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Object Recognition from AIMS Data Using Neural Networks 

 

1. Introduction 
 

AIMS (Airborne Integrated Mapping System), a fully digital and real-time airborne mapping 

system, has been developed at the OSU Center for Mapping (CFM). A fundamental task of AIMS 

is to understand geo-referenced mapping images for automatic construction of 3-D spatial 

databases. Based on successful research on automatic mobile mapping data processing in the 

previous project year (Li et al. 1997), efforts have been made this year to automate procedures for 

image feature extraction and for recognizing and locating objects, considering unique geometric 

constraints provided by GPS and INS data. Specific tasks completed include: 

 

• Studying relationships between image features, photogrammetric models, and knowledge 

of objects; 

• Integrating edges, region boundaries and DEM slope-aspect information in order to group 

and classify extracted features; 

• Developing a knowledge based feature extraction system by combining several different 

approaches; 

• Developing a Multilayer Hopfield Network; and 

• Applying the neural network for truck recognition and location, as well as velocity 

estimation. 

 

Two significant breakthroughs in this project year are:  

 

• Development of algorithms that build vector lines from AIMS images by fully utilizing 

image feature context, geomorphologic information, camera georeferencing geometry, 

terrain models, and knowledge about the objects to be extracted.  Experiments in extraction 

of  roads, houses and trucks showed very promising results; and 

• Development of an improved two-layer Hopfield neural network that accepts extracted 

vector lines from AIMS imagery and recognizes trucks on freeways. Location and velocity 

of the recognized trucks are established in a subsequent process.  
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The overall success in this project and a related project supported by Sea-Grant/NOAA for 

geometric modeling of one-meter resolution satellite imagery (Li 1998, Li et al. 1998a) builds a 

basis for further research on object recognition to support extended tasks such as automatic 

derivation of large-scale spatial information from one-meter resolution satellite imagery. 

 

2. Automatic Feature Extraction from AIMS Imagery 

 

2.1 AIMS Imagery  
 

A set of AIMS images were taken in Madison County, Ohio with a flying height of about 1.3 

km. A camera calibration was performed so that lens distortion and interior orientation 

parameters are available. Ground Control Points (GCPs) in the area of interest were surveyed 

using GPS.   Figure 2.1 shows a typical AIMS image. 

 

 
 

Figure 2.1 An example of AIMS imagery 
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Roads are one of the major features in the images. In addition, farmland varies in its image 

texture. In general, man-made objects such as roads, buildings and vehicles can be seen at the 

original resolution. Shadows provide additional information for most man-made objects. 

 

We began our study by extracting edges of features based on change of pixel intensities. From 

the extracted edges, seeds are selected and linked together giving consideration to geometric 

constraints. Next, roads of specific width are constructed based on the model of anti-parallel 

lines. Finally, objects with height dimension such as houses and tracks are extracted and 

classified through shadow analysis. 

 

2.2 Feature Extraction from Aerial Imagery 
 

Feature extraction is an area of active research in computer vision. In the past, feature 

extraction has been divided into several components and stages.  Examples include edge 

detection, contour derivation, and shape modeling. The divisions were not only based on error 

modeling alone, but also considered other constraints. Later models, such as the deformable 

contour model (Kass et al. 1987), treated these problems in a general unified manner. However, 

no criteria exist to test models and validate parameters. 

 
Digital Mapping Laboratory of Carnegie Mellon University (CMU) attempted to combine all 

available image, scene, and domain knowledge in their feature extraction methods. For 

example, they used the vanishing point technique for building detection, and they incorporated 

automatic feature extraction and stereo matching into a semi-automatic system (Mckeown et al. 

1996). In another study (Gruen and Li 1996), a semi-automatic method for linear-feature 

extraction from digital images was presented. The procedure combined human identification of 

features with high precision line extraction performed by a computer for GIS data capture. 

 
In an early study, McKeown (1990) specified four topics of primary importance in image 

understanding: building detection, road extraction, stereo analysis through matching, and 

knowledge-based scene analysis. Although described as independent problem domains, it is 

clear that results from each topic must be integrated in order to automate the cartographic 

feature extraction process. Generally, local edge strength and direction are computed first 

followed by the selection of local maximums. Finally, edges are linked in order to form single -

pixel-wide lines. In our method, we improve edge detection by implementing a strategy that 
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uses multiple resolution line extraction (from coarse to fine) and geometric constraints from 

GPS and INS in a multi-level approach. 

 

2.3 Development of an Integrated Algorithm for AIMS Imagery Feature Extraction  

 
 

 

Figure 2.2 Program flowchart 
 

Edges carry most of the information in an image and are relatively unaffected by changes in 

image contrast and radiometry.  Therefore, our algorithm begins with multi-resolution edge 

detection in an AIMS image. Figure 2.2 depicts the information flow and methods used in data 

processing. Each major component in the figure is discussed in the following sections. The 

system is implemented using MS Visual C++ on a Pentium II machine. 

 

2.3.1 A Compound Operator for Complex Edge Detection  

 
Marr (1982) first applied different sizes of edge operators on an image to obtain a description 

of signal changes at different scales. This is called multi-scale or multi-resolution edge 

detection. Marr also suggested that zero-crossings over several scales are physically significant. 

Additionally, Marr and Hildrith (1980) have proposed a Laplacian of Gaussian (LoG) edge 

detection operator in which Gaussian-shaped smoothing is performed prior to the application of 
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a Laplacian operator. Although the method is well-behaved (Witkin 1983, Yuille and Poggio 

1983, Lu and Jain 1989, 1992), high frequency noise and over-circular-contour spurious noise 

cause poor results. Another well-known gradient-operator is the Derivative of Gaussian (Drog). 

In this operator Gaussian-shaped smoothing is followed by differentiation. The so-called 

Canny’s operator (Canny 1986) is based on an analytical model for step-edge and white 

Gaussian noise. In describing his operator, Canny placed the following criteria  on edge 

detection: good detection, good localization and single response. His operator yields high 

performance in simple  scene analysis, but details of implementation vary in the establishment 

of gradient direction, suppression of edge noise in neighborhood edges and directional gradient.    

 
In our study, we combine LoG and Drog operators into a compound edge detector to take 

advantages of information from second and first order derivatives. Edges in the image are 

selected by both zero-crossing of LoG and those above the adaptive threshold of Drog. We use 

multi-resolution edge detection for complex AIMS images. With small-scale Gausian-filtered 

(small sigma) images, our operator may be, to some extent, sensitive to noise, but it provides us 

with fine changes in intensity details. Further, the operator provides coarse intensity change 

information with large-scale Gausian-filtered images. The adaptive threshold of the Drog 

operation is followed to avoid over-circular-contour spurious noise of LoG. In other words, 

zero-crossing of LoG is the basis for comparison with the Drog operator result when 

identifying edges. Thus, the interaction between these two operators acts to eliminate fine scale 

noise caused by separate events at different scales. Mathematically, we have  

 

),(),(
11

yxHyxFG σσ ∗=          (2.1) 

),(),(
22

yxHyxFG σσ ∗=         (2.2) 

 

where F(x,y) represents the imagery function,∗ denotes convolution operation, ( )yxH ,  represents 

Laplacian of Gaussian function, 1σ  and 2σ  are scale parameters ( 21 σσ < ), and σG is the zero-
crossing of LoG operation.  
 
Additionally, Drog operations with the constraint of σG are 
 

111
);,(),( σσσ GyxTyxFD ∗=        (2.3) 

212
);,(),( σσσ GyxTyxFD ∗=        (2.4) 

 
where ( )yxT ,  represents the derivative of Gaussian.  
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Thus, the edge detection works at two different scales. One for extracting the raw shape of an 

object, called initial resolution and the other for extracting the exact shape of the object and for 

distinguishing it from other similar looking objects. This is implemented by defining an initial 

scale 1σ  based on the Canny’s optimal edge detector criteria  with a corresponding window size. 

A refined scale 2σ  is chosen in order to increase edge detection details. Edges detected at the 

initial resolution are intensified by edges detected at the refined resolution, while the later 

avoids spurious noise by intersecting the results from the initial scale.  

 
2.3.2 Region and Morphology Based Image Segmentation through a Multi-level 

Threshold  
 

The method introduced above is capable of detect edges representing objects such as roads and 

other linear features. On the other hand, objects of reasonable uniform brightness against a 

background of variable brightness, for example, houses and trucks can be detected by image 

segmentation that is usually the division of the image into regions having similar attributes. The 

most basic attribute for segmentation is image amplitude (luminance for a monochrome image, 

and color components for a color image). Image edges and textures are also valid attributes for 

segmentation. In our study, we use both image amplitude and image texture to delineate region 

boundaries.  

 

The basic task of luminance threshold selection is to determine a threshold value that falls at 

the minimum point of the histogram, i.e., between its bimodal peaks (Pratt 1991). It is proven 

in our study that, due to the complexity of aerial imagery, the segmentation could not be 

finished in one step. Instead, a multi-level threshold method was used to determine a different 

threshold at each step. The threshold of a previous step was adopted if and only if the 

luminance histogram formed bimodal peaks. A parabola is used at both of the histogram peaks 

to model a curve segment, and a threshold is selected at the intersection of the two parabolas. 

The steps of the multi-level threshold procedure is as follows: 

 

1) Set i=0 to initialize arrays ]64[0A  and ]64[1A , and set the minimum luminance to ]0[0A  = 0, 

and the maximum luminance to ]0[1A  = 255. 
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2) Set a series of array ]2/64[ jA  and compute their values as the number of pixels with the 

gray value between jiAiAiA 2*64/)][][(][ 010 −+  and 1
010 2*64/)][][(][ +−+ jiAiAiA , 

j=0,1,… j2/64 . 

