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1 . Introduction

At national, international, and regional levels, determining, monitoring, and understanding the
changes in the water levels of the Great Lakes and providing vertical geodetic control to the region
are important and necessary activities that relate to the economic utilization (commercial,
agricultural, aquacultural), the ecological restoration and preservation, and the overall health of this
many-faceted natural resource.  Lake levels are measured within the construct and control of a
height system.  Several different types of height systems can be defined and have, in fact, been
used in the Great Lakes region.  The emergence in the last two decades of a variety of modern
high-accuracy, three-dimensional and vertical positioning technologies based on satellite techniques
provides new opportunities to monitor lake levels remotely over short as well as long periods; but
they have also introduced new problems associated with establishing datum consistency between
the modern techniques, as well as tying them to the more traditional land survey methods.  This
has particular importance in studying the long-term periodic and secular variations in lake levels, in
extending and densifying vertical control around the region, and in defining the next International
Great Lakes Datum (IGLD).  To this seemingly straightforward problem of ensuring datum
consistency comes the complication of post-glacial rebound (PGR) caused by the relaxation of the
Earth’s crust in the form of uplift following the retreat of the weighty ice sheets of the last ice age
some 17,000 years ago.  Several models have been developed (see Lindsay, 1996; also, Peltier,
1998; Simons and Hager, 1997) that predict about 5 cm per decade of north-south tilt of the Great
Lakes region.  In addition, there are other vertical displacements of the crust caused by periodic
lunar and solar tidal deformations, local subsidence (oil and aquifer extractions), lake shore
erosion, and seismic events.  Lake level, itself, is affected by lake tides, the influx from the
surrounding drainage basin, by prevailing winds and temperature gradients, and by atmospheric
pressure changes.

In summary, lake water levels are determined and monitored in a geophysically dynamic
environment, and it is clearly important to understand the origin of water level changes, whether
due to changes in the amount and distribution of water or due to physical changes in the basins that
contain the water.  Toward this end the following report provides a systematic exposition of the
definitions of heights, vertical datums, and the role played by the Earth’s geopotential.  Models are
developed that relate modern height determination using satellite techniques to the traditional
leveling procedures.  This is accomplished within the more general temporally varying tidal
potential and simplified models for post-glacial rebound are also included.  The objective of the
report is to provide the theoretical background for further studies related to lake level monitoring
using modern satellite techniques.  The discussion assumes that the reader is somewhat familiar
with physical geodesy, in particular with the foundations of potential theory, but the development
proceeds from first principles in review fashion.  Moreover, concepts and geodetic quantities are
introduced as they are needed, which should give the reader a sense that nothing is a priori given,
unless so stated explicitly.
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2 . Heights

Points on or near the Earth’s surface commonly are associated with three coordinates, a latitude, a
longitude, and a height.  The latitude and longitude refer to an oblate ellipsoid of revolution and are
designated more precisely as geodetic latitude and longitude.  This ellipsoid is a geometric,
mathematical figure that is chosen in some way to fit the mean sea level either globally or,
historically, over some region of the Earth’s surface, neither of which concerns us at the moment.
We assume that its center is at the Earth’s center of mass and its minor axis is aligned with the
Earth’s reference pole.  The height of a point, P, could refer to this ellipsoid, as does the latitude
and longitude; and, as such, it designates the distance from the ellipsoid to the point, P, along the
perpendicular to the ellipsoid (see Figure 1); we call this the ellipsoidal height,  h P .

topographic surface

ellipsoid

vertical datum j
(local geoid)

vertical datum
origin point

P

P(j)
_

hP

W = W(j)

0

U = U0

H(j)
P

•

•
P(j)
0

•

Figure 1: Ellipsoidal height versus orthometric height with respect to vertical datum, j.

However, in most surveying applications, the height of a point should refer to mean sea level
in some colloquial sense, or more precisely to a vertical datum (i.e., a well-defined reference
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surface for heights that is accessible at least at one point, called the origin point).  We note that the
ellipsoid surface is not the same as mean sea level, deviating from the latter on the order of 30 m,
with maximum values up to 110 m, if geocentrically located.  On the other hand, the ellipsoid may
be identified as the “vertical datum” for ellipsoidal heights.  In this case accessibility is achieved
indirectly through the assumption that the ellipsoid is defined in a coordinate frame established by
the satellite observations that yield the three-dimensional coordinates of a point.

A comprehensive discussion of the heights with respect to the traditional vertical datum, the
geoid, cannot proceed without introducing the concept of potential; this is the topic of the next
section.

2.1 Geopotential and Geoid

The geopotential is the gravitational potential generated by the masses of the Earth, including its
atmosphere.  In addition, the potential from other masses in the solar system may be considered
separately, especially that of the sun and moon, as they introduce a time-varying field due to their
apparent motions relative to the Earth; this will be done later.  The geopotential,  Ve , is expressed
most conveniently in terms of spherical harmonic functions (an alternative formulation in terms of
ellipsoidal harmonics is also sometimes used):

   
Ve(r,θ,λ) =

kM
R ∑

n=0

∞
R
r

n+1
Cnm Ynm(θ,λ)∑

m=–n

n

, (1)

where   (r,θ,λ)  are the usual spherical polar coordinates (radial distance, co-latitude, longitude–these
are not the geodetic coordinates mentioned above),  kM  is the product of Newton’s gravitational
constant and Earth’s mass (including the atmosphere), R is a mean Earth radius,  Cnm  is a constant
coefficient for degree n and order m,  Ynm  is a fully-normalized, surface spherical harmonic
function:

  

Ynm(θ,λ) =

Pnm(cosθ) cos m λ , m ≥ 0 ;

Pn m (cosθ) sin m λ , m < 0 ;

(2)

and  Pnm  is a fully-normalized Legendre function of the first kind.  The series expression (1) is the
solution to a boundary-value problem for the potential and holds only if the point with coordinates

  (r,θ,λ)  is in free space (no mass).  This is just a necessary condition; whereas, the convergence of
the series to the true gravitational potential is guaranteed only for points outside a sphere enclosing
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all masses (which represents a sufficient condition).  In practice we have available a truncated
version of the series (  n ≤ nmax ) that is used to approximate the potential at any point above the
Earth’s surface; this space exterior to the Earth, moreover, is approximated as being “free space”.
The effect of the atmosphere on the potential is, in fact, substantial, approximately  54 m2/s2  near
the surface, but it is fully compensated to first order (Sjöberg, 1999) by mathematically “moving”
the atmosphere radially inside the Earth.

Because of Earth’s rotation, static gravimeters on the Earth experience a centrifugal acceleration
that (because of Einstein’s Equivalence Principle) cannot be distinguished from the effect of
gravitation.  In geodesy, we term the combination of centrifugal and gravitational acceleration (both
vectors) as gravity (the resultant vector).  Correspondingly, it is convenient to define a centrifugal
potential that generates the centrifugal acceleration:

  Φ(r,θ) = 1
2 ωe

2 r2 sin2θ , (3)

where   ωe  is Earth’s rotation rate.  The gravity potential is then simply

  W(r,θ,λ) = V(r,θ,λ) + Φ(r,θ) . (4)

A surface on which a potential function has a constant value is called an equipotential surface;
and, the equipotential surface of W,   W(r,θ,λ) = constant = W0 , that closely agrees with mean sea
level is known as the geoid (first introduced by C.F. Gauss in 1828 to help define the shape of the
Earth, later in 1873 clarified by J.B. Listing as specifically associated with the oceans, and in
modern views understood to vary in time due to mass deformations and redistribution; see also
Grafarend, 1994).  The distance between the ellipsoid and the geoid is known as the geoid
undulation, or also the geoid height.

