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Abstract

Moving-base gravimetry systems require multiple sensors to extract the gravitational signal — an
accelerometer (or gravimeter), or a set of mutually orthogonal accelerometers that sense the action
forces on the vehicle; a suite of gyroscopes (or a stabilized platform) that provides proper
orientation for the accelerometers; and a geometric (kinematic) positioning system (e.g., GPS)
from which the kinematic acceleration may be derived, and that also provides geospatial
referencing of the signals. The error in the recovered gravitational signal depends on the individual
sensor errors, but also on the coupling of the sensor errors to the actual acceleration environment
of the system. The error analysis is fairly well known and documented in the literature and agrees
largely with experimental and operational results. This report reviews the analysis in detail and
extends it to moving-base gravity gradiometry. In the latter case the system comprises a set of
gradiometers (or differential accelerometers), a suite of gyros for orientation (stabilization), and a
geospatial referencing system (GPS). The errors in the recovered gravitational gradients depend
on the sensor errors, but also on the coupling of these errors to the angular rate environment of the
system. The analyses specifically target airborne systems used for gravity and gravity gradient
mapping. While the orientation bias error is especially detrimental to airborne gravimetry, it is the
random noise in the gyro angular rate that contributes most to airborne gradiometry, as it couples
with the total angular rate. The analysis shows that a gradiometet ®i{fHz sensitivity will

not be adversely compromised (at medium and high frequencies) if the required gyros have bias
repeatability 0f0.0015 °/hr and sensitivity of0.01 °hr/y/Hz =0.00015°//hr , and if the
orientation bias i9.06°. The latter numbers all reflect an order of magnitude lower than
commensurate gradient error effectslﬁ/\/ﬁ . This report also provides detailed models for

the various error sources, as well as for the accelerations and angular rates of the aircraft and for
the gravitational signal to wavelengths as short as 1 m.



. Introduction

The purpose of this report is to understand the requirements and limitations of moving-base
gravimetry systems, specifically those based on the accelerometer and the differential accelerometer
(or gradiometer), to sense local and regional gravity anomalies. Much of this type of analysis was
performed by many investigators in the past, and in that respect this report serves as a review.
However, the gradiometry part is relatively new as it incorporates an analysis of the entire system,
including the gyros that provide an orientation of the sensor platform and are needed to account for
the angular velocities and accelerations. The analysis is presented starting from first principles,
and particular attention is paid to developing appropriate models for the sensor errors and the
gravitational field, the latter, especially, at very short spatial wavelengths, to which the gradiometer
is particularly sensitive. Indeed, the gravitational field modeling is offered in the Appendices in
complete detail in order to serve as reference for many different applications. In addition, models
are developed for the acceleration and angular rate environment of a typical small airplane that
might be used to carry such gravitational sensors.

The properties of the gravitational field are governed by Newltaamis of Gravitationwhich
says that gravitational acceleration due to mass attraction attenuates with the inverse of the squared
distance from the sources. The spatial derivatives of the gravitational acceleration, that is, its
gradients, attenuate with the cube of the inverse distance. On the other hand, since the derivatives
of a function describe its local behavior, the gravitational gradients, in some sense, compensate for
the effect of attenuation; and, the gravitational gradiometer is viewed as particularly useful in
detecting near-field (shallow) mass anomalies. Of course, the biggest advantage of the gradiometer
is its insensitivity to common mode accelerations of the moving vehicle, meaning that no
independent acceleration sensor is required as in the case of moving-base gravimetry. To have
useful precision, however, the accelerometers in the pair that constitutes a gradiometer must be
very well matched and aligned to avoid significant differential biases.



[. Mathematical Models for Measurements

This section develops the basic mathematical models for the gravitation vector and the gravity
gradient tensor as determined from sensor system measurements. We consider several inertial
sensors: the accelerometer as a primary sensor, the gravitational gradiometer (or, more precisely,
the acceleration gradiometer) as a “derived” sensor (being a combination of accelerometers), and
the gyroscope as an auxiliary sensor (providing orientation of the frame, as well as angular rates).
A “position sensor” is also needed, and GPS is the now common utility for that function.
According to Newton’sSecond Law of Motigrnin an inertial (i.e., non-rotating) frame, the

frame, we have

x'=g+a (1)

Wheregi is the gravitational acceleratiohi, is the total kinematic acceleration of the body, ahd

is the acceleration resulting from action forcals (s also called thspecific force and it is the
acceleration actually sensed by an accelerometer). The superscript identifies the frame in which the
vector is coordinatized; and, each dot on the veagtpgdenotes a differentiation with respect to
time.

Let theb-frame (body-frame) be the coordinate frame in which the sensor operators. This can

be an arbitrary frame that rotates (and accelerates) with respect-featine. LetCib denote the

3 x 3 matrix that rotates coordinates from th&rame to tha-frame. This transformation matrix
is orthogonal, and we have

|

wherel is the identity matrix. To rotate a vector from one frame to the other involves multiplying
by this transformation matrix, e.g.:

. T b b .
Cy) =CP. and ClcCy=1, 2)

a = Cib ab . (3)

For later application, we note that, with the over-scripted dot denoting time-differentiation, as
before,

. , 0 —w; w
CL:C'bQibb, where Q:Ob: w 0 -w |, (4)
- w 0



and wlbb: ( w W, a{,,)T is the vector of angular rates of thdrame axes with respect to the

frame axes, coordinatized in thdrame.
Substituting (3) into (1) yields:

gizi{i—CLab : (5)

Thus, in order to determine the gravitation vector from accelerometer data lgifirétmee), it is

necessary to determine also, derived from the positiorxi , and to know the orientation of the
sensor platform with respect to inertial space. Once obtained irfriu@e, the gravitational
vector can always be rotated into any other frame whose orientation with respect to the inertial
frame is known, e.g.

gn:(_‘,ingi , (6)

where then-frame is the local north-east-down frame, and the elements of the rotation matrix,
Cin, are functions of latitude, longitude, and Earth’s rotation rate.

Modern gradiometers are based mostly on pairs of accelerometers whose outputs are
differenced to yield the spatial gradient of acceleration, or the difference in acceleration per unit
length (i.e., over the length of separation between the reference points of the accelerometers). We
use the following, mathematically loose, notation to define the partial derivatives of components of
a vector, say, with respect to components of another vector xsaja/ox , given by:

da, Oda; Oa;
Ox, 0%, Oxg

aa_ 0a2 0a2 6a2 .
x| o o g | (7)

0a3 0a3 68.3
% %

Before applying this type of gradient operator to an expression like equation (5), we must first
express Newton’s Law of Motion in theframe, the frame in which the spatial differentiation
takes place (i.e., the frame of the sensor). Toward this end, we differentiate



x' = Cy, xP 8)
twice with respect to time and substitute equation (5):

gb:>'('b—ab+2CibCL>'<b+Cibc":ibxb . (9)
Now, differentiating with respect bob, we find

H=-Tacle (10)

b b

since neitheb{b, X, nor C'b depend explicitly orx™. That is, the linear acceleratioid?,

disappears, and the gravitational gradient can be obtained from the combination of gradiometer-
sensed component&ab/axb, and the rotational acceleraticmit,) C'b It is important, therefore,
that one is able to measure or otherwise determine the rotational dynamics of the platform on which
the accelerometer pairs of a gradiometer are mounted. If the platfstabiiszedin thei-frame,
i.e., theb-frame is thei-frame, then, of courseC:O:C: =0, and the measurements yield
directly the gravitational gradients.

Let P denote the matrix of gravitational gradients in th&éame, that is, the tensor,
agb/ axP. Applying equation (4) twice in succession, we find that equation (10) is equivalent to

oo 080, ohgp ., o 11
‘_ﬁ ib~“ib ib - (11)

If all components of the matrix?,ab/ axb, are measured, then we may take advantage of the facts
that 7 ® is symmetric, Whild?ibb is anti-symmetric, and thus eliminate the latter according to:

rb=;(rb+(rﬂj

.
1 0a® [o0a® b b

T2 6xb+(axb) * 218 (12)
_ pb, AbAD

=-B"+0Q,Q,,



where

goo1[ 02’ [aa| (13)
21 oxP |oxP '

We note thapa®/ ax® is not symmetric and so the relationship (12) yields all gravity gradients

only if the gradiometer is a “full-tensor” gradiometer (all nine elements are measured

b

independently). Of course, if one is interested merely in a subset of gradieniéggezg]d s

then avoiding the angular acceleration terms requires only measureméa?édxfg , aag/axg ,
aag/axﬁ, andaag/axg. Or, if only I'g3 is desired, then the only gradient to be measured is

aag/axg. If elements of/ are needed in another frame, such astheme, then additional

body-frame gradients must be measurements.
Indeed, to rotate the gradients into any other frame requires a further transformation. While
vectors transform (rotate) according to (8), matrices, sué¢h asnsform according to

. 1 b
ri=c,r°c’ . (14)
Thus, we have
i_ ~i[pb AbAb) b
ri=-cy(e°-ahal|c’ . (15)
It may be noted that the term with the angular velocity (squared) within the parentheses is

substantial compared to the gravitational gradients of the Earth. A body rotational rate of as little as
w=10"3rad/s = 3.5 arcmin/s implies an effect oto” = 10° 1/s = 1000 EGtvés .



