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Object Recognition from AIMS Data Using Neural Networks

1. Introduction

AIMS (Airborne Integrated Mapping System), a fully digital and real-time airborne mapping
system, has been developed at the OSU Center for Mapping (CFM). A fundamental task of AIMS
is to understand geo-referenced mapping images far automatic construction of 3-D spatial
databases. Based on successful research on automatic mobile mapping data processing in the
previous project year (Li et a. 1997), efforts have been made this year to automate procedures for
image feature extraction and for recognizing and locating objects, considering unique geometric
congtraints provided by GPS and INS data. Specific tasks completed include:

Studying relationships between image features, photogrammetric models, and knowledge
of objects,

Integrating edges, region boundaries and DEM slope-aspect information in order to group
and classify extracted features,

Developing a knowledge based feature extraction system by combining several different
approaches;

Developing a Multilayer Hopfield Network; and

Applying the neural network for truck recognition and location, as well as velocity
estimation.

Two significant breakthroughs in this project year are:

Development of agorithms that build vector lines from AIMS images by fully utilizing
image feature context, geomorphologic information, camera georeferencing geometry,
terrain models, and knowledge about the objects to be extracted. Experiments in extraction
of roads, houses and trucks showed very promising results; and

Development of an improved two-layer Hopfield neural network that accepts extracted
vector lines from AIMS imagery and recognizes trucks on freeways. Location and velocity
of the recognized trucks are established in a subsequent process.



The overal success in this project and a related project supported by Sea-Grant/NOAA for
geometric modeling of one-meter resolution satellite imagery (Li 1998, Li et al. 1998a) builds a
basis for further research on object recognition to support extended tasks such as automatic
derivation of large-scale spatial information from one-meter resolution satellite imagery.

2. Automatic Feature Extraction from AIMS Imagery

2.1 AIMSImagery

A set of AIMS images were taken in Madison County, Ohio with a flying height of about 1.3
km. A camera cdibration was performed so that lens distortion and interior orientation
parameters are available. Ground Control Points (GCPs) in the area of interest were surveyed
using GPS. Figure 2.1 shows atypica AIMS image.

Figure 2.1 An example of AIMS imagery



Roads are one of the mgor features in the images. In addition, farmland varies in its image
texture. In general, man-made objects such as roads, buildings and vehicles can be seen at the

original resolution. Shadows provide additional information for most man-made objects.

We began our study by extracting edges of features based on change of pixel intensities. From
the extracted edges, seeds are selected and linked together giving consideration to geometric
constraints. Next, roads of specific width are constructed based on the model of anti-parallel
lines. Finally, objects with height dimension such as houses and tracks are extracted and
classified through shadow analysis.

2.2 Feature Extraction from Aerial Imagery

Feature extraction is an area of active research in computer vision. In the past, feature
extraction has been divided into several components and stages. Examples include edge
detection, contour derivation, and shape modeling. The divisions were not only based on error
modeling alone, but aso considered other constraints. Later models, such as the deformable
contour model (Kass et al. 1987), treated these problems in a general unified manner. However,

no criteria exist to test models and validate parameters.

Digital Mapping Laboratory of Carnegie Mellon University (CMU) attempted to combine all
available image, scene, and domain knowledge in their feature extraction methods. For
example, they used the vanishing point technique for building detection, and they incorporated
automatic feature extraction and stereo matching into a semi-automatic system (Mckeown et .
1996). In another study (Gruen and Li 1996), a semi-automatic method for linear-feature
extraction from digital images was presented. The procedure combined human identification of

features with high precision line extraction performed by a computer for GIS data capture.

In an early study, McKeown (1990) specified four topics of primary importance in image
understanding: building detection, road extraction, stereo analysis through matching, and
knowledge-based scene analysis. Although described as independent problem domains, it is
clear that results from each topic must be integrated in order to automate the cartographic
feature extraction process. Generaly, local edge strength and direction are computed first
followed by the selection of local maximums. Finally, edges are linked in order to form single-

pixelwide lines. In our method, we improve edge detection by implementing a strategy that



uses multiple resolution line extraction (from coarse to fine) and geometric constraints from
GPS and INS in a multi-level approach.

2.3 Development of an Integrated Algorithm for AIMS I magery Feature Extraction

Navigation Data, Airborne Images

Edge Detection Image Texture DEM
(Compound operator) Segmentation Classification Anadysis
Edge Edge Multilevel Boundary Texture Pixel DSM Slope
Seeding Linking Threshold | Detection Measuring | Classificat Analysis groupin
Edges I Lines I Polygons | __ Regions
Hough Transform. Mathematical Fractal Measure Snake Deformation
Curve Fitting Morphology Model

Figure 2.2 Program flowchart

Edges carry most of the information in an image and are relatively unaffected by changes in
image contrast and radiometry. Therefore, our algorithm begins with multi-resolution edge
detection in an AIMS image. Figure 2.2 depicts the information flow and methods used in data
processing. Each mgor component in the figure is discussed in the following sections. The
system isimplemented using MS Visua C++ on a Pentium Il machine.

231 A Compound Operator for Complex Edge Detection

Marr (1982) first applied different sizes of edge operators on an image to obtain a description
of signal changes at different scales. This is called multi-scale or multi-resolution edge
detection. Marr also suggested that zero-crossings over severa scales are physically significant.
Additionaly, Marr and Hildrith (1980) have proposed a Laplacian of Gaussian (LoG) edge
detection operator in which Gaussian-shaped smoothing is performed prior to the application of



a Laplacian operator. Although the method is well-behaved (Witkin 1983, Y uille and Poggio
1983, Lu and Jain 1989, 1992), high frequency noise and over-circular-contour spurious noise
cause poor results. Another well-known gradient-operator is the Derivative of Gaussian (Drog).
In this operator Gaussian-shaped smoothing is followed by differentiation. The so-called
Canny’s operator (Canny 1986) is based on an analytica model for step-edge and white
Gaussian noise. In describing his operator, Canny placed the following criteria on edge
detection: good detection, good localization and single response. His operator yields high
performance in smple scene analysis, but details of implementation vary in the establishment

of gradient direction, suppression of edge noise in neighborhood edges and directional gradient.

In our study, we combine LoG and Drog operators into a compound edge detector to &ke
advantages of information from second and first order derivatives. Edges in the image are
selected by both zero-crossing of LoG and those above the adaptive threshold of Drog. We use
multi-resolution edge detection for complex AIMS images. With small-scale Gausian-filtered
(small sigma) images, our operator may be, to some extent, sensitive to noise, but it provides us
with fine changes in intensity details. Further, the operator provides coarse intensity change
information with large-scale Gausianfiltered images. The adaptive threshold of the Drog
operation is followed to avoid over-circular-contour spurious noise of LoG. In other words,
zero-crossing of LoG is the basis for comparison with the Drog operator result when
identifying edges. Thus, the interaction between these two operators acts to eliminate fine scale
noise caused by separate events at different scales. Mathematically, we have

G, =F(xy)*H, (xY) (21)
G, =F(xy)*H,,(XY) (22

where F(X,y) represents the imagery function,* denotes convolution operation, H(x,y) represents

Laplacian of Gaussianfunction, S ; and S, are scale parameters (S, <sS ,), and G; is the zero-
crossing of LoG operation.

Additionally, Drog operations with the congtraint of G, are

D, =FXx*T, (X G, (2.3)
D, =Fxy)*T, (X V:G, (2.4)

where T(x, y) represents the derivative of Gaussian.



Thus, the edge detection works at two different scales. One for extracting the raw shape of an
object, called initial resolution and the other for extracting the exact shape of the object and for
distinguishing it from other similar looking objects. This is implemented by defining an initial

scale s ; based on the Canny’s optimal edge detector criteria with a corresponding window size.

A refined scale s , is chosen in order to increase edge detection details. Edges detected at the

initial resolution are intensified by edges detected at the refined resolution, while the later
avoids spurious noise by intersecting the results from the initial scale.

232 Region and Morphology Based Image Segmentation through a Multi-level
Threshold

The method introduced above is capable of detect edges representing objects such as roads and
other linear features. On the other hand, objects of reasonable uniform brightness against a
background of variable brightness, for example, houses and trucks can be detected by image
segmentation that is usually the division of the image into regions having similar attributes. The
most basic attribute for segmentation is image amplitude (luminance for a monochrome image,
and color components for a color image). Image edges and textures are also valid attributes for
segmentation. In our study, we use both image amplitude and image texture to delineate region
boundaries.

The basic task of luminance threshold selection is to determine a threshold value that falls at
the minimum point of the histogram, i.e., between its bimodal peaks (Pratt 1991). It is proven
in our study that, due to the complexity of aerial imagery, the segmentation could not be
finished in one step. Instead, a multi-level threshold method was used to determine a different
threshold at each step. The threshold of a previous step was adopted if and only if the
luminance histogram formed bimodal peaks. A parabolais used at both of the histogram peaks
to model a curve segment, and a threshold is selected at the intersection of the two parabolas.
The steps of the multi-level threshold procedure is as follows:

1) Seti=0 to initialize arrays AJ[64] and A[64], and set the minimum luminance to A[Q] = 0,

and the maximum luminance to A[Q] = 255.



