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Abstract

Various padding schemes have been proposed in the geodetic literature to avoid the error
committed by approximating a linear convolution with a cyclic convolution; the latter is needed to
implement Fast Fourier transform techniques. The method of extending the signal with zeros and
the kernel with its own values yields equality between the two types of convolutions. However, it
is shown using error transfer functions and numerical examples that the cyclic convolution error is
not greater than the edge effect. Since the edge effect must be avoided in any case, there is
justification for dispensing with the padding of arrays that adds considerably to computer memory
requirements. The analysis is extended to the method of properly defined discrete, derivative
operator transforms where the corresponding cyclic convolution error is confined to computation
points very close to the edge.

Keywords: circular convolution, discrete Fourier transform, geodetic convolutions, edge effect

Introduction

In physical geodesy, the determination of various quantities, like the geoid undulation, the
deflection of the vertical, the terrain correction, and similar quantities attributable to mass attraction,
involve the calculation of convolution integrals. In these applications, one may call the two
functions being convolved the signal function (or data) and the kernel function, where the latter
represents the model, or system, that transforms the data in some physically meaningful way. For
example, Stokes’ formula is a convolution of gravity anomalies (the data) with Stokes’ function
(the kernel) that produces the geoid undulation. Although these convolutions are of functions on
the sphere, only planar approximations will be considered here.

It is well known that, because the data that enter the convolution are finite and discrete and
because certain fast computational techniques require it, the convolution theoretically defined on the
entire plane must be replaced with a convolution for periodic functions. This use of the so-called
circular convolution, instead of the linear convolution, therefore, naturally introduces
corresponding errors in the model for the desired quantity.

There are two basic approaches to treating this error that have been used in the past. The first
simply ignores the error. This was the case, for example, in Schwarz et al. (1990); and it has
justification, as will be seen. The second approach is based on extending the finite, discrete data
arrays being convolved with zeros. This artifice was discussed by Oppenheim and Schafer
(1975). Many numerical tests have been done to show that this so-called zero padding improves
the computation of Stokes’ integral in planar approximation using the discrete Fourier transform
(or, equivalently, the fast Fourier transform, FFT); one may cite Tziavos (1992), Sideris and Li
(1993), and Haagmans et al. (1993). Furthermore, several padding variations have been



investigated numerically, including the extension (padding) of both the data and kernel with zeros
(Zhang, 1995), the extension of the data with zeros and the kernel with its known values (Sideris
and Li, 1993), as well as the tapering of the data in a border to zero at the edges (Vermeer, 1995;
Tziavos, 1996). It is clear from this recent geodetic literature that there remains some confusion as
to the nature and appropriateness of the padding schemes and the relationship between the linear
and circular convolutions. It is noted that Haagmans et al. (1993) make the clearest statement that
the correct padding scheme is one where only the data are extended with zeros and the kernel is
naturally extended. However, they give only a graphical “proof”.

The purpose of this paper is to analyze the padding schemes that do not yield equality between
the circular and linear convolutions, and to determine the quantitative relationship between the
circular convolution error and the edge effect. Explicit formulas for the errors in the padding
schemes and for the edge effect are derived; and these errors are then analyzed using transfer
functions and a numerical example. The analysis proceeds to properly defined frequency
responses of discrete derivative operators, including those that are applied to convolutions. The
mathematical derivations are restricted to a single dimension in order to maximize simplicity. The
results can easily be generalized by inference to higher dimensions and are given explicitly for two
dimensions.

Convolutions

Three types of convolution will be needed. The first is for continuous functions defined over
the real line. Let g(t) and h(t) be two functions, where t is a real number. Their (linear)
convolution is denoted by (g * h)(t) and is given by

(g*h)(t):J.g(*r) ht-1)dt, —oo<t<oo (1)

It is assumed that, as |t| — o, the functions g(t) and h(t) attenuate to zero in such a way that the
convolution (1) exists for all t.

For discrete, infinite sequences, g, and h , of presumably evenly spaced samples of these
functions, the linear, discrete convolution is denoted by (g # h), , and it is given by

(g#h)= > g hy o keZ (2)

=—co

where Z is the set of integers; and, again, it is assumed that the sum exists.




