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ABSTRACT 
 
 

 Ocean tide has been observed and studied for a long time. With its role in the 
complex interactions between solid earth, ocean, sea ice and the floating glacial ice 
shelves, tides have been identified as one of the important causes of grounding line 
migration, an essential factor to the study of ice mass balance and global sea level change. 
In addition, accurate knowledge of ocean tides is needed for studies such as tidal mixing 
and sea ice calving. Polar ocean tide models remain poorly understood despite of the 
success of global ocean tide modeling in the deep oceans. In this thesis, a study of ocean 
tide modeling in the Southern Ocean employing the empirical tide solution approach is 
presented using the multiple satellite altimetry data at crossover locations. 
 The tidal aliasing problem in satellite altimetry is first investigated by testing the 
software for two frequency searching methods using simulated and actual altimetry data 
at crossover locations. Numerical experiments show that the software for the interval 
method performs better than that for the global optimization frequency searching method, 
by which the true original (not aliased) frequencies of the tides can be extracted from 
altimetry data at crossover locations. Also, using altimetry data at crossover locations can 
better reduce tidal aliasing than using along-track altimetry data. 
 Altimetry data at T/P and ERS-2 dual satellite crossovers for the Southern Ocean are 
generated using 300 cycles of T/P data and 79 cycles of ERS-2 data. Using these data, an 
empirical ocean tide solution is derived using the orthotide formulations. Different 
weighting methods are tested, and the use of different weights at different locations is 
adopted as our solution strategy. The empirical tide solutions have been evaluated by 
comparison with several other models, including the global tide models NAO99, 
TPXO.6.2 and the regional model CATS02.01. The comparison shows that our solution is 
comparable with the selected models. The RSS of 8 major short-period ocean tides 
between our solution using altimetry data at dual satellite crossover locations and the 
selected models is 2.2 ~ 2.4 cm. And when compared with selected models in terms of 
standard deviation of the sea surface height residuals, our solution shows improved 
performance with a tidal power of 22 ~ 42 cm2 improvement over the selected models.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

 Every day, the sea rises and falls along the coasts around the world oceans. These 
phenomena had long been recognized as tides, the effects produced by the gravitational 
attraction of the Moon and the Sun on the Earth.  
 Historically, because of the importance for commerce, tides had been observed and 
predicted at the tide gauges along coastal regions with intense commercial activity. In 
1687, Newton established the equilibrium theory, which explained the forces that 
generate the tides. Almost a century later, in 1775, Marquis P.S. Laplace published the 
dynamic response concept of ocean tides formulated in Laplace Tidal Equations (LTE). 
Since the solutions of these LTE strongly depend on the bathymetry and the shape of the 
ocean’s boundaries, it is impossible to obtain analytical solutions. In the 19th century, the 
harmonic analysis method developed by Darwin (1883) provided an efficient way for 
tidal analysis and prediction. 
 The acquisition of long-term tide gauge observations, the invention of deep-ocean 
bottom pressure recorders in the mid 1960’s, and the application of modern computers 
and numerical methods, improved our understanding of ocean tides. However, our 
knowledge of ocean tides remained to be limited in the vicinity of coastlines and 
mid-ocean islands where in situ measurements (i.e. from coastal tide gauges) are 
available. It was not until late 1970s that the advent of satellite altimetry offered, for the 
first time, a means to estimate ocean tides globally.  
 With the high precision and globally distributed satellite altimeter measurements, it is 
possible to extract ocean tide signals from satellite altimetry by suitable analysis of the 
altimeter data or by assimilation of altimeter data into the hydrodynamic models. Since 
one of the first evidences of the tide signal in altimeter data was shown from Seasat (Le 
Provost, 1983), new ocean tide models have been developed. Based on 2.5 years of 
altimetry data from Geosat Exact Repeat Mission, Cartwright and Ray (1990, 1991) 
obtained the first altimetry-derived global tide solution which is more accurate than 
Schwiderski’s model (1980), which had been derived by solving the hydrodynamic LTE 
equations and had been widely used more than a decade before. The launch of an 
unprecedented precise satellite altimeter TOPEX/POSEIDON (T/P) promoted the 
generation of more global tide models; and with the accumulation of altimetry data from 
T/P and improvement in numerical methods, these models have been revised with better 
accuracy, such as the FES model series (e.g. FES94, FES95, FES98, FES99, FES2002), 
the CSR model series (e.g. CSR3.0, CSR4.0), the GOT models (e.g. GOT99, GOT00),  
the DW model, the NAO model and many others. 
 In general, the modern global tide models can be categorized into three groups:
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empirical model, hydrodynamic model and assimilation model. Although all these 
T/P-derived tide models have an accuracy of 2-3 cm in deep oceans (Shum et al., 1997, 
2001), they are still problematic in coastal and shallow water areas (Shum et al., 2001). 
Due to the latitude limit and other design characteristics of the satellite altimeter, the 
altimetry data from T/P have the coverage only within ± 66o latitude. The altimeter 
cannot measure accurately close to shorelines and over oceans with non-permanent or 
seasonal ice covers. As a result, contemporary global tide models are confined to the 
region of ± 66o latitude and, for the region beyond T/P coverage, these models are 
primarily constrained by prediction from hydrodynamic solutions (e.g. FES94 model). 
All of these factors resulted in our comparatively poor knowledge of tides in the polar 
region and underneath the ice shelves. However, non-T/P altimetry data which cover the 
region beyond ± 66o limit, such as the datasets from the ERS-1/2, Geosat, GFO and 
Envisat missions, may contribute to the ocean tide modeling in the polar region. Also, the 
measurements from other techniques, such as GPS and InSAR, may provide possible 
ways to detect the tidal motion in polar regions and ice-covered oceans (Aoki et al., 2001; 
Rignot et al., 2000; Shum et al., 2001). But non-T/P altimetry data are less accurate 
because of their lower altitude and single-frequency altimeters, and that their orbits are 
not optimized for minimizing tidal aliasing. How to combine these data with T/P data to 
improve the spatial resolution, coverage and even the accuracy of ocean tide models, is 
still an open problem. 
 In this thesis, we carry out a study on the ocean tide modeling for the Southern 
Ocean, which is defined as reaching from -50o latitude to south poleward, by 
investigating the possible combination of ERS-2 data with T/P data at the crossover 
locations using the orthotide method (Groves and Reynolds, 1975), which is the 
orthogonalized form of the response method with mutually orthogonal orthotide functions. 
The purpose is to improve spatial resolutions, reduce tidal aliasing using non-T/P data 
and develop techniques for dual-satellite crossovers associated with other high-latitude 
observing altimeters. A brief review of tide theory is provided in Chapter 2, including the 
tide generating potential, the harmonic expansion and two kinds of tidal analysis methods. 
In Chapter 3, introductions to satellite altimetry and ocean tide modeling are presented 
with descriptions of several ocean tide models. Chapter 4 provides results of our 
investigation into the problem of tidal aliasing. Then in Chapter 5, our study on the ocean 
tide modeling for the Southern Ocean is described, and the results of an empirical tide 
solution are presented and analyzed. Finally, conclusions and plans for future work are 
summarized in Chapter 6. 
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CHAPTER 2 
 