2

3

4)

5

6)
7)

8)

Set a series of array A[64/2'] and compute their values as the number of pixels with the

gray vaue between A[i]+(Afi]- Ali])/642" and A[i]+(A[fil- Ali])/64* 2",
j=0,1,... 642"

Calculate the histogram of luminance distribution within the image area corresponding to i
(if i equas 0, the entire image is represented; otherwise i represents a portion of the image).
If the histogram has no bimodal peaks, discard the mark on the area and set al pixel gray
vauesto 642 if it is marked as “+”, or to 255- 642 if it is marked as “-”. Then go to
step 6. If the histogram has bimodal peaks, place a parabola at each peak, and use the
intersection of the parabolas to segment the image area into two parts and determine the
threshold. Set a“+” mark on the segmented image area having a gray value larger than the
threshold, and set a“-” mark on the area with a gray vaue lower than the threshold.

; if the area is marked “+”, then Ai]=Al-q+(Ali-1-Afli-14)/2 and
Ali1=Ali-1; if the area is marked ", then A[i]=A)i-Q+(Afi-1- Ali-1)/2 and

AlIT=AlI-1.
Within one of marked image areas, repeat steps 3 and 4.

i++

If there are still marked areas, repeat steps 2 through 6 with corresponding level i;
otherwise go to 8.
End.

Secondly, we delineate region boundaries through texture features. Although texture is a

valuable feature for image segmentation, putting this proposition to practice, however, has been

hindered by alack d reliable and computationally efficient means to measure texture (Haralick

and Shapiro 1992). In fact, texture on one hand appears as structure and at the same time has a

statistical property. Effective textural classifiers should address both of these properties. In our

study, we use a morphological concept, granulometric measure, to extract texture feature on the
detected edges.

Since edges belong to a line type, the structure elements for texture classification consist of line

segments. In a3 x 3 window, four directional structure element are formed as.

010 001 000 100
E=010  E=010 E=111 E=010
010 100 000 001



Suppose we have nE =E AE AL E (ntimeglilations, where A represents the dilation

operation. The spectrum of the edge relative to the structure element E can be acquired as:

spEM=XQNE) (2.5)
AX)

Where A(-) represents area caculation and C represents erosion operation. The size of the
structure element is changed in order to iterate each transformation. Spectrum relative to size n
describes statistic distribution of edge relative to structure element E, . Texture features belonging
to different areas are distinguished by a large difference in relative statistical distribution of
structure elements. In order to classify each pixel into different texture areas, the area of each
unique texture feature is estimated, and then centered at each pixel around the same area, the
spectrum are calculated again. Those with high spectrum pixels are classified into a region with
the same structure as selected structure elements.

In order to reduce the complexity of feature extraction, image segmentation is used to assist in
edge analysis. The salient segmented regions are detected, and their boundaries are used as a

condition for edge selection and linking as explained in the following steps.

2.3.3 Robust Edge Selection and Linking

Morphological edge selection and edge thinning

So far, the detected edges are still discrete edge points. They are to be aggregated and linked to
form explicit edged/lines. First, the detected edges and boundaries may be of varying width
(one to severa pixels). A morphological thinning transformation thins detected edges to one
pixel width (Serra 1982). The transformation is iterated severa times, corresponding to the
length of the selected segment. Then, segments with length less than a selected threshold are
deleted, while segments with length larger than the threshold are preserved by conditional
dilation. The procedure for morphological edge selection can be mathematically expressed as:

X(=XO[L},i=QLL 7 (2.6)
Xt=(XO[E}NA{E};X,i=0LL 7 (27)



where C represents the morphological thinning transformation, with structure elements

i x10

T _ . . .

iL=0 O 1 i=1357,i plus2 clockwisly rotatesp/2

I 00 x

: 010 ’

T,=0 O 1i=2468 i plus2 clockwisly rotateslﬁ/2

1 000
222
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Conditional edge aggregation

Under the refined resolution condition, the edge segments selected at the initial resolution are
expanded according to a so-called end-point conditional dilation. There are three steps in each
transformation iteration. First, the end points are searched through a hit-or-miss transformation;
next, the selected end points are expanded in a nearby image window (3 x 3); and findly, the

expanded pixels, with intersection of edges at the refined resolution, are combined with the
input edges. The procedure for conditional edge aggregation can be mathematically expressed

as.
xe=(Jxh E) AR} g 9)

where X{ andXj§ represents selected edges at the initial and the refined resolutions

respectively, A represents the morphological hit-or-miss transformation, and the structure

elements écorr&epond to E as

000
%:o 0 0 i=QlL 7 i plusl,clockwisly rotatesp/4.
010



Local edge linking

Loca edges are selected within a small window (e.g. 3 x 3 or 5 x 5) in the image. If there is
only a pair of end points in the window, connect them directly. If there are more than two
points, the pair of end points with the same gradient direction and minimum interval is linked.
The end points are acquired through morphological hit-or-miss transformation with the

structure element [, as show above. It is desired to avoid the time consuming task of point-to-

point comparison for end-point match determination. Our method performs a simultaneous
dilation of all deleted end points in the direction of the contour (perpendicular to the gradient).
Dilation is performed until each end point meets another end point moving in the same
direction. At this time dilation ceases.

Curve fitting for edge linking

If a priori information about the expected shapes of objects is available (e.g. an expected
rectangle for atruck or house), fitting may be carried out directly based on the desired shape. A
simple piecewise linear curve-fitting procedure is the “iterative end points fit” (Duda and Hart
1973). In the first stage of the algorithm, end points are connected through a straight line. The
point of greatest departure from the draight line is examined. If the separation of this point is
too large, the point becomes an anchor point for two straight line-segments. The procedure then
repeats till the data points are well fitted by line segments.

However, the seemingly simple algarithm is complicated by the necessity to determine anchor
points. Any new anchor point may generate a need for two additional anchor points, each
within two separated segments. We use a “first-in-last-out” stack algorithm to handle anchor
point selection. The algorithm is described as follows.

1) Define a minimum departure which determines an anchor point, say |,

2) Set afirst-in-last-out stack (STK1), then sequentially push al the points from the first end
point (marked as A) to the second end point (marked as B), set two more first-in-last-out
stacks (STK2 and STK3), and mark STK2 as “-”,

3) Push point B into STK3, and then push point A into STK3,

4) Pop two end points A and B from STK3. If STK3isNULL, go to step h,

5) Pop end point (marked as C) from STK1. If C==B go to step g,

10



6) Calculate the distance d from point C to the line AB. If d >| , push point B into STK3, and
then push point C into STK3, mark STK2 as “+”; iterative pop point from STK2, and push
the point into STK1 until STK2 is NULL, go to step c. Else, push point C into STK2,
iterative continue with step e,

7) If STK2 marked “”, record point A and point C, iterative pop point from STK2 until
STK2 is NULL, go to step d; else push point B into STK1, let B==C, iterative pop point
from STK2, and push the point into STK1 until STK2 is NULL, go to step e, and

8) Discard STK1, STK2 and STK3, then End.

Hough transformation for edge linking

Hough transformation is mainly used here for linking edge pixels of straight lines. It involves

transformation of a line from Cartesian coordinate space to polar coordinate space, in which,
the transformed line is smply a point at coordinates (r ,q). A family of lines passing through a

common point maps into the connected set of points. The main advantage of Hough transform
isthat it is relatively unaffected by gaps in curves and by noise. For the problem of straight-line
detection, Hough technique organizes points into straight lines by considering al possible
straight lines. The following is an algorithm of line detection with the Hough transformation.

1) Define the parameter space between approximate maximum and minimum values for ¢ and
m,

2) Form an accumulative array A(c,m) whose elements are initialy zero,

3) For each point (x,y) in agradient image, if the strength of the gradient exceeds a threshold,
increment al points in the accumulative array along the corresponding line (i.e. A(c,m):=
A(c,m) + 1, for m and ¢ satisfying ¢ = -mx+y),

4) The loca maximum values in the accumulative array now correspond to collinear pointsin

the image. The values themselves provide a measure of the number of points on the line.

In practice, there are two key points in this algorithm. One is in choosing the size of the array;
the other is in determining a threshold to form or exclude corresponding lines. In our study, we
base the size of the array on the image size. Our experiments show that in order to achieve
good localized line detection, the size should be two to three times larger than the size of
image. In order to exclude pseudo lines, a global maximum criterion (rather than local
maximum) is selected to form a line. The longest line segment sharing two end points with

detected edge pixels is recognized as a line in the image. The iterative line detection proceeds

1



with the deletion of recognized lines. It ends when the ratio of global maximum to medium
values in the accumulative array is less than the ratio of the array size to the image size.

234 DEM Interpolation and Slope Grouping

Image features are a projection of ground objects. Inversaly, it is hoped that information about
the terrain such as Digital Elevation Model (DEM) should help detect object features in the
image. A DEM can be acquired through photogrammetry, surveying, or contour map digitizing.
In our study, a portion of a contour map was scanned and transformed into DEM data by a
raster-vector conversion. The relatively small-scale map (1:24,000) generated a DEM that
needs to be densified to match the 4k x 4k image. The result is a grid defined on the image
array so that for each image pixel there is an elevation. The following procedures were used for
DEM interpolation:

1) Contour maps are scanned and are vectorized to form DEM source data,

2) Transformations of the DEM source data form the map’s geodetic coordinate system (say
UTM) to photogrammetric object space coordinate system (say SPC),

3) Transformation of the object space coordinates to image space coordinates using collinear
equations,

4) Transformation of the image space coordinates to digital image coordinates,

5) DEM interpolation to each pixel of image through bilinear interpolation method.