[1l.  Error Equations

To develop error equations from the relationships between observables or sensor quantities and
gravitational quantities, we use tBenotation to denote small errors (i.e., errors are approximated

by differential elements). (The notatiodg, here used to represent the errogins often used to

denote the gravity disturbance vector. We denote the lattdg byven though this notation is

usually reserved to denote the gravity anomaly vector. But, in the planar approximation that we
have adopted, the disturbance and the anomaly are almost the same.) Neglecting second-order
terms, we have from equation (5):

- I . el . -
5g'+39i5x'=5x'—ac'bab—c'b5ab , (16)
X

where the second term on the left side is due to the fact that the gravitational signal depends on
position, and position is one of our observables that may be in error. This term is also known as a

registration error The error in the transformation matr'ticib, can be expressed (Jekeli, 2000,
p.149) in terms of the orientation errors of the coordinate axes bffthene with respect to the
i-frame, = (Y Y, Y5 :

| 0 - ¢ ) | T
Lp=-| @3 0 -y |Cy=-wCy, &'=(axy) . (17)
-y, ¢ O

The orientation errors are related to the errors in the angularﬂ?btgeaccording to

d,,_ i b ~b
aL,U-—CbJQibCi : (18)

With equation (17), equation (16) becomes:
&'='+we ab-c aP-riad (19)
Similarly, from equation (15) (using also equation (12)):

) N i i
ari+3 % ad=aclroch-cl [P aa® @b - sa°|cP+cl el (20)
: OXI j ib~%ib ib ib
i 0,



Substituting equation (17) into equation (20) and making use of equation (14) yields

P i~ [ b b Ab b < b|~b =i g
o'=r'w-yri-c, |®°-aQ, Q) -0 82, |C) -2 = &

=L @

Where_:ji is the gradient with respectI(iP of the gradient/’i, and the last term, again, is a

registration error.
For the simple error analyses to be conducted here, we may assume thiathe and-
frame coincide and are approximately equal to the local north-east-down fridraeng¢). This
merely says that the platform of the instrument is aligned witmiheme and the-frame is
approximately an inertial frame (for a short period of time, say, less than an hour). In that case the

transformation matrixCib, is the identity matrix, and we can omit the sub- and superscripts that
identify the different frames. Equations (19) and (21) become, in this special case,

=&+ W%a-da—-Id , (22)

=rY—-Yr-B+QQ+QQ-2 = . (23)
j

Furthermore, from equation (18), we obtain, in this case,

W=y [ 3t (24)

o

where ¥ is a constant orientation error.

The error equations (22) and (23) are based on direct measurements of the acceleration
components, their spatial derivatives, and angular rate components, which are typical, respectively,
of accelerometers, differential accelerometers, and gyros. However, other types of sensors or
sensor configurations may yield these basic quantities indirectly. For example, some gradiometers
(for example, existing units used for airborne operations, Jekeli (1988), Talwani (2000)) yield
measurements of combinations of in-line gradients (much like the E6tvos torsion balance, Nettleton
(1976, pp.66-69). Also, Zorn (2002) recently proposed using a set of 12 accelerometers to sense
both the linear and angular accelerations of a platform, thus eliminating the need for gyros. In
these cases the error equations must be re-constructed to reflect the basic sensed quantities. Also,
as considered above, one often desires not a particular component of the gradient tensor, but a
combination of gradients, such as defined by the differential field curvature (Nettleton, 1976,



pp.70-71) (this may also be the case rarely for the gravity vector). The error equations for such
guantities are simply combinations of errors already derived (based on a linearization), since these
quantities are derived and not sensed directly.

Finally, it is noted that even though the gravitational gradients, according to equation (15) with

C'b:I , are derived from a combination of elements of the measurement téan'%/@(b, the
variance-covariance matrix of the gradient errors due to erroeiox® is a diagonal matrix if

the measurement errors are uncorrelated (Appendix A), implying that also the computed gradients
are uncorrelated (disregarding errors in the rotation rates).



IV. Power Spectral Density and Covariance Function

This section introduces the functions to be modeled for a statistical analysis of the errors in
airborne gravimetry and gradiometry. Covariance functions and power spectral densities are
needed not just for the sensor errors, but also for the signals being sensed, due to the fact that the
error equations, though linear in the errors, nevertheless involve coupling terms containing the
signal. The error analysis can be done most conveniently in the temporal frequency domain, since
the sensor errors are usually characterized in terms of their behavior over different resolutions of
time (e.g., long-period and short-period behavior). Analyzing the error with respect to frequencies
yields its characterization in tispectral domain

We denote by the temporal frequency and [#& the power in the signal per frequency, that
is, thepower spectral density (psd)The psd is the spectral equivalent of the covariance;
specifically, the spectral decomposition of the covariance function of a signal is its psd. Formally,
the psd is th&ourier transformof the covariance functiorgq7) , and vice versa:

00

F(@E (D(f):J ﬂT) e—i ZT[deT, F_l(d))E(L(t): (D(f) ei 21Tdef ’ (25)

o

—00

where the covariance is the statistical expectation of the product of a zero-mean signalf say
two different timest andt + 7:

@ =E(gt) g(t+ 1)) . (26)

Here, we assume a) that the signal is a stochastic process (one whose values at any time are
associated with a probability function); b) that the statistics of this processaoaary(or, time-

invariant; hence the covariance only depends on the time differejicand c) that the statistics

over time are equivalent to the statistics over probability space (this last property is known as
ergodicity). Finally, as noted we assume that the mean (or statistical average) of the signal is zero;
this is not essential, but simplifies the discussion and is the condition on which equation (26) is
predicated. Since the psd isl@nsityof signal power (the covariance) relative to frequency, its

units are squared signal units per frequency units. In the temporal frequency domain, the units of
frequency are usually cycles per second{entz [Hz].

There is, of course, a rich theory associated with the psd and covariance functions, which we
can hardly touch upon here (for additional details, the reader may consult any textbook on
stochastic processes, signal analysis, or probability theory (e.g., Papoulis, 1977; Priestley, 1981;
see also Jekeli, 2001), but a number of special cases and facts must be illustrated. In analogy to
the component wavelengths (inverse frequencies) of hghite noises formally defined as the



error whose psd is constant over all frequencies (like white light that contains equal amounts of all
colors, each color corresponding to a different frequency or wavelength). White noise is a
perfectly uncorrelated stochastic process, since at any time it is completely random, independent of
its value at any previous (or subsequent) time. bks error, on the other hand, is a constant
error and its psd is non-zero only at a single frequency, the zero-frequency. Such an error is
perfectly correlated in time since it is known for all time once it is known for any instant in time.

Although the white noise and random bias processes will play significant roles in the
subsequent analyses, other forms of partially correlated processes will be considered, such as red
noise (also calledorrelated noisewhere the error is dominated by components at the longer
wavelengths or lower frequencies). In fact, similar to such errors, we assume that the signals
themselves are correlated stochastic processes. That is, the (residual) accelerations and angular
rates of an aircraft in straight and level flight are more or less random, as are the gravitational
gradients (residual to some reference field). In all these cases, we assume the processes are of the
type discussed above, that is, stationary and ergodic, and in most cases having zero mean.
Furthermore, we assume that the errors are not correlated between the different sensors and that, in
general, sensor errors are not correlated with the quantities being sensed.

The power spectral density of the gravitational field, assumed to be a correlated process on the
sphere, is defined over the spectral domain of two-dimensional spatial frequencies, or harmonic
orders and degrees (or, wavenumbers). Specifically, the spectral decomposition of the
gravitational potentialy, on any sphere of radius,is an infinite series of spherical harmonics:

VireA= 3 3 (?)n”vn,mYn,m(G,A) , 27)

n=0 m=-—n

where 6,4 are spherical co-latitude and Iongitu&’gm Is a spherical harmonic function of degree
n and ordem, and the set of coefficient%yn,m} , constitutes the spectrum Wt The radius,

R, is some mean Earth radius, and we may choede when considering the spherical spectrum
of V on the Earth's surfaceY, ,, is the product of Legendre functions of the first kind and sines

and cosines (see any book on mathematical physics or physical geodesy, such as Heiskanen and
Moritz, 1967).

For our more local analyses, the spherical frequencies may be approximated by spatial
frequencies in the (horizontal) plane:

A n(zr;ﬂ-'-l) =Ud, U=/ ’ui+/,1§ , (28)

whereu is the “amplitude” of the horizontal (Cartesian) spatial frequengiesind i, .
The spherical psd of the function, suchvass given, usually, as the cumulative density per

-10 -



degree, or thdegree variance
oin)= % Voo (29)

It can be shown (Jekeli, 2001) that the relationship between the degree variance and the isotropic
psd, &/u), of signals on the plane is given by

a@(n) = 27:R2 QYY) - (30)

Note that, even, thougR/(u| is the psd depending only on the amplitude frequepgyit is
nevertheless the psd for a signal in two dimensions (on the plane), and as such its units are the
square units o¥ per thesquareof the frequency units.

Modeling the power spectral density of the gravitational signal usually involves the analysis of
different types of data. For the medium to longer wavelengths, satellite tracking data and mean
terrestrial gravity anomalies estimated on a uniform grid (6.6§°,x 0.5°) serve to generate
spectral decompositions &f, as given by equation (27). One such global representation is
EGM96 (Lemoine et al., 1998), where the maximum degreg,is= 360 (corresponding to a
spatial resolution of about 25 km). To model the field at higher resolution we must rely on more
dense gravimetric data. Alternatively, over land areas, we may utilize detailed grids of terrain
elevation under the assumption that the very-high frequency anomalies of the gravity field are
generated principally by the visible terrain variations, and possibly by corresponding isostatic
compensations, e.g., according to the Airy model.

To simplify the relationship between the gravitational field and the topographic heights, we
approximate the topography by its Helmert condensation onto the geoid. The topographic masses
thus are “condensed” onto the geoid in the form of a two-dimensional mass layer with density
given at any point by

K=ph (31)

where p is the crustal density (assumed constant, in our modelh the terrain elevation at
this point. The potentiaV/, at a pointP, due to such a layer is given by

o

J ?da , (32)

g

V(P) = Gp R?

o

-11 -



whereG is Newton’s gravitational constant; represents the unit sphete,s a function of

spherical coordinates, being approximations of some curvilinear coordinates on the gebids and
the distance betwedhand the integration point. The potential and its derivatives are continuous,
as long a® is located above the surface.

