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ABSTRACT

Compared to the conventional ground measurement of gravity, airborne
gravimetry is relatively efficient and cost-effective.  Especially, the combination of GPS
and INS is known to show very good performances in the range of medium frequencies
(1-100 km) for recovering the gravity signal.

Conventionally, gravity estimation using GPS/INS was analyzed through the
estimation of INS system errors using GPS position and velocity updates.  In this case,
the complex navigation equations must be integrated to obtain the INS position, and
the gravity field must be stochastically modeled as a part of the state vector.  The
vertical component of the gravity vector is not estimable in this case because of the
instability of the vertical channel in the solution of the inertial navigation equations.

In this study, a new algorithm using acceleration updates instead of
position/velocity updates has been developed.  Because we are seeking the gravitational
field, that is, accelerations, the new approach is conceptually simpler and more
straightforward.  In addition, it is computationally less expensive since the navigation
equations do not have to be integrated.  It is more objective, since the gravity
disturbance field does not have to be explicitly modeled as state parameters.

An application to real test flight data as well as an intensive simulation study has
been performed to test the validity of the new algorithm.  The results from the real
flight data show very good accuracy in determining the down component, with
accuracy better than ±5 mGal.  Also, a comparable result was obtained for the
horizontal components with accuracy of ±6 to ±8 mGal.  The resolution of the final
result is about 10 km due to the attenuation with altitude.

The inclusion of a parametric gravity model into the new algorithm is also
investigated for theoretical reasons.  The gravity estimates from this filter showed
strong dependencies on the model and required extensive computation with no
improvement over the approach without parametric gravity model.
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CHAPTER 1

INTRODUCTION

1.1 Background

The determination of the Earth’s gravity field is one of the most important areas
in geodesy for the determination of an Earth model (geoid) and for the prediction of
dynamical parameters of low Earth-orbiting satellites.  In addition, gravity information
is important for many scientific and engineering areas such as geophysical exploration
and navigation, and in studying geophysical phenomena of the Earth.  Conventionally,
the gravity signal is determined by measuring its magnitude with a gravimeter and
determining the deflections of the vertical, defined by the difference of the directions
between the natural gravity and normal gravity vector, by astronomical observations.
Although this produces highly accurate gravity vector information, it is extremely
expensive and time consuming.

Due to the recent satellite technology, it is possible to determine the gravity
field using satellite observations mostly in the form of satellite altimetry, and a more
refined global gravity model based on terrestrial gravity and satellite data is available,
e.g., EGM 96 (Lemoine et al., 1998).  Hence the long wavelength gravity signal can be
obtained by using a global model (Rapp and Pavlis, 1990; Jekeli, 1995).  According to
the recent study by Jekeli (1999), however, the shorter-wavelength signatures of the
global model are either poorly modeled or only moderately well known in the global
model resulting in under-powered at wavelengths shorter than 200 km.  Therefore, the
purpose of the airborne gravimetry is to recover the Earth’s gravity field on the
medium-frequency gravity signal, which then fills the gap between the terrestrial gravity
field measurements and global gravity models in the wavelengths between 1 and 100-
200 kilometer (Hein, 1995).

By the middle of this decade, measurements from GRACE (Tapley et al.,
1997), CHAMP (Reigber et al., 1997) and GOCE (Rummel, 1999) gravity mapping
missions are expected to provide revolutionary improvement in our knowledge of the
Earth's static gravity field and its temporal component.  Especially, the accuracy of the
mean geoid will be about 1 cm at a wavelength of 100 km or longer (primarily by
GOCE).  The accuracy and resolution from these missions, however, are not still good
enough for the geophysical exploration in which 1 mGal over less than 10 km is
required (Salychev et al., 1994).  In addition, there will be polar gaps with radius of
700 km due to the sun-synchronized orbits for GOCE.  Therefore, even after these
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missions, the airborne gravimetry will still play an important role in improving the
model for the earth’s gravity field.

As a matter of fact, the Inertial Navigation System (INS) was introduced as a
surveying instrument in the late 1960’s, and immediately it was noticed that the
potential of INS for precise positioning was limited by the unknown anomalous gravity
field (Nash, 1968; Huddle, 1977).  Conversely, this means that the anomalous 3-D
gravity field could be recovered from the INS if accurate kinematic positions and/or
velocities were known and the system errors were kept small.  Among early studies in
vector gravimetry, Rose and Nash (1972) showed the ability of an INS to measure the
deflection of vertical directly.

The important issue in gravity recovery using INS is the separation of the
gravitational acceleration from kinematic acceleration as well as system errors.  The
kinematic acceleration can be separated from the sensed acceleration of INS by using a
different sensor such as GPS.  The separation between the gravitational acceleration
and system errors from INS can be achieved by introducing external information e.g.,
ZUPT (Zero Velocity Update, Torge, 1989).  That is, bring the vehicle to a stop
periodically, thus controlling the unknown systematic errors by feeding the zero
velocity information back to the system.  Although this semi-kinematic method had
been successfully used in many cases (Huddle, 1988; Salychev et al., 1994; Wang and
Gao, 1996), it is still inefficient and expensive for the exploration of large areas.  In
addition, it cannot be used in areas essentially inaccessible to land vehicles or
helicopters such as seas, deserts, or mountains.

Obviously, an alternative way of determining the kinematic position and
velocity was necessary to perform the mobile, especially airborne, gravity survey.  In
1967, Moritz proposed the combination of INS and a gravity gradiometer, and
simulation studies on such a combination showed promising results (Heller and Jordan,
1976).  Because of the high cost of the gradiometers, however, other combinations
such as the combination of INS with a radio navigation system, Loran-C (Lacoste et
al., 1982), were investigated.  The accuracy of the gravity field from the system was
poor because of the low data rate and accuracy of the radar altimeter.

Clearly, the advent of the Global Positioning System (GPS), providing high
accuracy position and velocity, created revolutionary progress in the area of the
airborne gravimetry.  Schwarz (1987) compared different kinematic methods for
airborne gravimetry with combinations of GPS, INS, and gradiometer.  He concluded
that the GPS/INS combination showed good medium-wavelength performance, while
the GPS/gradiometer combination was better for high-frequency components.
Compared to the other positioning instruments, GPS is inexpensive and the accuracy of
the vehicle acceleration from GPS is sufficient for airborne gravimetry.

There have been many studies on the feasibility of GPS/INS gravimetry in both
time and spectral domains (Jekeli, 1995; Knickmeyer, 1990; Schwarz et al. 1994).  This
research has shown that the gravity disturbance can be recovered with errors in the
order of (RMS) ±1-2 mGal using a high-accuracy INS (Jekeli, 1995) within a spectral
window of 10-200 km (Schwarz et al., 1994).
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The main obstacle in GPS/INS gravimetry is the low signal to noise ratio of the
system.  Typically, gravity disturbance vector does not exceed 100 mGal in each
component over distance of about 100 km while the noise level of the system is much
higher (Hammada, 1995).  Analyses and simulations were conducted by many
investigators mainly applying a low pass filter on the signal to reduce the system noises
and extract the optimal gravity signatures in GPS/INS airborne gravimetry (Hehl, 1994;
Wei and Schwarz, 1995).  In addition, the development as well as the analysis of the
INS error model has been investigated theoretically, and tested throughout simulations
(Arshal, 1987; Goshen-Meskin and Bar-Itzhack, 1992; Wei and Schwarz, 1994).
Recently, some test flights also have been carried out to determine the feasibility and to
assess the accuracy in airborne gravimetry.  It has been shown that 1 mGal accuracy in
GPS acceleration and 2-3 mGal of accuracy in the vertical gravity component can be
achieved (Wei and Schwarz, 1998).

1.2 Statement of the Problem

There are two main categories in airborne gravimetry based on measurements
of accelerometer, namely scalar gravimetry and vector gravimetry.  Gravity
gradiometry may be considered as the third type (Hein, 1995), where observations are
the gradient of gravity.  Scalar gravimetry determines either the vertical component or
the magnitude of the gravity anomaly vector while vector gravimetry aims to recover
the full gravity anomaly vector in all three dimensions.  Obviously, the advantage of the
vector gravimetry compared to the scalar gravimetry is that the (relative) geoid can be
determined directly by along-track integration of the horizontal gravity components.
Thus, the numerical integration of the vertical gravity component over large region
(Vening-Meinesz integrals; Heiskanen and Moritz, 1987) can be avoided.

Currently, airborne gravimetry is conducted using either sea/air gravimeters on
a Schuler-tuned stabilized platform for scalar gravimetry, or with an Inertial Navigation
System mainly strapdown INS for scalar or vector gravimetry.  In both cases, the
separation of the gravitational and kinematic accelerations from the system errors is
very crucial in estimating the gravity field.  Results of scalar airborne gravity survey
using gravimeters, modified for high dynamics of the aircraft, in Greenland, Antarctica,
and Switzerland show that an accuracy of 3 to 5 mGal and a resolution of 10 km
wavelength is achievable with current technology (Brozena and Peters, 1994, 1995;
Forsberg and Kenyon, 1994).  The main error source in this case was insufficient
platform stabilization.  Another test using ITC-2 inertial platform system showed that
an accuracy of 1 mGal with resolution of 2-3 km is achievable (Salychev et al., 1994).

Unlike to the stabilized systems, there is no physical stabilizing platform in
strapdown system.  Instead, the inertial sensors are physically bolted down to the
vehicle so that the measured data in the body frame are transformed to the local level
frame computationally.  The advantage of the strapdown INS is its smaller size, lower
cost and more operational flexibility (Jekeli, 1995a).  It has been shown that the
performance of the SINS is comparable to the airborne gravimeter (Glennie et al.,
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1999).
The traditional way of analyzing the determination of gravity using the

GPS/INS signal is to integrate the error dynamics equations of the INS system, and
model the INS errors and gravity disturbance as stochastic processes (Grejner-
Brzezinska and Wang, 1998; Jekeli, 1995, 1995b; Knickmeyer, 1990; Wang, 1997;
Forsberg, 1987; Eissfeller and Spietz, 1989).  The apriori stochastic information of the
INS errors such as biases and scale factors are obtained from the manufacturer’s
specification.

There are good arguments for modeling the gravity disturbance field as a
stochastic process – it is one of the basic tenets of least-squares collocation in geodesy
(Moritz, 1980).  In a sense, a stochastic model is introduced to regularize an otherwise
ill-posed problem.  However, in this case we must treat the gravity state as a variable of
a finite-dimensional state-space (Jekeli, 1995), and furthermore, one that satisfies a
linear differential equation (Jordan, 1972).  Practically, however, it is one of the main
proposed approaches in airborne gravimetry (Wang, 1997).  In this method, GPS
position or velocity is used as an update in a Kalman filter estimation and the
calculation is done in the navigation frame.

Although there are some investigations about vector gravimetry using
covariance analyses (Knickmeyer, 1990; Jekeli, 1995) and error analysis through
simulation (Wei and Schwarz, 1994), actual implementations have not been widely
achieved for the horizontal gravity components.  Because the horizontal components
are more sensitive to the orientation and dynamics of the vehicle, more accurate
orientation information is necessary to achieve the same accuracy as for the vertical. A
horizontal accuracy of 1 mGal corresponds to about 0.2 arcsec in orientation accuracy,
and it has been claimed that an accuracy of about 1 arcsec can be achieved using
current technology.

The objective of this research is to develop a new efficient algorithm for
GPS/INS vector gravimetry. The main idea of this research is that the gravity
disturbance can be obtained directly by differencing the GPS and INS sensed
accelerations (Jekeli, 1992).  This is analogous to conventional airborne scalar
gravimetry using gravimeters (Brozena, 1991).  One of the conceptual differences
between the traditional and this approach concerns the different methods used to
integrate INS and GPS data.  While the traditional method uses complex error
dynamics associated with the solution to the navigation equations, the new method has
a very simple set of equations based on accelerations.  In addition, the calculations in
the new method are carried out in the inertial frame, not in the navigation frame, so
many computations related to the integration of the error dynamics equations in the
traditional method can be saved.  Through intensive simulations as well as application
to real test flight data, the validity and efficiency of the new algorithm are presented.

The gravity field is not specifically modeled as a stochastic process in this new
approach.  Instead, it will be treated as an observation model error that can be seen in
the residuals after estimating the INS system error parameters.  In other words, it is
assumed that no information is available on the gravity disturbance, even its existence,
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so that it cannot be modeled.  If a mathematical model is incorrect in an adjustment
problem, the effect should be seen in the residual after the adjustment.  Although this
intentional mismodeling has its theoretical drawbacks, it has turned out to be very
useful for the airborne gravimetry.  However, proper interpretations and limitations
must be considered and will be discussed.

1.3 Chapter Descriptions

The mathematical background including the descriptions of various coordinate
systems, transformations among the systems, and the definitions of the related
quantities are presented in Chapter 2.

In Chapter 3, an overview of both GPS and INS systems is described.  The
system description, observables, related errors, and principles of kinematic positioning
are addressed for GPS.  System mechanizations, measurement methods, error models
for both accelerometers and gyros, and navigation equation are reviewed for INS.

The traditional approach for estimating the gravity components using position
or velocity update routine is presented in Chapter 4.  The details on the error dynamics,
stochastic modeling for systematic errors, gravity modeling and Kalman filtering are
discussed in this chapter.  The results and analysis of the application to real data using
the traditional methods are also presented for comparison.

The full development from the mathematical model to the data processing
procedure for the new algorithm is presented in Chapter 5.  Details on error parameters
and some aspects on the smoothing are also discussed.  The validity test and the
investigations on the error behaviors are described through simulation.  The results,
analysis and the full descriptions of comparison between the traditional and new
approach are given in terms of the mathematical model, the error parameters, their
estimability and the efficiency of the algorithm.

In Chapter 6, cooperation of a gravity model in the mathematical model to the
new algorithm is discussed.  Using a Gauss-Markov model and an expansion of
trigonometric functions, the feasibility as well as the validity of the approach is
presented.  Advantages and disadvantages of the gravity modeling are also addressed.

A brief discussion of all results, future studies, conclusions and suggestions are
presented in Chapter 7.
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CHAPTER 2

COORDINATE FRAMES AND TRANSFORMATION

2.1 Introduction

To describe locations of points on or near Earth’s surface, a coordinate system
should be defined.  Although one could describe the whereabouts of objects and places
using a relational or synthetic database, it is necessary to assign an algebraic coordinate
system if one wants to know more than the location information such as the measure of
distance, area, volume and direction (Jekeli, 1995a).  In navigation, it is also necessary
to measure the progress and determine the course and destination of a vehicle based on
the selected coordinate system.

It should be noted that the term coordinate system and coordinate frame do not
have the same meaning.  The coordinate system includes the description of the physical
theories and their approximations that are used to define the coordinate axes, while
frame denotes the accessible realization of the system through a set of points whose
coordinates are monumented or otherwise observable (Jekeli, 1995a; Moritz and
Mueller, 1988).

The most common system in use is the Cartesian coordinate system whose axes
are mutually orthogonal.  To define a Cartesian coordinate system, three elements such
as origin, orientation and scale factors should be determined.  Figure 2.1 shows a right-
handed Cartesian coordinate system.

It is constructed in such a way that right angle rotation about the 1 axis, viewed
toward the origin, rotates the 2 axis into the 3 axis.  Similarly, rotation about the 2 axis
rotates the 3 axis into the 1 axis and that about the 3 axis rotates the 1 axis into the 2
axis.  An arbitrary vector in the Cartesian coordinate system can be decomposed into
its component on each axis.  Denoting the components with a subscribed letter, a
vector x  can be represented as an ordered triplet of coordinates:

x =
x

x

x

1

2

3

. (2.1)

It can be also written using unit vectors as:
x e e e= + +x x x1 1 2 2 3 3 (2.2)
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1

2

3

e1

e2

e3

x2

x1

x3

x

Figure 2.1 Cartesian coordinates of vector x, and unit vectors ej.

There are several coordinate frames in use in the field of geodesy.  Those
frames can be divided into global and local frames.  While the global Cartesian
coordinates are fixed either to the Earth or the celestial sphere, the local Cartesian
coordinates are defined by local directions; for example north, east and down.  The
curvilinear frame, defined by the geodetic latitude, longitude and height, is also used for
its appropriateness of representing the motion and position on the sphere or ellipsoid.
For the inertial navigation system, one has to deal with a couple of more coordinate
frames related to the navigation instruments, the platform on which those are installed
and the vehicle carrying the platform.

The obvious problem when dealing with several different coordinate frames is
to establish the mutual relationship of a frame to all other frames so that the
measurements in a frame can be transferred to the other frames.  This is called
coordinate transformations.  Before describing the transformations, each coordinate
system will be defined in detail in the next section.  It should be noted that most of the
derivation and equations are from the lecture notes of Inertial Geodesy (Jekeli, 1995a),
to which one can directly refer for details.

2.2 Coordinate Frames

The first coordinate system to be discussed is the fundamental coordinate
system called the inertial system, in which Newton’s Laws of motion hold.  The famous
Newton’s Laws of motion state that:
• First Law - Any object in a state of rest or having uniform linear motion will
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remain in such a state unless acted upon by an unbalanced external force.
• Second Law - Unbalanced force acting on an object produces acceleration in
the direction of the force, directly proportional to the force, and inversely proportional
to the mass of the object.
• Third Law - For every action (or force) there is a reaction (or opposing force)
of equal strength but opposite direction.

As one can notice already, the inertial system is just an abstraction in our world
because of the existence of the gravitational field.  Therefore, instead of pure inertial
frame, the designation quasi-inertial frame is treated as a practical alternative to the
inertial frame.  The quasi-inertial frame is defined as Earth-centered, and accelerating,
without rotating, around the sun.

To account for the acceleration due to the gravitational field, Newton’s second law
of motion needs to be modified.  Newton’s second law of motion is formulated as
equation (2.3) in the pure inertial frame:

F x= d

dt im
�

, (2.3)

where mi

�
x  is the linear momentum of the particle with inertial mass mi  and velocity�

x .  Assuming constant mass, the above equation will be simplified as:
F x= mi

� �
. (2.4)

Under the existence of the gravitational field, the above equation should be modified to
include the gravitational effect.

m mi g

� �
x F g= + (2.5)

The gravitational vector g is the proportional factor between the gravitational mass mg

and the gravitational force.  Using the Principle of the Equivalence stating that
mi=mg=m, one can derive the fundamental equation in GPS/INS gravimetry.

  
� �
x a g= + , (2.6)

where a = F/m is the acceleration caused by the applied (specific) force.
Now, we are ready to define the first fundamental frame called i-frame.  The i-

frame is attached to the Earth’s center, is in free-fall, and is not rotating.  The
orientation of the i-frame is determined by the directions of quasars and fixed to the
celestial sphere.  It is freely falling because of the ambient gravitational field of the solar
system.  The International Earth Rotation Service (IERS) maintains, uses and makes
available the inertial frame, being the realization of the International Celestial Reference
System (ICRS).  Specifically, the system is realized through the estimates of the
coordinates of a set of quasars, the International Celestial Reference Frame (ICRF).
The coordinates of a point in the i-frame are components of the position vector
designated xi.  Note that the superscript denotes the frame in which the coordinates are
represented.

The next frame to discuss is the Earth-centered-Earth-fixed (ECEF) frame, or
e-frame with the origin also at the Earth’s center of the mass (Figure 2.2).   The
orientation of the e-frame is defined by convention parallel to a mean polar axis and a
mean equator on which the zero longitude is defined.  The IERS establishes the
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International Terrestrial Reference Frames (ITRF) is based on geodetic observations of
satellites and quasars, as well as plate tectonic models (McCarthy, 1996).  The example
of an ECEF frame is the one realized by GPS.  The coordinates of a point in ECEF
frame are represented as xe in the same way.

Another set of ECEF coordinates being used in geodesy is the conventional
geodetic reference system.  It consists of curvilinear coordinates ( φ λ, ) and the normal
height (h) of an adopted ellipsoid of revolution (Figure 2.2).

h

xe

x3
e

x2
e

x1
e

1e

3e

2e

λ
φ

Figure 2.2 Earth-fixed-Earth-centered coordinates and geodetic coordinates with
respect to an Earth ellipsoid.

The angles 
�

and � , known as geodetic latitude and longitude, determine the
horizontal positions and the ellipsoidal height does the vertical position.  With a
geocentric ellipsoid, the geodetic reference system could be used in place of the
Cartesian ECEF coordinate system.

One of the most popular coordinate frames in the field of inertial navigation is
the north-east-down frame, known as n-frame; the first axis points north, the second
axis points east, and the third axis points down along the ellipsoid normal.  The origin
of the n-frame is either on the ellipsoid or at the location of the measurement system
(Figure 2.3).  The third axis does not pass through the Earth’s center of mass because
of the eccentricity of the ellipsoid.
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φ
λ

3
2

1

1e

3e

2e

Figure 2.3 Local north-east-down coordinate frame.

It should be emphasized that this n-frame is not used to represent a vehicle’s
position because the n-frame itself moves with the vehicle carrying the navigation
system.  Therefore, only the third component of the coordinate xn could be non-zero by
definition.  The advantage of the n-frame is that it provides the local direction of the
vehicle motion through north, east and down velocities.  Because the inertial sensors
are always aligned with the local horizontal and vertical either mechanically or
computationally, this frame is the one to which the platform or the sensor frame is
directly related.

There are a couple more Cartesian coordinate frames related to the
measurement systems and the vehicle itself.  The body frame, or b-frame, refers to the
vehicle itself.  Conventionally, the axes are defined along the forward, right, and
through-the-floor directions.  The sensor frame, or s-frame, refers to the sensors
physical or mechanical properties.  It is used to model and identify instrument errors for
data processing.  The platform frame, or p-frame, refers to a physical set of fiducial
axes for the platform.  In addition, the accelerometer and the gyroscope have their own
frame.  Accelerometer frame may be defined as one of the accelerometer’s sensitive
axis (input axis) being aligned with a frame axis.  The non-orthogonality of the other
accelerometer is determined through a special calibration procedure.  The origin of the
accelerometer frame is the point of specific acceleration computation.  Similarly, the
gyro frame is orthogonal with only one of the input axes aligned along a frame axis.  Its
origin is the same as the accelerometer frame.