 

OCEAN TIDE THEORY 
 
 

 Tides are caused by the gravitational forces of the Sun and the Moon on the non-rigid 
Earth. The tide-generating potential from which these forces may be derived will be 
concisely reviewed in Section 2.1. The development of the tide-generating potential in a 
series of harmonics will be introduced in Section 2.2. Two techniques in tidal analysis 
will be presented in Section 2.3. 
 
2.1 Tide-generating potential  
 
 Due to the gravitational attraction of the Sun and the Moon, the surface of the elastic 
Earth will deform periodically, which phenomenon is known as tides. The mass 
redistribution of the Earth will result in the variation of the geopotential, in which the 
tide-generating potential U on the surface of the Earth caused by the attracting body, the 
Sun or the Moon, can be expressed as  

      )(cos),,(
2

θλφ l

l

l

e
e P

R
R

R
GMRU ∑

∞

=

⎟
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where GM is the product of the universal gravitational constant and the mass of the 

attracting body, eR  is the mean radius of the Earth, R  and θ  are the geocentric 

distance and the zenith distance from the point ( λφ ,,eR ) of the attracting body, 

respectively. )(cosθlP  is the Legendre polynomial of degree l . Since the ratio RRe  

denotes the sine of the parallax (π ) of the attracting body (ref. Figure 2.1), which has 

very small values for the Moon and the Sun (Taff, 1985), only the term with 2=l  in 

(2.1) is generally considered as representing the tide-generating potential, although 

sometimes the term with 3=l  is also taken into account for the Moon. So we have the 

main term of the tide generating potential as  
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 Using the spherical triangle NPD (see Figure 2.2) which involves the zenith distance 

θ  of the attracting body D, the geocentric longitude λ  and latitude φ  of a location P 

on the surface of the Earth, and the right ascension α  and declination δ  of the 
attracting body, one obtains 

      Hcoscoscossinsincos δφδφθ +=  (2.3) 

where  

      αλθ −+′= gH  (2.4) 

is the hour angle of the attracting body ( δα , ) at the observer site ( φλ, ), with gθ ′  as the 

Greenwich sidereal time. Thus )(cosθlP  can be expressed as  
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and the tide-generating potential can be written in the following form 
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where m0δ  is the Kronecker delta and )(sinφlmP , )(sinδlmP  are the associated 

Legendre functions. The corresponding main part of the tide-generating potential is 
written as 

 

   Figure 2.1 Illustration of parallax       Figure 2.2 Spherical triangle NPD 
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Obviously, from (2.7) we can see that the first term with 2=m  is the semi-diurnal 
species, the second term with 1=m  is the diurnal species and the third term with 0=m  
is the long-period species. 
 
