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ABSTRACT 

This research addresses the task of including points as well as linear features in 

photogrammetric applications.  Straight lines in object space can be utilized to perform 

aerial triangulation.  Irregular linear features (natural lines) in object space can be utilized 

to perform single photo resection and automatic relative orientation. 

 

When working with primitives, it is important to develop appropriate representations 

in image and object space.  These representations must accommodate for the perspective 

projection relating the two spaces.  There are various options for representing linear 

features in the above applications.  These options have been explored, and an optimal 

representation has been chosen.  

 

An aerial triangulation technique that utilizes points and straight lines for frame and 

linear array scanners has been implemented.  For this task, the MSAT (Multi Sensor 

Aerial Triangulation) software, developed at the Ohio State University, has been 

extended to handle straight lines.  The MSAT software accommodates for frame and 

linear array scanners. 

 

In this research, natural lines were utilized to perform single photo resection and 

automatic relative orientation.  In single photo resection, the problem is approached with 

no knowledge of the correspondence of natural lines between image space and object 

space.  In automatic relative orientation, the problem is approached without knowledge of 

conjugate linear features in the overlap of the stereopair.  The matching problem and the 

appropriate parameters are determined by use of the modified generalized Hough 

transform.  These techniques were tested using simulated and real data sets for frame 

imagery. 
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1. INTRODUCTION 
 

With the trend towards automatic extraction and recognition of features from digital 

imagery, it is becoming advantageous to utilize linear features in photogrammetric 

applications.  Linear features can be used to increase redundancy and improve the 

geometric strength of photogrammetric adjustments. 

 

The perspective relationship between image and object space for distinct points is 

established through the collinearity equations.  The collinearity equations have been 

extended to accommodate different types of exposure stations: frame cameras, push-

broom, three-line and panoramic linear array scanners.  These equations are presented 

and discussed in Chapter 2.   

 

The implementation of linear feature constraints in photogrammetric applications is 

dependent on the image and object space representations of the linear features.  This 

paper discusses several approaches for representing both straight and natural lines.  

Chapter 3 discusses these approaches and justifies the optimal representation for this 

research. 

 

An algorithm has been developed that utilizes linear features in single photo resection.  

This algorithm solves for the exterior orientation parameters (EOP’s) associated with an 

image, and also accomplishes the matching of corresponding linear features in image and 

object space.  An algorithm has been developed which uses linear features in automatic 

relative orientation.  In its implementation, the correspondence of conjugate linear 

features in the overlapping images is determined.  These matching problems are solved 

by the applying the modified generalized Hough transform, discussed in Chapter 4.    

 

Chapter 5 presents the mathematical model adopted to include straight lines into aerial 

triangulation algorithms.  The mathematical models used to accommodate for natural 

lines in single photo resection and automatic relative orientation are also presented.  The 
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experiments and their results are presented in Chapter 6.  The analysis of the results and 

the motivation for future research are discussed in Conclusions. 

 

2. PERSPECTIVE TRANSFORMATION MODEL FOR POINT 

FEATURES 

 

The collinearity condition is used to establish the relation between image and object 

space points.  The collinearity model is first presented for the case of frame imagery.  

This model is then extended for linear array scanners, namely three-line, push-broom and 

panoramic.  As a result, general collinearity equations have been developed to establish 

the relationship between image and object space points frame and linear array scanners. 

 

2.1. COLLINEARITY EQUATION FOR FRAME IMAGERY 

 
To reconstruct the position and shape of objects from imagery, the geometry at the 

time of exposure must be known.  The geometry of frame imagery can be regarded with 

sufficient accuracy as a perspective or central projection, where the optical center of the 

camera is the perspective center (Habib, A., Beshah, B., 1997).  The relationship between 

image and object coordinate system is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1:   Relationship between the image coordinate system (xi,yi,zi) and the 

object coordinate system (XG,YG,ZG) for frame imagery 

 

A

a

xi

yizi

XG

YG

ZG

XO

ZO

YO

XA

YA

ZA

(xa
, ya)

R( , , )ω φ κ

(Perspective Center)

c

(xp,yp)



 10

The collinearity condition states that the vector from the perspective center to a 

distinct point on the image is a scaled version of the vector from the perspective center to 

the corresponding object point.  The perspective center, PC, and a point on the focal 

plane, a, can be represented with respect to the image coordinate system according to 

Equation (1). 
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The vector, v, from the perspective center to a point on the focal plane can be 

expressed with respect to the image coordinate system as follows: 
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The vector, V, from the perspective center to the object point, with respect to the 

ground coordinate system can be expressed by: 
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(3) 

The image coordinate system is related to the ground coordinate system by a three-

dimensional rotation matrix R, which contains the rotations ω,ϕ and κ necessary to align 

the two coordinate systems.  This rotation matrix relates the vectors v and V.  The 

collinearity model for each point can be written as: 
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(4) 

By substituting the focal length c from the third row into the first two rows of the 

collinearity model, one can rewrite the collinearity equations as: 
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(5) 

AX , AY , AZ : object coordinates of point A 

Px , Py , c : calibrated principal point position and focal length of the camera 

331211 ..., rrr :   elements of the rotation matrix R  

0X , 0Y , 0Z :   object coordinates of the perspective center 

 

2.2. COLLINEARITY EQUATION FOR LINEAR ARRAY SCANNERS 

 
Digital imagery can be acquired through digital cameras (Charged Coupled Device 

cameras – CCD cameras).  These sensors quantize (gray level assignment) and sample 

(pixel size assignment) the electromagnetic energy incident on the sensor.  

 

To attain the same resolution as frame photography, 20K × 20K staring array sensors 

would be necessary.  The array size of digital sensors that are commercially available at 

this time allow for images with a size of 4K x 4K, which is not commensurate with the 

aforementioned resolution.  To circumvent this problem, linear array scanners simulate 

the staring sensor array by a one-dimensional array of sensors in the focal plane and 

incremental integration of the object space. 
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Depending on the number of 1D-arrays, the scanning direction and the relation of the 

sensor with the flight direction, one differentiates between three-line, push-broom and 

panoramic linear array scanners.  

 

Push-broom scanners have a one-dimensional array of sensors in the image plane 

perpendicular to the flight direction.  Full coverage of a scene is achieved through the 

movement of the camera platform along the flight direction (Figure 2).  The scene is a 

combination of images where each image has its own perspective center and 

consequently its own EOP’s. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:   Scene of push-broom scanner 

 

The relationship between image and object coordinate systems for push-broom 

scanners is shown in Figure 3. 
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Figure 3: Relationship between image coordinate system (xi,yi,zi) and object 

coordinate system (XG,YG,ZG) for push-broom scanners (flight 

direction parallel to yi). 

 

Push-broom scanners can only provide multiple coverage of the object space across 

the track through overlap of successive flight strips.  This entails a time lapse between 

images used to form a stereopair, which can be very long in the case of satellite images.  

To circumvent this problem, three-line scanners were introduced.  Three-line scanners 

provide triple coverage along the track within a few seconds, depending on sensor 

configuration and platform speed.   

 

Three-line scanners have three 1-D sensor arrays in the image plane perpendicular to 

the flight direction.  The sensor arrays capture the object space in forward, downward and 

backward locations respectively, resulting in three scenes (see Figure 4).  Each image has 

its own associated exterior orientation parameters.  Again, a scene is composed of a 

combination of images. 
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Figure 4:  Exposure geometry for three-line scanners 

 

 Panoramic linear array scanners have one sensor line in the image plane that is 

swivel-mounted on a telescope.  The sensor array line is parallel to the flight direction 

and rotates about the perspective center with an angle “αt” (Figure 5).  The swing angle 

“αt” of the 1-D sensor array, the column coordinates of the scene and the EOP’s of each 

image are time dependent.  A scene is a combination of images that are captured parallel 

to the flight direction (Figure 6) 

 

    

 

 

 

 

 

 

 

 

Figure 5:  Scene capture with panoramic linear array scanners 
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Figure 6: Panoramic linear array scanner scene 

 

 

For panoramic linear array scanners, one can define the image coordinate system as 

being oriented in such a way that the x-axis is parallel to the flight direction.  The swing 

angle is applied to the y-z plane and is time dependent (see Figure 7).  We refer to this 

rotated image coordinate system as the telescope coordinate system. The relationship 

between the image and the object coordinate system is characterized by a three 

dimensional rotation (ω,ϕ,κ) and is illustrated in Figure 8.  

 

 

 

 

 

   

 

 

 

Figure 7: Relation between image and telescope coordinates for panoramic 

linear array scanners  
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Figure 8:  Relationship between image coordinate system (xi,yi,zi) and object 

coordinate system (XG,YG,ZG) for panoramic linear array scanners 

 

2.3. THE GENERALIZED COLLINEARITY MODEL 

 

The objective now is to modify the collinearity model used for frame imagery 

(Equation (4)) in such a way that it is also valid for push-broom, three-line and panoramic 

linear array scanners.  The most general scenario for linear array scanners is that of 

panoramic linear array scanners.   Collinearity models for the other sensors of interest can 

easily be derived from this model.   