Equation (32) is a convolution bfwith the inverse distancé; 1. Further approximating the
coordinates as planar coordinates, where now

€=\/(xl—xl')2+(x2—x2')2+x§ : (33)

and(xl',xz') are coordinates of points on the geoid, one may apply the convolution theorem to
show that the Fourier transform of the potential at the leveaf0 is given by (Jekeli, 2001,
pp.1-32)

F(V)= kﬂp F(h)e 2% (34)

wherey is given by equation (28). Therefore, the (cross-) psd of the potential at two lgvels,
andxs', is given by

ko\? -
R4 X31X3'>=</~‘> By(1) g 2t (35)

And, consequently, the psd of the vertical derivative (the gravitational acceleration of a layer)
is given by

Ouf H Xox3') = (27kp)* () €7 ZH ) (36)

If one includes a model for isostatic compensation of the topographic layer, say, according to
Airy’s hypothesis, then another layer can be formed on the underside of the zone of compensation,
extending a depttD), below the geoid. This layer has densu'tyc—(pm—p) h', representing a
condensation of materideficientin density with respect to the mantle density,, and extending

a depthh', below the level-D (see Figure 1). The Airy model is based on the buoyancy of the
topographic masses floating in the mantle; thus we have

ph=(pn-p)h" . (37)

Including this anomalous layer, with densky=— p h, the Fourier transform of the total potential

-12 -



due to both topography and its isostatic compensation, approximated as surface layers, is given by

F(V)= k[l’ F(h) (e‘z""xs— e‘z""(D”s)) . (38)

And, the (cross-) psd at two arbitrary levelg,andxs', is given by

2
_ . _ 2
R X33 ) = (kj) B(p) & MO (17 20)" (39)
Finally, the psd of the corresponding vertical gravitational acceleration is given by

g 1 X3 %3 ) = (znkp)2 X)) g Xt (1 - e_Z”VD)Z . (40)

It is noted that equations (36) and (40) basically state that the gravity disturbance (or anomaly) is
linearly related to elevation, which is a common (though not necessarily legitimate) assumption
made in short-wavelength analyses of the gravity field. Also, if the isostatic compensation should
be omitted, equation (40) can be used as well simply by sddtingo . In fact, for a typical
compensation deptt) = 30 km , the isostatic compensation factor is

e 20 <0002, forpu=3.3x10"cy/m : (41)

which can be neglected if the gravity is modeled from topography only at resolutions (half-
wavelengths) more detailed thBri2 = 15km .

/\h topographic surface

geoid

Y

density layers: ,
YIRS (o, —ph" —,

crust

P

Figure 1: Airy’s isostatic compensation model and Helmert's condensation layers
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V. Covariance and PSD Models

Having identified the types of covariance functions and psd’s to be modeled, we now develop
specific models to be used for the individual sensors and the accelerations and angular rates of a
typical aircraft, and for the gravitational signal. Finally, a total, combined model is developed for
the error in the determined components of the gravitational vector and the gradient tensor.

The Fourier relationships (25) between the covariance and psd are problematic in the two cases
of white noise and bias, since, for example, the integral of a function that is non-zero at only a
single value of its domain is zero in the usual Riemann / Lebesque sense of an integral. To avoid
such degeneracy, one introducegeaeralized functiontheDirac function (also known as the
deltafunction, or thempulsefunction, not to be confused with the differential operadgrused
above), defined by the following:

At)=0, for tz0;
(42)

(o]

[ At—1g) g(H) dt = ' Ato—1) g(H) dt = g(to) -

o

—00

Thus, if we let the covariance function of white noise be a Dirac function, scaled by a constant,
w>0; then by equations (25) and (42), wigh= 0 andt = 7, the psd is that constant:

dgn=wdr 0O o= ‘ warje M dr=w . (43)

Similarly, if the psd is a Dirac function, scaled by, then the covariance function is that
constant, for allr, as desired for a random bias:

00

o? Jf) e T df = o | (44)

—0

of) =0°df) O o=

We note that the units of the Dirac function, as inferred from (42), arav@eseof the units of
the argument off [J.

On the other hand, we quickly encounter difficulties when implementing these idealizations of

-14 -



white noise and random bias in modeling the psd’s of derived quantities, such as the psd of
kinematic acceleration error, given the psd of position error. Mathematically, the psd of the
acceleration error is obtained with multiple differentiations of the psd of position error, which
becomes difficult when dealing with the Dirac function. To enable straightforward manipulation of
our psd’s, we approximate the ideal white noise and random bias with processes that behave
accordingly only over a finite bandwidth of frequencies (in fact, one can argue that this is more
realistic, anyway), thus yielding analytic functions for the psd'’s.

Several options exist for analytic expressions (i.e., regular, reasonably well-behaved
functions) of the psd and covariance function that are Fourier transforms of each other, according
to equation (25), and that can be tailored to approximate band-limited white noise and random bias.
One such transform pair is given by

L Sn(27T)
qr)-ozTﬂ : (45)

Ig: fl<f.,
qj(f):\o, f]>f; (40)

where the positive parametéy, controls the bandwidth of the signal. However, in this case, the
attenuation of the psd and covariance is not controllable; and, therefore, this transform pair will not
be used.

Instead, consider the following transform pair, here calledAype

21,
o1) ,(mﬁv)v

2

(| 7)) Kf 2| 7)) (47)

,(f) = v , (48)

fef]”

where I{m) is the Euler-Gamma function, withim)=(m-1})!, if m is a positive integer
(confusion in notation with the gravitational gradients is not anticipated)Xgnid the modified

Bessel function of the second kind and of onalerThe orderm, of the Bessel function may, in

this case, be a complex number wRRB(m) > -3 ; we will use only reain. That equations (47)

and (48) satisfy equation (25) can be proved using formulas 9.6.9 and 9.6.25 in (Abramowitz and
Stegun, 1972).

-15 -



This model is particularly useful when we are given the psd valua, the process near zero
frequency (e.g., white noise) and the cut-off frequefigythat determines the bandwidth of the

process. The parametem, determines the degree of attenuation of the psd. The variance of the
process according to this model is given by

L WhyT

We also note that
@,(f)>0,00f , (50)

which means that the covariance function is positive definite as required.

Although one could use the Typgemodel to represent white noise as well as random bias
processes with appropriate selection of the parameters, we consider also the inverse of this model,
here called Typ®&:

(1) = 022 7 (51)
T 2
(&)
20%t,\/1 o
%(f):lw(nrcf) K2t [f]) . (52)

This model is useful if the variance?, of the process is given. Here, the positive paramgter,
defines the correlation length of the process. Again, the parametsrrestricted as for Type
A, and the psd is always positive. The psd of TAipe modeled after the Butterworth filter and
the covariance of TypB is a generalized inverse time function.

One must exercise some care when choosing a particular type of model. For example, by the
propagation of covariances, with= | t,—t, |, the (cross-) covariance between time-derivatives of

two processeg andh, is given by

2
B = 33 ol )= 5l ) 9

From (Abramowitz and Stegun, 1972, 9.6.28), we find that
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k

;jk((ancr) ™Kl 27f,7)) = (1) (2718 (27 0) ™ K 271T) (54)
T

which yields the nonsensical result that the variances are zero for the time-derivatives of a process
whose covariance is modeled according to a TApRinction, equation (47). Thus, when
modeling the covariance or psd of the derivative of a process, theBliyyoelel should be used.

The psd of th&™ derivative of a procesg, is given by

ou(f) = (27)* @f) | (55)
and the covariance can be determined by applying equation (53) (repeatedly, if needed) to equation
(51).

The covariance of thiategral of a process is also relatively easy to formulate analytically for
Type B models. However, if the covariance function of the original process does not average to
zero over allr (i.e., the psd has non-zero value at zero frequency), the integral of the process is
non-stationary and the corresponding psd is not defined. Nevertheless, if we exclude a small
neighborhood of frequenciesfat 0, then we may consider the psd of the integral of a process
according to

¢;J~g(f)= 5 @ff) . (56)

Usually we are interested only in a particular band of frequencies that excludes the origin and
where the psd behaves according to (56). In this case we may fit a model @ffbyﬁfg over

the bandwidth of interest. For exampleg it white noise with psdrpg(f) =Wy, for f<fy, then

CDJ (f)= 9 (57)

Fitting a TypeA model (equation (48)) to this fér f., we find that forf, <f <f; these models
approximately agree if

9 _ (58)
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Similarly, if g is a random bias with variancaé and correlation lengthr,, then for

frequenciesf > ]/rg, we have, approximately, according to equations (49) and (48):

PR LG
) ﬁ /_(mg) (f Tg)mg+1/2

(59)

for somem,. Again, approximating the corresponding psd of the integral by a model ofAType
we set

2

T.(my+3%) 42mg+1
m=my+1, fczi, w=_99 (Mg+3) o . (60)
Tya Jrrmg)  (2mf)

wherea is a fitting parameter (e.g., close to unity) that improves the fit.
For red noise processes, we again use the model of Aypéth suitable choices for the
parameters. Indeed, suppose the psd over a certain band of frequereikes,should be

modeled according to

o) =af™’ (61)

wherea and v are positive constants with>1. Over this band, we find from equation (48)
that the TypeA model may approximated as

at=wi]" Ja-fme 33+

(62)
f 2m+1
:W(C)
f
Givena, v, andf., one simply sets
L1 =af "t 63
m_é(v_ ) , W=at, : ( )

For the gravitational processes, we define a covariance model analogous & Tigs is a
standard model for the covariance function ofdisturbing potentiglT, called thereciprocal
distance mode(Moritz, 1980). It is equation (51) specialized with- 0 and generalized by
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including the Newtonian field condition; we call it a model of T@pe

J 0.2

DX, A, XaXa | = 2 J : (64)
<P|-< 1E42 23 3) jzl\/(1+aj(X3+X3'))2+aj252

where

My =x=X, DXo=xp=Xg , ST\ X+ (65)

and whereJ, g, and a; are parameters whose values are selected to fit an empirical
determination of the covariance or the psd. The psd model corresponding to equation (64) is given
by

1 e 2

Oi{ bty Xaxd | = T~ e T (66)
j =1 ]

where i is given by equation (28). Covariance and psd models for the first and second
derivatives of the disturbing potential are easily derived and listed in Appendix B.