Finally, consider the periodic sequences, (QN]k and (hy), , each having the same period, N.
The convolution as defined in (2) does not exist for these sequences, and an alternative definition is
required. The periodic (or cyclic), discrete convolution is denoted by (gN# hN)k, and it is
given by

- N/2-1 . -
EnFin)= T (e, (b, : -
n=-N/2

w2

N
Sk5§—1 3)

where, without loss in generality, one may assume that the integer, N, is even. Any consecutive
set of integers n in the summation may be used because of the periodicity of the sequences. Of
course, the convolution, itself, is also periodic with the same period, N.

The discrete Fourier transform (DFT) (é N)k is defined by

(GN)EEDFT@N}=I:Z; @N)k e F ; 8=0,..,N-1 @)

Here, the more traditional index sequence, k,€=0, ..., N -1, is used; however, because of the
periodicity (also, of the exponentials), any other sequence of N indices yields an eauivalent
transform. Because (éN]k is assumed to be a real-valued sequences, the DFT has the following
conjugate-symmetry property, that can be proved easily from (4):

(EN)k is real for allk <« (G;I]E = (GN)N—E for any { (5)

where superscript-* signifies complex conjugate.

Approximations

The continuous convolution (1) represents the reality (the model) of the operation that
combines the data and kernel functions, g and h. In practice, one has a finite number of discrete
values of the signal, that is, a finite sequence of N (equally spaced) data, g, . If these data are
given (again, without loss in generality) on the interval —N/2<k<N/2-1, then the true
convolution (1) may be broken into a number of parts:




T2
J gt h(t-tv)dt= J g(vh(t—-T)dt+ J g(t)h(t-t)dt+ J g(t) h(t—1)dr

—oo -T2 TR <|t| < TR2H | TRHt|<|t}<oo
= (gT * h)(t) - eedgc =~ €runc (6)
= (gN # h)k —Eedge ~ € discret ~ Etrunc

where T is the corresponding continuous interval on the real line (if At is the sampling interval,
then T = N At ), and where the function, g{t), is given by

gy, -T<t<t
g1 = T @)
0, otherwise

The truncated sequence, (gx)y - represents the collection of available samples of the signal, i.e.,
the data:

g, -¥<k<Ea

(en)i = ®)

0, otherwise

The first part of the final equation in (6), the discrete convolution. can be calculated from the data,
while the second, third, and fourth parts, €cgee+ Egiscret» Etrunc [EPresent errors, called,
respectively, the edge effect, the discretization error, and the truncation error (see Figure 1).

cyclic edge effect

convolution ht - 1)
error —m
t-T/2 t
4 -T/2 T/2 T * 3T1/2 2T
truncation truncation
error error

Fig. 1: Truncation error and edge effect for the convolution (gT * h)(t) . Also shown for
later reference is the cyclic convolution error.
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The edge effect and truncation error are due to the finite extent of the data, but the edge effect is
considered separately since it can be avoided to some extent by limiting the domain of t to an
interval smaller than the data interval (it is zero, when t =0 ). Neither the discretization error nor
the remaining truncation error is within the scope of this discussion. Both can be reduced to
acceptable levels with sufficient sampling in density and extent. Instead, the error in computing the
convolution by DFT is now investigated. It is assumed that the kernel function, h, is known for all
t; therefore, it can be sampled for all k.

In order to use the DFT (or, FFT), one must assume that both the data and the kernel
sequences are periodic. Thus, to proceed, consider the following assignments:

[En=ene (en)oomw=gc. -Fsks¥-1i, tez ©
(hn)i=hi, (An)p,=he, -N<ksNo1, ez (10)

Then, the linear, discrete convolution in (6) should be approximated by a cyclic, discrete
convolution. There are the following alternatives, in each for —-N/2 <k <N/2-1:

(gN#h)k=(éN§ﬁN)k_(€l)k (11)
(gn # 1), = (25n % iow), - (€2 (12)
(en#h), =(é(2)N§ﬁ2N)k—(e3)k (13)

where égN (similarly, E‘;N) is a periodic sequence defined by the extension of éN with zeros on
either side for an interval equal to half the length of the original sequence:

g ——N—Sks%—-l

(2v), = :
E2N)k = N
0, -Nsks-H-1andJ<kan-1
(14)
~0 ~0
(BN =(En), . -N<k<N-1, ReZ
Also, the extended periodic sequence HQN is defined by
(Ban)e=hes (Fan)yosm=(Ron)y» -NSkSN-1, leZ (15)

