T
Oxs = ;is_ 7§’ = BxsT . Txs = Xy

It is possible to differentiate each equation in (II.11) with respect to the
three directions thus yielding the nine anomalous tensor components

referred to the geocentric cartesian system

[ ’ F) ’ F} . F 1
Ty, = 7§I(le) Tya = Tiz(axl) Tys = ;i’(axl)
o= a2 - 75 28 = = I1.12
T2y = Til(axz) laz - ;iz(axz) Tas = OX,(ze) (I1.12)
. '] Y . 2
{ Teq = ;‘il(ax,) Tya = ‘,—x'z(ax,) Tys = ',—x’(axs)

~where the primes denote that the gradients are referred to the
This equation illustrates how the gravity
disturbances are related to the anomalous gravity gradients referred to

geocentric coordinate system.

the geocentric cai-tes_ian system. The anomalous gravity gradients are
then the spatial rates of change of the graVity dist.urbanqes,»

It is expected that the‘ gravity grddient observation will bé referred
to a local level cartesian coordinate system. In this coordinate system,
the x,-axis coincides with the radius vector in the spherical case (Fig.

3). The x,-axis is oriented in a northerly direction and the Xx,-axis in
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an easterly direction such that

EN A

. - . .
Ixg ! Ixa ! ~ Ixgl : S (I1.13)

The curvature parameters of the level surfaces and the plumb line can

be developed with regards to this local level system (Heiskanen and
Moritz [1967], section 2.2). ‘

Figure 3. Local level cartesian coordinate system, x;
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2.2 Instrumentation

For the sake of comprehensiveness, a brief overview of satellite
gravity gradiometer instrumentation is provided in this work. The
discussion is by no means complete but only serves to increase the
reader’s awareness of the measurment principles involved and the
accuracies obtainable by the proposed instruments. References will be

made throughout to aid the reader’s desire for details.

At present, two very good reviews of instrument theory and design
exist. The first one by Forward [1974], presents a good historical
perspective of gradiometer mission and system development up to the
date of publication. Several types of designs are presented ranging
from quartz balance systems, vibrating string systems, to rotating
resonant torsional gradiometers. Since the review by Forward,
applications of new technologies have shown remarkable improvements in
gradiometry design. These new generation gradiometer systems are
reviewed in Wells [1984]. This section attempts to highlight some of the

designs mentioned in this more recent publication.

In the United States, there are a number of research groups
investigating gradiometer instrumentation (Table 1). Some of the groups
have experienced continuous funding from various agencies for the
purpose of development, others have had their funding cut-off. Thus
this ovefview will contain only those groups known by the author to be

actively funded.

Basically there are two types of gradiometry sensors; Conventional
and Cryogenic. Conventional sensors operate at room temperature and
may have a higher level of maturity than cryogenic sensors which
operate at very low temperatures (less than 4.2* Kelvin, the boiling
point of liquid Helium at one atmosphere). Only two of the organizations
listed in Table 1 are developing conventional gradiometers, these are

Bell Aerospace and Hughes.

b e
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The Bell Aerospace gradiometer utilizes a slowly rotating platform on
which are mounted four accelerometers (Fig. 4). The gravity gradients
are measured by differencing the outputs of opposing accelerometers.
Due to the rotation of the platform, the gradient signal is sinusoidally
modulated with a period at twice the rotational period. The use of four
accelerometers facilitates the detection of minute gravity gradients by
utilizing "common mode rejection of the large acceleration" (Metzger &
Jincitano, [1981]). An orbital mission system has been proposed by Bell
which utilizes the same instrument concept. Miniature electrostatic
accelerometers (MESA’8) are to replace the current operational
accelerometers (the Mark VII). It has been reported that the MESA
based gradiometer will have much lower noise levels than the current
operational system (the MESA based system has an estimated noise level
of around 0.035E (Wells [1984], p. 32)).

The Hughes gradiometer is also a rotating instrument but the system
design is quite different from the Bell gradiometer. The observable
quantity is the strain due to the torsional flexure experienced by the
resonant cruciform mass-spring system (Fig. 5). The torsional flexure is
coupled to the differential torque experienced between the two arms.
Since the system is8 rotating, the differential torques, due to the
gradients of the gravitational field, are excited at a frequency twice
that of the system rotation frequency. The differential torque, AT, is

related to the gravity gradients through the following expression

2
AT = E&— [(Vxx — Vyy)cos 2wt + 2Vyysin2et] (I1.14)

where all terms are defined as illustrated in Figure 5§ and where the x
and y directions lie in the plane of rotation. The system noise level

goal is 0.01E (lo) using a 35 second integration time. It was not
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Table 1

Organizations Active in Gravity Gradiometer R & D.

Principle
Organization Gradiometer Type Investigators
Bell Aerospace Rotating Accelerometer Metzger/Jincitano
Bendix/Stanford Univ. |Superconducting Cavity Reinhardt/
Oscillators Turneaure
Hughes Rotating Gravity Forward
Gradiometer
SAO/PSN Gravity Radiation A
Sperry Defense Syst. Cryogenic Levitated Hastings
Balance Arm
Univ. of Maryland Superconducting Accelerations|Paik
with SQUID readout

spin
axis

Figure 4. Operational concept of the Bell Aerospace gradiometer
(from Wells, 1984, p.31).
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Operational concept of the Hughes gravity gradiometer

Figure 5.

(from Forward et al [1973]).
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reported in Wells [1984] whether or not the system noise goal has been

achieved.

The remaining organisations listed in Table 1 are developing
cryogenic based gravity gradiometers, these are; Bendix/Stanford Univ.,
SAO/PSN, Sperry Defense Systems, and Univ. of Maryland. Brief
descriptions and instrument sensitivity goals make up the remainder of

this section.

The Bendix/Stanford University gradiometer utilizes superconducting
Cavity Oscillator (SCO) technology developed at Stanford. The SCO is
capable of detecting minute displacements on the order of 107! cm
which it then converts to frequency form. Thus the output signal
would be a frequency shift corresponding to the displacements
experienced by a mass-spring accelerometer which are due to the
gravity gradients. Bendix Field Engineering is developing the design of
the SCO Based gradiometer. Their gradiometer, called the canonical
gravity gradiometer, has six 3-axis SCO based accelerometers placed at
distances of ¢/2 from the origin of a cartesian coordinate system (Figure
6). All nine components of the gravity gradient tensor can be
approximated directly from the outputs of the 18 component
measurements from the accelerometers. Recalling the definition of an
Eotvos, the gravity gradient can be determined simply by differencing
two accelerometer outputs and dividing by their along axis distances
(¢/2 or ¢ in the canonical case). The noise sources affecting the SCO
based gradiometer have been investigated and it has been shown that a
gradiometer with a sense mass of a few kilograms and a baseline of ¥ m
can have a resolution of 107*E over a 1 second sampling time (as
reported in Wells [1984], p. 47). The primary error source for this
sampling period is due to thermally induced vibration which is itself
kept at a very low level since the instrument is operated at cryogenic

temperatures.
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The Smithsonian Astrophysical Observatory (SAO)/ Piano Spaziale
Nazionale (PSN) designs utilize gravity radiation antenna technology
developed at PSN and cryogenic microwave cavity technology at SAO.
The two approaches are being taken to determine which technology will
be most suitable in a gravity gradiometer. Two single axis sensors are
being constructed which will commence with the ultimate sensitivity
goals of 1072 to 107 E for the capacitive probe/radiation antenna
gradiometer and 10~* to 10~% E for the cryogenic cavity gradiometer.

The gradiometer being developed by Sperry Defense Systems could
be described as a cryogenic version of the Hughes design since they
are related at least in principle. The Sperry design utilizes a
magnetically levitated balance arm within a cylindrical bearing. The
bearing itself is levitated and rotated at a constant rate such that the
rotational rate is one half the natural frequency of the balance arm.
The gradient signél is generated through the detection of inductance
created by the rotating system. The detection is made by using a
superconducting quantum interference device (SQUID) placed at the axis
of rotation. A SQUID is a parametric device whose output voltage varies
in response to an input flux. The cylindrical bearing responds only to
angular accelerations which are transmitted to the balance arm (which is
sensitive to the gradients as well). Thus a feed back loop can be
established to null the effects of the angular accelerations by monitoring
the . bearing’s angular position. In the orbiting instrument concept, the
cylindrical bearing is replaced with a rotating sphere and an ensemble
of three such spheres would be grouped in a noncollinear configuration
to constitute the tensor gradiometer. Precise orientation and altitude
determination are a requirement inherent in this design. The noise level

goal set by the investigators at Sperry is 3x10~4 E.

Completing the list of active gradiometer developers is the design
put forth by the University of Maryland. This design also uses SQUID
technology to detect changes in the magnetic flux which is coupled to
the displacement of a proof mass. Paik summarized the principles
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involved very neatly in one sentence (Paik [19811]):
"an acceleration Ag drives the proof mass to a displacement Ax,
which is converted to a magnetic flux signal A¢ by means of the
superconducting inductive transducer and finally the magnetic flux

is detected by the SQUID producing a voltage output AV.”

The accelerometers can be placed in a configuration similar to that
shown in Figure 6. When this configuration is used then the gradients
are determined by differencing the outputs of the individual
gradiometers following the concept underlying the definition of an
Eotvos. In Paik [1981], ways of determining these differences are
discussed and the concept of current differencing is introduced.
Current differencing techniques provide a conceptually simple and
efficient method to determine the in-line and cross gravity gradients.
In the Univ. of Maryland design, the Niobium proof mass is weakly
suspended which will limit gradiometry sensitivity to about 104 E over
a 3 second integration time. Paik notes that the free-mass scheme
would allow higher sensitivities and is realizable in space. Problems
arise in attempting to test such a design in a "hostile terrestrial
environment”, i.e. the laboritory. Paik indicates further that a
free~mass design in the zero-g evnironment of space could provide

sensitivities up to 10-¢ E.

In conclusion, it should be noted that cryogenic gradiometers
promise higher resolutions than the conventional designs. However, the
conventional designs for terrestrial and airborne applications are in a
more advanced state of development. It should be noted too, though,
that the latest push in gradiometric instrumentation is towards
cryogenic designs and given enough time, with appropriate funding,
cryogenic gradiometers could be available, in the next few years, for
Earth gravity field determination as well as gravity missions to other
terrestrial planets. This, then leads into a discussion of mission

characteristics and proposed time tables.
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2.3 Gradiometer Mission Characteristics

In this section, some aspects of mission and spacecraft design will
be addressed. Many options exist at the moment and specific decisions
are scheduled to be made over the next few years. Thus, only
recommendations and assumptions will be made to delineate mission

parameter limits to be used in the remainder of this study.

Since the principle objective of the gravity gradiometer mission is
to obtain a global data set of gradient tensor values, the satellite should
thus be placed in an orbit to facilitate global coverage. This is most
easily done by placing the satellite in a polar orbit with the inclination
angle to be as near to 90° as possible. Furthermore, as was mentioned
in the introduction, higher resolution of quantities of interest (e.g.
gravity anomalies) is acheived with lower altitudes. The atmospheric
drag experienced by the satellite at these low altitudes becomes the
primary factor for premature termination of the mission. Two
approaches have been proposed. The first, as mentioned earlier, is the
use of the Tethered Satellite System in which the instrument package
with the gradiometer is lowered from the command vehicle (in this case
the space shuttle) and measurements are taken. Three main
disadvantages arize with this concept which limit its usefulness strictly
to the gradiometer test phase. These are due to the inclination of the
orbit, and duration of measurments, and untested tether dynamic models.
The space shuttle normally operates in a relatively low inclination orbit
(30°-50*) so that global coverage is impossible. The measurement
density will likely be globally non-uniform due to the shortness of
typical shuttle missions, which is undesirable from an analytical point of
view. Finally, although investigations into the dynamic behavior of the
tether systems are being made, the resulting models are largely
untested in the real space environment. Until such tests are made, the

gradiometer system’s response to the tether's dynamic behavior remains

uncertain.
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The second aproach to overcoming the effect of the atmosphere for
low orbits borrows technology from the GRM mission. In order to
maintain an orbit at (say) 200 km altitude, it is necessary to compensate
for the drag by employing thruster rockets. With a properly designed
gradiometer, the accelerations from the thrusters will not affect the
gradient outputs. It is this fact which causes gradiometers to be of
interest in other dynamic applications (e.g. inertial navigation sytems,
airborne and terrestrial gravity surveying). This thruster aided
concept is formally called DISCOS (DISturbance COmpensation System).
DISCOS, as used in the GRM mission, is under rather tight tolerances
and constraints. For the gradiometry mission, the constraints can be
eased somewhat, since it is not required that the gradiometry package
be treated as a drag free proof mass, as is required in the satellite to
satellite doppler tracking concept of GRM. It has been recommended
that the free flying GGM mission utilize DISCOS technology or a variation
of DISCOS. See Wells (1984), pages 59-60 for a more complete

discussion.