To utilize the gravitational signal spectra along a track requires that the two-dimensional spatial
psd be collapsed to a single dimension, where it is assumed that the track can be identified with
one of the horizontal coordinate axes. We define the following hybrid psd/covariance function for
the disturbing potential:

Stf Hy; AXg; X3X3 | :J Pr{ iy, g X3X3 e Mgy,

(67)

00

= ' ‘/’r(AXr O, x3,x3') e M day,

— 00

and this yields thalong-track psdoy settingAx,=0. Here, without loss in generality, we
assume that,; represents the along-track direction. In the case of the reciprocal-distance model

(Type C), this hybrid psd/covariance function has closed analytic expressions for the disturbing
potential and all its derivatives; these are listed in Appendix C.
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In order to proceed with the analysis, we need some additional results. Itis easy to see that the
covariance of the sum or difference of two uncorrelated processes is the sum of the covariances of
the processes:

@+ () = () + @) - (68)

For theproductof a signalg (like a, I, or w), and an errorg (like o, etc.), we make use of

the ergodic property to derive the covariance sequentially, as follows. Assume, first, that the
covariance of the producge, is obtained in the probability space (again, both are zero-mean
processes):

@dtT) =E(gt)dt) gt + dt+ 7| =gt glt+ 1) 1) (69)

whereg(t] and g(t + 7] are treated like constants (from a completely different probability space)
that pre-multiply the errors. Next, average this over all possible valugesaffect computing
the (time-averaged) covariancegof

T2

4= m 3| avo+ 7 aira

-T/2
(70)
= (1) 91).

According to well known theorems in Fourier analysis, the Fourier transform of the product,
@, @ is the convolution of the Fourier transformsggfand ¢.. This leads to the result that the

psd ofge is theconvolutionof the psd’s ofy and of¢:

®lf)= | off') off-f)df" . (71)

J
— 00

Unfortunately, however, our psd models of Tyleequation (48), Typ8, equation (52), and
Type C, equation (66), do not yield simple analytic expressions when substituted into equation
(71).

Therefore, where necessary, the following procedure is adopted. We first design the
covariances of the signals and errors based on appropriate models and spectral characteristics.
These are then combined according to equations (68) and (70), and the psd of the resulting
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expression is determineaimericallyaccording to equation (25).

The operative models for the gravitational estimation errors are equations (22) and (23). In
equation (22) we consider separately the vertical and horizontal components of the gravitational
vector (and the two horizontal components are essentially equivalent):

(pa-gl = (p&l * (pwsaz * qb‘l/zas * (Da-al * (pl_llé(l * (Drlzd(z * Cprlsd(s ' (72)
¢)5g3 = (p&s * (p‘ﬂzal * (leaz * d)é'e.3 * (D/_ 2104 * (D/_ 20X * CD/_ 1k; (73)

For the gravitational gradients, let the indigds ¢ denote a cyclical permutation of 1, 2, 3 (i.e.,
(1,2,3), (2,3,1), or (3,1,2)). Then the psd’s of the errors in the diagonal gradients are given by:

Por,, = 4Pt AT, Paoayox)

(74)
A5 APusiy T Por,yox,s, ¥ Porjoxyax, T Por, Joxdes
And, for the off-diagonal gradient errors:
GO =, +O  +D-  + D +1¢> +16D
o™ T s ot T~ 4 T q0ay/0x) = 4~ 90a/0x)
(75)

Povgeg, T Pegsig, ™ Poroxyse, T Porax,se, T Poraxse
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V1. Sensor Error Covariance Models

This section defines the models and associated parameters for the senséa ed@a/ox |, x,

and dw, respectively, corresponding to the accelerometer, the gradiometer, GPS, and the
gyroscope. Each sensor may be subject to a variety of types of errors, including white noise, red
noise, random biases, scale factor errors, and errors correlated with ambient atmospheric, electro-
magnetic, and dynamic conditions. Some of these systematic errors are specific to a particular
brand of instrument and are determined to some extent during the self-calibration phase of their
operation. Others are significantly less important than the most basic of errors, the random bias
and white noise, that we will consider here. Of course, there may be still other errors that elude the
discussion here and yet are decidedly important. These contribute to the approximations and
simplifications inherent in our analyses.

Geodetically precise GPS positions are determined from the phase of the carrier wave
transmitted by the satellites and collected by the terrestrial receiver. The noise of the phase
measurement is essentially white (uncorrelated), which has been confirmed by several investigators
(e.g., Jekeli, 1992; Bona, 2000; Bona and Tiberius, 2000), and has a standard deviation as small
as a few tenth of a millimeter. However, the positions derived for a moving platform, such as an
aircraft, typically have errors with standard deviations of the order of a few centimeters (Grejner-
Brzezinska et al., 1998), and we adopt a conservative standard dewgjieri0cm. A Type

B model is used to represent the psd of the position error, assumed to be white noise for
frequenciesf < 1/15. Then the psd of the derived acceleration is given by

2 15 /T

20
Os(1) = (278)* — 2T (g [F]) ™ K (27175 ) (76)

Mmac+ )

Values for the parameters, including the attenuation facigr, are given in Table 1.

For the inertial accelerometer, most manufacturers provide an estimate of the statistical nature
of a random bias and white noise for the error, usually in the form of variances and psd’s. The
unknown bias, of course, primarily affects the zero-frequency in the gravitational signal, that is, its

constant part, if the trajectory is straight and level. In general, its effect is modula(t%d 13

seen in equation (16), but in our simplified analyﬁ%% [), it is omitted. A TypeA orB

model can be used to represent the white noise, depending, respectively, on whether the psd
amplitude or the standard deviation of the noise is provided. Assuming the standard deviation,
0. IS given, we model the white-nose psd as T§pe
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2
20, T \/TT
X A
Oglf) = — = (T | ]| ™ K, 27775 |

fima

with suitably chosen time constamf, , and attenuation parameten, (see Table 1).

). (77)

The gyros, which provide the orientation of the accelerometers and gradiometers, are subject at
least to a random biaég,, and white noisedw,,, in the sensed angular rate, so that we assume

Bw= Oy + 8y | (78)

and, according to equation (24),

Y= ‘/’o—[(&‘b"'a%)dt : (79)

o

Again, manufacturers generally provide some statistical information for these basic error types.
Orientation and angular rate errors couple with the signal according to equation (22) for the gravity
components and equation (23) for the gradients. Adopting a Bypedel for the angular rate

bias and a Typ& model for the white noise in the angular rate, we have

|4 K, [ 27Ty | T]) (80)

AS)
S
=
I
i |
3
£
)
£
=

where parameter values are given in Table 1.
Corresponding orientation errarovariancesare based on equation (79) and on psd
approximations of equations (57) and (59) by TAprodels:

Q1=+ " (T | ) Ko 2 )
(81)
2y ¥ 7T Wi
iy o1 sl T i 2Ty )

where the parametersys, , Wys, ,» and mys, are chosen according to (58), and the
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parametersfy s, , Wy s » andmy,s, , are chosen according to (60); see Table 1. The value for
the standard deviation of the orientation b'rfa@d , reflects aided calibration of the attitude angles

and is somewhat more conservative than reported in Grejner-Brzezinska et al. (1998).
The gradiometers have errors characterized by red and white noise (Jekeli, 1984, Paik et al.,
1997). Again, we start with an idealized model for the corresponding psd:

Palf) = gt =+ W (82)
where we abbreviatéG = é(aa/ax) . The parametersy 55, Vg, andwgs, have positive, given

values. We approximate the components in equation (82) with psd models oA Typig
parameterswy;, fgs, andmgs for the white noise model, an@ly;, f,, andvg;, for the red

noise:

Dlf) = + , (83)

where, according to equation (63):

1 -2m,—1
mvzé(vas—l) . We=agf, : (84)
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VII. Signal Covariance Models

The covariances of the signals (assuming they are stochastic processes) are modeled by first fitting
a corresponding analytic psd model (Tyeo the observed psd of the signal. For the observed
acceleration and angular rate we analyze actual flight data from airborne gravimetry operations.
These were obtained, using the periodogram method (with smoothing), from one of the flights of a
Twin-Otter aircraft conducted by KMS (Kort & Matrikelstyrelsen / National Survey and Cadastre)

of Denmark as part of the Arctic Gravity Project (http://www.nima.mil/GandG/agp/readme.htm).
The flight was conducted on 3 August 1999 around the islands of Svalbard and is described in

(Jekeli and Kwon, 2001). Figures 2 and 3 show the empirical psd’(s,aﬁqraz,a?,) and

(wl 0, ag) , respectively, as well as the corresponding models of the form

cl N c2
o\ ml+1/2 nm2+12 °
f f
1+ — 1+
fl. f2.
Values for the constants;, c,, f1;, 2., ml, m2, are shown in Table 2. In all cases, the
very-high frequency dynamics (vibrations at frequencies greater than 10 Hz), are not modeled
under the assumption that these would be filtered from the data by appropriate smoothing.
These models for the aircraft accelerations do not include the constant accelerations sensed by
the accelerometers which account for the reactions to Coriolis, centrifugal, and gravitational
accelerations. If an airplane is flying straight and level at constant velocity, the navigation

equations in the local NED frame and in spherical approximation (Jekeli, 2000, p.129) yield the
following sensed accelerations, since in this cdé¢gdt =0, dvg/dt=0, andvy =0:

of) =

(85)

VE

0_ :
ay= (Zwe+ R+ hjcosg h)cosqo) VESIN@—Qgy,

VE

0 .
ag = (Zwe'*mw) VN SING—QE, (86)

2,2
VE* VN

0
ap = 2w, Vg cosp+ R+p 9o

wherew, is Earth’s spin rateyy andvg are north and east velociti#sjs Earth’s mean radius;
(@ A, h) are latitude, longitude, and height of the airplane; (@pglgg, gp) are the north, east,
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and down gravity components. The most significant term in these equatighs %8 m/s? .

