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Abstract

COSMIC is a joint Taiwan-US mission to study atmosphere using GPS occultation. Its GPS data

for precise orbit determination can be used for gravity recovery. In this report a kinematic

approach was employed which assumes the positional data can be derived from the GPS data of

COSMIC in the operational phase. Using the geometric relationship between the positional

variations of orbit and the variations in the six Keplerian elements, improved formulae for the

radial, along-track and cross-track perturbations were derived. Based on a comparison with true

perturbations from numerical integrations, these formulae are more accurate than the commonly

used order-zero formulae.  The improved formulae were used to simulate gravity recovery using

the COSMIC data. In one simulation with the OSU91A model to degree 50 as the a priori

geopotential model, it is demonstrated that the EGM96 model can be improved up to degree 26

using one year of COSMIC data.

A significant effort was devoted to the recovery of temporal gravity variation using

COSMIC data. Sea level anomaly (SLA) was first generated using the Cycle 196

TOPEX/POSEIDON altimeter data. The steric anomaly due to thermal expansion was created

using temperature data at 14 oceanic layers. The steric anomaly-corrected SLA was used to

generate harmonic coefficients of temporal gravity variation. With a 3-cm noise at a one-minute

sampling interval in the COSMIC data, the gravity variation cannot be perfectly reproduced, but

the recovered field clearly shows the gravity signature due to mass movement in an El Niño.

With a 0.1-cm noise, the temporal gravity variation up to harmonic degree 10 is almost exactly

recovered and this prompts the need of a better processing technique and a sophisticated GPS

receiver technology.
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1. Introduction

The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) is
a joint Taiwan (ROC)-US satellite mission to study atmosphere using the GPS occultation
technique. This mission is to be launched in 2003 and will deploy a constellation of 8 micro-
satellites, each equipped with one GPS receiver and two antennas. One antenna is to receive
occulted signals for atmospheric study, and the other to receive un-occulted signals for precise
orbit determination (POD) (Kuo and Lee, 1999). Although the COSMIC mission is primarily for
atmospheric research, its POD GPS data can be used for geodetic research. In the early, geodetic
phase of COSMIC, selected satellites will fly in the tandem mode at altitudes ranging from 300
km to 700 km. When using the GPS data in the tandem mode the effect of the non-conservative
forces can be reduced because the non-conservative forces acting on a satellite pair are highly
correlated. In a simulation study Chao et al. (2000) show that the COSMIC GPS data from the
geodetic phase can improve the accuracy of the EGM96 model (Lemoine et al., 1998) for
harmonic coefficients up to degree 40 and for selected terms of higher degrees and orders.

The geodetic phase of COSMIC will last for less than one year and the mission will be soon
shifted to the operational phase. Table 1 lists orbital characteristics of COMIC satellites in the
operational phase, which are largely based on Kuo and Lee (1999). The 80 degree inclination of
COSMIC is not officially determined, but any inclination less than 80 degree will introduce
significant polar gaps in the data coverage and will not be ideal for global gravity recovery. In
comparison, the GRACE and GOCE missions have polar and nearly polar obits that are ideal for
global gravity recovery (Balmino et al., 1998). At the altitude of 800 km, the gravity content
sensible to the COSMIC satellites will drop to about harmonic degree of 50 (Hwang and Lin,
1998), so the data from the operational phase cannot produce high-frequency gravity
information. Unlike the study of Chao et al. (2000), in this study we will use the COSMIC GPS
data from the operational phase for gravity recovery. Since the operational phase has a lifetime
of five years, it will be possible to see the time variation of gravity field with the COSMIC GPS
data. The COSMIC orbit is nearly circular, thus, given the GPS-derived positional data of
COSMIC satellites, it is convenient to use the linear orbit perturbation theory of Kaula (1966) for
gravity computation as in the satellite altimetry research; see, e.g., Engelis (1987) and Hwang
(1995). Kaula's theory is for the general case; for this study, perturbations in the radial, along-
track and cross-track directions will be needed. Such perturbations can be derived from Kaula's
theory, and formulae of various accuracies have been given by, e.g., Schrama (1991) and
Rosborough and Tapley (1987). We will first derive alternative expressions for these
perturbations with an aim to improve the efficiency and accuracy of the formulae in the linear
theory. Then, the improved formulae will be validated and their accuracy will be assessed.
Finally, these formulae will be used to compute the earth's gravity field from the COSMIC
positional data in various simulations. The simulations will pay a special attention to recovering
a time-varying gravity field due to oceanic mass movement derived from TOPEX/POSEIDON
(T/P) altimeter data.
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Table 1: Orbital characteristics of COSMIC mission in the operational phase

Number of satellites 8
Inclination °80
Altitude 800 km
Eccentricity ≈  0
orbital period 101 minutes
Number of orbital planes 8
Nodal period 314 days
Life time 5 years
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2. Methods and data type for gravity recovery from COSMIC

The primary purpose of this study is, by simulations, to recover the geopotential coefficients,
C nm  and   S nm  , in the spherical harmonic representation of the earth's gravitational potential:
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where R is the perturbing potential, GM is the product of Newton's gravitational constant and the
earth's mass,   ( r ,   ,     )  are the spherical coordinates (radial distance, geocentric latitude, and
longitude),   a e    is the semi-major axis of the earth's reference ellipsoid,  P nm   is the fully
normalized Legendre function of degree n and order m (Heiskanen and Moritz, 1985). The
coordinate system is assumed to be geocentric, so the degree one terms are absent in (1). There
are several methods for recovering the geopotential coefficients from the COSMIC GPS data.
For example, Fig.1 shows three possible methods of recovery, as well as applications of global
gravity in engineering, oceanography, geophysics and other disciplines.  In one method, called
"dynamic method", we can treat carrier phases and psuedoranges of GPS just like regular
satellite tracking data such as ranges from satellite laser ranging (SLR) and Doppler data from
DORIS. Then, with a sophisticated software of orbit determination, e.g., NASA's GEODYN
(Pavlis et al., 1996), we can solve for the geopotential coefficients, as well as the parameters of
other perturbing forces and the initial state vectors. The dynamics of satellite are needed in this
approach; see. e.g., Rim et al. (1996). Another method, called "kinematic method", is to use a
GPS software to determine the precise positions of the COSMIC satellites without using satellite
dynamics. The satellite position is a function of the perturbing forces acting on the satellite,
including the force due to the geopotential. Using a linear orbital perturbation theory that links
the satellite position to the geopotential, we can estimate the geopotential coefficients. In this
kinematic method, the effect of the perturbing forces of non-gravity origin can be reduced by
using a priori force models and further absorbed by an empirical model (see below). The third
method in Fig. 1 first computes the GPS phase accelerations (Jekeli and Garcia, 1996), which are
then used to compute satellite accelerations. Like satellite position, satellite acceleration is also a
function of the geopotential, and in the rectangular coordinates the function is simply
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where the acceleration components on the left side are computed from the GPS phases and the
expressions of the gradient components of V can be easily derived from (1) with a suitable
coordinate transformation. Eq. (2) establishes the linear relationships between the observables
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Fig. 1: Three methods of gravity recovery from COSMIC GPS data and applications of gravity.
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(i.e., the accelerations), and the parameters (i.e., the geopotential coefficients). However, the
GPS-derived acceleration is again a combination of all perturbing forces, so a priori force models
are needed to obtain the "pure" acceleration due to the geopotential.