2.3 Coordinate Transformations

There are several ways to define the coordinate transformation from one to
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another frame and three types of elements need to be considered: relative orientation,
scale, and translation.  Since the translation is the simple vector addition and scale is
universally defined in general, the relative orientation would be the primary concern.
Three angles are enough to describe the coordinate orientation transformation between
orthogonal coordinate frames in three-dimensional space.  The transformation between
two Cartesian coordinate frames can be achieved with direction cosines, Euler angles,
or quaternions.

2.3.1 Direction Cosines

Consider two concentric frames, s-frame and t-frame, and an arbitrary point in
those frames, xsand xt (Figure 2.4).  With unit vectors in each frame, the coordinates of
the point can be expressed as:

x e e es s s s s s sx x x= + +1 1 2 2 3 3 (2.7)

x e e et t t t t t tx x x� 	 	
1 1 2 2 3 3 (2.8)

Each component in a position vector can be obtained by taking the inner product of the
vector with the unit vector for the axis, e.g., x j

s
j
s s
 �e x , j=1,2,3.  Analogously, the

coordinates of the t-frame unit vector ek
t  in the s-frame are

c j k j
s

k
t

, = ⋅e e , (2.9)

e e e ek
t

k
s

k
s

k
sc c c= + +1 1 2 2 3 3, , , . (2.10)

Note that c j k,  is the cosine of the angle between the jth s-frame axis and kth t-frame axis.

C3,3

e3
t

x3
t

x1
t

x2
t

x3
s

x1
s

x2
s

x

1s

1t

2s

2t

3t 3s

Figure 2.4 Vector x in Coordinate frames s and t.

By substituting (2.10) to (2.8) and comparing the result with (2.7), one can obtain the
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transformation between the coordinates:
x xs

t
s tC= , (2.11)

with the transformation matrix Ct
s  given by

C

c c c

c c c

c c c
t
s =

11 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

, , ,

, , ,

, , ,

. (2.12)

It should be noted that the matrix Ct
s , or the direction cosine matrix, is an orthogonal

matrix:
C C I C Ct

s
s
t

t
s

t
s T� � ( ) . (2.13)

Understanding the transformation matrix, the transformation of any 3-by-3 matrix can
be derived as follows.  Consider a linear mapping in the t-frame, y xt t tA
 .
Then, using (2.11) and (2.13)

C A Cs
t s t

s
t sy x= , (2.14)

y x xs
t
s t

s
t s s sC A C A= = . (2.15)

So, we reach the fact that
A C A Cs

t
s t

s
t= . (2.16)

2.3.2 Euler Angles

The relative orientation of the s- and t-frames could be described by a sequence
of rotations about specific axes by Euler angles (Arfken, 1985, p. 199).  The rotation
about the 1, 2 and 3 axis with the angle of θ  is given by

R R R1 2 3

1 0 0

0

0

0

0 1 0

0

0

0

0 0 1

( ) cos sin

sin cos

; ( )

cos sin

sin cos

; ( )

cos sin

sin cosθ θ θ
θ θ

θ
θ θ

θ θ
θ

θ θ
θ θ=

−
=

−
= −   (2.17)

Note that each R j ( )θ  is also a direction cosine matrix; it is orthogonal R Rj j
T− =1( ) ( )θ θ ;

and the inverse is the reverse rotation R Rj j
− = −1( ) ( )θ θ .

Let’s suppose that the s-frame is the result of rotating the t-frame, first about 1-
axis by α , then about 2-axis by β , and about 3-axis by γ .  Then, the total
transformation from t- to s-frame is R R R3 2 1( ) ( ) ( )γ β α  and it is the transformation

matrix Ct
s .  With the definition of rotation matrix in (2.17):

C R R Rt
s =

=
+ − +

− − + +
−

3 2 1( ) ( ) ( )

cos cos cos sin sin sin cos cos sin cos sin sin

sin cos sin sin sin cos cos sin sin cos cos sin

sin cos sin cos cos

γ β α
γ β γ β α γ α γ β α γ α
γ β γ β α γ α γ β α γ α

β β α β α

 (2.18)

It should be emphasized that the transformation is dependent on the order of the
rotation.  That is, R R R R1 2 2 1( ) ( ) ( ) ( )α β β α≠ .
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By comparing (2.18) with (2.12), the relation between Euler angle and the
direction cosine can be found.

α β γ=
−

= =
−

arctan ; arcsin ; arctan,

,
,

,

,

c

c
c

c

c
3 2

3 3
3 1

2 1

1 1

(2.19)

If the rotation angles are small, we may use the first order approximation for cosine and
sine terms.  Then, (2.18) becomes

R R R I3 2 1

1

1

1

1 0 0

0 1 0

0 0 1

0

0

0

( ) ( ) ( )γ β α
γ β

γ α
β α

γ β
γ α
β α

≈
−

−
−

= −
−

−
−

= − Ψ .  (2.20)

Ψ  is a skew symmetric matrix of the small rotation angles.  With (2.18), we also have
C I C I It

s
s
t T T≈ − ≈ − = −Ψ Ψ Ψ; ( ) . (2.21)

Note that the order of rotations about the axes does not affect the result in this
approximation.

2.3.3 Quaternions

A quaternion is a number that represents a vector in a specific four-dimensional
algebra.  It is a kind of generalized complex variable so that the properties and
manipulations of the quaternion are very similar to those of the complex variable.

The definition of the quaternion is given by
q a ib jc kd= + + + , (2.22)

where q is the quaternion; a, b, c, d are real numbers; and i, j, k are the imaginary units
having properties as follows:

i j k2 2 21 1 1= − = − = −; ; (2.23)
ij ji k jk kj i ki ik j= − = = − = = − =; ; . (2.24)

 The conjugate of the quaternion and the square of the magnitude of q are
q a ib jc kd* = − − − (2.25)

qq q q a b c d* *= = + + +2 2 2 2 . (2.26)

When a complex number eiθ  multiplies an arbitrary complex number, z ei= ρ φ ,
the vector represented by z is rotated by the angle θ

e z e e ei i i iθ θ φ θ φρ ρ= = +( ) . (2.27)
Analogously, a particular type of quaternion, rotation quaternion, can describe the
rotation of the three dimensional vectors in Euclidean space.  Consider the quaternion

q ib jc kd a ib jc kdζ ζ ζ ζ ζ
ζ ζ= + + + = + + +cos sin ( )
2 2

, (2.28)

where the numbers b, c and d satisfy the condition
b c d2 2 2 1+ + = . (2.29)

Consider the representation of this quaternion analogously to Euler’s equation,
e iiθ θ θ= +cos sin ,
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q e
ib jc kd

ζ

ζ

=
+ +

2
( )

(2.30)

The magnitude of the above quaternion is one and the exponent term represents the
three dimensional vector with magnitude ζ / 2  and the direction cosines b, c, and d.
When a three-dimensional vector, x = + +ix jx kx1 2 3 , is pre multiplied by this
quaternion and post multiplied by its complex conjugate, the vector is rotated about the
vector ib jc kd� �  by the angle ζ  to the vector ′x :

′ =x xq qζ ζ
* (2.31)

The vector ib jc kd� �  is called rotation vector whose direction specifies the single
axis about which one rotation transforms one frame to another.  It should be noted that
there is always a rotation vector for an arbitrary transformation.
 Now, let’s relate the rotation quaternion with the usual orthogonal
transformation Ct

s .  Consider a unit rotation vector eζ
t , whose direction cosines in the

t-frame are b, c and d (Figure 2.5).

eζ

θ λ
θ λ

θ

t

b

c

d

= =
sin cos

sin sin

cos

(2.32)

Note that the representation of the spherical polar coordinates is used.  To describe the
rotation about this axis, a new frame called � -frame needs to be defined, whose 3-axis

lies along the direction of eζ
t , and 1-axis is in the plane formed by eζ

t  and the 3-axis of

the t-frame.  Then, the transformation from t- to � -frame is given by

C R Rt
ζ θ π λ= − − +2 3( ) ( ) (2.33)

By definition, the matrix for the �  rotation in the � -frame is R3( )
�

.  According to
(2.16), the same rotation in the t-frame is given by

C C R Ct
s t

t= ζ
ζζ3( ) (2.34)

With (2.33) and (2.32), the transformation Ct

�
 can be represented in terms of

quaternion elements.

C

db

d

dc

d
d

c

d

b

d
b c d

t
ζ =

−
−

−
−

−

−
−
−

1 1
1

1 1
0

2 2

2

2 2
(2.35)
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ζeζ
t

θ

λ

1t

2t

3ζ
3t

1ζ

b
c

d

Figure 2.5 The unit rotation vector eζ
t ; and the ζ- and t-frames.

Finally, the transformation Ct
s  is obtained with (2.28) and (2.34).

C

a b c d b c d a b d c a

b c d a a c b d c d a b

b d c a c d a b a d b c
t
s =

+ − − + −
− + − − +
+ − + − −

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

2 2 2 2

2 2 2 2

2 2 2 2

2 2

2 2

2 2

( ) ( )

( ) ( )

( ) ( )

(2.36)

The above equation shows the clear relationship between the transformation matrix and
quaternion.  Because of their stable numerical characteristics, quaternion methods are
applied in most practical strapdown navigation systems for the attitude determination
(Da, 1997).  Details on determining attitude using quaternion will be discussed in
Chapter 5.

2.4 Some necessary definitions and derivations

2.4.1 Axial Vectors

In inertial navigation systems, the concept of axial vector is applied in the
differential equations for the angular data output from the Inertial Measurement Unit
(IMU).  The axial vector, by definition, is the ordered triple of Eulerian angles
(α β γ, , ).  Because of the dependency of transformations on the order of the rotation,
the axial vector does not perfectly behave like vectors.  For example, the commutativity
property of the two vectors is not applicable for the axial vectors.

If, however, the angles are small, the axial vector behaves like a vector.
Because the purpose of introducing axial vectors in this study is to represent the
attitude errors in INS, we can allow the small angle constraints.  Therefore, the triple of
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small angles ψ = ( , , )α β γ T  will be treated as a vector through this study.
Under the assumption of small angle rotation, the transformation from t- to s-

frame can be written as
x x x x x x xs

t
s t t t t t tC I= = − = − = − ×( )Ψ Ψ ψ . (2.37)

In addition, the axial vector in the t-frame can be transformed to the s-frame by
applying the transformation matrix.

ψ ψS
t
s t S

t
s t

s
tC C C= =; Ψ Ψ (2.38)

2.4.2 Angular Rates

To describe the frames that are rotating with respect to each other, it is
necessary to define a systematic notation for the angular rates, � � � �� ( )1 2 3 ,
between two frames.  The angular velocity of the t-frame with respect to the s-frame
with coordinates in the t-frame is denoted as � st

t .  Considering the angular velocity as a
vector, one can reach the following properties:

ω ω ωst
t

s
t

st
s

s
t

ts
sC C= = − , (2.39)

ω ω ωst
t

su
t

ut
t= + . (2.40)

The skew-symmetric matrix for the angular rates is defined as

ω st
t

st
t

st
t× = =

−
−

−
Ω Ω;

0

0

0

3 2

3 1

2 1

ω ω
ω ω
ω ω

. (2.41)

It should be emphasized that the angular rate does not have to be small because by
definition, it is the infinitesimal angle in the ratio to infinitesimal increments of time.

2.4.3 Differential Equation of the Transformation

When two frames are rotating with respect to each other, the relative
orientation is changing with respect to time.  Therefore, it is necessary to derive the
differential equation of the transformation with respect to time.   The differential
equation of the transformation as a function of time is given by�

lim
( ) ( )

C
C t dt C t

dtt
s

dt

t
s

t
s

= + −
→0

(2.42)

Assuming the small changes in the transformation for the time interval dt, the
transformation at time t+dt can be expressed as:

C t dt C C t I C tt
s s

t
s s

t
s( ) ( ) ( ) ( )+ = = −δ Ψ (2.43)

Substituting (2.43) into (2.42) yields�
lim

( ) ( ) ( )
lim

( )
C

I C t C t

dt

C t

dt
Ct

s

dt

s
t
s

t
s

dt

s
t
s

ts
s

t
s= − − = − = −

→ →0 0

Ψ Ψ Ω . (2.44)

Using (2.16),
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Ω Ω Ωts
s

st
s

t
s

st
t

s
tC C= − = − . (2.45)

The final form of the differential equation for the transformation is given by�
C Ct

s
t
s

st
t= Ω . (2.46)

The well-known law of Coriolis is derived using (2.46).  By taking the time derivative
of (2.11), � � �

( � ); � �x x x x x x x xs
t
s t

t
s t

t
s t

st
t t

s
t s t

st
t tC C C C= + = + = +Ω Ω (2.47)

The differential equation for the quaternion elements can also be derived
analogously.  Using (2.36), one can solve for a�2  in terms of the trace of Ct

s .

a tr Ct
s

ζ
2 1

4
1= +( ( ) ) (2.48)

Taking time derivative of the above equation

2
1

4

1

4
a a tr C tr Ct

s
t
s

st
t

ζ ζ
 

( ! ) ( )= = Ω . (2.49)

Substituting (2.36) and (2.41) into (2.49)"
( )a b c dζ ζ ζ ζω ω ω= + +1

2 1 2 3 , (2.50)

where ω st
t = ( , , )ω ω ω1 2 3 .

Also, from (2.12) and (2.36), one can find that
4 23 32a b c cζ ζ = − . (2.51)

With (2.46), the time derivative of the above equation is given as
4 23 32 21 2 22 1 31 3 33 1( # # ) $ $a b a b c c c c c cζ ζ ζ ζ ω ω ω ω+ = − = − + − . (2.52)

Substituting the elements in the last equation with corresponding ones from (2.36) and
solving for %bζ ,

&
( )b a d cζ ζ ζ ζω ω ω= − − +1

2 1 2 3 . (2.53)

In the same way, one can derive the equations for 'cζ  and (dζ .

)
( )c d a bζ ζ ζ ζω ω ω= − −1

2 1 2 3 (2.54)

*
( )d c b aζ ζ ζ ζω ω ω= − + −1

2 1 2 3 (2.55)

2.5 Specific Coordinate Transformation

2.5.1 Inertial Frame and ECEF frame

The relationship between the quasi-inertial and ECEF frame is quite trivial.
Because e- and i-frames have the same origin, the center of the Earth’s mass, and the
same direction of the 3-axis, these frames are different by a rotation only about the 3-
axis.  Assuming the uniform rotation rate of the Earth, + e , the angular rate of the e-
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frame with respect to the i-frame is given by
ω ie

e
e= ( )0 0 ω (2.56)

So, the transformation matrix from i- to e-frame is simply a rotation about the 3-axis by,
et .

C R t

t t

t ti
e

e

e e

e e= = −3

0

0

0 0 1

( )

cos sin

sin cosω
ω ω
ω ω (2.57)

2.5.2 ECEF and Geodetic coordinates

As mentioned before, the ECEF coordinates can be equivalently represented
with the geodetic latitude, longitude and height.  The relationship between the ECEF
and geodetic coordinates is given by

x

x

x

N h

N h

N e h

e

e

e

1

2

3
21

=
+
+
− +

( ) cos cos

( )cos sin

( ( ) ) sin

φ λ
φ λ

φ
, (2.58)

where N is the radius of curvature of the ellipsoid in the prime vertical plane,

N
a

e
=

−1 2 2sin φ
, (2.59)

a is the length of the semi-major axis, e f f2 22= −  is the square of the first eccentricity
, and f is the flattening of the ellipsoid.  The radius of curvature in the meridian M is
also given for a future reference.

M
a e

e
= −

−
( )

( sin ) /

1

1

2

2 2 3 2φ
. (2.60)

The inverse relationship of (2.58) is usually presented in iterative form.  For instance:

φ
λ

φ

φ

h

x

x x

e N

x

x

x

x x
N

e

e e e

e

e

e e

=

+
+

+
−

arctan
( ) ( )

sin

arctan

( ) ( )

cos

3

1
2

2
2

2

3

2

1

1
2

2
2

1

(2.61)

For details on the above derivations, see Rapp (1994).

2.5.3 ECEF and Navigation Frame

Because the e- and n-frame are not concentric, the transformation is more or
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less complicated.  The orientation transformation needs two successive rotations; first
rotate about the local east axis by the angle ( / )π φ2+ ; then rotate about the new 3-
axis by the angle −λ :

C R Rn
e = − + =

− − −
− −

−
3 2 2

0

( ) ( / )

sin cos sin cos cos

sin sin cos cos sin

cos sin

λ π φ
φ λ λ φ λ
φ λ λ φ λ

φ φ
. (2.62)

The angular rates can be derived using Ωen
n

e
n

n
eC C= -  as in (2.46):

ω en
n T= − −( . cos / / sin )λ φ φ λ φ . (2.63)

By intuition, the angular rates of the n-frame with respect to the i-frame can be also
given as:

ω in
n

e e
T= + − − +(( 0 ) cos 1 ( 2 ) sin )λ ω φ φ λ ω φ (2.64)

2.5.4 Body and Navigation Frame

The transformation between the body and navigation frame is also represented
by the three successive rotations; about 1-axis by the negative roll angle, 3 4 ; about 2-
axis by the negative pitch angle, −χ ; and about 3-axis by the negative yaw angle, −α .

C R R Rb
n = − − −3 2 1( ) ( ) ( )α χ η (2.65)

From (2.65) and (2.46), one can derive the relationship between the angular rates and
the attitude rates. 5

5
5

sin tan cos tan

cos sin

sin sec cos sec

η
χ
α

η χ η χ
η η

η χ η χ
= −

1

0

0

ω nb
b (2.66)

The above differential equation must be integrated to obtain the attitude information of
the vehicle from given body to navigation frame rates.  It should be noted that the
equation is singular for pitch angles of 90 degrees.  The alternative differential equation
is the one in terms of the quaternion (2.50), (2.53)-(2.55).  In this case, no singularity
exists.  So, the quaternion method is preferred for high dynamic aircraft such as the
military plane.
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CHAPTER 3

GLOBAL POSITIONING SYSTEM
AND INERTIAL NAVIGATION SYSTEM

3.1 GPS System Overview

3.1.1 Introduction

The NAVSTAR (Navigation System with Timing And Ranging) GPS was
initiated in 1973 by the Joint Program Office (JPO) at the US Air Force Systems
Command’s Space Division.  The original objectives of the GPS include point
positioning, the determination of a vehicle’s position and velocity, and the precise
coordination of time.  It is designed as an all-weather, continuous, passive and space-
based navigation system.  Currently, it is fully operating and at least four satellites are
simultaneously observable in any place of the world at any time.

The GPS satellite continuously transmits the signal with the transmission time
and ephemeris information.  Once the receiver receives the signal, the signal travel time
from the satellite to the receiver can be calculated.  By multiplying the travel time with
the velocity of the signal, one can get the pseudorange.  Here, the term “pseudorange”
is used instead of “true range”, as the clocks of the satellite and the receiver are never
perfectly synchronized.  If the satellite positions are known, four simultaneous
pseudoranges are necessary to solve for the receiver position as well as the clock
errors.

3.1.2 Space Segment

The GPS consists of three segments: space segment, control segment and user
segment.  The space segment is responsible for the GPS satellites from development to
launch.  Currently, 27 high-altitude (22,000km) GPS satellites are on six near-circular
orbital planes with 55o inclination (except Block I) and 12 sidereal hour period.  With
this constellation, four to eight GPS satellites above 15o elevation angle are
simultaneously observable from anywhere on the earth at any time of the day.

So far, four main classes of GPS satellites have been developed.  These are
Block I, Block II, Block IIA and Block IIF.  The first generation Block I satellites were
launched by JPO between 1978 to 1985.  The inclinations of the Block I orbits are 63o

and the expected life time was 4.5 year.  There is, however, a Block I satellite still in
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operation (PRN 12).  This PRN 12 is quite useful for satellite clock studies because the
Selective Availability (SA) has not been implemented in Block I satellites (Heroux and
Kouba, 1995).  The first Block II satellite, PRN 14, was launched in 1989 with the
inclination of 55o.  The essential difference between the Block I and Block II satellites
is that Block II signal is restricted to civilian users while Block I is fully available.  The
Block IIA satellites are equipped with mutual communication capability and all 15
satellites were launched since 1990.  Block IIR satellites, designed to replace the Block
II satellites, will have the capability to autonomously navigate (AUTONAV)
themselves and generate their own 50 Hz navigation message data.  The designed life is
10 years.

The GPS satellite carries a high performance rubidium or cesium frequency
standard as a precise time base with a proportional accuracy of 10-13 to 10-14.  From the
frequency standards, GPS satellites produce the fundamental L band frequency of
10.23 MHz.  Two coherently derived carriers L1 and L2 are generated by multiplying
the fundamental frequency by 154 and 120 (L1 = 1575.42MHz, L2 = 1227.60MHz).
The L1 carrier is modulated by C/A (Coarse/Acquisition code) and P code (or Y code),
while L2 is modulated by P or Y code only.  In addition, the information about the
satellite clock, position and velocity is also modulated onto the carriers.  The C/A code
is designated as the Standard Positioning Service (SPS), and it is available for civilian
use.  The P code is also designated as the Precise Positioning Service (PPS), and the Y
code is generated by the modulo 2 sum of the P-code and an encrypting W-code.
Therefore, P or Y code is only accessible to the authorized users like U.S. military.
The effective wavelengths of the C/A and P code are approximately 300m and 30m,
respectively.