 

For linear array scanner imagery, the vector from the perspective center “ PC(t)”  to an 

image point “ a”  is time dependent. To better describe this vector, we can include 

information about image motion compensation1 (see Equation (6)).  
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An image point “ a”  in the image coordinate system can be represented as: 

                                                           
1 Image motion compensation is often utilized at exposure stations to avoid the image blur and distorted 
footprints associated with a moving platform. 
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The vector from the perspective center to the object point in the ground coordinate 

system is time dependent (superscript t): 
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(8) 

In addition to the rotation matrix R, containing the time dependent angles ωt, φt and κt, 

a rotation matrix for the swing angle “ αt”  in panoramic linear array scanners must be 

incorporated.  Rα establishes the rotational relationship between the camera and telescope 

coordinate system:  


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(9) 

The general collinearity model for push-broom, three-line and panoramic linear array 

scanners is now established as: 

                                                                                                                                      (10) 

















−
−
−

=
















−
−

−−

t
A

t
A

t
A

ttt
T

t
T

p
t
a

p
t
a

ZZ

YY

XX

RR

c

yy

xtimcx

0

0

0

),,()(

)(

κφωαλ

                                                                                                                                   

 

The collinearity equations for frame imagery (Equation (5)) are now modified to 

accommodate for the aforementioned sensors: 
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(11) 

t
ax  , t

ay : image coordinate measurement of point a at time t 

AX , AY , AZ : object coordinates of point A 

Px , Py , c : calibrated principal point position and principal distance of the camera 

ttt rrr 331211 ..., : time dependent elements of the combined rotation matrices 

),,()( ttt
T

t
T RR κφωα   

)(timc : image motion compensation at time t 

tX 0 , tY0 , tZ0 : time dependent object coordinates of the perspective center 

 

A scene of linear array scanner imagery is composed of a combination of images, each 

having a set of EOP’s as unknown parameters.  Therefore, each row of push-broom and 

three-line scanner imagery and each column of panoramic linear array scanner imagery 

has its own EOP’s.  This results in a large number of correlated unknown parameters.  

The objective is to reduce the number of involved parameters to avoid singularities in the 

solution process. 

 

Reducing the number of unknown EOP’s can be achieved through modeling the 

system trajectory by polynomials or by using the approach of orientation images.   

Modeling the system trajectory by polynomials determines the change of the EOP’s with 



 19

time (see Figure 9).  The order of the polynomial depends on the smoothness of the 

trajectory. 

   

 

 

 

 

 

 

 

Figure 9:  Modeling system trajectory by a polynomial 

 

The approach of reducing the number of EOP’ s using polynomial modeling of the 

system trajectory has the following disadvantages: 

 

• The flight trajectory may be too rough to be represented by a polynomial, 

• It is difficult to incorporate GPS/INS observations. 

 

A better approach to reduce the number of EOP’ s is by the use of orientation images. 

Orientation images are usually designated at equal intervals along the system’ s trajectory.  

The EOP’ s of an image captured at a certain time t are then an interpolation of the EOP’ s 

of two neighboring images, the so-called orientation images (see Figure 10).  
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Figure 10:   Orientation images and their EOP’s 

 

One example of utilizing orientation images is by linear interpolation (Equation (13)).  

The appropriate interpolation technique depends on the characteristics of the trajectory. 
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In summary, the scene to image coordinate transformation is dependent on the type of 

sensor used.  The panoramic model is the most general case among the sensors 

mentioned.  The models for frame imagery, three-line and push-broom scanners are 

derived from this model.  In the implementation of this general model, push-broom 

scanners and three-line scanners have a swing angle of zero degrees, many orientation 

images in a scene, and time dependency in the scene coordinates.  In the case of frame 
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cameras, the image coordinates are not time dependent, the swing angle is zero, and only 

one orientation image constitutes a scene.   

  

3. LINEAR FEATURES 

 

The implementation of linear feature constraints in photogrammetric applications is 

dependent on the image and object space representations of the linear features.  This 

chapter discusses several approaches for representation and justifies the optimal 

representation for this research. 

 

3.1. LINEAR FEATURES VERSUS DISTINCT POINTS IN 

PHOTOGRAMMETRY 

 
Most photogrammetric applications are based on the use of distinct points. These 

points are often obtained through measurements in an analog or digital environment.  

Recently, more attention has been drawn to linear features.  There are several motivations 

for the utilization of linear features in photogrammetry:  

• Points are not as useful as linear features when it comes to higher level tasks such as 

object recognition. 

• Automation of the map making process is one of the major tasks in digital 

photogrammetry and cartography.  It is easier to automatically extract linear features 

from the imagery rather than distinct points (Kubik, 1991). 

• Images of a man made environment are rich with linear features.  

 

The linear features of interest to this research include straight lines and natural lines.  

The term natural lines refers to free form lines.  For both kinds of linear features, two 

issues have to be addressed to successfully include them into existing photogrammetric 

applications: 

  

1.  The representation of linear features in both image and object space, 
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2. The formulation of the mathematical relationship between image and object space 

linear features.  

 

There has been a substantial body of research dealing with geometric modeling and 

perspective transformation of linear features in imagery (Habib, 1997; Mulawa and 

Mikahil, 1988; Tommaselli and Tozzi, 1996; Tommaselli and Lugnani, 1988, 

Tommaselli and Tozzi, 1992; Ayache and Faugeras, 1989; Mikhail, 1993; Wilkin, 1992; 

Kubik 1991).  

 

The next section deals with the first issue by introducing different options of 

mathematical representations of straight and natural lines. The second issue will be 

discussed in Chapter 5 by developing the specific models for including straight lines in 

aerial triangulation, and natural lines in single photo resection and automatic relative 

orientation.  These models are developed for frame cameras as well as linear array 

scanners. 

 

3.2. MATHEMATICAL REPRESENTATION OF LINEAR FEATURES 

 
The representation of linear features in both image and object space is closely related 

to the perspective projection.  For this reason, we have to discuss the representation issue 

before attempting to utilize the image to object space perspective transformation. 

 

3.2.1. Representation of straight lines  

 
One way of representing straight 3-D lines is by using two points along the line (six-

parameter representation), Figure 11.  This representation is not unique, since it can be 

defined by any two points along the line.    
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Figure 11:   Six parameter representation of a line 

 

Mulawa and Mikhail, (1988) chose to represent the 3-D line by a point along the line 

and its direction vector (Figure 12).  This representation is not unique.  Two constraints 

were applied: the norm of the direction vector was chosen as unity and the point along the 

line was chosen as the closest point to the origin.  They developed the perspective 

relationship between image and object space using this representation.  Tommaselli and 

Tozzi (1996) also represented the 3-D line using a point and a direction vector.  They 

derived two correspondence equations for space resection, using the linear features as 

ground control.  

   

 

 

 

 

 

 

 

 

Figure 12:   Point and direction vector representation of a line 
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An optimal, unique representation of 3-D lines would require four parameters.  

Optimal representations are thought to be more suitable than other representations since 

they have no redundancy (i.e. they are unique for each line – Roberts, 1988).  Ayache and 

Faugeras, 1989 suggested the representation of 3-D straight lines as the intersection of 

two planes, one plane parallel to the x-axis and the other parallel to the y-axis.  Each of 

these two planes is defined by two parameters (Equations (14) and (15)). 

X = a Z + p (Plane parallel to the y-axis) (14) 

Y = b Z + q   (Plane parallel to the x-axis)  (15) 

Using these two constraints, a line can be represented with four parameters rather than 

with six.  Consequently, the 3-D line is defined by the four-dimensional vector (a, b, p, 

and q).  It can be proven that these parameters have the following characteristics:  

• the direction of the line is given by the vector (a, b, 1),  

• the point of intersection of the line with the XY-plane has the coordinates (p, q, 0) 

(Figure 13). 

 

 

 

 

 

 

 

 

 

Figure 13:   Representation of 3-D lines as the intersection of two planes parallel 

to x- and y-axes 

 

Since the direction vector of the line is (a, b, 1), this form can not be used to represent 

lines that are perpendicular to the z-axis (i.e. parallel to the xy-plane).  To avoid this 

singularity, one can represent the 3-D line as the intersection of two planes, one parallel 

to the z-axis and the other parallel to the y-axis.  Once again, this representation can not 

represent lines that are orthogonal to the x-axis.  For these lines, one can use two planes 
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that are parallel to the x- and z-axes, respectively.  Using this representation, Habib 

(1997) introduced the mathematical model for the back and forth perspective 

transformation of linear features between image and object space. 

  

The above mentioned representations have the following problems:  

• Optimal representations always have singularities (they can not represent all 3-D lines 

in space). 

• They represent infinite lines rather than line segments. 

• The covariance matrix resulting from the bundle adjustment does not characterize the 

uncertainty of the actual line segment under consideration.  Rather, it indicates the 

uncertainty associated with the infinite line.  To explain, consider the following: the 

above mentioned representations required one point along the line (e.g. the 

intersection point with the xy-plane or the closest point to the origin).  Let us assume 

that we are using the point (p, q, 0).  One can see that a segment with a small 

uncertainty that is far from the xy-plane will have a covariance matrix with a larger 

trace than a segment with greater uncertainty but closer to the xy-plane.  Thus, the 

uncertainty of the derived parameters will propagate according to the distance of the 

line segment from the xy-plane, yielding misleading dispersion matrices (Figure 14). 

 

 

 

 

 

 

 

 

 

 

Figure 14:   Relationship between the uncertainty of the line segment and that of the 

representation 

For these reasons, a more appropriate representation is desired.  In this research, 

straight lines are represented in the object space by using two points along the line.  In 
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this way, the line segment is well localized in the object space.  This representation is 

attractive since such coordinates can be easily introduced or obtained from a GIS 

database.  In the image space, two points along the line will be used to define the 2-D line 

in one image while the same line is represented using polar parameters in the overlapping 

images.  The polar parameters are defined by (ρ,θ), where ρ is the normal distance from 

the origin to the line, and θ is the angle of the normal vector to the line.   

 

3.2.2. Representation of natural lines 

 

In object space, a natural line can be represented by an analytical function or by a 

sequence of 3-D points along the linear feature.  Representing a natural line by an 

analytical function minimizes the amount of information required to describe the line.  