Data coverage is a function of satellite inclination and altitude as
well as of time. For the best distribution of data it would be advisable
to avoid altitudes which yield resonant orbits with short period repeat
cycles. The quality of distribution improves with longer mission
durations. The optimal data distribution depends on the scientific goals
of the mission. To guarantee that mission goals be met, it is advisable
to overdetermine the system solutions (i.e. have too much data).
However, mission planners must decide how much overdetermination is
enough, given the economics of the mission. Also, in some cases, mission
goals are relaxed. In this case it is easy to filter or smooth the raw
data to meet these needs.

In Figure 7, the effects of varying mission durations can be seen.
The data was generated with the Same program as was used in the
construction of Figures la and 1b. What it illustrates is that the

recoverable %°x%°* mean gravity anomaly accuracy improves as the
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duration increases (i.e. more data is available). It is quite easily seen
that the curve levels off near 6 months and that a mission of twelve
months only improves the mean gravity anomaly accuracy by
approximately 5X in comparison with a six month mission. Thus it
should be noted by system planners that extended missions may not

realize significant improvements in determining static gravity anomalies.

The demands for satellite ephemeris and altitude monitoring will
provide the designers of the autonomous mission some technical
challenges. For example, the uncertainty in the attitude sensing system
must not exceed 3x10-7 radians in order to prevent degredation of
measurement precision. In constrast, the space telescope pointing
requirement is an order of magnitude smaller, at less than 3x10~°
radians over a twenty minute observation period. It is expected that
the attitude control and monitor problems can be overcome as mentioned
in Wells [1984]. The design put forward by Paik [1981] should be
capable of monitoring attitude and position directly by integrating
certain gradiometer and accelerometer outputs. These integrated
quantities can further be placed in an absolute reference frame by
using state of the art conventional attitude sensors and tracking

techniques.

It is necessary that certain assumptions be made concerning the
parameters associated with an automomous satellite gravity gradiometry
mission for the purpose of the primary investigation contained herein.
These assumptions are outlined in Table 2. Using these parameters,
then the raw data should be distributed every 4° in latitude and every
3.6° in longitude at the equator. The east-west spacing of the data
decreases towards the poles due to the convergence of the orbits at the
poles. The sensitivity of the instrument (1073E) was selected as a
conservative estimate. Up to this point, the sensitivity goal of 10-*E
for the mission has not actually been achieved by any of the
organizations developing gradiometers. The investigation scientists

remain optimistic however, that sensitivity goals will ultimately be met.
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Table 2.
Assumptions for Mission Parameters and Characteristics

* Mission parameters
* Orbit - Tow eccentricity (circular)
- inclination near 90 (polar)
- altitudes of 200 km and 160 km
* Duration - six months

* Sample rate - 1 set of tensor measurements per second

* Instrument assumptions
* Cryogenic full tensor gradiometer of the University of Maryland type
* Sensitivity - 1073 £ (1 pgal km-1)
* Attitude and ephemeris assumptions
* Data assumed to be corrected for attitude and attitude rates and
converted from electrical output signals to real physical values
* Data assumed to be rotated into local level cartesian coordinate system
* Data assumed to be geographically tagged (latitude, longitude, altitude)

The particulars concerning the attitude and ephemeris assumptions are
beyond the scope of this work but these assumptions will need closer
examination after specific design decisions have been made. The
rotation of the gravity gradients, from the orientation at the time of
measurment to the local level coordinate system can be made by time
tagging the gradient output signal and the absolute attitude information.
The local vertical can be determined by the gradiometer output and the
required rotation angles can be determined from the attitude
information. The geographical tagging can be made by several methods
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including integration of gradiometer outputs, supplemented with global
positioning system (GPS) simultaneous phase measurements (described by
Melbourne & Tapley [1983]) and other conventional tracking methods

including laser and unified s-band radar tracking.
2.4 Previous Reduction Schemes

Several investigations have been made concerning techniques to
reduce the satellite altitude gravity gradient measurements to some
geophysically useful form. Two basic classes of reductions can be
defined; global solutions and local solutions. The proposed global
solutions attempt to determine the coefficients of the spherical harmonic
expansion of the disturbing potential. The proposed local solutions
attempt to determine directly, gravity quantities such as mean gravity
anomalies and mean height anomalies (or mean geoid heights). A brief
synopsis, highlighting certain aspects of these previously proposed

solutions, follows.

Many gradiometer studies were made in the 1960’s, however, most
of these were proof of concept studies and dealt primarily with the
improvement of inertial navigation system error sources. Geodetically
relevant gradiometer studies began formal investigation in the early
1970’s. Since then, the discussions have followed two paths; airborne
gradiometry and spaceborne (satellite) gradiometry. Much work has
been done for the airborne application and recent investigations by
Jekeli [1985] illustrate the immediate usefulness of the airborne case.
Although the airborne application and associated reductions will not be
included here, it is important to recognize the close linkage between the
two cases. The primary differences lie in the types of usable

instrumentation and in the height of the gradient measurements.

One of the earlier investigations of satellite gradiometer data
reduction appeared in a thesis by Glaser [1972]. In this work, Glaser

proposed an algorithm which computes improved estimates of the
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coefficients in the spherical harmonic expansion of the earth’s
gravitational field. Hence, Glaser’s solution is of a global nature. It is
very much a preliminary work as it was not possible for Glaser to fully
test the algorithm. However, the proposed technique was novel for its
time. Essentially, Glaser proposed that the measured gradients (from a
rotating instrument) be downward continued to the earth’s mean radius
and then integrated to directly yield improved coefficients. Probably
the factor most likely to have hindered Glaser’s attempt at programming
the algorithm was the considerable computational effort required. Even
with the prospect of computational difficulty, Glaser’s proposal, though
very bold, set the starting point for further investigations.

That same year (1972), Reed outlined a reduction scheme which is
less demanding with respect to the computations (Reed [1972]). Reed
proposed a local solution where classical least squares techniques are
used to determine 2°x2* and 5°x5° mean gravity anomalies referred to a
14x14 degree and order geopotential model. The results presented are
in the form of an absolute error analysis, where the 2°x2° (and 5°x5°)
mean anomalies predicted from the simulated gradients at altitude were
differenced from the gravity anomalies used to create the simulated
gradients. Reed was very perceptive in making investigations for both
strap~down and rotating types of gradiometers, although his conclusions
concerning the future of strap-down systems was faulty. Much of the

present report draws from the analytical work of Reed.

The next definitive study on the geodetic usefulness of satellite
gradiometry was made by Krynski and Schwarz [1977]. They were
among the first to utilize the technique of collocation to compute
geodetically relevant information from satellite gradiometry. In their
study, they did work on determining the appropriate covariance model
parameters, configuration of the gradiometer signals, and on combined
solutions using additionally, terrestrial data. Their resultis, primarily in
the form of a very generalized error analysis, yielded some fairly

interesting conclusions. Among the more interesting of these is the
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conclusion that only those gradients containing at least one radial
derivative contribute significantly in recovering gravity information (in
this case geoid heights). That is, only the Tss, T,;, and T,; gradients
in the local level system contribute significantly. What appears to be
missing from their study, however, is a discussion on the
non-stationarity and anisotropic nature of the gradient covariances.
Their conclusions remain sound in the case that their adopted

covariance function behaves realistically.

Recently, a new attempt at the global solution has been outlined by
Rummel & Colombo [1985].. Due to the remarkable breakthroughs in the
computational methods of harmonic analysis on the sphere by Colombo, a
new interest in large global solutions has resulted. Their proposed
solution solves for the coefficients of the spherical harmonic expansion
in an iterative process which includes orbit displacement and orientation
uncertainties. A prerequiste for using the advanced analysis algorithm
(decribed in elegant detail in Colombo (1981}), is that the measured data
be in gridded form. Rummel & Colombo suggest creating cells of data
averages which are then "dropped" onto a surface of revolution which
better aproximates the actual orbits to create the gridded data set. By
placing the data on an orbit approximating surface (rather than a
sphere) helps to decrease the number of iterations required due to the
reduction in the initial orbit displacement error. Rummel & Colombo ran
computer simulations which showed, quite positively, the success of the
method. There is much promise for this method because it has overcome
many obstacles, notably the reduced computer time for the solution.
The computer time required for the global solution is expected to remain
substantial (i.e. greater than a few hours) thus, local solutions for
direct gravity parameter recovery, such as the one outlined in this
work, remain useful for those interested in regional investigations with
a more direct approach (i.e. gravity gradients = gravity parameters
rather than the three step method: gravity gradients - geopotential

coefficients ¥ gravity parameters).




3. APPLICATION OF LEAST SQUARES COLLOCATION

3.1 The Collocation Model

The techinque of least squares collocation has been used
successfully for a wide variety of problems in physical geodesy. It has
been especially useful in certain satellite mission applications such as in
satellite altimetry (Rapp [1983]), satellite-to-satellite tracking (Hajela
[1981]), and in estimating gravity potential differences between
continents from satellite laser ranging data (Hajela [1983]). The results
from these reports showed that significant solutions can be found with
limited observational data. As is well known, for large observational
data sets, the collocation technique suffers from the requirement that a
large matrix be inverted or a large system of equations be solved. This
drawback can be bypassed in two ways. First, the simpler approach is
to determine what elements of the total data set can be ignored or
which elements can be smoothed or averaged such that the errors
resulting from the collocation soluton remain small. In this approach,
one may be forced to accept some loss of resolution in order to reduce
the computation time. The other method is to switch to frequency
domain collocation where the inversion can be handled with less
computational burden; Details of the latter technique are found in Eren

[1980]). The present study will follow the former, more simple approach.

The fundamental equation of the least squares collocation technique
is (Moritz, [1980], p. 102)

S = CgtCrit (III.1)

30
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where ¢ is the vector of observations, Cg¢ = (Cyy + Cnn) is the sum of
the covariances of the observations and the observational noise, Cgt is
the covariance matrix relating the observed quantities to the quantities

being predicted, § is the vector of predicted quantities.

The observational noise is usually associated with the observed signal
uncertainty and in most cases, this uncertainty is treated as
uncorrelated from one observation to the next, thus the Cp, matrix will
be diagonal with all the elements on the diagonal having similar values.

The collocation technique is especially appealing to geodesists since
it allows for an estimate of the inherent error convariance matrix
associated with the estimate vector S. The error covariance matrix (Egg)
is found through (Moritz [1980], p. 105)

Ess = Cas - CstCyeClt (I11.2)

where all quantites were defined above and, in addition, Cgg is the
covariance matrix of the estimated signal. The diagonal of Egg provides
the variance of the estimated quantities S. In the case that only one
signal is being predicted (i.e. S has only one element), then Egg will
have only one element and this value will be the variance associated
with S.