The first approximation (11) appears in the early geodetic literature dealing with Fourier
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techniques (e.g., Schwarz et al,, 1990). Equation (12) was considered by some as a way (o
reduce the circular convolution effects through zero-padding of both data and kernel functions.
The third possibility, (13), reflects the case where the data are extended with zeros, but the kernel
sequence, though assumed periodic (period 2N), is extended naturally using its own values.
Elaborating on this case, it is easy to prove that €3 = 0 . First note that

(8). =(en), ; -Nsn<N-1 (16)

(o) =(an)p=hin: —Ssns¥-1 and -FsksF-1 (17

|2

Therefore we have, for —-N/2<k<N/2-1:

N-1

(égN§ﬁ2N)k= ) (gN)n(HZN)k—n ; from (3) and (16)
n=-N
N2-1
= ¥ (gn),hyx_n :  from(8)and (17)
n=-N/2

Hence, from (8) and the definition of discrete convolution (2),

<k<

®o|'Z
0| Z

~0 ~ o~
(gN#h)k=(g2N#h2N)k 5 — -1 (18)
showing that £5 =0, i.e., that the cyclic convolution of the zero-padded data and the naturally
extended kernel sequences equals the linear convolution of the original sequences.
This result can be specialized immediately to the case where the kernel sequence is also padded
with zeros (like ggN in (14)), because the natural extension of hy is th:

(en#hy) =(EmFin, . ~Fsksi-1 (19)

Both equations (18) and (19) relate linear convolutions to corresponding cyclic convolutions.
Equation (19) is the justification, originating in Oppenheim and Schafer (1975), for padding both
sequences with zeros over appended intervals on either side equal in length to N/2. But this is the
correct procedure only if both sequences are available only over the truncated interval
_N/2<k<N/2-1. Itis clear from (6) that, since we know the function h (it need not be
truncated), the proper cyclic convolution to be used is (18), not (19).

It can be shown with due consideration of the sequence definitions, that the errors associated
with the alternatives (11) and (12) are given, respectively, by



N2-1

gn(hk—n+N_hk_n)’ —%SkS—Z
n=k+N/2+1
(€)= 0 k=-1 20)
N2 +k N
go(hy_non-Ny_n),  0SksS3-1
n=-N/2
and
NR -1
- X guhyy, —§Sks-2
n=k+N/2+1
N2 +k N
- X gihyq. osk<¥-1
n=-N/2

The fact that the errors in these cases are zero at k = —1 instead of k =0 is an artifact of N being
even. Note that the summand in (g,), (see Figure 1) involves the values of the kernel function
potentially close to the origin, while for (€;)y , only the tail ends of h enter. Hence, if the kernel is
largest near the origin and attenuates with distance from the origin (many geodetic kernels, in fact,
behave like the reciprocal distance), then the error (€;); is generally much larger than (e5)- Of
course, this comparison is almost irrelevant if alternative (18) is used. However, each method
differs in the computational load and computer memory requirements, and these may be important
considerations.

Edge Effect

The edge effect error, for 0 <t <T/2, is given by

Eeqeel=— | gD h(t-1)d7 (22)

with a similar integral for - T/2 <t<0. An approximation is a discretization of this, again, for

O0<k<N/2-1:



N2 +k

(Scdge)f— ngnhk_n (23)
n=

and a similar expression for -N/2 <k <-2. The edge effect is zero for k =—1. It is already clear
from Figure 1 that (eedge)k and (g,), have commensurate error characteristics.

Figure 2 shows that the edge effect and truncation error remain unchanged with the
introduction of the extended sequence é(z)N- The cyclic convolution error in this case is zero (as
shown in (18)) because the extended, periodic kernel function multiplies only zeros in the extended

data sequence.
=0
/\g”m/
cyclic
convolution hit - 1)
error =0
4 t-7/2 A
-T -T/2 T/2 T 3T1/2 2T
truncation truncation
error error

Fig. 2: Truncation error, edge effect, and cyclic convolution error for the extended, zero-
padded data sequence.