Slope magnitude and direction, which can be calculated by DEM data, are important terrain
featuresin terrain analysis. They are calculated through DEM data as follows:

Slope magnitude:

S:Jf%xg *?Z/ﬂvg 29

Direction angle:

24,0

a:atangﬂ7 :
e /TXg

(2.10)



Grouping is performed at each grid point by its slope magnitude and direction angle. Slopes are
divided into severa levels depending on their magnitude. Each level corresponds to an area that
shares the same terrain hypsography. This constitutes a condition for image segmentation and
edge grouping. For example, freeways generally have a small slope (say 0-1 degree) for high-
speed transportation. So freeways should fall into areas where slopes are less than a threshold
value, and within these areas freeway edges are formed (assuming there is no error in DEM

data). In addition, direction angles are grouped in to several levels from O to p/2.

2.3.5 Road Extraction and Road Network Construction

To extract roads, a set of seed edges are defined, which have the lowest level of slopes. Among
the seed edges those pairs that have the anti-parallel character (the difference between direction
angles & p/2, caused by gradients of the two opposite road edges) and a specific width
(distance between the two edges) are selected as road edge candidates. Nearest end points of
the edge candidates are connected with a constraint on direction angles. A preliminary road
network is formed based on a principle that that the road topology should be as simple as

possible (minimum number of intersections).

The preliminary network is improved by a re-segmentation procedure considering that the
preliminary road network should divide the image into unconnected areas. These areas can be
used as a condition for a further image segmentation. In analyzing the re-segmentation result,
polygons that do not exhibit road characters are ignored. Edges near the preliminary road
network which are longer than the specified threshold are selected. These edges constitute a
geometric constraint used to refine the preliminary road network through a snake deformation
modd.

Snakes, or active contours, were originally used for semi-automatic feature extraction in
computer vision (Kass et a. 1988). Starting from an initial estimate of a curve's shape and
location (segments in the preliminary network in our case), the snake wriggles through the
image in an iterative process (Tao et a. 1998). This evolution of the snake is driven by several
elements of an energy function, which is composed of terms of various natures. These include

internal terms, photogrammetric terms and external forces. Suppose E ., =E, +E; *E, A

13



snake is described parametrically by v(s) = (x(s), y(s)), with s representing the arc length from
the beginning of the curve. The energy function is then

™ (B V(9) 8= (B M(9)+ EyrfV(9)+ Eo(U(9) ] (211)
Internal energy forces are composed of afirst order term and a second order term:
En= @OV +bEN 92 (212)

Here, a(s)and b(S) are two dual weight factors. The internal forces place constraints such as

smoothness of the curve. Generally, photogrammetric energy uses the gradient of the curve
Epho =- gi |N(V(S )| (213)

at point i that is determined photogrammetrically. g' is aweight factor. The externa attraction

forces are introduced as
EodM) =d (M(s5)- 1))? (214)

where d is a weight factor and | the desired distance from the known photogrammetrically

determined point i to the curve. This term requires that the final curve should be as close to the
known points as possible.

Overall, minimizing the energy function makes the snake deform to a compromise between
fitting the known points and preserving the characters such as smoothness.

2.3.6 Aboveground Objects Extraction and Classification

Shadow extraction

Shadow is an important feature in aerial imagery. In principle, using shadows, date, time, and
orientation of the image, the sun’s position can be determined. Inversdly, artificial shadows of
known objects can be generated for object recognition purposes. In photo interpretation, the

14



combination of an object surface (for example, a building roof) and its shadow make them
distinguished from others. After image segmentation, statistic properties such as mean and
variance are calculated in each segmented area. We are to find adjacent areas with very small
variances. One area (shadow) has a very low intensity mean and the adjacent area (its
corresponding object) has a very high intensity mean. In addition, the direction of the adjacency
should be in the same as the sun.

Aboveground objects extraction

After shadow extraction, adjacent areas with high intensity means and small variances are
called aboveground object areas. Within the areas, the image is once again segmented based on
intensity. Objects found in the areas are considered to be aboveground objects. Edges of these
objects are selected and linked to form their boundaries.

Distingquishing natura objects and man made objects by shape classification

Aboveground objects and their shadows have specific shapes, particularly natural objects such
as trees and man-made objects such as buildings and trucks. Natural objects often occur in an
irregular and complex contour shapes. In contrast, man-made objects dten have a regular
contour shape, such as a box surface or paralel edges. There are numerous methods to
distinguish between different shapes (Ballard and Brown 1982). In our study, a contour shapeis
measured by the complexity of direction change from pixel to pixel in a nearby 3 x 3 image
window. The direction change can be represented through Freeman chain coding (Freeman
1974). Within a 3 x 3-image window, the direction is coded as:

4 3 2
501
6 78

Suppose a set of chain codesis GG C,GL C,- Forany i, O<i<n, if ¢,==¢==C,, then pixel
direction a ¢ has no change; otherwise there is a direction change a . Moreover, if
b e o) - -
maxg a |Q- ijl a|0(+l- QIT< m, then we can say direction a @ has no change within a

&s=i-m k=i %]

step size of m; otherwise there is a direction change at ¢ within a step size of m. Similar to

what is found in the fractal dimension of a shape calculation, the more a contour danges
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direction the greater complexity it has. Those shapes with high complexity are classified as
natural objects while shapes with low complexity are classified as man-made objects.

2.3.7 Vectorization

The vectorization algorithm requires two steps. The first step is to describe the topology of the
extracted objects. Intersections of extracted edges are searched by morphological
transformation and are preserved as the beginning and ending points of segments in the second
step. The second step uses Douglas-Peuker method to select critical points of each segment
determined in the first step.

2.3.8 LineGrouping Through Per spective Geometry

In theory, a set of parallel lines in 3D object space converges at a single point known as the
vanishing point when projected into image space. Consider a unit sphere centered at the origin
of the camera coordinates system, called a Gaussian sphere. A vanishing point can aso be
represented as a point on the Gaussian sphere, that is, a unit vector placed at the perspective

center. So, given avector Q in the object space, its vanishing point v on the Gaussian sphere

can be computed as
_MQ
Mq

where M is an image rotation matrix. In particular, suppose the solar azimuth is represented by

Vv

(2.15)

avector Q- Q..

q =[oat] (2.16)
and
q, = [sn g ,cos q.,1]" . (2.17)

The vanishing point of vertical lines in object space can be directly computed as

M’
V, =— Q . (2.18
M Q|
The vanishing point for the shadow lines cast on horizontal planes by vertical lines in object
spaceis
M’
v, :,—QZ . (219)
M Q|
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Thus, extracted lines can also be grouped into either paralel lines (such as vertical lines and
their shadows) which share a vanishing point, or non-parale lines, which do not share a

vanishing point.

239 Conversion of Polygonsinto known shapes

[xmin ymin) [xmax ymin)

XMean ymean)

[=min ymax) (=mas ymax)

Figure 2.3 Polygon simplification

In some cases, an expected known shape can be used to simplify extracted features if we know
that the features should have the known shape. For example, a quadrangle structure is typical of
the top of most trucks. Thus, the extracted polygons can be simplified into quadrangle shapes.

Suppose such a polygon is represented as a vector n :(X( S) y( S)) We need to determine four
vertices P, Yy, B0 Y,), Bs(X,Ys), Pi(X,Y,) by fitting the data. Let us denote maximum
and minimum coordinate vaues as X, =max(X9), X;,=MN(X9), Y,u=max( U9),

Yin=MN( YS)). Then the center of the polygon is represented as point (X,cans Yiean -

K= (e () +min(x(g))/2, y _=(mex{ y(g)+min(y(g)}/2. We next define two diagonal lines

linking four points of  (Xu s Yimad: (Sins Ymin): (Gacr Yin) @ (X s Vi) - The: polygon
points, N :(x(s) y(s)) are divided into four groups by the two diagona lines, with each group

between two diagonal lines. The quadrangle has two longer sides and thus, there must ke two
groups having more points than other two. Assume that the two lines represented by the two

groups with more points are |, and |,. These two lines can be determined by line fitting using
the two groups of points. We can also caculate the distances between the center point,

(Xreans Yiear) » to thetwo lines as d, and d,. If the area of the original polygon is s, the length of

|, and |, is approximately equal t072d1 and %j? With the calculated length of |, and |, and the

fitted lines, it is then trivial to determine the vertices of p,(X,Y), P0%Y,), Ps(XsYs) and
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P,(X,,Y,) . Furthermore, using the difference between the area of the simplified s and that of

the polygon s, the coordinates of p,, p,, P;, P, can be adjusted.