Considering the limitation of our facility, in this study we will use the positional data of
COSMIC to recover gravity, i.e., we will use the kinematic approach. The use of positional data
of GPS-tracked satellite for gravity recovery has been recommended by, e.g., Schrama (1991)
and Balmino et al. (1998). Like radial ranges from satellite altimetry, positional data of COSMIC
can be used for gravity recovery, but there are two differences: (1) COSMIC positional data are
three-dimensional, while altimeter ranges are one-dimensional, and (2) gravity recovery with
altimeter ranges is affected by the dynamic oceanic topography, while COSMIC data are free
from this effect. Furthermore, the GPS POD data of COSMIC will be sampled at 1 HZ (Kuo and
Lee, 1999), which far exceeds the needed sampling rate at the 800-km altitude. Thus the
positional data of COSMIC can be re-sampled at a lower rate, e.g., 1-minute interval, that is
comparable with the shortest wavelength of gravity signal that can be sensed by the COSMIC
satellites. In the case of 1-minute normal points, the accuracy of the positions of COMIC can be
well better than the 10-cm accuracy of the GPS-determined T/P orbit (Bertiger et al., 1994). For
example, Schrama (1991) and Balmino et al. (1998) assumed a 3-cm standard deviation for the
GPS-determined positions in their simulations for the mission GOCE. Surely, in the year 2003
the accuracy of GPS determined orbit will be further improved.
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3. Orbital perturbations due to the geopotential

3.1 Radial, along-track and cross-track perturbations

To use the positional data of COSMIC, we will need to know the linear relationship between
the satellite position and the geopotential coefficients. Such a relationship can be established
using Kaula's theory of linear perturbation in the six Keplerian elements, whose notations are as
follows:

semi-major axis of osculating orbital ellipse: a
eccentricity of osculating orbital ellipse: e
inclination: I
argument of perigee: 
right ascension of the ascending node: 
mean anomaly: M

Given the three-dimensional, positional data of COSMIC, the analytical expressions for
positional perturbations in the radial, along-track and cross-track directions are needed and are
derived below. First, the radial distance of satellite from the geocenter can be expressed as

 r  =  a  (1- e cos E   )  (3)

where E is the eccentricity anomaly. The perturbation in the radial direction is then

)sin()cos()cos1(1 EEaeeEaaEeE
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Furthermore, as shown in Fig.2, the perturbations in the along-track and cross-track directions
can be expressed as

    x 2   =  r  ( u +    cos  I )   =  r  [   + f   +   ( cos I )   ]    (5)

    x 3   =  r  [(sin u )  I  -   ( sin I cos u )   ]  (6)

where  f  is  true anomaly and u =  + f  is argument of latitude. The perturbations in (4), (5) and
(6) are already expressed in terms of the perturbations in the Keplerian elements, except f∆  and

E∆ . Complicated expressions of f∆  and E∆  in terms of Keplerian perturbations using infinite
series expansions can be found in Rosborough and Tapley (1987). Because the sole purpose of
the perturbation formulae is to serve as the linear functions for computing the design matrix in
estimating the geopotential coefficients (see below), it will be possible to use simplified, rigorous
expressions of perturbations that are free from infinite series expansions. First, the following
relationships hold:
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Fig. 2: Geometry showing the effects of the perturbations in argument of perigee (top), right
ascension of the ascending node (center) and inclination (bottom) on the radial, along-track and
cross-track perturbations of satellite position.
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M   =  E  - e sin E  (7)

  cos f =   cos E - e 
1- e cos E

  ,  sin f  =     1-e 2  sin E
1- e cos E

   (8)

 From (7), we have

e
e

M
E

E

M
M ∆

∂
∂+∆

∂
∂=∆ =   (1- e  cos E)   E   -   ( sin E ) e  (9)

Re-arranging (9), wet get

  E =   1 
1- e cos E

  M +   sin E 
1   -  e cos E

  e (10)

 Using a similar derivation, we have from (8)

  f   =   1-e 2 
1- e  cos E 

  E   +   sin E 
  1-e 2 (1-  e  cos E ) 

  e 

        =   1-e 2 

(1-  e  cos E ) 2 
  M   +   

(2- e 2   -  e  cos E)sin E 

  1-e 2 (1-  e  cos E ) 2 
  e    (11)

  Let   s k ,  k  =   1,   ,   6  be the perturbations of the six Keplerian elements in the order of
 a,  e,  I,   , ,   and M .  Substituting (10) and (11) into (4), (5) and (6), we have

∑
=

∆=∆
6

1k
k

i
ki scx             (12)

where the coefficients are

  c 3 
1 =   c 4 

1   = c 5 
1   =   0,   c 1 

1   =   1- e cos E  ,   c 2 
1   =-a cos E   +     ae  sin 2 E 

  1- e cos E
  ,   c 6 

1   =   a e sin E 
1- e cos E

  c 1 
2 =   c 3 

2   =   0,   c 2 
2   =   

r (2- e 2   -  e  cos E)sin E 

  1-e 2 (1-  e  cos E ) 2 
  , c 4 

2   =  r cos I  ,   c 5 
2   =  r,   c 6 

2   =   r 1-e 2 

(1-  e  cos E ) 2 
         (13)

c 1 
3 =   c 2 

3   =   c 5 
3   =   c 6 

3 =   0,   c 3 
3   =     

r [ sin   ( cos E - e )+ 1-  e 2 cos  sin E  ] 
1- e cos E

,

                                    c 4 
3   =   r sin I 

  [ cos   ( cos E - e )- 1-  e 2 sin  sin E  ] 
1- e cos E

In (13), E is simply computed iteratively from M and e by (7) without using infinite series
expansions, and r is computed from a, e, and E by (3). The perturbations in the Keplerian
elements, s k , can be obtained by integrating Lagrange's equations of motion about a reference
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orbit that has fixed a ,  e,  I  and linearly precessing ,   ,  M   (Kaula, 1966; Balmino, 1994). For
later development, the expressions of s k 's are now briefly discussed. First, considering satellite
altitude and orbital eccentricity, we can express the perturbing potential R in (1) as a function of
the Keplerian elements in a truncated series:

∑∑∑ ∑
= = = −=

=
K

n

n

m

n

p

Q

Qq
nmpqRR

2 0 0

     (14)

where K is the maximum degree of the spherical harmonic expansion depending on the satellite
altitude, and Q is a number that depends on the orbital eccentricity. For example, at an altitude of
800 km, K can be 50, and for a nearly circular orbit Q can be 1; see also the discussion in
Balmino (1994). Furthermore,
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and  is Greenwich sidereal time, C nm
+   and   S nm

+    are fully normalized spherical harmonic

coefficients (see (1)) when (n - m) is even,  and 
−
nmC  and 

−
nmS  are such coefficients when (n - m)

is odd. F nmp  is the fully normalized inclination function and G npq   ( e )  is the eccentricity function;
see Kaula (1966) and Heiskanen and Moritz (1985). The normalizing factor for F nmp   is exactly
the same as the normalizing factor for   P nm  . Use of F nmp  is compatible with the use of
normalized geopotential coefficients in (1). Let
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Then the perturbations in a ,  e,  I   are
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and the perturbations in ,   ,  M   are
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The coefficients nmpqi  in the order of Iea ,, , ,   ,  M   are

nmpq1   =   2 a b F nmp G npq ( n -   2 p +  q) 

  nmpq2   = b 
(1- e 2 ) 1/2 

e F nmp G npq [(1-e 2 ) 1/2 ( n   -   2 p +  q)- n  +   2 p ]   

  nmpq3   = b F nmp G npq   
[(n   -   2 p )  cos I- m ] 

sin I (1- e 2 ) 1/2   
  (20)
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In (23),    is the speed of the Greenwich sidereal time, which is about the earth's mean rotational

rate (7.292115× 10-5  rad s -1), and the processing rates     , M   ,   and    are computed by
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    =   
3 n   C 20  a e 2 

2   (1- e 2 ) 2 a 2 
  cos 2 I 

    =   
3 n   C 20  a e 2 

4   (1- e 2 ) 2 a 2 
  (1-5cos 2 I ) (25)

M   =   n   -   
3 n   C 20  a e 2 

4   (1- e 2 ) 3/2 a 2 
  (3cos 2 I   -   1)

where C 20 is the second degree zonal harmonic (about -0.00108263). The perturbation in mean
anomaly, M, has taken into account the variation in M due to the change in the mean motion
arising from the perturbation of the semi-major axis (the third term in (20)); see also Kaula
(1966, p. 49). Including this second-order effect will improve the accuracy of the along-track
perturbation model.