Extension to Two Dimensions

The derivations of the previous section for one-dimensional functions and sequences can easily
be extended to two dimensions, if the coordinates are Cartesian. The appropriate cyclic
convolution to use in place of the linear convolution, from (18), is formally given by

_[(z00 3¢ Ny N, N, N,
(gNl.Nz#h)kl,kz—(gle,zNz#thl,zNz)khkz’ - 2 Skls 2 ‘-1 Iy —'TSkz_—'—z -_—
(24)

where




4)

(gNl'Nz)kl,kZ’ —TSkIST—l and —TSkZST—l

~0,0 _ N, N,
N
‘stkzs—ﬁz’l—l Or%gkzsNz—l
~0,0 _[~00
(gZNhZNZ)kl+201N1.k2+222N2—(g2N1»2N2)khk2 ’ _NISkISNl_l’ "N2SkZSN2_1’ th?ez

25)

That is, the zero-padded signal array, ég}ghmz , is the original array plus a border of zeros, whose
width is either Ny/2 or Ny2, depending on the coordinate direction. This extended array is
continued periodically over the entire plane. The periodic kernel array is defined analogous to (15):

(h2N1’2N2)k1,k2=hk1»k2’ —NISkISNl'—I s —NszzSNz—l

(h ZNI’ZN?-)kl + 20N, k, + 21N, = (h 2ngNZ)k],k2 ’ Ql’ 02 «Z
(26)

where the extension to the larger 2N x2N, grid is accomplished using the actual values of the
kemnel function.

Alternative Indexing

Most FFT algorithms assume the DFT is defined with indices starting at zero, as in (4).
Because of its periodicity, the cyclic convolution that is identical to the linear convolution still is
equation (23). The difference is in the padding of the extended kernel array prior to convolution.
In essence, the padding scheme is no different than what is specified by (26), but by shifting the
index to start at zero, the extended part of the array is not filled with the natural values of h, but by
the values of h for negative indices. That is, we simply use an interval of the domain of ﬁle,zNz
other than the principal one given in (26), that happens to start at (0,0).

One has the following algorithm for padding the data and the kernel, respectively:
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Zk,x,» O0Sk sNi-1, 0<k,<N,-1
0 N;<k;S2N;-1, 0<k,sN,-1

. _ 27
(Eam,2a)i 0 0<k;<N;-1, NSk, <2N,-1 @D
0 N <k;S2N;—1, Np<k,<2N,-1
By, - 0<k, <N;-1, 0<k,<N,-1
. By, ~ 2Nk, N <k;<2N;-1, 0<k,<N,-1
(Fan,ana)y o, = (28)
14N2]k ko hkl’kz“ZNz’ OSkISNl—l, NszzszNz—l

hkl—2Nl,k2-—2N2’ leklsle—l, N2Sk2S2N2—1

Error Analysis Equations

While it is easy to justify mathematically that (24) should always be used to compute the linear
convolution (with zero error), the tax on computer memory and time may be prohibitive for very
large arrays (although, computer memory and processing speeds are still increasing at near
exponential rates). For this reason it is instructive to study the errors associated with the use of the
approximation corresponding to (11):

~

(gNth#h)kl.kzz(éNth# )

th’Nz)klvkz - (el)kl,kz > 2

(]

-1, ——23—3k2s7—1

BRI

(29)

And, though it yields no savings in computer memory, the use of zero-padded kernels does offer
some savings in computational time (for dimensions greater than 1, only), since the computation of
DFT’s of zero-vectors in the padded array is trivial. Thus, also the second approximation may be
considered, corresponding to (12):

~00 300

N
(ena #h), o= (&, hN"NJkl,kz (B2l - 2

N, N, N,
—Z—SkIST—l, ——z—Sk2S——2——1

(30)

In the following, the errors (&), and (€2)y,x, » s well as the edge effect, are characterized in
terms of their transfer functions - how they affect the convolution in terms of signal frequency.
Explicit expressions for these errors are analogous to equations (20), (21), and (23).
However, in two dimensions, nine, instead of three, different expression are obtained, depending
on the domain of (k .k,). In addition, there are up to three summations over different ranges for
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each subdomain of (k,k,). To simplify the notation, the following generalized expression is
used:

@31

ekl,kz = nl,an gn,,n2 uk, -n .k, —ny

where the sum, X , represents a collection of sums, each over two indices of possibly different
ranges; and where uy _, k. -n, depends on values of the kernel function, as follows:

(el)k,,kZ: (ul)k]_nl,kz_%:hkl—nl+a\,k2—n2+a2_hk,—n,,k2——n2 (32)
(az)kl,kzl (uz)k,—nl,kz—nz=—hk1'"hk2"ﬂz (33)
(eedgc)k,,kz: (uedge)kl—n,,kz—nz =—hkl"nl‘k2"n2 (34)

Table 1: Ranges of indices, (n,, n2) , and values of a;, a5 (in (32)), for sums of (32) and (33)
entering in equation (31). Domains -Ny/2<k, < -2 and -Ny2<k,< -2 are omitted.

ky=-1 OSkzs%z-—l
N, N
K =-1 €1)..=0 TrEmER ol a0
1=~ ( -t-1, 7 N, N, a,=—N,
—TSHZS-—2—+R2
N, N,
_TSD1S—7—+k1 a].=____N1
N N az=—N2
——ZZ—Sn2S———23+k2
N, N, N N
0<k N, —ysmES- g R =oN, ——fSnIS——I‘—H(, a=-N;
<k;<— - N, N a;=0 N N ;=0
z 2 2
—TSHZST"I ——2—2+k2+1SU2S—22—1 2
N N
_7l+kl+ISnIS—2l—1 a,=0
N N a,=-N
—-QZSn2S——2—2+k2 2 2

In Table 1, the ranges of (n, n,) are listed for a partial set of the possible domains for (k ,k,) in
the case of cyclic convolution errors, equations (32) and (33). Similar index ranges can be derived
for the other domains of (k .k,), but one may limit the further discussions to those listed if the
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kernel function is symmetric or antisymmetric (as it is in geodetic applications). Table 2 lists
corresponding ranges of indices for the edge effect (34).

Table 2: Ranges of indices, (n;, n,), for sums of (34) entering in equation (31). Domains
-Ny/2<k,< -2 and -Ny2 <k, < -2 are omitted.

ky=-1 OSkzsyz—z—l

N Snlsyzl—l

—%2-+k2+15n2372—1

N N
N1+k1 ———2—1-+k1+1_<_nls71—1

_1 %SDZS%+R2

It is now assumed that the signal is a stationary, stochastic process on the plane with zero
mean. Using the notation in (31), the variance of the error €, is then given by

2 o2
Ok, = T{ek],kz]

= Z Z uk,—nl,kz—nzukl—n;,kz—n'2 Z{gn,,nZgn;‘nj

nl,

(35)

n.
Zn,n,

where F -] is the statistical expectation operator.
€n,n, &y 4| 18 the auto-covariance of the discrete sifnal, which is also the continuous-
v

signal auto-covariance function sampled at the discrete points {n; —n 'l,nz - nz) - If ¢,(f}.f5) is the
power spectral density of g, depending on spatial frequencies, f;.f;, then

‘Z{gnl,n2 gn;’n;] = Jq)g(fl’fz) eiZn[fl(m —n1)+fz(nz—n2)] dfl df2 (36)
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Substituting this into (35) yields
oﬁl,kz = JJ Uk ks Ul:,,kz 0, (f).15) df df, (37)

where the “transfer function”, Uy, x,» 1S given by
= i2n[fin, + f
Uy, x,E1.f5) = nfSnz Uy, .k, —n, € 2FL0m + o] (38)

Note that the transfer function is not shift-invariant, but depends on the computation point
coordinates (k k).
With suitable reorganization of indices, it is easily shown that

: 2
Uk i, (012 Uy i, (F1.62) =| Uk,,kz(fl’f2)'

2
= by Uy o, cos[27r (flnl + fznz)]} +[

2
u si1[2n fin, +f5n ]
kl—nl,kz—nz ny,n, : (1 1 2 2)

ki ~nyk;-n,

39)

Error Analysis Results

This section contains the numerical evaluation of the cyclic convolution error for the two most
prevalent kernel functions in geodesy. These kernels are
h(x,x,) = (40)

ErL

used in the computation of the geoid undulation from gravity anomalies (planar approximation to
Stokes’ function); and

1
h{x{,Xy) = ————> 41)
( 1 2) (x% ; x%)3/2

used in the computation of the vertical gradient of harmonic functions (upward/downward
continuation in Molodensky’s geodetic boundary value problem); it also appears in the terrain
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correction and other convolutions (again, always in planar approximation). To simplify the
graphic depictions, the computation points are restricted to k; =k, =k the frequencies are
restricted to f; =f, =f; and, Ny =N, =N.