Another aspect that makes collocation a desirable technique is due
to the fact that various data types can be combined to yield perhaps
more improve estimates of the quantities desired. This aspect will not
be a factor in this study because the intention of this study is to
examine one specific data type (i.e. gradiometry data).
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3.2 Explicit Matrix Structure-Observation Vector

In the following discussion, the developments will be made in the
most general way possible. This means that the '"general case”
corresponds to the case that all five independent gradient tensor
components are used in the solution. If fewer components are used, as
is the case in this investigation, it is not difficult to modify the

following development to accomodate the changes.

The vector of observations, ¢ will then be composed, in the general
case, of the five independent residual tensor component values
determined at a particular location. To obtain these residual values,

several preprocessing steps are required.

First, it is assumed that the instrument outputs have been
converted to physical units and that these values have been rotated
into the local level coordinate system. The angles required for the
rotation are determined from the satellite attitude control subsystem. It
is further assumed that the attitude information has a propagated noise
level below that of which is detectable by the gradiometer, thus the
rotation angles are assumed errorless. Once these preprocessing steps
have been completed, then what results are the measured gravity

gradients, shown as a "vector segment" below,

Via (I11.3)

{®i, A, ri}

where the numerical subscripts denote the differentiation axes
corresponding to Figure 4 and the quantities in braces are simply
reminders that the measurements are position tagged with :ti, Ajy ri

being latitude, longitude, and radial distance from the geocenter for the
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ith observation respectively.

Grouping of the vector segments can be made in many ways, but for
the purpose of gravity parameter estimation, the logical alternative is to
group by geographic location. If the data is randomly distributed, it
can be grouped by choosing the spherical distance ¥, and including as
segments in the observation vector, those gradient values at 31,, Aj such
that

cos"‘[sinip sin‘i + cosip cos(Aj - kp).] & Yo - (I11.4)

where i'p and Ap are the latitude and longitude of the prediction ppint.
However, using randomly distributed gravity gradient - data causes
problems in computing the required covariances. One way to overcome

. these problems is to grid the data in some -fashion.

There are several data gridding schemes available and depending on
the type of solution (i.e. global or local) some schemes may be
excessively complex or simplistic for application here. The first step in
gridding the data is to predict point gradient values at the grid
intersections of a regional block (cf. Figure 12). A least squares
collocaf.ion predictor could be used for this task whexfe nearby
gradiometer measurements are used as input to form the predicted
values. Since the gravity gradients, as will be shown later, are a short
wavelength phenomenon, the prediction should be based upon only those
measurémenf.s that are éufficiently close enough to the predicted grid
.'va.lue to keeb f.he loas‘ of gravity information to a mininvmm.v Thé grid
values should be reduced to a specific surface in order to ease the
covariance compufational demands in ‘the main coilocatioh solution for
gravimetric quantities. Moving the height dependent aspect of the
jradie’nt sigmil to the preprocessing step not only simplifies the

computation of the covariances in the main collocation algorithm, but also




34

provides the possibility of forming the observation vector as will be
described shortly. The reduction to the specific surface can be
accomodated in the prediction step. The reducing surface assumed in
this study is a sphere with a radius of Ry from the geocenter, which is
equal to the average geocentric radii of the gradiometer measurements
within the regional block. This surface should be sufficient in our case
since the orbit is considered circular and we are considering
observations in a relatively small region or block (with, in general, Yy, €
5°). Another such surface is a surface of revolution about the earth’s
axis which better fits the actual orbits (Rummel & Colombo [1985]). This
surface is not used in this work because the radial uncertainties which
are being solved for in Rummel & Colombo's global solution can be
ignored in this type of solution without detracting from the overall
results. It is also not used because of the complications resulting from
the height dependent covariance computations. Thus, once these
averages and reductions are made, then what results is a geographical
grid of points, to each of which are attached the five predicted and
reduced independent gradients shown in Figure 8.

The complete gradient vector is then structured from point 1 to
point MN. In transposed form the gradient vector is

¢7 = [V3s, Via, Via, Vis, Vis,...,VEN, VUN  yBN yMN - gMNp (111.5)

where the superscripts indicate which point the gradient value pertains
to. Thus the observation vector, for the case that all five independent
tensor components are entering into the solution, will have 5(MN)
elements. For the formulation used by Krynski & Schwarz [1977], only
the three components containing at least one radial derivative enter into
the solution. Thus their gradient vector had 3(MN) elements of the form




used

¢7 = [V35, Vis, Vis,..

VBN, vy, vl
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(I11.6)

For the usual case that the region considered is equi-angular, then

in the polar

regions

convergence of the meridians.

A¢ will equal AA and M=N (in PFigure 8).

Equi-area regions should be

to problems associated with the

) C—

To complete the observation vector set-up, the differences between

gradients).

the predicted grid gradient values

and the

gradients are taken to form the residual gradients

computed

reference

(or anomalous

This is done to meet the requirement that the observed

vergion of equation (II.4).

gradients are on a grid,

each point (;i, Aj) on the grid at radius Ry.

Sr’xm) complete up to degree and order N.
together with (31, Ajy Ry) are inserted into the properly differentiated

[1972] and are summarized in Appendix A.

data be centered. To center the data, reference point gravity gradients
are computed for all components being considered in the solution at

The reference gradients

are computed from a set of reference geopotential coefficients (C;lm,

The reference coefficients,

then advantage can be

The differentiations were made by Reed
Since the required reference
taken of the

1 2 3 4 N-2 N-1 N
N+1 N+2 N+3 N+4 2N-2 2N-1 2N
2N+1 2N+2 2N+3 2N+4 3N-2 3N-1 3N
At
(M-2)N+1 (M=2)N+2 | (M-2)N+3 (M-2)N+4 (M-1)N-2 | (M-1)N-1 (M-1)N
(M-1)N+1 (M-1)N+2 | (M-=1)N+3 | (M-1)N+4 MN-2 MN-1 MN
AN >
Figure 8. Numbering scheme for gridded sub-blocks
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mathematical symmetries which result, and a computationally efficient
algorithm can be utilized, such as described by Robbins [1984]. The
observation vector, ¢ can then be established by (cf. eq. (I1.5))

[ Vi - Ul ] [ T4, |
V;z - U;z T}z
¢i= |y, -ul, | = T!, (16i4MN) (I11.7)
V}:s - U}s T{S
.V;S—U;S. _T;s‘

where ¢ is the ith observation vector segment.

3.3 Explicit Matrix Structure - Covariance Matrices

The overall structure of the covariance matrices is dependent upon
how the observation vector and the resulting signal matrix are
structured. The basic structure of the observation covariance matrix
will be 5MNx5MN, where MN are the total number of points contained in
the NxM grid of locations. The matrix illustrated in Figure 9 will need
to be inverted according to equations (III.1) and (II.2). Since the
matrix is symmetric, some inversion computation time can be saved by
storing the matrix in symmetric storage (vector) mode. However, for the
purposes of testing and keeping computation times relatively short (less
than 10 minutes on the IBM 3081 at the Ohio State University), the
author selected 1000x1000 as the maximum dimension of the
autocovariance matrix. If all five of the components are used (as shown
in Figure 9), then, at a maximum, a grid of 200 points can be
considered. This corresponds to a 14x14 grid of residual gravity
gradient observations. More points on the grid can be utilized when

fewer than five components enter into the solution.

The covariance matrix relating the observed quantities to the

desired signal, Cgt, has its structure defined through the number of
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observations and the number of predicted quantities. It will have the
dimension L x 5MN where L is the number of predicted quantities and
SMN is the total number of observed vgradients in | the grid (general
case). The predicted quantity can be any gravimetric quantity (e.g.
gravity anomalies or height anomalies, as used in this study).

In general, Cg¢ will be a row vector because normally only one
quantity is being predicted. That is, only one gravimetric quantity,
located in the center of the grid (and on the earth's approximating
sphere), is computed for a specific grid. For adjacent predicted
gravimetric quantities, the grid is shifted and obaervationa symmetric to
the computation point enter into ‘the computation. Thus, a moving
window technique is used in which the covariances are longitudinally
invariant. Computation of the covariances themselves, follows.

3.4 Covariance Computations

The covariances associated with the gravity gradients as well as the
gravimetric quantities can be expressed as linear functionals of the
disturbing potential. This well known property contributes to the
success of collocation. The general form for the covariances of the
disturbing potential, T is

N
K(p, @) = {307 [ ) [-2.)" (2n+1) €8Pa(cos vpp?)
. n-=a :

+ ;1 [%:‘-' n (2n+1) cﬁPn(cOs vpp') } (III.B)

where r, r’ are the radial distances to point P and Q respectively, Ypp’
is the vdspherical angle separating P and Q, a is the mean equatorial
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radius, and Pp are the Legendre polynomials of degree n.
Furthermore,
n
Eh = 2::: (£2Cpm + £3Spm)/(2n + 1) (I11.9)
m=o

with the absolute error of the modeled coefficients given by

CEnm = Enm(true) - Eﬁm(model) (II1.10a)

8Snm = §nm(true) - gam(model) (III'IOb)

Since '—énm and Eénm are unknown, then as an approximation, the
coefficient standard deviations of a spherical harmonic geopotential
model solution, eénm and eénm are substitued for Eénm and Eénm- The
corresponding term, of in the right hand side of (III.8) is the degree

variance of the potential coefficients;

n
od = Z (C3m + S&m)/(2n + 1) (ITI.11)
m=o

This formulation is originally due to Colombo [1980] (section 3.2) but the
notation of Hajela [1983] (also section 3.2) is used here. The potential

degree variances are related to the anomaly degree variances by (Hajela
{1983], p.17):

cp = y3(n - 1)3(2n + 1)e3, (I11.12)
where y, is a mean value of gravity.

The anomaly degree variances, Cny» are usually given by empirically

derived models. Many collocation studies have used the Tscherning &
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Rapp model: -
-« -1) (I11.13)

°n = (n-2)(n+B)

where a and B are model parameters. The main reason for its extensive
use is due to the availability of advanced software based upon this
model (see Tscherning & Rapp [1974], Tscherning [1976], and Sunkel
{1979]1). This model exhibits logarithmic behavior and as such, it is not
the most suitable model for certain types of covariance modeling. It has
been especially ;:riticized for its unreasonably high gradient variance
especially in association with the parameters determined by Tscherning
& Rapp (1974). These parameters were determined by‘ least-squares
fitting the model, equation (111.13), to observed anomaly degree
variances from degree 3 to 20, 1° and 5° mean (block) anomaly
variances, and a point variance of 1795 mgal?. More recently, attempts
to update the parameters were made by Rapp [1979], and Jekeli [1978]
attempted using various other parameters to determine their effects on
the variances of several gravimetric quantities (including the vertical
gravity gradient). The specific parameters and the effects upon

gradiometry solutions will be discussed in the next chapter.

Other models for the anomaly degree variance have been proposed
by several investigators; we mention only the two component-model

attributed to Moritz. It's basic form is

I o e, n-1
Cn = &3 S? + X2 (n_

ey '—2)'(-11—_‘_;5' sp*2 (1I11.14)

where the «;, «2, S;, Sz, A, and B terms are the model parameters.

Parameter investigations were made by Jekeli [1978], Hein and
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Jochemczyk [1979], and Rapp [1979]. Although it has been shown by
these investigators that more natural anomaly and gradient variances
can be obtained from the two component model, this study will restrict
itself, with regard to the analysis, to the Tscherning and Rapp model
for the afformentioned reason of readily ’a'vailable advanced software.
The results contained herein might be improved by wusing the
two-component model.