In the practical computations, each of the three positional perturbations can be represented as
the inner product of two vectors:

  x i   =   A i 
T        (26)

where   is a vector containing the geopotential coefficients and A i 
     is a vector obtained by

combining (12), (18) and (19). For an orbital arc shorter than about one week, the a, e and I
elements in nmpq

i  can be regarded as constants, so we can compute nmpq
i  only once for all

terms up to degree K and index Q (see (14)). For a nearly-circular orbit, approximate, analytical
expressions of x i   's can be obtained; see, e.g., Schrama (1991) and Rosborough and Tapley
(1987). In particular, for the radial perturbation the so called "order-zero" perturbation"
(Rosborough and Tapley, 1987) is frequently used in satellite altimetry in connection with orbit
refinement and gravity improvement; see, e.g., Wagner (1985), Engelis (1987) and Hwang
(1995). The order-zero formulae of x i    are derived in Appendix A, and their accuracies will be
compared with those of the rigorous formulae given in this section.

As a final note, in all computations below the inclination function is computed by a
FORTRAN subroutine "FINCRS" and the eccentricity function by a subroutine "GKAULAF",
both supplied by G. Balmino (private communication, 1999); a brief mention of these programs
is given by Balmino (1994). In fact, we also use the summation formula given by Kaula (1966, p.
34) to compute the inclination function, and the result is identical to that computed by "FINCRS"
up to at least harmonic degree 50. In addition, for the order-zero formulae in Appendix A, there
is no need to compute the eccentricity function.

3.2  Higher order and resonance effects

The linear theory described above does not account for the higher order perturbations, and the
theory breaks down in the case of resonance. A detailed derivation of higher order perturbations
can be found in Kaula (1966). However, since the higher-order perturbations are not linear
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functions of the geopotential coefficients, they are of no use for the gravity computation in this
study. Resonance occurs when the frequency nmpq   in (21) approaches zero. Depending on the
closeness of nmpq   to zero, there are different degrees of resonance, i.e., shallow, deep and
perfect resonances (Reigber, 1989). For COSMIC at the 800-km altitude, we find that, if

  nmpq

M 
  <   0.01          (27)

then the coefficients in (20) become excessively large and the perturbations computed by (12) do
not agree with those from the direct numerical method (see below). Thus, if the condition in (27)
is met, we simply set nmpq

i  = 0. Fortunately, these two effects can be modeled by simple,
empirical formulae. An empirical formula for the radial perturbation can be found in, e.g.,
Colombo (1984). In this study, we adopt the following empirical model to account for the higher
order and resonance effects for COSMIC:

 
  x i 

e   =   a 0 
i   +   a 1 

i cos u +   a 2 
i sin u +   a 3 

i sin 2 u +   a 4 
i  t cos u  + 

                a 5 
i t sin u +   a 6 

i   t 2  cos u  +   a 7 
i   t 2  sin u  +   a 8 

i  t  +   a 9 
i   t 2   

 (28)

where t is the time elapsed since a reference epoch and a k 
i    are the coefficients for the ith

perturbation component. Note that such an empirical model can also absorb partly the error in the
initial state vector and errors in the force models in the parameter estimation involving satellite
dynamics. The choice in (28) is based on the results in Colombo (1984), Engelis (1987) and
Hwang (1995), and most importantly based on the numerical tests carried out in this study.

3.3 Model errors of the perturbation formulae

To see how the perturbation formulae perform, one can replace the geopotential coefficients
in the formulae by the differences between two sets of geopotential coefficients to compute the
predicted perturbations along the trajectory of the satellite. In this way the predicted
perturbations are in theory the differences between the two satellite trajectories resulting from
the uses of two different geopotential models in the equations of motion of the satellite. Next, the
"true" perturbations can be obtained by differencing the two trajectories computed by strict
numerical interrogations of equations of motion. For each component the model error of the
perturbation formula can be defined as

  M e   =   D 
D 

  (29)

where D is the RMS value of the true perturbation, and D∆  is the RMS value of the difference
between the true and the predicted perturbations.

 We choose the EMG96 and OSU91A geopotential coefficients to form the true and predicted
perturbations (actually the trajectory differences). The numerical integrations were carried out
using the DVDQ integrator (Krogh, 1974); see also Hwang and Lin (1998).  Table 2 shows the
model errors and the statistics of the differences between the true and predicted perturbations for
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three perturbation models: the order-zero model in Appendix A, and the perturbation models
formulated in this study with Q = 1 and Q = 2. The arc length for all cases is 7 days. For each
model error we also experiment with two different expansion degrees: K = 10 and K = 50. (see
(14) for Q and K).  From Table 2, we find that for all formulae, the model error increases as K
increases. That is, the perturbation formulae are less accurate for a high degree expansion than
for a low one. The largest model error is in the along-track component and the smallest model
error is in the cross-track component. For the along-track component, the case with Q = 2
improves the model accuracy only marginally compared to the case with Q = 1. For all
components, changing from Q = 1 to Q = 2 doubles the computing time. Also, the model with Q
= 1 outperforms the order-zero model and requires less computing time.

   Fig.3 shows the differences between the true perturbation and the predicted perturbations based
on the three models, for the radial component and for K = 50. The cm-level error in the

Table 2: Model errors and statistics of the difference between the true and predicted
perturbations

(a) To harmonic degree 10, arc length = 7 days

Type of model Model error (% )
(r/a/c)

Max. diff. (cm)
(r/a/c)

Min. diff. (cm)
 (r/a/c)

RMS diff. (cm)
(r/a/c)

Order-zero model  1.08/1.21/0.92  1.1/6.1/0.8  -1.5/-4.6/-1.3  0.4/1.80/0.3
This study, Q = 1  0.85/0.64/0.49  1.0/3.3/0.5  -0.8/-2.1/-0.6  0.3/0.9/0.2
This study, Q = 2 0.42/0.0.53/0.49  0.4/2.5/0.5 -0.4/-1.5/-0.6  0.1/0.8/0.2

(b) To harmonic degree 50, arc length = 7 days

Type of theory Model error (%)
(r/a/c)

Max. diff. (cm)
(r/a/c)

Min. diff. (cm)
 (r/a/c)

RMS diff. (cm)
(r/a/c)