Only the parameters of the function itself have to be transferred and stored during the 

photogrammetric application.  However, a natural line in object space can not be 

faithfully represented by an analytical function that describes its slightest detail without 

any generalization.   

 

In this research, we represent natural lines as a sequence of 3D-coordinates of points 

along the object space line.  The natural lines in the image space are given as a sequence 

of 2D-coordinates corresponding to the points along the line.  A sequence of 3D-object 

coordinates corresponding to a linear feature can be captured by a terrestrial mobile 

mapping system (e.g. GPSVan) or can be obtained from an existing database.  The 

advantage of this representation is that the original data is not modified by a functional 

description or by interaction of the user. 

 

In this research, single photo resection and automatic relative orientation are 

performed using natural lines.  The adopted algorithms accommodate for the following: 

• The solution of the matching problem between: 

- corresponding linear features in image and object space (for single photo 

resection), 
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- conjugate linear features in overlapping images (for automatic relative 

orientation). 

• Performing the specific photogrammetric task: 

- determination of the exterior orientation parameters (EOP’ s) (for single photo 

resection), 

- determination of the relative orientation parameters (ROP’ s) of a given stereopair 

(for automatic relative orientation). 

   

The matching problems were solved through the use of the modified generalized 

Hough transform.  This technique is discussed in the next chapter. 

 

4. HOUGH TRANSFORM TECHNIQUES 

 
4.1. THE HOUGH TRANSFORM 

 

The Hough Transform algorithm is a curve detection and segmentation technique. 

According to Ballard and Brown (1982), this technique is used if the location of a curve 

is not known but its shape is known as a parametric curve.  

 

Usually, after automatic point extraction in digital imagery, one has a list of points in 

image space which are assumed to represent a certain analytical function.  The Hough 

transform searches for the extracted points that satisfy this known function.  The 

parameters of this function are the result of the Hough transform algorithm. 

 

To explain the mechanics of the Hough transform, let us consider the case of straight 

lines.  Assume we are giving a cluster of points and want to find the points that belong to 

straight lines.  The parametric representation of a straight line is: 

                                                   qmxy +=  
(16) 

In the application of the Hough transform, the dependent variables are x and y, while 

m and q are the independent parameters.  Each point along a straight line in x-y space 

satisfies Equation (16), where m and q are constants for any particular line.  Each point in  
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x-y space is represented by a line in m-q space.  An intersection of lines in m-q space 

indicates that the points in x-y space contributing to this intersection belong to a single 

straight line in x-y space.  A similar technique can be applied to other shapes such as 

circles. 

 

As demonstrated above, the parametric representation of the feature needs to be 

known.  This means that we need to know the analytical function that approximates the 

linear feature as well as possible.  Since we do not want to generalize a natural line by an 

analytical function, the Hough transform can be altered to deal with its representation as a 

list of points.  This leads to the introduction of the generalized Hough transform. 

 

4.2. THE GENERALIZED HOUGH TRANSFORM 

 

The generalized Hough transform can be used to match a shape in an image or a 

database model (the template) with instances of this shape in another image without the 

need for the description of the shape by an analytical function (Ballard and Brown (1982) 

and Zahran (1997)).  

 

Assume to have a shape described by a list of points.  The objective is to compare a 

template shape with a number of candidate shapes and to determine conjugate shapes.  

The two matching shapes can differ in scale and orientation. 

 

 

 

 

           

 

                         

                          Template                                              Candidate 

Figure 15:   Matching natural lines using generalized Hough transform 
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The algorithm is outlined as follows: 

• For each point of the template shape, the vector (∆x, ∆y) to an arbitrary reference 

point is computed (see Figure 15).  The reference point can be chosen as the centroid 

of the shape. 

• An R-table is created for the template shape.  The R-table lists the gradient (φ) at 

points along the boundary, together with (∆x, ∆y) offsets between these points and 

the arbitrary reference point (Figure 16).  

(xr, yr)

∆yi

∆xi

x

y

φi

 

Figure 16:   Geometry used to form the R-Table 

 

• A 2-D accumulator array is formed for possible reference points, A (xrmin : xrmax, yrmin 

: yrmax).  The elements of this array should be initialized to zero.  If the candidate 

shape has a different scale and orientation, a 4D-accumulator array which also 

accommodates for the scale factor s and the orientation θ can be applied.  In this case, 

we must have initial approximations for the scale factor and the rotation. 

• For each boundary point on the candidate shape, the gradient (φ) is computed.  The 

offsets ∆x, ∆y that correspond to this gradient are acquired from the R-table.  The 

reference point associated with each boundary point can be computed according 

Equation (17).  

      xr  = x  +  ∆x (φ) 

      yr = y  + ∆y (φ) 

(17) 
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To accommodate for the scale and orientation difference, the reference point can be 

computed according Equation (18). 
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(18) 

 

• The accumulator array element corresponding to the reference point (xr,yr) is 

incremented by one. 

• The possible center location, as well as the associated scale factor and rotation, is 

designated by a peak in the accumulator array. 

• Conjugate points can be determined by tracking the points that have contributed to 

the maximum peak in the accumulator array.  

 

4.3. THE MODIFIED GENERALIZED HOUGH TRANSFORM 

 

The modified generalized Hough transform is used to incorporate mathematical 

models into the matching process.  In general, the matching process between data sets can 

be described as follows: 

1. A mathematical model is established relating the involved data sets (see Figure 17).  

The relation between the data sets can be described as a function of its parameters: 

F(x1, x2,… xn). 

2. An accumulator array is formed for the parameters.  The number of parameters to be 

simultaneously solved will designate the dimension of the accumulator array. 

3. Approximations are made for parameters which are not yet to be determined.  The 

cell size of the accumulator array depends on the quality of the initial approximations; 

poor approximations will require larger cell sizes. 

4. Every possible match between the data sets is evaluated, incrementing the 

accumulator array at the location of each solution. 

5. The maximum peak in the accumulator array will indicate the location of the desired 

solution. 
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6. After each parameter is determined, the approximations are updated. 

7. For the next iteration, decrease the cell size of the accumulator array, and repeat steps 

2-6. 

 

 

 

 

 

 

 

 

 

 

Figure 17:   Mathematical model relating data sets. 

 

In the applications of this research, the generalized Hough transform is modified to 

incorporate well-established mathematical models.  For example, in single photo 

resection, the relationship between matching entities in image and object space is 

established by the collinearity condition.  In automatic relative orientation, the 

coplanarity condition is utilized for matching conjugate features.  The implementation of 

these techniques is explained in detail in Chapter 5.   

 

5. LINEAR FEATURES IN PHOTOGRAMMETRIC 

APPLICATIONS 

 

In this research, photogrammetric applications have been developed that utilize 

straight lines as well as natural lines.  Straight lines as well as points are utilized in an 

aerial triangulation technique.  Natural lines have been utilized in single photo resection 

and automatic relative orientation algorithms.  These photogrammetric applications have 

been developed for frame imagery as well as linear array scanners. 

 
  Data Set 1 

 
  Data Set 2 

 Mathematical 
       Model 
   F(x1,x2,..xn) 
 



 32

 

As an added benefit, these techniques also solve the involved matching problems.  In 

the single photo resection algorithm, the matching of linear features between image and 

object space is automatically accomplished.  Also, the matching of conjugate features 

between the images of a stereopair is achieved as a result of the automatic relative 

orientation algorithm.      

    

5.1. STRAIGHT LINES IN AERIAL TRIANGULATION 

 
5.1.1. Frame imagery 

 
Assume that we are given straight lines that appear in a group of overlapping images, 

together with some tie and control points.  To define a 2-D line in the image space, we 

will measure two points along the line in one of the images.  In the remaining images, the 

polar representation (ρi, θi) will be used to represent this line (see Figure 18).  The 

objective is to combine these measurements in a unified bundle adjustment to solve for 

the EOP’ s of the imagery, the ground coordinates of the tie points and the ground 

coordinates of the points defining the object lines.  

 

 

 

 

 

 

 

 

Figure 18:   Representation of the image line in overlapping images 

 
In the first image, the relationship between the image coordinates and the object 

coordinates is given by the collinearity condition.  For the remaining images, a constraint 

is introduced that ensures that the two points defining the line in object space belong to 

the line represented by (ρi, θi), when transformed into the ith image space.  We define the 
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object line plane as the plane through the perspective center and the two points defining 

the line in object space (Figure 19).  Also, we can define the image line plane as the plane 

that contains the perspective center and the image line (Figure 20).  It should be noted 

that the image and object line planes (from a single image) that correspond to the same 

line coincide with each other. 

 

 

 

 

 

 

 

 

 

Figure 19:   Object line plane 

 

 

 

 

 

 

 

 

 

Figure 20:   Image line plane 

 

The image line plane associated with image i contains the two vectors (ρi / cos θi, 0, -

c) and (0, ρi / sin θ � , -c).  These two vectors connect the perspective center with the 

intersection points of the image line with the x and y axes of the image coordinate 

system, respectively.  The normal n to the image line plane can be defined as the cross 

product of these two vectors, (Equation (19).)  The last term in Equation (19) can be 
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considered as a scale factor, and therefore can be ignored when defining the normal to the 

image line plane. This vector is defined relative to the image coordinate system. 
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(19) 

 

The object line plane includes the vector (X1 – Xoi, Y1 – Yoi, Z1 – Zoi) from the 

perspective center to the first object point defining the line.  This vector is defined 

relative to the ground coordinate system.  Thus, it can be referenced to the image 

coordinate system through multiplication with the transpose2 of the 3-D rotation matrix 

associated with that image.  The dot product of this vector with the normal vector to the 

image line plane equals zero, Equation (20).  This constraint is embedded in the bundle 

adjustment to ensure the coplanarity of perspective center, the image line and object 

point.  Similarly, another constraint is written for the second object point along the line. 
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One can derive Equation (20) in an alternative way as follows: The equation of the 

image line in the ith image is: 

iii yx ρθθ =+ sincos  (21) 

 

Equation (21) can be written as the dot product of two vectors, namely: 
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2 The rotation matrix is orthogonal 
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The image point that corresponds to the object point (X1, Y1, Z1) in the ith image can be 

found through the collinearity equations, Equation (23). 
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By substituting Equation (23) into Equation (22) and eliminating the scale factor, one 

gets the constraint in Equation (20).  This means that the object point along the linear 

feature, when transformed into the image space, must satisfy the equation that describes 

the feature shape in that image.  A similar technique can be used to develop constraints 

for higher order linear features. 