2.4 Experiment Results

An aerial image (Figure 2.1) with a dimension of 4k x 4k pixels has been used for a feature
extraction test. The internal and external orientation parameters of his image are listed as

follows;

Exposure center coordinates with 1 sigma (unit: m):
X =512538.071 (s = 0.617), Y, = 216637.932 (s ,= 0.620), Z, = 1364.956 (s ,= 0.282).
Rotation angles with 1 sigma (unit: degree):
w = -3.752 (s, =0.032), f =2005(s; =0.030), k = -0.807 (s = 0.007).
Rotation Matrix M:
0.999288 0.014087 0.035004
-0.016355 0.997726 0.065388
-0.034003 -0.065914 0.997246
Cameramodel: cam50, calibration date: 30/06/1990
Principal point coordinates: x = 0.001, y = 0.001 (unit: mm)
y scale, ky = 1, Foca length f = 50.000 mm.

Figure 2.4 Multi-level threshold image Figure 2.5 Edge detection at initial
segmentation resolution (S = 2.0, width = 25)
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Figure 2.4 shows an example of image segmentation using a multi-level threshold. The image
histogram was calculated, and at each of the two peaks a parabola was used to model a curve
segment. The intersection of the parabolas was selected as the threshold. In this way the image
is divided into segmented areas. The histogram of each area is checked. If the histogram has
two peaks, the threshold is calculated again, followed by a new image segmentation; otherwise
the segmented areas are retained. When thresholding, the two values of the areas are assigned

as (256N and 256 (256/A+ respectively, where | is the threshold and N is the highest kevel

(2"). The region boundaries are modified through a maximum gradient within a3 x 3 window.

The combined result of edge detection at the initial resolution by LoG (S = 2.0 and width = 25)
and Drog is illustrated in Figure 2.5. The result is thinned into a one-pixel width using a
morphological thinning algorithm, which preserves topology and connection relationships. The
size of the window is set to be greater than 6/2s in order to avoid deleterious truncation
effects. The edge detection result at a refined resolution (with s =1.6 and width = 23) is
represented by Figure 2.6. Considering that noise interference decreases as the resolution
decreases, the refined resolution is set to be dightly lower than the initial resolution. The
window size is set Iadobe Photoshop Clip Image is too big to be exported© increase the edge
strength at the center of the window.

Figure 2.6 Edge detection at refined Figure 2.7 Edge selection and edge
resolution (S = 1.6, width = 23) linking
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As represented in Figure 2.7, edges at the initial resolution are filtered by a morphological
transformation, where those segments having more than 5 pixels are preserved and those
having less are deleted. At the same time, segments and polygons that have endpoints are
separated from those that do not. The edge segments of the refined resolution are then dilated.
If two end points exist within a 3 x 3-pixel window, they are connected directly. Edge segments
that have the same direction, and have their endpoints within a five-pixel radius, are aso
connected. Edges of length greater than 50 pixels are selected, elongated, dilated, and then

intersected with other edges. Finally Hough transform finds straight lines by examining large
numbers of collinear points.

Figure 2.8 Detected lines and polygons Figure 2.9 DEM interpolation

Figure 2.8 is the combined result of lines from edge detection and polygons from segmentation.
All the lines and polygons are longer than 20 pixels.

A DEM was acquired by conversion of a scanned contour map. The map projection of the
scanned map was UTM. The DEM was then transformed to SPC (State Plane Coordinate)
system in order to correspond to the object coordinate system defined in the photogrammetric
model. Geoid height was used to correct the elevation at each grid point. The 3-D object space
coordinates (X, Y, Z) are then transformed to image coordinates (x, y, -f) by a collinearity
equation, followed by a transformation to pixel coordi nates(i,j). Findly, the elevation at each
pixel isinterpolated by a bilinear interpolation (Figure 2.9).



Figure 2.10 Slope grouping

Based on the elevation information a each grid point in Figure 2.9, a terran sdope was
caculated by a differential operator. Slopes are grouped into 90 levels, with level 1 tol0
covering slopes from 0 to 1 degree and level 10-90 covering slopes 2 degree and above.

Figure 2.11 Dash line seeds from image segmentation and hit-miss operation

Let us now focus on the bottom part of the original image in Figure 2.1, where a freeway is the
dominant feature. Lane-separating lines are bright-color-painted dashed lines. At the original
image scale, the dashes are rectangles of the same size and equally spaced. The dashed lines
were extracted through image segmentation using the multilevel threshold agorithm.
Structured elements are constructed using deformed rectangles considering perspective
geometry. Comparison between the segmented areas and structured elements is performed by a
hit-or-miss operator to produce dash line seeds for further processing. Figure 2.11 shows the
dash line seeds.

Figure 2.12 Dash line generation through Hough transform

21



Boundaries of the dash line seeds are next thinned to one-pixel width. A Hough transformation
examines all seeds and produces equally spaced dash lines as described in Figure 2.12.

Figure 2.13 Freeway line generation

Once one dash line is produced, other dash lines can be predicted using spacing from the
known dash line (Figure 2.13). On the predicted dash lines, predicted and the seeds may
intersect. This can be used to confirm the existence of the predicted dash lines.

LS
.......

—

Figure 2.14 Road seeds selected through slope grouping




To capture other roads in the image, which are generally parallel double lines, edges with a
length that exceeded a certain threshold (5 pixels) were selected and linked to form road seeds.
On the other hand, small-segmented areas were deleted by a morphological transform, while
large areas, considered to be elements of the road network, were dilated and connected. Figure
2.14 shows the road seeds that are within DEM grouping level from 0 to 10 (Slope < 1 degree).

Figure 2.15 Road edge seeds along long straight lines are selected through Hough transform



Hough transform is performed on the selected road edge seeds. Long straight lines are
estimated by Hough transformation. Those road edge seeds that are along the long straight lines
are selected in Figure 2.15.

.t
o
"

o
o

i

Figure 2.16 Generated parallel straight lines

Road edge seeds on the long straight lines generated by Hough transformation were connected
piece-by-piece. Constraints such as road width, parallel direction and anti-parallel gradient are
applied to search for two parallel boundary edge lines displayed in Figure 2.16.

e et o
-

Figure 2.17 Road edge seeds not in straight line set
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To capture curved roads in the image, road edge seeds that did not form straight lines were
separated from the straight line set (Figure 2.17).

S

Figure 2.18 medium axis line derived by a thinning algorithm

These non-straight road edge seeds are combined by morphological dilation. A medium axis
line is estimated by a thinning algorithm based on the road edge seeds (Figure 2.18).

Figure 2.19 Approximate parallel road boundaries

The medium axis lines are dilated using a rectangular element structure along the road direction
and with a half road-width size. The dilated contours constitute two approximate parallel road
boundaries as shown in Figure 2.19.

Figure 2.20 Improved paralld road boundaries
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The boundary lines are further improved by applying constraints of road edge seeds and imposed

smoothness Figure 2.20.
Figure 2.21 Final result of road Figure 2.22 Above-ground objects
extraction (houses and trucks) detected

Overall, detected edges with slopes within 1 degree are checked against anti-parallel and road
width conditions as well as other constraints. Edges passed the checks are used as road edge
seeds. End points of the road seeds are detected and dilated using refined resolution. Road
seeds are connected through piecewise line fitting and Hough transformation. Morphological
thinning and shape smoothing, as well as short arc deleting, are aso performed. Thisresultsin
initial roads that are then refined by a snake deformation model (Figure 2.21).

Edges of aboveground objects, mainly house and truck boundaries, are detected and organized

into polygons (Figure 2.22). Figure 2.23 is the overlay of the extracted features on the original
AIMS image.
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Figure 2.23 Overlay of the extracted features on the original image
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3. Multilayer-based Hopfield Neural Network for 3-D Object Recognition

A single layer Hopfield neural network can be applied for recognition of point, line, or region
features, as demonstrated in the last year's project report (Li et a. 1997). In the case of 3D
objects described by a hierarchy of regions, lines, and points, a recognition strategy that uses a
combination of information is desirable. Geometric constraints and known object models in 3D
space are useful in such a combined recognition strategy. We introduce a two-layer Hopfield
neural network that matches region and line features extracted from AIMS imagery using a
known 3D model. Specifically, recognizing trucks on freeways from the georeferenced aerial
images is performed as an application of the method. In Young et a. (1997), a multi-layer
Hopfield neural network was introduced to recognize pyramid shaped objects. Its optimal
selection of neuron initial values provides a means to reach global minimized-energy states
without annealing. Suganthan et a. (1995a) developed a selected wavelet function to determine
satisfactory initial values for recognizing occluded objects with complicated shapes. Suganthan et
al. (1995b) reported a self-organizing network that trains coefficients of the energy function.

In the last project year (Li et. al., 1997), street light poles were recognized using a single layer
Hopfield neura network. In 3-D object space, alight pole is defined as a cylinder with a diameter
of 21.2cm and a length of 6.795m. These values were obtained by manua photogrammetric
measurements of light poles from the mobile mapping images. A priori knowledge that light
poles should be vertical and near the mobile mapping van was applied. A light pole modd is back
projected onto the images and used to recognize image pole features. Light poles appearing in
conjugate images are detected, recognized, and used to calculate 3-D locations.