The particular covariances are derived >th1"ough the law of
covariance propagation. The gravimetric quantities, i.e. gravity
anomalies and geoid heights are related to the disturbing potential by
(Moritz [1980], p.108)

Ag = - %% - % T . (II1.15)
N=-1¢ - (III.16)
Yo

" with Yo being a mean value 61’ gravity. Both equations are given in
spherical approximation. The functionals relating the gradients in a
local level coordinate system to the disturbing potential are . alightly
more complicated; "The functionals for the tehsor diagonals ére (Reed
(1972}, p.32);

T TeiT B (II1.17b)

T;g = Trr ' ‘ ‘ (III.17C)

The sum of the above expressions yields Laplace’s. eqi’xatibn in spherical
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coordinates. The off diagonal tensor functionals are:

t
Tyz = Tay = r,c("s‘ Thg + %‘ ™ (I11.18a)
1 1
Tys = T3, = Tcosd Tar — TTcosd T\ (I11.18b)
Tas = Taz = ¥ Tor — 23 T4 (1I1.18c)

Now applying the law of covariance propagation with Lj and L j denoting
the functionals, the covariance of particular interest is (Moritz [(1980],
p.87)

M;j(P, Q) = LYLEK(P,Q) (I11.19)

where K(P, Q) is given by (IILS8). Substituting the functionals in
(II1.15) through (IIL.18) into (IIL.19) will yield all of the covariance types
required in the "general case solution". These expressions have been

derived by the author and are given in Appendix B.

It should be emphasized however, that in some cases, the resulting
covariance expressions are no longer isotropic. That is to say, they are
no longer strictly functions of the radial distances, r and r’, and the
spherical distance, Ypgq. The gradient covariances can be treated in a
manner similar to the treatment of vertical deflection covariances
described by Tscherning & Rapp [1974]). Recently, Krarup & Tscherning
[1984] have recast the T,;, T,; and T,, gradient component covariances
into isotropic form for use in collocation solutions utilizing torsion
balance observations. Tscherning has further modified his closed form

covariance algorithm (COVAX) to impliment the isotropic form (Tscherning
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3.5 Reduced Forms of the Collocation Solution

Since Krynski & Schwarz ([1977] concluded that the gradients
contributing significantly to the local collocation solution are those
containing at least one radial derivative, then the "general case" of
utilizing all five of the observable gradients can be. reduced to utilizing
the three radially differentiated gradients (Tss, T:s, T2s) with negligible
loss of accuracy. If the same number of grid points is retained as was
used in the consideration of the "general case" solution, then the
computational burden and necessary computer time will be reduced
especially for the inverson of Cgg. In this case, the observation vector
will be

VSS - U;S TSS
¢i= |l viyg-uls | =] 1, (16i6MN) (I11.20)
vzs - U;S T23

where ¢ indicates the ith observation vector segment with i being a
number associated with a set of observation on a grid and where MN is
the total number of points in the grid (cf. Figure 8). The observation
covariance matrix will be similar to that shown in Figure 9 but without
the T;, and T,, related covariances. The dimension of Cgg is, in this
case, 3MNx3MN and if it is again assumed that the maximum dimension of
practical inversion for the purpose of testing is 1000x1000, then the
grid can be enlarged to the size of 18x18. The enlargement can be
made by densifying the grid (of specific geographic coverage) or by
retaining thé data density and extending the geographical coverage.
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The formulation and covariance computations are simplified further
by only considering the second radial derivative component (the ver‘tical
gravity gradient, Tss). The covariance function for the vertical gravity
gradient is isotropic from the start since the radial derivative
functional, when applied to the anomalous potential covariance through
the covariance propogation law, does not disturb the isotropic nature of
the anomalous potential covariance function, K(P, Q) (cf. eqﬁation
(III.19)). Only one observational type needs to be considered therefore
only one autocovariance table needs to be generated. The observation
covariance matrix will have dimension MNxMN and with the assumed
maximum dimension of 1000x1000, then the grid can be further énlarged
to 31x31. Again, either the density of observations can be increased (to
a limit not to exceed the actual measurement distribution) or the
geographical coverage can be made more extensive than for the case
mentioned in the previous paragraph. S




4. RESULTS OF THE ERROR ANALYSIS

4.1 Description of the Investigations

The investigations reported herein are primarily in the form of an
error analysis. This is due to the fact that at this time, a satellite
gravity gradiometer mission has not yet been tested, so no real data yet
exists. The basis for the error analysis comes from the expression of
the error covariances (equation (I11.2)) which is repeated here for

reference (cf. section 3.1 for term definitions),

Bzs = Cgg —CstCpiCit (IV.1)

This way the errors of the predicted signals are found by the model
implied covariances, which are used to form the matrices Cgs» Cgt, and
Ctt, and the instrument noise level which enters through Cp, (recall

The original idea was to impliment the "torsion balance version" of
Tscherning’s COVAX program to compute the covariances for those
gradients containing at least one radial derivative. However, the results
of this attempt proved unsatisfactory either due to the instability of the
inversion of Cgyg or due to undetected software errors. Thus to
simplifiy the investigation, it was decided that only gradient components
with two radial derivatives would be used as the assumed observable
(referred to as the radial-radial component, T,;, in the remaining

discussion).

45
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The remainder of this chapter will include a discussion on the
generation and behavior of the covariances, and presentations of the

error analysis with variations in the parameters.

4.2 Covariance Generation and Behavior

Several methods have been devised to generate covariance tables.
Two of the more popular methods are by truncated series and by closed
form expressions. The truncated series method has been used
occasionally with the two component degree variance model of Moritz
(equation (III.14)). The closed form expression method has been
programmed by Tscherning and Rapp [1974] and further modified by
Tscherning [1976] and [1983]. The degree variance model used in the
closed form expression has traditionally been that Tscherning & Rapp
(equation (IIL.13)), however recently the Moritz model has been

implimented in a closed form algorithm by Hein [1981].

The closed form algorithm of Tscherning [1983] has been used
throughout the present work. This algorithm (referred to as COVAX in
this report) was selected since it was readily available to the author
and since it is easily adaptable for the use of higher order reference

potential models.

The selection of parameters for use in the Tscherning & Rapp
degree variance model poses an interesting problem. The parameters
computed by Tscherning & Rapp [1974] implied a horizontal gradient
variance of 3500E? which is considered unrealistically high. The gravity
anomaly variance of 1795 mgal? implied by their parameters has been
accepted for several years but recently the value has come under close
scrutiny. Evidence from studies of gravimetric quantities and empirical
covariances in Canada have suggested that the 1795 mgal? value may be
too high. For the Canadian region, Schwarz & Lachapelle [1980]

estimated the gravity anomaly variance to be 837 mgal2. One must




47

remember though, that the Canadian evidence is of a regional nature
énd thus it is limited to an incomplete set of gravity anomaly producing
geophysical structures (i.e. the samples taken in Schwarz & Lachapelle’s
investigation do not include a global set of geophysical structures such
as deep ocean basins, trenches, island arcs etc.). Thus their result for
the gravity anomaly variance may be somewhat low, perhaps not by a
very large amount. The horizontal gradient variance was estimated to
be approximately 200E? in Canada by Schwarz & Lachapelle which is in
fair agreement with slightly higher gradient variances determined by
Hein & Jochemzcyk [1978] in Germany. Therefore, the best degree
variance model parameters to use are those which imply a global anomaly
variance of approximately 1100 mgal®? (Rapp, private communication) and
a horizontal gradient variance of approximately 300 E? (as a compromise
value between the results of Schwarz & Lachapelle and Hein &
Jochemzcyk). One set of parameters for the Tscherning & Rapp degree
variance model meets these variance requirements, which were
determined by Jekeli [1978]. These parameters, as well as other used in
previous investigations, are listed in Table 3 (cf. equations (III.13) and
(II1.14) for the expressions of the degree variance models). To illustrate
the power spectrum of the three parameter sets of Table 3, the products
of the degree variances with their respective S-terms are plotted by
degree in Figures 10a and 10b. This product will be called the scaled

degree variances and are found by

- Cnsn+2 (IV.Z)

Q
=}
!

n+2)32

€n = &SPt = cpStt3 (1v.3)

with ¢, given by the Tscherning & Rapp model (equation (III.13)) and
with gp denoting the vertical gradient degree variance. For the Moritz

two component model, the scaled degree variances are
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cn = ¢n (cp from equation (III.14)) (1Iv.4)
= _ (n+a2)?2 n+r n-1 + -
T = L o) B sphr o (AL o] (1v.5)

The variances are found through the summation

Co = en (1V.6)
n=2

Gov = Z: €n ® 2Goy (IV.7)
n=2

with the last approximate equality shown by Jekeli [1978].

Figure 10a illustrates the scaled gravity anomaly degree variances
for the three parameter sets of Table 3. The numbers associated to the
curves correspond with the enumeration in Table 3. It can be seen that
the Tscherning & Rapp model with Jekeli’s parameters exhibits lower
power than the other two models for degrees below 800 this is the
reason for the lower value of the gravity anomaly variance, especially in
view of (IV.6). Also notable, is the similarity between the Jekeli
parameter model and the Moritz with Hein parameter model beyond
degree 800. Tscherning & Rapp’s parameters exhibit greater power for
the high degree spectrum. All curves can be seen to exhibit high
power at degrees below 700.

Figure 10b illustrates the scaled vertical gradient degree variances

for the same parameter sets. The effects due to the two components of
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Table 3. Degree Variance Model Parameters

1. Used in this work: Tscherning & Rapp model with Jekeli parameters
a = 343.3408 mgal?
B =24
S = 0.9988961

Implied variances:

(Co: gravity anomaly variance, Ggy: horizontal gradient
variance. )
Co = 1089.5 mgal?
Goy = 338.9 E?

2. Tscherning & Rapp model with Tscherning & Rapp parameters:
« = 425.28 mgal?
B =24
S = 0.999617
Implied variances:
Co = 1795 mgal?
Ggy = 3500 E2

3. Moritz two component model with Hein [1981] parameters:

a, = 7.516922 mgal? az = 82.04054 mgal?
S, = 0.994425 S2 = 0.9996642
A=-2 B =7

Implied variances
Co = 1800 mgal?
GOH = 1000 E2
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the Moritz model are strikingly evident by the two maximums reached at
n=390 and n=3000. The rather sharp maximum at n=390 is due to the
logarithmic portion of the two component model. The two parameter sets
based upon the Tscherning & Rapp model display similar spectral
behavior. It appears that the spectrum beyond (roughly) degree 500
contributes to the high horizontal gradient variance implied by
Tscherning & Rapp’s parameters. Again, all curves exhibit the well
known fact that gravity gradients are primarily a high degree (short
wavelength) phenomenon. It should be remembered that the real world
spectral behavior of the gravity gradient variance is still largely
_ unknown. Perhaps with the influx of terrestrial and airborne
gradiometry data, the parameters of the degree variance models can be

refined further to incorporate this new information.