Immediately, we note that equation (1), in principle, cannot be used to compute the potential of
the geoid,  W0 , in land areas, because the geoid generally lies within the continental crust and the
model (1) holds only in free space.  In addition, we know that mean sea level and the land (and
ocean bottom) surface are affected by the gravitational attractions of the sun and moon (and
negligibly by the other planets), which must be recognized in our definition of the geoid.  Both of
these issues will be discussed later (Bursa et al. (1997) show that the potential value of the geoid,
however, is not affected).

The relationship between the gravity vector and its potential is simply

   g = ∇∇W , (5)

where ∇∇  denotes gradient operator.  Generally, we know from the calculus that the gradient is a
vector pointing in the direction of steepest descent of a function, that is, perpendicular to its
isometric lines–for example, in the case of the potential, it is the vector perpendicular to the
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equipotential surfaces.  The component of gravity perpendicular to the equipotential surface thus
embodies its magnitude, and we may write

  g = g = – dW
dn

, (6)

where  dn  is a differential path along the perpendicular and the minus sign is a matter of convention
(potential decreases with altitude, path length is positive upwards, and gravity magnitude is
positive).

2.2 Dynamic height

The height of a point “above mean sea level” now is defined more precisely as a height with respect
to the geoid, which is a well defined surface, in principle, although its accessibility has yet to be
established.  In fact, we will first define a local geoid (local vertical datum) with a single point,

 P0
(j) , that is assumed to be on it and accessible (e.g., a tide gauge station), and where the gravity

potential is  W0
(j)  (not necessarily a known value).

There are three types of geoid-referenced height; each fundamentally refers to the difference in
gravity potential between the (local) geoid and the point in question.  This potential difference is
known as the geopotential number:

 CP
(j) = W0

(j) – WP , (7)

where  WP  is the gravity potential at the point, P.  Any point has a unique geopotential number
(with respect to the defined local geoid), and this, itself, appropriately scaled, can be used as a
height coordinate of the point.  Specifically, for an adopted constant,   γ0 , we have

  
HP

dyn(j) =
CP

(j)

γ0
, (8)

which is the dynamic height of P (with respect to vertical datum, j).  The scale factor is usually
chosen as a nominal value of gravity at mid-latitude (  γ0 = 9.806199203 m/s2 ; GRS80 value,
Moritz, 1992).  Noting that the magnitude of gravity is approximately the vertical gradient of the
potential (equation (6)), we see that the dynamic height, defined by (8), looks like a height (it has
units of distance).  On the other hand, in fact, it has no geometric meaning; it is a purely physical
quantity–it is the potential (in distance units) relative to the geoid.  Clearly, the same constant scale
factor must be used for all dynamic heights within a particular datum.

- 6 -



2.3 Orthometric Height

Seeking a geometric definition of height, that is, in terms of an actual vertical distance, we may
proceed from the relationship between gravity and potential, (6), integrated as follows:

 

WP = W0
(j) – g dn

P0
(j)

P

, (9)

where the path of integration from the local geoid to P is arbitrary (the gravity field is
conservative) and could, for example, be an actual path along the Earth’s surface.  Note,
moreover, that the initial point is also arbitrary as long as it is on the datum surface since the local
geoid is an equipotential surface (same  W0

(j) ).  With (7), we have the intermediate result:

 

CP
(j) = g dn

P0
(j)

P

, (10)

showing that geopotential numbers can be determined from measurements of gravity and vertical
increments between equipotential surfaces along the path; the latter are obtained with spirit leveling.

Consider now the special path that is always perpendicular to the equipotential surfaces of W.
This is called the plumb line, and suppose that the path of integration in (10) is along this plumb
line.  Then

 

CP
(j) = g dH

P(j)

P

, (11)

where  dH  is a differential element along the plumb line and  P(j)  is at the base of the plumb line on
the local geoid.  Dividing and multiplying the right side by the total length of the plumb line,  HP

(j) ,
we obtain

 
HP

(j) =
CP

(j)

gP
(j)

, (12)

where
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gP
(j)

= 1
HP

(j) g dH

P(j)

P

(13)

is the average value of gravity along the plumb line.   HP
(j)  is known as the orthometric height of P

(with respect to the defined local vertical datum); it has a very definite geometric interpretation as a
distance above the local geoid (along the plumb line, which is curved since the equipotential
surfaces are not parallel); see Figure 1.

Unfortunately, while  CP
(j)  can be measured using (11), the value of  gP

(j)
 cannot be computed

exactly (using Newton’s Law of Gravitation) because this would require complete knowledge of
the mass density of the crust (and it is not practical to measure g along the plumb line).  Therefore,
in theory, the orthometric height cannot be determined exactly, and its calculation depends on some
density hypothesis, or model, for the crust.  A commonly used model assumes constant crustal
density and constant topographic height in the vicinity of the point, P.  Then, the average gravity
along the plumb line, between  P(j)  and P, is obtained using the Prey reduction.  This reduction
models the value of gravity inside the crust by first removing a Bouguer plate of density, ρ ,
applying a free-air downward continuation using the normal gradient of gravity, and restoring the
Bouguer plate.  Each of these operations is linear in H; and, consequently, the average value of
gravity along the plumb line is simply the average of the endpoint values of gravity, that is:

  
gP

Prey(j)
= 1

2 gP + gP – 2πkρ HP
(j)+

∂γ
∂h

HP
(j) – 2πkρ HP

(j) . (14)

With nominal values for the density and gradient (Heiskanen and Moritz, 1967), we obtain

  gP
Prey(j)

= gP – 2πkρ HP
(j)+ 1

2
∂γ
∂h

HP
(j)

= gP + (0.0424 mgal/m) HP
(j) .

(15)

Utilizing (15) in (12) (i.e.,   gP
(j) ≈ gP

Prey(j)
) yields Helmert heights:

 
HP

Helmert(j) =
CP

(j)

gP
Prey(j)

, (16)

which, in principle, requires an iteration on  HP
(j) ; or, since (12) with (15) is just a quadratic in

 HP
(j) , we may write
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HP
Helmert(j) =

CP
(j)

gP
1 – (0.0424 mgal/m)

CP
(j)

gP
2

+ (0.00180 mgal2/m2)
CP

(j)

gP
2

2

– ... , (17)

where higher-order terms are less than  O 10–10 .

2.4 Normal Height

It is possible to define a similar geometrically interpretable height that avoids a density hypothesis
for the crust.  This is accomplished by introducing an approximation to the gravity field that can be
calculated exactly at any point.  The normal gravity field suits this purpose.  It is defined as the
gravity field generated by an Earth-fitting ellipsoid that contains the total mass of the Earth
(including the atmosphere), that rotates with the Earth around its minor axis, and that is, itself, an
equipotential surface of the gravity field it generates.  The gravitational part,  Vellip , of the normal
field can be expressed as in (1), but because of the imposed symmetries of the ellipsoid and the
boundary values, the series contains only even zonal harmonics (no dependence on longitude).
The centrifugal part is also given by (3), and the total normal gravity potential is

  U(r,θ) = Vellip(r,θ) + Φ(r,θ) . (18)

On the ellipsoid, U is a constant,  U0 , by definition.  U can be calculated anywhere in the space
above the ellipsoid using four constants that describe the size and shape of the ellipsoid, it mass,
and its rotation.  Nowadays, one typically uses:

  a = semi–major axis of the ellipsoid ;

J2 = dynamical flattening (second–degree zonal harmonic coefficient) ;

kM = Newton's gravitational constant times Earth's mass (including atmosphere) ;

ωe = Earth's rate of rotation .