The Selective Availability (SA) and the Anti-Spoofing (AS) are implemented to
prevent the civilian from full use of the GPS system.  SA degrades the user’s
positioning accuracy from 30-40m to approximately 100m by dithering the satellite
clock (δ-process) and manipulating the ephemerides (ε-process).  Since the δ-process is
achieved by introducing various errors into the fundamental frequency of the satellite
clock, the effect appears in the code and carrier pseudorange in the same way.  By
differencing the pseudoranges from two receivers, the dithering effect can be
significantly reduced.  In absolute positioning, however, the satellite clock should be
estimated to do precise positioning (Kwon et al., 1999).  The ε-process is achieved by
truncating the orbital information so that the precise position of the satellite cannot be
calculated.  The erroneous satellite position has a direct impact on the receiver position
which is degraded up to 40m in absolute single positioning.  In baseline determination,
however, only the relative satellite position errors produce the relative baseline errors.

As stated previously, the Block II satellites have the capability to “turn off”  the
P-code or generate the encrypted code (Y-code) so that unauthorized user cannot have
the full access to the system.  This feature is permanently implemented from January
31, 1994.  It should be noted that the integer ambiguity resolution requires longer time
of averaging or filtering to compensate for the AS effect (Yang, 1995).
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3.1.3 Control Segment

The control segment consists of a master control station, worldwide monitor
stations, and ground control stations.  They are responsible for tracking the satellites
for the orbit and clock determination, prediction modeling, time synchronization of the
satellites, and updating the navigation message for every satellite.  The master control
station, located in Colorado Springs, is responsible for overall management of the
remote monitoring and transmission sites.  The monitor stations check altitude,
position, speed, and overall health of each satellite twice a day.  Any anomalous
behavior of the satellite is reported to the master control station for analysis.  Ground
control stations are the communication links to the satellites and track the satellites
from horizon to horizon. They also transmit correction information to individual
satellites via S-band radio links (Hofmann-Wellenhof et al., 1997).

3.1.4 User Segment

The user segment consists of numerous types of GPS receivers and the GPS
user community.  This segment uses broadcast data from satellites and determines the
precise position of the receiver antenna.  There are literally thousands of GPS users
such as navigators, surveyors, geodesists and other users who require position
information.

3.2 GPS Data Modeling

3.2.1 GPS Observables and Observation Equation

There are two types of observables provided by the GPS receiver, namely code
pseudorange and carrier phase.  The pseudorange is derived from the signal travel time
calculated from the satellite and receiver clock information and carrier phase is derived
from the difference between the phase of the carrier received from a satellite and a
reference phase generated by the receiver’s oscillator.  The observation equation for the
pseudoranges and carrier phases are given as follows (Goad and Yang, 1995):
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where
P Pi

j
i
j

, ,,1 2  - pseudorange from satellite j measured at station i on L1 and L2,

Φ Φi
j

i
j

, ,,1 2  - phase ranges from satellite j measured at station i on L1 and L2,
�

i
j  - geometric range between satellite j and receiver i,

Ti
j  - tropospheric refraction term from satellite j to receiver i,

c  - the vacuum speed of light
dt dti

j,  - clock error for receiver i and satellite j, respectively,
f f1 2,  - frequencies of L1 and L2 carrier,
λ λ1 2,  - wavelengths of L1 and L2 carrier,
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2,  - ionospheric refraction terms for L1 and L2, respectively,
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,2 , respectively,
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, ,,1 2  - measurement noise for phases on L1 and L2,

b b bi i i, , ,, ,1 2 3  - bi ,1  is the interchannel bias between L1 phase and L2 phase, bi ,2  and

bi ,3  are the interchannel bias between L1 phase and P Pi
j

i
j

, ,,1 2 , respectively.

Note that the phase observation equations have additional terms for ambiguity and the
effect of the ionosphere appears in opposite way to that of the pseudorange.

The noise level of the phase is known to be on the order of a few tenths of a
millimeter while that of the pseudorange is much larger.  The P-code pseudorange can
be as good as ±20cm but the C/A code pseudorange could be worse than ±1m
depending on the types of receiver (Yang, 1995; Grejner-Brzezinska, 1995).  The
interchannel biases for i-th receiver are caused by time non-synchronization of the four
measurements.  This non-synchronization results from the fact that the L1 and L2
signal must travel through different hardware paths inside the receiver and transmitter
(Coco, 1991).

 The ionospheric effect can be cancelled or reduced by forming the so-called
ion-free combination, given in the next section.  The tropospheric effect, however,
cannot be cancelled by any combination of observables because of its nondispersive
characteristics.  Thus, it is modeled using the information about the temperature,
humidity and the atmospheric pressure as well as the elevation of the space vehicle
(SV).  The well-known tropospheric model can be found in Goad and Goodman
(1974), called modified Hopfield model.  The effect of the troposphere can reach up to
one decimeter (Seeber, 1993, p.290).
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3.2.2 Differencing and Combinations of GPS Measurements

As described in the previous section, the GPS observables are affected by many
nuisance parameters such as clock biases, ionospheric effect and AS effect.  To
eliminate or reduce the errors caused by these parameters, the differencing technique
can be used.  Basically, the differencing eliminates or significantly reduces the errors
from a common satellite or receiver.  The single differenced measurement is obtained
by two simultaneous observables of satellite k, tracked by two receivers i and j:
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From the above equations, one can notice that the satellite clock error as well as the
satellite initial phase term are cancelled by the differencing.  The errors related to the
receivers, however, such as receiver clock errors, interchannel biases and initial phases
are still present.  These errors make it impossible or very difficult to estimate the
integer phase ambiguities.  Because the interchannel biases are nearly collinear with the
ionospheric effect as well as the integer ambiguity terms, it is not possible to estimate
those unknowns separately.  Furthermore, the initial phase cannot be separated easily
from the ambiguity as seen in equation (3.2).   Therefore, a more favorable way to
estimate or recover the integer phase ambiguity is to use the double differencing
technique explained next.

The receiver clock error and receiver initial phase terms can be cancelled by
performing one more differencing using the single differenced measurement from
another satellite l (Figure 3.1).
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Figure 3.1 Scheme of the double differencing.

Because of the advantage to determine the integer ambiguity, the double differencing is
the most popular method being used in precise Differential GPS (DGPS) positioning.

Further differencing is possible between double differenced measurements
obtained at two successive epochs to eliminate the phase ambiguity N1  and N2 .
Because the ambiguities remain constant over time unless a cycle slip or loss of lock
occurs, those can be cancelled out.  The triple differencing over time span dt is
expressed as follows:
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The advantage of triple differencing is that it is very easy to detect any cycle slip.  As
soon as the cycle slip occurs, the effect will clearly appear as an outlier.  It should be
emphasized that the equation (3.4) is no longer equivalent with (3.3) because, by taking
triple differences, loss of information and redundancy occurs for phase and code
observables, respectively.  In other words, the number of observations of code (last
two equations) reduced by one resulting in the loss of redundancy in the triple
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differencing.  In addition, the integer characteristic of the ambiguity is lost in phase
observables.  Therefore, when forming models in terms of the differenced observables,
one has to check whether the new model is equivalent to the original ones.  For
conditions to check the equivalency, one can refer to Schaffrin and Grafarend (1986).

The characteristic dual frequency measurement in GPS leads to the possible
elimination or at least significant reduction of the ionospheric effect.  For example,
using two phase measurements in L1 and L2, one can form ion-free phase measurements
as follows:

Φ Φ Φ1 2 1 1 2 2, ,= +α α (3.5)

where α α1
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Note that the integer characteristics of the phase ambiguity is lost by forming this ion-
free combination.  There exist, however, phase combinations which form ion-free
observables preserving the integer characteristics of the ambiguity, for example
α1 77= , α2 60= − .  For details, refer to Han and Rizos (1996).

Another popular combination of the GPS measurements is the so-called
widelane combination, obtained by subtracting the L2 phase from L1 phase.  The
frequency of the widelane is fw = 34782.  MHz and the corresponding equivalent
wavelength λw = 862. cm.  This increased widelane wavelength provides increased
ambiguity spacing so that the widelane ambiguity ( N N Nw � �1 2 ) can be resolved
more easily (Hofmann-Wellenhof, 1997, p.214).

Before ending this section, it should be mentioned that the noise level of the
combined or differenced observations is larger than that of the original observation.
Assuming the same noise level for both phases, one can apply simple error propagation
law for the widelane observable.  The noise of the widelane is larger by the factor of

2  than that of a single phase.  In addition, the differencing introduces statistical
correlations among the observables while the original data set of GPS is assumed to be
uncorrelated.  Therefore, one has to consider the proper correlations when making a
new, differenced model equivalent to the original one (Schaffrin and Grafarend, 1986).

3.3 Relative GPS Kinematic Positioning in Post-Processing Mode

Since the role of GPS in this research is to provide the kinematic acceleration
derived from the precise GPS position, a general concept and adjustment technique in
terms of post-processing kinematic GPS positioning is addressed in this section.  In
general, the relative positioning, namely the baseline vector determination, shows
higher accuracy than the absolute positioning because the errors in GPS measurements
such as satellite orbit error, atmospheric effect, and the clock errors can be cancelled or
reduced through differencing.  Currently, the DGPS kinematic positioning in post
process mode provides the position accuracy of ±10cm or better.  The idea behind all
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differential positioning is to eliminate bias portions at one location by comparing them
with these seen at a known position.  Therefore, it is essential to track the same set of
satellites at both base and remote receivers.  Furthermore, the accuracy in baseline
determination is highly dependent on the baseline length.

In real-time DGPS, two correction methods are in use.  The first method is to
correct the position of the remote receiver using calculated and known position of the
base station.  The second method is based on the pseudorange corrections derived from
the difference between calculated ranges and observed ranges at the base station.
Thus, a fast radio link between the base and remote receiver is required in this case.  In
addition, the ambiguities must be resolved on-the-fly to use phase measurements for
better accuracy.

In the post-processing, the relative position of the remote receiver ( , , )∆ ∆ ∆x y z
is solved using the observations from both base and remote receivers instead of
applying the corrections to the remote receiver.  The most popular observables used in
precise kinematic positioning is the double differencing (3.3) because of its compact
structure and the rather simple (block diagonal) weight matrix.  The constant errors
caused by the common receivers and the common satellites are cancelled and the
ambiguity remains as integer in this case.  Because of the non-linearity between the
observations and the unknowns, the equations (3.3) should be linearized to set up an
adjustment model.

For simplicity, the adjustment model is derived with a simplified double
differenced model neglecting the atmospheric effects.  As a matter of fact, the
ionospheric effect could be reduced using an ion-free combination and the tropospheric
effect could be modeled and then removed prior to the adjustment.  Thus, after
understanding the basic simple adjustment equation, one can refine the various
adjustment models depending on the purpose at hand.  Neglecting the atmospheric
effect, the double differenced observation equation for the phase measurements can be
reduced as follows:
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where the double differenced geometric range in above equations is expanded as:
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Assuming the satellite positions and the base position ( , , )x y zi i i are known, the above
equations (3.6) would be linearized in terms of the approximate remote receiver
position ( , , )x y zj j j0 0 0 .
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Rearranging (3.8) with (3.9), the usual adjustment model y A e e N= +ξ , ~ ( , )0 Σ  can
be established.  Assuming four satellites k, l, m and n are simultaneously tracked, the
corresponding components in the adjustment model are:
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The covariance matrix of the observations is obtained by applying the simple error
propagation law.  Consider two double differenced observation Φ ij

kl  and Φ ij
km , and

define DD as follows:
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Assuming no correlations among each observation in matrix Φ , the covariance of DD
is calculated as

cov( ) cov( )DD F F

F F
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=

= ⋅

=
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2

2 4 2

2 4

. (3.12)

So, the double differenced observables are correlated because of the common satellites
and receivers.  It should be noted that the above model (3.10) is underdetermined
because we have six observations and nine unknowns.  Theoretically, the above system
can be solved if the receiver could be stationary for one more epoch because each
epoch adds six observations while the number of unknowns remain the same.
Afterwards, the remote receiver can be in motion and its position can be determined.

If cycle slips or losses of lock occur while the receiver is moving, the ambiguity
should be re-determined.   The most popular methods in ambiguity fixing are the
ambiguity function and the search technique.  The former uses the concept of minimum
variance of the estimated ambiguities and the latter uses the adjustment technique
applied to trial positions in search space.  For more details on ambiguity fixing, refer to
Remondi (1991), Hwang (1991), etc.

3.4 Inertial Navigation System Overview

The Inertial Navigation System (INS) is a self-contained position and velocity
measuring device using sensors which react on the basis of physical laws: Newton’s law
of motion and Sagnac effect for mechanical and modern ring laser gyro, respectively.
Unlike other systems such as GPS, the INS depends entirely on electromagnetic
instruments that do not require visual or radio link with the environment.  The INS is
mainly designed for the vehicles such as cars and ships, but also airplanes.  So the
fundamental function of the inertial navigation system is to indicate the position,
velocity, heading, and direction of vertical over a period of time (Broxmeyer, 1964).  In
addition to the military applications, INS has been used in many scientific and
engineering areas such as auto- navigation, flight control and survey.

The sensors of the INS comprising the Inertial Measurements Unit (IMU)
consist of accelerometers and gyroscopes.  The accelerometer senses acceleration,
more precisely the specific force, and the gyroscope senses angular rate of a moving
object for translational and rotational motion, respectively.  Among various specific
force measurements, measuring the variations of spring or pendulum with a proof mass
is most commonly used for accelerometers.

Similarly, the reaction of a spinning proof mass is measured in the mechanical
gyroscope.  In case of the modern gyroscope, a property of light in a rotating frame,
called Sagnac effect, is utilized instead of a spinning proof mass.

The role of gyroscope is to provide a reference frame for navigation.  In other
words, the accelerometer senses the acceleration in its own frame, while the sought
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position is in a reference frame such as the navigation or inertial frame.  Using the
angular and orientation information from the gyroscopes, the position derived from the
accelerometer could be transformed into the reference frame.  Therefore, three single-
degree-of-freedom (SDF) gyros are necessary with mutually perpendicular sensitive
axes to determine the three-dimensional reference for attitude.

3.4.1 Mechanization

There are two types of mechanization of the IMU, namely the stabilized
platform and the strapdown configuration.  The stabilized platform provides angular
motion isolation from the vehicle.  In other words, the amount of rotation needed to
isolate the platform from the vehicle motion is obtained from the output of gyros.
Then, the stabilization is accomplished by rotating the platform back to the original
position using the servo motor of the gimbal.  Through this feedback, called space
stabilization, gyros maintain a fixed orientation in the inertial space.  Using the
accelerometers mounted on the space-stabilized platform, the specific forces at a fixed
orientation can be obtained.  Because of the vehicle’s motion isolation, the stabilized
system usually shows better performance than the strapdown system.

In strapdown mode, the gyros and accelerometers are physically bolted to the
vehicle.  Therefore, those sensors are subjected to the entire range of dynamics of the
vehicle.  This means that, in general, the performance of the strapdown system is
poorer than that of the local stabilized system.  In addition, an extra computation is
necessary to transform the data from the body to the navigation frame since the
orientation of the platform is not maintained.  The advantages of the strapdown system
are lower cost, smaller size and lighter weight.  Furthermore, the installation on a
vehicle is much easier than that of the stabilized system.

3.4.2 Gyroscope

Two major types of gyros are in use, namely the mechanical gyro and the
optical gyro.  The modern Ring Laser Gyro (RLG) and Fiber Optic Gyro (FOG) are in
the category of the optical gyro.  As mentioned previously, the physical backgrounds of
the mechanical gyro and modern RLG or FOG are totally different.  While the
mechanical gyro is based on the angular momentum conservation law and implemented
in the stabilized system, RLG or FOG are based on the Sagnac effect and implemented
in the strapdown system.  In both cases, however, the role of the gyro providing a
reference for relative attitude, or orientation, is the same.  Since this study utilizes the
strapdown system, the description on the mechanical gyro will not be discussed.

3.4.2.1 Sagnac Effect
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The Sagnac effect describes the propagation of a light beam around a closed
path in a frame that rotates with respect to the inertial frame.  Because light should not
be affected by the dynamics of the environment in which the gyro finds itself, it is the
natural alternative to the spinning proof mass of the mechanical gyro for the strapdown
system.  When a light beam travels in a closed path that is rotating with respect to the
inertial space, apparent lengthening or shortening of the path on which the light travels
occurs.  The lengthening occurs when the light travels in the same direction in which
the path rotates and the shortening occurs in the opposite case.

 Consider a light beam traversing an arbitrary circuitous planar path having
length L in the counterclockwise direction as shown in Figure 3.2.  After time t, the
light left from the emitter E returned to the same inertial position E.  The emitter,
however, is not at the position anymore but at the position E’  because it is rotating.  To
catch up with the emitter, the light must travel extra path ( � L ) during extra time � t .
Therefore, one can set up a relationship between the rotation of the path and the
apparent lengthening/shortening.

t

t’

t+∆t

r E’

E”

E
∆θ

ω

Figure 3.2 The Sagnac effect showing apparent path lengthening.

The differential change in path during a differential time interval dt is given by

dt
r d

c
= ⋅ θ

(3.13)

In the mean time, the circuit rotates by
d L) r dt(∆ = ⋅ ⋅ω (3.14)

Notice that the total apparent lengthening of the path occurs while the light travels a
total angle of 2π + ∆θ .  Also, the integration variable can be changed from angle to
area, A, swept out by the light wave using the following relationship:

dA r rd= ⋅ ⋅1

2
θ (3.15)

Substituting (3.13) in to (3.14) and then changing the integration variable using (3.15),
one can derive the apparent lengthening as
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∆L
c

A= 2ω
, (3.16)

where c is the light velocity and ω is the angular rate of the path with respect to the
inertial space.
In the opposite case, that is, the light travels in the opposite direction to that of the
path, the apparent shortening ( )

�
l  occurs as

∆l
c

A= − 2ω
(3.17)

3.4.2.2 Ring Laser Gyro

As one can see in (3.16) and (3.17), it is very difficult to detect the rotation by
measuring the change of the wavelength of light.  For example, the apparent path
lengthening caused by the rotation of 2π rad / sec  of a circuit defined by a circle with

radius equal to 10 cm is just ∆L m≈ ⋅ −13 10 9. .  Instead, the RLG uses a fringe pattern
of two counter-traversing light beams to detect the rotation of the platform.  As shown
in Figure 3.3, two light beams traversing in opposite direction are generated by a gas
discharge in the resonant cavity of a laser.  The resonant cavity is built such a way that
the optical path length for each beam and frequencies of two beams are identical when
gyro is at rest.  When the gyro is rotating about an axis perpendicular to the lasing
plane, one beam shows apparent path lengthening, and the other shortening.

Consider a laser with wavelength λ  and the integer number N, inside a
resonant cavity of length L.

L N= λ (3.18)
The change in apparent length of the resonant cavity implies the change in the
wavelength:

 ∆ ∆λL N= . (3.19)
Using f c= / λ , change in the wavelength can be converted to the change in the
frequency:

∆ ∆f
f

L
L= − . (3.20)

From (3.20), (3.16) and (3.17), one can derive the relationship between the angular
rate of the rotation and the difference in the frequencies of the two counter-travelling
light beams.

δ
λ

ωf
A

L
= 4

(3.21)
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Figure 3.3 Schematic of three-mirror ring laser gyro (Honeywell H-423).

Finally, the relationship between the phase difference and the change in angle is
obtained by integrating the above equation.

δφ δ
λ

δθ= =
 f dt
A

L

4
(3.22)

The phase change is measured by detecting the transitions from light to dark in the
fringe pattern.  The fringe pattern remains stationary if there is no rotation with respect
to the inertial space.  In the presence of rotation, however, the fringe pattern migrates
and the number of the fringes passing a detector indicates the rate of rotation.

The problem in RLG is so-called frequency lock-in.  From imperfections in the
various components of the resonant cavity, the two counter-traversing beams oscillate
at nearly the same frequency and lock together at the same frequency over a range of
low angular rates.  In this case, the RLG does not recognize the rotation and produces
zero rotation.

To overcome the lock-in problem, an artificial bias can be imposed in the sensed
angular rate by generating the deliberate asymmetries into the device.  Then, the true
rate is obtained by correcting the known effect of the designed asymmetry.  There are
two main approaches introducing the asymmetries, namely using mechanical motion
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and magnetic fields.  In the first case, an artificial bias in the form of an alternating
rotation (dithering) of the gyro about the sensitive axis is imposed.  This means,
however, that the gyro has to pass the lock-in range twice per dither period.
Therefore, the gyro will not sense the actual rotation for a small amount of time and
this causes an error that can be modeled as a random walk.  In the second case, so-
called Faraday cell is placed in the path of the light beams so that a frequency bias
between two beams is created by the polarization effect in the cell.  The bias modulated
by the switching the magnetic field is periodic, but the time in the lock-in range is
extremely short because it corresponds to the switching time of the magnetic field.
One of the successful implementation of the magnetic asymmetries could be found in
the Litton’s “zero-lock”  RLG which uses four light beams to create two laser gyros in
the same cavity.  It uses two sets of oppositely polarized beam pairs so that the Faraday
bias can be cancelled while the signal is doubled.

The output of the strapdown gyro is the angular rate of the platform, or body,
on which the gyro is installed, with respect to the inertial space represented in the b-
frameω ib

b .  The essential error model for the RLG is given by three components: drift
error, scale factor error, and random noise.

 δω ω εb
g g g= + +b k (3.23)

The scale factor error includes a constant part and linearly varying parts.  The drift bias
includes a constant part, effects of the misalignment, and temperature and magnetic
sensitivity terms.

3.4.3 Accelerometer

The primitive form of the accelerometer can be well described using the spring-
mass combination.  Although details of the construction are not the same, all
accelerometers operate more or less on the basis of similar principles.

In a modern accelerometer, the degree of freedom of the proof mass is
pendulous rather than translational as in the spring-mass combination.  As shown in
Figure 3.4, there are three axes associated with the accelerometer: input axis (1-axis),
output axis (2-axis) and the pendulous reference axis (3-axis) related to the proof mass.
The proof mass is the arm of the pendulum hinged to the case so that the applied
acceleration is measured from a rotation about the hinged point.