Order-zero theory 1.52/3.43/3.38 4.6/ 34.8 /10.5 -4.6/-33.9/ -7.8 1.3/ 10.3/ 2.7
This study, Q = 1  1.18/1.10/0.93 3.3/14.5/ 2.5 -4.1/-12.4/ -2.7 1.0/3.5 / 0.7
This study, Q = 2 0.96/1.08/0.93 2.7/9.4/2.5 -2.7/-10.7/-2.7 0.8/3.4/0.7
Note: r = radial, a = along-track, c = cross-track, Q = upper limit of index in eccentricity function

models with Q =1 and 2 is well smaller than the positional error of COMIC from GPS. In the
differences in the along-track direction, for all models there are distinct components at 0.02 cycle
per revolution (cpr) and 2-cpr components of time-dependent amplitude, thus we use the
following 15-coefficient empirical model for the radial component:

x i 
e   =   a 0 

i   +   a 1 
i cos u +   a 2 

i sin u +   a 3 
i sin 2 u +   a 4 

i  t cos u  +   a 5 
i t sin u +   a 6 

i   t 2  cos u  +   a 7 
i   t 2  sin u  +   a 8 

i  t  
                +   a 9 

i   t 2   +   a 10
i  cos  2 u +   a 11

i  t cos  2 u   +   a 12
i  t sin  2 u   + a 13

i  cos  0.02u   +   a 14
i  sin  0.02u 
 (30)
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Fig. 3: Differences between the true perturbation, and three predicted perturbations computed
with three perturbation models (order-zero, Q =1 and Q = 2). Day is the elapsed number of days
since the first data point.
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Fig. 4 shows the differences in the along-track direction resulting from the uses of the 10-
coefficient model (see (28)) and the 15-coefficient model (see (30)) in the model with Q =2.
Clearly, the 10-coefficient model cannot account for the large difference near the end of the arc.
Use of the 15-coefficient model reduces the RMS error from 8.3 cm to 3.4 cm, which is
comparable to the assumed positional error of COSMIC. Note that, when estimating geopotential
coefficients from the positional data, we can use iterations to reduce the effect of model error,
because the successively estimated coefficients will become stable and the perturbations will
approach zero.

In summary, based on the model errors in Table 2 and the assumed data noise, we will use the
perturbation model with Q =1 in all simulations below. The maximum arc length that is
considered valid for the reference orbit in the perturbation model and the empirical model is 7
days; a longer arc should be divided into multiple segments of 7-day arc with each segment
having a new reference orbit and a new set of empirical coefficients.
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Fig. 4: Difference between the true and predicted along-track perturbations using 10 and 15
coefficients in the empirical model. The perturbation model uses Q = 2. Day is the elapsed
number of days since the first data point.
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4. Use of orbital perturbation formulae in gravity recovery

  The linear perturbation formulae can be used to compute the design matrix when estimating
the geopotential coefficients. Given the positional data of COSMIC, at each epoch we can set up
observation equations in the radial, along-track and cross-track directions as

3,2,1),()(
00

0 =∆+∆∆+=+ = ix
x

xvx e
i

i
iii             (31)

where x i   's are the positional data with noise v i 's,   is a vector containing the geopotential

coefficients, 0  is an approximate of  ,    is the correction with   = 0   +     ,  contains the

empirical coefficients and finally x i 
0  is an approximate of x i    that is computed with 0  and other

a priori force models. If the a priori force models are not perfect, but their errors are dominated
by the long-wavelength components, then the empirical models in (28) and (30) will absorb most
of the errors. Let

  X   =   (32)

Then X can solved by the least-squares method:

X   =   ( A T PA   +   P x   ) -1  A T PL (33)

where A is the design matrix composed of 
∂
∆∂ ix

 and the function values of the empirical model,

vector L contains the residual observations, i.e., x i   -   x i 
0 , P is the weight matrix of L, and P x    is

the a priori weight matrix of X. Assuming that the variances of the geopotential coefficients
follow modified Kaula's rule (Reigber, 1989), i.e.,

∑
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           (34)

 Then   P x   =  diag   (  p  C nm,   p   S nm)  is an diagonal matrix with its elements computed by

  p   C nm  =   p   S nm  =     1 

n 
2 

(35)

Use of P x    is necessary for data of non-global coverage. More discussion on using weighted
constraints in geopotential estimation from satellite tracking data can be found in, e.g., Reigber
(1989).
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5. Simulations of gravity recovery from COSMIC data

5.1 Improving current gravity model

 In this case we wish to see how current gravity models, especially the EGM96 model, can be
improved using the positional data of COSMIC. The steps of simulation are as follows:

(1) Integrate a 7-day orbit at a 1-minute interval using the EGM96 coefficients for each of the 8
COSMIC satellites. Random errors are added to the orbits based on a standard deviation of 3 cm
in GPS positioning. These orbits are treated as the positional data of COSMIC.
(2) Repeat (1), but with the OSU91A coefficients and without random errors. These orbits are
treated as approximate orbits based on a priori geopotential coefficients (in this case, OSU91A)
(3) Subtract the orbits in (2) from the orbits in (1) to get the radial, along-track and cross-track
perturbations.
(4) Estimate the differences between the EGM96 and OSU91A coefficients by least-squares
using the linear perturbation theory with data from the "observed" perturbations in step (3).

At the initial epoch of integrations, the right ascensions of orbital planes and arguments of
latitudes of the 8 satellites in the COSMIC constellation are shown in Fig. 5. The amount of data
to process and the computing times in such a simulation are enormous. For example, the 8 7-day
arcs result in 8 normal matrices with a total size of 220 Megabytes, and forming one normal
matrix requires 3 CPU hours on a Pentium-III 600 MHZ machine. The choice of 1- minute
interval is based on the assumption that the shortest wavelength of the gravity field  that
COSMIC can sense corresponds to a degree-50 field (the actual maximum degree can be higher).
At 800 km, a COSMIC satellite will take about 6050 seconds to travel in one revolution.
According to the sampling theorem (e.g., Meskó, 1994), the along-track sampling interval should
be 6060/(2x50) ≅ 60 seconds. In general, the along-track sampling interval is

t   =   T 
2  K

  ≈     a 3/2 

K GM
    (36)

where T is the period of one revolution, K is the maximum degree of the geopotential field (see
(14)) used in the orbit integration, and a is the semi-major axis of the mean orbital ellipse.
However, to be compatible with the satellite cross-track spacing, the actual along-track sampling
interval can be larger than that given in (35). For example, Chao et al. (2000) used a five-minute
interval when deriving  normal point  data from the geodetic phase of COSMIC.

The recovered coefficients were then assessed by examining the external and internal
accuracies. For the external accuracy we computed the relative error of a coefficient by

  E nmc =   C nm  -   C nm  

C nm
,   E nms =   S nm  -   S nm  

S nm
  (37)

where   ∆ C nm and  ∆ S nm are the estimates of  C nm and  S nm   (the differences between   EGM96
and OSU91A coefficients). Fig.6 shows the relative errors of the recovered coefficients. For
comparison, the relative errors of the recovered coefficients without weighted constraints are
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Fig. 5: Configuration of the COSMIC constellation in the operational phase at the initial epoch
of orbit integration (0 hour UTC, Jan. 1, 2001). The 8 satellites are placed on 8 orbital
planes with evenly spaced right ascensions and arguments of latitude.
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Fig. 6: Relative errors of the recovered harmonic coefficients from the degree-50 solution for (a)

C nm   without constraint (b) S nm  without constraint (c) C nm   with constraint and (d) S nm  
with constraint.
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Fig. 7: Relative errors of recovered zonal coefficients from the degree-50 solution with
      constraint.
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also shown in Fig. 6. Indeed the constraints have reduced the relative errors considerably. For
coefficients of degree lower than 10, the relative errors are mostly below 0.1. The relative errors
of the sectorial coefficients are relatively small compared to the errors of other harmonics. Fig.7
shows the relative errors of the recovered zonal coefficients. In general, the odd zonal
coefficients have relatively large errors, especially the  C 5,0 ,   C 15,0  and     C 37,0terms. The  C 2,0 
term has an error of 0.05, which is almost the smallest among all coefficients. The external errors
will be further reduced if more than one week of COSMIC data are used.