Figures 3, 4, and 5 correspond to the geoid undulation kernel (40); while, Figures 6 and 7
correspond to the vertical gradient kernel (41). Each figure shows the magnitude of the error
transfer function, | Uy (f,f) |, depending on the computation point (kAx,kAx) and the frequency
pair (f;,f;) , where f;= j/(2NAx) , and N = 96. For other values of N one obtains similar plots,
and the following discussion is meant to be more qualitative than quantitative.

Consider Figure 3, showing the transfer function for the cyclic convolution error, (&), -
Each vertical (frequency) profile of the function represents the transfer function of the error for a
particular computation point of the convolution. Clearly, they are like low-pass filters, affecting
primarily the lower frequencies of the signal. Also, as the computation point nears the edge of the
signal area, the cyclic convolution error becomes larger, as expected. Nevertheless, if it is not t0o
close to the edge, the error may be acceptable. This is especially true for the kernel (41) (see
Figure 6).

12

2N Ax f

[}%]

/G /A
0 4 8 12 16 20 24 28 32 36 40 4 47
X/ AX

Fig. 3. Transfer function of cyclic convolution error £, for kernel (40).

There is also the interesting possibility with the kernel (40) (Figure 3) that if the signal has no
low-frequency content then that same acceptable error occurs for computation points even closer to
the edge. In the example of Figure 3, if x =12 Ax represents the computation point at which the
error transfer function is negligibly small for all frequencies of the signal, then x =39 Ax is the
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computation point where the error is negligible if the signal has no frequency content below
f=5(192 Ax).

Figure 4 shows the transfer function for the cyclic convolution error (82)k x» caused by
improperly padding the kernel function (40) with zeros. Such a procedure has the potential to
reduce computation times, compared to the correct padding method; but as seen in the figure, it
should only be used if the signal is high-pass filtered.

12
10
8 e
> 6
N
4
LIPS EUSUUURURURRUUUURUUTUUUY, ‘SRR AN ., - 3l
2 - =
0 (/L % /rlf‘/""';«‘c——'—;:?
0 &+ £ 12 16 20 24 28 32 36 40 44 47

X/ A

Fig. 4. Transfer function of cyclic convolution error €, for kernel (40).

Figure 5 verifies that the edge effect error and the cyclic convolution error, €, have similar
spectral characteristics, as evidenced by their transfer functions. Therefore, in avoiding the edge
effect by restricting the computation point of the convolution to an interior subdomain of the signal
area, one also avoids the cyclic convolution error, even if no zero-padding is performed.

Figures 6 and 7 show the analogous spectral transfer properties, respectively, of the circular
convolution and edge effect errors for the kernel (41). Because this kernel is much narrower near
the origin, the errors are strongest only for computation points very close to the edge of the signal
area. Note the break in the abscissa scale in these figures and the similarity in the transfer
functions.
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12

10

2N Ax f
\

"/
2 p il —"’ﬂﬂéﬁé
/;,:_‘Zﬂﬁ'
Wilsz77——

X/ AX

Fig. 5. Transfer function of edge effect error for kernel (40).

Z I

| g@

i
}

X / AX

Fig. 6. Transfer function of cyclic convolution error €, for kernel (41).
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12 : { J

2N Ax §
 Ov—]

1T

T
0 38 39 40 41 42 43 44 45 46 47
x / AX

Fig. 7. Transfer function of edge effect error for kernel (41).