(19)

The value of the potential,  U0 , is completely determined by the adopted constants in (19); it is
given by the Pizzetti formula (Heiskanen and Moritz, 1967):

  U0 = kM
E tan–1E

b
+ 1

3 ωe
2 a2 , (20)
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where b is the semi-minor axis of the normal ellipsoid, and E it its linear eccentricity.  The normal
gravity vector is, analogous to (5):

  γγ = ∇∇U , (21)

and can, likewise, be calculated exactly anywhere on or above the ellipsoid from the given
constants (NIMA, 1997).

Consider now the normal plumb line through P; it is the line that is always perpendicular to the
equipotential surfaces of the normal gravity field.  On that line is a point, Q, where the normal
gravity potential equals the actual gravity potential at P:

 UQ = WP . (22)

Note that U and W refer to two distinct gravity fields, and the equality above is not a functional
relationship, simply an assignment of values.  We define the normal geopotential number of Q
(also called spheropotential number) as follows:

 CQ
normal = U0 – UQ = U0 – WP = CP

(j) + U0 – W0
(j) , (23)

where (7) was used and where, analogous to (11):

  

CQ
normal = γ dH*

Q

Q

, (24)

and  Q  is the base point on the ellipsoid (not the geoid!) of the normal plumb line (see Figure 2).
Also  dH*  denotes a differential path element along the normal plumb line.

Dividing and multiplying the right side of (24) by the total length,  HQ
* , of the normal plumb

line from the ellipsoid to Q, we obtain with (23):

  
HQ

* =
CP

(j) + U0 – W0
(j)

γQ
, (25)

where
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γQ = 1
HQ

* γ dH*

Q

Q

(26)

is the average value of normal gravity along the normal plumb line.  Now, formally, the point Q
lies on the telluroid and the distance between the telluroid and the Earth’s surface is known as the
height anomaly at P,   ζP .  Conventionally, the distances  HQ

*  and   ζP  are “reversed” along the
normal plumb line, and the surface defined by the separation   ζP  from the ellipsoid is known as the
quasi-geoid; see Figure 2.  The shape of the quasi-geoid is similar to that of the geoid, but the
quasi-geoid is not an equipotential surface in either the normal or the actual gravity field.  If the
point, P, is on the geoid (as it is approximately in ocean areas) and if the gravity potential value of
the geoid is  W0 = U0 , then the telluroid point, Q, is on the ellipsoid.  Thus the quasi-geoid equals
the geoid at these points.

topographic surface

ellipsoid

local quasi-geoid

vertical datum
origin point

P

U = U0

•

•
•

P(j)
0

•

Q
•

ζ
P

telluroid

Q
_

Q(j)
0

H*Q(j)
0

ζP quasi-geoid

Hnorm(j)
P

H*
Q

ζ(j)
P

hP

Figure 2: Normal height and height anomaly; also quasi-geoid versus local quasi-geoid.
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We assume that the difference,  U0 – W0
(j) , in (25) is generally not known (which is the case,

at least historically).  Consider the case when P is the origin point,  P0
(j) , of the local vertical datum.

Then  C
P0

(j)

(j)
= 0  and for the corresponding telluroid point,  Q0

(j) , we have

  
HQ0

(j)
* =

U0 – W0
(j)

γQ0
(j)

. (27)

 HQ0
(j)

*  is the distance from the ellipsoid to that point,  Q0
(j) , where  UQ0

(j) = W0
(j)  , or, alternatively,

the distance from the point,  P0
(j) , to the quasi-geoid.

We now define a local quasi-geoid that contains the datum point  P0
(j)  and is parallel to the

quasi-geoid by the amount  HQ0
(j)

*  (Figure 2).  The distance from the local quasi-geoid to the point P
is then given the name, normal height, and is expressed by (25) relative to  HQ0

(j)
* , and now with

new notation:

  
HP

norm(j) =
CP

(j)

γQ
. (28)

Using an approximate form of normal gravity as a function of   (φ,h) , Heiskanen and Moritz (1967)
derive the average normal gravity,   γQ , using (26):

  
γQ ≈ γ 1 – 1 + f +

ωe
2 a2 b
kM

– 2f sin2φ
HP

norm(j)

a +
HP

norm(j)

a

2

, (29)

and, substituting this into (28) and inverting, they find an expression for the normal height:

  
HP

norm(j) ≈
CP

(j)

γ 1 + 1 + f +
ωe

2 a2 b
kM

– 2f sin2φ
CP

(j)

a γ +
CP

(j)

a γ

2

. (30)

We note for future reference that

 HP
norm(j) = HQ

* – HQ0
(j)

* . (31)

Also, we can define the local height anomaly, identifying the separation of the local quasi-geoid
from the ellipsoid (Figure 2):
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ζP

(j) = ζP + HQ0
(j)

* = ζP +
U0 – W0

(j)

γQ0
(j)

. (32)

2.5 Review of Heights

It is important to realize that the normal height depends in the first place, like the dynamic and
orthometric heights, on the geopotential number at P,  CP

(j)  (which is the actual geopotential value
with respect to the local geoid potential).  Unlike orthometric heights, normal heights can be
determined exactly, albeit some iterative procedure is required in the computation of   γQ , since it
depends also on the normal height.  And, unlike dynamic heights, normal heights have a definite
geometric interpretation, as the vertical distance of P above the local quasi-geoid.  Finally, we will
see that geopotential models, such as (1), yield the height anomaly more readily than the geoid
undulation (in fact, the latter, in theory, is not determinable because we do not know the crustal
mass density); and, therefore, the quasi-geoid is theoretically more realizable from geopotential
models than the geoid.  One disadvantage of the normal height is its arcane definition, being the
height above the quasi-geoid and not the geoid (which is usually, though with some error,
identified as mean sea level).

A disadvantage of both orthometric and normal heights is that neither indicates the direction of
flow of water.  Only dynamic heights possess this property.  That is, two points with identical
dynamic heights are on the same equipotential surface (of the actual gravity field) and water will
not flow from one to the other point.  Two points with identical orthometric heights lie on different
equipotential surfaces (since, generally,   gP1

≠ gP2
); and, water will  flow from one point to the

other, even though they have the same (orthometric) height.  The same statement holds for normal
heights, although, because of the smoothness of the normal field, the effect is not as severe.  For
these reasons the International Great Lakes Datum of 1985 is based on dynamic heights (Zilkoski
et al., 1992).