Development of a multilayer network and application for recognition of trucks are major tasks for
this project year's object recognition work. Geometric, unary, and binary constraints are imposed
to match pairs of candidate features with similar pairs of the 3D model. Unary constraints
consider similarities between single candidate and model features, while binary constraints
consider geometric similarities between candidate pairs and model pairs. In the origina 4k x 4k
AIMS images, there is little difference in the shape of trucks seen from different positions
because the freeway is nearly flat.
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We use a top-down dtrategy to achieve object recognition. The problem is treated as an
optimization problem, where the correct answer is given when a globa minimized energy state is

reached. For basic knowledge of application of neura networks in mobile mapping object
recognition, please refer to Li et a. (1997). Let Clhik and C?%y be unary and binary similarity
measure respectively. The energy function is

2
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The neuron state, V,, , converges to 1.0 if the model feature i matches the candidate image

feature k perfectly, otherwise, it is equal or close to 0. Thus, the first term measures similarity

between the model and image features. The second term 8- V)2 implies that the final states

i k

v, "\ confirms that there is at

of neurons in the same row add up to 1, and the third term é_ é 1\

o]
ik 1k
most one neuron that has a value greater than O in each row. This means that only one candidate

image feature matches with each model feature. The forth term 3 (1- § v, )? implies that the final

k i

states of neurons in the same column add up to 1, and the fifth term § § ViV, confirms that
K it

thereis at most one neuron that has a value greater than 0 in each column. That means that each
candidate image feature matches with only one model feature. Combining the second term

4@ 4V with the third term 3 33y, "\, gives a solution that forces each model feature to
i k

i klk

match only one candidate image feature. Similarly, combining the forth term g (1- § v, )? with

k i

the fifthterm 333V V, gives a solution that guarantees each candidate image feature will
K it

match only one model feature. The determination of coefficients A, B, C, D and E depends on
how gtrictly the unique matching condition should be implemented. More discussion on relevant
terms and symbols will be introduced later in this report.



3.1 Three Basic Patternsin Object Recognition

Point pattern

When points in images or the model are to be matched, unary and binary constraints can be used.
They are often assigned different weights. There are two ways that unary congtraints are
calculated. The first method represents the patter of a point by its gradient of the neighborhood.
The second method calculates the patter attribute within a circle of a certain radius. Binary
congtraints are more reliable than unary constraints since relative relationships between features
are considered. Actualy it measures the geometric similarity between a candidate line (formed by
a candidate point pair) and a mode line (formed by a model point pair). Thus, attributes like
length and azimuth can be applied.
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a. model interesting

. b. candidate interesting points
points

Figure 3.1 Similarity in point patterns

Point pattern matching based on a neural network may be used for finding corresponding
interesting points (Nasrabadi and Chang 1992).

L ine pattern
Apparently, line patterns have more unary constraints than point patters (e.g. length and azimuth).
Below isalist of binary constraints:

(&) Angleformed by aline pair,
(b) Distance between center points of two lines,
(c) Distance between end points of two lines, and



(d) Length ratio between two lines.

The above binary constraints are invariant to transformation and rotation.

0
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unary cpnstraints
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a. model lines b. candidate lines

Figure 3.2 Similarity in line patterns

Region pattern
Region patterns have more binary constraints than other two types of patterns. Several geometric

constraints describing region similarities are listed below.

(@) Areaof aregion,

(b) Perimeter of aregion,

(c) Fourier descriptors describing the shape of aregion, and
(d) Region deformation.

Other binary constraints that are invariant to transformation and rotation are a distance between

two region centers and the area ratio between two regions.
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Figure 3.3 Similarity in region patterns

3.2 Single Layer Hopfield Neural Network

3.2.1 Fundamental equations

Object recognition by graph matching, also referred to as morphism, is a mapping from a scene
graph to amodel graph. The morphism can be categorized on the basis of the constraints that are
enforced during the mapping as follows. when the mapping is one-to-one and onto, it is an
isomorphism; when it is one-to-one, it is a monomorphism; and when it is many-to-one, it is a

homomorphism.

k  candidate
c|lo|lo|lo|le|a|lo|o|o|e|o

o|o|o|o|o|o|o|O o |o
Model |@ |@|o|o|o|e|a|o|o|o]|e |0
1 c|lc|o|lo|o|e|a|o|o|o]|e |o Candidate ' Model 1
c|lco|lo|lo|]o|jc|ja|jb|]O|O |0 |O "--__l:l
QO |[O|O|O[C|Q |O|OC|[O|C|O "-.III
Model |@ |@|o|o|o]|]e|a|lo|o|o]|e]|e II"I.
2 c|o|lo|j]o|lo|c|ja|ob|o|lo]|o |0 * ool
c|lo|oOo|o alo|o NS
Y] 1) o

Figure 3.4 Neuron states and model-candidate correspondence
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Different values of coefficients A, B, C, D and E in Equation (3.1) apply to various cases of our
tasks. For monomorphism, coefficients B, C, D and E are assigned high values based on the
assumption that one model feature will uniquely match one candidate feature (Figure 3.4). The
fina solution yields a one-to-one mapping. In the case of homomorphism, coefficients B and C
are assigned low vaues (even zero) based on the assumption that one model feature will match
several image candidate features. In this scenario the final solution yields a many-to-one

mapping.

The following is a detailed discussion of equations for single-layer Hopfield neural network. Let
Gy denote both similarity and disparity between model feature pair (i, ]) and candidate image

feature pair (Kk,1). It is then represented as:

Cui :q<+C}| +Qijl' 32
where
1 g‘l 1
Ch=aWnf, (X Vi) (33)
n=1
and
N,
Ciijl :éwzn fnz()ﬁjnaYkm)- (34)
n=1

In the above equationska and szj, represent unary and binary similarity respectively. CL
encodes compatibility between model feature | and candidate feature K, and Qi” encodes
compatibility between the correspondence of the model feature pair (i,]) and that of the

candidate feature pair (k,I) (Figure 3.4). f is similarity-measuring function and weighted by w
that meets the condition

v
ZaVVln +aVV2n =1. (3.5)
=L

n=1



There are three types of measuring functions

a) Sign function

Sign function is a smple function with one parameter q (Figure 3.5).

1L ifjx-y<q

5.6
-1, otherwis (56)

i
f(xy)=i
|

0.5

0 q Ix-yl

Figure 3.5 Sign function

x and y are smilarity measures (such as length of aline) of a candidate feature and model feature,
respectively. The parameter g is sometimes difficult to determine in case the measure selected is

sengitive. A small change of  may alter the recognition result.

b) Linear function
A linear function

[ if|x- y|<a
f=tdx- |- @+b)/@a- b), if a<|x-y<b (3.7)
[o-q if[x- y|>b

has more practical use than sign function in some cases. In addition to its simplicity, it

provides a smoother function in comparison to sign function.
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Figure 3.6 Linear function

The linear function has more practical use than the sign function, and it is very easy to

handle. The disadvantage of the sign function is that its first derivative is not smooth.

¢) Sigmoid function
A sigmoid function

F(% Y,k =- tanh(k(|x- Y- t) (38)

satisfies our decision function requirements appropriately. The shape of the curve near the
threshold is approximately that of the linear function. The curve is generally smooth. Depending
on the parameter k, the first derivative at t could be aso smooth.

0.5

0 [X-yl

-0.5

Figure 3.7 Sigmoid function



Neuron State Output function

For neuron i, if its charge is u that is defined in section 3.3.1, its neuron state output function is

represented as

V= gy) = (39)

l+e-q/T '

T is the “temperature” (an annealing term) that determines the speed and quality of the fina

solution. A very large value of T will cause neuron vaues to be 0.5, while a very small a value
will drive the network to alocal minimum state, or converges very sowly. An annealing process
keepsthe value of T large at the beginning and reduces the T value as iteration progresses. Thisis
important for achieving aglobal minimum state and a fast convergence.

Initidization

The initial values of neuron states can be chosen randomly as described in Lin et a (1991). It
may set the neural network to a local minimum state. As stated above, an annealing process
may overcome this problem. However, a careful selection of initial values may not require

annealing. If G, are calculated and examined, initial neuron states are to be computed as

G/ Gl if §C>wandCy>w
1 s s

Vo=t Gl if §Ch,>wandC}, >0 (3.10)
T s

i
fo if G, <0

§
where S is{k|C;1k >d and W= W, .
=1

Combining matched features

After iterations using homomorphism, each neuron reached its final state V. Those final states

close to 1 yield matches between corresponding candidate image features with model features.
However, there is till a need to put the matched features to form object(s). The following



procedure combines the features under the assumption that there areN features forming an
object.

a) Establish N sets of S ={kM,»1},i=1...N. Each set contains all the candidate features that
matched the corresponding model features.

b) Establish an empty set Q.

C) Set i tobe 1.

d) For each ki S weget m, =V, ki S if Q isempty, otherwise m, = & (C,,+C,,). Find
(i§Q

the feature k, that satisfies "k, T §, m, 2 m, ,add (i k,) to Q.

e) If i=N, one object is recognized and detected, go back to step a); otherwise, i =i+1and go
back to step b).

3.22 Truck Recognition

The task is to recognize trucks moving on the highway from stereo aeria image sequences
(Figure 3.8) using Hopfield neural network described above. Onboard GPS and INS
instruments are used to capture exterior orientation parameters at the time of exposure.