The effect upon the dégree variances from using a high degree
and order reference potential model to remove reference grawty
gradlents from the measured gradients is illustrated in Flgures lla and
1lb. The DEC 81 reference potential model of Rapp [1981] has been
selected for this purpose. Recall from Section 3.4 that the reference
potential coefficient variances (e? énm» e’énm) are substituted for the
indeterminable absolute error of the reference potential coefficients.
Thus equation (III.9) becomes

n
€4 = Z (e*Cpg + ©2Spy)/(2n + 1) "~ (Iv.8)
m=o

The error potential degree variances are related to the error anomaly

degree variances by

- [§ ) v L av.e)
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The scaled error anomaly degree variances are found by substituting £
from (IV.9) for the Cp in (IV.2)

€= = E.Snt2 (1Iv.10)
Lo} c

further, the scaled error vertical gradient degree variances are found
by substituting €. for Cp in (IV.3)

+2)2
eg = K“T:L £oST+3 (1v.11)

Figures 1la and 11b illustrates these scaled error degree variances
implied by the DEC 81 coefficient degree variances. The DEC 81 degree
variances are a modified set of degree variances not reported in Rapp
[1981). The degree variances used in this study were recomputed by
(IV.8) up to and including degree 36. Beyond degree 36 the error

potential degree variances were computed by the expression

€4 = e*(C, S)p n>36 (1v.12)

where e(E, §)n are approximate degree accuracy estimates given by

= = Ag)8
e(C, S)p = 230(n~1) - + sampling errors (1Iv.13)

where e(Ag) is a global estimate of the accuracies of the 1°x1° mean
gravity anomalies used in determining the coefficients; for the modified

degree variance computation, a value of 10 mgal was used; 8 is the




53

*qQT ®an8fg 031 Bujpuodssaiiod

sadueyiea 29183p Juatpead L3taeiad Teofiioa aae

08T @218ap puofeq saain) ‘saduefaea JUDTDTIJF200

Ter3ualodoad 1g 03AQ £q parrdug sadueraeA 2313asp
Juarpead L3jaAeals TeOT319A 10113 pafeds °qIT 2an8t4

LLISUIAINA IIHIS OTHO 3NL
ONTAIAUNS 9 FONIIIS 31130039 0 °1430
S8°81°N SHIGBOM "N °r

334930
00°00¢ 00°0he 00°081 co.oﬂ— . 00°09 00°0 ,
L L 1 1 .m
o
Q
-.om
[=]
(<]
2
pu o}
D
[ 0O
"o
m
o
4 o
-2 <
3
Q.
L oD
Ny
o

‘80T 2an3T4 03 spuodsoiiod swayds.

SutasqunN °¢ a1qel Jo S39s aa3jaweied 291yl

. 943 103 saJueraeA 32189p L1ewoue L3faeal aie

08T @218ap puokaq saaan) *S89JUBTIRA JUITOTJ

—-3900 Terlualodoal 1g 0AQ £q parTdur saoueraea
22180p ATewoue A3TAei8 10119 po1edS °eIT 2an8yg

ALTSUIAIND 31UIS O1HO ML
IMIL3AUNS ¥ JINIIIS 21130039 40 1430
SO°8I°h SNISAON °N °r

- 334930 R
oo.comoc.c=mco.oo_oo.o~_ oo.om oo.o
_’ _ _. _ _ ,

00°0

050
"WONY @GNS

QOJI
"930

0s°1
“dHA

00°e
(2% W)

0se




54
block size (1°x1°, i.e. 6=1°), and y, is a mean value of gravity.

The scaled degree variances belonging to the three parameter sets
of Table 3 are shown in Figures 1la and 11b for n>180. It should be
noted that the error degree variances abruptly alter the spectrum of
the modeled degree variances. This is especially true for the anomaly

degree variances of Figure 1lla.

As geopotential models improve, their coefficient accuracies will
improve further supressing the error degree variance influence in the
covariance computations. As a minimum case, one can consider the
reference geopotential model to be errorless (i.e. the coefficients are
equal to the true coefficients in equation (III.10)). In this case (also
considered in the next section), the degree variance spectrum has no
power up to degree 180 and power beyond that degree as given by the
empirical degree variance model. Considering the reference potential
coefficients to be errorless is useful in determining the sensitivity of
the resulting accuracy of the gravimetric quantities to the coefficient
accuracies implied by the geopotential model actually used. A discussion

of the results of this consideration is made in the next section.

To summarize, the covariance model of Tscherning & Rapp will be
used for the remaining investigations due to its ease of operation and
availability. The parameters of Jekeli [1978] were chosen to be the most
compatible with the latest estimates of the gravity anomaly and

horizontal gradient variances.

4,3 Results of the Error Analysis

The error analysis primarily consists of determining the expected
error of the resulting gravimetric quantity computed through the
collocation technique for an assumed geographic area at altitude. A

computer program has been written which implements equation (IV.1) by




66

using covariances computed from the "torsion balance version" of COVAX
by Tscherning. The program is called GIFRAD, for which a listing may
be found in Appendix C. 4

There are three primary input variables for program GIFRAD, these
being; the latitude, ,3;_ the overall grid size, D; and grid spacing, DELD.
The latitude is necessary for the computation of the spherical distances,
equation (B.3) in the appendix, since the grid is to be based upon the
lines of latitude and longitude. The overall grid size and the grid
spacing are illustrated in Figure 12. These parameters can be varied
which then offers the possibility for investigating the behavior of the
error estimate with regard to these parameters. The gridded gradient
values lie at the intersections of the grid lines, as shown in Figure 12,
at a mean satellite altitude computed as described earlier in section 3.2.
The gridded values of Figure 8 are treated as point values in Figure 12.
The error analysis utilized an equi-angular grid, thus referring to
Figure 8, AA=A¢ and M=N, therefore in Fixure 12, bi:M:(D/DELD)ﬂ. The
value of M and N are constrained to be odd thus causing the central
point of the grid to be positioned directly above the computation point,
P. This causes a symmetric distribution of data which can be utilized to
decrease CPU time during program runs.

ey

—

|
0-\30/-\ \‘/

’

Figure 12. Grid size and spacing definition. D is the grid width and
DELD is the grid interval.
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The computed gravity and height anomaly accuracies are in terms of
30°x30° means which correspond to a spatial resolution of approximately
56 km. Since mean values were chosen, the covariances must reflect
this choice. Several methods have been devised to compute mean
gravity quantity covariances. A good theoretical discussion can be
found in Jekeli [1978], whereby the Pellinen smoothing operator is
applied. However, a considerably simpler approach has been advanced
in Tscherning and Rapp [1974] whereby the Pellinen operator is
approximated by a height dependent quantity. Jekeli [1978] writes the

mean gravity anomaly as

Cov(Ag,, M%) = Z BAcnSP 2Py (cosypq) (Iv.14)
n=2

Tscherning and Rapp [1974] write, in the same notation, the approximate

formula as

+2
Cov(Agy,Agq) ‘-'Z Cn[TR%Eﬁ)—’-]n S0+2Pp (cosypg) (Iv.15)
n=2

Thus, the Pellinen operator, g3 is approximated by
RE n+2
Bh * [(RE'Fh)z] (1v.16)

Since the Pellinen operator is a function of the spherical distance v,,
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- 1 1 ‘ .

where t=cosy,, then it refers to the smoothing within a cap of the size
Yo. However, block sizes of 30°x30° are of interest, thus the
correspbnding cap size can be determined from

C a1k
Yo = 28in~! [":;“9]. % gon—% | (1v.18)

where 8 is the size of the block. Therefore when 6 = 0.5°, then from
(IV.18), ¥y, = 16°56". '

The vqlue of the height, h which best approximates the g,-function
for ¥y, = 16°56" ias found by comparing the gravity anomalyk variance
computed from (IV.14) for the particular block size 8 to the variance
computed from (IV.15). Since, in the case of variance computations, P=Q,
then the Legendre polynomial term becomes unity. Thus, the
comparisons are based upon the following equations:

Var; (Az) = Z pﬁCnsn+z (IV. 19)
n=2
. +
R n+a
Var, (4%) =1:; [(—R{EW] cpSh*3 (Iv.20)

where N is the maximum degree of the summation. The comparison was
made by programming equations (IV.19) and (IV.20) with N=2000 by a
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program called COVEQUIV. For the present investigation, the degree

variances used were

€c (from eq. (IV.9)) (2ana180)

[¢]
=]
1]

Tscherning & Rapp model with Jekeli parameters (n>180)

The results of the comparison yielded a value for h of 6389 meters.

The covariances required in the radial/radial collocation solution
were generated by COVAXX where the error anomaly degree variances
implied by the DEC 81 geopotential coefficients, the parameters of Jekeli,
and the height h associated with the mean gravimetric quantites were
provided as input. The covariances, in table form, were placed in
program GIFRAD where too, the input parameters D and DELD (cf. Figure
12) were specified. Another set of runs were made to test the effect of
the geopotential model errors upon the resulting gravity anomaly and
height anomaly accuracies. This was performed by means of omitting
the coefficient errors in the covariance computations. This is equivalent
to assuming a perfect geopotential field model. The variances of the
predicted quantities (C,; in equation (III.2)) area as follows: DEC 81
model errors included; 302.12 mgal? and 1.161 m? gravity anomaly and
height anomaly variances respectively; perfect goepotential model to
degree 180: 224.74 mgal? and 0.114 m? gravity anomaly and height

anomaly variances respectively.

The final results of both sets of runs are illustrated in Figures
13a-13g. Using the above variances for the predicted quantities, it can
be noted that the inclusion of gradiometer data causes a substantial
improvement in the mean gravity anomaly and height anomaly accuracies.
Four curves are associated with each figure with the curves having

open box type symbols referring to gravity anomaly accuracies and
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curves with cross type symbols referring to height anomaly accuracies.

Note that the respective accuracy scales are plotted on each side of the

figures.
Several observations can be made from the results. First, the
accuracies improve with smaller grid intervals. This is not unusual

since the number of geographical points increases as the interval, DELD
decreases while the grid width D remains constant, that is, more data in
entering into the solution. The accuracies would reach their minimum,
for a specified grid width, when the grid interval becomes infinitely
small, or in other words, if the gradiometry data were continuous over
the region. However, this minimum cannot be achieved for two reasons:
one, the dimension of Cgy would become infinite, and two, continuous
data is not realizable by current and planned gradiometers.
Furthermore, the minimum grid interval is constrained by the mission
parameters, most notable, the data acquisition rate, which determines the
raw data geographical spacing, and by the assumptions concerning the

gridding technique.

Noteworthy too, is the rather large jump in the accuracies for grid
intervals larger than one degree when the coefficient uncertainties are
included. This is a natural outcome of the spatial resolution of the
reference model which is approximately one degree. Therefore, the poor
accuracies resulting from the geographically sparse data distribution is
due to the influence of the coefficient uncertainites. Note that the
"errorless" accuracies retain a smooth character for grid intervals

beyond one degree of arc.

The figures also indicate a general increase of accuracy as the grid
width is increased for grid intervals less than one degree of arc. For
instance, if one considers a specific grid interval (e.g. 30°), then as the
grid width is increased two things are happening. First, more data is
entering into the algorithm and second, the errors due to the omission

of the region exterior to the grid are being reduced. Both are thereby

) I
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Figure 13a. 30°x30° mean value (Ag, () accuracy estimates for a 1° grid

width.
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Figure 13b. 30°x30° mean value (Ag, {) accuracy estimates for 16 grid

width.
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Figure 13c. 30°x30° mean value (Ag, :{) accuracy estimates for 2° grid

width.
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Figure 14. Relationship between gravity gradients and gravimetric
quantities. Arrows point in direction of smoothing (damping
- of high frequencies) with spectral operators also shown. In
the diagram, Rg ie a mean earth radius, y, is a mean value
of gravity at the earth’s surface, and rg is the radius of
the satellite at altitude. From Rummel (1975).
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effecting the accuracies, causing their improvement. It should be noted
that the rate of accuracy improvement per increase in grid width can be
seen in the figures to be decreasing as the grid widths are enlarged
towards 2°.

Additionally, it should be noted that, in general, the mean height
anomaly accuracy does not improve as dramatically as the mean gravity
anomaly accuracy considered as a function of decreasing grid interval
spacings (i.e. introducing more data into the algorithm). This is easily
attributable ot the relationships between the mean gravimetric data dn
the gridded gradiometric data (Figure 14). The tranformation from
gravity gradients to gravity anomalies is functionally equivalent to an
integration whereby smoothing takes place according to the spectral
operators given in the figure. The situation is similar for the
transformation from gravity anomalies to height anomalies. The
transformation from gravity gradients is, in effect, undergoing two

smoothings with a combined spectral operator of

RE

I (Iv.21)

which behaves like 1/n2. Since in Figure 13a-13g, shorter wavelength
data is entering into the solution when the data density is increased
(by reducing the grid interval), then, from the spectral operators, it
follows that the height anomaly accuracies behave smoother than the
gravity anomaly accuracies since the operator (IV.21) suppresses the
higher frequencies to a greater extent than the gradient-to-gravity

anomaly operator

RE (n_l)

(n+1) (n+2) (Iv.22)
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The accuracy estimates were computed for several other altitudes as
given in Table 4. The overall improvement of the gravity anomaly
accuracies is due to the strengthening of the signal in the medium
wavelength gravity information. The accuracy will reach a minimum at a
certain altitude which is a function of instrument sensitivity, data
distribution and data coverage. The accuracies of the height anomaly
changed only a negligible amount since the improvement of the gradient
signal at lower altitudes occurs at frequencies higher than those which

contribute the majority of the total height anomaly signal.