Table 1 gives a summary of the three types of heights, as well as variations of these based on
different assumptions and approximations.  The reader is cautioned that the nomenclature of the
approximate forms and the approximations, themselves, are not universal and can lead to
confusion.  The given formulas correspond to definitions given in NGS (1986).
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Table 1: Height definitions according to NGS (1986).

ellipsoidal height (geodetic height)  h P  h P = h P xP,yP,zP,a,f

dynamic height   
HP

dyn(j) =
CP

(j)

γ0

  γ0 = γ φ0 , φ0 = 45°

normal dynamic height   
CP

(j) ≈ γ dH*

P0
(j)

P

, γ0 = γ φ0

orthometric height  
HP

(j) =
CP

(j)

gP
(j)

 

gP
(j)

= 1
HP

(j) g dH

P(j)

P

Helmert height   gP
(j) ≈ gP – 2πkρ HP

(j)+ 1
2

∂γ
∂h

HP
(j)

Niethammer height   gP
(j) ≈ gP

Prey(j)
+ δgt

†

normal orthometric height   
CP

(j) ≈ γ dH

P0
(j)

P

, gP
(j) ≈ γ φP, 1

2HP
(j)

normal height (Molodensky height)   
HP

norm(j) =
CP

(j)

γQ

  

γQ = 1
HQ

* γ dH*

Q

Q

quasi-dynamic height   
γQ ≈ γ φ0 +

HP
(j)

2
∂γ
∂h

h = HP
(j)

height anomaly   ζP
(j)   

ζP
(j) =

TP
γQ

+
U0 – W0

(j)

γQ0
(j)

geoid height (geoid undulation)  NP
(j)   

NP
(j)

=
TP(j)

γQ(j)

+ 1
γQ

UQ – W0
(j)

†   δgt  accounts for the terrain relative to the Bouguer plate in a modified Prey reduction.

Clearly, given sufficient gravity information, the dynamic, orthometric, and normal heights can
be transformed from one to the other, because they all depend firstly on the geopotential number.
From (8), (12), and (28), we have

  CP
(j) = γ0 HP

dyn(j) = gP
(j)

HP
(j) = γQ HP

norm(j) . (33)
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The difference between a length along the plumb line and a corresponding length along the
perpendicular (or normal) to the ellipsoid is due to the curvature of the former.  The curvature
results in a deflection of the plumb line from the ellipsoid normal (deflection of the vertical,  Θ ) that
is usually of the order of 10 arcsec and in rare cases can reach 1 arcmin.  With reference to Figure
3, we see that the corresponding height difference is

  δh ≈ h sinΘ tanΘ . (34)

This is a negligible effect for all topographic heights of the Earth (even for the extreme case of
  Θ = 1 arcmin  and  h = 10000 m , we obtain   δh < 1 mm ).  Thus we can treat all geometrically

interpretable heights as lengths along the ellipsoidal normal, which considerably simplifies
comparisons and conversions among the different heights.

P•

Θ

h

∼Θ

h sinΘ

h sinΘ tanΘ

Figure 3: The difference between lengths along the curved plumb line and along the straight
ellipsoid perpendicular.

3 . Models for  W0
(j)

We wish to find a means to determine the potential value of the local vertical datum, j.  Then we are
able to relate different datums around the world and also define a world vertical datum.  Clearly, if
we have an estimate of the geopotential (e.g., EGM96, Lemoine et al., 1998) and we know the
(geocentric) coordinates of a point on the surface of the local vertical datum (the local geoid), then
it is simply a matter of evaluating the gravity potential at this point to find  W0

(j) .  The problem
generalizes if the point is not on the local geoid, but we know its height with respect to the datum
and thus, again, have the requisite coordinates to evaluate the gravity potential.  Thus, overall, we
require the following data to make an estimation of  W0

(j) : an estimate of the gravity potential
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function, W; the geocentric coordinates of a point (e.g.,   r,θ,λ ), and the height of this point with
respect to the datum.

We start with an expansion of the normal gravity potential in a Taylor series along the ellipsoid
normal:

  
UP = UQ + h P – h Q

∂U
∂h

h=h Q

+ 1
2!

h P – h Q
2 ∂2U

∂h2
h=h Q

+ . (35)

Now, with

  
γQ = – ∂U

∂h
h=h Q

(36)

and with (22), we obtain:

  
h P – h Q = 1

γQ
WP – UP – 1

2 γQ
h P – h Q

2 ∂γ
∂h

h=h Q

+ . (37)

The left side is the height anomaly,   ζP .  The second term (and higher-order terms) on the right
side can be ignored; since  h P – h Q < 110 m  and the vertical gradient of gravity is

 0.3086 mgal/m , it amounts to less  2 mm .  Defining the disturbing potential,  TP , at point P:

 TP = WP – UP , (38)

we then obtain from (37) the height anomaly in physical rather than geometric terms:

  
ζP =

TP

γQ
. (39)

From (32), we obtain the local height anomaly, also in terms of the disturbing potential:

  
ζP

(j) =
TP
γQ

+
U0 – W0

(j)

γQ0
(j)

. (40)

If the point, P, is on the local geoid ( P = P(j) ), then we obtain similarly as in (37):
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h P(j) – h Q(j) =

TP(j)

γQ(j)

, (41)

where  Q(j)  is the point at which  UQ(j) = WP(j) .  The local geoid undulation is obtained as follows.
First note that by again applying (35) (  P → Q(j)  and   Q → Q ), we have

  h Q(j) – h Q = 1
γQ

UQ – UQ(j)

= 1
γQ

UQ – WP(j) .

(42)

Thus, with the geoid undulation,  NP
(j)

= h P(j) – h Q , and  WP(j) = W0
(j)

 we obtain

  
NP

(j)
=

TP(j)

γQ(j)

+ 1
γQ

UQ – W0
(j)

, (43)

Equations (39), (40), and (43) are manifestations of the (generalized) Bruns’ formula.
From leveling (and gravity data) we obtain the normal height,  HP

norm(j) , with respect to the
local quasi-geoid according to (11), (26), and (28).  From GPS we obtain the ellipsoidal height,

 h P ; which allows us to compute at P the actual potential from a model (e.g., EGM96), assumed
errorless for the moment.  Also, the normal potential can be computed at P, hence  TP  can be
computed according to (38).  From Figure 2, we have

  h P = HP
norm(j) + ζP

(j) . (44)

Using the expression (40) for the local height anomaly, we can solve for the local geoid potential:

  
W0

(j) = U0 – γQ0
(j) h P – HP

norm(j) –
TP

γQ
. (45)

All quantities on the right side are either given or measured, and the left side is the actual potential
of the local geoid.  To verify this equation, select the point, P, to be the origin point,  P0

(j) , of the
local vertical datum; then (45) reduces to
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W0

(j) = U0 – γQ0
(j) h P0

(j) –
WP0

(j) – UP0
(j)

γQ0
(j)

= WP0
(j) + U0 – UP0

(j) – γQ0
(j) h P0

(j)

= WP0
(j) ,

 (46)

as it should be (to first-order approximation).
Re-defining the unknown parameter as

  
∆H0

(j) =
U0 – W0

(j)

γQ0
(j)

, (47)

we have the following model

  ∆H0
(j) = h P – HP

norm(j) – ζP . (48)

A similar model can be derived that involves the orthometric height.  In this case, we must
assume that the gravity potential model can be evaluated at the local geoid point,  P(j)  (the
coordinates of  P(j)  come from the ellipsoidal height obtained by GPS and the orthometric height,

 HP
(j) , obtained by leveling and gravity (and a density assumption); and we still need a density

assumption to compute the potential inside the mass).  Then from Figure 2, we have

 h P = HP
(j) + NP

(j) ; (49)

and, if we substitute (43), we again obtain an equation for the local geoid potential:

  
W0

(j)
= UQ – γQ h P – HP

(j) –
TP(j)

γQ(j)

. (50)

Because of the density hypotheses needed to compute both the orthometric height and the
disturbing potential, this model is less useful for precise determinations of the local geoid potential.
If orthometric heights are available at certain points of the datum, then it would be advantageous to
first convert these to normal heights, using (33), and then apply the model (48).