3) Calculate the histogram of luminance distribution within the image area corresponding to i 

(if i equals 0, the entire image is represented; otherwise i represents a portion of the image). 

4) If the histogram has no bimodal peaks, discard the mark on the area and set all pixel gray 

values to j2*64  if it is marked as “+”, or to 255- j2*64  if it is marked as “-”. Then go to 

step 6. If the histogram has bimodal peaks, place a parabola at each peak, and use the 

intersection of the parabolas to segment the image area into two parts and determine the 

threshold. Set a “+” mark on the segmented image area having a gray value larger than the 

threshold, and set a “-” mark on the area with a gray value lower than the threshold. 

5) i++; if the area is marked “+”, then 2/)]1[]1[(]1[][ 0100 −−−+−= iAiAiAiA  and 

]1[][ 00 −= iAiA ; if the area is marked “-”, then 2/)]1[]1[(]1[][ 0101 −−−+−= iAiAiAiA  and 

]1[][ 00 −= iAiA .   

6) Within one of marked image areas, repeat steps 3 and 4.  

7) If there are still marked areas, repeat steps 2 through 6 wit h corresponding level i; 

otherwise go to 8. 

8) End. 

 
Secondly, we delineate region boundaries through texture features. Although texture is a 

valuable feature for image segmentation, putting this proposition to practice, however, has been 

hindered by a lack of reliable and computationally efficient means to measure texture (Haralick 

and Shapiro 1992). In fact, texture on one hand appears as structure and at the same time has a 

statistical property. Effective textural classifiers should address both of these properties. In our 

study, we use a morphological concept, granulometric measure, to extract texture feature on the 

detected edges. 

 

Since edges belong to a line type, the structure elements for texture classification consist of line 

segments. In a 3 x 3 window, four directional structure element are formed as: 
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Suppose we have )( dilationstimesnEEEnE iiii Λ⊕⊕= , where ⊕ represents the dilation 

operation.  The spectrum of the edge relative to the structure element iE  can be acquired as: 

 

)(
)(

XA
nEXA

SPEM iΘ
=          (2.5)  

Where )(•A  represents area calculation and Θ represents erosion operation. The size of the 

structure element is changed in order to iterate each transformation. Spectrum relative to size n 

describes statistic distribution of edge relative to structure element iE . Texture features belonging 

to different areas are distinguished by a large difference in relative statistical distribution of 

structure elements. In order to classify each pixel into different texture areas, the area of each 

unique texture feature is estimated, and then centered at each pixel around the same area, the 

spectrum are calculated again. Those with high spectrum pixels are classified into a region with 

the same structure as selected structure elements. 

 

In order to reduce the complexity of feature extraction, image segmentation is used to assist in 

edge analysis. The salient segmented regions are detected, and their boundaries are used as a 

condition for edge selection and linking as explained in the following steps.  
 
2.3.3 Robust Edge Selection and Linking  
 
Morphological edge selection and edge thinning 

So far, the detected edges are still discrete edge points. They are to be aggregated and linked to 

form explicit edges/lines. First, the detected edges and boundaries may be of varying width 

(one to several pixels). A morphological thinning transformation thins detected edges to one 

pixel width (Serra 1982). The transformation is iterated several times, corresponding to the 

length of the selected segment. Then, segments with length less than a selected threshold are 

deleted, while segments with length larger than the threshold are preserved by conditional 

dilation. The procedure for morphological edge selection can be mathematically expressed as: 

 

7,1,0},{ Λ=Ο=′ iLXX i        (2.6)                

7,1,0,};{}){( Λ=⊕Ο′=′′ iXEEXX ii        (2.7) 
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where Ο  represents the morphological thinning transformation, with structure elements 
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Conditional edge aggregation  

Under the refined resolution condition, the edge segments selected at the initial resolution are 

expanded according to a so-called end-point conditional dilation. There are three steps in each 

transformation iteration. First, the end points are searched through a hit-or-miss transformation; 

next, the selected end points are expanded in a nearby image window (3 x 3); and finally, the 

expanded pixels, with intersection of edges at the refined resolution, are combined with the 

input edges. The procedure for conditional edge aggregation can be mathematically expressed 

as: 

 

2

7

0
1 };{)( XEEXX ii

i

′′⊕⊗′′=′′′
=

)
Υ         (2.8)                                                                                         

                                                                                

where 1X′ and 2X ′  represents selected edges at the initial and the refined resolutions 

respectively, ⊗ represents the morphological hit-or-miss transformation, and the structure 

elements  iE
)

correspond to iE  as 

 

4,1,7,,1,0

010

000
000

πrotatesclockwislyplusiiEi Λ
)

== . 
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Local edge linking 

Local edges are selected within a small window (e.g. 3 x 3 or 5 x 5) in the image. If there is 

only a pair of end points in the window, connect them directly. If there are more than two 

points, the pair of end points with the same gradient direction and minimum interval is linked. 

The end points are acquired through morphological hit-or-miss transformation with the 

structure element Ei
, as show above. It is desired to avoid the time consuming task of point-to-

point comparison for end-point match determination. Our method performs a simultaneous 

dilation of all deleted end points in the direction of the contour (perpendicular to the gradient). 

Dilation is performed until each end point meets another end point moving in the same 

direction. At this time dilation ceases.  

 

Curve fitting for edge linking 

If a priori information about the expected shapes of objects is available (e.g. an expected 

rectangle for a truck or house), fitting may be carried out directly based on the desired shape. A 

simple piecewise linear curve-fitting procedure is the “iterative end points fit” (Duda and Hart 

1973). In the first stage of the algorithm, end points are connected through a straight line. The 

point of greatest departure from the straight line is examined. If the separation of this point is 

too large, the point becomes an anchor point for two straight line-segments. The procedure then 

repeats till the data points are well fitted by line segments.  

 

However, the seemingly simple algorithm is complicated by the necessity to determine anchor 

points. Any new anchor point may generate a need for two additional anchor points, each 

within two separated segments. We use a “first-in-last-out” stack algorithm to handle anchor 

point selection. The algorithm is described as follows. 

 

1) Define a minimum departure which determines an anchor point, say λ,  

2) Set a first-in-last-out stack (STK1), then sequentially push all the points from the first end 

point (marked as A) to the second end point (marked as B), set two more first-in-last-out 

stacks (STK2 and STK3), and mark STK2 as “-”,  

3) Push point B into STK3, and then push point A into STK3,  

4) Pop two end points A and B from STK3. If STK3 is NULL, go to step h, 

5) Pop end point (marked as C) from STK1. If C==B go to step g, 
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6) Calculate the distance d from point C to the line AB. If d >λ, push point B into STK3, and 

then push point C into STK3, mark STK2 as “+”;  iterative pop point from STK2, and push 

the point into STK1 until STK2 is NULL, go to step c. Else, push point C into STK2, 

iterative continue with step e , 

7) If STK2 marked “-”,  record point A and point C, iterative pop point from STK2 until 

STK2 is NULL, go to step d; else push point B into STK1, let B==C, iterative pop point 

from STK2, and push the point into STK1 until STK2 is NULL, go to step e, and 

8) Discard STK1, STK2 and STK3, then End. 

 

Hough transformation for edge linking 

Hough transformation is mainly used here for linking edge pixels of straight lines. It in volves 

transformation of a line from Cartesian coordinate space to polar coordinate space, in which, 

the transformed line is simply a point at coordinates ( )θρ, . A family of lines passing through a 

common point maps into the connected set of points. The main advantage of Hough transform 

is that it is relatively unaffected by gaps in curves and by noise. For the problem of straight-line 

detection, Hough technique organizes points into straight lines by considering all possible 

straight lines. The following is an algorithm of line detection with the Hough transformation. 

 

1) Define the parameter space between approximate maximum and minimum values for c and 

m, 

2) Form an accumulative array A(c,m) whose elements are initially zero, 

3) For each point (x,y) in a gradient image, if  the strength of the gradient exceeds a threshold, 

increment all points in the accumulative array along the corresponding line (i.e. A(c,m):= 

A(c,m) + 1, for m and c satisfying c = -mx+y), 

4) The local maximum values in the accumulative array now correspond to collinear points in 

the image. The values themselves provide a measure of the number of points on the line. 

 

In practice, there are two key points in this algorithm. One is in choosing the size of the array; 

the other is in determining a threshold to form or exclude corresponding lines. In our study, we 

base the size of the array on the image size. Our experiments show that in order to achieve 

good localized line detection, the size should be two to three times larger than the size of 

image. In order to exclude pseudo lines, a global maximum criterion (rather than local 

maximum) is selected to form a line. The longest line segment sharing two end points with 

detected edge pixels is recognized as a line in the image. The iterative line detection proceeds 
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with the deletion of recognized lines. It ends when the ratio of global maximum to medium 

values in the accumulative array is less than the ratio of the array size to the image size. 

 
2.3.4 DEM Interpolation and Slope Grouping 
 
Image features are a projection of ground objects. Inversely, it is hoped that information about 

the terrain such as Digital Elevation Model (DEM) should help detect object features in the 

image. A DEM can be acquired through photogrammetry, surveying, or contour map digitizing. 