When a specific force is applied along the 1-axis, the pendulous axis will deviate
from the reference axis.  The rotation occurs around the 2-axis and sensed by the signal
generator (SG) at one end that creates a corresponding torque to the torque generator
(TG) at the other end to null out the rotation.
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Figure 3.4 Schematic of torque rebalance pendulous accelerometer.

Figure 3.5 shows the cross-section of the QA2000 accelerometer integrated in
Honeywell’s LaserRef III RLG inertial navigator.  The torquer coil/seismic element is
supported by the quartz-flexure suspension.  When the seismic mass responds to an
applied specific force, the capacitor plates generate corresponding ac output voltage.
This signal is fed back to the torquer coil, producing an electromagnetic torque to
nullify the effects of the sensed acceleration.  The feedback current for this
counterbalancing is the measurement of the input acceleration.
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Figure 3.5 QA2000 Accelerometer
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The errors affecting the accelerometer measurements are very similar to those
for the mechanical gyro.  The general model includes a general bias, a scale factor error
and the random noise terms.

δa b k ab
a a

b
a= + + ε , (3.24)

where δab  is the total error in the body frame, ba is the general bias, ka is the scale
factor error and ε a  is the random noise.  In spite of its name, ba is considered random.

The general bias term includes unknown constant and anisoelasticity effect due
to unequal compliance in the pivots of the pendulum.  The scale factor error consists of
constant, linear and quadratic dependencies on the input acceleration, and effects
generated in the torque rebalance electronics.  There is another error, the misalignment
error, caused by the offset between the reference axes and the axes of the case.
Through calibration, careful design and mechanization, this effect could be significantly
reduced or minimized.

3.4.4 Navigation Equation

The output from the a strapdown INS system consists of the inertial
acceleration in the body frame ( )ab  and the angular rate of the body frame with respect

to the inertial frame ( )ω ib
b .  Therefore, this sensed acceleration should be converted to

the n-frame inertial acceleration to be used in the navigation equation.  The
transformation from the i- to n-frame can be done using gyro data.  Then, those
accelerations in the n-frame must be integrated to get the position and velocity of a
vehicle through the navigation equation.

The fundamental equation (2.6) that modified Newton’s Second Law of motion
under the existence of the gravitational field, from which the navigation equation is
derived, is rewritten for convenience as:� �

x a gi i i= + . (3.25)
It states that the kinematic acceleration is the sum of both specific force and gravitation
in the inertial frame.  Applying the transformation matrix from i- to n-frame:

a a x g x gn
i
n i

i
n i i

i
n i nC C C= = − = −( 	 	 ) 
 
 . (3.26)

Now, let vn  be the e-frame velocity vector coordinatized in the n-frame.  Then, from
the Coriolis law:

v x x xn
e
n e

e
n

i
e i

ei
i iC C C= = +�

( � )Ω . (3.27)

Solving for 
xi , �
x v xi

n
i n

ei
i iC= − Ω . (3.28)

The time derivative of (3.27) yields
d

dt
C Cn

i
n i

ei
i i

i
n i

ei
i iv x x x x= + + +

�
( � ) ( ��� � )Ω Ω . (3.29)

Substituting (3.27) and (3.28) into (3.29) and using the differential equation for the
transformation (2.46):
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d

dt
C Cn

i
n i

ni
i

ei
i

n
i n

ei
i

ei
i iv x v x= + + −� �

( )Ω Ω Ω Ω . (3.30)

Finally, use (2.16) and substitute (3.26) into (3.30):
d

dt
n n

in
n

ie
n n nv a v g= − + +( )Ω Ω , (3.31)

where g g xn n
ie
n

ie
n n= − Ω Ω  is the gravity vector being the sum of gravitational and

centrifugal acceleration of the Earth.
Using the relationship between the velocity in the n-frame and the e-frame represented
by the geodetic latitude, longitude and height,

v n

M h

N h

h

=
+

+
−

�
( )�

( ) cos�
φ

λ φ , (3.32)

and substituting the angular rate matrices in (3.31) explicitly, one can derive six
differential equations as:

d

dt

v

v

v

h

a g v v v

a g v v v v

a g v v v
v

M h
v

N h
v

N

E

D

N N e E D E

E E e N e D N D

D D e E E N

N

E

D

φ
λ

ω φ φ λ φ
ω φ ω φ λ φ λ φ

ω φ λ φ φ

φ

=

+ − + −
+ − + + +

+ − − −

+

+
−

2

2 2

2

sin � � sin

sin cos � sin � cos

cos � cos �

( ) cos

. (3.33)

These are the navigation equations which need be integrated to get Earth-referenced
position and velocity, coordinatized in the n-frame.  Note that horizontal gravity values
are needed for the north and east components.

As mentioned at the beginning, the outputs from the strapdown IMU must be
transformed into the navigation frame.  Basically, the acceleration in the body frame
can be transformed into the n-frame through the transformation.

a an
b
n bC= (3.34)

Here, the transformation Cb
n  can be obtained from the angular rate � nb

b derived as
follows:

ω ω ω ω ωnb
b

ni
b

ib
b

ib
b

n
b

in
nC= + = − . (3.35)

The angular rate ω ib
b  can be obtained from gyro, and ω in

n  is given in formula (2.64)
that needs the position and the velocity of the vehicle for evaluation.  Note that (2.66)
should be integrated to get the transformation Cb

n .  The initial conditions for (2.66)
involve the initialization procedure of INS.
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3.4.5 Initialization and Alignment

Briefly speaking, the initialization is used to determine various initial conditions,
to define the navigation frame and resolve error sources.  The position and velocity in
the inertial navigation is obtained by integrating the acceleration.  Thus, the initial
conditions are associated with those integration constants and must be supplied by
external sources.  Furthermore, the initialization of the INS includes the initial
alignment of the inertial sensors.  This initial direction cosine matrix between the b- and
n-frame serves as the starting point for the gyro angle integration (2.66).  The effect of
misalignment, or initial orientation error, appears as a global trend and will be discussed
in detail in Chapter 5 through a simulation.

In the broad sense, the initial alignment also includes the determination of the
systematic errors of the IMU.  Because errors like the accelerometer bias may change
from turn-on to turn-on, they cannot be corrected through a lab calibration procedure.
Usually, the initialization takes place while the vehicle is at rest.  A priori information
on the position and velocity are inserted into the system and used for the initialization
and error determination.  If the vehicle is moving, an external source of position and/or
velocity required, for example GPS, to aid the INS.

One of the most difficult parts in the initialization is to determine the heading.
The reason for this is that the vertical orientation error is just weakly coupled to the
velocities.
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CHAPTER 4

TRADITIONAL AIRBORNE GRAVIMETRY
WITH POSITION UPDATE

4.1 Introduction

A schematic diagram for the traditional GPS/INS gravimetry is shown in Figure
4.1.  The term ‘ traditional’  is used for this approach because many previous studies on
the GPS/INS airborne gravimetry utilized GPS positions/velocities as an external
source for estimating the INS systematic errors as well as the gravity disturbances.

There are three procedures involved in the traditional method.  First, the raw
data from the IMU, δ δv, θ , are integrated to get the INS positions through the
navigation equations.  Secondly, the phase data of the GPS are processed to get the
GPS positions.  Usually, double differencing is used for the reasons explained in
Chapter 3. Finally, the INS systematic errors and the gravity disturbances are estimated
through the Kalman filter using the GPS position/velocity updates.  Here, the INS
errors as well as the gravity disturbance are modeled as stochastic processes, and
assigned as unknown parameters in the Kalman filter derived from the error dynamics
equations.

The primary concerns in the traditional approach consist of two parts: the
derivation of the error dynamics equations, and stochastic modeling for the gravity
disturbances.  Because of the various IMU errors, the indicated positions or velocities
of the INS deviate from the true values.  The behavior or effects of the IMU errors can
be analyzed by investigating the error dynamics equations.  Using those equations, the
propagation of errors from the sensors to the navigation solution can be identified and
analyzed.

The error dynamics equations contain the gravity disturbance terms as one of
the errors which should be either modeled or known to estimate the IMU errors.  One
of the practical ways to model the gravity field is as a stochastic process.  Although
there are arguments on modeling the gravity field, it is still a good approach in practical
gravity determination (Wang, 1997).
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Figure 4.1 Schematic diagram for the traditional GPS/INS gravimetry.

In this chapter, the error dynamics equations of the navigation equation will be
derived first.  After briefly investigating the stochastic modeling of the IMU errors and
gravity disturbances, the estimation of gravity disturbances using real flight data are
presented.  The analysis of the results closes this chapter.

4.2 Error Dynamics Equations in n-frame

The error dynamics equations of the INS can be obtained by simply applying the
differential operator, δ , to the navigation equations (3.31).  Here, the differential
operator implies making the small changes or perturbations of the values.  It is the
linear part of an analytic expansion into Taylor’s series, and the higher order terms are
assumed to be negligible.  After applying the differential operator to the navigation
equation, they have to be explicitly expressed in terms of the geodetic coordinates to
derive the n-frame error dynamics equations.

The linear perturbation of formula (3.31) is
d

dt
n

in
n

ie
n n

in
n

ie
n n n n n nδ δ δ δ δ δv v v a p g= − + − + + + +( ) ( )Ω Ω Ω Ω Γ , (4.1)

where Γn n n= ∂ ∂g p/  is the second-order tensor of partial derivatives of the gravity

vector with respect to the coordinates, and 
�
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axes of the n-frame.

δ
δφ
φδλ

δ
pn

M h

N h

h

=
+

+
−

( )

( ) cos (4.2)

Note that the perturbation δan  is the error of the sensed acceleration in the n-frame.
Because the frame of the accelerometer is assumed to be parallel to the b-frame,

the accelerometer errors in the b-frame should be transformed to the n-frame.  The
transformation, however, also contains errors because it is determined by the output
from the gyro.  Therefore, the dynamics of the errors in the orientation of the b-frame
with respect to the n-frame should be considered as well.
Now, let us define the orientation error as:

ψ n n n n T n

n n

n n

n n

= =
−

−
−

( , , ) ,ψ ψ ψ
ψ ψ

ψ ψ
ψ ψ

1 2 3

3 2

3 1

2 1

0

0

0

Ψ (4.3)

Then, the matrix Ψn  describes the orientation error in the form of a small rotation
between the true n-frame and the computed n-frame.  Denoting the true transformation
as Cb

n  and erroneously computed transformation as �Cb
n , the relationship between them

is given as: �
C I Cb

n n
b
n= −( )Ψ (4.4)

Then, the error in the transformation is given by

δC C C Cb
n

b
n

b
n n

b
n= − = −

�
Ψ (4.5)

Now, the perturbation of acceleration in the n-frame can be computed as follows:
δ δ δ

δ

δ

a a a

a a

a a

n
b
n b

b
n b

b
n b n

b
n b

b
n b n n

C C

C C

C

= +

= −

= + ×

Ψ

ψ

. (4.6)

Note that the acceleration error in the n-frame includes the orientation error as well as
the acceleration error in the b-frame.
The dynamic behavior of the error angle can be derived by differentiating the equation
(4.5).

δ δ δ δΩ
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C C
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b
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n
b
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b
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b

= = +

= − −

Ω Ω

Ψ Ψ Ω
   (4.7)

Substituting (4.5) into the second equation of (4.7) and solving for �Ψn  yields�
, �Ψn

b
n

nb
b

n
b n

b
n

nb
bC C C= − = −δΩ δψ ω , (4.8)

where δω nb
b  is the error in the rotation rate of the b-frame with respect to the n-frame.

To derive the equation for the error δω nb
b , the output of the gyro is divided into two

terms, namely the rotation of the n-frame with respect to the i-frame and that of the b-
frame with respect to the n-frame.
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ω ω ωib
b
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b
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b= + (4.9)

Perturbing the above equation and using ω ωin
b
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where δ
δλ φ λ ω δφ φ

δφ
δλ φ λ ω δφ φ

ω in
n

e

e

=
− +

−
− − +

	
cos ( 
 ) sin�
�
sin ( � ) cos

 is the error in the angular rate of the n-

frame with respect to the i-frame.
Finally, solving for δω nb

b  and substituting it into (4.8) yields the dynamic equation for
the angles in the transformation from the b-frame to the n-frame:


ψ ω ψ ω ωn
in
n n

b
n

ib
b

in
nC= − × − +δ δ . (4.11)

Now, using (3.32), one can derive the differentials and dynamic behavior of the
velocity errors as follows:

δ
δ δ φ δφ

δ δ φλ φδλ φλδφ
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=
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d
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( ) ( ! ! ! ! )cos ( " " " " " " )sin# #
(4.13)

In above equation, the terms involving $ $ $ $N M N M N and M, , % , & , ' , ( are all second-order
terms so that those can be neglected in our linear approximation.  In addition, the
principal radii of curvature, N and M can be replaced with the Gaussian mean radius,

R NM) , to the first-order approximation.
Then, the equation (4.12) and (4.13) can be simplified as:
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( ) 1 1
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( ) ( 868 8 8 ) cos ( 969 9 9 9 9 ) sin:6:
(4.15)

Using equation (2.56) and (2.64), the first perturbation term in (4.1) can be
derived in terms of the geodetic coordinates as follows:
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Now, based on all the developments above, one can derive linear dynamic error
equations in terms of the position, velocity and orientation. The usual form of the linear
dynamic model is given as the first order differential equation as follows:

d

dt
F Gn n n nε ε= + u , (4.17)

In our case, the parameter vector is given as:

ε n n n n Th h= ( C C C )ψ ψ ψ δφδλ δ δφδλ δ1 2 3 . (4.18)
In addition, consider the vector of system errors composed of errors in angular rate, in
acceleration and in gravity:

u a

g

=
δ
δ
δ

ω ib
b

b

n

. (4.19)

With r =  R + h , D Dl e1 E FG H
, and I Il e2 2J KL M

, each matrix in (4.17) can be derived in
terms of the geodetic coordinates in the n-frame.  It should be noted that the systematic
errors from IMU’s and gravity can be included in the set of system states with proper
stochastic modeling.  For the explicit representation of the elements in (4.17)
augmented by the parameters, the stochastic modeling should be discussed in detail.

4.3 Stochastic Modeling for System Errors and Gravity Disturbance

To complete the dynamic error equations discussed in the previous section, the
system errors as well as the gravity disturbance should be identified and modeled.  All
data from physical instruments and sensors contain random errors, and the data cannot
be fully described in a deterministic sense.  In this case, the description may be put in
probabilistic terms with reasonable models that sufficiently describe the behavior of the
observed system.  Here, the choice of the model depends on the type of the
instrumental or the sensor errors.

Because of the dependencies on time, the errors in the IMU are usually modeled
as random or stochastic processes.  A stochastic (random) process is defined as a
collection, or ensemble, of random variables associated with a deterministic parameter
such as a time or space coordinate.  At each point in time or in space, the process is a
random variable and the probabilistic property of the process, in general, changes in
time or space.

In many cases, the first and second-order joint distribution or density functions
are enough to characterize a stochastic process.  The characterization is usually given
by two functions, using the second moments of the probabilistic distributions, called
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auto-covariance and cross-covariance functions.  The auto-covariance function is
defined as

ϕx x t t E x t x t dx dx x E{x x E{x f x t x t, ( , ) ( ) ( ) ( } )( } ) ( , ; , )1 2 1 2 1 2 1 1 2 2 1 1 2 2= = − −
−∞

∞

−∞

∞

 (4.20)

where x(t1), x(t2) are the realizations (observed values) of the random process x at time
t1 and t2; x1, x2 are the random variable x at time t1 and t2; f(x1,t1;x2,t2) is the second-
order joint probability density function of the random variable x1 and x2 given as:

f x t x t
F x t x t

x x
( , ; , )

( , ; , )
1 1 2 2

2
1 1 2 2

1 2

= ∂
∂ ∂

, (4.21)

where F x t x t x t x and x t x( , ; , ) Pr ( ( ) ( )1 1 2 2 1 1 2 2= ≤ ≤  is the corresponding joint

probability distribution function.
The cross-covariance function is similarly defined as

ϕx y t t E x t y t dx dy x E{x y E{y f x t y t, ( , ) ( ) ( ) ( } )( } ) ( , ; , )1 2 1 2 1 2= = − −
−∞

∞

−∞

∞

, (4.22)

where x(t1), y(t2) are the realizations (observed values) of the random process x and y
at time t1 and t2, respectively; f x t y t( , ; , )1 2  is the second-order joint probability density
function of the random variable x and y:

 f x t y t
F x t y t

x y
( , ; , )

( , ; , )
1 2

2
1 2= ∂

∂ ∂
, (4.23)

where F x t y t x t xandy t y( , ; , ) Pr ( ( ) ( )1 2 1 2= ≤ ≤  is the corresponding joint probability

distribution function.
 Of course, the most easily modeled process is the stationary process whose

probabilities do not change in time or under parallel shift in space.  The joint probability
density function for any set of random variables of a stationary process corresponding
to any set of time coordinates is independent of the time origin.  Furthermore, the
stationary process is said to be time-invariant; if and only if the mean value and the
variance of the random variable xk  at any time k are the same, and the second-order
probability density function does not depend on the time origin but depends on the time
interval τ = −t t2 1 .  Thus, the covariance functions are functions of the single variable
τ .

ϕ τ τx x E x t x t, ( ) ( ) ( )= +1 1 (4.24)

ϕ τ τx y E x t y t, ( ) ( ) ( )= +1 1 (4.25)

Some useful properties of these covariance functions for the stationary processes are:

ϕxx E x E{x( ) [ } ]0 2 2= − (4.26)

ϕ τ ϕ τ ϕ τ ϕ τxx xx xy yx( ) ( ), ( ) ( )− = − = (4.27)

ϕ ϕ τxx xx( ) ( )0 ≥ (4.28)

An important concept associated with stationary random processes is the
ergodic hypothesis stating that any statistics calculated by averaging over all members
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of an ergodic ensemble at a fixed time can also be calculated by averaging over all time
of a single representation member of the ensemble.  Briefly speaking, it means that the
stochastic properties of the ergodic process can be analyzed from the temporal
behavior of one single realization.  It should be noted that not all stationary processes
are ergodic.  A typical example for this case is the ensemble of functions that are
constant in time.  The common statistics associated with an ergodic process are:

E x
T

x t dt
T

T

T

[ ] lim ( )=
→∞

−

1

2
(4.29)

E x
T

x t dt
T

T

T

[ ] lim ( )2 21

2
=

→∞
−

(4.30)

ϕ τ τxx T T

T

T
x t x t dt E{x( ) lim ( ) ( ) [ } ]= + −

→∞ −

1

2
2 (4.31)

ϕ τ τxy T T

T

T
x t y t dt E{x E{y( ) lim ( ) ( ) } }= + −

→∞ −

1

2
(4.32)

4.3.1 System Error for the IMU

As any other physical instruments, gyros and accelerometers also contain
system errors represented by specific force errors and angular rate errors, respectively.
In general, both gyro and accelerometer measurements are affected by general biases,
scale factor errors and white noise, although the detailed error models for inertial
navigation sensors depend on the particular instrument design.  For measurements from
accelerometers, non-orthogonality of the axes, second-order scale non-linearity, and
correlated noise could be considered in extended error models (Wei and Schwarz,
1994).  The extended models for the gyros could also include the non-orthogonality of
the axes and correlated noise.

The major error sources of gyro and accelerometer measurements are those
basic common elements (biases, scale factor errors and white noise).  Since other error
sources are not large relative to the basic elements, they are neglected in this study for
simplicity (see equations (3.23), (3.24)).  Clearly, the effects of the general biases of the
accelerometer and the gyro appear as long-term trends while the effect of the scale
factor error appears as short-term variations.  The quantitative effect of each error
parameters is given in Chapter 5 through acceleration simulations.

The necessary concepts to describe the basic elements of the IMU errors in the
stochastic modeling are random constant and white noise.  Continuous white noise,
Ω( )t , is defined to be a stationary random process having a constant spectral density
function over all frequencies (Brown and Hwang, 1992, p. 99).  The auto-covariance
function of the white noise is given by:

ϕ τ δ τΩ ( ) ( )= q , (4.33)
where q is a constant and the delta function is defined as:
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 δ τ τ τ δ τ τ( ) ; , ( ) ( ) ( )t t f t d f t− = ≠ − =
−∞

∞

0 (4.34)

for any square-integrable function of f(t).  This means that random variables from the
white noise process are completely uncorrelated for any set of time instances.  A
discrete white noise process, W(t )k , can be derived from the continuous white noise
using an averaging process with respect to time.  The mean of the discrete white noise
is the same as that of the continuous white noise and the variance is given as q t/ ∆ .

E t E W t
q

tk w( ( )) ( ( ));Ω
∆

= =σ2 (4.35)

If the distribution of each random variable of the discrete white noise process is
Gaussian with zero mean, the process is called Gaussian white noise
W t W N q tk k( ): ~ ( , / )= 0 ∆ .

A random constant assumes a constant value for all variables of a single
realization of the process.  The random constant is represented by the following
differential equation: N

( ) ; ( )x t x t x= =0 0 0 , (4.36)
where x0  is a random variable.  It should be noted that the random constant is
stationary but not ergodic.  Also, it is fully correlated.  The mean of the random
constant may be assumed to be zero and the auto-covariance would be the variance

σx
2 .  The discrete form of the random constant is represented as:

x xk k+ =1 . (4.37)
The general biases and scale factor errors for the gyros and accelerometers can be
modeled as random constants since these are known to be very stable after turn on.
Using the linear dynamic equations in (4.36), the general biases and the scale factors
can be included as unknown parameters (random effects) in the error dynamics
equation (4.19).