Next in importance are the terms wiil = 7.292 x 10~ rad/s, of the order,O(5 x 1073 m/sz) :
These nominal values can be substantially larger if the instrument is not level, which was the case
for the strapdown unit on the Svalbard flight, resulting in

(a?)°=c®(a)’. 87)

If the tilt of the “horizontal” accelerometers &, more thanl m/s> from the vertical gravity
couples to their output.

100 < T T T T T T

o

01"

001

[(M/S?) 2/Hz]

110

110

110 B

110 P
0.01 0.1 1 10 100

Frequency [Hz]

110 110

Figure 2: Psd’s of body-frame accelerati({ra;l , ay, a3) , of Twin-Otter aircratft.

Dots: unsmoothed psd; solid line: median-smoothed psd; dashed line: model psd.
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Figure 3: Psd’s of body-frame angular raté&)l,wz, a{,,) of Twin-Otter

aircraft. Dots: unsmoothed psd; solid line: median-smoothed psd; dashed line:
model psd.

Therefore, we write for the acceleration
a=a’+4a . (88)
The covariance functions for the accelerations, thus, more properly are correlation functions:

2c1fl,
Q1) = (a0)2 + M (mfle r)ml K (277f1:7)
(89)

2c2f2/
+ J (1f2, r)m2 Kip(27T2T) .

2+

Values ofacl), ag , and ag for the Svalbard flight are also given in Table 2.
Then, for the gravity estimation error psd’s, equations (72) and (73), the component for the
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product of orientation error and acceleration is given by the Fourier transform of the covariance,
Gy -

F Y Ppia) = Oy 8= B+ P, * Py B+ ) (90)

where the first term is given by equation (81) and the second term is given by equation (89).
Expanding, we have

8= T Bscy + Do, ) * %a(%f/M * By, Ofu) ! (91)

meaning that psd’s need to be computed numerically only for the prodpggtgw% and

Pna iy, - All other psd’s are the analytic models scaled by ehtigror lel/o'
Similarly, for the gradient estimation error psd’s, equations (74) and (75), the form of each
element is given by

G Op= (B * ur) (Buoy * Pusa, * Pp,) (92)

where " is the nominal gravitational gradient element (non-zero only for the in-line gradients,
with values corresponding to a mean spherical Earth; see Table 3). Expanding, we find

O By= 0o Bisey + e, 9) * %r(%/dab * By, Ofu) : (93)

which requires numerical psd’s only for the produqi";;,(owm6 and @, Bpiacq, - Finally, we also
need numerical psd’s for the produgt, Py, in the error covariance component

G Pso= P By * P = o O * o) - (94)

The along-track psd models for the gravitational gradients were obtained as follows. First,
(auto-) covariance models for the gravitational gradients (with respect to a reference field) were
expressed in terms of a covariance model for the disturbing potential, each gradient model being a
linear combination, as in equation (66), respectively, of equations (B-34), (B-37), (B-39), (B-44),
(B-46), or (B-48). Parameters for these models, in turn, were selected on the basis of a fit to the
2-D, azimuth-averaged empirical psd for the gravity disturbance, derived from the psd for the
global potential model, EGM96 (Lemoine et a., 1998), ftoml’ mean gravity anomaly data in
the U.S., and fronB0" x 30" and 1" x 1" elevation data in the U.S. (the latter two by the
periodogram method). Both rough and smooth areas could be considered and would yield
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[mgaP/(cy/m)y]

different psd models. A moderately rough are was selected for these studies (Montana / Wyoming
area). Equation (36) provides the relationship between the psd’s of the gravity disturbance and
elevation (at high spatial frequencies the gravity anomaly and gravity disturbance are practically
identical). Figure 4 shows the empirical psd’'s and the model constructed therefrom, with
corresponding parameter values given in Table 3.
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1=10° |~

100
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10 - from 1" topographic heights
=
0.1
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1+10

> 1:10 # 1+10 2

7

Frequency [cy/m]
Figure 4: Psd of the vertical gravitational acceleration signal from various data sets,
as indicated, plus a fitted model.

The independent variable in these cases is the relative distance, and, in order to convert this to
the time variable, we assume that the vehicle is moving with constant velocity,

(95)

S
V=— .
T

The along-track gradient covariances are evaluated at points along the traclksasing

-29 -



Subsequently, the numerically determined Fourier transforms of the covariance products,
P Puisey and @, Py, » Are along-track (1D) psd’s.

When comparing the along-track error psd’s (corresponding to the transforms of equation (72)
through (75)), to the along-track psd’s of the total gravitational signal, we also need a
transformation from the spatial frequency domain to the temporal frequency domain. In this case
the models listed in Appendix C are utilized with the appropriate parameters and converted under
the assumption of constant velocity:

@)= 91 - (96)

vV \V
wheref is the temporal frequency.

Table 1: Values of model parameters for the instrument error psd’s.

Error Component Parameters equ.

kin. acceleration err. (76)
position white noisqd 05 =0.1m, T5=1s, Mg = 10

accelerometer error: (77)
white noise Og=25mgal, Tm=1s, Mg =10

gyro rate error: (80)
bias repeatability Oy = 0.003 °/hr, Toy = 7200 s, Magy = 10
white noise \/ Wagg, =0.06 °lhr/y/Hz , f5, =10Hz, Mgy, = 10

orientation error: (81)
bias g, =0.005°, Ty, =7200s, my, =10
due todw, Wy o0, =W = W(5%/(27'1fc)2 » Tyog, == 10" Hz, My, = 0.5 (58)
due t0dw, Wy 54 = W= €0.(60) , fwa%sfcz(ré%*1,15)—1, Myyoy = May + 1 (60)

gradiometer error: (83)
white noise \/ Wgs =30E/\/Hz , fss=10Hz, Mg = 10
red noise* Qg5 = 1.7x10™4 , f,= 10" Hz , V=16 (84)

* parameter values yield units for psEiz./Hz.
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Table 2: Values of model parameters for vehicle dynamics psd'’s.

Dynamics Parameters equ.
i 2
vehicle | o1 =12(m/s?) Hz, fle,,=15x107%Hz, miy=022, | (89)
acceleration )
psd 0241 = 0(m/s?) Hz ;
2
Cla = 190 (mvs?) Hz , fle,,=15x107*Hz, ml,=03,
2\2
C2p = O(m/s ) Hz;
2
Claz=4(mis?) Hz, fle,z=22x10"*Hz, mlg=0.85,
2
0243 =0.009 (m/s?| Hz , f20,5=08Hz, M2,z=1.1.
nominal a) = 1.3282m/s?, ay=1.0344 m/s?, ag=9.6715ms?>. | (86)
vehicle
accelerations
vehicle cl 4 = 0.005 (rad/s)/Hz , fle,,=3x10"*Hz, ml, =085, (85)
angular rate B _6 2 _
psd C2,4=2.2% 10" (rad/s)/Hz , f2¢,4=0.7Hz, m2,4=1.25;
c1 .o = 0.005 (rad/s)/Hz , fle,,=5%10""Hz, mlp=1,
C2,9=13x10"°(rads)/Hz , 12, ,=1Hz, M2,p=16
c1 g = 0.005 (rad/s|/Hz , fleg=1%10""Hz, mlg=1,
C2,8=1 x10"°(rad/s)Hz, 12, ,=03Hz, M2,g=12.
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Table 3: Values of model parameters for the gravitational field.

Parameters equ.

disturbing potential 02 =1x10°m%s?, a,=3x% 107 mt, (66)
frzzszzifg) 0’ = 3500 m?/s? a,=77x107"m™, e

0’ = 718 m7s? a3=3x10"°m™*,

0% = 300 m?s? =85%x10°m™?,

0% = 20m?s? a5=2x10"°"m™*,

02 =0.3m7s’ ag=6x10""m™*,

0’ =0.03m?s? a;=12x10"mt,

0% = 0.003 m?s? ag=2x10"*m™*,

05=5x10" 4m2/s ag=5x10"*m™*,

0% = 4% 10" m%s?, a,,=12x107°m™t,

05,=3x10"°m%s?, @, =3x107°m?,

07,=3x107'm%s?,  a;,=65%x10"°m™*,

07, =8x10"°m%s?, a3=1.9x1072m™?