This section concludes with formulas for the orthometric and normal heights of a particular
local vertical datum, determined on the basis of the gravity potential and ellipsoidal heights.  Often,
nowadays, the determination of the geoid undulation (or, more correctly, the gravity potential
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function) is justified on the basis that it provides orthometric heights (or, normal heights) if
ellipsoidal heights are given, the latter being readily determined by satellite methods such as GPS.
Clearly, equations (44) and (49) are the basis for these determinations.  Note, however, that it is
the geoid undulation for the local geoid, or the local vertical datum, that is required, which implies
that in addition to the gravity potential function, W (or T), the potential value of the local geoid
must be known.  That is, substituting (43) into (49) yields

  
HP

(j) = h P –
TP(j)

γQ(j)

– 1
γQ

UQ – W0
(j)

. (51)

Similarly, for the normal height with respect to the local vertical datum, we substitute (40) into (44)
to obtain

  HP
norm(j) = h P –

TP
γQ

– 1
γQ0

(j)
U0 – W0

(j) . (52)

Thus, we see the importance of knowing the local geoid potential,  W0
(j) , in order to determine

orthometric (or normal) heights in a local vertical datum with GPS and the disturbing potential
function.

4 . Local Determinations

Determinations of  W0
(j)  can be made wherever we know the geocentric coordinates (primarily the

geometric height), as well as the potential-related height of points, provided we have knowledge of
the geopotential.  The model relating these quantities is given by (48), repeated here in slightly
different form:

   Fk ∆H0
(j), h, Hnorm(j), ζζ = ∆H0

(j) – h k + Hk
norm(j) + ζk = 0 , (53)

where the points on the Earth’s surface are now indexed,  k = 1, ..., K , and the vectors in the
argument of  Fk  are

   

h =
h 1

h K

, Hnorm(j) =

H1
norm(j)

HK
norm(j)

, ζζ =
ζ1

ζK

. (54)
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The complete model comprises K equations of the type (53).  It is linear in the unknown datum
potential,  W0

(j) , as well as in the other quantities, here all interpreted as observations.  The height
anomaly, related to the disturbing potential (39), is derived from many other types of observations,
including gravity anomalies, satellite perturbation observations, satellite altimetry, and any other
observations that are combined to form the model for the disturbing potential.  However, we will
treat the disturbing potential estimate as an observation with error variance (or, one could also
interpret it as a random parameter with an a priori variance).

Let

   
0 = h0

T H0
norm(j) T

ζζ0
T

T

(55)

be the vector of all observations and let   X0 = ∆H0
(j)

0  be an initial value of the unknown
parameter (say,  X0 = 0 ).  Because of its linearity the model (53) can be written as a Taylor
expansion with only linear terms:

   A δX + B δ + Y0 = 0 , (56)

where   δX = X – X0 ,    δ = – 0 , and 

   

Y0 =

F1 ∆H0
(j)

0, h 0, H0
norm(j), ζζ0

FK ∆H0
(j)

0, h 0, H0
norm(j), ζζ0

; (57)

and the coefficient matrices are given by

  
A =

∂Fk

∂ ∆H0
(j) =

1

1
, B =

∂Fk

∂ h m, Hm
norm(j), ζm

= –I I I , (58)

where each identity matrix, I, in B is a   K × K  matrix.
If C is the variance-covariance matrix of the observation errors, then the least-squares estimate

of the unknown parameter is given by

  δX = – AT B C BT –1
A

–1
AT B C BT –1

Y0 . (59)

We may assume that C is diagonal if no better information on the error statistics is available.
Moreover, if the variances of each observation type are invariant, given respectively by   σh

2 ,   σH
2 ,
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and   σζ
2 , then we have simply

   
δX = – 1

K Fk ∆H0
(j)

0
, h 0, H0

norm(j), ζζ0Σ
k = 1

K
, (60)

or, as expected,

  
∆H0

(j)
= 1

K h k 0 – Hk
norm(j)

0
– ζk 0Σ

k = 1

K
. (61)

Such determinations of the vertical datum potential were made, for example, by Rapp (1994)
for various datums around the world, by Grafarend and Ardalan (1997) for the Baltic Sea area, and
by Bursa et al. (1999) for North America.  In each case a spherical harmonic model for the
geopotential was used to compute the height anomaly (or geoid undulation).  In (Rapp and
Balasubramania, 1992) more accurate geoid undulations were computed on the basis of local
gravity data.  Determinations of the time-variation of the vertical datum potential have also been
attempted (Ardalan and Grafarend, 1999).  When monitoring a vertical datum in time, of course,
the time-variation of the gravity field potential must be understood.  This is the object of Section 6.

5 . Global Determinations

The discussion above pertains to the case where we wish to find the value of the vertical datum
(local geoid) potential,  W0

(j) .  So far the determination of the geoid potential value,  W0 , has not
been specifically addressed, mainly because the accessibility of the geoid has not been
established–we can define it (although there are different options), but the question of how to
access it is more difficult to answer.  Even the classic Gauss/Listing definition noted in Section 2.1
is not satisfactory in view of the temporal aspects associated with the tidal potential (see Section 6.

There are various ways of defining the geoid as an accessible equipotential surface.  Heck and
Rummel (1991) give an excellent review that includes the method derived on the basis of the
discussion above.  That is, we either have one vertical datum which then defines the accessible
geoid, or (what is more realistic in a global sense) we have a set of vertical datums and the geoid is
defined in some precise (accessible) way in relation to these datums.

For two datums, j and k, we can find the difference  W0
(j) – W0

(k)  and thus are able to relate all
datums to each other or to a global datum, the geoid.  Suppose there are J datums,  j = 1, ..., J ; then
a model for the local geoid potential in terms of normal heights is given by (45) or (50).  To relate
the local geoid value to a global value,  W0 , we introduce new unknowns,   ∆W0

(j) = W0 – W0
(j) .

Then from (45):
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  HP
norm(j) = h P –

TP
γQ

– 1
γQ0

(j)
U0 – W0 + ∆W0

(j) ; j = 1, ..., J . (62)

Assume for the moment that the disturbing potential and the ellipsoidal height are known.  Then the
unknowns are  W0  and   ∆W0

(j) ,  j = 1, ..., J .  The observations are normal heights in each datum.
It should be clear that there is an indeterminacy among the unknowns, even if we have many

observed normal heights since all normal heights belonging to one vertical datum can only
determine one potential value,   ∆W0

(j) .  Therefore, we must introduce additional information in the
form of a constraint on the unknowns.  This constraint can take many forms.  For example, we
could let  W0 = W0

(1) .  In this case we define the geoid to be the first vertical datum and all other
datums are determined with respect to this one.  Or, we could define the geoid according to some
predefined potential value, such as  W0 = U0 .  Then all local datums will be determined relative to
this global geoid.  This predefined value could also come from a fit of mean sea level to an
equipotential surface (Bursa et al., 1998); then it may have a variance associated with it.  Finally,
we could impose an inner constraint:

  
∆W0

(j)Σ
j = 1

J
= 0 ⇔ 1

J W0
(j)Σ

j = 1

J
= W0 . (63)

In this way the geoid is defined to be the “mean” of all local vertical datums.  We could also
include different weights for each datum.