4.3.2 Gravity Disturbances

The last row of the systematic error vector (4.19) is associated with the error in
the Earth’s gravity field.  In other words, it is the difference between the actual Earth’s
gravitation and a selected model for the gravitation.  The most popular gravity model in
the field of navigation is the normal gravity field generated by an ellipsoid of revolution.
This ellipsoid contains the Earth’s mass and its equipotential surface approximates the
Earth’s mean sea level surface.  It should be noted that the normal gravity vector on its
surface does not have horizontal components because, by definition, it is perpendicular
to the ellipsoidal normal.  At given altitude, however, the north-south component of the
normal gravity is not zero (see Heiskanen and Moritz, (5-34)).  The actual horizontal
component of the gravity vector with a magnitude at the order of 4 6 10 4~ O P  m/s2

causes position error up to several hundred meters (Jekeli, 1995a) when neglected.
To compensate the position error caused by neglecting the horizontal gravity
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vector, one can model the incremental gravity field, or gravity disturbance vector, as a
spatial process.  Many forms of spatial models have been developed to represent the
random-like fashion of the variations of the horizontal gravity field disturbances.  These
models are used in accounting for position errors and/or to obtain optimal estimates for
the disturbing gravity field.  In airborne gravimetry, the spatial models of the disturbing
gravity field have been used for estimating the gravity field while assuming that all
other INS related errors could be estimated using other instruments like GPS.  Usually,
the models for the gravity field assume ergodicity and, hence, stationarity and some
isotropic covariance function that depends on two parameters: variance and the
correlation distance.  For details or forms of the covariance models, see Wang and
Jekeli (1998), Jekeli (1995), Knickmeyer (1990), Forsberg (1987) and Eissfeller and
Spietz (1989).

One of the often used models for the horizontal gravity components along a
trajectory is the Gauss-Markov process. The (first order) Markovian property states
that the conditional probability density of the random variable at any time is the same as
the conditional probability density of the variable given just the most recent values of
the process.  If the process is also Gaussian, the process is called a Gauss-Markov
process.  With some information on variance and correlation distance obtained from an
empirical covariance function, one could integrate the gravity model into the error
dynamics equation.

The differential equation for the first-order Gauss-Markov model is given byQ
( ) ( ) ( )x t x t t= − +β Ω (4.38)

where β  is a constant, and Ω  is a zero mean Gaussian white noise process with
covariance:

E t t t t( ( ) ( ’)) ( ’)Ω Ω = −2 2σ βδ . (4.39)
The process, x t( ) , in this case is stationary with zero mean, and covariance function
and the corresponding PSD (power spectral density, Fourier transform of the
covariance) are given by

C ex ( )τ σ β τ= −2 , (4.40)

Φx ( )ω σ β
ω β

=
+

2 2

2 2 . (4.41)

The inverse of the constant β , 1/β , called the correlation time and defines the degree
of correlation.  When β  approaches zero, the signal becomes a random constant.

The higher-order Gauss-Markov processes are also defined on the basis of
higher-order differential equations with the parameter β .  The differential equation for
the third-order model and the corresponding quantities are given as:R R R

( ) S S ( ) T ( ) ( ) ( )x t x t x t x t t+ + + =3 3 2 3β β β Ω , (4.42)

E t t t t( ( ) ( ’)) ( ’)Ω Ω = −16

3
5 2β σ δ , (4.43)
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C ex x( ) ( ); ( )
( / )

( )
τ σ β τ β τ ω β σ

ω β
β τ= + + =
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−2 2 2

5 2

2 2 31
1

3

16 3Φ . (4.44)

4.4 Kalman Filter Estimation in the Conventional Approach

Establishing the stochastic models for the INS systematic errors and the gravity
disturbances, one can revise the error dynamics equation by adding more parameters
into the vector ε n  of equation (4.19).  In other words, a 30-state linear error dynamics
equation can be derived that models the general biases and scale factor errors for both
gyros and accelerometers as random constants, and the gravity disturbances as the
third-order Gauss-Markov models;

d

dt
n n n nx F x G u= + . (4.45)

Note that the notation for the error vector ε n is now changed to xn  denoting it as the
state vector.  The state vector xn is composed of 3 orientation errors, 3 velocity errors,
3 position errors, 3 accelerometer biases (random effects), 3 accelerometer scale
factors, 3 gyro biases (random effects), 3 gyro scale factors and 9 parameters
associated with the third-order Gauss-Markov gravity disturbance vector.

xn
N E D aN aE aD aN aE aD gN gE gD gN gE gD

N E D N E D N E D
T

h hb b b k k k b b b k k k

g g g g g g g g g

= ( U U U
’ ’ ’ ’’ ’’ ’’ )

ψ ψ ψ δφδλ δ δφδλ δ

δ δ δ δ δ δ δ δ δ         
(4.46)

The dynamics matrix F, the noise influence matrix G and the white noise vector u are
given as below.  Note that each element in the matrices F12, F13 and G is a 3 × 3 matrix.
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where D is the matrix converting from angular to linear measure and inverting the

vertical axis; σg
2 , σa

2  and σδg
2  are variances of the white noise for gyro,

accelerometer and gravitational disturbance respectively.

 D

R h

R h=
+

+
−

0 0

0 0

0 0 1

( )cosφ (4.51)

Optimal estimates for the 30 states at each epoch are easily obtained from the
error dynamics equations and additional observations by Kalman filtering.  Since the
Kalman filter is well described in the literature (Gelb, 1994; Brown and Hwang, 1997),
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only the essential concepts and equations are presented.  There are three things to be
defined before applying a Kalman filter: System model, Measurement model and Initial
conditions.  The measurement model, also called the observation equations, is given by

Z x v vk k k k kH N R= + , ~ ( , )0 , (4.52)

where the subscript k indicates the epoch to which the data refer, Z is the 3×1
observation vector (GPS position – INS position), H is the 3×30 design matrix with 1
for elements at the positions (1,7), (2,8), (3,8) and zeros for all other elements, v is the
3×1 observation error vector assumed normally distributed with zero mean and 3×3
covariance matrix R.

The system model representing the dynamics of the parameters at time tk-1 and
tk is given as:

x x w wk k k k k k kG N Q= +− − − −Φ 1 1 1 1 0, ~ ( , ) , (4.53)
 where Φk−1  is the state transition matrix between times tk and tk-1.  Assuming the
system dynamics matrix F is constant during transition time ( ∆t ), the transition matrix
can be calculated as follows.

Φ ∆ ∆ ∆k
F t te I F t F t F tk k

−
−= = + + + +−

1

2 3
1

1

2

1

3
( )

! !
..... (4.54)

Note that the state transition matrix Φk−1  and the input matrix Gk−1 are assumed
constant during transition times, and the input noise vector w k  is described by a
Gaussian, zero-mean, white-noise processes with covariance matrix Qk  derived using
the relationships between the continuous and discrete white noise (see equations (4.33)
and (4.35)).  It is assumed that v k  and w k  are not correlated with each other.  If there
are no measurements, the dynamics of the state vector totally depend on the system
model.

For the initial conditions, we need to define the estimates and variances of the
state parameters at starting time.  The initial estimates are set to zero for all error
states.  In addition, the initial variances are set to the values from the manufacturer’s
specifications for INS errors.  The initial variance and the correlation distance for the
gravity disturbance vector could be obtained from previous spatial analysis of the
incremental field being surveyed.  Table 4.1 shows the initial variances for the states
applied in this study.

The advantage of the Kalman filter lies in the fact that the estimation procedure
is explicitly divided into two stages: prediction and update.  In addition, the procedures
for the state estimates are independent of those of the covariances of the estimates
(Figure 4.2).  Therefore, one can conduct covariance analyses without using real data.
These analyses are useful for a pre-planning or a feasibility test.  For the covariance
analysis of airborne gravimetry, see Jekeli (1995) and Knickmeyer (1990).
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INS Error Parameters Standard deviation
Accelerometer Biases (random) ±25 mGal
Accelerometer Scale Factor ±10 ppm
Gyro Bias (random) ±0.005 deg/hr
Gyro Scale Factor ±10 ppm
Gyro White Noise ±0.002 deg/ hr
Accelerometer White Noise ±40 mgal/ Hz
Velocity ±1 m/s
Position ±10 m
Orientation for Horizontal Direction ±2 arcsec.
Orientation for Vertical Direction ±1 arcmin.
3rd order G.M Process for Gravity Disturbances ±20 mGal
Inverse of the Correlation Time 1 × 10-4

Table 4.1 INS error parameter specification.
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Figure 4.2 Kalman filter loop following Jekeli (1995a).
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If no real measurements are available, one can perform only the prediction given
by � �

x xk k k
−

− −= Φ 1 1 , (4.55)

P P G Q Gk k k k
T

k k k
T−

− − −= +Φ Φ1 1 1 , (4.56)
where P denotes the covariance matrix for the states.
Note that the negative sign on the superscript means the observation at that time tk has
not been accounted for.  So, the predicted states only depend on the system transition
matrix, and covariances of those depend on the corresponding error propagation laws.

Once actual data are available, one can perform the updating procedure that
results in new estimates for the states and covariances that include the information from
the measurement. � �

( � )x x y xk k k k k kK H= + −− − , (4.57)

P I K H P I K H K R Kk k k k k k
T

k k k
T= − − +−( ) ( ) , (4.58)

where K is the Kalman gain matrix defined as
K P H H P H Rk k k

T
k k k

T
k= +− − −( ) 1 . (4.59)

In general, the GPS position is derived from the double differencing procedure
as mentioned in Chapter 3.  Currently, the accuracy of the positions derived from the
double differencing is less than ±10 cm in the kinematic case.  Since the observation
vector in this traditional approach is the difference between the GPS and INS positions,
the navigation equations (3.33) should be integrated first.  The integrated positions
from INS, of course, include all the effects of the system errors.  Using the more
accurate positions from GPS, system errors in INS are to be estimated in the Kalman
filter.  At the same time, the gravity disturbance vector is also to be determined based
on the selected gravity model. The algorithm for integrating the navigation equations
using quaternions is given in the Appendix A.

4.5 Results from the Traditional Approach

4.5.1 Test Data Description

The data used in this study were provided by M. Wei, under the promotion of
the Special Study Group 3.164, Airborne Gravimetry Instrumentation and Methods, of
the International Association of Geodesy (IAG).  These data were collected by the
University of Calgary on 1 June 1995 for the purpose of conducting an airborne gravity
survey over a part of the Rocky Mountains to assess repeatability as well as the
accuracy of airborne gravimetry using GPS and INS.  The strapdown inertial system,
Honeywell LASEREF III, together with two GPS receivers, Ashtech Z-XII and
NovAtel GPSCard, were equipped on the airplane.  To perform the DGPS positioning,
three base stations were also operated on the ground.  The data include the coordinates
of the airborne and ground GPS antennas at 0.5s intervals, and raw accelerometer and
gyro data from INS at a data rate of 50 Hz.

In this survey, four flights, of which three flight data are usable, in the east-west
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direction over the same ground track were carried out.  The overlapping flight
trajectory was designed to meet the objectives of the test.  The total length of the east-
west profile was 250 km and the flying altitude was 5.5 km.  Average flying speed was
about 430 km/h so the corresponding spectral resolution for 90 and 120 seconds
smoothing was about 5.0 km to 7.0 km.  For details on the data description, see Wei
and Schwarz (1998).

Figure 4.3 shows the trajectories of the three flights.  Lines 1 and 3 are almost
on top of each other and the line 2 is a little north (.005 degree ≈ 540 meters) from
those.
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Figure 4.3 Flight trajectory for the test data June 1995.  Dashed line (middle) line is
leg1, dotted line (top) is leg 2, and dash-dotted (bottom) line is leg 3.

Note the high frequency variations of the trajectories showing the dynamics of the
flight.  The main oscillations occurred around the first (roll) and the third (yaw) axes of
the body frame.  Probably, these dynamics are caused by the auto-pilot function of the
airplane which automatically maintains the direction and the velocity of the airplane.
Comparing the attitude of the airplane (Figure 4.4) with the trajectory shows that those
variations correspond well to the roll and yaw motions of the airplane with periods of
50-60 seconds.
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Figure 4.4 The attitude of the airplane for Line 1 (392500-394900 GPS seconds).

Obviously, it is very hard to separate the gravity signal with the frequency in the range
of these dynamics.  The effect of dynamics will be explained in more detail in the next
Chapter.

4.5.2 Horizontal Gravity Disturbances from the Traditional Approach

Using the algorithm explained in the previous sections, the traditional approach
of position update with gravity modeling was tested.  It should be mentioned that only
the horizontal components of the gravity disturbance vector could be estimated in the
conventional approach, since the INS is unable to navigate in the vertical in the free-
inertial mode (see section 4.5.3).

Figure 4.5 shows the horizontal gravity disturbance estimates of all three legs
for the north and east direction as determined by the traditional algorithm.  One can
notice the high frequency oscillations with periods of 50-60 seconds in the north
component, which are caused by the roll dynamics of the aircraft motion.  The very
high frequency variations in the line 2 and 3 of the east component are caused by a
numerical instability of the filter due to unknown effects.

In addition, low frequency trends as well as the biases (random) still appear to
remain in all legs.  This means that the biases of the accelerometers could not be
estimated unless external information on the gravity, for example the gravity values at
the starting and ending point, is provided.  Therefore, some further data processing is
necessary to remove the high frequency errors, low frequency trends, as well as the
effects of airplane dynamics.  For these purposes, B-spline smoothing and wave number
correlation filtering (WCF) has been adopted in this approach.

The usual method to remove high frequency components from a signal is to
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apply a low pass filter, or a smoother.  In this study, a third-order B-spline smoother
with window length of 60 seconds was applied to remove the high frequency error
from the estimated gravity disturbances.  Because of its simplicity and flexibility, the B-
spline smoother is distinguished by its elegant theory and model behavior in numerical
calculations (Kincaid and Cheney, 1996, p. 392).

To remove low frequency trends as well as other residual errors that are not
correlated between overlapping trajectories, one can apply the wavenumber correlation
filter (WCF) developed by von Frese et al. (1997).  Basically, the WCF decomposes
space domain data into wave domain coefficients through a Fourier transformation, and
then constructs the correlation spectrum by comparing coefficients of a pair of co-
registered data at corresponding wavelength.

The wavenumber correlation coefficient between two data sets x  and y  is
defined as:

CC
x y

x yk k
k k

k k

= = •
cos( )∆θ , (4.60)

where CCk  is the correlation coefficient for the wave number k, ∆θk  is the
phase difference of the data set x  and y , ∆θk x y= −θ θ , and �  denotes the scalar

product of vectors.  By setting the correlation tolerance, the components showing less
correlation than the tolerance is assumed as noise and filtered out.  For example, if the
correlation tolerance is set to 0.5 all components having correlation coefficient larger
than the tolerance are kept as signal.  For a detailed derivation of the wave number
correlation coefficient, see Kim (1995).

The repeated tracks provide an opportunity to decorrelate the gravity signal
from some of the system errors, since presumably the gravity signature has not changed
from one leg to the other.  In other words, since we have three overlapping flight legs,
one can assume that the gravity signal is commonly detected in all three legs, but the
random noise and system errors would not usually be common for those legs.
Therefore, using WCF, one can filter out the random noise or overall trends that are
not common in other lines.  With the WCF the removal of overall trends as well as the
medium frequency airplane dynamics effects could be achieved.  It should be noted that
two filtered data sets are obtained from WCF, thus the average of those are presented
as results from WCF.  As a matter of fact, tracks do not have to be on top of each
other to apply WCF.  As long as the signal could be co-registered such as in parallel
tracks, WCF can be applied.

The correlation tolerance in this study is set to zero.  It should be noted that the
correlation tolerance is decided rather subjectively based on the signal characteristics.
In other words, there is a trade-off between the correlation and noise, but it is intended
to keep the correlated signal as much as possible for each pair of tracks.  Therefore,
after examining the correlation coefficients for each frequency component, one has to
decide the tolerance imposing the amount of signals to be extracted.
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Figure 4.5 Gravity disturbance components, north (top) and east (bottom), computed
from the traditional position update Kalman-filtering.  The dashed, dotted, and dash-
dotted lines are the gravity components calculated for legs 1, 2 and 3, respectively.
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Finally, we assume that the gravity values for the endpoints are known in order
to remove the biases random effects.  This endmatching is done by applying linear
corrections to the estimates based on values at both ends of each leg using reference
data provided by the National Imagery and Mapping Agency (NIMA).  The reference
data consist of the deflections of vertical (horizontal gravity component) for this area
extracted from 2 min. by 2 min. grids of gravity anomalies.

It should be noted that this additional data procedures could be applied in
different order.  In other words, one can apply the endmatching first, and then the
WCF, or the other way around.  Interestingly, the order of the processing seems to
affect the results of the gravity estimates.  The results of the first case were better than
the other (compare Table 4.2 and 4.3).

Figure 4.6 shows the horizontal gravity disturbance estimates after applying the
60-seconds smoothing, WCF and endmatching.  The High frequency oscillations are
removed by the smoothing, the gravity components along all three lines are adjusted to
match given values at the end points, and the global trends are reduced by WCF.
Estimated gravity disturbances, generally, show higher amplitude than the reference
data.  The reason for this could be explained through model error, including wrong
statistical models for the INS error parameters and for the gravity disturbances, as well
as wrong initial values from insufficient a priori knowledge in the orientation of the
INS.  As a matter of fact, the results shown in Figure 4.6 were selected from repeated
use of trials of different models for the gravity disturbances and initial variances for the
parameters.  For the gravity disturbance, the 3rd order Gauss-Markov model with
correlation distance in the range of 10-1000 km and variance in the range of 100-10000
mGal2 were tested.  The gravity disturbance estimates were more sensitive to the
correlation distance than the variances in this case.

Therefore, it is very crucial to establish an appropriate model for the gravity
disturbances as well as to assign good correlation distance and initial variances in the
traditional approach.  A numerical comparison with respect to the reference gravity
data is given in Table 4.2.  It should be mentioned that the wavenumber correlation
filtering should be done between legs having opposite directions.  That is, it seems that
some systematic errors appear to be associated with the direction (see the phase delay
in leg 2 of the east component in Figure 4.5).  This will be demonstrated more clearly in
case of the acceleration update algorithm and will be explained in the next chapter.

The best result with the traditional approach is obtained for the north
component from the combination of lines 1 and 2.  In both combinations in Table 4.2,
the north components are better estimated than the east component.  If these errors are
attributed to incorrect modeling, especially the gravity modeling errors, then one might
conjecture that the adopted Gauss-Markov process for the gravity disturbance was
better for the north component than for the east component.  As a matter of fact, the
east component estimates turned out to be better in the acceleration algorithm (see
Chapter 5) that does not rely on a statistical model for the gravity disturbances.
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Figure 4.6 Gravity disturbance components, north (top) and east (bottom), after
applying 60-seconds smoothing, WCF and endmatching.  The solid line shows the
reference gravity data; the dashed, dotted, and dash-dotted lines show the gravity
components calculated from the combinations of lines 1-2, 1-3, and 2-3, respectively.
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Lines 1/2 (mGal) Lines 2/3 (mGal)

Mean Std. Dev. Mean Std. Dev.

North

East

11.67

4.68

9.98

28.88

-3.61

-0.16

17.13

25.74

Table 4.2 Mean and standard deviation of the difference between the calculated
horizontal gravity disturbance from the traditional approach and the control data. The
data are processed by first applying the 60-seconds smoothing, then WCF and
endmatching.

Figure 4.7 shows the horizontal gravity disturbances after 60-seconds
smoothing, end-matching and WCF.  Note the partially reversed order of processing
compared to the previous case.  Although the low wavelength parts of the estimates
for this case and the previous case are very similar, there are some minor differences
in the local peaks and valleys due to from the change in order of the processing steps.
The standard deviations of the differences between the reference gravity and the
estimated gravity are given in Table 4.3.

Lines 1/2 (mGal) Lines 2/3 (mGal)

Mean Std. Dev. Mean Std. Dev.

North

East

7.65

9.03

8.87

26.34

7.62

0.32

16.21

25.52

Table 4.3 Mean and standard deviation of the difference between the calculated
horizontal gravity disturbance from the traditional approach and the control data. The
data are processed by first applying the 60-seconds smoothing, then endmatching and
WCF.



60

60-seconds smoothing

241 241.5 242 242.5 243 243.5 244 244.5 245
-100

-80

-60

-40

-20

0

20

40

longitude (deg)

dg
 (

m
G

al
)

Line 1-3

Line 2-3 Line 1-2

241 241.5 242 242.5 243 243.5 244 244.5 245
-60

-40

-20

0

20

40

60

longitude (deg)

dg
 (

m
G

al
)

Line 1-3

Line 2-3

Line 1-2

Figure 4.7 Gravity disturbance components, north (top) and east (bottom), after
applying 60-seconds smoothing, endmatching and WCF.  The solid line shows the
reference gravity data; the dashed, dotted, and dash-dotted lines show the gravity
components calculated from the combinations of lines 1-2, 1-3, and 2-3, respectively.
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4.5.3 Vertical Gravity Disturbances from the Traditional Approach

As mentioned, the vertical component of the gravity disturbance can not be
estimated using the traditional method.  The reason for this can be explained by a
simple analysis showing the instability of the vertical channel in the INS.
The analysis starts with the fundamental equation of airborne gravimetry again.