In our study, a portion of a contour map was scanned and transformed into DEM data by a 

raster-vector conversion. The relatively small-scale map (1:24,000) generated a DEM that 

needs to be densified to match the 4k x 4k image. The result is a grid defined on the image 

array so that for each image pixel there is an elevation. The following procedures were used for 

DEM interpolation: 

 

1) Contour maps are scanned and are vectorized to form DEM source data, 

2) Transformations of the DEM source data form the map’s geodetic coordinate system (say 

UTM) to photogrammetric object space coordinate system (say SPC), 

3) Transformation of the object space coordinates to image space coordinates using collinear 

equations, 

4) Transformation of the image space coordinates to digital image coordinates, 

5) DEM interpolation to each pixel of image through bilinear interpolation method. 

 

Slope magnitude and direction, which can be calculated by DEM data, are important terrain 

features in terrain analysis. They are calculated through DEM data as follows: 

 

Slope magnitude:  
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Direction angle: 
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Grouping is performed at each grid point by its slope magnitude and direction angle. Slopes are 

divided into several levels depending on their magnitude. Each level corresponds to an area that 

shares the same terrain hypsography. This constitutes a condition for image segmentation and 

edge grouping. For example, freeways generally have a small slope (say 0-1 degree) for high-

speed transportation. So freeways should fall into areas where slopes are less than a threshold 

value, and within these areas freeway edges are formed (assuming there is no error in DEM 

data). In addition, direction angles are grouped in to several levels from 0 to π/2. 

 

2.3.5 Road Extraction and Road Network Construction 

 

To extract roads, a set of seed edges are defined, which have the lowest level of slopes. Among 

the seed edges those pairs that have the anti-parallel character (the difference between direction 

angles is π/2, caused by gradients of the two opposite road edges) and a specific width 

(distance between the two edges) are selected as road edge candidates. Nearest end points of 

the edge candidates are connected with a constraint on direction angles. A preliminary road 

network is formed based on a principle that that the road topology should be as simple as 

possible (minimum number of intersections).  

 

The preliminary network is improved by a re-segmentation procedure considering that the 

preliminary road network should divide the image into unconnected areas. These areas can be 

used as a condition for a further image segmentation. In analyzing the re-segmentation result, 

polygons that do not exhibit road characters are ignored. Edges near the preliminary road 

network which are longer than the specified threshold are selected. These edges constitute a 

geometric constraint used to refine the preliminary road network through a snake deformation 

model. 

 

Snakes, or active contours, were originally used for semi-automatic feature extraction in 

computer vision (Kass et al. 1988). Starting from an initial estimate of a curve’s shape and 

location (segments in the preliminary network in our case), the snake wriggles through the 

image in an iterative process (Tao et al. 1998). This evolution of the snake is driven by several 

elements of an energy function, which is composed of terms of various natures. These include 

internal terms, photogrammetric terms and external forces. Suppose extphosnake EEEE ++= int . A 
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snake is described parametrically by v(s) = (x(s), y(s)), with s representing the arc length from 

the beginning of the curve. The energy function is then 

 

∫∫ ++==
1

0 int

1

0
))(())(())((())(( dssvEsvEsvEdssvEE extphosnakesnake       (2.11) 

 

Internal energy forces are composed of a first order term and a second order term: 

 

2/))()()()(( '''
int svssvsE βα +=                   (2.12) 

 

Here, )(sα and )(sβ  are two dual weight factors. The internal forces place constraints such as 

smoothness of the curve. Generally, photogrammetric energy uses the gradient of the curve  

 

)(( i
i

pho svE ∇−= γ                                                               (2.13) 

 

at point i that is determined photogrammetrically. iγ  is a weight factor. The external attraction 

forces are introduced as  

 
2))((()( iiiiext lsvvE −=δ                                                                     (2.14) 

 

where iδ  is a weight factor and il  the desired distance from the known photogrammetrically 

determined point i to the curve. This term requires that the final curve should be as close to the 

known points as possible. 

 

Overall, minimizing the energy function makes the snake deform to a compromise between 

fitting the known points and preserving the characters such as smoothness. 

 

2.3.6 Aboveground Objects Extraction and Classification 
 
Shadow extraction 

Shadow is an important feature in aerial imagery. In principle, using shadows, date, time, and 

orientation of the image, the sun’s position can be determined. Inversely, artificial shadows of 

known objects can be generated for object recognition purposes. In photo interpretation, the 
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combination of an object surface (for example, a building roof) and its shadow make them 

distinguished from others. After image segmentation, statistic properties such as mean and 

variance are calculated in each segmented area. We are to find adjacent areas with very small 

variances. One area (shadow) has a very low intensity mean and the adjacent area (its 

corresponding object) has a very high intensity mean. In addition, the direction of the adjacency 

should be in the same as the sun.  

 

Aboveground objects extraction 

After shadow extraction, adjacent areas with high intensity means and small variances are 

called aboveground object areas. Within the areas, the image is once again segmented based on 

intensity. Objects found in the areas are considered to be aboveground objects. Edges of these 

objects are selected and linked to form their boundaries.  

 

Distinguishing natural objects and man-made objects by shape classification  

Aboveground objects and their shadows have specific shapes, particularly natural objects such 

as trees and man-made objects such as buildings and trucks. Natural objects often occur in an 

irregular and complex contour shapes. In contrast, man-made objects often have a regular 

contour shape, such as a box surface or parallel edges. There are numerous methods to 

distinguish between different shapes (Ballard and Brown 1982). In our study, a contour shape is 

measured by the complexity of direction change from pixel to pixel in a nearby 3 x 3 image 

window. The direction change can be represented through Freeman chain coding (Freeman 

1974). Within a 3 x 3-image window, the direction is coded as: 

 

876

105
234

 

 

Suppose a set of chain codes is ccccc n
Λ

3210
. For any i , ni <<0 , if ccc iii 11 +−

==== , then pixel 

direction at ci
 has no change; otherwise there is a direction change at ci

. Moreover, if 

m
i

mik

mi

ik
kkkk cccc <






 −−∑ ∑
−=

+

=
+− 11

,max , then we can say direction at ci
 has no change within a 

step size of m; otherwise there is a direction change at ci
 within a step size of m. Similar to 

what is found in the fractal dimension of a shape calculation, the more a contour changes 
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direction the greater complexity it has. Those shapes with high complexity are classified as 

natural objects while shapes with low complexity are classified as man-made objects. 

 

2.3.7 Vectorization 

 

The vectorization algorithm requires two steps. The first step is to describe the topology of the 

extracted objects. Intersections of extracted edges are searched by morphological 

transformation and are preserved as the beginning and ending points of segments in the second 

step. The second step uses Douglas-Peuker method to select critical points of each segment 

determined in the first step. 

 

2.3.8 Line Grouping Through Perspective Geometry  

 

In theory, a set of parallel lines in 3-D object space converges at a single point known as the 

vanishing point when projected into image space. Consider a unit sphere centered at the origin 

of the camera coordinates system, called a Gaussian sphere. A vanishing point can also be 

represented as a point on the Gaussian sphere, that is, a unit vector placed at the perspective 

center. So, given a vector Q in the object space, its vanishing point v on the Gaussian sphere 

can be computed as 

Q
Q

v
×Μ
×Μ

=        (2.15) 

where M is an image rotation matrix. In particular, suppose the solar azimuth is represented by 

a vector Q1- Q2.   

[ ]Tq 1,0,01 =       (2.16) 

and 

[ ] Tq 1,cos,sin2 θθ= .               (2.17) 

The vanishing point of vertical lines in object space can be directly computed as 

1

1
1 Q

Q
v

×Μ
×Μ

=  .      (2.18) 

The vanishing point for the shadow lines cast on horizontal planes by vertical lines in object 

space is 

2

2
2 Q

Q
v

×Μ
×Μ

=  .      (2.19) 
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Thus, extracted lines can also be grouped into either parallel lines (such as vertical lines and 

their shadows) which share a vanishing point, or non-parallel lines, which do not share a 

vanishing point.  

 

2.3.9 Conversion of Polygons into known shapes  

 
Figure 2.3 Polygon simplification 

 

In some cases, an expected known shape can be used to simplify extracted features if we know 

that the features should have the known shape. For example, a quadrangle structure is typical of 

the top of most trucks. Thus, the extracted polygons can be simplified into quadrangle shapes. 

Suppose such a polygon is represented as a vector ( ) ( )( )sysx ,=ν . We need to determine four 

vertices ),( 111 yxp , ),( 222 yxp , ),( 333 yxp , ),( 444 yxp  by fitting the data. Let us denote maximum 

and minimum coordinate values as ))((maxmax sxx = , ))((minmin sxx = , ))((maxmax syy = , 

))((minmin syy = . Then the center of the polygon is represented as point ),( meanmean yx , 

( )( ) ( )( )( ) 2/minmax sxsxxmean += , ( )( ) ( )( )( ) 2/minmax sysyy
mean

+= . We next define two diagonal lines 

linking four points of ),( maxmax yx , ),( minmin yx , ),( minmax yx  and ),( maxmin yx . The polygon 

points, ( ) ( )( )sysx ,=ν , are divided into four groups by the two diagonal lines, with each group 

between two diagonal lines. The quadrangle has two longer sides and thus, there must be two 

groups having more points than other two. Assume that the two lines represented by the two 

groups with more points are 1l  and 2l . These two lines can be determined by line fitting using 

the two groups of points. We can also calculate the distances between the center point, 

),( meanmean yx , to the two lines as 1d  and 2d . If the area of the original polygon is S, the length of 

1l  and 2l  is approximately equal to
12d

S  and 
22d

S . With the calculated length of 1l  and 2l  and the 

fitted lines, it is then trivial to determine the vertices of ),( 111 yxp , ),( 222 yxp , ),( 333 yxp  and 
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),( 444 yxp . Furthermore, using the difference between the area of the simplified S and that of 

the polygon S, the coordinates of 1p , 2p , 3p , 4p  can be adjusted.    