0%, =44x107m¥s?,  a,=6x10"2m,

0%, =86x10"?m%¥s?, a=21x10"'mt,

0%,=15x10" ¥ m%s?, a,4=8x10""m™*

nominal 0 0 0
gravitational rs,=1540E, ry,=1540E, lg5=3080E
gradients
velocity to convert | v =250 kn/hr (96)
to temporal psd’'s
altitude of aircraft | x3=21000m (66)
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VIII. Airborne Gravimetry Error Analysis

Based on typical parameter values for the errors in high-accuracy gyros and orientation bias
(Table 1), and the acceleration spectral densities and mean signal amplitudes (Table 2), Figures 5
through 8 show the contributions from the orientation error due to the coupling between gyro

error and aircraft dynamics (acceleration) according to equation (90). InFigure 5, for Fy, A, We

see that the dominant contributors are the coupling between an azimuth bias, y 39, and the
horizontal (east, in this case) aircraft acceleration at al frequencies. At lower frequencies, the
coupling of the azimuth bias with the mean amplitude of the horizontal acceleration raises the
error psd significantly. The latter contribution extends to the mid-frequencies (0.0003 Hz) only
because the psd of the bias is modeled with a time constant of 2 hr; a longer time constant would
move the amplification to even lower frequencies.

0.1 T T
(_)21_ Fysaz ]
210° -
r104 E —
105 y 0320, _
N 2100 F — N\ Fyo500, s
% r167 | SV Fy3/dW0/Da2 i
‘E 158 L NS y 3/dwy, /Day
+10° F
110 0 |
140_1; " Fyyawgao,
o 2104 10103 0.01 01

Frequency [HZ]
Figure 5: Psd of down orientation error, y 3, due to gyro error coupling with east
acceleration, a, .

It is also seen that al other components contribute about one order of magnitude less to the
orientation error psd. An increase of the gyro bias variance from (0.003 °/hr)2 to (0.01 0/hr)2

would yield an equivalent level of error. Similarly, the white noise psd of the gyro must increase
by a factor of 10 to be commensurate with the azimuth bias variance. Yet, the assumed initial

value of this variance, (0.005°)2, is low compared to typica calibration using standard initial
alignment procedures by an inertial navigation system (INS) (we assume a more accurate
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calibration en route using GPS). A less well-calibrated azimuth bias would make the gyro errors
even less important to this part of the overall error. These relationships between contributions to
orientation error from azimuth bias and gyro error are largely independent of the spectrum of the
horizontal acceleration of the aircraft; but the accelerations obviously define the amplitude of the
overal high-frequency spectrum of the orientation error.

o
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[m?/]/Hz
e
5 5 B 8
o o &
I I I I
K<<
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£
i
| | |

1-10 —

1210 4 110 °

0.01 0.1
Frequency [Hz]

Figure 6: Psd of east orientation error, y ,, due to gyro error coupling with down
acceleration, ag.

The situation is similar for the error psd, Fy 8 resulting from the coupling of the gyro error

with the down acceleration, with the essential difference, as seen in Figure 6, that the gyro noise,
dw,,, now defines the total error at mid frequencies, owing to the large nomina down

acceleration of about 9.8 m/s?. This also elevates the error at the very low frequencies coming
from the gyro and orientation biases. Due to the particular spectrum of the vertical acceleration
of the aircraft, in this case, the effect of the leveling bias dominates only at the high frequencies
(>0.06 Hz). The same trade-off between the orientation bias, the angular rate bias, and the
white noise in the rate exist here as for Fy, Ay

The latter two error psd’s, Fy 2o and Fy S8 contribute to the error psd of the estimated

horizontal gravity, while those shown in Figures 7 and 8, Fy.a and F contribute to the

yiay’
error psd of the estimated vertical component. These error psd's and their constituents are very
similar to each other and to Fy, Ay
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Figure 9 shows the congtituents of the error psd of the estimated horizontal gravity
component. The orientation error contribution, F 5, dominated by the effect of the large down

acceleration, essentially defines the error psd at low- to mid-frequencies. Again, with
degradation in the azimuth bias calibration and/or with a more dynamic acceleration environment

(higher psd amplitudes), the orientation error contribution, Fy 5 , would determine to total error
psd at these frequencies. At the high frequencies, the white noise amplification resulting from
the differentiation of position errors clearly delimits the resolution to which gravity can be
recovered. We see the well known spectral window for airborne gravimetry (Schwarz et al.,
1992). In this scenario the accelerometer noise psd helps to shape the bottom of the error
spectrum, but any improvement in accelerometer noise would not yield a significant overal
enhancement. The registration error psd is practicaly negligible in the presence of accurate

positions such as derived from GPS. It is a the level of Fg s §X1 =1.3" 10 ** m%is%Hz (not
shown in the figure), and would compete with the accelerometer variance only if the latter were

s an-6 can- 7 2 2
reduced by afactor of 5° 10™~ to about (1.2 10 " m/s ) .

[m?/s]/Hz

1-10 1-10 0.01 0.1
Frequency [HZ]

Figure 9: Psd of horizontal gravity estimation error, dg;, due to kinematic
acceleration, gyro, and accelerometer errors.

The error psd of the estimated vertical gravity component, shown in Figure 10, has similar
characteristics, but is governed by dlightly lower orientation error contributions, reflecting
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primarily the effect of the lower nominal horizontal acceleration. However, the total acceleration
gpectrum essentially determines the lower part of the error spectrum. The noise of the
accelerometer defines the central frequencies of the overal error spectrum, somewhat more
broadly than for the horizontal gravity component.

Figure 11 depicts the total error spectra relative to the along-track psd's of the gravity signal
as modeled by the parameters of Table 3 and the functions given by equations (C-7) and (C-12)
with DX =0, and atitude, x3 =1000m. As the aircraft velocity (assumed 250 km/hr, here)
increases, the along-track psd's of the gravitational signals move to the right with respect to the
error psd's. Clearly, the signal-to-error ratio is greater than unity over a broader spectral band in
the case of the vertical gravity component, and it is greater than the signal-to-error ratio for the
horizontal gravity component. According to the scenario implied by the given error and signal
parameters, one can expect better resolution and accuracy in the recovery of the vertica
component. Nevertheless, it is aso clear that the horizontal component may be estimated with
reasonable accuracy (see also Jekeli, 1995).
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Figure 10: Psd of vertical gravity estimation error, dgs, due to kinematic

acceleration, gyro, and accelerometer errors.
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Figure 11: Psd's of gravity estimation errors, d ¢;, d g3, versus along-track psd's of
corresponding signals.
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IX.  Airborne Gravity Gradiometry Error Analysis

As background information for the typical gravitational gradients that may be encountered,
Figure 12 shows the along-track psd's of the six gradients based on the reciprocal distance model
(Table 3) fitted to the empirical data shown in Figure 4. Equations (C-29), (C-32), (C-34), (C-
39), (C-41), and (C-43) were used to compute these psd's, with Dx =0, h=1000m, and
v=250 km/hr (see also equation (96)). A gradiometer with 30 E/+/Hz sensitivity would easily
sense gradients with wavelengths as short as 7 km to 17 km. However, due to the attenuation
with altitude, more sensitive gradiometers quickly reach the point of diminishing returns. With

more than an order of magnitude increased sensitivity, at 1 E/~/Hz , the recoverable wavelengths
decrease only to about 1.4 to 2.3 km.
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Figure 12: Along-track psd's of gradients at altitude, h =1000 m, and for aircraft
with velocity, v =250 km/hr .

We proceed with the error analysis of a full-tensor gradiometer system as described in
Section 1. Again, based on the nominal parameter values for the gyro errors and orientation bias
(Table 1), and the angular rate spectral densities (Table 2), Figures 13 through 18 show the
contributions from the orientation error due to the coupling between gyro error and the gradient
field, according to equation (92). As before, the orientation errors themselves are due to gyro
noise and drift bias, as well as self-bias. Since we assume like values for each of the attitude
biases and for the gyro error parameters, the orientation error contributions depend only on the
gradient psd’s.

Clearly, these gyro and attitude errors contribute more, by several orders of magnitude, in
coupling to the in-line gradients (Figures 13 through 15) than in coupling to the cross-gradients
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(Figures 16 through 18); and, in either case, primarily the lower frequencies are affected. Thisis
due to the presence of the large nomina in-line gradients. For the cross-gradient couplings, the
orientation bias error mostly dominates the contributions. It also dominates for the in-line
gradient couplings, but only at the very low frequencies, while at medium and high frequencies,
in this case, the coupling of the gyro noise with the nomina gradients defines the overall
coupling. On the other hand, degradation in the orientation bias variance by an order of

magnitude, from (0.005°)2 to (0.016 °)2, brings its effect to that of the assumed gyro error, as

least for the medium frequencies (Figures 13 through 15). This also depends, of course, on the
strength of the anomalous gradient field.
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110 20 L 2
1:10 1010
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Figure 13: Psd’s of errors due to coupling of orientation error, y ; (j =23), with

gradient, Gy; (total psd (black) and its components (colors)).
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Figure 16: Psd's of errors due to coupling of orientation error, y ; (j =12,3),
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Figure 18: Psd's of errors due to coupling of orientation error, y  (j =12,3),
with gradient, G, (total psd (black) and its components (colors)).

The error psd contributions due to the coupling of the gyro errors, given by equation (78),
with the angular dynamics of the vehicle are illustrated in Figure 19. The effect of the white
noise dominates over that of the rate biases (medium and high frequencies), and the noise psd
would have to decrease by two orders of magnitude to be commensurate with the effect of the
rate bias at the medium frequencies. This conclusion is essentially independent of the angular
rate dynamics of the vehicle, which couple into both types of gyro error. However, it is also
clear that the angular rate dynamics determine the amplitude of all these couplings.
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Figure 19: Psd's of errors due to angular rate error, dw .

Finaly, Figures 20 through 25 show the combined effects on the error in the computed
gradients. For the given values of the error parameters (Table 1), the gradiometer noise
determines the error at all frequencies. The next largest contribution is from the couplings of the
gyro errors with the angular dynamics of the vehicle; while, the orientation error couplings
hardly contribute, except at the low frequencies (due to the orientation bias and nominal in-line
gradients), and then only for the cross-gradients since only they are affected by couplings to the
in-line gradients. The gyro noise psd’'s would have to decrease by two to three orders of
magnitude before they compete with the gyro error effects, and together they would have to
decrease by two to three more orders of magnitude in order to contribute less than the orientation
bias effects. Furthermore, the latter affect primarily the low and medium freguencies, whereas
the whiteness of the gyro noise essentially contributes equally at all frequencies.