Next we examined the internal accuracy using the geoid errors implied by the standard
deviations of the recovered coefficients from the least-squares. Fig. 8 shows the geoid errors
implied by the recovered field, and those implied by the EGM96 model. In Fig.8 we also show
the geoid errors implied by the solution with 1 year of COSMIC data. As shown in Fig. 8, below
degree 7 the geoid error from the one-week solution of COSMIC are comparable to that from
EGM96, and beyond degree 7 the former is larger than the latter. However, for degrees below 26
the geoid error from the one-year solution is much smaller than that from EGM96. With five
years of COSMIC data, improvement at degrees higher than 26 can be foreseen. On the other
hand, improvement at higher degrees can be achieved by using the geodetic phase data that spans
a relatively short time, since the gravity signal-to-noise ratio will be significantly magnified due
to the lower altitude.

5.2. Recovering temporal gravity variation
5.2.1 Generating gravity variation due to oceanic mass variation

Next we wish to see the performance of COSMIC in recovering temporal gravity variation.
The operational phase of COMIC may last as long as five years, so its data are ideal for
determining temporal gravity variation, which is due to factors such as changes in oceanic mass,
atmospheric mass, ground water level, ice-sheet thickness; see also Chao (1993) and Wahr et al.
(1998) for useful discussions on this issue. In comparison to the earth's static gravity, the
temporal gravity variation is very small and is further reduced at satellite altitude. In this
simulation, we assume that the only source of gravity variation arises from the variation in the
oceanic mass as observed by TOPEX/POSEIDON (T/P). T/P is a satellite altimeter mission
specifically designed to measure sea surface heights (SSHs); see also Fu et al. (1994) for a
complete description of this mission. As the parameters to be recovered, we generate spherical
harmonic coefficients of gravity variation as follows:

(1) Average 5.6 years of T/P altimeter data to get mean SSHs.
(2) Compute the difference between the SSH of T/P Cycle 196 and the mean SSH. The
difference is called sea level anomaly (SLA).
(3) Compute the steric anomaly in January 1994 (the month of T/P Cycle 196). ( see Appendix
B)
(4) Subtract the steric anomaly from SLA, yielding corrected SLA (CSLA)
(5) Compute the spherical harmonic coefficients of the potential due to the mass of CSLA up to
degree 180. (see Appendix C)
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Fig. 8:  Geoid errors by degree computed from the coefficient errors of the EGM96 model, and
the models from the COSMIC solutions using 7 days and 1 year of data.
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   The steric anomaly due to thermal expansion of the oceans will not cause mass variation, so it
must be removed from the raw SLA in order to see the temporal, oceanic mass variation. Fig. 9
shows SLA and CSLA from T/P Cycle 196, and the steric anomaly, and Table 3 shows their
statistics. Cycle 196 is selected to see the large variation of SSH over the Pacific Ocean and the
Indian Ocean during the 1997-1998 El Niño. By comparing the RMS values of SLA and the
steric anomaly in Table 3, we find that globally the steric anomaly contributes about half to the
sea level variation. As seen in Fig. 9, the sea surface northeast of Australia dropped by as much
as 20 cm, while the sea surface in the central, eastern Pacific rose by about the same amount. Sea
surface northeast of Madagascar also rose by more than 20 cm. These lows and highs in the sea
surface are the result of the 1997-1998 El Niño, and only partially due to the steric anomaly (one
can compare the SLA and CSLA maps to see this). That is, during the

Table 3 Statistics of sea level anomaly, steric anomaly and corrected sea level anomaly  (in cm)
over oceans with depth greater than 500 m

Maximum Minimum Mean RMS
Sea level anomaly 29.9 -54.4 0.22 5.4
Steric anomaly 21.41 -11.61 0.32 2.5
Corr. sea level anomaly 38.4 -47.9 -0.1 5.3

1997-1998 El Niño, there were actual large mass variations northeast of Australia and in the
central, eastern Pacific. Fig. 10 shows the degree amplitudes of the geoid variation due to the
mass variation. Degree amplitude of geoid is defined as
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where nmJ  and nmK  are the harmonic coefficients of the gravity variation, and R e    is the mean
radius of the earth. For the CSLA-induced geoid variation, all degree amplitudes are smaller than
1 mm, except at degrees 2 and 3. Thus the geoid variation is indeed very small
compared to the total geoid (about 30 m RMS from EGM96 to degree 360). Also shown in Fig.
10 is the cumulative power up to degree L, defined as
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where Nmax is the highest degree of expansion, which is 180 in this case. Based on Fig.10, the
power of the geoid variation is concentrated at the low degree terms. For example, up to degrees
5, 10, 15, 36 and 50, the cumulative powers are 84.5%, 96.8%, 98.8%, 99.8%, and 99.9%,
respectively. Fig.11 shows the geoid variations expanded to degrees 5, 15 and 50.
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Fig. 9: TOPEX/POSEIDON-observed raw sea level anomaly (top), temperature-derived steric
anomaly (center), and corrected sea level anomaly (by steric anomaly) at Cycle 196.
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Fig. 10:  Degree amplitude and cumulative percentage power of geoid variation computed from
the corrected sea level anomaly in Fig. 9.
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At as low as degree 5, the signatures of geoid variation over the Pacific Ocean and the Indian
Ocean are still apparent and are consistent with those of CSLA in Fig. 9. Specifically, in the
western Pacific a negative CSLA results in a mass deficiency, which then causes a negative
geoid variation there; in the eastern Pacific, the sign of CSLA is reversed, leading to a positive
geoid variation there. During the 1997-1998 El Niño the largest geoid change occurred around
the Galapagos Island and exceeded 1 cm. Furthermore, by least-squares fitting an expression
    n -    to the averaged degree variances of the gravity variation, we find
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Fig.12 compares the modeled and true degree variances of the gravity variation. Comparing the
expressions in (34) and (40), we find

  n   ≈   104   n 

Thus at any degree the static gravity signals (e.g., geoid undulation, gravity anomaly, deflection
of the vertical etc.) are about 10000 times larger than the temporal gravity signals due to oceanic
mass variation.

5.2.2 Recovery

    Now we attempt to recover the geoid variation in Fig. 11 from the COSMIC data. For this
simulation, we assume that EGM96 is the true, static gravity field determined from dedicated
gravity missions such as GRACE, CHAMP and GOCE (Balmino et al., 1998).  The time-
dependent gravity field is then the sum of EGM96 implied static gravity and the change of
gravity. Let   C nm

E   and S nm
E    be the geopotential coefficients of EGM96. The steps of simulation

are:

(1) Compute C nm
T   =   C nm

E   +   J nm  and S nm
T   =   S nm

E   +   K nm

(2) Integrate 7-day orbits at a 1-minute interval using C nm
T   and S nm

T    up to degree 50 for each of
the 8 COSMIC satellites. Random errors are added to the orbits based on a 3-cm standard
deviation. These orbits are treated as positional data of COSMIC.
(3) Repeat (2), but using   C nm

E   and S nm
E   

(4) Subtract the orbits in (3) from the orbits in (2) to get the radial, along-track and cross-track
perturbations due to mass variation.