 

2.4 Experiment Results 
 

An aerial image (Figure 2.1) with a dimension of 4k x 4k pixels has been used for a feature 

extraction test. The internal and external orientation parameters of this image are listed as 

follows:  

 
Exposure center coordinates with 1 sigma (unit: m): 

XL= 512538.071 ( σ x = 0.617), YL = 216637.932 ( σ y = 0.620), ZL = 1364.956 ( σ z = 0.282).  

Rotation angles with 1 sigma (unit: degree): 

ω =  -3.752 ( σ ω = 0.032), φ = 2.005 (σ φ = 0.030), κ =  -0.807 ( σ κ = 0.007). 

Rotation Matrix Μ :  

   0.999288   0.014087   0.035004 

  -0.016355   0.997726   0.065388 

  -0.034003  -0.065914   0.997246 

Camera model: cam50, calibration date: 30/06/1990   

Principal point coordinates: x = 0.001,  y = 0.001  (unit: mm) 

y scale, ky = 1, Focal length f = 50.000 mm. 

 

  

Figure 2.4 Multi-level threshold image 
segmentation 

Figure 2.5 Edge detection at initial 
resolution (σ  = 2.0, width = 25) 
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Figure 2.4 shows an example of image segmentation using a multi-level threshold. The image 

histogram was calculated, and at each of the two peaks a parabola was used to model a curve 

segment. The intersection of the parabolas was selected as the threshold. In this way the image 

is divided into segmented areas. The histogram of each area is checked. If the histogram has 

two peaks, the threshold is calculated aga in, followed by a new image segmentation; otherwise 

the segmented areas are retained. When thresholding, the two values of the areas are assigned 

as ( ) 1256 +N
i

 and ( ) 1256256 +− N
i

 respectively, where i is the threshold and N is the highest level 

(2N). The region boundaries are modified through a maximum gradient within a 3 x 3 window. 

 

The combined result of edge detection at the initial resolution by LoG ( σ = 2.0 and width = 25) 

and Drog is illustrated in Figure 2.5. The result is thinned into a one-pixel width using a 

morphological thinning algorithm, which preserves topology and connection relationships. The 

size of the window is set to be greater than σ26  in order to avoid deleterious truncation 

effects. The edge detection result at a refined resolution (with σ =1.6 and width = 23) is 

represented by Figure 2.6. Considering that noise interference decreases as the resolution 

decreases, the refined resolution is set to be slightly lower than the initial resolution. The 

window size is set to be smaller than that of the initial resolution in order to increase the edge 

strength at the center of the window.  

 

  
Figure 2.6 Edge detection at refined 

resolution (σ  = 1.6, width = 23) 
Figure 2.7 Edge selection and edge 

linking 
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As represented in Figure 2.7, edges at the initial resolution are filtered by a morphological 

transformation, where those segments having more than 5 pixels are preserved and those 

having less are deleted. At the same time, segments and polygons that have endpoints are 

separated from those that do not. The edge segments of the refined resolution are then dilated. 

If two end points exist within a 3 x 3-pixel window, they are connected directly. Edge segments 

that have the same direction, and have their endpoints within a five-pixel radius, are also 

connected. Edges of length greater than 50 pixels are selected, elongated, dilated, and then 

intersected with other edges. Finally Hough transform finds straight lines by examining large 

numbers of collinear points.  

 

  

Figure 2.8 Detected lines and polygons Figure 2.9 DEM interpolation 
 
 

Figure 2.8 is the combined result of lines from edge detection and polygons from segmentation. 

All the lines and polygons are longer than 20 pixels. 

 

A DEM was acquired by conversion of a scanned contour map. The map projection of the 

scanned map was UTM. The DEM was then transformed to SPC (State Plane Coordinate) 

system in order to correspond to the object coordinate system defined in the photogrammetric 

model. Geoid height was used to correct the elevation at each grid point. The 3-D object space 

coordinates (X, Y, Z) are then transformed to image coordinates (x, y, -f) by a collinearity 

equation, followed by a transformation to pixel coordinates ( )ji, . Finally, the elevation at each 

pixel is interpolated by a bilinear interpolation (Figure 2.9). 
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Figure 2.10 Slope grouping 
 

Based on the elevation information at each grid point in Figure 2.9, a terrain slope was 

calculated by a differential operator. Slopes are grouped into 90 levels, with level 1 to10 

covering slopes from 0 to 1 degree and level 10-90 covering slopes 2 degree and above. 

 

 

Figure 2.11 Dash line seeds from image segmentation and hit-miss operation 
 

Let us now focus on the bottom part of the original image in Figure 2.1, where a freeway is the 

dominant feature. Lane-separating lines are bright-color-painted dashed lines. At the original 

image scale, the dashes are rectangles of the same size and equally spaced. The dashed lines 

were extracted through image segmentation using the multilevel threshold algorithm. 

Structured elements are constructed using deformed rectangles considering perspective 

geometry. Comparison between the segmented areas and structured elements is performed by a 

hit-or-miss operator to produce dash line seeds for further processing. Figure 2.11 shows the 

dash line seeds. 

 

 

Figure 2.12 Dash line generation through Hough transform 
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Boundaries of the dash line seeds are next thinned to one-pixel width. A Hough transformation 

examines all seeds and produces equally spaced dash lines as described in Figure 2.12. 

 

 

Figure 2.13 Freeway line generation 
 
Once one dash line is produced, other dash lines can be predicted using spacing from the 

known dash line (Figure 2.13). On the predicted dash lines, predicted and the seeds may 

intersect. This can be used to confirm the existence of the predicted dash lines. 

 

 

Figure 2.14 Road seeds selected through slope grouping 
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To capture other roads in the image, which are generally parallel double lines, edges with a 

length that exceeded a certain threshold (5 pixels) were selected and linked to form road seeds. 

On the other hand, small-segmented areas were deleted by a morphological transform, while 

large areas, considered to be elements of the road network, were dilated and connected. Figure 

2.14 shows the road seeds that are within DEM grouping level from 0 to 10 (slope < 1 degree). 

 

 

Figure 2.15 Road edge seeds along long straight lines are selected through Hough transform 
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Hough transform is performed on the selected road edge seeds. Long straight lines are 

estimated by Hough transformation. Those road edge seeds that are along the long straight lines 

are selected in Figure 2.15. 

 

Figure 2.16 Generated parallel straight lines  
 
Road edge seeds on the long straight lines generated by Hough transformation were connected 

piece-by-piece. Constraints such as road width, parallel direction and anti-parallel gradient are 

applied to search for two parallel boundary edge lines displayed in Figure 2.16. 

 

Figure 2.17 Road edge seeds not in straight line set 
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To capture curved roads in the image, road edge seeds that did not form straight lines were 

separated from the straight line set (Figure 2.17). 

 

 
Figure 2.18 medium axis line derived by a thinning algorithm 

 
 
 
These non-straight road edge seeds are combined by morphological dilation. A medium axis 

line is estimated by a thinning algorithm based on the road edge seeds (Figure 2.18).  

 

 
Figure 2.19 Approximate parallel road boundaries 

 
 

The medium axis lines are dilated using a rectangular element structure along the road direction 

and with a half road-width size. The dilated contours constitute two approximate parallel road 

boundaries as shown in Figure 2.19. 

 
Figure 2.20 Improved parallel road boundaries 
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The boundary lines are further improved by applying constraints of road edge seeds and imposed 

smoothness Figure 2.20. 

 

 

 
 

Figure 2.21 Final result of road 
extraction 

Figure 2.22 Above-ground objects 
(houses and trucks) detected 

 
Overall, detected edges with slopes within 1 degree are checked against anti-parallel and road 

width conditions as well as other constraints. Edges passed the checks are used as road edge 

seeds. End points of the road seeds are detected and dilated using refined resolution. Road 

seeds are connected through piecewise line fitting and Hough transformation. Morphological 

thinning and shape smoothing, as well as short arc deleting, are also performed. This results in 

initial roads that are then refined by a snake deformation model (Figure 2.21). 

 

Edges of aboveground objects, mainly house and truck boundaries, are detected and organized 

into polygons (Figure 2.22). Figure 2.23 is the overlay of the extracted features on the original 

AIMS image. 
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Figure 2.23 Overlay of the extracted features on the original image 
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3. Multilayer-based Hopfield Neural Network for 3-D Object Recognition 
 

A single layer Hopfield neural network can be applied for recognition of point, line, or region 

features, as demonstrated in the last year’s project report (Li et al. 1997). In the case of 3-D 

objects described by a hierarchy of regions, lines, and points, a recognition strategy that uses a 

combination of information is desirable. Geometric constraints and known object models in 3-D 

space are useful in such a combined recognition strategy. We introduce a two-layer Hopfield 

neural network that matches region and line features extracted from AIMS imagery using a 

known 3-D model. Specifically, recognizing trucks on freeways from the georeferenced aerial 

images is performed as an application of the method. In Young et al. (1997), a multi-layer 

Hopfield neural network was introduced to recognize pyramid shaped objects. Its optimal 

selection of neuron initial values provides a means to reach global minimized-energy states 

without annealing. Suganthan et al. (1995a) developed a selected wavelet function to determine 

satisfactory initial values for recognizing occluded objects with complicated shapes. Suganthan et 

al. (1995b) reported a self-organizing network that trains coefficients of the energy function. 