6 . Temporal Effects

The Earth’s solid masses, in fact, are elastic to some extent, and they consequently are subject to
displacement under various internal and external influences.  Also, the oceans and the atmosphere
are fluid; and a change in the distribution or location of any these masses with time implies a
temporal change in the gravitational potential, and hence in the gravity potential (in an Earth-fixed
coordinate frame).  Aside from this, any equipotential surface belongs to the field not only
generated by the geopotential (and centrifugal potential), but also by the gravitational potentials of
other bodies in the solar system, especially the sun and moon.  Inasmuch as these bodies move
with respect to the Earth (due to Earth’s rotation and the orbital motions of the Earth and Moon),
the equipotential surface accordingly changes in time.  The mass displacements are also largely due
to the tidal forces of the sun and moon.  Therefore, we consider in detail the tidal potential, which
is the source of a direct effect and several indirect effects.

In an Earth-fixed coordinate system, the tidal potential due to an external point mass body,
designated generically as B, is given approximately by (Torge, 1991) as
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VB(r,ψ,λ) = DB(r) cos2ψ cos2δB cos22tB + sin2ψ sin2δB costB + 3 sin2ψ – 1

3 sin2δB – 1
3 ,

(64)

where  tB  is the hour angle of the body:

  tB = λ + tG – αB (65)

and   αB,δB  are the right ascension and declination of the body, while  tG  is the hour angle of the
vernal equinox at the Greenwich meridian (i.e., Greenwich sidereal time).  The coordinates of the
point of evaluation are geocentric radial distance, r, and geocentric latitude,  ψ , and longitude, λ .
The radial dependence of  VB  is given by

 DB(r) = 3
4 kMB

r2

rB
3 (66)

where  rB  is the mean distance between the Earth and the body.   DB  is known as Doodson’s
coefficient and reflects that (64) is a second-degree interior harmonic potential (point of
evaluation is inside sphere containing the body:   r ≤ rB ).

The tidal potential (64) varies in time, as viewed at a point on the Earth, with different periods,
such as fortnightly (due to the moon) or semi-annually (due to the sun) as the coordinates   αB,δB

vary, and diurnally because of Earth’s rotation described by  tG .  There is also a constant part, the
average over time, that is not zero; this is the permanent tide due to the approximate coplanarity of
the Earth-sun-moon system.  Averaging (64) over time (i.e. over the hour angle,   0 ≤ tB ≤ 2π ), we
see that the first two terms have zero mean.  Alternatively, we can average over the ecliptic
longitude,   νB , since all bodies of the solar system orbit roughly on the ecliptic, as does the sun
viewed by Earth with respect to inertial space.  Neglecting the inclination of the body’s orbit with
respect to the ecliptic, it is easily seen that

  sinδB = sinε sinνB , (67)

where   ε ≈ 23° 44'  is the obliquity of the ecliptic.  The average of the third term in (64) over all   νB

(   0 ≤ νB ≤ 2π ), therefore, yields the permanent tidal potential:

  
VB(r,ψ) = DB(r) 3sin2ψ – 1 1

2 sin2ε – 1
3 . (68)

The sun and moon are the only extraterrestrial bodies of consequence and one may denote the
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tidal potential as

  Vt(r,ψ,λ) = Vsun(r,ψ,λ) + Vmoon(r,ψ,λ) . (69)

Using nominal parameter values, Doodson’s coefficients evaluated at Earth’s mean radius,
 R = 6731 km , for the sun and moon are

 Dsun(R) = 1.21 m2/s2 , Dmoon(R) = 2.63 m2/s2 . (70)

According to the model (68), the permanent tidal potential (combined effect of sun and moon),

  Vt(r,ψ) = – 0.252 Dsun(r) + Dmoon(r) 3sin2ψ – 1 , (71)

varies in latitude on the Earth’s surface from about  – 1.95 m2/s2  at the poles to  0.98 m2/s2  at the
equator.

Indirect effects on Earth’s gravitational potential arise from the displacement of the terrestrial
masses under the influence of the tidal potential.  These are changes in the potential due to the
ocean tide (that displaces the water level, typically less than 1 m in the vertical, up to several meters
near coasts), the Earth tide (several decimeters in the vertical), atmospheric tide, and secondary
indirect effects due to loading of the ocean and atmosphere on the Earth’s surface.  The total
gravitational potential thus constitutes the following:

 V = Ve + Vt

+ Vsolid Earth tide + Vocean tide + Vatmospheric tide

+ Vocean loading + Vatmospheric loading + Vother mass redistributions ,

(72)

where it is recognized that some parts are better known than others.
The indirect effect on the gravitational potential, due to the solid Earth tides which are

displacements of masses of the quasi-elastic Earth, is modeled by a fraction of the direct effect.  It
can be shown (Lambeck, 1988, p.254) that the tidal potential including the indirect effect is given
by

  
Vt

'(r,ψ,λ) = 1 + k 2
R
r

5
Vt(r,ψ,λ) , (73)

where  k 2 = 0.29  is Love’s number (an empirical number based on observation).  Equation (73)
assumes that the elastic response to the tidal potential is instantaneous; whereas, in. reality, there is
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a lag, which to a first approximation is constant.  The permanent tide component including the
indirect effect of the Earth tide now is given by

  
Vt

'(r,ψ) = 1 + k 2
R
r

5
Vt(r,ψ) , (74)

where  Vt  is given by (71).  It is also called the mean tide potential.  However, the Love number,

 k 2 , does not adequately represent the indirect effect in the mean and for geodetic applications it is
recommended that no correction for this permanent effect be applied to observed quantities
(McCarthy, 1992).

The Earth tides cause both vertical and horizontal displacements of the Earth’s crust.  The
vertical displacement,   δh , is modeled as a fraction of the direct tidal potential using Love’s
number,  h 2 :

  
δh(ψ,λ) = h 2

Vt(R,ψ,λ)
g , (75)

where g is the magnitude of gravity.  With   h 2 ≈ 0.49  and considering Doodson’s coefficients,
(70), the vertical displacement is of the order of 0.2 m.  Again, the time-averaged component of
this indirect tidal effect is responsible for a permanent crustal deformation, putatively given by

  
δh(ψ) = h 2

Vt(R,ψ)
g . (76)

But, again, the Love number,  h 2 , suitably describes the deformation only for the periodic
components.  Therefore, geodetic observations should not be corrected for this term.  Specifically,
we note that the mean crustal deformation and mean Earth-tide potential cannot be observed
independently and it is natural to retain these effects within all geodetic observations.  On the other
hand, periodic tidal effects should be removed from observations that must be combined, or should
hold, for different time epochs.