Table 4. 30°x30° mean gravity anomaly accuracies computed by the local
collocation algorithm GIFRAD for a grid width of 2%* and a data spacing
of 15°. Coefficient uncertainties included. Instrument sensitivity:
10~%* E at 40° latitude.

Altitude Ag accuracy
(}m) (mgal)
200 9.36
180 8.60
160 7.61
140 6.96

Finally, the sensitivity of the accuracies to the coefficient errors
can be clearly seen in Figures 13a-13g. Since the height anomalies are
most affected by long wavelength information, they show marked
improvement when the long wavelength error in the coefficients are
removed. On the other hand, the gravity anomalies show only moderate
improvement when the potential model uncertainties are removed. This
behavior clearly indicates that a highly accurate geopotential model
when used in the local collocation algorithm can significantly improve
the resulting gravimetric accuracies. Since more accurate models will be
available when the satellite gradiometer mission is launched, then for

solutions wusing this algorithm, the resulting accuracies will be

L
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significantly better than = those reported here. As gravity models
improve, the degree and order of their expansions will increase. This
can also improve the accuracies of the resulting gravimetric quantities
computed by this algorithm, if the uncertanties of the coefficients

remain optimally small.

In summary, the primary investigation, in the form of a local
collocation error analysis, has been described and complete results for a
200 km altitude gradiometer mission were presented with and without the
influence of the DEC 81 coefficient uncertainties. The choice of degree
variance modél used in the study was made in lieu of available software
and that the parameters of Jekeli adequately represent the actual
gravity field in terms of the implied gravimetric variances. The effects
of the DEC 81 geopotential coefficient uncertainties upon the degree
variances were mentioned. It was noted that the error degree variances
abruptly changed the power spectrum from its smooth character implied
by the modeled degree variances and further, the minimum case of
assuming errorless coefficients was described as a useful method to
determine the sensitivity of the resulting gravimetric accuracies. The
accuracy results were presented and their characteristics were
discussed particularly with regard to data density, mission altitude, and
reference coefficient uncertainty sensitivity. In the final chapter,

comparisons to other results will by made along with concluding remarks.




5. DISCUSSION AND CONCLUSIONS

5.1 Comparison to other Investigations

It would be useful to place the results of this stﬁdy in context with
other similar investigations. Unfortunately, this is not easily done since
the investigation by Reed [1972] and Krynski & Schwarz [1977] solve for
different quantities than those determined here and since the initial
assumptions of those investigation differ considerably from those made
in this work. It is tempting to compare the results of this work with
those of a similar study involving satellite to satellite tracking by Hajela
[1983]. For 30°x30° areas, Hajela determined the accuracy of the
predicted mean gravity anomaly to be 18.1 mgal. However, this result
was for a mean gravity anomaly referred to the GEM 9 gravity field
model. The results of the present report are referred to the 180 degree
and order DEC 81 gravity model of Rapp. Hence, the accuracies
reported in this work are expected to be better since the modeled
degree variances between degrees 20 and 180, as used in Hajela’s study,
are replaced by the error degree variances implied by the DEC 81
coefficient variances which have considerably smaller spectral power (cf

Figure 1la).

The rapid error analysis procedure of Jekeli & Rapp [1980] has been
used in this report to generate Figures la, 1b and 7. The procedure
utilizes the Tscherning & Rapp degree variance model and for the
construction of the figures mentioned above, Tscherning & Rapp’s
degree variance parameters have been used. A portion of the results
.used in the construction of the figures is given in Table 5 along with

results from other runs of the procedure using Jekeli’s parameters

71
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(indicated by Jek). The procedure assumes that the entire global data
set of measurements is used in the computation of gravity anomaly or
height anomaly accuracies. The accuracies computed by the procedure
are expected to be better than those computed by the local collocation
algorithm developed here. This is especially true for the height anomaly
accuracy since the procedure includes, in its computation, the long
wavelength spectrum which comprise the bulk of the total height
anomaly signal. The best accuracies from the local collocation algorithm
tested in this study are (for 30°x30° means at gradiometer altitude of
200 km, 10~ E instrument accuracy): 9.1 mgal and 43.3 cm (Figures 13f
and 13g) for gravity anomalies and height anomalies respectively, where
the DEC 81 coefficient errors are included. The perfect gravity field
case yielded best wvalues of 8.9 mgal and 13.6 cm. From Table 5, the
corresponding accuracies computed by the rapid analysis procedure are
5.8 mgal and 9.4 cm. Therefore the differences of 3.1 mgal and 4.2 cm
between the local collocation algorithm ~(with perfect potential
coefficients) and the rapid analysis procedure is due to neglecting the
region exterior to the grid in the local collocation algorithm as well as
to the amoothing effects incured during the gridding of the data. The
gravity anomaly accuracy can be improved by lowering the mission
altitude, by increasing the instrument sensitivity, or by increasing the
gridded data density. There are difficulties associated with all three
ways to improve the accuracy. Lowering the altitude will increase the
drag of the satellite thereby necessitating a disturbance compensation
system similar to that proposed for GRM. Increasing instrument
sensitivity may be possible with more research by instrument designers
(some designers are optimistic that gradiometers may achieve 10~ E
sensgitivity levels in the near future. The difficulties associated with
atmospheric drag and gradiometer sensitivity are mission design
considerations. The increasing of the gridded data density is more
directly a data reduction problem. More specifically, when the gridded
data is densified, a larger inversion process entails, thus increasing the
computational demand. Two factors limit the gridded data density. One
is physical, the other is economical. The physical limit is8 due to the
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fact that the data connot be gridded more densely than the spacing of
the raw gradient measurements made in the satellite orbit. To do so
would introduce large errors in the high frequency spectrum of the
gradients. The economic limit is one acceptable CPU-time required for
the inversion. This of course, is a more subjective limit which depends
on many factors. Nevertheless, it should be kept in mind during the
selection of satellite gradiometer data reduction algorithm.

Table 5. 30°x30° mean accuracies implied by Jekeli & Rapp’s rapid
analysis procedure. 1 sec data integration period.

Measurement Altitude Param. DEC 81 TOTAL RMS ERRORS
Accuracy errors? | Grav. Anom. Height Anom.
(E) (km) (mgal) (cm)
0.001 160 = T/R N 4.8 6.3
0.001 160 JEK N 3.8 5.2
0.001 200 T/R N 7.3 11.4
0.001 200  T/R Y 7.5 11.7
0.001 200 JEK N 5.8 9.4
0.0001 160 T/R N 2.9 3.1
0.0001 160 JEK N 2.2 2.5
0.0001 200 T/R N 5.1 6.7
0.0001 200 JEK. N 3.9 15.4
x1.0 p/s 160 T/R N 8.9 15.6
*x1.0 u/s 160 JEK N 7.1 13.0

*GRM parameters, 4s data integration, 300 km satellite separation

6.2 Conclusions and Recommendations

This report has described the data reduction of satellite born
gradiometry measurements by the local collocation method. Only the
error analysis aspect has been investigated in this study since no test
data yet exists. The algorithm was simplified to utilize only the
anomalous vertical gravity gradients gridded at altitude. The anomalous
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gradients are determined by removing reference gravity gradients
computed from a high degree and order geopotential model. The
uncertainties of the reference geopotential coefficients must be included
in the covariance computations. Two cases were considered: one, where
the uncertainties of Rapp’s DEC 81 geopotential model [Rapp (1981)] were
included in the covariance computations, and the other, where the
gravity model to degree and order 180 was considered perfect. This
was done to test the sensitivity of the resulting gravimetric accuracies
to the uncertainties in the reference geopotential coefficients. It was
shown that the height anomaly accuracy is indeed very sensitive to the
influence of reference coefficient uncertainties which follows quite
naturally since the height anomaly is a low frequency phenomenon and
the coefficient uncertainties will contain these low frequencies. The
gravity anomaly accuracy, on the other hand, did not improve as
dramatically when the coefficient errors were removed. The results of
this sensitivity study indicate that the accuracies of the gravimetric
quantities computed by the local collocation algorithm significantly
improve with better geopotential models. More accurate geopotential
models should be available in the future when the satellite gradiometer
mission is attempted. These models can be easily applied to the

algorithm to provide more accurate gravimetric reductions.

Further improvement may result with the inclusion of other
gradient components (notably, those with at least one radial derivative).
Krynski & Schwarz [1977] reported 15% to 20X accuracy improvement in
the geoid undulation when the T, and T,; components were included.
This could not be confirmed in this study due to software related
difficulties. A drawback caused by inclusion of the T, and T,,
components results in the increased dimension of Cg¢ by a factor of
three, further exacerbating the CPU time required for the matrix

inversion.

The difficulties with large matrix inversion has been mentioned

several times in this report. Increasing the amount of data, either by
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increasing data densities or by including other gradient components, will
most certainly increase the CPU time as well as possibly degrading the
stability of the inversion. Although these two aspects were not studied
specifically, it is possible to suggest techniques to overcome these
difficulties. The technique of frequency domain collocation provides a
means for handling large amounts of data by reducing the computational
demands incurred by the inversion process. The early study by Tait
[1983] examined this possibility for airborne gravity gradiometry with
rather promising results. This concept could be extended to satellite
altitudes to test the validity of the technique. To stabilize the
inversion process a new technique described by Jekeli [1985] may be
very useful. The technique is known as Virtual Optimal Estimation
which provides a stable method to invert an ill conditioned (or "almost"
ill conditioned) symmetric definite matrix through iterative techniques.
With this method, error introduced by an unstable inversion process can

be avoided thereby strengthening the collocation solution.

The local collocation algorithm was devised as an alternative method
to compute surface mean anomalies based on data acquired by a satellite
gradiometer mission. The accuracy results and ensuing discussion
illustrates the behavior of the system with regard to data coverage,
data density, altitude, and reference coefficient uncertainties. All of
these factors play a crucial role in the accuracy of the computed mean
gravity or height anomalies. To bring the mean gravity anomaly
accuracies below the 5 mgal level wusing this algorithm, it is
recommended that the mission altitude be kept as low as possible (e.g.
160 km), the data be gridded as densely as possible (e.g. <15°), the
gradiometer designed to be as sensitive as possible (e.g. <102 E), and
that the gravity model to be used for the computations of the reference
gradients have the smallest coefficient uncertainties as possible. More
research is needed to further refine the algorithm and to fully test its

effectiveness by means of a simulation.




APPENDIX A

Spherical Harmonic Expansions of the Reference Gradients

In section (III.2), it was shown that the "observed" gravity
gradients in the local level coordinate system need to be centered in
order to apply the least-squares collocation technique. The method to
center the observations involves computing reference gravity gradients
at points on the same geographical grid for which the observed
gradients are known. The centered observation is then the difference
of the observed gradient minus the reference gradient. In this
appendix are found the expressions for the reference gradients given in
terms of the reference geopotential model which are needed in equation
(II1.7). Reed [1973] originally derived the spherical harmonic

expressions that are given here for ease of reference.