 

In the last project year (Li et. al., 1997), street light poles were recognized using a single layer 

Hopfield neural network. In 3-D object space, a light pole is defined as a cylinder with a diameter 

of 21.2cm and a length of 6.795m. These values were obtained by manual photogrammetric 

measurements of light poles from the mobile mapping images. A priori knowledge that light 

poles should be vertical and near the mobile mapping van was applied. A light pole model is back 

projected onto the images and used to recognize image pole features. Light poles appearing in 

conjugate images are detected, recognized, and used to calculate 3-D locations. 

 

Development of a multilayer network and application for recognition of trucks are major tasks for 

this project year’s object recognition work. Geometric, unary, and binary constraints are imposed 

to match pairs of candidate features with similar pairs of the 3-D model. Unary constraints 

consider similarities between single candidate and model features, while binary constraints 

consider geometric similarities between candidate pairs and model pairs. In the original 4k x 4k 

AIMS images, there is little difference in the shape of trucks seen from different positions 

because the freeway is nearly flat.  
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We use a top-down strategy to achieve object recognition. The problem is treated as an 

optimization problem, where the correct answer is given when a global minimized energy state is 

reached. For basic knowledge of application of neural networks in mobile mapping object 

recognition, please refer to Li et al. (1997). Let ikC1  and ikjlC2  be unary and binary similarity 

measure respectively. The energy function is 

 

∑∑ ∑∑ ∑∑∑∑∑ ∑∑∑ ∑∑
≠≠

×+−+×+−+−=
k i ij

jkik
k i

ikil
i k kl

ik
i k

ik
i k j l

jlikikjl VVEVDVVCVBVVCAE
2

2 )1()1( .  

(3.1) 

The neuron state, ikV , converges to 1.0 if the model feature i  matches the candidate image 

feature k  perfectly, otherwise, it is equal or close to 0. Thus, the first term measures similarity 

between the model and image features. The second term ∑ ∑−
i k

ikV 2)1(  implies that the final states 

of neurons in the same row add up to 1, and the third term ∑∑∑
≠

×
i k kl

ilik VV  confirms that there is at 

most one neuron that has a value greater than 0 in each row. This means that only one candidate 

image feature matches with each model feature. The forth term ∑ ∑−
k i

ikV 2)1(  implies that the final 

states of neurons in the same column add up to 1, and the fifth term ∑∑∑
≠

×
k i ij

jkik VV  confirms that 

there is at most one neuron that has a value greater than 0 in each column. That means that each 

candidate image feature matches with only one model feature. Combining the second term 

∑ ∑−
i k

ikV 2)1(  with the third term ∑∑∑
≠

×
i k kl

ilik VV  gives a solution that forces each model feature to 

match only one candidate image feature. Similarly, combining the forth term ∑ ∑−
k i

ikV 2)1(  with 

the fifth term ∑∑∑
≠

×
k i ij

jkik VV  gives a solution that guarantees each candidate image feature will 

match only one model feature. The determination of coefficients A, B, C, D and E depends on 

how strictly the unique matching condition should be implemented. More discussion on relevant 

terms and symbols will be introduced later in this report. 
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3.1 Three Basic Patterns in Object Recognition  
 

Point pattern 

 

When points in images or the model are to be matched, unary and binary constraints can be used. 

They are often assigned different weights. There are two ways that unary constraints are 

calculated. The first method represents the patter of a point by its gradient of the neighborhood. 

The second method calculates the patter attribute within a circle of a certain radius. Binary 

constraints are more reliable than unary constraints since relative relationships between features 

are considered. Actually it measures the geometric similarity between a candidate line (formed by 

a candidate point pair) and a model line (formed by a model point pair). Thus, attributes like 

length and azimuth can be applied. 

a. model interesting
points

b. candidate interesting points

0 1

23

4 5

6

7
0

1

2

3
4

5

6

7

unary constraints

binary constraints

)( 1073
22 CC ikjl

)( 66
11 CC ik

 
Figure 3.1 Similarity in point patterns  

 

Point pattern matching based on a neural network may be used for finding corresponding 

interesting points (Nasrabadi and Chang 1992). 

 

Line pattern 

Apparently, line patterns have more unary constraints than point patters (e.g. length and azimuth). 

Below is a list of binary constraints: 

 

(a) Angle formed by a line pair, 

(b) Distance between center points of two lines, 

(c) Distance between end points of two lines, and 
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(d) Length ratio between two lines. 

 

The above binary constraints are invariant to transformation and rotation. 
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Figure 3.2 Similarity in line patterns  

 

Region pattern 

Region patterns have more binary constraints than other two types of patterns. Several geometric  

constraints describing region similarities are listed below. 

 

(a) Area of a region, 

(b) Perimeter of a region, 

(c) Fourier descriptors describing the shape of a region, and 

(d) Region deformation. 

 

Other binary constraints that are invariant to transformation and rotation are a distance between 

two region centers and the area ratio between two regions. 
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Figure 3.3 Similarity in region patterns 

 

3.2 Single Layer Hopfield Neural Network 
 

3.2.1 Fundamental equations  
 

Object recognition by graph matching, also referred to as morphism, is a mapping from a scene 

graph to a model graph. The morphism can be categorized on the basis of the constraints that are 

enforced during the mapping as follows: when the mapping is one-to-one and onto, it is an 

isomorphism; when it is one-to-one, it is a monomorphism; and when it is many-to-one, it is a 

homomorphism.  

 

Model
1

Model
2

Candidatek

i

Candidate Model 1

Model 2

 
Figure 3.4 Neuron states and model-candidate correspondence 
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Different values of coefficients A, B, C, D and E in Equation (3.1) apply to various cases of our 

tasks. For monomorphism, coefficients B, C, D and E are assigned high values based on the 

assumption that one model feature will uniquely match one candidate feature (Figure 3.4). The 

final solution yields a one-to-one mapping. In the case of homomorphism, coefficients B and C 

are assigned low values (even zero) based on the assumption that one model feature will match 

several image candidate features. In this scenario the final solution yields a many-to-one 

mapping. 

 

The following is a detailed discussion of equations for single -layer Hopfield neural network. Let 

ikjlC  denote both similarity and disparity between model feature pair ),( ji  and candidate image 

feature pair ),( lk . It is then represented as: 

 

  211
ikjljlikikjl CCCC ++= .        (3.2) 

where 

  ∑
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  ∑
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=
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1
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N

n
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In the above equations 1
ikC  and 2

ikjlC  represent unary and binary similarity respectively. 1
ikC  

encodes compatibility between model feature i  and candidate feature k , and 2
ikjlC  encodes 

compatibility between the correspondence of the model feature pair ),( ji  and that of the 

candidate feature pair ),( lk  (Figure 3.4). f is similarity-measuring function and weighted by w 

that meets the condition   

  ∑ ∑
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There are three types of measuring functions 

 

a) Sign function 

Sign function is a simple function with one parameter θ  (Figure 3.5).  
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Figure 3.5 Sign function 

 

x and y are similarity measures (such as length of a line) of a candidate feature and model feature, 

respectively. The parameter θ  is sometimes difficult to determine in case the measure selected is 

sensitive. A small change of θ  may alter the recognition result. 

 

b) Linear function 

A linear function 
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has more practical use than sign function in some cases. In addition to its simplicity, it 

provides a smoother function in comparison to sign function. 
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Figure 3.6 Linear function 

 

The linear function has more practical use than the sign function, and it is very easy to 

handle. The disadvantage of the sign function is that its first derivative is not smooth. 

 

c) Sigmoid function 

A sigmoid function 

 

)(tanh(),,,( tyxktkyxf −−−=        (3.8) 

 

satisfies our decision function requirements appropriately. The shape of the curve near the 

threshold is approximately that of the linear function. The curve is generally smooth. Depending 

on the parameter k, the first derivative at t could be also smooth. 
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Figure 3.7 Sigmoid function 
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Neuron State Output function 

For neuron i, if its charge is ui that is defined in section 3.3.1, its neuron state output function is 

represented as 

 

vi= Tui ie
ug /1

1
)( −+
= .        (3.9) 

 

T is the “temperature” (an annealing term) that determines the speed and quality of the final 

solution. A very large value of T will cause neuron values to be 0.5, while a very small a value 

will drive the network to a local minimum state, or converges very slowly. An annealing process 

keeps the value of T large at the beginning and reduces the T value as iteration progresses. This is 

important for achieving a global minimum state and a fast convergence. 

 

Initialization 

 
The initial values of neuron states can be chosen randomly as described in Lin et al (1991). It 

may set the neural network to a local minimum state. As stated above, an annealing process 

may overcome this problem. However, a careful selection of initial values may not require 

annealing. If ikC  are calculated and examined, initial neuron states are to be computed as  
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where { }0| 1 >iki CkisS  and ∑
=

=
1

1

N

n
nww . 

 

Combining matched features 

 

After iterations using homomorphism, each neuron reached its final state ikV . Those final states 

close to 1 yield matches between corresponding candidate image features with model features. 

However, there is still a need to put the matched features to form object(s). The following 
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procedure combines the features under the assumption that there are N  features forming an 

object. 

 

a) Establish N sets of { } NiVkS iki ,...,1,1| =≈= . Each set contains all the candidate features that 

matched the corresponding model features. 

b) Establish an empty set Q . 

c) Set i  to be 1. 

d) For each iSk∈  we get iikik SkVm ∈= ,  if Q is empty, otherwise ∑
∈

+=
Qlj

jlikikjlik CCm
),(

)( . Find 

the feature nk  that satisfies 
pn ikikip mmSk ≥∈∀ , , add ),( nki  to Q.  

e) If Ni = , one object is recognized and detected, go back to step a); otherwise, 1+= ii  and go 

back to step b). 