� �
( )x g x ai i i i= + (4.61)

Note that the dependency of the gravitational acceleration on the position vector is
explicitly expressed.  Applying the linear differential operator, 

�
, to (4.61),

δ δ δ δ� �
x

g
x

x g a= ∂
∂

+ +  (4.62)

Now, use the spherical approximation of the gravitational acceleration, g n= −kM

r2 ,

where n is the unit normal vector pointing outward along the radial direction; kM is
the gravitational constant times the mass of the Earth ( kM m s≈ ×3986 1014 3 2. / ).  And

approximate 
∂
∂

≈
−

−g
x

kM

r3

1 0 0

0 1 0

0 0 2

, then the differential equations for the

components of the position error are given by

δ δ δ δ� �
x x g a1 3 1 1 1+ = +kM

r
, (4.63)

δ δ δ δ
� �
x x g a2 3 2 2 2+ = +kM

r
, (4.64)

δ δ δ δ
���
x x g a3 3 3 3 3

2− = +kM

r
. (4.65)

The homogeneous solution of the horizontal components, (4.63) and (4.64), represents

the forced harmonic oscillation with Schuler frequency, ωs kM r= / 3  while that of
the vertical component increases exponentially on time.  So, initial errors in horizontal
position and velocity are modulated by the Schuler frequency and that in vertical
position causes exponential growth with respect to time.  This instability in the vertical
channel consequently causes the corresponding navigation solution fail.  Therefore,
the position update will not be able to distinguish the gravity signal from other errors
in the vertical channel.

During the past two decades, a couple of methods have been developed for
scalar gravimetry in which only the down component is estimated.  The instruments in
the scalar gravimetry are composed of either a gravimeter (Brozena et al., 1989;
Brozena and Peters, 1994; LaCoste et al., 1982; Salychev et al., 1994) or an INS (Wei
and Schwarz, 1998; Glennie et al., 1999) in combination with external positioning
systems such as GPS, radar, Loran C, etc.  In the first case, a stable platform system is
used to maintain the sensor direction to the local down, and a strapdown system is
employed in the second case.
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A method developed at the University of Calgary, called Strapdown Inertial
Scalar Gravimetry (SISG), showed that the down component can be recovered with
accuracy of ±2-3 mGal with 90- or 120-second low pass filtering (Wei and Schwarz,
1998).  The first step of the SISG technique is to transform the specific forces
measured in the body frame into the local level frame using the attitude information
from the gyro.  Secondly, the GPS acceleration is derived from the DGPS position
solution by applying a numerical differentiator.  Thirdly, the difference between the
specific force and the GPS acceleration is calculated to obtain the gravity disturbance.
The errors in INS such as biases (random) scale factors, and drift rates are estimated
and taken out by a closed-loop Kalman filter using the GPS phase and Doppler
observations.  For details about the equations and GPS/INS integration strategy, see
Cannon (1991).

Although the SISG technique uses GPS double-differenced phase and Doppler
measurements instead of GPS derived position or velocity for the estimation of IMU’s
errors, the estimation still needs the integration of the error dynamics equations
derived from the navigation equations.  In addition, the gravity disturbance vector
needs to be modeled because the error dynamics equations contain the gravity terms.
These two aspects distinguishes the traditional approach explained in this chapter and
a new acceleration update algorithm explained in the next chapter.  Detailed
conceptual and numerical comparisons between the traditional and the new approach
are given in next chapter.
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CHAPTER 5

A NEW ACCELERATION UPDATING
KALMAN FILTER FOR VECTOR GRAVIMETRY

5.1 Overview

As investigated in the previous chapter, the traditional approach of GPS/INS
airborne gravimetry integrates the navigation equation to get the INS positions with a
selected gravity model, then the observables from GPS such as phase, Doppler shift,
position and velocity are used to estimate the INS system errors.  Conventionally, the
calculation of the traditional approach is performed in the navigation frame.  The
estimates of the gravity disturbance, in this case, very much depend on the gravity
models so that one has to have a fairly good a-priori information on the gravity field or
perform many trial-and-error experiments by changing the models and parameters.
Therefore, the disadvantage of this approach is its dependency on the model for the
gravity and the expensive computation of the INS position integration.  In addition, the
navigation equations in the n-frame involved with much mathematical formulas and
physical concepts and make the problem unnecessarily complicated.

Alternatively, the gravity disturbance vector can be obtained by direct
differencing between the specific forces measured from INS and the kinematic
accelerations derived from GPS (Jekeli, 1992).  In this case, the GPS acceleration is
used as an update in the estimation of the INS system errors.  The precision of GPS
positions with current technology is better than ±10 cm and that of the velocity is better
than ±1 cm/sec in the post-processing kinematic mode.  Since the derived GPS
accelerations after low pass filtering with a period of 90 seconds have a precision better
than ±1 mGal (Wei and Schwarz, 1995), it can be used to estimate the system errors in
the INS.  Then, the difference between the GPS acceleration and adjusted INS
acceleration would reflect the gravity signal.

The whole schematic procedures of the new acceleration update algorithm are
shown in Figure 5.1.  Mainly, four principal procedures are involved in this new
technique.  First, the GPS accelerations are derived from the GPS positions calculated
through the DGPS technique by applying a numerical differentiator.  In this study, a 5th

order B-spline differentiator (de Boor, 1978, p.144) was applied to the GPS positions
to obtain the GPS accelerations.  Since the numerical differentiation tends to amplify
high frequency components, the derived GPS accelerations should be smoothed to
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reduce those high frequency effects.  For this purpose, a 3rd order B-spline smoother
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(ibid.) with window length of 60 seconds was applied to the raw GPS accelerations.
Secondly, the raw INS data (increments of velocities and angles) are integrated to
generate the necessary transformation matrix for the INS accelerations.  A third order
integration algorithm, using a quaternion approach, was applied for this procedure. The
integrated acceleration was also smoothed by the same 3rd order smoother which was
applied to GPS acceleration for consistency.  Thirdly, Kalman filtering is performed to
estimate the INS system errors.  Here, the GPS acceleration is used as update value
and the residuals from the filter are interpreted as the approximate estimates of the
gravity disturbances.  Finally, the residuals from three flight lines are processed with
WCF (wavenumber correlation filter) to eliminate uncorrected system errors and
extract the gravity signals with correlations among the lines.  The tolerance of the
correlation coefficient applied in this last procedure is zero for extracting frequency
components having positive correlation among the lines.

Compared to the traditional approach, this alternative approach is conceptually
much simpler because the integration of the navigation equation is not necessary.  In
addition, the computation in the i-frame makes the Kalman filter equations much
simpler so that the computational expenses are less than for the traditional approach.
In this case, the gravity is not modeled parametrically, so the dependency on a gravity
model is also eliminated in the estimation procedure.

In this chapter, the detailed explanations of the above procedures are presented.
Then, the mathematical model and the Kalman filter are verified through simulations
based on real dynamics of an aircraft.  The results are presented and an analysis of the
test flight ends this chapter.

Figure 5.1 Alternative Data Processing for Vector Gravimetry.
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5.2 Data Processing

5.2.1 GPS Acceleration

Once the precise GPS positions are calculated using the DGPS technique, a
numerical differentiator can be applied twice to get the GPS accelerations.
Conventionally, the GPS positions are given in the ECEF coordinate system, so the
transformation of the positions from e- to i-frame should be performed before the
differentiation.  Using the precise GPS positions provided by the University of Calgary
(see section 4.5.1), a 5th order B-spline differentiator (de Boor, 1978, p.144) is applied
to obtain the GPS accelerations.  Because of the characteristics of the numerical
differentiation, the derived GPS accelerations show high frequency effects that make
the identification of the real motions difficult.  Note the four high dynamic peaks
caused by the vehicle turns (Figure 5.2).

The dynamics of the vehicle can be seen after applying a low pass filter or
smoother to the raw acceleration.  Using a B-spline with 60 seconds window length
(ibid.), the high frequency components in the raw GPS acceleration is smoothed out
(Figure 5.3).  Note the patterns of oscillations in the y and z components that seem to
be associated with the vehicle dynamics.  The overall amplitude of the acceleration is in
the range of several thousands of mGal excluding the turns.

5.2.2 INS Acceleration

The raw data from the INS system are the increments of the velocities and
angles with respect to the i-frame obtained in the b-frame by accelerometers and gyros,
respectively.  Using those raw data, it is possible to construct the accelerations in an
arbitrary frame.  Therefore, one has to decide on a frame in which the data are
integrated and select a method for the numerical integration.  The i-frame and a third
order quaternion integration algorithm are selected for this alternative method for their
conceptual and numerical simplicity.

Let’s consider the output from the IMU, accelerometer and gyro pulses, 
�
v l

and � � l , respectively; where � v l  is a vector of increments in sensor-frame velocity
generated by the three accelerometers and � � l  is a vector of increments in sensor-
frame angles generated by the three gyros at time l.  Defining the corresponding time
increments, � t , those are written as:

δ δ
δδ

v al
s

l is
s

tt

t dt t dt= =( ) , ( )θ ω , (5.1)

where the superscript s means the sensor frame (s-frame).  The acceleration in the i-
frame can be constructed by applying a transformation that is derived from the
orientation information in the � 	 l s’  to the acceleration in the s-frame calculated from


v l s’ .
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Figure 5.2 The derived GPS accelerations in the i-frame; X (top), Y (middle) and Z
(bottom).
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Figure 5.3 GPS acceleration after applying 60 seconds smoothing for line 1; X (top), Y
(middle) and Z (bottom).
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The transformation matrix from s- to i-frame can be constructed by integrating
the differential equation (2.46). �

C Cs
i

s
i

is
s= Ω (5.2)

As stated in section 2.4.3, the equivalent differential equation can be derived in terms of
quaternions (see 2.50, 2.53-2.55).

�
q q= 1

2
A (5.3)

where A is a 4 
  4 skew-symmetric matrix of time dependent angular rates:

A =
− −
− −
− −

0

0

0

0

1 2 3

1 3 2

2 3 1

3 2 1

ω ω ω
ω ω ω
ω ω ω
ω ω ω

(5.4)

Using (5.3), one can integrate q over a certain time interval � t , then the
element in the transformation matrix Cs

i  can be obtained according to (2.36).
One of the popular numerical integration algorithms is the Runge-Kutta

algorithm that is known to be very stable and to have much flexibility.  It imitates the
Taylor series method without requiring the analytic differentiation of the original
differential equation (Cheney and Kincaid, 1996, p. 581).  A third order Runge-Kutta
algorithm is selected to perform the numerical integration for the quaternions.  Since it
requires that the function being integrated is evaluated at either end of the integration
interval and half-way in between, the integration interval is twice the data interval.

∆t t= 2δ (5.5)
Now, let’s assume that the angular rate � ��

is
s  is expressed as:

ω ω ω( ) � ( ) ( );t t t O t t t tl l l l= + − + − ≤− − − −2 2 2
2

2∆ ∆ , (5.6)

where the subscripts denote the time index for evaluation of the quantity at the
corresponding epochs spanning intervals � t .
With (5.6) and (5.1),

δ δ δθ ω ω ωl l lt

t
t dt t t O t

l

l

− − −= = + +
−

−

1 2 2
2 31

22

1

( ’) ’ � ( )∆ (5.7)

δ δ δθ ω ω ωl t

t

l lt dt t t O t
l

l= = + +
−

− −( ’) ’ � ( )
1

2 2
2 33

2
∆ (5.8)

Solving for ω l−2  and �ω l−2 ;

� � ��� ���
l l lt

O t� �� � �
2 1

21

2
3( ) ( )

�
(5.9)

 
( ) ( )ω θ θl l lt

O t− −= − +2 2 1

1

δ
δ δ ∆ (5.10)

Substituting (5.9) and (5.10) into (5.6) with specified variable t yields:
ω θ θl l lt O t− −= − +2 1

33∆ ∆δ δ ( ) (5.11)

ω θ θl l lt O t− −= + +1 1
3∆ ∆δ δ ( ) (5.12)
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ω θ θl l lt O t∆ ∆= − +−3 1
3δ δ ( ) (5.13)

Therefore, these observed quantities are accurate up to the second order:!
ω θ θl l lt− −= −2 13∆ δ δ (5.14)"
ω θ θl l lt− −= +1 1∆ δ δ (5.15)#
ω θ θl l lt∆ = − −3 1δ δ (5.16)

Now, the third-order R.K. algorithm for $ ( , )q q= f t  is given by
% %
q q q q ql l= + + +−2 0 1 2

1

6
4( )∆ ∆ ∆ , (5.17)

where
∆ ∆q q0 2 2= − −f t tl l( , )

&
(5.18)

∆ ∆ ∆q q q1 2 0 1

1

2
= +− −f t tl l( , )

'
(5.19)

∆ ∆ ∆ ∆q q q q2 2 1 02= + −−f t tl l( , )
(

(5.20)
With an initial value, (5.17) provides quaternions at intervals of ) t  for the desired
transformation from the s- to the i-frame.

Considering (5.3) with f t A t( , ) ( )q
q=
2

 and defining * *B A tl l
+ , , one can express the

iteration formula (5.17) in terms of the matrix -B .

∆q q0 2 2

1

2
= − −

. .
Bl l (5.21)

∆q q1 1 2 2

1

2

1

4
= +− − −

/ / /
B I Bl l l (5.22)

∆q q2 1 2 2 2

1

2

1

4

1

2
= + + −− − − −

0 0 0 0 0
B I B I B Bl l l l l (5.23)

After substituting these into (5.17), the final iteration equation for quaternions is given
by

1 1 1 1 1 1 1 1 1 1 1
q ql l l l l l l l l l lI B B B I B B B B B B= + + + + + + −− − − − − − −

1

12
4

1

12

1

4

1

12

1

21 2 1 2 1 2 2  (5.24)

The accuracy of the above equation is up to the third-order yielding the fourth order
error.

The initial value of the above equation can be obtained from the initialization
process of the IMU, or from a ZUPT algorithm in the Kalman filter.  Once the initial
matrix is obtained, the inverse relationship of (2.36) can be used to get the initial
elements for the quaternion:

a C C Cs
i

s
i

s
i= + + +1

2
1

1 1 2 2 3 3

1 2

, , ,

/

(5.25)

b
a

C Cs
i

s
i= −1

4 2 3 3 2, ,
(5.26)
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c
a

C Cs
i

s
i= −1

4 3 1 1 3, ,
(5.27)

d
a

C Cs
i

s
i= −1

4 1 2 2 1, ,
(5.28)

Having quaternions to represent the rotational information, one can compute the
transformation matrix from s-frame to i-frame and get the acceleration in the i-frame by
applying the transformation to the acceleration in the s-frame.  For the acceleration in
the s-frame, one can use the first-order calculation as follows:

2
a v vl

s
l lt

= ++
1

2 1δ
δ δ( ) (5.29)

Figure 5.4 shows the INS acceleration integrated using the algorithm explained
above.  Comparing it with the GPS acceleration (Figure 5.2), one can notice similarities
in shorter-wavelength characteristics and differences in the global trends.  As in case of
GPS acceleration, the same 3rd order B-spline filter (60-s averaging) was applied to
INS acceleration to reduce the high frequency components (Figure 5.5).

While the high frequency noise, mostly coming from the accelerometer white
noise, is eliminated, the slope trends in the x and y components still remain.  Note the
magnitudes of the INS accelerations.  These are caused by the gravitational
acceleration ( 3 98 2. / secm  in the down component) distributed in all three axes in the
i-frame.

Using GPS positions, the smoothed accelerations of the GPS and INS can be
transformed into the n-frame.  Figure 5.6 presents the difference between those two
accelerations in the n-frame for all three lines.  In an ideal situation, this should be the
gravity disturbance vector according to the fundamental equation.  The results,
however, have still some systematic errors like global trends in horizontal components.
It should be emphasized that the line 2 has the opposite systematic errors to the line 1
and 3 in the horizontal components.  Note the high frequency oscillation in the north
component.  Because the airplane mainly flew in the E-W direction, the roll motions of
the vehicle directly affect the acceleration of the north component.  Those high
frequency oscillations are considered as effects from the dynamics of the aircraft, called
phugoid motion (Boedecker and Neumayer, 1994).

As one can see, just taking direct differences between the GPS and INS
accelerations already shows the signature of the gravity.  Especially, the down
component signal is very well detected; for example, look at the low anomaly around
λ = 2429. o  and the high anomaly around λ = 2414. o .  Since the down component is not
much affected by the orientation errors, it does not have a significant global trend.
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Figure 5.4 The integrated INS acceleration in the i-frame; x (top), y (middle) and z
(bottom).
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Figure 5.5 INS acceleration in i-frame after applying 60 seconds smoothing for line 1;
X (top), Y (middle) and Z (bottom).
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Figure 5.6 Difference between the smoothed GPS and INS acceleration in n-frame for
line 1 (dashed), line 2 (dotted), and line 3(dash-dotted) ; North (top), East (middle) and
Down (bottom).

5.2.3 Kalman Filtering Using GPS Acceleration Update
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In the previous section, the gravity signal has been already exposed, more or
less, after the direct differencing between the GPS and INS accelerations.  The global
trends which appear in the horizontal components are assumed to be the effect of
orientation error and the gyro drift that cannot be eliminated by smoothing or low pass
filtering.  Therefore, it is necessary to develop a proper mathematical model from
which the INS system error could be estimated and subsequently removed.

Again, the mathematical model for the new acceleration update algorithm starts
from the fundamental equation (2.6).  It should be noted that the fundamental equation
is given in terms of acceleration, not position.  Since we are seeking gravitation, the
approach using accelerations is more straightforward than using position as in the
traditional approach.

The fundamental equation (2.6) can be expressed by observed accelerations of
GPS and INS: 4 4

~ 5 5 ~x x a a gi i i i i− = − +δ δ , (5.30)

where the superscript i denotes the inertial frame; 6 6~x i  is the GPS observed acceleration;
~a i  is the INS observed specific force; g i  is the gravitation; δ δ7 7

,x ai i are the total errors
for the GPS and INS observed acceleration, respectively, interpreted as random effects.

The error of the kinematic accelerations from GPS is assumed to be white
noise, and the same INS error model as in the traditional case is considered (see (3.23)
and (3.24)).  The accelerometer error δa i can be expressed in terms of the error in the
body frame (b-frame) and the orientation error (see (4.6)):

δ δa a ai
b
i b i iC= + ×~ ψ , (5.31)

where Cb
i is the transformation matrix from body to inertial frame, δab  is the

accelerometer error in the body frame and ψ i is the orientation error in the inertial
frame.  Including only the general error parameters, the accelerometer and gyro errors
in the body frame are modeled as follows:

δa b k ab
a a

b
a= + + ε  , (5.32)

δω ω εib
b

g g ib
b

g= + +b k ,  (5.33)

where ba and bg  are biases (random effects); ka  and kg  are scale factor errors; ε a , ε g

represent the white noise; and δω ib
b  is the gyro error in the body frame.  The subscript

‘a’  refers to the accelerometer while ‘g’  refers to the gyro.
With (5.33), the dynamics of the orientation error ψ i  are given as follows:8

[ ]ψ ω ω εi
b
i

ib
b

b
i

g b
i

ib
b

g b
i

gC C C C= − = − − −δ b k , (5.34)

where [ ]ω ib
b  is the diagonal matrix that contains the angular rates of body frame

rotation with respect to the inertial frame.
Using equation (5.34) and the models for the random parameters associated

with the INS, the error dynamics equation can be set up as follows.



76

9
9
9
9
9

[ ]

b

b

k

k

b

b

k

k

a

g

a

g

b
i

b
i

ib
b

a

g

a

g

b
i

gC C Cψ ω ψ ε

=

− −

+

−

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0

0

0

0

(5.35)

Note that biases and scale factors are modeled as random effects, i.e. parameters for
which stochastic prior information is assumed.

After some manipulations with proper substitutions, the equation (5.30) can be
expressed as: : :

~ ~ [~ ] ~ ; ;x a g b a k a xi i i
b
i

a b
i b

a
i i

b
i

a
iC C C− − = − − − × − +ψ ε δ , (5.36)

where [~ ]a b  is the diagonal matrix that contains measured accelerations in the body
frame.  The gravitation vector gi can be expressed as the sum of the normal gravitation
vector γ n

i  and the gravity disturbance vector δg i  in the inertial frame.  Therefore, in

theory, one has to mathematically model the gravity disturbance vector < g i  to obtain
the estimates.  As described in Chapter 1, however, the modeling of the disturbing
gravity field is very controversial in the field of geodesy.  Furthermore, none of the
mathematical models for the gravity perfectly represents the actual gravity field.
Therefore, as a result of not knowing the gravitation vector gi, it can be approximated
by the normal gravitation vector γ n

i  of a selected ellipsoid (e.g. GRS80; Moritz, 1992).
Now, expressing the gravitation as the sum of the normal gravitation and gravity
disturbances, the equation (5.36) is changed as:= =~ ~ [~ ] ~ > >x a b a k a x gi i

n
i

b
i

a b
i b

a
i i

b
i

a
i iC C C− − = − − − × − + +γ ψ ε δ δ . (5.37)

Note that the left side is composed of observations (GPS, INS accelerations) and a
calculated quantity (normal gravity), while the right side contains unknowns treated as
random parameters and white noises, plus the gravity disturbance.

Clearly, the equation (5.37) would contain a model error when omitting the
gravity disturbance vector δg i .  The main idea of this approach is that the effect of the
non-random gravity disturbance is largely reflected in the residuals after the adjustment
via Kalman filter.  To investigate this effect in detail, let us set up the explicit form of
the Kalman filtering observation equations using the equations (5.37).

z x a: ? ?~ ~= − −i i
n
iγ (5.38)

H C Cb
i i

b
i: [~ ] [~ ]= − − ×0 0a a (5.39)

x b b k k:= a
T

g
T

a
T

g
T T T

ψ (5.40)

v x g= − + +( @ @ )Cb
i

a
i iε δ δ (5.41)

Note that each component in the H matrix is a 3 × 3 matrix and in x it is a 3 × 1 vector.
So now, we have a 15-state system, and the observation is the difference of
acceleration vectors, not of the positions.  Again, the initial conditions for the states
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would be obtained from the manufacturer’s specification or from controlled
experiments.

The Kalman filter for the above model (5.35) through (5.41) generates the
residual, ~v , containing the adjusted observation errors (i.e. the difference between the
observations, z, and the adjusted observations as modeledH Ax ) which represents – in
large parts – the estimated gravity disturbance vector.  Therefore, if the part
( − +Cb

i
a

iε δ B Bx ) can be assumed considerably small, having random characteristics, and if
the total difference of the observations and adjusted observations, z x− H C , has
distinguished characteristics with respect to the gravity signature, the residual vector
will be a good approximation for the gravity disturbance vector.