Using the local level coordinate system defined in Figure 3, the

expressions are:

N n

U3, A 1) = B [14)  (87)  (Cimcosmh + Sigsinmr) Pii(sin®)]
n=2 m=o

(A.1)
N n n

Upa(®, 2, 0) = B [-1+)  (87)  (Cimcosmh + Sigsinmd) P3A(sind)]
n=2 m=o

(A.2)
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N n
Us(® Ay r) = F [ 24)  (27) " (Cimcommh + Simsinmr) Pi3(sin®)]
n=2 n=o0
(A.3)
N n <2
Uy2(¥, A, 1) = % Z [%] Z (ComcosmA ~ Spgpsinm)) Pl‘ﬁ(sini)]
' : n=z =0
(A.4)
N n <l
U A 0) =S ) (87 ) (Cimcosmt - Sipsiomn) PR3(sin®)]
=3 — . : ,
(A.5)
N ol
Uzs(®, A, 1) = g—," Z [‘3] Z (CpmcosmA + Spgsimm\) Pﬁ.’,(sini)]
n=2 mn=o
(A.6)

where ( the N denotes the maximum degree of the reference geopotential
model. The observed gradients can be expressed by allowing N to
approach infinity and by substituting the unnormalized (conventional)
geopotential coefficients Cpm, Spm for the conventional reference
geopotential coefficients Cpm, Spme The superscripts attached to the
conventional associated Legendre functions denote the differentiations.
Reed [1973] also provides these differentiated functions in terms of

non-differentiated Legendre functions:

Ppdh(sind) “——g:-!-;i = (0+1)|Pom(sind) - tand Py me: (sind)  (A.7)

Phi(sind) = [BBSIBR _ (141)2]po(sind) + tand Ppmes (sind)  (A.8)

P33(sin®) = (n+l) (ﬁ+2)Pm(s‘in6) ' (A.9)
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Pii(sind) = - ﬂ"a}}_:m‘ Pam(8108) + oz Po, e (8ind) (A.10)
P13(sind) = - '-';‘:%}}l P (sint) (A.11)
P33(siné) = m(n+2)tand Py, (sind) - (n+2) Py, me:(sind) (A.12)

The an'(sini) and Pn,mﬂ(sin;) terms can be found from familiar
recursion formulas such as (Ilk [1983]);

(n-m)Ppg(t) = (311'1)tpn—1,-(t) - (n""-‘)Pn—z,n(t) (A.13)

(1-t2)%Ppp(t) = (am-1)tPp gy (t) ~ (n4m-1) (n-m+2) (1-t2)%P; u 5 (t)
(A.14)




APPENDIX B

-Gradient Covariance Expressions

In this appendix, the explicit covariance exgreasions are given for
reference. The expressions are nothing more than applications of the

covariance propagation law (Moritz, [1980])

Cij(P,Q) = L{LIK(P,Q) (B.1)

from which all gravimetric covariances can be related to the disturbing
potentiall covariance K(P,Q) by the functional L; and L; applied at the
point P and Q. The covariance function of the disturbing potential is
only a function of the relative location of the points P and Q. On the
' sphere, this can be written as (Moritz, [1980])

K(P,Q) = K(rp, rq, ¥pg) = K - | U (B.2)

where rp and rq are the keocentric radial distances 61' the points P and
Q and ¥Ypq is the spherical distance of P and Q given in terms of their
respective co-latitude and longitude as (8 = n/2 - ;),

cosypq = cosBpcosfy + sinopsinagcu(xo-Xp) (B.3)
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Thus the covariance of the disturbing potential is isotropic and

stationary.

Using the functionals given in equations (III.15) to (III.18), the

covariances are determined and presented for reference below.

Those

functionals with a prime attached denote that the functional is to be

applied at the point Q. Unprimed quantities refer to P.

I. Autocovariances of the observation covariance matrix, Cit

a2 t a 2 1
Cov[T,,(P),T1:(Q)] = [rzC;szb anz ?2¢ ;3 + ;l;; ]
[ 1 22K _ tané” 9K 1 K ] _
r’2cos?$” a\"?2 r2 e% " r ar 1"
1 24K tan¢’ 83K 1 23K

= T > — — > - + >
r2r’2cos?dcos?$” ar2ap’? r?r’2cos?$ an24d r3r’cos?$ o#?)\aor

____tan¢ 23K tanétand’ 82K tand 02K
r2r’2cos?®’ oda)r"2 rar’? 2927 r2r° aer’
1 33K tané’ 92K 1 22K

rr’2cos?$’ oerax’? rr’2 oarad’ rr’ oror’

a2 a 82K 3
Cov[T,,(P),T22(Q)] = i? T + % r ][;;? %2 + i? ;%7

_ 1 a4k 4 2 a3k 1 a3K + 3 a2K
r3r’2 29%229°2  r2r° ad2er’ rr’2 ore$’2  rr’° oror’

34K
ar2arp’ 2

Cov[T33(P),T33(Q)] =

’

(B.4)

(B.5)

(B.6)
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- 1 _2?  tané 2 22K tané’ K
Cov[T,2(P),T,2(Q)] = [r’cosi XT3 + r? ][ 'cosi 2N0% r 2 o\’
1 24K tane” 23K

= r?r’2cosbcos®’ 2repaL’ 2}’ + rar’2cos$ or0$a)\°

tané 23K tanétané” 22K (B.7)
r2r°2cosé” 2)\a\’ 8}’ rir’3 ape)’ *

1 a2 _ __]
rcos$ 27Aér r3cos$ o\

Cov([T,5(P),T,5(Q)] = [

[ 1 22K _ 1 !!(_
r'cos$é” &\’ ar’ r’2cos$’

- 1 24K _ 1 83K
T rr’cosécos®’ 2Aerol’er’  rr’2cos$cos®’ oAera\’

1 23K 1 : 22K

T T7r cosbcos® N or o\ | rir Zcosbcosh  IAON (B.8)
= 12 %2k 1 K
Cov[Tas (P, T2s (@] = [2 5o - B Bl [E 7 - 5 o
_ 1 24K 1 23K 1 a3k 1 22K 9
T Tr a%ered or’  rr 7 sdered” | rir’ sseweer ' rir’a agep (B-9)

II. Cross covariances of the observation covariance matrix, Cit.

_ 1 24K 1 23K
Cov(T11(P),T22(Q)] = T’r 2cos?# 2704 2 ' rir cos?$ oNIer
tané 23K tané #3K 183K 122K
T r2r’? 2328 2  rr° a%er | rr 2 orop ? * e orar’ (B.10)
- 1 24K tané 23K 1 _03K
Cov[T,,(P),T33(Q)] = r7cos2% oATor 2 r2 ager'3 T ¢ eper’d (B.11)
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- 1 24K tané’ 83K
Cov[T:1(P),T:2(Q)] = rar’2cos?$cos$’ 2\ 0p° t Fir dcosis SrZaN
_ ___tané 235K _ tanétané” #3K 1 3K
r2r2°cos$d’ 29\’ 2§’ rir’2  ao\" ' rr’2cos®’ oran’ ey’

. tané’ #2K

rr 2 ara\’ - (B.12)

1 %K : 1 a3k
r3r’cos2$cos$”’ a2\ or’ r2r’2cos2$cos$’ 0A’OA'

Cov[T,,(P),T:3(Q)] =

tané 3K tané 22K 1 23K
r3r'cos®’ o99a)\’ 0p’ r2r’2cos$®’ 298\°  rr’cos$’ ora)‘er’

1 82K
"~ rr’2cosé eran’ (B.13)
| _ 1 4K 1 23K
Cov([T11(P),T25(Q)] = rir cos3® #\29% or°  rir Zcos?$ oA}’
_ tané _ 23K + tané 22K 1 3K _ 1 22 (B.14
ri3r’ 09d7or’  ri3r’2 e%° rr’ erod’er’ rr’? erapy’ -14)
a2 a3
Cov[T2a(P), T3 (Q)] = 33 33m5m77 + & 3mgis (B.16)
- 1 34K tane’ 23K
COV[Tza(P)arzz(Q)] T r3r 3cos® RN 0% + rar 2 a92a)’
1 23K tané’ 92K
rr’2cos$é ora)\’ @’ Y7 eren (B.16)
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.4x 1 .SK
Cov[T22(P),T,s(Q)] = r’rfcosi' 2920\ or’ - rir 3cos$’ o$3o\’
1 23K 1 22K

rr cos® Ordd’er’  rr 3cos$ ron’ (B.17)

34K 23K 3K
CoviT2a(P),Tas(Q)] = 757 53703750 ~ 3T 33703 ¥ 17 Trab in
-t 2K (B.18)

rr’? orep’

CovlTas (P),T1a(Q)] = mrpbeer ik + taDE 2K (B.19)
CoviTss(P),Ths(Q)] = peer st — Ty T (B.20)

| Cov[Tss (P, a5 (@) = F srmspar - BF Tohee (@.21)
Cov[T:2(P),T15(Q)] = r’r’c;sigoSO’ OAO;:f'Or’ - r’r"c;sicosi' Okzifk'
tané 3K tggs 82K (B.22)

r3r’cos$é’ aza\’or’ r3r’2cos$é” e\’

1 84K _ 1 33K
r2r’cos$ 2NedaP’ar°’  rir 2cosh 2N2$2$°

Cov[T,2(P),T2s(Q)] =

tané 23K tané 3K
Y ¥ aeder  rir? (B.23)

1 4K _ 1 23K
rr’'cos® a\ra$’or°  rr’2cos® 2\erap’

QOV[Txa(P),Tzs(Q)] =

_ 1 33K + 1 23K
r2r°cos$® aA2$°or° ' ri3r’2cosh N’

(B.24)




III. Cross covariance matrix, Cgt
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a. Gravity anomalies, Ag.
Cov[Ag(P),Ts1(Q)] = - r”c:)s%' Or:;I'(‘ t:ni o::g' - '::' 75%’

- rr"Zos"' 0;35 '2:292’ :g' - r:' :5' (B.25)

Cov[Ag(P),T22(Q)] = - ;;? 752%7? - ;; 0;:5' - rr?’ ;%:% - ;%7 %%7
| (B.26)
CovIAg(P), Tas(Q)] = = jrgirg - 2 528 (B.27)
Cov[ag(P),T12(@)] = - r";osi’ Orzigli' - t:E; 7%;%7 - rr":osi' Okfzg'
- FT::EET%‘ | " (B.28)
1 23K 1 22K 2 22K

-Cov[Ag(P),T,s(Q)]

r'cos$’ era\’er’

2 2K

r’2cos$®” #ro)\ rr’cos$’ 8\’ or’

T icost ((B.29)
' _ 1 83K 1. #3K 2 82K 2 oK
Cov[4g(P),Tas(Q)] = - r erad ar. r'? ard% rr % ér°  rr'3 0%
(B.30)
B. Height anomaly ¢ (® N the geoid height).
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_1 1 22K _ tand’ K 1 MK |
Cov[{(P),T,,(Q)] = e [r"coc’i' D i a1 T e (B.31)
2
Covi¢(P),Taa (@] = &[5 Fh + & 5E (8.32)
. 2
Cov[¢(P),Tas (@] = 2= 555 . (B.33)
_1 1 23K tané’ K
Cov[¢(P),Ty2(Q)] = by [r,,m’. T (B.34)
[ 3 1 oK
COV[‘((P),TIQ(Q)] - Yo .ro»c“‘o ‘A“r' ro,co.‘ ‘A' (3035)
' _tr [ oKk 1 K ,
COV[C(P).TAH(O)] =y I e T (B.36)
IV. The auto covariances of the predicted signals, Cggq.
From Moritz [1980], page 108, g
' Y Y S S
Cov[ag(P),88(Q)] = oo =+ m oy *Fap” T o7 K (B.37) ;
and for the height anomaly,
 Cov[¢(P),8(Q)] = gsx, | | (B.38)
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Appendix C. Listing of program GIFRAD

PROGRAM GIFRAD: A PROGRAM WHICH COMPUTES THE EXPECTED ERROR
IN A MEAN GRAVITY QOR HEIGHT ANDMALY BASED
UPON RADIAL/RADIAL GRAD IOMETERY MEA SUREMENTS
CVER A GRID CF FIXED SIZE,

WRITTEN B8Y: JOHN W. ROBBINS
DATE: FEBRUARY 1, 1985
VERS: FEBRUARY 17, 1985
RUN : FEBRUARY 20, 1985

DEPARTMENT DF GECDEVIC SCIENCE AND SURVEYING
OHIO STATE UNIVERSITY.