 

3.2.2 Truck Recognition 
 

The task is to recognize trucks moving on the highway from stereo aerial image sequences 

(Figure 3.8) using Hopfield neural network described above. Onboard GPS and INS 

instruments are used to capture exterior orientation parameters at the time of exposure. 

 

 
Figure 3.8 AIMS image used for truck recognition 
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The image has a dimension of 4096 x 4096 pixels. A strip in lower part of the image is cut, 

enlarged and displayed in Figure 3.9. Trucks are obviously visible. To learn properties of the 

neural network applied to the truck recognition, we first used the line and region features 

digitized from the image when displayed on the screen. In Section 3.4 features automatically 

extracted from the image are used. 

 

 
Figure 3.9 Zoomed portion of Figure 3.8 where trucks are visible 

 

To simplify the recognition problem, we disregard complicated shapes of the front part of 

trucks.  We focus ourselves on the part of a car that can be simplified as a box. From the 

camera, the top of a truck and its shadow are always visible (Figure 3.10). Most sides of the 

truck are not visible in the image. 

 

 
 

Figure 3.10 Simplified truck image features and back projected model 
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Point pattern 
 

 
Figure 3.11 Extracted corner points of truck and model points 

 

Figure 3.11 depicts digitized corner points of the trucks (number 0 – 40) and the six back 

projected model points (number 0 – 5) describing the top and the shadow. We set parameters in 

the energy function of Equation 3.1 as in Table 3.1. 

 

 A B C D E 

Value 0.6 0.0 0.0 0.8 0.8 

Table 3.1 Parameters in the energy function  

 

We use the following two binary constraints: 

 

• Distance between two points, and 

• Azimuth angle  of a straight line formed by two points. 

Using sigmoid function in Equation 3.8, we have ),(5.0),(5.0 2
2

2
1 yxfyxfCikjl += , where x and y 

in f1 and f2 are the above binary constraint measures. 

 

Table 3.2 gives final states of neurons. Six model points of the back projected truck top and the 

shadow are listed in the rows and digitized image points are listed in the columns. 

 

Obviously the point patter match with these constraints do not provide good result. 
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ID of digitized image point 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Neuron state (Matching with model point 0)  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Neuron state (Matching with model point 1)  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Neuron state (Matching with model point 2)  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Neuron state (Matching with model point 3)  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Neuron state (Matching with model point 4)  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Neuron state (Matching with model point 5) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 30 31 32 33 34 35 36 37 38 39 40     

 0 0 0 0 0 0 0 0 0 0 0     

 0 0 0 0 0 0 0 0 0 0 0     

 0 0 0 0 0 0 0 0 0 0 0     

 0 0 0 0 0 0 0 0 0 0 0     

 0 0 0 0 0 0 0 0 0 0 0     

 0 0 0 0 0 0 0 0 0 0 0     

 

 

Line Pattern 
 

Shadows of trucks within an image vary from truck to truck because of several factors (e.g. pose 

and shape of head) that complicated their shape. However, the tops of trucks generally 

approximate a rectangle. Considering that line pattern matching only requires line-wise matching, 

we use the four edges of a truck as a model, while leaving other features being taken care of in 

region pattern matching. A typical truck model is 15 meters in length, 3.2 meters wide, and 4 

meters in height. We hold this configuration fixed during our line pattern recognition task. With 

these known values, we back project the mode l to the current image, which has known interior 

and exterior orientation parameters from GPS and INS (Figure 3.12). 

Table 3.2  Final neuron states using point pattern matching 
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Figure 3.12 Extracted truck line segments and back projected model lines 

 

Here we have one unary constraint: 

1) Similarity between length of model edge i  and that of candidate line segment k . 

 

The applied binary constraints are: 

1) Difference of length ratio between model edges ( i  and j ) and candidate line segments ( k  

and l ), 

2) Angular difference between model edges (i  and j ) and candidate line segments (k  and l ), 

and 

3) Difference of end points distance between model edge i  and edge j  and that between 

candidate line segment k  and line segment l . 

 

Table 3.3 gives final states of neurons that matches model lines (blue lines marked 0 - 3 in 

Figure 3.12) with candidate lines (red lines marked 0 – 42 in Figure 3.12). Each neuron state 

ranges from 0 to 1 and has a subscript that represents the identifier (ID) of an object (truck top 

in this case). For example, vij=13 means that model line I matches with image line j. 

Furthermore, the matched image line is one of the lines forming object with ID 3. Observing 

Table 3.3, we know that there are five objects (truck tops) recognized from the scene: object-0 

including lines-10, 11, 8, 9 (red lines in Figure 3.3); object-1 including lines-16, 17, 18, 19; 

object-2 including lines-12, 13, 14, 15; object-3 including lines-2, 3, 0, 1; and object-4 

including lines 6, 7, 4, 5. There are still some neurons with a final state of one that do not from 

an object, for example (36, 0). This is because the neuron (or matched line) does not have a 

partner to form an object with.  
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ID of extracted line 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Neuron state (Matching with model line 0)  0 0 
31  0 0 0 

41  0 0 0 
01  0 0 0 

21  

Neuron state (Matching with model line 1)  0 0 0 
31  0 0 0 

41  0 0 0 
01  0 0 0 

Neuron state (Matching with model line 2)  
31  0 0 0 

41  0 0 0 
01  0 0 0 0 

21  0 

Neuron state (Matching with model line 3) 0 
31  0 0 0 

41  0 0 0 
01  0 0 

21  0 0 

 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

 0 0 0 
11  0 0 0 0 0 0 0 0 0 0 0 

 
21  0 0 0 

11  0 0 0 0 0 0 0 0 0 0 

 0 
11  0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 
11  0 0 0 0 0 0 0 0 0 0 0 0 

 30 31 32 33 34 35 36 37 38 39 40 41 42   

 0 0 0 0 0 0 1 0 0 0 0.4 0 0   

 0 0 0 0 0 0 0 0 0 0 0 0 0   

 0 0 0 0 0.4 0 0 0 0 0 0 0 0   

 0 0 1 0 0 0 0 0 0 0 0 0 0   

 

Table 3.3 Final neuron states by line pattern matching 

 

Region Pattern 
 

 
Figure 3.13 Extracted regions and back projected model region 

 

 

Figure 3.13 shows the extracted regions (in red) from a partial image and two regions (0 and 1) 

of the back projected model. To match the model regions with the extracted image regions, 
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both unary and binary constraints for region pattern matching are used. The unary constraints 

are: 

1) Similarity between area of model region i  and that of candidate region k ,  

2) Similarity between perimeter of model region i  and that of candidate k , 

3) Similarity between average gray value of model region i  and that of candidate k , and 

4) Similarity between width-to-length ratio of model region i  and that of candidate k  as 

)(/)( ilengthiwith  and )(/)( klengthkwith . 

 

The binary constraints include 

1) Difference between the distance from the center point of model region i  to that of model 

region j  and that from candidate region k  to candidate region l , and 

2) Gray value difference between model region i  and model region j  and that between 

candidate region k  and  candidate region l . 

 

 A B C D E 

Value 0.6 0.0 0.0 0.8 0.8 

 
Table 3.4 Parameters of the energy function used for 

region pattern matching 
 

ID of extracted region 0 1 2 3 4 5 6 7 8 9 10 11 13 

Neuron state (Matching with model region 0)  
11  01  21  31  0.99 0 0 0 0 0 0 0 0 

Neuron state (Matching with model region 1)  0 0 0 0 0 0 0 0 
01  21  31  11  1 

 

Table 3.5 Final neuron states by region pattern matching 

 

Given energy function parameters in Table 3.4, Table 3.5 shows the final neuron states of the 

region pattern matching.  Similar to the result of line pattern matching, there are four objects 

(truck - top and shadow) recognized from the scene: Object-0 including 1 and 8; object-1 

including 0 and 11; object-2 including 2 and 9; and object-3 including 3and 10. Referring back 

to Figure 3.3, we see that the recognized region pairs are correct truck tops and their shadows. 

Region 4 may be a truck top that has no corresponding shadow. Likewise, region 13 may be the 

shadow of a truck. In region pattern matching, there is no strict requirement for the number of 

line segments forming a candidate and corresponding model to be the same. However, we may 
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lose a shape in region pattern recognition that would not otherwise be lost in line pattern 

recognition. For example, candidate region 4 actually is the top of a truck but we can not 

ascertain this by region pattern methods. Given this reality, we have adopted a multi-layer 

Hopfield neural network that takes advantage of both line pattern and region recognition 

algorithms in a single network. 

 

3.3 Multilayer Hopfield Neural Network 
 

The above object recognition is based on several separate single layer neural networks. 

However, the interrelationship between line pattern recognition and region pattern recognition 

adds more constraints and thus achieves better results. Our objective is to utilize a two-layer 

network for truck recognition. The interrelationship is based on the following realities: 

 

1) The top of a truck shown in the image is nearly rectangular in shape, while its shadow has a 

more complex shape due to the sun light direction and truck head shape; 

2) The line pattern recognition could yield a match for the top, but fail in shadow verification, 

which is a very important clue; and  

3) The region pattern recognition considers the top and shadow at the same time, but it does 

not take full advantages of line patterns.  