(5) Compute   J nm and  K nm  , which are the estimates of J nm    and   K nm, by least-squares using
the linear perturbation theory with data from the "observed" perturbations in Step (4).

   Fig. 13 shows the perturbations of a COSMIC satellite orbit due to the mass variation (note: no
noises are added to these perturbations). If the higher order effects are removed, the RMS
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Fig. 11: Contour maps of geoid variation up to degrees 5 (top), 15 (center) and 50 (bottom) from
the corrected sea level anomaly in Fig. 9. Unit is mm.
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Fig. 12: True and modeled degree variances of gravity variation due to oceanic mass variation.
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values of the radial, along-track and cross-track perturbations are only 0.4, 4.5 and 1.2 cm,
respectively, which are very small and can be easily obscured by GPS noises. In the least-squares
estimation, we have tried three different solutions: the first solution does not use any weighted
constraints, the second solution uses constraints based on the static degree variances in (34), and
the third solution uses constraints based on the temporal degree variances in (40). Unfortunately,
in the first and second solutions the normal matrices were singular and hence the estimations
were unsuccessful.

Fig. 14 shows the relative errors of the recovered coefficients from 7 days of COSMIC data
from the third solution. Up to degree 18 the sectorial harmonics are best recovered and the low
degree terms have relatively small errors. For most of the coefficients, the relative errors are
below 1, indicating that the COSMIC satellites can sense harmonic coefficients up to as high as
degree 50. Fig. 15 shows the recovered geoid variations up to degrees 5, 15 and 50. Due to the
GPS noises and the polar gaps in the data coverage, the true geoid variations in Fig. 11 cannot be
fully recovered. In addition, a surface signal such as geoid variation will be attenuated at satellite
altitude, making a full recovery of the signal even more difficult. In fact, beyond degree 15 the
resolution of the recovered geoid variation does not improve at all. We also tried a solution using
one month of COSMIC data, but the result is not improved and is almost identical to that from
one week of data. However, important signatures of the temporal gravity variation are retained in
the recovered fields. For example, the geoid lows northeast of Australia and in the Atlantic
Ocean, and the geoid highs near the Galapagos Island and east of Madagascar are clearly seen in
Fig.15. Based on this experiment, we conclude that, given data noise of 3 cm at one-minute
interval, COSMIC is able to see temporal gravity variation on time scale of at least one week and
on spatial scale of about 2600 km (the equivalent scale of degree 15).   

5.2.3  The effect of data noise on recovering temporal gravity

The result in the above experiment has shown that we cannot fully recover the temporal
gravity variation with a 3-cm noise in the COSMIC data. To see more about how the noise of
COSMIC data will affect the result, we generated 7 days of orbit for each of the 8 COSMIC
satellites using degree-50 fields in the orbit integrations as in the previous section. However, here
we used three different noises in the "observed" perturbations: 3, 1 and 0.1 cm. The "observed"
perturbations were then used to compute the temporal gravity variations up to degree 15. The
reasons for using the degree-15 solutions are: (1) to avoid aliasing into low-degree terms from
the high-degree terms due to the polar gaps, (2) to avoid using any a priori weighted constraints
of any kind, and (3) to avoid singularity in the normal matrix in case of no constraints. Fig. 16
shows the relative errors from using the three noises. Clearly the relative error decreases as the
noise decreases. The result from the case with noise = 3 cm is almost identical to the result from
the degree-50 solution (up to degree 15) described in the previous section. The best result is with
noise = 0.1 cm, and the recovered geoid variations up to degrees 5, 10 and 15 are shown in
Fig.17. The degree-10 geoid in Fig.17 closely resembles the degree-15 geoid in Fig.11. In the
case of 0.1-cm noise, the degree-15 geoid improves the resolution over the degree-10 geoid, but
the former contains some artifacts, e.g., the distorted geoid variations in the eastern Pacific and
in the central Atlantic. We also find that the degree-5 geoid from the case with noise = 1 cm  (not
plotted here) agrees very well with the degree-5 geoid in Fig. 11. This experiment suggests
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Fig. 13: Perturbations of COSMIC orbit due to the mass variation of corrected sea level anomaly
up to degree 50. Day is the elapsed number of days since the first data point.
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Fig. 14: Relative errors of the recovered harmonic coefficients of gravity variation for (a) J nm

and (b) K nm   using one week of COSMIC data and degree-50 solution.
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Fig. 15: Contour maps of recovered geoid variation up to degrees 5 (top), 15 (center) and 50
(bottom) using one week of COSMIC data and degree-50 solution. Unit is mm.
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that the noise of COSMIC data has a substantial impact on the achievable resolution in the
recovered gravity variation. Furthermore, it appears that the polar gaps in the COSMIC orbits
will not do too much damage to the low-degree solutions performed here, but it is expected that
the accuracy of recovery will be improved if the COSMIC satellites are in polar orbits.
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Fig. 16: Relative errors of the recovered harmonic coefficients of gravity variation using one

week of COSMIC data and degree-15 solutions for (a) J nm (3-cm noise) (b) K nm   (3-cm noise)

(c) J nm (1-cm noise) (d) K nm   (1-cm noise) (e) J nm (0.1-cm noise) (f) K nm   (0.1-cm noise).
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Fig. 17: Contour maps of recovered geoid variation up to degrees 5 (top), 10 (center) and 15
(bottom) using one week of COSMIC data and degree-15 solution with noise = 0.1 cm.
Unit is mm.
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6. Conclusion and recommendation

In this study we proposed improved formulae of orbital perturbations, which were then
verified by numerical analysis. The perturbation formula were used to recover gravity fields
using the simulated, GPS-derived positional data from the COSMIC mission in the operational
phase. Our results show that the COSMIC data can improve the long wavelength part of the
EGM96 model. Most important is that the COSMIC data can be used to recover temporal gravity
variations, especially the gravity signatures due to the mass movement in an El Niño. Our
experiments also show that to see clearly the structure of temporal gravity variation, the noise of
COSMIC positional data should be reduced to 1 cm or less at the one-minute sampling interval.
Thus, it is necessary to develop a good data processing method for noise reduction. The
technique developed here can be applied to gravity recoveries from the data of the CHAMP and
GRACE missions, which have onboard accelerometers to measure surface forces.  With the
measured surface forces, there will be no need to use a priori force models in our approach and
the result should be improved. This study has focused on the use of positional data of COSMIC.
A different use of the COSMIC GPS data for gravity recovery is possible and this is a subject for
future study.
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Appendix A: Order-zero perturbations

For a satellite orbit with a small eccentricity, we may assume r = a, f = E = M in (4), (5) and
(6) to obtain the approximations:

  x 1 
0   =     (1- e cos M )   a -   ( a cos M )   e +   (  ae sin M )   M         (A-1)

x 2 
0 
  =   a   [   + M   +   ( cos I )   ] (A-2)

  x 3 
0   =  a  [(sin (   +  M)   )  I  -   ( sin I cos (   +  M))   ]   (A-3)

Furthermore, in (14) we set Q = 1. This truncated series of R will then require only
the  G np0 ,   G np± 1  terms, which can be approximated as (Balmino, 1994, p. 270)

G np0   =   1,   G np1   =   
(3n -   4  p  +1) e 

2 
  ,   G np-1  =   

(-n +   4  p  +1) e 
2 

        (A-4)

G np0 
′   =   0,     G np1 

′   =   
3 n -   4  p  +1  

2 
  ,   G np-1

′   =   
  - n +   4  p  +1

2 
(A-5)