Several interesting and important distinctions should be made here in regard to the tidal effects
on the geoid.  We first note the fundamental linearized relation between potential and gravity,
obtained from (6):

 W2 – W1 = – g n2 – n1 , (77)

where g is the magnitude of gravity, n is the distance along the plumbline, and the indicated
differences are assumed to be relatively small (points 1 and 2 are close).  If the geoid, as an
equipotential surface, is defined solely by its potential,  W0 , then a change in the potential, as given
by (73), implies that the equipotential surface with the potential value,  W0 , has been displaced.
This displacement is equivalent to a change in geoid undulation (with respect to some predefined
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ellipsoid) that according to (77) is given by

  δN(ψ,λ) = n2 – n1 = – 1
g W0 – W0 + Vt

'(R,ψ,λ) = 1 + k 2
Vt(R,ψ,λ)

g , (78)

so that the potential of the geoid remains  W0 .  Using (70) and (71), the permanent tidal effect on
the geoid that accounts for the sun and moon is given by

  δN(ψ) = – 0.099 1 + k 2 3sin2ψ – 1 . (79)

If N represents the instantaneous geoid, then the geoid without any tidal effects, that is, the
non-tidal geoid, is given by

  Nnt = N – δN . (80)

The mean geoid is defined as the geoid with all but the mean tidal effects removed:

  N = N – (δN – δN) . (81)

This is the geoid that could be directly observed, for example, using satellite altimetry averaged
over time, if mean sea level is corrected for the mean sea surface topography.  For theoretical
reasons (the geoid determined from a solution to a boundary-value problem in potential theory
requires that there are no external masses, such as the sun and moon), it is desirable to define a
geoid with all but the mean Earth-tide effect removed.  This is called the zero geoid, identifying it
as the geoid that retains the permanent Earth-tide effect, but no other tidal effects:

  Nz = N – δN + 0.099 k 2 3sin2ψ – 1 . (82)

The difference between the mean and zero geoids is, therefore, the permanent component of the
direct tidal potential.  We note that, in principle, each of the geoids defined above, has the same
potential value,  W0 , in its own field.  That is, with each correction we define a new gravity field
and the corresponding geoid undulation defines the equipotential surface in that field with potential
value given by  W0 .  This is fundamentally different than what happens in the case when the geoid
is supposed to define a vertical datum.
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7 . Vertical Datums and the Tidal Potential

If the local geoid is a vertical datum that must be realized in terms of a monument on the Earth’s
surface, then because the crust is displaced in the vertical by (75), the potential of the datum
changes not only by the effect (73), but also by the effect of the displacement as given according to
(77).  Therefore, the potential of the datum at the point of realization changes by

  δW0
(j) = 1 + k 2 – h 2 Vt(R,ψ0

(j),λ0
(j)) . (83)

Clearly, from geometrical considerations the geoid undulation at the datum origin point changes
only by (75).  Since datums are supposed to provide a stable reference for heights, we must
redefine the vertical datum within the presence of the tidal potential, first of all, as being realized at
an origin point on the mean topographic surface (or, sometimes called the mean crust).  The mean
topographic surface is defined with respect to the ellipsoid as follows:

  h = h – δh – δh , (84)

where the terms within the parentheses are given by (75) and (76), and h is the instantaneous
ellipsoidal height.  We note that the “zero topography” is the same as the mean topography, since
there is no “direct effect” on the topography.

Next, we must identify the potential of the datum.  To be consistent with the realization of the
origin point, it should be the mean potential realized on the mean topography.  This is designated

 W0
(j)

, and excludes all but the permanent direct and indirect tidal effects, since the latter cannot be
determined:

  
W0

(j)
= W0

(j) – 1 + k 2 – h 2 Vt R,ψ0
(j),λ0

(j) – Vt R,ψ0
(j) , (85)

where  W0
(j)  is the instantaneous potential at the instantaneous datum origin.  The datum thus

realized and with the potential,  W0
(j)

, is called the mean datum.  The other types of datums, the
zero, non-tidal, and even instantaneous datums can also be defined, but may be arcane or
impractical.  Indeed, each requires that we first define corresponding origin points that, in
principle, should be realizable (otherwise it would not adhere to a proper definition of a datum).  A
zero datum would have the same origin point as the mean datum; but it would exclude the
permanent direct tidal potential.  Although this is computable and for theoretical purposes should
be excluded in determinations of the potential from solutions to boundary-value problems, for
vertical datum definitions, it seems more appropriate to adhere to physical reality as closely as
possible (the mean tidal effects of the sun and moon are present).  The non-tidal datum should
refer to the non-tidal topography, but this cannot be realized since we do not know the permanent
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crustal deformation.  Also, it makes little sense to define an instantaneous datum since it would
refer to a reference surface that contains significant temporal variations.  Therefore, we consider
only the mean datum.

The geoid undulation for the mean (and zero) datum at the origin point is defined by  N0
(j)

.  At
other points it is the distance from the ellipsoid to the equipotential surface with.potential given by

 W0
(j)

 in the “mean field”, that is, the potential field with all but the permanent direct and indirect
tidal effects removed.  However, with regard to height datums, the geoid undulation need not be
known.  The need to know the datum potential arises only if orthometric (or normal) heights
should be determined with satellite methods (see (51) and (52)), or if different datums should be
connected.  In these cases, we need to develop models analogous to (48), (50), (51), and (52) that
include the tidal effects.  It is noted that the traditional leveling procedures (which are not
instantaneous) may reasonably be expected to yield mean orthometric or normal heights, that is
heights with all but the mean tidal effects removed.  The extent to which tidal effects are not
averaged out by the leveling procedure causes systematic errors and vitiates the theoretical ability to
determine a height by this method.

We consider again the disturbing potential,  TP , at a fixed point of the Earth’s surface.  It is
affected by the tidal potential including its indirect effect, (73), but it is not sensitive to the vertical
displacement.  Indeed, the gradient of the disturbing potential is the gravity disturbance,

  δg = – ∂T ∂h∂T ∂h ; and, therefore, the effect of the vertical displacement, (75), is   – h 2 Vt(R,ψ,λ) δg/g ;
and, the total tidal effect on the disturbing potential is

  
δTP = 1 + k 2 –

δg
g h 2 Vt(R,ψ,λ)

≈ 1 + k 2 Vt(R,ψ,λ) ,
(86)

since   δg/g = O 10–5 .  Disturbing potential models may be given in various tide systems; for
example, the EGM96 model is given in the non-tidal system; others like TEG are given in the zero-
tide system.  In fact, it seems more logical to define the geopotential model in the zero-tide system
since the permanent indirect effects are not observable and not correctly modeled using the Love
number,  k 2 .  Thus, we consider only the zero disturbing potential which is the disturbing
potential with all but the permanent Earth-tide removed:

  
TP

0
= TP – Vt(R,ψ,λ) + k 2 Vt(R,ψ,λ) – Vt(R,ψ) , (87)

where  TP  is the instantaneous disturbing potential.
Introducing the tidal potential and its indirect effects on the determination of the normal heights,

we see from (7), (30), and (83) that
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δHP

norm(j) ≈
δCP

(j)

γ

=
1 + k 2 – h 2

γ Vt R,ψ0
(j),λ0

(j) – Vt R,ψ,λ .

(88)

This assumes, of course, that the normal height is determined instantaneously.  The mean normal
height is given by removing (88) and restoring the permanent components

  
HP

norm(j)
= HP

norm(j) –
1 + k 2 – h 2

γ Vt R,ψ0
(j),λ0

(j) – Vt R,ψ,λ – Vt R,ψ0
(j) + Vt R,ψ , (89)

where  HP
norm(j)  is the instantaneous normal height.