 

In summary, one can  describe the suggested algorithm as follows: 

 

 

 

 

 

 

 

 

 

Figure 21:   Geometry of aerial triangulation algorithm 

 
1. In one image, two points are measured along the straight line.  For each of these 

image points, the corresponding object point will lie on the straight line defined by 

the perspective center and the measured image point (using the collinearity 

equations).  These points need not be visible or identifiable in the remaining images 

(see Figure 21). 

2. In subsequent images, one defines the line in terms of polar coordinates.  The plane 

through the perspective center and the image line (the image line plane) is 
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established, using (ρi,θi) and the position of the perspective center.  We define the 

normal, ni to each image line plane.  

3. A vector is defined from the perspective center of image i to one of the object points 

defining the line.   

4. This vector is then rotated into the ith image, and its dot product with ni is constrained 

to be zero.  One should note that the vector and the planes should not be coplanar. 

 

In Equation (20), the unknowns are the ground coordinates defining the object line and 

the EOP’ s of the involved images.  The image line parameters (ρi, θi) are the observed 

quantities.  In the case of a stereopair, an additional line will add six unknowns (the 

ground coordinates of the two points along the line).  This line will contribute six 

equations: four collinearity equations for the two points measured in the first image, and 

two constraints in the form of Equation (20) in the second image.  Thus, straight lines, as 

opposed to tie points, do not provide any redundancy towards the estimation of the 

relative orientation parameters.   Therefore, it is not advantageous to use straight lines for 

the relative orientation of a stereopair.  

 

The same constraint, Equation (20), can be used as the mathematical model for 

introducing linear features as control.  In this case, the ground coordinates defining the 

object line are available and may be treated as observed quantities or as constants.  Once 

again, these control points along the object lines need not be visible or identifiable in the 

overlapping images.  The polar representation will be used to define the linear feature in 

the overlapping images.  Two or more points in the object space will define a control line.  

Each point will contribute one equation.  Thus, for single photo resection a minimum of 

three control lines is required to solve for the EOP’ s.  Control lines can be easily obtained 

from an existing GIS database or from data collected by a terrestrial mobile mapping 

system, such as the GPSVan developed by The Ohio State University (The Center for 

Mapping, 1991).  Consequently, control linear features will be cheaper and easier to 

obtain than distinct control points. 
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5.1.2. Linear array scanner imagery 

 
Linear array scanners have one or more 1-D arrays of CCD sensors in the image plane. 

The electromagnetic energy incident upon these sensors at a given time will constitute an 

image.  Movement of the platform and/or rotation of the lens configuration will enable 

successive images of the ground.  A scene is defined as a sequence of linear array scanner 

images. 

 

Because of the nature of the linear array scanners, straight lines in object space may 

not appear as straight lines in the image space. The individual images may be slightly 

shifted against each other perpendicular to the flight direction.  This is due to slight 

changes in the system trajectory.  

 

In the object space, straight lines are chosen to be represented by two points along the 

line.  The corresponding line in the image space will be represented as a sequence of 

points.  The points along the object line are used to define the line during the bundle 

adjustment. 

 

 

 

 

 

 

 

 

 

 

 

Figure 22:   Object space geometry and straight lines in linear array scanners 

 
As shown in Figure 22, two points in one scene constitute a line.  If the ground 

coordinates of these two points are known, it is considered a control line.  If only the 
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image coordinates of the two points are known, this line is called a tie line.  The object 

point, the corresponding image point and the perspective center of the exposure station lie 

on a single light ray.  Therefore, the generalized collinearity equations (Equation (11)) 

can be applied to each of the two points defining the line.  The objective is to increase the 

accuracy of the bundle adjustment by constraining a straight line in object space to be a 

straight line in image space. 

 

The vector from the perspective center to any image point along the line can be 

defined with respect to the ground coordinate system as: 
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The multiplication with the rotation matrix R, transforms the vector from the image 

coordinate system into the ground coordinate system. 

In another scene, the vector from the perspective center to the first object point along 

the line is defined as: 
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(25) 

The vector from the perspective center to the second object point along the line is defined 

as: 
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(26) 

 Both vectors are given with respect to the ground coordinate system.  

 

As illustrated in Figure 23, the vectors from the perspective center to each scene point 

along the line should lie on the plane that is defined by the perspective center and the two 

object points defining the straight line. This condition could be formulated as: 
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Figure 23:   Object plane for linear array scanner imagery 

 
This constraint for straight lines in aerial triangulation is a function of the parameters 

shown in Equation (28). 
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The unknown parameters are the EOP’ s of the images and the ground coordinates of 

the two points defining the line.  The constraint in Equation (27) can be applied to all 

points measured along the line in each scene.  As a result, the number of constraints will 

equal the number of measured points along the line.  Again, the ground coordinates of the 

supplemental points along the straight line are not determined during the bundle 

adjustment.  They only contribute to increase the geometric strength of the adjustment.  

 

The constraint Equation (27) for straight lines in linear array scanner imagery was 

incorporated into an existing bundle adjustment at The Ohio State University (OSU) to 

allow for the use of points as well as straight lines in aerial triangulation.  This constraint 

can be applied to frame imagery instead of using the constraint suggested in Chapter 

5.1.1. 
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5.2. NATURAL LINES IN SINGLE PHOTO RESECTION  

 
In digital imagery, edges are represented as discontinuities in gray value.  Such edges 

usually correspond to boundaries in the object space, and therefore often distinguish 

between different objects.  The application of an edge detection operator to a digital 

image will result in an image of edge pixels.  This facilitates the representation of 

boundary lines as a sequence of pixels.  Such lines cannot be properly described by an 

analytical function.  For this reason, we chose to represent natural lines as an aggregation 

of points. 

 

The objective of single photo resection is to determine the six EOP’ s 

( κφω ,,,,, 000 ZYX ) associated with an image.  In the traditional approach, measurements 

of distinct points are applied to the collinearity equations (Equation (5)).  Since each 

measured point utilizes two collinearity equations, at least three points are necessary to 

determine the six EOP’ s of one image.  The introduction of more than three points 

increases the redundancy and strengthens the solution of the single photo resection. 

 

Since extracted natural lines actually contain a large number of points, we would like 

to incorporate them into single photo resection.  In this research, we have lists of points 

along natural lines in both image and object space.  The image space list contains a 

sequence of 2D-coordinates, while the object space list contains a list of natural lines and 

the 3D-coordinates of the points associated with them.  This information can be acquired 

from a GIS database, the GPSVan, or as a result of digitization of existing maps or 

manuscripts.  The correspondence between image and object space lines is not known.   

This matching problem is solved through a modified version of the generalized Hough 

transform. 

 

The relationship between conjugate image and object points along a line is given 

through the collinearity model, as illustrated in Figure 24. 
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Figure 24:   Single photo resection with natural lines 

 
The collinearity model can be applied for all image points: 
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(29) 

ix , iy , zI: image coordinates of ith
  point 

IX , IY , IZ : object coordinates of ith point 

We will examine two approaches for utilizing the modified generalized Hough 

transform in single photo resection.   For both approaches, assume we are given the 

object coordinates of points along linear features as well as image coordinates 

corresponding to these points.  It is important to emphasize that in these scenarios there is 

no knowledge of the correspondence between image and object points. 

 

Option 1- Simultaneously solving for the six EOP parameters: 
 

In this technique, an attempted match between three points in the image space with 

three points in the object space is performed.  These three points will allow for six 
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collinearity equations, which are necessary for simultaneously determining the six EOP’ s.  

Utilizing a modified version of the Hough transform, a six dimensional accumulator array 

corresponding to the six EOP’ s is incremented by one at the location of each solution.  

This is done for every possible combination of three image and object points.  Given n 

image points and m object points, the total number of attempted matches performed by 

this algorithm is: ( ) ( )!3

!
*

!3

!

−− m

m

n

n
. 

Option 2- Solving for two EOP at a time: 
 

In this technique, an attempted match between one point in the image space with one 

point in the object space is performed.  One point allows for two collinearity equations, 

allowing for the solution of two EOP’ s at a time.  Initial approximations of the remaining 

four parameters are required.  A two-dimensional accumulator array is created for each 

pair of parameters.  The cell size is chosen based on the quality of the initial 

approximations.  For each attempted match, the parameters are solved and the 

accumulator array is updated.  A peak in the accumulator array will indicate the 

parameter values to be used as approximations for the next iteration.  To refine the 

solution, the cell size of the accumulator array is decreased for each iteration3.  This is 

done for every combination of image and object points.  Given n image and m object 

points, the total number of attempted matches performed by this algorithm is: mn * .   

There is much less computational effort involved in the second technique.  Therefore, 

this technique will now be explained in detail.   