Substituting (A-4) and (A-5) into (20), (19), and finally into (A-1), (A-2) and (A-3), with some
trigonometric identities we obtain the order-zero perturbations
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This result can also be found in Rosborough and Tapley (1987).
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Appendix B: Computation of steric anomaly due to thermal expansion

 The steric anomaly is sea level variation due to the expansion or contraction of sea water as a
result of temperature variations over the entire column of the oceans. However, the upper layers
of the oceans contribute most to the steric anomaly. In practice we take into account the
contributions from the upper 14 oceanic layers when computing the steric anomaly:

∑
=

∆=∆
14

1i
iiiS HTH            (B-1)

where i  is the coefficient of thermal expansion from Gill [1982, Table A3.1], and T i    is the
temperature anomaly relative to the mean of layer i and H i  is the thickness of layer i.;  see also
Chen et al. (2000, Table 1) for a list of depths and thicknesses of the 14 layers. We obtained via
the Internet the monthly, °×° 11  gridded temperature data at different depths from the Integrated
Global Ocean Services System (IGOSS) at the Columbia University (see the WWW site:
http://lola.ldgo.columbia.edu/SOURCES/.LEVITUS94). Then, at each of the 14 layers, the mean
temperature was determined and subtracted from the raw temperature to get the temperature
anomaly T i   . It turns out that the quality of temperature data varies over space and time. So we
use a medium filter with a 300-km wavelength to filter the computed steric anomaly. Ideally we
should compute the steric anomaly at the mean time of T/P Cycle 196, but the current maximum
resolution of reliable global temperature data at different depths is probably only one month.
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Appendix C: Harmonic coefficients and geoid variation from corrected sea level anomaly

Steric anomaly-corrected sea level anomaly (CSLA) from satellite altimetry includes the
deviation of the instantaneous sea surface (after removing ocean tide and other geophysical
effects) from a mean sea surface, and the vertical loading deformation due to the mass of such a
deviation. CSLA in this case may be expanded into a series of spherical harmonics as
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where k n  is elastic Love number of degree n (for their numerical values, see, e.g., Wahr et al.
(1998)), R nm  =   P nm cos m ,   S nm  =   P nm sin m   are fully normalized spherical harmonics
(Heiskanen and Moritz, 1985; see also (1)). The coefficients a nm  and   b nm   are harmonic
coefficients of CSLA without loading effect. and can be obtained by the integrations
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At any point exterior to the earth, the potential due to the mass of h is
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where w   ≈   1.03  g  cm-3   is the density of sea water, R e   ≈   6371  km   is the earth's mean radius, G
is the gravitational constant, and s is the distance between the point at (r ) and a mass
element. The inverse of s can be expanded into products of spherical harmonics as (Heiskanen
and Moritz, 1985)
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Substituting (C-4) and (C-1) into (C-3) and using the orthogonal relationship of spherical
harmonics, we get
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where M is the earth's mass and
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Thus the elastic Love numbers are canceled out. The harmonic coefficients of V differ from

those of CSLA by only a scale factor. Let C nm  =   ( a nm
  ′   +  i  b nm

  ′   ) , where i   =   -1 . Given h    on a

regular   ×    grid, (C-5) can be approximated as
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where t k   =  cos  ( k   ),   l   = l   , I P nm
k  is the integration of the associated Legendre function

(Paul, 1978), q n  is a smoothing factor defined by Rapp (1989, p. 266), and

  g m   = {   ,   if   m  =   0 

[sin (m ∆λ) - i (cos (m ∆λ) -1)]/m, if  m ≠  0
    (C-8)
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Thus h∆  is the simple mean of four neighboring point values. The expression
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∆  in (C-7) can be computed efficiently by FFT. With C nm  

computed,  a nm
  ′   and   b nm

  ′    are simply taken from its real and imaginary parts, respectively.

The geoid variation due to Dh is simply computed by Bruns' formula N = V/  , where   is
normal gravity. On sea level, we can set  r  =   R e    and     =  GM   /   R e 

2  to get the geoid variation by
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The error in such a spherical approximation is very small because the geoid variation is already
very small.



43

APPENDIX D: Important FORTRAN programs

  This appendix lists important FORTRAN programs developed in this study. The
programs are written in a fashion that all I/O parameters can be specified online. To carry
out a specific job described in this report, all needed programs (executables) can be
collected in one batch file. The batch file is then submitted under the UNIX environment
to finish all needed computations in one single run. All FORTRAN programs listed below
have the suffix .f.

degvar.f
USAGE:

degvar coef_file -Llmax -Nname -Ttype [-E -Sscale]
OPTIONS:

coef_file  file of geopotential coefficients
-L max harmonic degree
-N name of output variance and squared root variance
-T type of degree variance or error degree variance

0 = geoid, 1 = gravity anomaly, 2 = geopotential
-E compute error degree variance [default; degree variance]
-S scale factor [default: 1]

DESCRIPTION:
degvar.f computes degree variances or degree variances of a geopotential model.

detrend.f
USAGE:

detrend -Apert.rtn -Bpert_rm.rtn -Ctrend.rtn
OPTIONS:

-A file of radial, along-track, cross-tack perturbations
-B same as -B, but the perturbations are detrended using empirical models
-C same as -B, but the contain the trends in the three perturbations

DESCRIPTION:
detrend.f removes the higher order effects in the radial, along-track, cross-tack

perturbations

diffcoef.f
USAGE:

diffcoef -Acoef1 -Bcoef2 -Cname -Llmax [-R -T -Z]
OPTIONS:

-A first set of coefficients
-B second set of coefficients
-C difference, (A-B)
-L max degree of comparison
-R write relative errors abs ((A-B)/A) [default: No] in .grd1 format
-T minimum acceptable relative error in .grd1
-Z write relative errors of zonal harmonics

DESCRIPTION:
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diffcoef.f  computes the statistics of the difference between two sets of
geopotential coefficients

integr.f
USAGE:

integr -Cgfile -Eefile -Tstop_time -Oiner.xyz -Lnmax -Ddelt
              [-Ggeod.xyzt -K]
OPTIONS:

-C file of geopotential coefficients, including GM, and a
-L max degree of geopotential under consideration
-E file of start time and the initial state vector
-T file of stop time in year, month, day, hour, min, sec
-D increment of orbit in output file in seconds (for -O)
-O output file of time, x, y, z, vx, vy,  vz. time is in MJD
-G output file of longitude, latitude, ellipsoidal height

and time [default: no such output]
-K the initial state vector contains Keplerian elements. the order

is: a, e, i, argument of perigee, right ascension of ascending node, mean anomaly
[default: rectangular elements]

DESCRIPTION:
integr.f integrates satellite orbit perturbed by the earth's nonsphericity using the
Cowell II formulation of EOM with the predict- psuedo-correct algorithm.
DVDQ is used as the numerical integrator.  The usage of DVDQ can be
found in Krogh (1969). Assume (1) UT1-UTC= 0(2) no precession, nutation and
polar motion.

intorb.f
USAGE:

intorb -Adata_orbit -Btimes_int [-Ddegree -Pno_varables -E]> out_orbit
OPTIONS:

-A orbit file with equally-spaced coordinates and/or velocities
format: time, [x,y,z,Vx,Vy,Vz, ...]