Starting with the instantaneous model (45), repeated here for convenience:

  
W0

(j) = U0 – γQ0
(j) h P – HP

norm(j) –
TP

γQ
, (90)

we find with (75), (86) and (88) that

  
δW0

(j) = – γQ δh P – δHP
norm(j) –

δTP

γQ

= 1 + k 2 – h 2 Vt R,ψ0
(j),λ0

(j) ,

(91)

which agrees with (83) and implies that the same model holds, as expected since it is linear,
whether the quantities are all non-tidal or all instantaneous.  However, we wish to determine the
potential,  W0

(j)
, of the mean datum, supposedly using mean normal heights, instantaneous

ellipsoidal heights, and the zero disturbing potential as observations.  The instantaneous ellipsoidal
heights are determined by GPS (if they were obtained over a longer observation period, then the
model must be altered accordingly), and the zero disturbing potential is computed on the basis of a
solution to a boundary value problem in potential theory.  With (85), (87), and (89), the model
(90) becomes

  

W0
(j)

= U0 – γQ h P – HP
norm(j)

–
TP

0

γQ
+ h 2 Vt R,ψ,λ – Vt R,ψ + Vt R,ψ . (92)

The last term is the difference between the mean and zero disturbing potential and the penultimate
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term accounts for the difference between the mean and instantaneous ellipsoidal height.
To determine the datum potential without the theoretical difficulty of obtaining a mean normal

height (through leveling), one could use the mean normal height at the datum origin, where, by
definition it is known (e.g., equal to zero).  Once determined, the datum potential can be used to
incorporate new mean normal heights into the datum using ellipsoidal heights and the geopotential:

  

HP
norm(j)

= h P –
TP

0

γQ
–

U0 – W0
(j)

γQ
–

h 2
γQ

Vt R,ψ,λ – Vt R,ψ – 1
γQ

Vt R,ψ . (93)

For comparison, see (52).  A similar model can be developed for orthometric heights.

8 . Further Investigations and Applications to IGLD

The definition and realization of vertical datums has so far been restricted to the static (or
instantaneous) case and to the case associated with the direct tidal potential and its indirect effect
due to Earth tides.  However, as noted with (72), there are other indirect tidal effects, as well as
other temporal variations induced by geodynamic phenomena.  For example, Lambeck (1988)
gives the potential due to the ocean tides (including the loading effect on the solid Earth) and states
that the amplitudes are less than 15% of the solid Earth tidal effect.  Similarly, atmospheric
variations and their loading on the Earth’s surface (including the ocean) need to be considered, as
do the polar motions of the figure and spin axes of the Earth with respect to the reference pole
(International Reference Pole, IRP).  Finally, geodynamic phenomena that create significant
vertical crustal motion over longer time intervals include post-glacial rebound, local subsidence,
and tectonic uplift.  Appropriate models and numerical investigations are required to assess the
importance of these effects on the precise realization of vertical datums, primarily for local
applications, but also for global unifications.

The International Great Lakes Datum of 1985 (IGLD85) is a vertical datum based on a single
origin point (Pointe-au-Père, Rimouski, Québec) where all heights are given as dynamic heights
(and converted to orthometric heights to be consistent with the North American Vertical Datum of
1988).  An important issue for the Great Lakes community concerns the historical and future water
levels of the lakes which are being monitored by several tide gauges along the perimeters of the
lakes.  These tide gauges measure water level with respect to the IGLD85.  Therefore, to assess the
long-term fluctuations of the water levels, an accurate assessment of the variation and/or stability of
the vertical datum needs to be made.  The models developed in Sections 3 and 7 provide the means
to determine the datum potential and thus to monitor its time history, provided that accurate
dynamic heights, ellipsoidal heights, and disturbing potential values are available.

Ellipsoidal heights can be determined using vertical GPS positioning and normal heights come
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from traditional leveling.  An alternative is to measure ellipsoidal heights of the lake level with
satellite altimeters, which currently are slightly more accurate in the long term than the GPS-
derived ellipsoidal heights of ground points.  Corresponding normal heights of the lake level can
be determined from the tide-gauge stations, whose normal heights presumably are known, by
assuming that the lake level, averaged over time, is an equipotential surface (and normal heights
would need to be converted to dynamic heights; see (33)).  To realize this condition may require a
model for the dynamic lake surface topography.  The last ingredient, the disturbing potential, is
already quite accurate at wavelengths of several hundred kilometers and longer (about the
dimensions of the lakes), but will become more accurate by orders of magnitude over the next few
years as the GRACE and GOCE satellite missions are realized.

Secular vertical crustal motion complicates the monitoring of lake level changes over long time
intervals (decades) and causes heights and their datums to vary in time.  For the open ocean,the
following model describes the change in sea level,   δnt , with respect to a land-based tide gauge, in
terms of a eustatic change in sea level,   δw  (due to a change in water volume, for example, from
ice melt), and crustal uplift,   δp  (for example, due to PGR):

  δnt = δw – δp . (94)

Here the small change in the geoid slope due to the uplift (which then also affects the water level)
has been neglected, being two orders of magnitude smaller in value than the PGR in the Great
Lakes region (Chao, 1994).  The change in water level,   δne , with respect to a pre-defined
ellipsoid (again for the open ocean) is simply equal to the eustatic change in water level:

  δne = δw . (95)

Thus, satellite altimetry determines directly the eustatic change, while tide-gauge measurements
include a component due to PGR (or other vertical crustal changes).

The situation is reversed for a hypothetical closed lake with neither inflow nor outflow of
water.  In this case the lake level will rise with the PGR of the land surface and the tide-gauge
measurement sees directly the eustatic change in water level, while the altimeter-derived change in
water level with respect to the ellipsoid includes both the eustatic change and PGR.  To what extent
the Great Lakes behave like the open ocean, in which case the models (94) and (95) hold, is a
question that remains to be answered.  Potentially, both models must be amended to exclude or
include, respectively, a fraction of   δp  to account for more complex boundary conditions.
Certainly PGR plays a role if both satellite altimetry and tide-gauge measurements are used to
determine the eustatic change in lake levels over the long term.

For corresponding secular changes in heights of terrestrial points and in the datum to which
they refer, we note that the total vertical change in the land surface is the sum of a change in the
orthometric height and a change in the datum origin:
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  δp = δH(j) + δN0
(j) , (96)

where, again, the change in the slope of the datum is neglected.  The left-hand side is also the
change in ellipsoidal height and can be determined by repeated vertical satellite positioning (which
is all that is needed in the models for the eustatic change in lake level).  To monitor the stability of
the vertical datum, i.e., the change,   δN0

(j) , on the right-hand side of (96), requires repeated vertical
satellite positioning of the origin point whose orthometric height by definition does not change.
Then the orthometric (or normal) heights at other points in the datum can be monitored by repeated
satellite vertical positioning and by using the disturbing potential according to the model (51) or
(52).  Of course, periodic re-leveling of points in the datum would accomplish the same objective,
but is less cost-effective.

9 . Summary

This report reviews the fundamental definitions of heights and vertical datums, specifically
motivated by the modern technique of determining heights using accurate satellite vertical
positioning in combination with an accurate model for the geopotential.  It is shown that the
determination of heights in such a manner requires knowledge of the potential value of the vertical
datum (as opposed to leveling procedures that do not require this).  Furthermore, to determine the
potential of a vertical datum ideally requires normal heights (defined at the origin point of the
datum, or determined elsewhere by leveling) rather than orthometric heights, as this avoids the
complication of assuming a density model for the crust.  The models associated with these
procedures are also developed within the context of the temporally varying field of the tidal
potential, which leads to a more fundamental distinction between a vertical datum (local geoid) and
the global geoid.  That is, the global geoid, by definition, has always the same potential value but
its surface varies (varying geoid undulation); while the vertical datum has an origin changing only
because of crustal deformation and the potential varies due to the direct and indirect tidal effects.

The models thus developed also form the basis for monitoring the stability of vertical datums
under the influence of geodynamic vertical crustal deformations, such as caused by post-glacial
rebound.  This has obvious implications in the monitoring of lake levels that are tied to a particular
vertical datum.  Preliminary models and procedures are indicated.
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