Numerical Example

The circular convolution error, €, given by (32), and the edge effect, €edge » &lVven by (34),
were calculated from a regular grid of equal-area mean gravity anomalies convolved with the kernel
(41). This convolution yields the vertical gravity anomaly gradient, given in planar approximation
by

aA A " ' A 2 ' t
g (xy)= g(x y) g )'))3/2 dx' dy 42)

XX yy)

The total data array is a grid of 2N; =680 by 2 N, =540 values in the west-midwest part of
the United States. The grid mesh size is 4 km by 4 km. The circular convolution errors and edge
effects were computed for the inner N x N, area and are shown in Figures 8 and 9, respectively.
As predicted by the error transfer functions (Figures 6 and 7), the errors are largest near the edges
of this computation area. The most inner N1/2 x No/2 area shown in Figures 8 and 9 by dotted
lines indicates the area that might be considered free of edge effects (although it could be larger).
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In Table 3, the root-mean-square (rms) errors are listed for each type of error and for each region,
inside and outside the dotted lines. It is clear from the figures and the table that the circular
convolution error and the edge effect are commensurate. Avoiding the latter, which must be done
in any case, also avoids the former, and no zero-padding of the data is needed.

i
]

J
.
o
.

5000

4000+ -

| i A A . 1 N " N " i " i "
-1500 -1000 -500 0
[km]

Fig. 8. Circular convolution errors (absolute values) for the vertical gradient of the
gravity anomaly. The contours decrease in value from the edges with interval equal to 0.2
Eotvos.
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Fig. 9. Edge effect (absolute values) for the vertical gradient of the gravity anomaly. The
contours decrease in value from the edges with interval equal to 0.2 E6tvis.

Table 3: RMS values of the circular convolution error, edge effect, and their sum for the example
of the vertical gravity anomaly gradient described in the text. Units are Edtvis. Areas are
delineated by the dotted lines in Figures 8 and 9.

Edee Effect Circ. Conv. Err. Total
RMS of Inner Area 0.023 0.027 0.034
RMS of Outer Area 4.478 4.434 6.116
Abs. Max. Err. 135.2 129.4 167.3

Derivatives

Derivatives of signals, and of convolutions, play an important role in geodesy. For example,
consider the deflection of the vertical according to the Vening-Meinesz formula, that is the
derivative of Stokes’ formula, that, in turn, is a convolution of gravity anomalies and Stokes’
function. As another (rather arcane) example, the terrain correction is the vertical gravitational
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attraction at a point P due to the mass attraction of the residual topography, Ab=bp—bgq, with
respect to point P. In planar approximation, it is given by a series of iterated convolutions
(Sideris, 1990). Klose and Ilk (1993) give the correct formulation of the attraction in terms of
Fourier transforms:

A(P) =kp rgl A (P) (43)
where k is Newton’s gravitational constant, p is the (constant) density of topographic mass, and
Qm¥ i ( ) 1 fpn2r-n) g2r=1}| pn
AP =Z0 n; SO I U % L | (44)

where F(-) denotes continuous Fourier transform, and f is frequency given by

f=y/}+13 (45)

The factors £2*~ ! have a conventional (though not required) interpretation (Sideris, 1990) as being
due to vertical deorivative operators applied to the residual topography, formally extended
harmonically into exterior space like a potential.

Finally, having computed the terrain effect according to (43) (or some approximate
convolution), it is possible using standard properties of the Fourier transform to calculate
derivatives of the attraction, thus yielding terrain effects for the gravitational gradients. It is first
noted that from the relationship between A(P) and the corresponding generating potential, T, that
is, A(P) =—9T(P)/3; , we obtain

FT) = 5oz FA) 46)

Then, the second-order gradients of the potential can be expressed formally as (see also Tziavos et
al., 1988)

Fx,,,xm - X821)~( _ T_l( (i 2n fnz)n(leTC fm) }'(A)) : n=12: m=1,2 47)
2
X,z = a‘?{—% =_ T_l((i 2 fn) _‘T(A)) : n=1,.2 (48)
Fo= 2T = 7 (2nt) 7)) 49)
227 972
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In each of the cases listed, (44), (47), (48), (49), and others, the desired quantity is the inverse
transform of the product of a two functions of frequency, one representing a signal and the other
representing derivative operators. Thus, according to the convolution theorem, the desired
quantity is a convolution - but only formally in these cases since the derivative operators must then
be viewed as derivatives of the Dirac delta function. When approximating these continuous
“convolutions” with cyclic, discrete convolutions (amenable to FFT processing), where,
furthermore, F(A) may be already approximated by a cyclic, discrete convolution, it is important
to define properly the discrete versions of the derivative operator “transforms”, such as (i 2n fn) in
equation (48).