 

Connections among neurons in each single layer are fully dependent on geometric and 

photogrammetric constraints and are fixed before the initial iteration. During iterations the 

interconnections between the two layers vary. Let 1L  denote layer 1, which is a line pattern 

layer, and 2L  denote layer 2, which is a region pattern layer. We thus have an energy function  

( ) ( )2211 LELEE += .        (3.11) 

where ( ) ( ) ( )2112111111 ,, LLELLELE +=  and ( ) ( ) ( )1221222222 ,, LLELLELE += . ( )1111 ,LLE  and 

( )2222 ,LLE  are same as the terms in Equation (3.1). The energy relevant to interlayers are  

2211

1 1 2 2

2211
12

112 2
1

kiki
i k i k

kiki VVBE ∑∑∑∑





−×=α      (3.12) 

1122

2 2 1 1

1122
21

221 2
1

kiki
i k i k

kiki VVBE ∑∑∑∑





−×=α .     (3.13) 
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2211
12

kikiB  is a connectivity variable from neuron ( )11,ki  in layer 1L  to neuron ( )22 ,ki  in layer 2L . 

1122
21

kikiB is a similar term. They change dynamically during iterations. We also 

have 11222211
2112

kikikiki BB ≠  because contributions from one layer to another layer are non-symmetric 

(Figure 3.14). Using energy equation (3.11), we can recognize the trucks when a global 

minimized energy value is achieved. 

 

Figure 3.14 Two layer (line and region) Hopfield neural network 

 

The connectivity term       


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12
22

22

2211    (3.14) 

contributes when a model region is a truck top and a candidate line belongs to a candidate 

region or when the model region is a truck shadow and the candidate line belongs to candidate 

region. Similarly, 1122
21

kikiB  is defined as 

k 1 

i 1 

k 2 

i 2 

Line pattern 

Region pattern 

C ikjl C ikjl 

2 2 1 1 
12 

k i k i B 

1 1 2 2 
21 

k i k i B 
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3.3.1 Process of the two layer Hopfield neural network 
 

The following describes the process of the two layer Hopfield neural network: 

 

Step 1. Calculate connectivity parameters ikjlC1  of layer 1 and ikjlC2  of layer 2. 

Step 2. Set the initial states 
11

1 kiV  of layer 1 and 
22

2 kiV of layer 2 using equation (3.11) 

respectively. 

Step 3. Obtain 2211
12

kikiB using equation (3.14). 

Step 4. Update the values of 
11

1 kiu  and 
11

1 kiV  

 for ( 1i = 0; 1i  < 1m ; 1i ++) 

  for ( 1k  = 0; 1k < 1n ; 1k ++) 

   )*3*2(11 43216
11

1111
KKKKuu t

ki
t

ki ++++=+  

where      ∑ ∑∑∑
≠

−−−−×=×=
l kl

lili
j l

t
jljlki

t
ki VCVBVCAhufhK

1

111111
1)11(11()1(1  

)21)11(
22

2 2
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11 1 ki
i k
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j kj

jkjk VBVEVD ∑∑∑ ∑
≠

∂−−−  

)1( 12
1

2 11
KufhK t

ki +×=  

)1( 22
1

3 11
KufhK t

ki +×=  

)1( 34 11
KufhK t

ki +×=               

Step 6. Compute )1(1 11
1111

++ = t
ki

t
ki ugV .  

Step 7. Obtain 1122
21

kikiB using equation (3.15). 

Step 8. Update the values of 
22

2 kiu  and 
22

2 kiV  

 for ( 2i = 0; 2i  < 2m ; 2i ++) 
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  for ( 2k  = 0; 2k  < 2n ; 2k ++) 

   )*3*2(22 43216
11

2222
KKKKuu t

ki
t

ki ++++=+  

where ∑ ∑∑∑
≠

−−−−×=×=
l kl
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j l
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t
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2

222222
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                                           )12)12(
11

1 1

1122

2

22 2 ki
i k

kiki
j kj

jkjk VBVEVD ∑∑∑ ∑
≠

∂−−−  

)2( 12
1

2 22
KufhK t

ki +×=  

)2( 22
1

3 22
KufhK t

ki +×=  

)2( 34 22
KufhK t

ki +×=               

Step 9. Update: )2(2 11
2222

++ = t
ki

t
ki ugV .  

Step 10. If convergence, then stop, otherwise go back to step 3. 

 

3.3.2 Result using two layer Hopfield neural network 
 

ID of extracted line 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Neuron state (Matching with model line 0)  0 0 
31  0 0 0 

41  0 0 0 
01  0 0 0 

21  

Neuron state (Matching with model line 1)  0 0 0 
31  0 0 0 

41  0 0 0 
01  0 0 0 

Neuron state (Matching with model line 2)  
31  0 0 0 

41  0 0 0 
01  0 0 0 0 

21  0 

Neuron state (Matching with model line 3) 0 
31  0 0 0 

41  0 0 0 
01  0 0 

21  0 0 

 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

 0 0 0 
11  0 0 0 0 0 0 0 0 0 0 0 

 
21  0 0 0 

11  0 0 0 0 0 0 0 0 0 0 

 0 
11  0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 
11  0 0 0 0 0 0 0 0 0 0 0 0 

 30 31 32 33 34 35 36 37 38 39 40 41 42   

 0 0 0 0 0 0 0 0 0 0 0 0 0   

 0 0 0 0 0 0 0 0 0 0 0 0 0   

 0 0 0 0 0 0 0 0 0 0 0 0 0   

 0 0 0 0 0 0 0 0 0 0 0 0 0   

 

Table 3.6 Final neuron states of the line layer by a two-layer network 



48 

Table 3.6 and 3.7 list the results of combined line pattern (layer 1) and region pattern (layer 2) 

matching by the two layer Hopfield neural network. Comparing to Table 3.3 and Table 3.5 

where line and region were matched separately, no change has occurred. However, the speed of 

convergence is accelerated because line patterns strengthen the certainty of region patterns to 

which these lines belong, and vice versa. In addition, the multilayer approach should provide 

more robust results because of constraints between layers. This advantage will be demonstrated 

in the following case where the extracted lines are from an automatic procedure. 

 

ID of extracted region 0 1 2 3 4 5 6 7 8 9 10 11 13 

Neuron state (Matching with model region 0)  
11  01  21  31  1 0 0 0 0 0 0 0 0 

Neuron state (Matching with model region 1)  0 0 0 0 0 0 0 1 
01  21  31  11  1 

 

Table 3.7 Final neuron states of the region layer by a two-layer network 

 

 

3.4 Experiment Using Detected Polygons and Lines 
 

So far the input lines and regions were all manually digitized from the screen. To automate the 

feature extraction procedure and check the robustness of the recognition algorithms, we will 

use the lines and polygons extracted from a strip of the image (Figure 3.15). To match the line 

pattern, we have four model line segments and 5,000 candidate line segment which require 

5000450004 ××× = 400M memory units to store matrix ikjlC , 50004 × =20000 memory 

units to store a matrix of ikU , and 2000050004 =×  memory units to store matrix ikV . In 

addition, for region pattern recognition, we have two model regions (top and shadow). There 

are 500 candidate polygons that require MB150025002 =××× memory units to store matrix 

ikjlC , 10005002 =×  memory units to store matrix ikU , and 10005002 =× memory units to 

store matrix ikV . To apply the two-layer Hopfield neural network we need at least 40.10442M 

memory units. Also, because the computation complexity in each iteration is )( 22mnO , the 

time needed for all iterations is very significant.  

 

Due to both space and time limitations, we define image subspaces. In each such image 

subspace there is possibly only truck inside and a neural network is established for truck 
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recognition. It is to note that each truck should have at least a top which is nearly a rectangle 

and has a bright average gray value (say greater than 125). Suppose that Gavg(i) is the average 

gray value of i-th polygon and Gavg(Img) is the average gray value of all polygons of the image. 

The system will check each polygon. If for polygon i we have Gavg(i)> Gavg(Img), the polygon 

is a br ight polygon and is a candidate of the top of a truck. A window is defined with the center 

at the polygon centroid. The window size is chosen in such a way that it is large enough to 

include a truck and its shadow, but small enough to exclude a second truck. This window size is 

held fixed through out the procedure. Furthermore, the back-projected model does not change 

appreciably from place to place. Under the above circumstances, it is clear that only one truck 

would be in the window. Therefore, we apply monomorphism (one-to-one mapping) in the 

matching process. This makes the coefficients B and C in the energy function significant values 

(0.6), while other coefficients are maintained the same. 

 

A two layer Hopfield neural network was used to recognize the trucks among the extracted 

lines and polygons in Figure 3.15. According to final neuron states, there are two categories of 

features that may match the trucks.  

 

I) Two polygons match with the model, one with the truck top and the other with the shadow of 

the model.  The edges of the polygon that matches with the model top match with those of the 

model top. 

 

 
(a) Part I of automatically extracted lines and polygons  
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(b) Part II of automatically extracted lines and polygons 

 

 

 

 
(c) Part III of automatically extracted lines and polygons 
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(d) Part IV of automatically extracted lines and polygons 

Figure 3.15 (a) Part I, (b) Part II, (c) Part III and (d) Part IV of automatically extracted lines 
 and polygons overlaid on the image at the original scale  

 

II) In the region pattern layer there is no polygon pairs matching with the top and shadow of the 

model. However, there are polygon edges matching with those of the model top in the line 

pattern layer. This may be due to a loss of shadow information caused, for example, by a small 

gray value difference or occlusion.  