In summary, the two approaches differ as follows:
Method 1 (Traditional Method):

- Integrate INS acceleration and estimate INS system errors using
updates from GPS position.

- Treat δgN  and δgE  as stochastic parameters.
- Calculation is performed in n-frame.
- Vertical gravity disturbance cannot be estimated.

Method 2 (New Algorithm):
- Differentiate GPS positions and use in combination with INS

acceleration as observation update to estimate orientation and other INS
errors.

- Include δg as the main portion in the total random error budget and
analyze the residuals after the adjustment with respect to this
characteristics.

- Calculation is performed in i-frame.
- Total vector, δg , can be determined.

Note that one could also include δg  in the total random error budget for Method 1.
Again, one would then expect to see an effect in the residuals of the observations.  But
these are residuals in position, not acceleration, and it would be virtually impossible to
extract the gravity disturbance from them.

5.2.4 WCF

In the previous section, it is explained that the residual vector from the Kalman
filter would be at least an approximation of the estimated gravity disturbance vector
under the condition of ( − +Cb

i
a

iε δ D Dx ) being small, and distinguishable characteristics in
the difference between the observations and the adjusted observations.  Otherwise, the
signal, the gravity disturbance in this case, might still be extracted using WCF.  As
explained in section 4.5.2, the observations of overlapping or almost parallel lines are
required to apply WCF.  In addition, it would be better if those lines represent flights in
opposite directions to remove the uncompensated system errors.
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5.3 Simulation based on the Real Dynamics

To verify the developed algorithm as well as to investigate the behavior of the
INS system errors, it is necessary to perform a simulation based on the real dynamics.
Although Wei and Schwarz (1994) have carried out a similar simulation, its primary
assumption was the local level flight.  Therefore, the effect of the vehicle dynamics was
not characterized at all, although major features in the INS errors were well
investigated. So, this section focuses on a numerical investigation of the INS error
model in a real dynamics situation.  In addition, this will determine if the developed INS
error model and Kalman filtering are appropriate for the GPS/INS airborne vector
gravimetry.

5.3.1 Establishing Simulation Data

To simulate the real dynamics of an airborne gravimetry mission, the GPS
position data for the June 1995 test flight over the Rocky Mountains were chosen as
the base data.  In addition, the attitude estimates from the University of Calgary and
gravity information from Calgary as well as NIMA data were also used to simulate the
IMU sensor data.

The procedure used in this study to conduct the simulation is as follows.
1. Section extraction from GPS position data.  GPS position data at GPS seconds
from t = 395200  to t = 397200  corresponding to Line 2 are extracted.
2. Interpolate GPS 2 Hz position data to 50 Hz data.  A cubic spline interpolator
is used.
3. Compute GPS acceleration by numerical differentiation in the inertial frame.  A
B-spline differentiation with 1-second intervals of smoothing was performed.
4. Simulate gravitation data at each observation position by interpolation of the
gravity information from NIMA and Calgary.
5. Compute transformation matrices Cn

i  and Cb
i  using attitude and position.

6. Simulate errorless INS accelerometer and gyro raw data.
a x gb

i
b i

n
i nC C= −( E E ) (5.42)

ω ib
b

i
b

b
i

t
I C t C t t= − −1

δ
δ( ) ( ) (5.43)

7. Integrate the simulated INS raw data to get INS acceleration and assume it as
true INS acceleration.  Because of numerical round-off error, the simulated INS raw
data do not correspond to the original GPS acceleration and gravitation data.
8. Simulated GPS accelerations by taking the difference between the gravitation
and INS accelerations.

As indicated in steps 7 and 8, INS accelerations should be assumed as true
values because of the round-off error in the procedure of making INS raw data.  So,
the simulated GPS acceleration of step 8 does not exactly match with the original
position-derived acceleration.  In other words, the GPS position integrated from the
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simulated GPS acceleration is not the same as the original GPS position.
The position data, however, are only used for the calculation of the normal

gravitation and the transformation matrix from navigation to inertial frame, Cn
i , in the

Kalman filter.  So, by using the original GPS position data and simulated GPS and INS
acceleration, a near-perfect gravitational signal can be obtained.

5.3.2 Numerical Test for each INS Error Parameter

Because perfect simulated GPS and INS data are available, artificial systematic
errors for each INS error parameter such as biases, scale factor errors, and initial
orientation errors can be added to the raw simulated INS data.  After integrating the
IMU data, one can see the effect of the added errors to the INS acceleration, and the
error parameters will be determined through the Kalman filter.  For the magnitude of
error parameters, the specification for the Litton LN93 INS were used (Table 5.1).
The initial variance of an error parameter is set to the square of the intentionally added
error for the parameter; and the variances of other parameters are set to zero to see the
effect of just one error.

Bias Error Scale Factor Error White Noise
Accelerometer ±20 mGal ±40 ppm ±5mGal Hz/

Gyro ±0.003o/hr ±0.2 ppm < ±0.001o/ hr

Table 5.1. The Error Specification for the LN 93 INS

5.3.2.1 Accelerometer Bias

Figure 5.7 shows the true gravity disturbance, the observations (GPS
acceleration-INS acceleration-Normal gravity) and the residuals from Kalman filtering
after 20 mGal of constant accelerometer bias is added to the simulated INS raw data
for all three axes.  As one can expect, the bias appears in the observations on each axis.
The bias, however, does not appear as a constant in the navigation frame.  That is,
although the bias is a constant in the body frame, it is affected by the vehicle motion
and then is not constant in the navigation frame.  In fact, the bias effect is varying up to
1.5 mGal depending on the dynamics in this case.

The residuals out of the Kalman filter show that the filter is stabilized in the
down direction within 120 seconds while the east and north components take more
time.  The residuals after stabilization, however, are not close to zero but have a
systematic appearance with substantial high-frequency undulations in the north
component.  This can be explained by the high-dynamics of the vehicle and
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mismodeling effects.  In other words, if the model is correct, the residuals should be
close to zero without any systematic appearances.  Furthermore, the estimates for the
bias should be 20 mGal.  This can be tested, by taking out the simulated gravitation
from the observation vector, generating the observation vector as purely a constant of
20 mGal in each axis in the body frame.  Using g i  instead of γ i , the resulting
estimation indicated that the accelerometer biases are well determined as expected.
The filter estimates the biases as 20 mGal for all axes at the first epoch.  If normal
gravitation is used instead of true gravitation, however, a mismodeling effect is
included; hence, the estimates for the biases are also changed.  By ignoring the gravity
disturbances from the parametric model, the effect is nevertheless included in the
observation error represented as random with mean of zero.  The simulated gravity
disturbances, however, are not random white noise and their mean is not zero.
Therefore, the filter attempts to change the bias estimates to match the observations
under the maximum allowance of the covariance to make the residuals as small as
possible.

Note that the residuals of the down component are decreasing continuously
comparing with the control data.  This is caused by the increasing tendencies at the
down component which causes the estimates of the bias for the down component to be
as large as 120 mGal.  The dynamics of the roll with an amplitude of 5 degree (see
Figure 4.4) coupled with the down component’s wrong bias estimates of 120 mGal
caused the high frequency anomalies up to 10 mGal in the north component.

5.3.2.2 Accelerometer Scale Factor Error

Figure 5.8 shows the effect of an accelerometer scale factor error of ±40 ppm.
As for the case of accelerometer bias, high frequency effects appear in the horizontal
components with standard deviations of ±1.11 mGal for north and ±0.15 mGal for east.
Note that the scale error effect for the down component appears as a bias of 40 mGal
( 40 10 406× × ≈− g ) because the down component is rather insensitive to the horizontal
motions.  The residuals from the Kalman filter have a lot of high frequency content
showing that the filter tries to compensate the gravity effect with a scale factor error.

5.3.2.3 Gyro bias

Figure 5.9 shows the effect of a gyro bias of 0.003 deg/hr.  The observation
shows almost linear trends generating errors up to 25 mGal for north and 30 mGal for
east with respect to the control data at the end of the line.  In addition, high frequency
errors in the horizontal components also appear in the observation.  Especially, the high
frequency in the east component of the observation is caused by the airplane dynamics
(roll) since the orientation errors caused by the gyro bias are coupled with the down
acceleration and thus affect the horizontal components as seen in equation (4.47).

The down component, however, does not have an overall trend because of its
insensitivity to the orientation error.  In addition, the standard deviation of the down
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component with respect to the control data is relatively small (±0.45 mGal) compared
to the horizontal components (±7.5 and ±8.6 mGal for north and east, respectively).

The differences between the residuals and the true values show that the filter is
not stabilized in the horizontal components for the first 400 seconds because of the
mismodeling effect.  The standard deviations of the observations and residuals with
respect to the control data after the first 400 seconds (respectively, ±5.8, ±4.1 mGal for
north; ±6.9, ±5.1 mGal for east; ±0.5, ±0.4 mGal for down) indicate that the filter
successfully removes the overall trends from the observations.

5.3.2.4 Gyro Scale Factor Error

The effect of a gyro scale factor error of ±0.2 ppm on the INS acceleration is
very small (less than the standard deviation of ±0.01mGal with respect to the control
data) for all three components, like the accelerometer scale factor error in horizontal
components (Figure 5.10).  The residuals as estimates of the gravity disturbance,
however, show high frequency errors in the north component and low frequency errors
in the east.  The standard deviations for the residuals relative to the control data are
±4.2, ±2.7, ±0.2 mGal for north, east, and down, respectively.  Basically, this means
that the gyro scale factor error is not really estimated by the Kalman filter.

5.3.2.5 Initial Orientation Error

Figure 5.11 shows the effect of an initial misalignment of +2 arc-second in the
horizontal and +2 arc-minute in the vertical, respectively.  In the observation, the linear
trend is shown in north direction (error of 60 mGal at the end of line) while the east
component contains very large high frequency errors up to the amplitude of 25 mGal.

The north orientation error and high dynamics coupled with the down
acceleration caused the dominant high frequency error in the east component.  In
contrast, the east orientation error with less dynamics caused a low-frequency trend in
the north component.  The standard deviations of the observations and residuals with
respect to the control data shows that the filter is very effective in removing the
orientation error (respectively, ±17, ±5.2 mGal for north; ±13.7, ±4.9 mGal for east;
±1.2, ±0.3 mGal for down).  As one can see from the figure, the mean of the
observations and residuals relative to the control data also shows significant reduction
of orientation error is achieved through the filter (respectively, 42.9, –9.9 mGal for
north; 11.5, 2.8 mGal for east; 0.07, 0.0 mGal for down).

5.3.2.6 Including All Error Parameters

Figure 5.12 shows the joint effect on the observation of all error parameters
explained up to now.  The simulated observations have long term errors caused by the
initial orientation error and gyro biases as well as high frequency components caused by
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scale factor errors.  It should be mentioned that one has to be careful in establishing the
parameter vectors in the estimation procedure.  In other words, we know that some
error parameters like accelerometer and gyro scale factor errors cannot be readily
estimated through the filter, so it is natural to exclude those from the error parameter
vector.  One way to determine the optimal set of meaningful error parameters is to
make a test of different combinations of the parameters and compare the results with
the control values.

From intensive tests, the best results from the Kalman filter were obtained
(Table 5.2), when the only error parameter considered was the orientation error (see
also Figure 5.12).  Thus, the overall trends caused by orientation error have been
effectively removed through filtering.

Mean (mGal) Standard Deviation (mGal)

North -4.25 ±5.88

East 5.87 ±7.55

Down 19.32 ±0.78

Table 5.2 Estimated mean and standard deviation of the difference between the true
gravity disturbance and the residual from the filter (with only orientation errors as
system error parameters).
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Figure 5.7 Control data (solid), observations (dashed) after adding 20 mGal of
accelerometer bias, and residuals (dotted) from the Kalman filter for north (top), east
(middle) and down (bottom).
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Figure 5.8 Control data (solid), observations (dashed) after adding 40 ppm of
accelerometer scale factor error, and residuals (dotted) from the Kalman filter for north
(top), east (middle) and down (bottom).
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Figure 5.9 Control data (solid), observations (dashed) after adding 0.003 deg/hr of
gyro bias, and residuals (dotted) from the Kalman filter for north (top), east (middle)
and down (bottom).
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Figure 5.10 Control data (solid), observations (dashed) after adding 0.2 ppm of gyro
scale factor error, and residuals (dotted) from the Kalman filter for north (top), east
(middle) and down (bottom).
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Figure 5.11 Control data (solid), observations (dashed) after adding 2 arc second of
horizontal and 2 arc minute of vertical orientation error, and residuals (dotted) from the
Kalman filter for north (top), east (middle) and down (bottom).



88

3.952 3.954 3.956 3.958 3.96 3.962 3.964 3.966 3.968 3.97 3.972

x 10
5

-100

-50

0

50

100

150
dg

 (
m

G
al

)

3.952 3.954 3.956 3.958 3.96 3.962 3.964 3.966 3.968 3.97 3.972

x 10
5

-100

-50

0

50

100

150

dg
 (

m
G

al
)

3.952 3.954 3.956 3.958 3.96 3.962 3.964 3.966 3.968 3.97 3.972

x 10
5

50

100

150

200

250

gpstime(sec)

dg
 (

m
G

al
)

Figure 5.12 Control data (solid), observations (dashed) after adding all previous errors,
and residuals (dotted) from the Kalman filter for north (top), east (middle) and down
(bottom).  Error parameters modeled in this case were only the orientation errors.

5.4 Results from the Real Test Flight

The investigations on the INS error characteristics through the simulations
provide a basic idea on the types of INS errors to be included in the analysis of real test
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flight data.  The smoothed (60s) observation vector (GPS acceleration – INS
acceleration – normal gravitation) for the test flight clearly shows the long term trends
caused by orientation error or gyro biases and the short term error (see north
component) caused by the airplane dynamics (Figure 5.13).  Note that the high
frequency errors caused by scale factor errors are almost eliminated by the smoothing.
Also note the big anomalies at the vehicle turns.

5.4.1 Residuals from Kalman Filtering

As mentioned in the previous section on the simulation, the parameter vector in
the Kalman filter should be assigned in such a way that the targeted error effects could
be eliminated or reduced.  Looking at the smoothed observations again (Figure 5.13),
one can notice that the major error appears in the long wavelength.

A numerical comparison using computed means and standard deviations of the
observations with respect to the control data, is shown in Table 5.3.  The large
standard deviations for the horizontal components ±(18-78 mGal) are mostly caused by
the overall trends due to the orientation error (see corresponding Figure 5.13).  It
should be noted that the down component shows a much better standard deviation than
the horizontal components.  Especially, the down component of line 3 already has a
very good standard deviation of ±4.5 mGal.  This is because the down component is
less sensitive to the orientation errors.  Therefore, the orientation error and/or gyro
biases should be the appropriate candidates for the system error parameters, to remove
the long-term errors.  In addition, one has to notice that discontinuities occur at
vehicle’s turns.  Because of the discontinuities, the slopes of the trends as well as the
biases are different before and after each turn.  Therefore, it might be a good idea to
include the accelerometer biases in the model parameter vector.

(mGal)
Line 1 Line 2 Line 3

S.D. 63.36 77.85 35.27North
Mean -272.94 -573.86 -827.20
S.D. 31.06 18.62 46.67East
Mean -108.53 -16.79 -215.86
S.D. 10.86 12.42 4.54Down
Mean 35.42 96.77 131.30

Table 5.3 Estimated means and standard deviations of the observations (GPS
acceleration-INS acceleration-Normal gravity) with respect to the control data.
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Figure 5.13 Smoothed observation vector for all lines; North (top), East (middle) and
Down (bottom).

After numerous tests for different sets of error parameters, the set showing the
best results from the Kalman filter are presented.  The error parameters in this case are
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composed of the accelerometer bias and orientation error.  The initial values are set to
zeros for all parameters and the variances are set as (20 mGal)2 for accelerometer
biases, (2 arc-second)2 for horizontal orientation error and (2 arc-minute)2 for vertical
orientation error.  The scale factor errors are excluded as already mentioned because
the effects are small and would be reduced significantly through the smoothing
procedures anyway.

The Figures 5.14-5.16 show the control data versus the residuals from the
Kalman filter with error parameters comprising accelerometer biases and orientation
errors for all three components.  Compared to the smoothed observations in Figure
5.13, the overall trends in north and down component were significantly reduced
through the filter.  The east components, however, still show systematic errors at both
ends of the profiles in all three lines.

The standard deviations of the residuals with respect to the control data show
tremendous improvement in all three components; 25~65 mGal in north, 1~16 mGal in
east, and 0.5~6 mGal in down component (Table 5.4).  The standard deviations for the
east component are not as good as for the north component because of the remaining
systematic error.  Especially, the poor result on the east component of line 3 is caused
by the down tendency after the big anomaly around 243o longitude. Comparing the east
components of lines 1 and 3, with line 2, one can see that the remaining systematic
errors have dependency on the direction of flight.  Therefore, the reason for the poor
standard deviations might be the coupling effect of the uncompensated north
orientation error with the down acceleration.

Note that the local peaks and valleys in the east component, however, are very
well detected so that the results could be refined by further processing such as
endmatching and WCF.

(mGal)
Line 1 Line 2 Line 3

S.D. ±11.6580 ±13.3326 ±14.0436North
Mean -16.5649 -5.6712 -5.1604
S.D. ±17.1909 ±17.0348 ±20.6910East

Mean -14.0085 18.4831 -19.9004
S.D. ±5.0227 ±6.5081 ±3.9132Down

Mean 24.9730 52.4192 49.0363

Table 5.4 Estimated means and standard deviations of the difference between the
residuals from Kalman filter and the control data (accelerometer bias and orientation
error parameters).
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Figure 5.14 Residuals (dotted) from Kalman filter and the control data (solid) for Line
1 (accelerometer bias and orientation error states).
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Figure 5.15 Residuals (dotted) from Kalman filter and the control data (solid) for Line
2 (accelerometer bias and orientation error states).
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Figure 5.16 Residuals (dotted) from Kalman filter and the control data (solid) for Line
3 (accelerometer bias and orientation error states).

5.4.2 Applying Endmatching
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To eliminate the biases and remaining system errors, additional external
information on the gravity field is assumed.  For example, the gravity values at both
ends of the profile are assumed to be available.  Thus, by applying a linear correction
through endmatching, one can obtain refined residuals having better global trends
(Figure 5.17-19).

After applying endmatching, the standard deviations for the east component of
lines 2 and 3 as well as the estimated mean differences for the down component are
significantly improved (Table 5.5).  In some cases, however, the endmatching produced
worse results (see north component of line 1 and 3).  This shows that the global trends
for north are already compensated and a simple linear correction is not enough to
eliminate the other effects such as high frequency errors due to the airplane dynamics.

(mGal)
Line 1 Line 2 Line 3

S.D. ±12.1733 ±11.1466 ±16.8663North
Mean 14.7704 -6.3520 5.9142
S.D. ±17.6997 ±16.5883 ±14.8558East
Mean -0.9360 -30.5066 15.2725
S.D. ±5.1620 ±4.9868 ±3.4742Down

Mean -8.2847 2.2427 -1.8933

Table 5.5 Estimated means and standard deviations of the difference between the
residual after endmatching and the control data (accelerometer bias and orientation
error).
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Figure 5.17 Residuals (dotted) after endmatching and control data (solid) for Line 1
(accelerometer bias and orientation error states).



97

241 241.5 242 242.5 243 243.5 244 244.5 245
-40

-20

0

20

40
dg

 (
m

G
al

)

241 241.5 242 242.5 243 243.5 244 244.5 245
-100

-50

0

50

dg
 (

m
G

al
)

241.5 242 242.5 243 243.5 244 244.5
-50

0

50

100

longitude (deg)

dg
 (

m
G

al
)

Figure 5.18 Residuals (dotted) after endmatching and control data (solid) for Line 2
(accelerometer bias and orientation error states).
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Figure 5.19 Residuals (dotted) after endmatching and control data (solid) for Line 3
(accelerometer bias and orientation error states).

5.4.3 Final Results after WCF

It has been shown that WCF is an efficient method to extract a signal from the
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observations measured from overlapping or parallel tracks in the traditional case.  Since
it operates in the frequency domain, the components having more than a certain amount
of correlation will be preserved in corresponding frequency bands (Figure 5.20-22).
Therefore, as a final procedure in refining the residuals from the Kalman filter, WCF
was applied to all combinations of two parallel tracks (Line1-2, Line1-3 and Line2-3).
The results from WCF show significant improvements in combinations Line1-2 and
Line2-3.

After applying WCF, one can find a very interesting feature from the results,
namely, the dependency of the INS errors on the direction of the flight.  That is, WCF
generates much better results for the combinations line1-2 and line 2-3, while the line1-
3 combination does not show any improvements (Table 5.6).

The residuals for line 1 and line 3 are almost on top of each other, so the
characteristics of the long-term INS error are almost the same while for line 2 they
have opposite characteristics.  Therefore, uncompensated long term errors after the
Kalman filtering in opposite travel paths are canceled out through the WCF as in the
case of line1-2 and line2-3 combinations.  WCF applied to the combination line1-3,
however, does not reduce the errors because they have common characteristics and are
considered as signals in the WCF.

(mGal)
Line 12 Line 13 Line 23

S.D. ±6.84 ±13.12 ±7.80North
Mean 4.21 10.34 -0.22
S.D. ±6.75 ±15.82 ±6.70East
Mean -15.72 -0.31 -0.31
S.D. ±4.38 ±3.43 ±3.16Down
Mean -3.02 -5.09 0.17

Table 5.6 Estimated mean and standard deviation of the difference between the
residuals after endmatching, WCF and the control data (accelerometer bias and
orientation error parameters).
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Figure 5.20 Residuals (dotted) after endmatching and WCF vs. control data (solid) for
Line 1-2 combination (acceleration bias and orientation error parameter model).
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Figure 5.21 Residuals (dotted) after endmatching and WCF vs. control data (solid) for
Line 1-3 combination (acceleration bias and orientation error parameter model).
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Figure 5.22 Residuals (dotted) after endmatching and WCF vs. control data (solid) for
Line 2-3 combination (acceleration bias and orientation error parameter model).