The magnitudes of the various contributing effects essentially depend linearly on the
parameter values since the analysis is based on a linear approximation of the error equation.
Therefore, one can construct approximate, order-of-magnitude relationships between
commensurate levels of gradiometer error, gyro error, and orientation bias (Table 4). Figure 26
shows the psd of the error, dG;,, and its constituents for the case of gyro and orientation errors

approximately commensurate in effect at the level of 1 EHz (the situation is similar for the
other gradients). Clearly, in order for the gradiometer error to dominate the accuracy of the
derived gravitational gradients, the gyros and orientation bias should be an order of magnitude
better in equivalent accuracy. As afinal note, all of these results depend on the strength of the
gradient field (which is a function of geographic region and aircraft altitude) and the angular rate
dynamics of the aircraft.
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Table 4: Roughly commensurate sensor errors in airborne gravity gradiometry

WG 4G * Syo S dwg \/V\ﬁww
30E/A/Hz, 5 1072 20° 0.5 °/hr 3°/hr/\Hz

10 E/A/Hz , 1.7" 1072 6° 0.15°/hr 1°/hr/\/Hz
1EHz, 1.7 1004 0.6° 0.015 °/hr 0.1°/hr/<[Hz
0.1E/+Hz, 1.7 10°® 0.06° 0.0015 °/hr 0.01°/hr/+/Hz
0.01E//Hz, 1.7 10°8 0.006 ° 0.00015 °/hr 0.001°/hr/</Hz

* unitsasin Table 1
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Figure 26: Total psd and its components for the gradient error, dGy,, if dl
constituent error sources are roughly equivalent (third entry in Table 4).




X. Summary

A detailed error analysis in the frequency domain was presented for airborne gravimetry and
airborne gravity gradiometry. New psd and covariance models were developed for white noise
and the random bias, which can be manipulated analytically to accommodate integration and
differentiation of errors and the requirement of stationarity in power spectral densities. Models
were aso designed for the accelerations and angular rates of an aircraft flying straight and level
for survey purposes. Finally gravitational models were derived from actua gravimetric and
topographic data in a moderately active geographic region of the U.S. to wavelengths as short as
1 m. Together, these error and signal models predict the recoverable spectral window in airborne
gravimetry that is already well known and they highlight the limiting sources of error. Aside
from the principal sensor errors, the orientation error bias couples with the accelerations of the
aircraft thus bounding the recoverability at the longer wavelengths.

Similarly, in the case of a full ensor gradiometer with the necessary suite of gyros, the
coupling of the gyro rate noise to the angular rate environment of the system is the principal

competitor to the gradiometer noise. The analysis shows that a gradiometer with 1E+Hz
sensitivity will not be adversely compromised (at medium and high frequencies) if the required

gyros have bias repeatability of 0.0015 °/hr and sensitivity of 0.01 °/hr/~/Hz »0.00015 °/ Jhr,
and if the orientation biasis 0.06 °. The latter numbers al reflect an order of magnitude lower

than a commensurate gradient error effect of 1 Ev/Hz.
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Appendix A

Equation (23) for the error in the gravitational gradients is based on a combination of gradiometer
measurements:

N=rY-Yr-B+QQ+QoQ-2 = , (A-1)
j

where (see equation (13))

Bb—l a;ab+ a;ab T (A-2)
2| gxP | oxP '

Considering only errors in the measurement tenda?/ox®, suppose they have @x9
variance-covariance matrix that is diagonal (no correlations):

Zoalox = dieg (szk) ' (A-3)

whereajzk is the variance of the,K)-element ofda®/ax®. Then, the errors in the gradients can
be written as

daq/dxq

-1 0 0 0 0 0 0 0 day/d

/— a1/ 0X2

12 0-05 0 -050 0 0 0 O day/ox3
r - — dag/0xq

13|_| 0 0 -05 0 0 0 -050 0 el )
I_2’2 O O O O _1 0 O O O 532/6X3
I3 O 0 0 O 0-050 -050 dag/ox
r. 0O 0 0 000 0 0 -1 023/0x2

3,3 633/0X3

and, the variance-covariance matrix of the gradient errors is, therefore, given by the diagonal
matrix:
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0
-05 0 0 0 -05 0 O
0O 0-10 O OO
0 0 0-050 -050

10
0
0
0
0

0
0 0-05 0 -050

0
0

(A-5)

A
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Appendix B

Covariance and psd models for the gravitational field are generally modeled using simple analytic
functions that reflect certain desirable and required characteristics of the field. Either global
(spherical) or local (planar) approximations are employed, depending on the application. Here we
list only a planar (Cartesian) variation of the models, though corresponding spherical models can
also be derived. Required characteristics include harmonic extension in altitude, stationarity of the
field on any horizontal plane, and positive definiteness. Furthermore, the models of the auto- and
cross-covariance functions among all quantities derived from the disturbing potential should be
mutually self consistent. That is, we generally start with a certain model for the covariance
function of the disturbing potential and all other models are derived from this according to the rules
of propagation of covariances. If both spatial and spectral applications are contemplated, then it is
also required that both the covariance and psd models in each case are Fourier transforms of each
other. If one further desires to consider along-track psd’s, then the psd in the two horizontal
frequencies should be integrable (analytically) over each frequency.

All these properties are satisfied by the reciprocal distance covariance model that for the
disturbing potential is given by

‘Pr<AX1’AX2J X3’X3') = \/ < , (B-1)

(1+a(xg+ x::,'))2 + a%s’

whereo, anda are parameters, and where
AX]_ = Xl—X]_' , AXZ = XZ—XZI , (B-2)

and

s=\/ &G+ 06 (B-3)

Linear combinations of these types of models can be used to provide as much detail and refinement
as necessary to characterize the stochastic correlation and spectrum of the field; see equation (64).
We note that this covariance model is also isotropic since it depends only on the dstance,
between two points, not on the direction of one point with respect to the other. Isotropy is not a
requirement but practically desirable. However, cross-covariances of derivatives are not
necessarily isotropic, as will be seen below.

To simplify the notation, let us introduce the following:

B=1+a(x3+X3), M= B?+ a’s? | (B-4)
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and understand that all models are function@dxfl,sz; x3,x3'), where the primed coordinates

(see also equations (B-2)) always refer to the second function in the cross-covariance expression.
Then

2
@ = 77 (B-5)

If fi andgy are two derivatives oF:

L oT oT

17 ox; gk:Wk' ’ (B-6)

then their covariance, according to the rules of propagation of covariances (Moritz, 1980), is given
by

R
%@

110k - OXJ'an' ' (8-7)

Now, we introduce a further simplification in notation by IettiﬂglaijTXj and

62T/(axjaxk) = Ty, - Then, for the first-order gradients of the disturbing potential,
T
OT = (Txl Ty, TXB) , (B-8)

we obtain the following auto-and cross-covariance models:

o’ a® yivel .

#r, =32 BT (B-9)
a’ a® A,

@, = EEVEC %, T (B-10)

o’ap
@roTiox, =~ EVEQ = Biox, T (B-11)
o® a? 2, 2.2 252
%Tlaxl,aTlaxlzngz (/3 +a°s"-3a Axl) ; (B-12)
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o’ a*

Brriax, aTiox, = — 3 Ve DX 8X) = Byion, aTiox, (B-13)
o’ a® B
Brriax, aTiox, = 3 v AX1 = — Gy, amiox, (B-14)
0% a? 5
Bytiox,aTiox, = V52 (,3 + a’s” - 3a°Ax ) : (B-15)
o’a’p
Brrion,aTlox, = 3 NVEER AX5 = = Gyrion, aTiox, - (B-16)
o2 o2
BoTioxs,0Tioxs = M52 —5(28° - a%?) = Byviox, oTiox, T BTiox,oTiox, - (B-17)

For the second-order gradients, we note that since the gradient tensor is symmetric, any auto- or
cross-covariance involvinng/(axjaxk) = Tax, is the same as the auto- or cross-covariance

involving 9°T/(9xdx;) = Ty, . We have:

BT, = O T, T P, T (B-18)
BT, P, ™ P, T (B-19)
Pl T, = BT (B-20)
BT, = ", T, P, T (B-21)
2 PP VU Dl O (B-22)
G, =P T, =B T (B-23)
30% a*Ax, ,
BTy = g7 | 3B +30°S -5 =g g (B-24)
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3Py L, L, L,
L I\/I7/2(B +ast-5a Axl) 2 O Sl C % 2 A S (B-25)
7= o sz e e ©29
B, = %(ﬁ“ @SN =~ g1 =Gy =-% 5 (B2
T~ Bi;gg)[;ﬂxl“xz BT ™ PFrTos ™ P =~ Py = Py T, o+ (B28)
BT ™ %(— 4+ a7 =— g 1 =—@ g =@ g (B-29)
BT ™ %(W +30%"-5a°G =~ 1 (8-30)
T 30; Ol p-aisial)=g i =gy =@ 5 (B3
@ 1., %(— WPz =g =g 1 (B-32)
T ?’th,lﬁiﬁ(- 28°+30%|= ;1 (B-33)
A 3'3'29/62’ (BM —30Ma?ax + 35a4Ax‘1‘> ; (B-34)
1507 aeAxlAXZ( 2 _
BT vz SM+7a AXl) i (B-35)
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_150% a® BAxy b 2| |
P T M9/2(3M —ra Axl) == T (B-36)
_30%a* 5 . o2 452, 2) _ _
(prxlxl,szxz = 7M 93 (M —5a°s"M + 35a Axle2> = qarxzxz’TXlxl = q’fxlszxle ; (B-37)
_150% a® B A, . 2\ ) ) |
¢J|—X1X1’TX2X3 a I\/IQ/Z(M —7a AX]-) T ¢I—X2X3ITX1X1 T (prxlx:;,vTxlxz - (prxlxszxl><3 ! (8_38)
_ 30” a* 2 24,2 2 2,2\ _ _ )
¢|—X1X1’TX3X3 - 'Vlg/Z(_ 4M + 5Ma AXZ + 35B a Axl) - ¢I—X3X3|TX1X1 - ¢|—x1x3,Tx1x3 ! (B-sg)
1507 aeAxlAXZ( 2 _
qaerXz’szxz a M9/2 K_ M+ 7a AXZ) - (prxzxszxlxz ! (B-40)
1502 a®° B A,
= - 2 /%2 =— =— = : -
¢rxlx2,TX2x3 - |\/|9/2 (M a AXZ) qarxzxs’Txlxz X1X3’T><2X2 ><2><2’TX1><3 ' (B 41)
150° a® Ax, % 5 |
(pl'X1X2,TX3X3 - |\/|9/2 . M+ 7'3 ) erng T><1><2 ¢rx1><3'T><2><3 - ¢rx2X3’TX1X3 ’ (8-42)
1502 a®° B A,
- - /=1 2 . -
¢rX1X3’TX3X3 - M9/2 ( 3M + 7ﬁ ) X3)<3 T><1>(3 ! (B 43)
_3c%a
BroTa™ 02 (3|v|2 30Ma2Ax; + 35a*/x ) (B-44)
XX ><2><2
150° a° B &y
- 72 AP = : )
BT ™ iz | M-Ta sz) %, T, (B-45)
¢J|—x2X2'TX3X3 - M9/2 - 4M + 5Ma Axl + 35ﬁ a AXZ) - ¢r><3><3r-|—><2><2 - ¢Jr><2x3vTx2x3 ! (B-46)
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5
o _15020 'BAXZ(—3M+7/32):—¢’r L (B-47)

X9X3? "X3X3 M9/2 X3X3! "XoX3 !

4
T 3026{(8,6’2 — 24%a%s% + 30434) =@

+ . B-48
X3X3’ X3X3 M 9/2 X1X3’T T ( )

X1X3 XPX3! TX2X3

The power spectral densities (psd’s) corresponding to these covariance models are easily
determined from the basic psd of the disturbing potential, the Fourier transform of equation (B-5):

CaF(lJl’/vlz; X3’X3') - C?il e P g 2] : (B-49)

where the magnitude of spatial frequencigsand u,, is given by

p=\/ e+l (B-50)

That @, depends only op is a consequence ¢t depending only os (isotropy). The inverse
Fourier transform of®; is ¢ :

0

(p,-(Axl,sz; x3,x3') = J

oJ
— 00

;’Z e—2m1a—1 e_2r1p(x3+x3') ei27‘(,ulel+pzAx2) duy duty (B-51)

In fact, the covariance between any two quantities is related to the psd of the same quantities by a
transform like equation (B-51). Thus, applying the propagation of covariances, equation (B-7),
we find that for each derivative with respectxjq j = 1,2, we multiply @ by i2n,uj , and for
each derivative with respect ¥, k=1,2, we multiply @& by —i2mu, . For derivatives with
respect txz or x3', we multiply @, by —2mu. It can be proved (Jekeli, 2001) that these rules
hold in general, not just for this particular model.

Consider the covariance of théh derivative ofT with respect to variabley; and ther™
derivative ofT with respect to the variable, . Again, omitting the argument@ul,uz; x3,x3'),

we have the following general result for the corresponding psd:

psd(OqT/((GXj )%(x, )qz),afT/((axkl')“(axkz')”)) =AD" AN A e i (B52)
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where * denotes complex conjugate, the indices satisfy
juiakykp0{123); 0,01, 027,73, 120{012), q=qy+0,, r=ry+r, ; (B-53)
and where

An=i2mu,, if m=12; and A;=-2mu . (B-54)
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Appendix C

The hybrid psd/covariance function of the disturbing potential on a plane is defined as the psd with
respect to the first variable and the covariance with respect to the second variable. That is, we take
the 2-D psd and apply the inverse Fourier transform with respect to the second variable, or
equivalently, we take the Fourier transform of the covariance with respect to the first variable:

Stf Hy; AXg; X3X3 | =J Br{ iy, g X3X3 e Mgy,

(C-1)

00

= ' gar(Axl, X, x3,x3'> e M gy

— 00

The reciprocal distance model, equations (B-5), (B-49), can be integrated to yield these hybrid
functions in analytic form. Most of these were given by Stanley K.Jordan (1982, unpublished
manuscript). For the disturbing potentiglwe have:

2 0
ST</11; X, x3,x3') = K0<2r1yld) , (C-2)
whereK, is the modified Bessel function of the second kind and zero order, and
d= — A, . (C-3)

For the various derivatives of the disturbing potential, it can be shown that the corresponding
hybrid psd/covariance models have the following forms. Again, the argur(yeptsxz; x3,x3') ,

are omitted for simplicity in notation:

ST,Txl =i2muy Sy=- S'rxl,'r ; (C-4)
20 (21, AX
StT, = | a dl) : Kq(2mud) =Sy, 1 (C-5)

whereK; is the modified Bessel function of the second kind and first order;
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20° (2mu) B
Srr, =~ —2q K1(2n,uld) =Sr.1;

2
STXl,TXl:(ZHIJl) Sr;
Sr,,T, =12 Sy =Sy 7,

STX]_’TXS - Izmll ST,TX3 =- STX31T>(1 ;

2 2
ST T, = 2025:'111) (1 _ 22)2(2) K1(2nuld) - 27'411A(;(Z Ko(27zuld) ;
_ 20° (27'411) B Ax, )
ST T T T g (2 Ky(2mud) + 27, KO(Znuld)) —_
STy T = ST, ST, T,
ST = 7 ST, T, = ST T
ST’Txlxz - STxl,TX2 = STXMT ;
STiTxlxs - STxl,sz == STX1><3T ;
STl = = STy T, = ST T
STl = = ST Ty = = ST, T
ST Tss = STy Ty = ST T
Sr.1.,. = i(2mu) Sr==Sp_ 1.
ST (2"“1)2 ST, = = ST = STyl =~ ST,
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(C-6)

(C-7)

(C-8)

(C-9)

(C-10)

(C-11)

(C-12)

(C-13)

(C-14)

(C-15)

(C-16)

(C-17)

(C-18)

(C-19)

(C-20)



ST, 9TI(Ex,0%) = (277111) STl = STy = STy =~ gy Ty
ST Ty = 12T ST, T, = =St T, = ST T, = ™ ST T,
ST Tepe = 12T ST, T, = ST T T T ST T, = ST = ST =
St T =~ 12T Sy, 1, = =St T, =S T T ST T,
207 (2muy) 4%,
Sszvszxz - a d3
2
84X , ané
6— 7 - (2muy8%5|” | Ky( 2qayd) + 2740l | 3~ ra Ko[2ruyd)
- STXZXZ'TXZ
) 20° (2m) B
STX27TX2X3 - az d3
2
8AX2 9 4AX
25"~ (203 | Kof 20 + 271 1_(T Ko2muyd)
= ST T =~ ST Ty, =~ STy, TG 5
St I Sr, I Sr, I STXSX3T ==, o Toxs ST%T
ST TX3X3 ST TX1X3 STX X2X3 STXSXs T ;
STXlxl Xle (Zm‘l) ST !
(prxlxl X1X2 (27'411) ST T STXlxz Txlxl ’
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(C-21)

(C-22)

(C-23)

(C-24)

(C-25)

(C-26)

(C-27)

(C-28)

(C-29)

(C-30)



St..T =_i(2nu1)3ST,TX3:_ST T,

X1X1' 'X1X3 X1X3' 'X1X1 !

& T :(Zml)ZSTX2,TXZ:ST T = ST T

X1X1' XX XX TX1X1 xpxp Ixaxp

S :<2W1)ZSTXZ,TX3:_ST T == ST T = ST T

X1X1' 'X2X3 X2X3' 'X1X1 X1X3' 'X1X2 X1X2' 'X1X3 ’

St T =—(2W4)° St 1 =S 1 =St 1.
Sty Tes = 12T St T = ST T,
St Tess = 12T ST T, == ST T ™ ™ ST = SonTs
StpoTes = 2T ST T = ST T = ™ ShiaTon =~ ST
ST Teoa — o Teoe ™ el — ~ g Tep
20% (2, 24/%5 24X , O
S( Tad® 2muyd| 3 2 gt (2412%, 2 Ko 274,
2445 2445 Ve

+2 3-

e e L
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(C-31)

(C-32)

(C-33)

(C-34)

(C-35)

(C-36)

(C-37)

(C-38)

(C-39)



STXZXZ’TXZXS - aZ d5 Zm]—d 12 - d2 - (Zmlez)z Ko(zmld)

+| 24—

e +3(2muyd)* — 82748 | Ky 2740 (C-40)

:_S.I_ :

XoX3! "XoX9 !

STX2X2,TXSX3 == erlxl,TXZX2 - STX2X2,TX2X2 = STX3X3,TX2X2 == STXZ)(S,TXZXS ; (C-41)
STX2X31TX3X3 - erlxllTX2X3 + S-I—X2X2’TX2X3 - STX3X3ITX2X3 ! (C-42)
STX3X3’TX3X3 - S-l—X1><3’TX1><3 * erzxs'szxs ' (C_43)
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