 

 
Figure 3.16 A candidate truck that matches with both region pattern model and line pattern model 

 

Figure 3.17 shows a truck in the upper right of Figure 3.18 (c). The extracted lines and polygons 

are of very high quality. Polygon 74 describes the top of the truck and polygon 265 describes its 

shadow. Table 3.7 is the computed relevant neuron states of the truck extracted from single layer 

networks and a two layer network. Obviously it is a category I match.  
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Single layer Hopfield neural network Two layer Hopfield neural network 

Line pattern Line pattern layer 

 

Model line ID Model line ID 

Region Id (line ID) 0 1 2 3 0 1 2 3 

74 (296) 0.000 0.000 1.000 0.000 0.028 0.000 1.000 0.000 

74 (297) 0.000 0.000 0.000 1.000 0.000 0.031 0.000 1.000 

74 (298) 1.000 0.000 0.000 0.000 1.000 0.000 0.028 0.000 

74 (299) 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.031 

 Region pattern Region pattern layer 

 Model region ID Model region ID 

Region ID 0 1 0 1 

74 1.000 0.002 1.000 0.002 

265 0.000 1.000 0.000 1.000 

 

Table 3.7 Category I match, an example from single layer networks and a two-layer network 

 

 

 
Figure 3.17 A candidate truck that matches with line pattern model only 

 

The truck in Figure 3.17 lies in the upper left of Figure 3.18 (b). Table 3.9 is the computed 

relevant neuron states of the same truck. The edges of polygon 41 match with the model in the 

line pattern layer. But the polygon does not match with the shadow of the model in the region 

pattern layer. The two-layer neural network is enhanced by the line layer, which makes neural 

states of the region pattern layer higher than those of a single layer because the four line segments 

of the polygon match the model lines in the line pattern layer very well. This is an example of a 

category II match. 
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Single layer Hopfield neural network Two layer Hopfield neural network 

Line pattern Line pattern layer 

 

Model line ID Model line ID 

 Region Id (line ID) 0 1 2 3 0 1 2 3 

41 (164) 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

41 (165) 0.000 1.000 0.000 0.000 0.000 1.000 0.000 0.000 

41 (166) 0.000 0.000 1.000 0.000 0.000 0.000 1.000 0.000 

41 (167) 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.000 

 Region pattern Region pattern layer 

 Model region ID Model region ID 

Region Id 0 1 0 1 

218 0.968 0.344 1.000 0.245 

Table 3.9 Category II match, an example from single layer networks and a two-layer network 

 

Figure 3.18 illustrates all recognized trucks including category I and II in yellow lines. 

 

 

 
(a) Recognized polygons in Part I of the image strip  
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(b) Recognized polygons in Part II of the image strip 

 

 
(c) Recognized polygons in Part III of the image strip  
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(d) Recognized polygons in Part IV of the image strip 

Figure 3.18 Recognized trucks (yellow lines) in four parts of Figure 3.15 

 

3.5 Test on Position and Velocity Calculation 
 

For a feature that is fixed on the ground, two images are needed to calculate its 3D coordinates, 

though more photographs could improve coordinate accuracy. In the case of truck recognition 

and location some additional problems occur because the trucks move with varying velocity 

and direction. Neither the truck’s velocity nor position are available to us. The two collinear 

equations from one image are 

 

)()()(
)()()(

333231

131211

ccc

ccc

ZZaYYaXXa
ZZaYYaXXa

fx
−+−+−
−+−+−

−=     

)()()(
)()()(

333231

232221

ccc

ccc

ZZaYYaXXa
ZZaYYaXXa
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−+−+−
−+−+−

−= .      (3.16) 

 

The exterior orientation parameters and interior orientation parameters are known from GPS 

and INS aboard the aircraft and system calibration (Li 1998). We have three unknowns ( ZYX ,, ) 

in two equations. In addition, a DTM is introduced to assistant in estimating 3D coordinates of 

the moving trucks. To estimate the approximate position of a truck, the calculation is performed 

as following: 
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1) Obtaining the minimum and maximum elevation values in the area of consideration, 

2) Adding the known average truck height to these two elevations to get (Zmin, Zmax), 

3) Using the image coordinates (x,y), (Zmin,Zmax) and Equation 3.16 to compute two sets of 3-

D coordinates (Xmin,Ymin,Zmin) and (Xmax,Ymax,Zmax),  

4) Using (Xmin,Ymin) and (Xmax,Ymax) to define a bounding region in the DTM which should 

contain the trucks, and 

5) Back-projecting the grid points of the DTM within the above region to the image space to 

get (x,y)back to obtain the 3-D coordinates (X,Y,Z) of the truck image image (x,y) as the 

grid point whose (x,y)back is closest to (x,y). 

 

Assume that a truck moves with a fixed velocity within a short exposure interval (for example 7 

seconds). Since the truck’s elevation does not change appreciably during this interval, we use Z 

values from the DTM. At this time we manually recognized corresponding trucks in the images 

in light of the difficulty caused by sometimes varying velocity of the trucks. Efforts will be 

made in the future to automate this process. Equations from three images are: 
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     (3.17) 

 

In the above equations there are four unknowns ),,,( 00 yx VVYX  in six equations, which could be 

solved by the Least Square Method (LSM). Actually a bundle adjustment is performed to 

estimate all the unknowns together. Table 3.10 gives exterior orientation parameters of three 

images used in our example. 
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  Photo (1185) Photo (1187) Photo (1189) 

cX  (m) 512538.071 512628.474 512739.333 

cY  (m) 216637.932 216311.665 215916.059 

Exposure 

Center 

cZ  (m) 1364.956 1363.102 1362.703 

11a  0.999288 0.999720 0.999847 

12a  -0.016355 0.015189 0.003515 

13a  -0.034003 -0.018134 0.017119 

21a  0.014087 -0.015777 -0.002904 

22a  0.997726 0.999340 0.999362 

23a  -0.065914 -0.032730 -0.035598 

31a  0.035004 0.017625 -0.017233 

32a  0.065388 0.033006 0.035543 

 

 

 

Rotation 

Matrix 

33a  0.997246 0.999300 0.999220 

 

Table 3.10 Exterior orientation parameters of three images used 

 

Table 3.11 illustrates the results of location and velocity estimation. The image coordinates given 

are those of the center of the top rectangle in each image. The 3-D coordinates are the truck 

location (center of the top) at the times of imaging.  

 

It should be noted from Table 3.11 that the average speed of all four tracks is about 2 meters per 

second or 7.2 kilometers per hour. This is also verified by interpreting the three images in Figure 

3.19 where vehicles in the direction of extracted trucks have small distances between them, 

indicating a traffic jam. In the opposite direction, distances between vehicles are significantly 

larger, signaling normal traffic.  
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 Photo (1185) Photo (1187) Photo (1189) Velocity (m/s) 

Image coordinates (3208, 3572) (2803, 2712) (2295, 1417) 

X (m) 512861.521 512848.114 512831.832 

Y (m) 216079.517 216077.424 216074.883 

 

Truck 

0  

3D 

coordinates  

Z (m) 327.500 327.556 327.836 

 

Vx = -2.005 

Vy = -0.327 

Image coordinates (3259, 3568) (2855, 2710) (2346, 1414) 

X (m) 512877.599 512864.102 512847.711 

Y (m) 216080.780 216078.539 216075.818 

 

Truck 

1 

 

3D 

coordinates  

Z (m) 327.629 327.219 327.667 

 

Vx = -2.005 

Vy = -0.327 

Image coordinates (3261, 3580) (2856, 2721) (2348, 1425) 

X (m) 512878.333 512864.767 512848.292 

Y (m) 216076.670 216074.804 216072.538 

 

Truck 

2 

3D 

coordinates  

Z (m) 327.110 326.728 327.556 

 

Vx = -2.001 

Vy = -0.275 

Image coordinates  (3209, 3582) (2805, 2723) (2295, 1429) 

X (m) 512862.110 512848.513 512831.999 

Y (m) 216076.133 216073.916 216071.224 

 

Truck 

3 

3D 

coordinates  

Z (m) 327.260 327.468 327.815 

 

Vx = -1.990 

Vy = -0.330 

Average velocity Vx = -2.003 

Vy = -0.315 

 

Table 3.11 Estimated truck location and velocity 

 

To verify the estimated truck location and velocity, we choose one truck and take its positions at 

three imaging epochs and back project the truck onto three images as polygon 0, 1, and 2 

respectively. In the first image (photo 11885) polygon 0 matches the truck. Polygon 1 and 2 

match the truck in the second and third image respectively. The back projected polygons show the 

truck’s trajectory also.  
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(a) Photo 1185 (b) Photo 1187 (c) Photo 1189 

Figure 3.19 Back projection of one truck with velocity calculated at different times 

 

 

4. Conclusions  
 
Overall, we have made a significant progress in this project year, in both automatic feature 

extraction from AIMS imagery and in automatic object recognition using neural networks. The 

following conclusions can be drawn from this project year’s results: 

 

1) An integrated edge detector combining first and second order derivatives has been developed 

and validated using AIMS data,  

2) Unique GPS/INS and DEM information has been used to assist in feature detection,  

3) A set of tools such as shadow analysis, anti-parallel segments, morphological transformation, 

and snake deformation models were used to successfully extract road networks,   

4) Object models, DEM, and photogrammetric constraints were applied in neural networks to 

produce robust matching results,  

5) A two layer Hopfield neural network was applied in truck recognition to improve interlayer 

relationship (lines and polygons) and to enhance computational efficiency, and 

6) A test on estimation of location and velocity of moving objects (trucks) from AIMS imagery 

is carried out. It is to note that this potential will open a very unique application in dynamic 

monitoring if the model can be improved. 

 

With the above results, we are very confident that georeferenced imagery such as AIMS can be 

used to generate traditional mapping products such as line maps, orthophotos, DEM, and other 

digital databases much more automatically and efficiently. There are automatic operations that 

can only be implemented using such data sets. Furthermore, this research forms a basis for 

conducting similar important research using upcoming one-meter resolution satellite imagery. 
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