-B file of times where interpolations are wanted
format: time (same unit as -A time)

-D polynomial degree [default: 14]
-P number of dependent variables to be interpolated[default: 6]
-E exclude interpolated values at the two end zones, will lose data [default:

do not exclude end zones]
out_orbit output file (same format as -A file)

DESCRIPTION:
intorb.f interpolates satellite positions and velocities using polynomials. The data
are assumed to be equally spaced in time.

norm.f
USAGE:

norm -Oobs  -Nnu.mat -Llmax -Tstart/stop
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OPTIONS:
-O file of t,a,e,i,w,om,ma,r,t,n (the last three are observations),

t is in mjd
-N file of normal matrix and u-vector. NX=U, where X is the vector

of unknowns
-L max harmonic degree of the solution
-T start/stop times of the used arc in mjd

DESCRIPTION:
norm.f forms normal equations of spherical harmonic coefficients of 

geopotential and other parameters using GPS-determined positions of an earth-
orbiting satellite and the order-zero formulae of linear perturbations.
Parameters under considerations include: (1) spherical harmonic coefficients
up to degree LMAX, excluding C00,C10,C11,S11, (2) empirical coefficients
for the higher order effects.

norm_t2.f
USAGE:

norm_t2 -Oobs.rtn -Nnu.mat -Llmax -Tstart/stop [-Ptol -Qqmax -Sn -W]
OPTIONS:

-O file of observarions
-N file of normal matrix and u-vector. NX=U, where X is the vector

of unkowns
-L max harmonic degree of the solution
-T start/stop times of the used arc in mjd.
-P tolerance number of resonance effect [default: 0.01]'
-Q max of q index in the eccentricity function [default:1]'
-S use every nth observation to accumulate normal matrix [default: 1]

-W data noise is unknown, all data have identical weight
DESCRIPTION:

norm_t2.f has the same function as norm.f, i.e., it forms normal equations of spherical
harmonic coefficients of the geopotential and empirical parameters using GPS-
determined positions of an earth-orbiting satellite. But the perturbation formulae are
based on those developed in this paper.

perturb.f
USAGE:

perturb -Ccoeff -Oorbit  -Eperturb -Llmax -Tstart/stop [-Ptol]
OPTIONS:

-C file of difference of geop. coeff.
-O file of elements of mean orbit and Kepler elements
-E file of radial, transverse and normal orbit perturbations
-L maximum degree of geopotential coefficients under

consideration
-T start/stop times of the orbit arc in mjd.
-P tolerance of frequency ratio with one cpr. tol >= 0.01 in order to

have a meaningful result [default: 0.01]
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DESCRIPTION:
perturb.f computes the radial,along-track and cross-tracks perturbations
due to  the geopotential using order-zero formula.

perturb_t2.f
USAGE:

perturb -Ccoeff -Oorbit  -Eperturb -Llmax -Tstart/stop
[-Ptol -Qqmax]

-C file of difference of geopotential coefficients
-O file of elements of mean orbit and Kepler elements
-E file of radial, transverse and normal orbit perturbations
-L maximum degree of geopotential coefficients unde consideration
-T start/stop times of the used arc in mjd
-P tolerance of frequency ratio with one cpr. tol >= 0.01 in order to have a

meaningful result [default: 0.01]
-Q max of q index in the eccentricity function [default:1]

DESCRIPTION:
Same as perturb.f, but perturb.f  uses the perturbation formulae developed in this
paper.

rec2rtn.f
USAGE:

rec2rtn -Atrue_orb -Bperturb_orb -Ooutput_file [-R -D
-Serr_r/err_t/err_n -H -E]

-A orbit A. format: time,x,y,z,Vx,Vy,Vz in ASCII
-B orbit B. format same as true orbit
-O output file.
-R remove higer order effects
-D the unit of time is day [default: second]
-S std. dev. in meter added to r, t, n.
-H ouput without first two records [default: with first two records containing mean

orbit and std. dev. from -S]
-E ouput time in seconds

DESCIPTION:
rec2rtn.f rotates the rectangular compoents to radial, along-track and cross-
track components using (r t n) = R  (dx dy dz) where dx,dy,dz are differences of
orbit (B-A) in rectangular coordinates and R  is a rotation matrix. The output_file
will contain:

first record: averaged a,e,i
second record: noises of rtn obs
third to last records: time, u, om and r,t,n.
This is for input to norm.f and perturb.f. time must be in mjd in this case.

sha.f
USAGE:
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sha grd_file -Lnmax -Ccoef_file [-Dr -Aa  -Ttype -B]
grd_file input data file in .grd1 format
-L maximum degree of spherical harmonic expansion
-C ascii file of harmonic coefficients
-T type of data-coefficient relationship [default: 1]
-D radius on which the data are given [default: 6378136.3m]
-A radius on which the coefficients are defined [default: 6378136.3m]
-B request binary output of coefficients [default: ascii]

DESCRIPTION:
sha.f computes spherical harmonic coefficients from gridded ata on a sphere of radius
r.  The data are in.grd1 format and are over 0/360/-90/90. The available TYPE is:

Type    data     coefficient     Remark
    -------------------------------------------------------------------
    1      SLA above mss     potential coeff r=a=6378136.3 m
    2    arbitrary function coeff of function   r=a=6378136.3 m
    3    grav anom on mss potential coeff r=a=6378136.3 m
    4      grav disturbance at r    potential coeff     a=6378136.3 m
    5      horizontal gravity       potential coeff

solve.f
USAGE:

solve n_list -Cfile.coe -Llmax -Anarc [-W -M]
OPTIONS:

n_list list of files of normal equations
-C file of output coefficients
-A number of orbital arcs
-L max harmonic degree
-W use weighted constraints [default: no weighted constraint]
-M solve for coefficients of temporal gravity variation. weighted constraint

are automatically added
DESCRIPTION:

solve.f solves for geopotential coefficients given normal
equations from programs norm.f or norm_t2.f.

steric.f
USAGE:

steric sst.dat -Asstaa.dat -Bsteric.dat
OPTIONS:

sst.dat gridded temerature data at depths
-A output file of temperature anomalies (long., lat., and anomaly)
-B output file of steric anomaly (long., lat., and anomaly)

DESCRIPTION:
steric.f computes steric anomaly of sea surface due to the thermal expansion, 
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based on a 14-layer model of Chen et al. (2000). The expansion coefficients 
are from Gill (1982). The gridded temperature data are both in space and time.

syn.f
USAGE:

syn coef_file -Lnmax -Idx/dy -Gfile.grd1 -Ttype [-Mgm -Aae -Dr -R -B]
OPTIONS:

coef_file file of harmonic coefficients
-L max degree of spherical harmonic expansion
-G output file in .grd1 format (see type)
-I grid interval (in degrees) along longitude and latitude
-T type of value to compute [default=0]

0 = geoid undulation, 1 = gravity anomaly, 2 = arbitrary function
-M product of Newtonian constant and the mass of the earth

[default: 3986004.415E+8 m**3/s**2]
-A a scaling factor associated with Cnm and Snm coefficients (See Note 3)
-D radius (in meter) of sphere on which the expansion is made

[default: r= ae = 6378136.3 m]
-R remove reference geopotential coefficient of the GRS80 ellipsoid

[default: do not remove]
-B coefficient file is a binary file [deafult: ascii]

varmod.f
USAGE:

varmod field.var -Lnmax
OPTIONS:

field.var file degree and degree variance of a field
nmax max degree under consideration

DESCRIPTION:
varmod.f least-squares fits the averaged degree variances (sigma_n/(2n+1))

by the model: alpha x degree**(-beta).  The output contains alpha, beta and a list of
degrees and modeled degree variances.
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