Since the signal being differentiated is assumed to be real, the result of the cyclic, discrete
convolution with the derivative operator should also be real. Therefore, the DFT of the signal and
the DFT of this convolution both satisfy the conjugate symmetry property (cf. (5)), which means
the DFT of the derivative operator should also satisfy the conjugate symmetry property. For two
dimensional periodic discrete sequences defined over the fundamental area,

-Ni/2<t<Ny2-1, -Ny2<l <Ny -] (50)

the conjugate symmetry property is

(Fn, ), = (BN )y (51)

The necessary condition (51) and periodicity of the discrete spectrum imply that four spectral
values must be real:

(ﬁNnNz)o,o = (ﬁ;‘ x»Nz)o.o ; (ﬁvaNz)O,—Ndz = (ﬁ;‘ l’Nz)O,—N?/z
(52)
(ﬁNl'Nz)—lez,O - (ﬁ;sz)—lez,o : (ﬁNl'Nz)—N V2 -Nof2 ~ (ﬁ;‘lNz)—Nl/z,—Ndz
In addition, there is conjugate symmetry in §; for ;=0 and £, =-Ny/7:
(ﬁNx»Nz)—Q,,O = (ﬁ;"l’Nz)c,,o ; (ﬁvaNz)—R,,—Nzlz = (ﬁ;l’Nz)i,,—Ndz 53)
andin, for?; =0 and ¢, =-Ny/2:
(I‘:INI’NZ)O’QZ = (I‘:I;IDNZ)O‘_ (3 , (I‘:INx.Nz)-—Nl/z,QZ = (ﬁ;th)—N 2,-4 (54)
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Thus, given the discretization of the derivative operator transform for the frequencies (52), one
must ensure that symmetries (51), (52), (53), and (54) are fulfilled. This is not automatic, for
example, in the case of (i 2% f,), and one must override the continuous definition with the discrete
symmetries. Then, for FFT processing, the resulting transform may be translated by periodicity to
the domain 0<{; <N; -1, 0<{, <N, -1 using a procedure analogous to (28).

30
Fig. 10. Discrete kernel of the derivative operator 9%/(9x; 9x,) (N, =N, =32)..

As one might expect, the cyclic convolution errors are significant only for computation points
close to the edge of the computation area. Furthermore, because of the ripple effect, the error
dominates in the high frequency domain. Again, to avoid the cyclic convolution error one should
extend the signal with zeros, as in (25) or (27). On the other hand, the edge effect remains, and
will be of the same order of magnitude as the cyclic convolution error if the signal is not extended.
If the derivative operator transform multiplies a convolution transform, as in (47) - (49), and itis a
cyclic convolution operating on extended (padded) arrays, then the derivative transform should be
extended, as well, and should be padded with its own natural values according to the symmetry
properties (51) - (54).
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Fig. 11. Transfer function of cyclic convolution error €, for the kernel of Figure 10.

Summary

The methods of approximating a convolution by a discrete, cyclic convolution (for FFT
implementation) in the past have been studied empirically as applied to geodetic problems. Various
techniques were tested on actual data by numerous investigators to determine, in some probabilistic
sense, the accuracy of the methods.

The results of the present discussion are three-fold. Expressions are derived for the discrete
circular convolution error, for the error committed by improper zero-padding of the kernel
sequence, and for the edge effect (discrete approximation). Second, through the use of error
transfer functions and a numerical example, it is shown that the cyclic convolution error committed
by not extending the arrays is not greater than the error associated with the edge effect. Therefore,
by limiting the computational area to reduce the edge effect (that does not disappear with
extensions), one automatically reduces by similar amount the cyclic convolution error. This is
important when convolving large arrays, and extensions (quadrupling memory requirements) are
not feasible. A by-product of the analysis is that extending the kernel with zeros makes no sense
from an accuracy viewpoint, although the error is less than with no extensions. And third, the
analysis is extended to properly defined discrete derivative operator transforms with a
demonstration through error transfer functions that the resulting cyclic convolution error is
confined to the high frequencies and to computation points very close to the edge, as expected.
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