Reordering Equation (29) with respect to the ground coordinates and substituting the 

scale factor λ from the third row into the first two rows of the collinearity model yields 

Equation (30): 

                                                           
3 The manipulation of the cell size in the refinement of the solution is analogous to the utilization of image 
pyramids in matching techniques. 
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(30) 

 

As we are solving for two EOP’ s at a time, we will assume approximate values for the 

remaining parameters.  Each parameter solution is used to update the approximations.  A 

possible sequence could be for example, to solve for ( 00 ,YX ), ( 0Z ), ( φω , ) and (κ ) 

sequentially.  The parameter vectors would then be: 
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Using this sequence, the modified generalized Hough transform algorithm acts as 

follows: 

Sweep #1: 

• Establish the approximations of ( 0Z ), ( φω , ) and (κ ). 

• Determine the range and the cell size of the accumulator array for ( 00 ,YX ), 

depending on the accuracy of the approximations for the other four parameters. 

• Determine x1 for every point in the object space associated with every point in the 

image space (using Equation (30)). 

• Increment the corresponding element in the accumulator array. 

• Select the element with a maximum peak in the array: That particular cell has the 

most likely values of 0X  and 0Y . 

Sweep #2: 

• Repeat sweep #1 for ( 0Z ), ( φω , ) and (κ ), updating the approximations of the 

parameters. 
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Sweep #3: 

• Decrease the cell size of the accumulator arrays of ( 00 ,YX ), ( 0Z ), ( φω , ) and (κ ). 

• Repeat sweep #1 – 3 until the iteration converges and all EOP’ s are fixed. 

 

When using this technique, one can track the indices of the points that lead to a 

particular solution.  In this way, the points associated with a peak in the accumulator 

array correspond to the conjugate image and object points.  Therefore, the matching 

problem between the natural lines in image and object space is simultaneously solved  

 

5.3. NATURAL LINES IN AUTOMATIC RELATIVE ORIENTATION 

 
 

Relative orientation establishes the relative relationship between the two images of a 

stereopair in such a way that it is similar to the relative relationship between the two 

images at the moment of exposure.  The perspective centers associated with the images of 

a stereopair and a single point on the ground define a plane known as the epipolar plane 

(Figure 25).  Epipolar lines are defined by the intersection of the epipolar plane with the 

focal planes of the images.  The collinearity condition states that the perspective center, 

an image point and the corresponding object point lie on a straight line.  Therefore, the 

coplanarity constraint confines conjugate points in a stereopair to the epipolar plane.  The 

relative orientation parameters can be determined by using this constraint. 
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Figure 25:   Epipolar geometry of a stereopair 

 



 45

The vector, b between the two perspective centers of a stereopair, referred to as the 

image base, is defined with respect to the ground coordinate system: 
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(32) 

The vectors pl and pr from the perspective center to a conjugate point in the left and 

right images, respectively can be defined with respect to the ground coordinate system as 

follows: 
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(33) 

Conjugate light rays intersect in the object space and define an epipolar plane.  The 

coplanarity condition is utilized by observing that the normal vector to the epipolar plane 

is perpendicular to the image base vector when the stereopair is oriented properly.  This 

condition is defined as follows: 

0)( =•× bpp lr

v

vv

 
(34) 

Each pair of conjugate points contributes one coplanarity constraint equation 

according to Equation (34).  At least five conjugate light rays must intersect in object 

space to define a stereo model.  These points are selected at the von Gruber locations.  

During relative orientation we solve only five out of the twelve EOP’ s 

( llllllrrrrrr ZYXZYX κφωκφω ,,,,,,,,,,, 000000 ).  The remaining seven EOP’ s are later 

determined through absolute orientation which removes the datum deficiency for that 

particular stereo model. 

 

Depending on the choice of parameters to solve in relative orientation, one 

differentiates between: 

• dependent relative orientation:  rrrrr ZY κφω ,,,, 00  are unknowns 

llllllr ZYXX κφω ,,,,,, 0000  are fixed 
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• independent relative orientation:  rrrll κφωκφ ,,,,  are unknowns 

llllrrr ZYXZYX ω,,,,,, 000000  are fixed 

 

The algorithm is well suited for use with extracted image points associated with linear 

features.   In empirical relative orientation, the parameters are determined sequentially by 

eliminating the y-parallax at the von Gruber locations in a particular sequence.  This is 

due to the fact that some parameters are more sensitive to measurements at certain 

locations on the image (Figure 26).  In our algorithm, the coplanarity condition is applied 

to image points in a similar way, at one von Gruber location at a time, solving the relative 

orientation parameters according to this sequence.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26:   Position sensitivity of the unknown parameters during relative 

orientation 

 
In conventional relative orientation, the user must specify conjugate points in the 

overlapping images.  This is not necessary in automatic relative orientation, where the 

matching of conjugate points within a stereopair is established through the modified 

generalized Hough transform.   
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We will examine two approaches for performing automatic relative orientation that 

utilize the modified generalized Hough transform. 

 

Option 1- Simultaneously solving for the five relative orientation parameters: 

 

In this technique, an attempted match between five points in the left image with five 

points in the right image is performed.  Using five points will allow for the construction 

of five coplanarity equations, which are necessary for the simultaneous determination of 

the ROP’ s.  A five-dimensional accumulator array (corresponding to the ROP’ s) is 

incremented by one at the location of the solution.  This procedure is repeated for every 

possible combination of five left image and right image points.  Given n points in the left 

image and m points in the right image, the total number of attempted matches performed 

by this algorithm is: ( ) ( )!5

!
*

!5

!

−− m

m

n

n
.  The computational effort can be reduced by 

carefully constraining the candidate matching locations. 

 

 
Option 2- Solving for one relative orientation parameter at a time: 

 

In this technique, an attempted match between one point in the left image with one 

point in the right image is performed.  One point allows for one coplanarity equation, 

allowing for the solution of only one ROP at a time.  Initial approximations of the 

remaining five ROP’ s are required.  A one-dimensional accumulator array is utilized for 

each parameter. Every possible match of conjugate points is evaluated in the 

determination of each parameter.  The accumulator array is updated for each solution.  

The parameters are calculated in the same sequence as in empirical relative orientation.  

Each parameter solution is used to update the approximations.  To refine the solution, the 

cell size of the accumulator array is decreased after each iteration. Given n image and m 

object points, the total number of attempted matches performed by this algorithm is: 

mn * .  The implementation of the second option will now be discussed in detail. 
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The natural lines used in this task must be located in the vicinities of the six von 

Gruber points of a stereopair.  Natural lines are represented as a sequence of 2D-

coordinates of image points along the lines.  The modified generalized Hough transform 

algorithm determines conjugate points and consequently conjugate natural lines in the 

stereopair.  The steps for dependent relative orientation are given below.  The ROP’ s are 

determined with the sequence: rY0 , rZ 0 , rω , rφ , rκ . 

 

Sweep #1:  

• Establish the approximations of rrrrZ κφω ,,,0 . 

• Determine the range and the cell size of the accumulator array for ( rY0 ), depending 

on the accuracy of the approximations of the other parameters. 

• Solve 1AxY = , where A  is the design matrix according Equation (34).  This is done  

for every point at the proper von Gruber location in the left image associated with 

every point at the corresponding von Gruber location in the right image.  As a result, 

the relative orientation parameter is determined for every possible match. 

• For each evaluated match, the corresponding element in the accumulator array is 

incremented. 

• The element with the maximum peak in the accumulator array has the most likely 

value of rY0 . 

 

Sweep #2: 

• Repeat sweep #1 for rrrrZ κφω ,,,0  at their proper von Gruber locations in the two 

images, updating the approximations of the ROP’ s from the previous sweep. 

• To refine the solution of the parameters, the cell size of the accumulator array can be 

decreased after each iteration. 

  

By tracking the indices of the points that contribute to the peak, the matching problem 

of conjugate natural lines is simultaneously solved.   
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The above algorithms were tested using simulated and real data sets. The results are 

presented in the next chapter. 

 

6. EXPERIMENTS AND RESULTS 

 
This paper introduced algorithms to incorporate straight lines into aerial triangulation 

for frame and linear array scanner imagery.  In addition, algorithms for performing single 

photo resection and automatic relative orientation using natural lines were introduced.  

This chapter will now present the experiments and their results to demonstrate the 

feasibility of the proposed algorithms.  

 

 

6.1. AERIAL TRIANGULATION USING STRAIGHT LINES 

 
Existing C and C++ bundle adjustment programs written at the Ohio State University 

were modified to incorporate straight lines into aerial triangulation for frame and linear 

array scanner imageries.  Simulated and real data were used to test the unified bundle 

adjustment of points and straight lines, as proposed in Chapter 5.1.    

 

6.1.1. Expected singularities 

 

As outlined in Chapter 5.1, there are two options for including straight lines in aerial 

triangulation.  For the option discussed in Section 5.1.1, we define a vector from the 

perspective center of an image to a point on the straight line in that image.  The 

underlying principle is to establish the intersection of this vector with the image line 

planes of the remaining images.  If the straight line features are parallel to the flight 

direction, the image line plane and the vector will be coplanar and will not intersect at a 

point.  A solution will not be possible, as encountered in the following experiment. 
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6.1.2. Aerial triangulation with simulated data 

 

Figure 27 shows the configuration of image lines in a simulated data set.  Control as 

well as tie points were involved in this experiment.  It was found that there is a rank 

deficiency in the normal equation matrix, due to the fact that the lines ‘a’  and ‘d’  are 

parallel to the flight direction.  The elevation of the four points defining these two lines 

can not be determined, creating a rank deficiency of four.   