Figure 3.8 AIMS image used for truck recognition
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The image has a dimension of 4096 x 4096 pixels. A strip in lower part of the image is cut,
enlarged and displayed in Figure 3.9. Trucks are obviously visible. To learn properties of the
neural network applied to the truck recognition, we first used the line and region features
digitized from the image when displayed on the screen. In Section 3.4 features automatically
extracted from the image are used.

Figure 3.9 Zoomed portion of Figure 3.8 where trucks are visible

To simplify the recognition problem, we disregard complicated shapes of the front part of
trucks. We focus ourselves on the part of a car that can be simplified as a box. From the
camera, the top of a truck and its shadow are always visible (Figure 3.10). Most sides of the
truck are not visible in the image.

Truck Truack? Truck’

:I Back projected model

Figure 3.10 Simplified truck image features and back projected model
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Figure 3.11 Extracted corner points of truck and model points

Figure 3.11 depicts digitized corner points of the trucks (number 0 — 40) and the six back
projected model points (humber O — 5) describing the top and the shadow. We set parametersin
the energy function of Equation 3.1 asin Table 3.1.

A B C D
Vaue 0.6 0.0 0.0 0.8 0.8

Table 3.1 Parameters in the energy function

We use the following two binary constraints:

Distance between two points, and

Azimuth angle of a straight line formed by two points.
Using sigmoid function in Equation 3.8, we have G =05f(x y) +05f>(x y), where x and y

inf, and f, are the above binary constraint measures.

Table 3.2 gives final states of neurons. Six model points of the back projected truck top and the
shadow are listed in the rows and digitized image points are listed in the columns.

Obvioudly the point patter match with these constraints do not provide good result.



ID of digitized image point Ol 1 |2|3|4(5|6|7|8|9(10|11(12]| 13|14
Neuron state (Matching withmodel point0) [0 O | Ol Ol ol ol ol ol ojoOo|loOfoO]lOf[O]O
Neuron state (Matchingwithmodel point) [0 O | Ol Ol ol ol ol ol oO|oO|lOfO|lOf[O]O
Neuron state (Matchingwithmodel point2) [0 O | Ol Ol ol ol ol ol ojoO|loOfoO|lOf[O]O
Neuron state (Matching withmodel point3) |0 O | O Ol O[O O[Ol Ol O]l O|O|lO| O] O
Neuron state (Matchingwithmodel point4) [0 O [ o[ o[ o[l ol ol O[Ol O|lO|O]lO|O]O
Neuron state (Matchingwithmodel point5) |0l O | Ol Ol Ol O[Ol Ol O] O|lO[O|lOf[O]O

15| 16 | 17| 18| 19| 20( 21| 22| 23| 24| 25| 26| 27| 28| 29
0 0j0j0|O|JO|OfO|OjO|JO|JO|OfOfO
0l 0| 0]01010(0fO0O|OjO|JO|JO|OfOfO
o 0j0j0|j0O|JO|OfO|OjO|JO|JO|OfOfO
o 0j0j0|j0O|JO|OfO|OjO|JO|JO|OfOfO
o 0j0j0|j0O|JO|OfO|OjO|JO|JO|OfOfO
o 0j0j0|j0O|JO|OfO|OjO|JO|JO|OfOfO
ERNEBEEEEEHEBEE NN
0, 0oj0j0O0|J0O|JOfOfOf0O]j0O]O
0 0j0jO0|JO|JOfOfOf0O]jO]O
0 0j0jO0|JO|JOfOfOf0O]jO]O
0 0j0jO0|JO|JOfOfOf0O]jO]O
0 0j0jO0|JO|JOfOfOf0O]jO]O
0 0j0jO0|JO|JOfOfOf0O]jO]O

Table 3.2 Final neuron states using point pattern matching

Line Pattern

Shadows of trucks within an image vary from truck to truck because of severa factors (e.g. pose
and shape of head) that complicated their shape. However, the tops of trucks generaly
approximate a rectangle. Considering that line pattern matching only requires line-wise matching,
we use the four edges of a truck as a model, while leaving other features being taken care of in
region pattern matching. A typica truck model is 15 meters in length, 3.2 meters wide, and 4
meters in height. We hold this configuration fixed during our line pattern recognition task. With
these known values, we back project the model to the current image, which has known interior
and exterior orientation parameters from GPS and INS (Figure 3.12).
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Figure 3.12 Extracted truck line segments and back projected model lines

Here we have one unary constraint:

1) Similarity between length of model edge i and that of candidate line ssgment K.

The applied binary constraints are:
1) Difference of length ratio between model edges (i and ) and candidate line segments (k

and |),
2) Angular difference between model edges (i and j) and candidate line segments (k and 1),
and

3) Difference of end points distance between model edge i and edge | and that between

candidate line segment k and line segment | .

Table 3.3 gives final states of neurons that matches model lines (blue lines marked 0O - 3 in
Figure 3.12) with candidate lines (red lines marked O — 42 in Figure 3.12). Each neuron state
ranges from O to 1 and has a subscript that represents the identifier (ID) of an object (truck top
in this case). For example, v;j=1; means that model line | matches with image line j.
Furthermore, the matched image line is one of the lines forming object with ID 3. Observing
Table 3.3, we know that there are five objects (truck tops) recognized from the scene: object-0
including lines-10, 11, 8, 9 (red lines in Figure 3.3); object-1 including lines-16, 17, 18, 19;
object-2 including lines-12, 13, 14, 15; object-3 including lines-2, 3, 0, 1, and object-4
including lines 6, 7, 4, 5. There are still some neurons with a final state of one that do not from
an doject, for example (36, 0). This is because the neuron (or matched line) does not have a
partner to form an object with.
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Table 3.3 Final neuron states by line pattern matching

Region Pattern

- —— T F — j—

Figure 3.13 Extracted regions and back projected model region

Figure 3.13 shows the extracted regions (in red) from a partial image and two regions (0 and 1)
of the back projected model. To match the model regions with the extracted image regions,
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both unary and binary constraints for region pattern matching are used. The unary constraints
are:

1) Similarity between area of model region i and that of candidate region kK,

2) Similarity between perimeter of model region i and that of candidate k,

3) Similarity between average gray value of model region i and that of candidate k, and

4) Similarity between width-to-length ratio of model region i and that of candidate k as
with(i)/length(i) and with(k)/length(k).

The binary constraints include
1) Difference between the distance from the center point of model region i to that of model

region | and that from candidate region k to candidate region |, and
2) Gray vaue difference between model region | and model region | and that between

candidate region k and candidate region | .

Vdue 0.6 0.0 0.0 0.8 0.8

Table 3.4 Parameters of the energy function used for
region pattern matching

ID of extracted region 0|1|2)|3|4|5| 6| 7| 8] 9]|10| 1113

Neuron state (Matching with model region ) 1 . 1, . 09l ol ol ofloflolololo

Neuron state (Matchingwithmodelregionl) | 0 | O | O | O] O] O | O | O . 1, n 1 1

Table 3.5 Final neuron states by region pattern matching

Given energy function parameters in Table 3.4, Table 3.5 shows the final neuron states of the
region pattern matching. Similar to the result of line pattern matching, there are four objects
(truck - top and shadow) recognized from the scene: Object-O including 1 and 8; object-1
including 0 and 11; object-2 including 2 and 9; and object-3 including 3and 10. Referring back
to Figure 3.3, we see that the recognized region pairs are correct truck tops and their shadows.
Region 4 may be atruck top that has no corresponding shadow. Likewise, region 13 may be the
shadow of atruck. In region pattern matching, there is no strict requirement for the number of
line segments forming a candidate and corresponding model to be the same. However, we may



lose a shape in region pattern recognition that would not otherwise be lost in line pattern
recognition. For example, candidate region 4 actualy is the top of a truck but we can not
ascertain this by region pattern methods. Given this reality, we have adopted a multi-layer
Hopfield neural network that takes advantage of both line pattern and region recognition
algorithms in a single network.

3.3 Multilayer Hopfield Neural Network

The above object recognition is based on severa separate single layer neural networks.
However, the interrelationship between line pattern recognition and region pattern recognition
adds more constraints and thus achieves better results. Our objective is to utilize a two-layer
network for truck recognition. The interrelationship is based on the following readlities:

1) Thetop of atruck shown in the imageis nearly rectangular in shape, while its shadow has a
more complex shape due to the sun light direction and truck head shape;

2) The line pattern recognition could yield a match for the top, but fail in shadow verification,
which is a very important clue; and

3) The region pattern recognition considers the top and shadow at the same time, but it does
not take full advantages of line patterns.