QOO0 OMO

IMPLICIT REAL #8(A-H,0-2), LOGICAL (L)
COMMON /ZINTERP/COV(3,519)
DIMENSION CXX(225,225),01570225,225),CSX(2,225)
DIMENSION DSX(225),SCR(225),CSX1(1,225),CSX2(1,225)
DIMENSICN CC1(225,1),CC2¢225,1) ,ANS(1),ANT(1)
DIMENSICN CXX1(225,225)

c DATA C€SS1,05S52/0.11413538300,224 .7384996D0/
DATA €SS1,05S52/1.1613600,3.0212684D2/
DATA CLAT/%0.00/

READ IN THE COVARIANCES.
FIRST, THE CXX & CSX REQUIRED COVARIANCES ARE READ.
READ(5 ,#)(COV(1,1),C0V(2,1),COV(3,1),1=1,519)

END OF CXX & CSX RECUIRED COVARIANCES

WRITE THE HEADING FOR THE CUTPUT TABLE.

OO OO0NON AN ON

WRITE(6,106)

106 FORMAT(2X,°GRIC® ,6X,°GRID*,4X, "MEAN GRAVITY®*,2X, *MEAN HG1.°',3X,
ROINVERS 56X o *CSXSCXXIHCXS VALUES®,/
‘ZX.'HIDTH'.BX.‘SPAC!NG'.5!.'ANUHALY'.6X.'ANDHALY'.OX.'SIIBIL.'.I :
02!.'(056)'.0!."BEG)'.bl.'(HGAL)'.TX.'(HETERS)'.lZX.'(HETERS“Z)'. 1
*8X, *(MCALE®%2)°*,//) ]

READ IN THE OVERALL SIZE CF THE GRID AND WHETHER OR NOT IT
IS THE LAST GRID SIZE 70O BE CONSIDERED (LOGICAL VARIABLE: L).

READ(5,99)D,DELD,L
FORMAT(2F10.7,L2)
WRITE(6,98)D,DELD,L
FORMAT (/71X 32F10.7,3X,L2)
DDEG=D :
DDEL=DELD

NP=IDNINT (D/DELD )+1

NP S =NP *NP

NPX1=(NPS+1)/2

OV WONOM
L)
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NPX2=NPX1+1

INITIALIZE ALL ARRAYS 10 ZeRO TO AVOID CARRY-OVER FROM
PREVIOUS COMPUTATIQONS.

ANS (1)=0.D0
ANT (1)=0.D0

DO 12 1=1,225
00 12 J=1,225
DIST(I,J)=0.D0
CXXI(I,J)=0.D0
CXX(1,4)=0.00
00 14 1=1,2

DO 14 J=1,225
CSx(I,J)=0.00
D0 13 1=1,225
CSX1(1,1)=0.D00
CSx2(1,1)=0.00
CC1(1,1)=0.D0
CC2(1,1)=0.D00
DSX(1)=0.00

COMPUTE THE MATRIX CF SPHERICAL DISTANCES FOR THE GRID
SPECIF1ED FOR THE OVERALL GRID SIZE (D) AT THE LATITUOE
(CLAT). THE SUBROUTVINE ONLY WORKS WITH RECTANGULAR GRIDS.
RADIALLY SYMMETRIC CRIDS MUST BE DEALT WITH DIFFERENTLY.

CALL SDIS(CLAT,D4NP,NPS,DIST)

SET-UP THE COVAR IANCE MATRIX, CXX.

D0 11 1=1,NPS

D0 11 J=I,NPS

CXX(loJ)*CDVXN](UlST‘l.J)ol’

D0 23 J=]I,NPS

CXX(Js1)=CXX(],4)

ADDITION OF INSTRUMENT NOISE TO DIAGONAL ELEMENTS .

THE VALUE 1.0-6 IS THE SQUARE OF THE INSTRUMENY SENSITIVITY

OF 1.D-3 EOTVOS UNITS.

ONE MUST REPLACE THIS VALUE FOR OTHER SENSITIVITIES.

00 24 1=1,NPS
CXX(I93)=CXX(1,1)41.0-6

SET-UP CF CSX RELATED DISTANCES.
D0 21 1=1,NPX1 '
DSX(1)=pIST(1,NPX1)

D0 22 I=NPX2,NPS
OSX(I)=DISTINPX1,])

SET-UP THE CSX-MATRIX.

00 31 J=1,NPS

CSX€1,J)=COVINTIDSX(J),2)
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CSX(2,J)=COVINT(OSX (J),3)

DO 33 J=1,NPS g
CSX1(1,J)=CSX(1,4) ;
CSX2(1,J)=CSX(2,J) ' : : 1

W
[

w

MAKE COMFUTATICNS FOR THE EXPECTED ERRORS RESULTING FROM
THE GIVEN PARAMETERS.

THE SUBROUTINES LINVIF, VMULFP,VMULFF ARE PROVIDED BY
INSL SUBRDUTINE LIBRARY,

LINVIF: MATRIX INVERSION
VMULFP, VMULFF: MATRIX ALGEBRAIC CPERATIONS.

CALL LINVIF(CXX.NPStZZS.CXllv5.SCR.lER) - :
CALL VHULFP(CXX]oCSllnNPSoNPS.l'ZZSplnCCleZS.lER])
CALL VHULFP(CXXI.CSXZ.NPS.NPS.!cZZSoluCC2v225.lER2’
CALL VHU[FF(CSX!oCCltloNPS:l'l0225plN591n15R3’

CALL VHUlFF(CSXZ.CCZ.I.NPS.I.I.225.AN191.IERQ)
EHA=CSS1-ANS(1)

EGA=CSS2-ANT(1)

FGA=DSQRTIEGA)

FHA=DSQRT(EHA)

MMM W

WRITE RESULTS.

(X a Ny

HRIIE(ﬁ.lOB)DDEG'DDELoFGA.FHAtlERsANS(l)oANT(l) ‘ '

108 FDRHAT(FB.S,BX.F?-S.BX.F10.5.3X5F9.5.4!,IQ.3X.DIQ-7.3!.DIQ.T
" IF(.NDT.L)GO IC 3 ' )

STOP : Co ' S

END

SUBROUT INE SOISC(CLAT D (NP oNPS,DIST)

haad o d o220 2L 1T T T VT 255000020440 % ‘m#". bt g L
SUBROUTINE NOTES: VARIABLE LIST. 1

1. INPUT VARIABLES IN THE CALL STATEMENT: 2
CLAT ]

"THE LATITUDE CF THE CENTRAL POINT OF THE GRIC.
0 3 THE OVERALL SIZE OF THE GRID.
NP ' THE NUMPER OF luéaenthts ALONG A €RID SIDE.
NPS 2 THE TOTAL NUMBER OF POINTS WITHIN THE ékto.

2. DUTPUT VARIABLE RETURNED 10 MAIN PROGRAMS

OIST = THE ARRAY OF SPHERICAL DISTANCES IN RADIANS.
IT IS UPPER-TRIANGULAR FDRNév

3. VARIABLES USED WITHIN THE SUBROUTINE:
NPML 2 NP - 1}

ﬂﬁﬂﬁﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬁﬁﬂﬂﬂﬁﬁﬂﬂﬂ

DNP $ 1./NPM1 = 1./7(NP=1), THIS GIVES THME RELATIVE
' GRID SPACING VALUE. '
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NP2 2 NPINPM141 = NP#%2 - NP ¢ 1
NPMA 2 NPS = 1, TOTAL NO. OF POINTS MINUS 1.

S REE RS 3RS SR B 2R BB R AR RS S 220N R Q”OQ‘#“‘#‘ SRRRR $ R 4%

(2 X aXsXaXzXaXaKs]

IMPLICIT REAL %8 (A-H,0-2)

OIMENSION DIST(225,225),PLAT(225),PLON(225)
SD(H.I.Ygl)-DACDS(DSIN(H)‘DS!NIY)*DCOS(Hl'DCDS(Y)*DCDS!l'X))
PI=4 . DO*UATAN(1.00)

0=D*P1/180.D0 '

BLAT=CLAT#P1/180.00

NPM1=NP~1

DONP=1.D0/NPM1

NP2=NP*NFN1+1

NPMA=NPS-1

ESTABLISH LATITUDES AND LCNGITUDES FOR EACH OF THE POINTS.

(aXgNg)

DO 5 J=1,NP2,NP
JA=J-1
DJINP=FLOAT(JA)/FLOATINP)
00 5 I=1,NP
5 PLAT(I+JA)=BLAT+D/2.00-0JNP#ONP#*D
00 6 I=1,NP
IA=]1~1
DO 6 J=1,NP2,NP
JA=J=]
PLU“(l’J‘)'FLU“(Il)‘DﬂP*D

COMPUTE THE SPHERICAL OISTANCES.

oo e

00 11 I=1,NPNA
11=]41
00 11 J=1I,NPS '
11 DISTUIoJ)=SD(PLAT(I),PLON(1),PLAT(J),PLON(J))
00 12 1=1,NPS
12 DIST(I.I)'O.DO
RETURN
END
FUNCTION COVINT(D,1D)

FUNCTION COVINT: INTERPOLATES THE COVARIANCES REQUIRED 1IN
THE SOLUTION. THE COVARIANCE TABLES ARE PREVIOUSLY
COMPUTED FROM THE “TORSICN BALANCE VERSION® OF COVAX
BY CoCe TSCHERNING AND TABULATED FOR READING INTO THIS
PROGRAM. THE FUNCTION HAS AS INPUT THE SPHERICAL DISTANCE
*D® AND THE COVARIANCE TYPE, °*ID°®. IN THIS VERSION °I1D°
HAS THE FOLLCWING MEANINGSS

I0=1 3 RADIAL/RADIAL GRADIENT AUTC-COVARIANCES
10=2 3 GRADIENV/HE IGHT ANOMALY CROSS~-COVARIANCES
10=3 3 GRADIENT/GRAVITY ANOMALY CROSS-COVARIANCES

THE CUTPUT 1S °COVINT® WNHICH RETURNS TO THE MAIN PROGRAMN.

(2 s s NN NaNaNoNoNaNaNaNaXg)

IMPLICIT REAL #*8(A-H,0-2)
COMMON /INTERP/COVE3,519)




20
21

(2 X2XsX e}

15
16
18

17
98
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D0=0.D0

DM=1.D-6

IF (1D.EQ.0)G0 YO 15
DA=DABS(D)

IF (DA.LT.DM)GC TO 18
IF (1D.LT.0) GO 7O 20
MK =0

60 10 21

MK=]}

I10=10%(~-1)
OMIR=2.,9088208 704
OR=D/0MIR

X=DINT(DR)

FRAC=DR~-X
IX=JDINT(DR)

IN THE NEXT STATEMENT, THE VALUE *519° CORRESPONDS TO THE
MAXIMUM SPHERICAL DISTANCE (IN THIS CASE, 8.5 DEGREES).

IF (I1X.67.519) GC T0 17

IX1=1X+1

I1X2=1X+2

COVINT=COVIID, IX1)+FRAC*(CCV(ID,1X2)-COV(1ID,IX1))
IF (MK.EC.1)COVINT=-COVINT

60 T0 16

COVINT=0.D0

RETURN

COVINT=COV{1D,1)

- RETURN

WRITE(6,98)

FORMAT(//7/71X,°*THE SPHERICAL DISTANCE 1S TOO LARGE®)
syoP

END
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