 

 

 

 

 

 

 

 

 

 

 

Figure 27:   Configuration of image lines using three images 

 
 

To avoid this problem, two images were added to the configuration, allowing for the 

necessary intersection (see Figure 28).   Repeating this experiment after adding the two 

images allowed for a solution.  The resulting RMS error between the estimated and the 

true ground coordinates is (0.023m, 0.028m, 0.050m) in the X, Y and Z directions 

respectively. 
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Figure 28:   Configuration of image lines using five images 

 

The aerial triangulation algorithm suggested in Chapter 5.1.2. was tested for frame, 

three-line and panoramic linear array scanner imagery.  An overview of the test data 

configurations is shown in Table 1. 

 Number           of 

images 

Number of 

tie lines 

Frame imagery 12 8 

Three-line scanners 6 2 

Panoramic linear array  

scanners 

4 7 

Table 1: Configuration for bundle adjustment with points and straight lines 

 

c
c

c

3Image2Image1Image

4Image

5Image

a

a a a

e

e

e

b
b

b

d
d

d

d

 



 52

For frame imagery, the test field in Figure 29 was used to form a block of twelve 

images.  Eight lines were used in the overlapping area.  Aerial triangulation was 

performed with and without the linear feature constraint.  The results are shown in Table 

2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 29:   Test field with equally spaced signalized targets 

 

Six images with two tie lines were used to test the algorithm for three-line scanners.  

Two scenes, each consisting of three images and 60% overlap were used in this 

experiment.  The configuration  is shown in Figure 30.  GPS information at the exposure 

stations was utilized in the adjustment.  Aerial triangulation was performed with and 

without the linear feature constraint.  The results are shown in Table 3. 

 

 

 

 

 

 

Figure 30:   Configuration of three-line scanner imagery with two tie lines 
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Line 2 Line 2 

Line 1 
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The configuration for panoramic linear array scanner imagery is shown in Figure 31.  

GPS information at the exposure stations was utilized in the adjustment. Aerial 

triangulation was performed with and without the linear feature constraint.  The results 

are shown in Table 3. 

 

 

 

 

 

 

 

 

 

Figure 31:   Layout of four panoramic linear array scanner images with seven tie 

lines 

 
The following processing settings were applied for all test data sets: 

• The threshold σ  for terminating the iteration process was set to 1.0E-7. 

• The correct coordinates of the tie points were disturbed by approximate values of 

100m (x, y-components) and 10 m (z-component) to verify their adjustment.  

 

The adjustments were performed with and without the straight-line constraint, using 

RMS values as a means of comparison: (Table 2 - Table 4). 

 

FRAME IMAGERY 

 

 

Without linear features 

 

With linear features 

Rms x   [m] 0.024 0.040 

Rms y  [m] 0.031 0.034 

Rms z   [m] 0.106 0.071 

Table 2: Rms-values of the bundle adjustment of frame imagery  

 

Image 2

Image 4Image 1

Image 3
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THREE-LINE SCANNERS 

 

 

Without linear features 

 

With linear features 

Rms x   [m] 2.639 1.688 

Rms y  [m] 1.292 0.825 

Rms z   [m] 0.550 0.559 

Table 3: Rms-values of the bundle adjustment of three-line scanners  

 

 

PANORAMIC LINEAR 

ARRAY SCANNERS 

 

 

Without linear features 

 

With linear features 

Rms x  [m] 0.522 0.376 

Rms y  [m] 0.797 0.300 

Rms z  [m] 0.935 0.553 

Table 4: Rms-values of bundle adjustment of panoramic linear array scanners 

 

As illustrated in the tables, the straight line constraint did not improve the RMS values 

in the case of frame imagery.  However, in the case of linear array scanner imagery, there 

was a noticeable improvement.  

 

6.1.3. Single photo resection using straight lines 

 

In this experiment, we solved for the EOP’ s using four straight lines as control.  Each 

line contributes two equations, Equation (20).  Thus, there is a redundancy of two.  The 

original, the approximate and the estimated EOP’ s are shown in Table 5. 
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 Original EOP Approximate EOP Estimated EOP 

Xo(m) -425.00 -575.0 425.008 (±0.049) 

Yo(m) 75.0 -35.0 74.851   (±0.109) 

Zo(m) 1000.0 1170.0 1000.00 (±0.026) 

ω(o)  1.0 11.0 1.07       (±0.005) 

φ(o) 2.0 12.0 1.999     (±0.002) 

κ(o) 45.0 25.0 44.999   (±0.001) 

Table 5: Single photo resection using four control lines 

 

The next experiment involved eight control lines (redundancy of 10). The results of 

this experiment are shown in Table 6. 

 Original EOP Approximate EOP Estimated EOP 

Xo(m) -425.00 -575.0 -424.958 (±0.046) 

Yo(m) 75.0 -35.0 74.923    (±0.068) 

Zo(m) 1000.0 1170.0 999.993  (±0.020) 

ω(o) 1.0 11.0 1.004      (±0.003) 

φ(o) 2.0 12.0 2.002      (±0.002) 

κ(o) 45.0 25.0 45.000    (±0.001) 

Table 6: Single photo resection using eight control lines 

 

6.2. SINGLE PHOTO RESECTION USING NATURAL LINES 

 
Single photo resection was performed with natural lines using the modified 

generalized Hough transform algorithm.  An image containing extracted linear features 

was used in these experiments.  The first two experiments demonstrate the algorithm 

using only one iteration.  In other words, the cell size of the accumulator array is not 

changed.  The second two experiments demonstrate the decreasing cell size algorithm, 

which decreases the cell size of the accumulator array after each iteration.     
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Single photo resection was performed using natural lines extracted from an image (see 

Figure 32).  Approximately 570 points along the linear features were extracted.  

 

 

 

 

 

 

 

 

 

 

Figure 32:   Extracted natural lines used in single photo resection 

 

In the first two experiments, the actual values of the EOP are: mZYX o 25000 ===  

and 01=== κφω .  A noise of mµ5±  in image space and cm10±  in object space was 

introduced.  The cell size of the accumulator array was chosen according to the quality of 

the initial approximations.  Two experiments were conducted with different 

approximations and cell sizes. 

• mZ 4000 = , 03=== κφω , Cell size = 15m  (Figure 33) 

• mZ 5000 = , 08=== κφω , Cell size = 40m (Figure 34) 

 

The first sweep of the modified generalized Hough transform was performed for each 

set of initial approximations.  The EOP’ s, 00 ,YX , were determined according to the peak 

of the corresponding accumulator array.  The results of this single iteration with constant 

cell size and different initial values for ,0Z κφω ,,  are given in Figures 33 and 34. 
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Figure 33:   Accumulator array for pixel size = 15m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34:   Accumulator array for pixel size = 40m 

 

Estimated XO = 250m

Estimated YO = 235m  

Estimated XO = 250m

Estimated YO = 170m  
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The next two experiments utilized the decreasing cell size algorithm for the solution of 

the EOP’ s (sweeps #1-3 of the modified generalized Hough transform).  The settings and 

results of these experiments are shown in Table 7.  In the second experiment, not all 

points were matched.  The remaining points can be matched by local inspection.  For this 

experiment, the convergence of the EOP’ s is shown graphically in Figure 35. 

 

 

EXPERIMENT #1 

 

EXPERIMENT #2 

Actual values for the EOP: 

(XO, YO, ZO) = (250, 250, 350) m  

(ω, φ, κ) =  (1o, 1o, 1o) 

(XO, YO, ZO) = (250, 250, 350) m  

(ω, φ, κ) =  (1o, 1o, 1o) 

Assumed values for the EOP: 

(XO, YO, ZO) = (400, 400, 550) m  

(ω, φ, κ) =  (20.5o, 20.5o, 25o)  

(XO, YO, ZO) = (400, 400, 550) m  

(ω, φ, κ) =  (20.5o, 20.5o, 25o) 

Pixel size: 

40m & 4o : 0.5m & 0.01o 40m & 4o : 0.5m & 0.01o 

Noise: 

Image space: mµ5±  

Object space: cm10±  

Image space: mµ5±  

Object space: cm45±  

Total number of object points: 

579 458 

Total number of image points: 

567 302 

Estimated EOP: 

(XO, YO, ZO) = (250.01, 250.02, 349.99) m 

(ω, φ, κ) =  (0.998o, 1.0o, 0.999o) 

(XO, YO, ZO) = (250.27, 249.88, 350.02) m 

(ω, φ, κ) =  (1.014o, 1.037o, 1.021o) 

 

Number of correct matched points: 

All image space points 271 image space points 

Table 7: Single photo resection with iterative estimation of the EOP’s 
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Figure 35:   Convergence of the EOP’s as a result of decreasing the cell size of the 

accumulator array 

 

6.2. AUTOMATIC RELATIVE ORIENTATION USING NATURAL LINES 

 

6.3.1. Automatic relative orientation with real data 

 

The automatic relative orientation algorithm of Chapter 5.2.2 was tested using a C-

program developed at The Ohio State University.  A great number of natural lines were 

extracted from a stereopair.  These lines are represented as a list of 2D-image 

coordinates.  The configuration is shown in Figure 36.  The relative orientation technique 

using the modified generalized Hough transform was performed with the settings and 

results shown in Table 8. 
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Figure 36:   Extracted natural lines of a stereopair for automatic relative orientation 

 
 

 Approximated ROP Estimated ROP Actual ROP 

φl(
o) 19.0o 0.0o 0.0o 

κl(
o) -11.0o 0.0o 0.0o 

ωr(
o) 21.0o 0.0o 0.0o 

φr(
o) -25.0o 0.0o 0.0o 

κr(
o) -18.0o 0.0o 0.0o 

Table 8: Relative orientation using real data  

 

It should be noted that this automatic relative orientation technique works with linear 

features as well as with points.  Therefore, the incorporation of automatically extracted 

interest points is straightforward.  