As mentioned before, the estimates for the down component are better than for
the horizontal components because the down component is insensitive to the
orientation error.  The best accuracy of ±3.16 mGal for the down component is
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obtained from line 3.  The other two lines also show that the down component can be
recovered with an accuracy of 3-4 mGal.  Although the accuracy is not as good as for
the vertical component, the horizontal components also are well estimated with an
accuracy of ±(6-8 mGal).  Therefore, it can be concluded that the deflection of the
vertical can be recovered with an accuracy better than ±2 arc seconds (1 arc second ≈
4.75 mGal).  The resolution corresponding to 60-second smoothing is about 3.5 km,
but the resolution of the final results is about 10 km due to the attenuation with
altitude.
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CHAPTER 6

DISCUSSIONS ON THE NEW ACCELERATION
ALGORITHM

6.1 Introduction

Although the results from the new algorithm were comparatively good
compared to the control data sets, one might consider using a statistical or empirical
model for the gravity disturbances to improve the estimation.  As already mentioned
several times, the mathematical model in the new approach includes the gravity
disturbance invisibly in the total random observation error.  Therefore, a modification
of the mathematical model would be advisable for theoretical reasons.  Toward this
aim, two methods are investigated, namely, the iteration method and the inclusion of a
parametric gravity model.

6.2 Iteration for better estimates of the INS system errors

Since the gravity disturbance is not included in the Kalman filter states, the
estimates of the INS system errors are considered to be somewhat inaccurate.  That is,
these estimates will include some effect from the gravity signal.  Thus, once the residual
vector is obtained from the Kalman filter, it can be subtracted from the observation
vector so that the filter may generate better estimates for the INS system errors in a
modified model.

Starting from the fundamental equation (5.30),
� �~ � � ~x x a a gi i i i i− = − +δ δ , (6.1)

one can set up the observation vector, denoted with tilde, as follows:
~ � �~y x gi i i= − , (6.2)

where ~y i  is the formal definition for the observations, 
� �~x i  contains the GPS kinematic

accelerations, and gi  is the true gravitation vector.  Note that we measure the specific

force ~a i .  Then, the observation equation for the parameters will be:
δ δ δy a y a x g a x= − = − + = −~ ~ ~ � �~ � �i i i i i i i . (6.3)

Note that the true gravity in the above equation is not available.  Thus, using normal
gravity as an approximation;
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δ δ δ δ

δ δ δ

y a y a x a x g

a x g
0 0= − = − + = − −

= + − −

~ ~ ~ � �~ � �

� �

i i i i i i i i

s
i

a
i i i

γ

ε
. (6.4)

Note that the observation error of the INS is divided into the system parameters
(random effects) and random noise ( δ δa ai

s
i

a
i= + ε ).  The gravity disturbance is

intentionally included in the total observation error budget since we assume that no
information on the gravity disturbances is available.  Assuming random noise for the
GPS observation error, the total observation error budget in (6.4) is:

ε εi
a
i i i= − −δ δ� �

x g (6.5)
If the gravity disturbance has statistically distinguishable characteristics with respect to
the INS systematic error parameters, the residuals after Kalman filtering using equation
(6.4) will in a certain way reflect the gravity signal.  In addition, if the gravity signal is
much stronger than the adjusted system noise, one can define:

δ δ δy a g0 − = = −
	 ~ :




s
i iε  (6.6)

The critical factor in the above equation is that the gravity signal should dominate the
total observation error and its estimates can hence be equated with the residuals after
the Kalman filtering.

Now, one can update the approximated gravitation by adding the first
approximation of the gravity disturbance from (6.6).

γ i i+ =δ
�
:

�
g g1 (6.7)

Because the gravity model error should be significantly reduced through the updated
gravitation (



g1

i ), it is expected that the estimation of the INS system parameters can be
improved in a new filtering.  By investigating the residuals from the iterative procedure,
one can stop iterations, and take out the estimates of the error parameters from the
original observation vector, thus generating the estimates for the gravity disturbance
vector.

The results from this iteration method, however, showed no improvements at
all.  The main reason is that the model was updated with wrong estimates of gravity
disturbances at each iteration.  The residuals from the initial Kalman filter include the
effect of not only the gravity disturbances but also some uncompensated system errors.
Thus, updates with wrong values did not improve the estimates of the INS system
errors, nor the estimated gravity disturbances.

6.3 Model Refinement with a Gravity Model

Obviously, the disadvantage of the new approach is that one cannot get realistic
standard deviations for the estimated gravity disturbances because of the way they were
estimated.  This leads to the lack of satisfaction in the theoretical treatment of the
model, and a rigorous solution to that would certainly include a gravity model as part
of the observation equation.

The mathematical model is completed with the gravity term as follows
(compare with eq. 5.37):
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[ ]x a b a k a g xi i
n
i

b
i

a b
i b

a
i i i

b
i

a
iC C C− − = − − − × + − +γ ψ εδ δ . (6.8)

Now, a gravity model is introduced to isolate δgi  in the above equation.  Since the
gravity modeling is not the main issue in this study, the well known third-order Gauss-
Markov process and an empirical trigonometric expansion were designed and tested in
this study.

6.3.1 Third Order Gauss-Markov Process

A third order Gauss-Markov process (see equation 4.42 ~ 4.44) has been
selected for the gravity disturbances and included in the observation model.  The
number of the parameters increases to 24 by adding 9 parameters for the gravity
disturbances and the design matrix H as well as the dynamic matrix F are properly
expanded.

H C C Ib
i i

b
i

3 24
0 0 0 0

×
= − − ×: [~ ] [~ ]a a , (6.9)

TTT T T T T T
a g a g24 1

: ( ) ( )
×

 ′ ′′= δ δ δ  
x b b k k g g gΤψ , (6.10)

F
F

F
F

C Cb
i

b
i

ib
b

= =

− −
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0 0 0 0 0

0 0 0
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[ ]ω
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F22
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=

− − −
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− − −

β β β
β β β

β β β

.  (6.11)

The detailed formulations and the equations for the gravity part are the same as
described in section 4.4.

As in the traditional case, various values for the gravity model parameters such
as correlation distance (10~150 km) and variances (400~1500 mGal2) were tested.
Among them, the best results were achieved with correlation distance about 12 km and
variance of 900 mGal2 and are presented in Figure 6.1 for all three legs.  The gravity
estimates in this case were more sensitive to the correlation distance than the variances.
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As one can see, the estimates are poorer than the residuals with no gravity
model in all three components.  Overall standard deviations of horizontal components
as well as vertical components are up to several times larger than in the case of no
gravity model (Table 6.1 vs. Table 5.4). Especially, the east component of leg 1 shows
the worst result caused by the instability of the filter at the beginning of the flight.

(mGal)
Leg 1 Leg 2 Leg 3

North 20.29 13.00 16.64

East 63.62 20.78 33.44
Down 12.53 13.891 6.99

Table 6.1 Standard deviations of the difference between the estimates of the gravity
disturbance and the control data.

The standard deviation is as high as ±63 mGal.  The best result was obtained for the
down component of leg 3 with a standard deviation of ±7 mGal.

Obviously, the proper interpretation of the poorer results would be that the
selected Gauss-Markov process does not represent the gravity field well enough in this
area so that some part of it is still hidden in the residuals.  One can expect refined
results by applying the further application of endmatching and WCF.  Especially, the
east component will be much better by those additional procedures because it seems to
have serious systematic errors.
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Figure 6.1 Estimated Gravity Disturbances using a third order Gauss-Markov Model
for leg 1 (solid), 2 (dashed) and 3 (dotted); North (top), East (middle), Down(bottom).

6.3.2 Empirical Trigonometric Representation for Gravity
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In this section, the gravity disturbance is modeled as a sum of trigonometric
functions.  It should be noted that this approach is purely empirical.  Since the residual
from the original model seems to reflect the gravity more or less, a frequency analysis
was performed to analyze the residual.  After identifying the main frequency band or
highest frequency contained in the residual, a corresponding combination of
trigonometric functions with unknown amplitude is used to model each gravity
disturbance component jgδ .  In other words, the gravity disturbance is modeled as:

n n

j jk jk
k 0 k 0

j0 j1 j2 jn

j1 j2 jn

j j

2 kt 2 kt
g a cos b sin

T T

2 t 2 2t 2 nt
a a cos a cos ... a cos

T T T
2 t 2 2t 2 nt

b sin b sin ... b sin
T T T

D

= =

π πδ = +

π π⋅ π ⋅= + + + +

π π⋅ π ⋅+ + + +

= ⋅

∑ ∑

β

 (6.12)

The matrix Dj consists of trigonometric functions dependent on time, t.  The vector jβ
consists of the coefficients of the trigonometric functions.  With all three components
combined, we have

Dδ = ⋅g β ,
where
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It should be mentioned that the gravity is modeled as a function of time assuming a
constant velocity of the vehicle for the purpose of simplicity.

Substituting equation (6.12) into equation (6.8) yields:
� �

[ ] � �x a b a k a xi i
n
i

b
i

a b
i b

a
i i

b
i

a
iC C D C− − = − − − × + ⋅ − +γ ψ β ε δ . (6.14)
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With maximum order of expansion n, the number of the unknown parameters
are increase up to 3×(2n+1), so the size of the design matrix H, the state vector x and
the dynamic matrix F should be properly expanded.  The extended parameters, β , are
modeled as random effects with initial variance of (1 m/sec)2.

H C C D
n b

i i
b
i

3 15 6 3
0 0

× + +
= − − ×

( )
[~ ] [~ ]a a , (6.15)

TT T T T
a g a g(15 6n 3) 1

:
+ + ×

 =  x b b k k Τ Τ ΤΤ
1 2 3ψ β β β , (6.16)
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0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

+ + × + +
+ × +

= =

− − ω

(6.17)

Clearly, one has to decide the maximum order n of the trigonometric expansion.
Higher order would generate a more detailed signature of the gravity, but would
require much more calculation time.  To verify the maximum order for the expansion, a
simple least-square fit on the residuals could be performed.  In this study, it was shown
that n should be at least 20 to obtain ±2 mGal accuracy of fit to the residuals.  The
actual estimation was done with n = 10  because of the limitations in computational
time.

Figure 6.2 shows the estimates of gravity disturbances for all three legs.  The
estimates appear much smoother than the residuals with no gravity modeling.
Furthermore, high frequency undulations appearing in the residuals for the north
component have disappeared in this case because of the low frequency modeling.  As
the maximum order n increases, the estimates of the gravity disturbance would include
some higher frequency components.

The main differences of the above result compared to the case of the un-
modeled gravity disturbances include a reduction in the high frequency oscillations and
a greater distortion in the low frequencies, especially in the east and down components
(compare with Figures 5.14~16).  This low frequency distortion led to poorer standard
deviations with respect to the control data (Table 6.2).  The results, however, show
much better consistencies among lines and better stabilization than in the case of the
Gauss-Markov process.

The maximum standard deviation appears in the east component of the leg 3
(±29.9 mGal) and the minimum is in the down component of the same profile (±9
mGal).  It is interesting that the maximum and minimum differences appear in the same
components (east and down in leg 3) for all three cases: no gravity model, Gauss-
Markov model, and trigonometric series model.

It is expected that better estimates could be obtained with higher order
expansions as well as careful selection of the frequency band in this approach.  Since
the purpose of this test is not to design a gravity model but to show a modification of
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the mathematical model for better theoretical justification, further refinement for
improved results was not carried out.
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Figure 6.2 Estimated Gravity Disturbances using a trigonometric expansion of order 10
model for leg 1 (solid), 2 (dashed) and 3 (dotted); North (top), East (middle),
Down(bottom).
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(mGal)
Leg 1 Leg 2 Leg 3

North 14.0 14.6 17.8

East 22.5 22.5 29.9
Down 12.4 10.3 9.0

Table 6.2 Standard deviations of the difference between the estimates of the gravity
disturbance and the control data.

The advantage of this approach compared to the Gauss-Markov process case is
the reduced dependency on a-priori information.  One does not need any covariance
model but only a simple analysis of the residuals may be sufficient.  The disadvantage is
the tremendous cost of calculation.  Using IBM 400MHz PC, it took 35 hrs to process
one leg with the expansion of order 10.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

This research addressed a new efficient algorithm for recovery of the vector
gravity field with airborne gravimetry using GPS and INS.  The new algorithm has
three distinct features compared to the traditional algorithm.  First, accelerations from
GPS are used as updates in a Kalman filter while positions are used in the traditional
approach.  Second, the gravity disturbance vector is not explicitly modeled as a
stochastic process in the new approach.  In other words, the gravity disturbance is
intentionally included in the total observation error budget so that the corresponding
effects in acceleration appear in the residuals from the Kalman filter.  Third, the frame
selected for all calculations is the inertial frame, while the navigation frame is selected
in the traditional approach.

From the new approach with these differences, the following is achieved:
1. The concept of the algorithm is much easier because the new approach is based on

the fundamental equations expressed in terms of acceleration.
2. The formulas and the calculations are much simpler and more efficient than in the

traditional method.  The main reasons for these are the selection of the acceleration
update scheme as well as the calculations in the inertial frame.

3. The new algorithm can be applied to any set of gravity data without modeling the
gravity disturbance stochastically because the algorithm does not require such a
model as long as it dominates the “real”  observation error.  Under appropriate
circumstances, it leads to a much more efficient way of recovering the gravity
disturbance vector.

The disadvantage of this new approach is that the standard deviations of the
calculated gravity disturbances cannot be obtained directly because of the way they are
estimated.  Note that the gravity is not modeled explicitly and the residual vector from
the Kalman filter is defined to be essentially the estimated gravity disturbance vector.

The effect of each error parameter on the INS acceleration as well as the
validity of the algorithm has been investigated through an intensive simulation.  It
shows that including scale factor errors of gyros and accelerometers as state variables
does not improve the results of the gravity estimates.  In addition, the most important
of the error parameters turned out to be the orientation error which is very difficult to
be separated from gravity.  By including the effect of all system errors, such as biases,
scale factor errors and initial orientation errors, the simulated observations were
corrupted up to the standard deviation of ±(17-21 mGal) for the horizontal, and ±2.5
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mGal for the down component with respect to the true simulated gravity disturbance
data.  The results from the Kalman filter showed that the gravity disturbance was
recovered with an accuracy of ±(5-8 mGal) for horizontal and better than ±1 mGal for
the down component.

Real flight data sets, obtained over the Rocky Mountains, for three overlapping
flight trajectories are processed using the developed new algorithm.  The results,
however, showed that the residuals from the Kalman filter do not completely separate
the orientation error from the gravity.  In addition, the residuals also contain the effect
of system white noise.  Therefore, further data processing consisting of endmatching
and a wave correlation filter was applied to the residuals to extract a more refined
gravity signal.  The final results from all processing showed that an accuracy of ±(6-8
mGal) and ±(3-5 mGal) can be achieved for the horizontal and vertical component,
respectively.  The resolution corresponding to the 60-second smoothing is about 3.5
km although the final results (Figure 5.20-22) do not show a resolution better than 10
km for this area.  For the down component, these results are comparable to the
previous studies in this area (Wei and Schwarz, 1998).  Furthermore, this is the first
successful attempt to extract the horizontal gravity field using GPS/INS to the author’s
best knowledge.

There are several lessons learned through this study.  First, aircraft angular
(rotational) dynamics greatly influence horizontal gravity component estimation as seen
in the north component of the INS acceleration.  Second, endpoint data are important
to eliminate residual trends and biases.  Third, multiple traverses over the same gravity
signal help to eliminate some of the system errors.  Specifically, waveform correlation
can be used to eliminate direction dependent errors when applied to lines with opposite
flight directions.

An iteration scheme was tested to obtain better estimates of the system errors
with the Kalman filter, as well as to assess the standard deviations of the estimates of
the gravity disturbances.  This procedure failed because the system was updated by
wrong estimates of gravitation.  In other words, the residuals from the Kalman filter
contain the effect of the gravitational acceleration as well as uncompensated system
errors.  These uncompensated system errors are imposed on the system during the
update and consequently, no improvement in the estimates of the INS system errors is
shown.

There could be good arguments against the total observation error approach
adopted in this study.  By omitting the gravity terms in the parametric model, the
mathematical model for the adjustment is unbalanced.  Furthermore, the residual vector
out of the Kalman filter is further processed by WCF to extract better gravity signals.
In this case, a general theory of the adjustment is not followed.  In other words, we are
adjusting the gravity disturbances using the residuals from the first adjustment.
Generally, the result is not same as for the estimates from a one-step adjustment in
which all the parameters are modeled.

For theoretical satisfaction, therefore, two gravity models, a Gauss-Markov
stochastic process and a deterministic trigonometric expansion are included in the
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model and tested.  In both cases, the estimates of the gravity disturbance were not
better than the processed residuals of the non-model approach with respect to the
control data.  This reaffirms the difficulty in constructing a reasonable mathematical
model for the gravity disturbance.  The approach with the trigonometric expansion
showed less dependency on the a-priori information, of the model and better estimates
are expected if higher-order terms could be included based on carefully selecting the
frequency band.  The corresponding calculations, however, are extremely extensive
may require a better numerical algorithm or computing system to make the approach
feasible.

A couple of ideas could be tested and implemented in future studies.  First, the
combination of airborne vector gravity data with a global gravity model could be
investigated in order to improve the global model at high frequencies.  Second, since
the most difficult part in airborne vector gravimetry is the separation of the orientation
error from the gravity signal, the integration of other extend systems providing more
precise orientation information could be tested.  For example, Dwaik (1998) showed
the orientation information from the photogrammetry helps to estimate the vector
gravity in the GPS/INS airborne gravimetry.  Third, an intensive study of the iteration
procedure would be necessary.  One can try to update the observations using the final
results out of WCF.  In this case, a theoretical justification should be developed more
fully.  Fourth, the dynamics of the airplane could be investigated with specific
deterministic models in the system equations rather than through stochastic system
states of the filter.  In this way, the dynamics model may be more rigorous and lead to
better results.  Fifth, the approach of the trigonometric functions model could be
investigated in more detail to improve the numerical efficiency.  Finally, a recent study
on wave estimator in GPS/GLONASS-INS positioning showed that the wave estimator
performs better than the Kalman filter when the input disturbances are of low frequency
(Ray et al.).  Since the characteristics of the orientation error appear in the low
frequency, this method could be implemented in extracting the gravity signal in the
GPS/INS airborne vector gravimetry.
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APPENDIX A

INTEGRATION OF IMU DATA

To obtain the positions as well as velocities from the IMU raw data, the data should
be integrated through the navigation equation.  Basically, this can be done using a
numerical integration algorithm.  Here, an algorithm using 3rd order Runge-Kutta
integration via quaternion approach is presented.

1. Consider the raw data from IMU, that is the accelerometer and gyro pulses as:
δvl , δθl . (A.1)

δvl  is a vector of increments in velocity generated by the three accelerometers and
δθl  is a vector of increments in angle generated by the three gyros:

δv a t dtl
b= ( ) , δθ ωl ib

b t dt= ( ) , (A.2)

where ab is acceleration in b-frame, ω ib
b  is angular vector in b-frame.

2. In order to integrate the navigation equation (n-frame), the transformation matrix

Cb
n  must be determined and this can be done using the angular vector ωnb

b  as

explained in chapter 2.
3. Now, consider the basic integration interval ∆t K t= δ , where K is even integer, and

δt is the IMU pulse interval, e.g. δt s= 1

250
 for 250 Hz pulse rate.  Also, e.g. K=2,

4 or 8 etc., so that ∆t s= 1

128
or 

1

64
s or 

1

32
s etc.

The indexes of the time epochs are defined as t k tk = ∆ .

4.  Note that the angular vector ω ω ωnb
b
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b

n
b
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nC= − ,
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λ ω ϕ
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e
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− +

(
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) cos
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(
�

) sin

 has components generally smaller in magnitude than

ω ib
b for a strapdown system.  Assume that a good approximation to C t dtn

b
in
nω ( )  is

given by the assumption that Cn
b

in
nω  is constant over the integration interval.  Then

let
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5. In order to use a 3rd-order Runge-Kutta numerical integration algorithm, the basic
integration interval must be derived into two parts.  Therefore, define
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6. The numerical integration is done using quaternion, q

a

b

c

d

= .  The transformation

from body to navigation frame using quaternion is given by (2.36).
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where q satisfies the differential equation:
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7. The integration algorithm is given by
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where ∆θ( )t k

2
 means ∆ ∆θ θ( ) ( )t tk

T

k⋅  (sum of squares of elements),
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Note that the initial quaternion may be obtained from the inverse relation between
the transformation and the quaternion.
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It should be noted that the reorthogonalization is necessary at each step by

replacing q  by 
1

q q
q

T
.

8. The accelerations from the accelerometers are integrated based on 3-point
Simpson’s rule, which is accurate to third order in ∆t .
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Note that the integration interval spans two basic intervals of length∆t .  The
algorithm accurate to third order is given by:
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where ∆v t vb
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9. Now, recall the Navigation (3.4.4) equations written as:
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This is integrated using a first-order algorithm:
v t v t v t f v t h t t tN k N k N k N k k k( ) ( ) ( ) ( ( ), ( ), ( ))+ + + + += + + ⋅2 2 1 1 1 2∆ ∆ϕ (A.20)

Note that each integration step spans two basic intervals, ∆t .
10. To compute f v t h t tk k k( ( ), ( ), ( ))+ + +1 1 1ϕ , the previous values of the integrated

navigation equations are needed.  So once v tk( )+2 is determined, compute
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11. The total algorithm is shown at Figure A.1.



119

Figure A.1 Flow chart for IMU data integration.
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