Connections among neurons in each single layer are fully dependent on geometric and
photogrammetric constraints and are fixed before the initial iteration. During iterations the

interconnections between the two layers vary. Let L, denote layer 1, which is a line pattern

layer, and L, denote layer 2, which is aregion pattern layer. We thus have an energy function
E=E(L)+E(L). (311)

where E/(L)=E(L,L)+E,(L.L,) and E(L)=E,(L,L)+EyL.L). EyL,L) and

E22(L2, L2) are same as the terms in Equation (3.1). The energy relevant to interlayers are

.2 1o
E.=a, ¢ __:é é é é Blzil"lizszilklvizk2 (312
e 20, « i, &
) 16
E21 =a, g'e _gé. é. é. é. BZliz'<zi1|<1vi2k2Vi1k1 . B13
e Zﬂiz ko iy kg



Bk, iSaconnectivity variable from neuron (il,kl) in layer L, toneuron (iz,kz) in layer L,.
B*«ikis a smilar term. They change dynamically during iterations. We aso
have B ik, ¢ B? % because contributions from one layer to another layer are non-symmetric

(Figure 3.14). Using energy equation (3.11), we can recognize the trucks when a global

minimized energy value is achieved.

a9 0 9| O

Region pattern

Line pattern

Figure 3.14 Two layer (line and region) Hopfield neural network

The connectivity term

' 2 &2, - 29if Line ki Area k,andi, =0
i e 29
B =1- 2 V2, - %gif Line kT Area k,andi, =1 (3.14)
1 e (%]
0 otherwise

contributes when a model region is a truck top and a candidate line belongs to a candidate

region or when the model region is atruck shadow and the candidate line belongs to candidate

region. Similarly, B4, is defined as



2 &1, - ifLine k1 Area kandi, =0
- 2g

——

B ik,

-2 @Jm - %Qif LinekT Area k,andi, =1 (3.15)
e 2}

0 otherwise

—— — —

3.3.1 Process of the two layer Hopfield neural network

The following describes the process of the two layer Hopfield neural network:

Step 1. Calculate connectivity parameters Cl,, of layer 1and C2, of layer 2.
Step 2. Set theinitial states V1, of layer 1and V2, of layer 2 using equation (3.11)

respectively.
Step 3. Obtain Bk, Using equation (3.14).
Step 4. Update the values of ul,, and V1,

for (i,=0; i, < my; ij++)

for (k, =0; k,< n; k ++)
uliy =ul, +1(K, +2* K, +3*K;+K,)

where K, =h" f(ul,)=h" (AQ & CL,;V1-B@V1, - D-Ca VL, -
il I

11k,

o o o O
D(a \/ljk1 - l) - EaV1ik1 - ﬂla- a Bi1k1i2kzv 2i2k2)

j itk bk
K,=h" f(ul, +3K,)
Ky=h" f(ul, +31K,)
K,=h" f(ul, +K,)

Step 6. Compute V13 = g(ul;y).

Step 7. Obtain B? 4,k using equation (3.15).

Step 8. Update the values of u2,, and V2,

for (i,=0; i, < my; i,++)



for (k, =0; k, < n,; k,++)

uz2i =u2!

ioka Ko

+2(K, +2*K, +3*K; +K,)

where K, =h” f(u2§2k2) =h’ (Aé é Czizkzjlvzﬁl - B(éV2i2| -1)- CéV2i2| -
' |

il 11ky

o o o O
D@ V2, - - EAV2, - 1,8 & ByuyVly)

j ke ik
K,=h" f@uz, +3K)
K;=h" f(u2, +iK,)
s=h" f (u2it2k2 +K,)
Step 9. Update: V2, =g(u2;).).

Step 10. If convergence, then stop, otherwise go back to step 3.

3.3.2 Result using two layer Hopfield neural network

ID of extracted line oO(1(2](3
Neuron state (Matching with mode! line 0) 0O 13 0
Neuron state (Matching with model line 1) ofO] O 13
Neuron state (Matching with model line 2) 13 ofo] O
Neuron state (Matching with model line3) | Q 13 0ol O
15(16| 17| 18| 19| 20( 21| 22| 23| 24| 25| 26| 27| 28| 29
000]100000000000
000]10000000000
0]10000000000000
0]1000000000000
rPrPYY———————
30|31(32|33(34|35|36|37|38(39|40(41]| 42
ofojofojojo|j0j0O0f0jJ0Of0O]0OfO
ofojofojojo|j0j0O0f0OjJ0Of0O]0O]|O
ofojofojojo|j0j0O0f0OjJ0Of0O]0O]|O
ofojofojojo|j0j0O0f0OjJ0Of0O]0O]|O

Table 3.6 Final neuron states of the line layer by atwo-layer network
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Table 3.6 and 3.7 list the results of combined line pattern (layer 1) and region pattern (layer 2)
matching by the two layer Hopfield neural network. Comparing to Table 3.3 and Table 3.5
where line and region were matched separately, no change has occurred. However, the speed of
convergence is accelerated because line patterns strengthen the certainty of region patterns to
which these lines belong, and vice versa. In addition, the multilayer approach should provide
more robust results because of constraints between layers. This advantage will be demonstrated

in the following case where the extracted lines are from an automatic procedure.

ID of extracted region 0| 12| 34| 5| 6| 7| 8| 9]|10| 11|13

Neuron state (Matching with mode! region 0) 1 n 1, n 1l olo]lololo]ol o] o

Neuron state (Matching with model region1) [ Q 0 0 0 0 0 0 1 . 12 n ]_1 1

Table 3.7 Final neuron states of the region layer by atwo-layer network

3.4 Experiment Using Detected Polygons and Lines

So far the input lines and regions were all manually digitized from the screen. To automate the
feature extraction procedure and check the robustness of the recognition agorithms, we will
use the lines and polygons extracted from a strip of the image (Figure 3.15). To match the line
pattern, we have four model line segments and 5,000 candidate line segment which require

4” 5000" 4° 5000= 400M memory units to store matrix C,;, 4 5000=20000 memory

units to store a matrix of U, ,and 4" 5000 = 20000 memory units to store matrix V. In
addition, for region pattern recognition, we have two model regions (top and shadow). There
are 500 candidate polygons that require 2° 500" 2” 500 =1MB memory units to store matrix
Ciqi» 27 500=1000 memory units to store matrix U;,,and 2" 500 = 1000 memory units to

store matrix V,, . To apply the two-layer Hopfield neural network we need at least 40.10442M

I
memory units. Also, because the computation complexity in each iteration is O(n*m?) , the

time needed for all iterations is very significant.

Due to both space and time limitations, we define image subspaces. In each such image

subspace there is possibly only truck inside and a neura network is established for truck



recognition. It is to note that each truck should have at least a top which is nearly a rectangle
and has a bright average gray value (say greater than 125). Suppose that G,4(i) is the average
gray value of i-th polygon and G,,4(Img) is the average gray value of all polygons of the image.
The system will check each polygon. If for polygon i we have Gy4(i)> Gyg(Img), the polygon
isabright polygon and is a candidate of the top of atruck. A window is defined with the center
a the polygon centroid. The window size is chosen in such a way that it is large enough to
include a truck and its shadow, but small enough to exclude a second truck. This window sizeis
held fixed through out the procedure. Furthermore, the back-projected model does not change
appreciably from place to place. Under the above circumstances, it is clear that only one truck
would be in the window. Therefore, we apply monomorphism (one-to-one mapping) in the
matching process. This makes the coefficients B and C in the energy function significant values
(0.6), while other coefficients are maintained the same.

A two layer Hopfield neural network was used to recognize the trucks among the extracted
lines and polygons in Figure 3.15. According to final neuron states, there are two categories of
features that may match the trucks.

1) Two polygons match with the model, one with the truck top and the other with the shadow of
the model. The edges of the polygon that matches with the model top match with those of the
mode top.

(a) Part | of automatically extracted lines and polygons
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(b) Part I of automatically extracted lines and polygons

(c) Part 111 of automatically extracted lines and polygons



(d) Part 1V of automatically extracted lines and polygons

Figure 3.15 (a) Part I, (b) Part Il, (c) Part Il and (d) Part 1V of automatically extracted lines
and polygons overlaid on the image at the original scale

I1) In the region pattern layer there is no polygon pairs matching with the top and shadow of the
model. However, there are polygon edges matching with those of the modd top in the line
pattern layer. This may be due to aloss of shadow information caused, for example, by a small

gray vaue difference or occlusion.

Figure 3.16 A candidate truck that matches with both region pattern model and line pattern model

Figure 3.17 shows a truck in the upper right of Figure 3.18 (c). The extracted lines and polygons
are of very high quality. Polygon 74 describes the top of the truck and polygon 265 describes its
shadow. Table 3.7 is the computed relevant neuron states of the truck extracted from single layer
networks and a two layer network. Obvioudly it is a category | match.

51



Single layer Hopfield neural network Two layer Hopfield neural network
Line pattern Line pattern layer
Model line ID Model line ID
Region Id (line ID) 0 1 2 3 0 1 2 3
74 (296) 0.000 0.000 1.000 0.000 0.028 0.000 1.000 0.000
74(297) 0.000 0.000 0.000 1.000 0.000 0.031 0.000 1.000
74 (298) 1.000 0.000 0.000 0.000 1.000 0.000 0.028 0.000
74 (299) 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.031
Region pattern Region pattern layer
Model region ID Model region ID
Region ID 0 1 0 1
74 1.000 0.002 1.000 0.002
265 0.000 1.000 0.000 1.000

Table 3.7 Category | match, an example from single layer networks and a two-layer network

Figure 3.17 A candidate truck that matches with line pattern model only

The truck in Figure 3.17 lies in the upper left of Figure 3.18 (b). Table 3.9 is the computed
relevant neuron states of the same truck. The edges of polygon 41 match with the model in the
line pattern layer. But the polygon does not match with the shadow of the model in the region
pattern layer. The two-layer neural network is enhanced by the line layer, which makes neural
states of the region pattern layer higher than those of a single layer because the four line segments
of the polygon match the model lines in the line pattern layer very well. Thisis an example of a
category 1l match.