 

6.3.2. Point matching ambiguities 

 

During the matching procedure we are faced with a problem related to the coplanarity 

model.  The epipolar plane intersects the focal planes at the epipolar lines.  Conjugate 

points can be located anywhere on the epipolar lines, still satisfying the coplanarity 

condition (Equation (34)).  As a result, there are multiple solutions for the matching of 

Left Image Right Image
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conjugate points.  Using this algorithm, matched points may be displaced along the 

epipolar lines  (Figure 37).  To test this hypothesis, conventional relative orientation was 

performed using points displaced along the epipolar lines and compared to the solution 

without displaced points.  The ROP’ s were unaffected by such a displacement.  Hence, 

this point matching ambiguity problem does not affect the solution of the ROP’ s.  The 

ambiguity problem can be corrected by using additional cues (e.g. area based matching, 

edge orientation, expected px-parallax). 

 

 

 

 

 

 

 

Figure 37:   Displacement of conjugate points along epipolar lines 

 

 

7. CONCLUSIONS AND RECOMMENDATIONS 

 
 

Linear features can be utilized to provide constraints in photogrammetric applications.  

Two types of linear features were considered in this research: straight lines and natural 

lines (free form lines).  Straight lines were utilized in aerial triangulation with frame and 

linear array scanner imageries.  Linear features (straight lines and natural lines) were 

utilized in single photo resection and automatic relative orientation.    

 

7.1. AERIAL TRIANGULATION USING STRAIGHT LINES 

 

For aerial triangulation using straight lines, two options were presented for 

constraining the solution.  For the first option, the object points defining a straight line 

can be determined by establishing the vector from the perspective center of one image to 

Epipolar Line

Left Image Right Image
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an object point on the straight line, and locating the intersection of this vector with the 

image line planes of the overlapping images.  For the second option, the underlying 

constraint is that the vector passing through the perspective center of an image and an 

image point on the straight line lies on the plane defined by the perspective center and 

two object points defining the line.  These two object points are considered as tie or 

control points.  This constraint (option two) can accommodate linear array scanner 

imagery, where straight lines in object space are not necessarily straight lines in image 

space.  In both options, the distinct points defining the straight line in object space need 

not be present or identifiable in all images.  

 

These algorithms were tested using real and simulated data. It was determined that 

singularities may occur if the aforementioned intersection point cannot be established due 

to the orientation of the object space straight line in relation to the flight direction.  In this 

situation, the vector passing through the perspective center and the object point lies on 

the image line plane, not allowing for an intersection.  Real data was used to test this 

algorithm with frame, panoramic and three line scanner imagery.  The adjustments were 

performed with and without the straight-line constraint, using RMS values as a means of 

comparison.  The results verify the validity of the proposed technique, as the straight-line 

technique produced comparable, if not better RMS values.  In the case of linear array 

scanner imagery, better results were obtained.  This is attributed to the constraints, which 

help in recovering the EOP’ s.  An overview of the experiments is outlined below: 

 

 

Option One: 
 

Basic Principle: In the first image, the relationship between the image coordinates and 

the object coordinates is given by the collinearity condition.  For the remaining images, a 

constraint is introduced that ensures that the two points defining the line in object space 

belong to the line represented by (ρi, θi), when transformed into the ith image space.   

 



 63

Representations: The straight line is defined in one image by a pair of image coordinates 

and is represented in all other images by polar coordinates (ρ, θ). 

 

a) Using the straight line as a tie line: In this case, the ground coordinates of the points 

defining the straight line are unknown. 

Total number of equations per tie line in stereopair = two constraint equations + four 

collinearity equations = six equations.       

b) Using the straight line as a control line: In this case, the ground coordinates of the 

points defining the straight line are known. 

Total number of equations per control line in stereopair is the same as in a above. 

 

Adding more equations by considering additional points along the straight line will 

lead to dependency of equations.  However, if camera calibration is included in the aerial 

triangulation, the additional collinearity equations will be helpful in the calculation of the 

distortion parameters. 

 

Option Two: 
 

Basic Principle: the vectors from the perspective center to each scene point along the 

line should lie on the plane that is defined by the perspective center and the two object 

points defining the straight line. 

 

Representations: The straight line is defined in one image by two points in object space 

and is represented in other images by image points on the line. 

 

a) Using the straight line as a tie line: In this case, the ground coordinates of the points 

defining the line are unknown. 

Total number of equations per tie line a stereopair = four collinearity equations + two 

constraint equations = six equations. 
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b) Using the straight line as a control line: In this case, the ground coordinates of the 

points defining the line are known. 

Total number of equations is the same as in a above. 

 

Option two can be used for frame and linear array scanners.  In the case of linear array 

scanner imagery, many EOP’ s are involved in the adjustment.  Added equations will 

constrain the adjustment and aid in the determination of the EOP’ s.  It is therefore 

advantageous to evaluate all image points along the straight line. 

 
 

7.2. SINGLE PHOTO RESECTION WITH NATURAL LINES 

 

A single photo resection algorithm utilizing natural lines has been introduced.  For this 

application, it is assumed that we have the following data available: a list of image 

coordinates of points along linear features and the 3-D coordinates of these points in the 

ground coordinate system.  The collinearity model is applied to all image points, and the 

modified generalized Hough transform is utilized to solve for the exterior orientation 

parameters.  By tracking the indices of the points that lead to the solution, the matching 

of image and object space linear features can be accomplished. 

 

This algorithm has been tested with natural lines using simulated data.  The results 

indicate that this technique produces a high quality solution.  The advantage of using this 

technique over conventional single photo resection is that the correspondence between 

image and object space points need not be known. 

 

 
7.3. AUTOMATIC RELATIVE ORIENTATION USING NATURAL LINES 

 

Automatic relative orientation has been implemented utilizing extracted linear 

features.  In its implementation, the coplanarity condition requires that conjugate points 

lie on the epipolar plane.  This constraint is used in conjunction with the modified 

generalized Hough transform to solve for the relative orientation parameters.  By tracking 
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the indices of the points that lead to a solution (a peak in the accumulator array), 

conjugate points are identified, hence, linear features are matched.  However, due to the 

geometry of the coplanarity condition, ambiguous matches are possible along epipolar 

lines.  These ambiguities do not affect the solution of the relative orientation parameters.  

To circumvent this matching problem, area based matching or supplemental cues can be 

incorporated. 

 

This algorithm was tested using simulated data consisting of extracted natural lines of 

a stereopair.  The results indicate that this technique produces a high quality solution of 

the relative orientation parameters. Therefore, this technique can utilize point features 

obtained from the use of interest operators. 

 

7.4. RECOMMENDATIONS FOR FUTURE WORK 

 
Future research will concentrate on the following issues: 

 

• More testing with real data. We would like to use available GIS database and data 

collected by terrestrial mobile mapping systems, e.g. road networks, to provide 

control for aerial triangulation. 

• Automatic extraction and matching of straight linear features from imagery. 

• Generate modules for DEM and Ortho-photo generation based on our approach of 

automatic relative orientation. 

• Automatic selection of triangulation points from imagery (e.g. through interest point 

operators) to yield an Automatic Aerial Triangulation System. 

• Increase the efficiency and speed of the developed algorithms. 
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9.  APPENDIX 1: MSAT BUNDLE ADJUSTMENT APPLICATION 

PROGRAM 

 

9.1. MSAT CAPABILITIES 

 
The MSAT (Multi Sensor Aerial Triangulation) is a bundle adjustment software that 

accommodates for different types of sensors: frame, panoramic and three line scanners.   

Supplemental data such as GPS/INS can be incorporated.  MSAT (version 5) is capable 

of incorporating a linear feature constraint in the adjustment (see Chapter 5.1.2.).  The 

MSAT program was developed using Microsoft Visual C++.   ASCII files are used as 

input and are described in the help files.  Certain input files may not be required for a 

particular application. 

 

In the MSAT program, all involved parameters can be treated as: 

  

• Constants (not considered as a parameter) 

• Parameters with certain accuracy 

• Variables (parameters with unknown accuracy) 

 

This is done according to the threshold variances specified in the Project File: (minCov 

and minCov2). Any parameter with a dispersion matrix element greater than minCov will 

be treated as variable (unknown accuracy).  Parameters with dispersion matrix elements 

smaller than minCov2 will be treated as a constant (they will not be involved in the 

adjustment).  If a parameter has a dispersion matrix element lying between the two 

thresholds then it will be considered as a parameter with certain accuracy (defined by the 

dispersion matrix).  The dispersion of the parameters are to be specified in the GPS File, 

the Image Coordinate File, the Ground Control Point File, the Linear Feature Coordinate 

File and the Camera_File. 
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9.2. MSAT FILE EXAMPLES 

 
Project File (*.prj) 
 
Example: 
 
 
!  1.No of iteration, 2.max sigma, 3.minCov, 4.MinCov2, 5.common alpha, 
!  6.GPS and INS availability(0=no,1=yes), 7.linear feature availability(0=no, 1=yes) 
10      3E-2   4E-4     5E-12   1   0    0    0    1 
 
 

The above sample input represents a project with no GPS and INS available, and with 

linear feature constraints.  Lines beginning with ‘!’  are comments, and are ignored by the 

program.  This file contains the following parameters (in order): 

1. Number of iterations for the bundle adjustment 

2.  Maximum sigma: the maximum difference between unit weight variances between 

each iteration.  If the difference is less than this value, then the iterations will stop. 

3. MinCov:  MinCov and MinCov2 are best explained in the following paragraph: 

4. MinCov2: 

In the MSAT program, all involved parameters can be treated as: 

  

• Constants (not considered as a parameter) 

• Parameters with certain accuracy 

• Variables (parameters with unknown accuracy) 

This is done according to the threshold variances specified in the project file: 

(minCov and minCov2). Any parameter with a dispersion matrix element greater than 

minCov will be treated as variable (unknown accuracy).  Parameters with dispersion 

matrix elements smaller than minCov2 will be treated as a constant (they will not be 

involved in the adjustment).  If a parameter has a dispersion matrix element lying 

between the two thresholds then it will be considered as a parameter with certain 

accuracy (defined by the dispersion matrix). 

5. Common alpha:  Used in the case of panoramic linear array scanners.  This flag 

should be set to 1 to indicate a common alpha for all photos or each image in 

panoramic images. 
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6. GPS/INS Availability:  Flag to indicate whether or not GPS and/or INS information 

at the exposure station is available.  If this information is available, one needs to 

create a GPS File. 

7. Linear Feature Availability: Flag to indicate whether or not the straight line constraint 

will be incorporated into the adjustment.  To involve linear features in the adjustment 

one needs to create a Linear Feature Coordinate File. 

 
 
GPS File(*.gps)  
 

This file contains the GPS/INS observation and their covariance versus time.  The data 

should be organized in the following format:  

• GPS time: time in the orientation image (current implementation depends on each of 

the orientation images time being in the same time unit as the simplified GPS time)  

• Rotation angles: omega, phi, kappa in degrees obtained from the Ins for this time. If 

INS is not available just input zeros to maintain the format. 

• Dispersion of the rotation angles: 3x3 matrix 

• Position of perspective center: (Xo, Yo, Zo). Here also if only INS is available then 

input zeros for Xo, Yo, Zo to maintain the format.  

• Dispersion of  Xo, Yo, Zo: 3x3 matrix  

 
 
 
Example:  
 
! GpsTime    omega,     phi,   kappa,   dispersion(opk),    Xo,Yo,Zo, dispersion(Xo,Yo,Zo)  

     2.0            -1.64        -1.26      -131.51 

1E-6 0.00 0.00 

0.00 1E-6 0.00 

0.00 0.00 1E-6 

  

512212.48           215843.73          2933.40 

1E-04 0.00 0.00  

0.00 1E-04 0.00 

0.00 0.00 1E-04  
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2.1         -1.64         -1.26         -131.51 

1E-6 0.00 0.00 

0.00 1E-6 0.00 

0.00 0.00 1E-6 

  

512205.63            215835.           16 2933.41 

1E-04 0.00 0.00  

0.00 1E-04 0.00 

0.00 0.00 1E-04 

 
 
 
Image Coordinate File(*.icf)  
 

This file contains the image coordinate measurements. In the current version all the 

measurements are assumed to be in photo coordinate system for the frame cameras and as 

raw (row, column) format for the panoramic and three line scanners. The file should 

contain the data in the following format: 

• Photo id: photo in which the point is measured  

• Point id  

• x: x photo coordinate of the point (or row for digital images)  

• y: y photo coordinate of the point (or column for digital images)  

• dispersion (2x2 matrix): image coordinate measurement accuracy  

 

Example:  

 

! Photo Id     Point Id         x                 y                      Dispersion  

image1          101         -2.991       -102.123             1.0 0.0 0.0 1.0  

image1          102         -0.394        3.081                 1.0 0.0 0.0 1.0 

image3           c1           -9.541        96.288               1.0 0.0 0.0 1.0 
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Ground Control Point File(*.gcp)  
 

This file contains the data for the ground control points and tie points along with their 

covariance (3x3 matrix).  Keep in mind the values of minCov1 and minCov2 (specified in 

the project file) when designating your covariance matrices.  The format is:  

• Point id  

• X, Y, Z: the ground coordinate of the point  

• Dispersion (3x3): the dispersion of the point  

 

Example:  

 

!Point id       X                       Y                   Z                                Dispersion  

303     6043164.31        2154682.37       44.32         0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.01 

102     6038269.37        2152297.22       80.70        1E+4 0.0 0.0 0.0 1E+4 0.0 0.0 0.0 1E+4 

 
 
Linear Feature Coordinate(*.lcf) file.  
 
This file consists of 

• ID of the photo containing the linear feature 

• ID of the linear feature 

• ID of the point on the linear feature 

• Photo coordinates of the point 

• Dispersion matrix 

• Flag indicating whether the two identifying points (A and B) of the line are initialized 

or not in this image 

• Flag indicating that point A was initialized in this image 

• Flag indicating that point B was initialized in this image 

 

Example: 

 

!Photo id  Linear feature Id  Point ID Photo coordinates  covariance          Flag  FlagA   FlagB 

193              Line1    104          112.5      78.9                  1   0   0   1              0           0             0 

193              Line1    105          100.5      89.9                  1   0   0   1              0           0             0 
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193              Line1    105           97.9       85.9                  1   0   0   1              1           1             0 

193              Line1    105          102.5      84.9                  1   0   0   1              1           0             1 

193              Line2    105          106.5      82.9                  1   0   0   1              0           0             0 

193              Line2    105          100.5      84.7                  1   0   0   1              0           0             0 

193              Line2    105          12.5        89.8                  1   0   0   1              0           0             0 

195              Line1    105          13.5        81.6                  1   0   0   1              1           1             0 

195              Line1    105          10.5        86.6                  1   0   0   1              1           0             1 

195              Line1    105          104.5      85.7                  1   0   0   1              0           0             0 

195              Line1    105          17.5        83.9                  1   0   0   1              0           0             0 

 
 
Camera File (*.cam)  
 

This file contains the cameras involved in the adjustment. For three line scanners, each 

sensor will be treated as a camera.  They should have the names: BACKWARD, 

FORWARD, DOWN.  The data sequence is as follows  

• Camera id : camera identification string  

• Camera type: FRAME, PANORAMIC, THREELINE  

• xp, yp, c: IO parameters  

• dispersion of xp, yp and C(3x3 matrix): used to fix or free the camera parameters  

• number of fiducials - fiducials: x, y photo coordinates (not used currently)  

• number of distortion - distortion parameter value (not used currently)  

• GPS antenna offset from the perspective center (dx, dy, dz)  

• Gps antenna offset covariance (3x3 matrix)  

 

Example:  

 

! Camera id       Type                          xp                  yp                          C  

DOWN            THREELINE           -0.003365       0.006972             300.004174  

!dispersion of xp, yp and C: (used to fix or free the camera parameters)  

1E-6 0.0 0.0  

0.0 1E-6 0.0 

0.0 0.0 1E-6  

!no fiducials fiducials: x, y (not currently used) 

0  



 74

!no distortion and array elements (not currently used) 

0 

! gps offset: dX, dY, dZ and dispersion 

0.0 0.0 0.0  

1E-6 0.0 0.0 

0.0 1E-6 0.0 

0.0 0.0 1E-6 

 

Orientation File (*.ori) 

An example of the orientation file: 

! photoID  camera  sigmaXY  scantime  Degree Opk  Degree Xyz  
161         Camera    0.005       0.0      0     0    
! alpha coeff and its dispersion 
0 
! imc coeff and its dispersion 
0 
! no ori images 
1 
! ori no  ori time  omega  phi  kappa   X Y Z 
1 0.0  0.0   0.0   82.146   1821715.816 728473.368 1940.208 
! photoID  camera  sigmaXY  scantime  Degree Opk  Degree Xyz  
163         Camera    0.005       0.0      0     0    
! alpha coeff and its dispersion 
0 
! imc coeff and its dispersion 
0 
! no ori images 
1 
! ori no  ori time  omega  phi  kappa   X Y Z 
1 0.0  1.0   0.0  85.954 1821789.06 729698.674 1940.208 

 

This file contains the following information for each image: 
• Photo id 
• Sensor type 
• Sigma x,y: the image coordinate measurement accuracy 
• Scan time: for linear array scanner imagery; the time used to scan the scene. 
• Degree OPK, Degree XYZ:  For linear array scanner imagery;  Degree of the 

polynomial to model exterior orientation parameters.  
• For linear array scanner imagery; The number of coefficients to use to model the scan 

angle alpha and IMC. 
• Number of orientation images 
• Orientation time.  Should increment for each image in the adjustment. 
• Approximations for the exterior orientation parameters. 
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9.3. MSAT INSTRUCTIONS 

 

The MSAT program requires the use of ASCII files as input data.  The structure of 

these files must be exactly as shown in the examples.  For instance, supplemental 

comments in the files should not be added, and one should pay attention to the carriage 

returns.  The MSAT program does not check for valid files.   

 

To perform the bundle adjustment using MSAT, the first step is to create a Project 

File. If there is GPS/INS information available at the exposure station, then a GPS File 

must be included.  If the straight line constraint is to be employed, a Linear Feature 

Coordinate File must be included.  All adjustments will require the use of an Image 

Coordinate File, a Ground Control Point File, and a Camera_File.  

 

Once the necessary files are created, click Bundle Adjustment on the menu.  You are 

then required to indicate the locations of the involved input files.  The user is prompted to 

designate a file name for the results file (the output file).  Next, the bundle adjustment is 

performed, notifying the user with a message box when the adjustment is complete. 

 

The results of the bundle adjustment are placed in the user defined results file (*.res).  

The results file contains the following data: 

• The estimation of all involved parameters after each iteration 

• The dispersion of the parameters and unit weight variance after each iteration. 

Also, for interpretation purposes, MSAT (version5) will create a bitmap image of the 

normal equation martix (for the last iteration).  This binary image will designate matrix 

elements that are zero and non-zero.  

 

 

 