52




Single layer Hopfield neural network Two layer Hopfield neural network
Line pattern Line pattern layer
Model line 1D Model line D
Region Id (line D) 0 1 2 3 0 1 2 3
41 (164) 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
41 (165) 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000
41 (166) 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000
41 (167) 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.000
Region pattern Region pattern layer
Model region ID Model region ID
Region Id 0 1 0 1
218 0.968 0.344 1.000 0.245

Table 3.9 Category || match, an example from single layer networks and a two-layer network

Figure 3.18 illustrates al recognized trucks including category | and Il in yellow lines.

(a) Recognized polygonsin Part | of theimage strip




(c) Recognized polygonsin Part I11 of the image strip



(d) Recognized polygonsin Part IV of the image strip
Figure 3.18 Recognized trucks (yellow lines) in four parts of Figure 3.15

3.5 Test on Position and Ve ocity Calculation

For afeature that is fixed on the ground, two images are needed to calculate its 3D coordinates,
though more photographs could improve coordinate accuracy. In the case of truck recognition
and location some additional problems occur because the trucks move with varying velocity
and direction. Neither the truck’s velocity nor position are available to us. The two collinear

equations from one image are

Cplu(X - Xo)ra,(Y-Y)*tas(Z- Z)
Ay (X - Xo)+agn(Y-Y)+agn(Z- Z)

X =

- f a21(x - Xc) +a22(Y - Yc) +a23(z - Zc) .
Ay (X - X)) +ag (Y- Y,)+au(Z- Z;)

y= (3.16)

The exterior orientation parameters and interior orientation parameters are known from GPS
and INS aboard the aircraft and system calibration (Li 1998). We have three unknowns ( X,Y,Z)
in two equations. In addition, a DTM isintroduced to assistant in estimating 3D coordinates of

the moving trucks. To estimate the approximate position of atruck, the calculation is performed
as following:



1) Obtaining the minimum and maximum elevation values in the area of consideration,

2) Adding the known average truck height to these two elevations to get (Zmin, Zmax) s

3) Using the image coordinates (X,Y), (ZminZmay and Equation 3.16 to compute two sets of 3-
D coordinates (Xmin,Y minZmin) @d (Xmax, Y maxZ me)

Using (Xmin,Y min) @nd (Xmax Y may) t0 define a bounding region in the DTM which should
contain the trucks, and

4)

5) Back-projecting the grid points of the DTM within the above region to the image space to

get (X,Y)vack t0 Obtain the 3D coordinates (X,Y,Z) of the truck image image (Xx,y) as the
grid point whose (X,Y)pack 1S Closest to (X,y).

Assume that atruck moves with afixed velocity within a short exposure interval (for example 7
seconds). Since the truck’s elevation does not change appreciably during this interval, we use Z
values from the DTM. At this time we manually recognized corresponding trucks in the images
in light of the difficulty caused by sometimes varying velocity of the trucks. Efforts will be
made in the future to automate this process. Equations from three images are:

f A1(Xo- Xe)+ap(Vo- Yo) +aus(Zo- Zo)
ag1(Xo - X¢) +ag(Yo- Yo)+ass(Zo- Zc)

o = - f 2a(Xo Xo) + (Yo~ Vo) * 85(Zo - Zo)
a31(Xg- X¢) +ag(Yy - Ye)tags(Zo- Ze)

f af(Xo+(t- o) Vi- X +ah(Yo+(ti-to) Vy - YO+ak(Z - 29

Y ati(Xe +(t- to) Vi XO+ab(Yo+ (- o)V, - YO +adi(Z - 29

- ag(Xo+ (- tg)" V- X§) +ah(Yo+ (- to)" Vy - YO +ag(Z, - 29

T ah(Xo (- t) V- X9 +ab(Yo+ (- to) V, - YO+ak(Z - Z9)

— ot af(Xo+(ta-to) " Vy- XG+afi(Yo+(t2- to)" Vy - YG+ak(Z, - Z§
2 i (Xo+ (- to) Vi~ X®+a®(Yo+ (- o)V, - Y§+al(Z, - 28

¢ afi(Xo+(tr - to)" V- XG+ah(Yo+(tr- to) Vy - YG+ak(Z, - ZH
afi(Xo+(tz- to)" Vy- XG+ah(Yo+(tz- to)" Vy- YG+ak(Z,- 29 (3.17)

, =

In the above equations there are four unknowns (X,,Y,,V,.,V,) in six equations, which could be

solved by the Least Sguare Method (LSM). Actudly a bundle adjustment is performed to

estimate al the unknowns together. Table 3.10 gives exterior orientation parameters of three
images used in our example.



Photo (1185) Photo (1187) Photo (1189)
Exposure | x_(m) 512538.071 512628.474 512739.333
center - ¥ m) 216637.932 216311.665 215916.059
Cc
Z_ (m) 1364.956 1363.102 1362.703
a, 0.999288 0.999720 0.999847
a, -0.016355 0.015189 0.003515
, a -0.034003 -0.018134 0.017119
Rotation 8
Matrix a, 0.014087 -0.015777 -0.002904
a, 0.997726 0.999340 0.999362
a. -0.065914 -0.032730 -0.035598
a, 0.035004 0.017625 -0.017233
a, 0.065388 0.033006 0.035543
a, 0.997246 0.999300 0.999220

Table 3.10 Exterior orientation parameters of three images used

Table 3.11 illustrates the results of location and velocity estimation. The image coordinates given

are those of the center of the top rectangle in each image. The 3-D coordinates are the truck

location (center of the top) at the times of imaging.

It should be noted from Table 3.11 that the average speed of all four tracks is about 2 meters per
second or 7.2 kilometers per hour. Thisis also verified by interpreting the three images in Figure

3.19 where vehicles in the direction of extracted trucks have small distances between them,

indicating a traffic jam. In the opposite direction, distances between vehicles are significantly

larger, signaling normal traffic.
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Photo (1185) Photo (1187) Photo (1189) Velocity (m/s)
Image coordinates (3208, 3572) (2803, 2712) (2295, 1417)
Truck 3D X (M) 512861.521 512848.114 512831.832 Vy = -2.005
0 coordinates [y (m) 216079.517 216077.424 216074.883 Vy =-0.327
Z(m) 327.500 327.556 327.836
Image coordinates (3259, 3568) (2855, 2710) (2346, 1414)
Truck 3D X (m) 512877.599 512864.102 512847.711 Vy = -2.005
1 coordinates  [Y (m) 216080.780 216078.539 216075.818 Vy =-0.327
Z (m) 327.629 327.219 327.667
Image coordinates (3261, 3580) (2856, 2721) (2348, 1425)
Truck 3D X (m) 512878.333 512864.767 512848.292 Vy = -2.001
2 coordinates  [Y (m) 216076.670 216074.804 216072.538 Vy =-0.275
Z(m) 327.110 326.728 327.556
Image coordinates (3209, 3582) (2805, 2723) (2295, 1429)
Truck 3D X (m) 512862.110 512848513 512831.999 Vy = -1.990
3 coordinates [y (m) 216076.133 216073.916 216071.224 Vy =-0.330
Z (m) 327.260 327.468 327.815
Average velocity Vy =-2.003
V, = -0.315

Table 3.11 Estimated truck location and velocity

To verify the estimated truck location and velocity, we choose one truck and take its positions at

three imaging epochs and back project the truck onto three images as polygon O, 1, and 2
respectively. In the first image (photo 11885) polygon O matches the truck. Polygon 1 and 2
match the truck in the second and third image respectively. The back projected polygons show the
truck’ s trgjectory also.




4.

(a) Photo 1185 (b) Photo 1187 (c) Photo 1189
Figure 3.19 Back projection of one truck with velocity calculated at different times

Conclusions

Overal, we have made a significant progress in this project year, in both automatic feature

extraction from AIMS imagery and in automatic object recognition using neural networks. The

following conclusions can be drawn from this project year’ s results:

1

2
3

4)

6)

An integrated edge detector combining first and second order derivatives has been developed
and vaidated using AIMS data,

Unique GPSINS and DEM information has been used to assist in feature detection,

A st of tools such as shadow analysis, anti-parallel segments, morphological transformation,
and snake deformation models were used to successfully extract road networks,

Object models, DEM, and photogrammetric constraints were applied in neural networks to
produce robust matching results,

A two layer Hopfield neural network was applied in truck recognition to improve interlayer
relationship (lines and polygons) and to enhance compuitational efficiency, and

A test on estimation of location and velocity of moving objects (trucks) from AIMS imagery
is carried out. It isto note that this potential will open a very unique application in dynamic
monitoring if the model can be improved.

With the above results, we are very confident that georeferenced imagery such as AIMS can be

used to generate traditional mapping products such as line maps, orthophotos, DEM, and other

digita databases much more automatically and efficiently. There are automatic operations that

can only be implemented using such data sets. Furthermore, this research forms a basis for

conducting similar important research using upcoming one-meter resolution satellite imagery.
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