2.2 Expansion of the tide-generating potential 
 
 From (2.6), it follows that the tide-generating potential is also a function of the 
position of the attracting body, here, the Sun and the Moon. Since the motion of the Sun 
and the Moon can be described by several astronomical angles which approximately 
proceed linearly with time, the tide-generating potential can be developed into a series of 
harmonics.  
 Following the first development of harmonic expansion by G. H. Darwin (1883), A. T. 
Doodson (1921) provided the first complete development of the tide generating potential 
by using E.W. Brown’s lunar theory and expansions for the longitude and latitude of the 

Moon referred to the ecliptic rather than to the orbit. Each species mU 2  in the 2nd degree 

term 2U  of the tide generating potential can be written as 
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where [ ]Re  denotes the real part of [ ] . )(φmG  are Doodson’s geodetic coefficients, 
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R  is the mean distance from the Moon or the Sun to the Earth. kη  are the coefficients 

of the harmonic expansion. kχ  are additive phase corrections, which are multiples of
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2π  and introduced to modify the phase to make (2.8) a series of all-positive 

coefficients kη  and cosine functions only (Casotto, 1989). The symbols kθ  denote the 

Doodson arguments at Greenwich, and are expressed as 

      sk FpENDpChBsAt +++++= ')( τθ  (2.10) 

where NN −=′ , hst +−=τ  and spNphst ,,,,, are the fundamental angles that 

represent Greenwich mean solar time, mean longitude of the Moon, the Sun, the lunar 

perigee, the lunar node, and the solar perigee, respectively. The variation of Nphs ,,,  

and sp can be expressed as polynomials of time (in units of Julian century) based on 

Brown’s lunar theory and Newcomb’s theory of the Sun (Doodson, 1921; Casotto, 1989; 
Smith, 1999). The combination  

      )5)(5)(5).(5)(5(. 654321 +++++= FEDCBAkkkkkk  (2.11) 

is known as Doodson number, which is introduced to denote each tide constituent. The 
frequency of the tide constituent is given by 

      sk pFNEpDhCsBA &&&&&&& +′++++= τθ  (2.12) 

 In the 1970’s, using the new precise lunar and solar ephemerides and astronomical 
constants as well as the calculation by computers, Cartwright and Tayler (1971), 
Cartwright and Edden (1973), recalculated the potential with their expansion in the 
following form, which arose from the response method of Munk and Cartwright (1966): 
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where g is the Earth’s mean gravity acceleration, and ),( φλlmW  are the spherical 

harmonics, defined as 
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The time-varying coefficient *
lmc  ( * denotes the complex conjugate) corresponds to the 

Greenwich equilibrium tide of degree l  and order m . For 2=l ,  
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where the symbols kB  denote the equilibrium amplitudes as tabulated in Cartwright and 

Tayler (1971), Cartwright and Edden (1973). The term mm 0)1( δ+−  is introduced to obtain 

all-positive amplitudes kB  and cosine arguments in the harmonic expansions. 

 
2.3 Tidal analysis 
 
 Under the tide force derived from the tide-generating potential, the water mass on the 
surface of the Earth will have a vertical movement. By definition, ocean tide is the 
vertical displacement of the sea level above the moving ocean floor. From equilibrium 
theory, the ocean tide will follow an equilibrium response under the tide generating 

potential U . The vertical displacement (called equilibrium tide) is given by gU . But 

since the Earth is not a rigid body or entirely covered with water, it is not appropriate to 
assume that the ocean tide follows the equilibrium response although long-period tides, 
which have a period of a month or longer, may be expected to closely follow the 
equilibrium theory (Lambeck, 1988). So equilibrium theory has major limitations in 
ocean tide modeling, but it does serve as an important reference in tidal analysis (e.g. in 
response analysis).  
 In 1775, Marquis P. S. Laplace established the Laplace Tidal Equations (LTE) to 
describe the motion of the water mass as a result of tidal forces, which provide a 
dynamical theory to express the ocean tide. 
 
2.3.1 Harmonic analysis 
 

 At time t , the harmonic expression of the ocean tidal height at location ( φλ, ) can 

be written as  
      ∑ −+=

k
kkkk GtHt )],()(cos[),(),,( φλχθφλφλζ  (2.16) 

where ),,( φλkH  ),( φλkG  are the unknown amplitude and Greenwich phase lag of tide 

k  at location ( φλ, ). kθ  and kχ  are the same as in (2.8).  

 For the purpose of solving the unknown amplitude kH  and phase lag kG  through 

the least squares estimation procedure, and to avoid the singularities of the amplitude at 
the amphidromes, it is more common to give (2.16) the following form using cosine and 
sine function: 
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are called cosine, sine terms or inphase, quadrature terms associated with tide constituent 
k . Thus their relation to the amplitude and phase lag can be obtained by  
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 To account for the nodal correction on the lunar tide, lunar nodal modulation factors 
are introduced to the harmonic expression of the tidal height (Munk and Cartwright, 1966; 
Schureman, 1971; Schwiderski, 1980): 
 
      ))(sin())(cos(),(),,( kkk

k
kkkkkkk tSftCft µχθµχθφλφλζ +++++=∑  (2.20) 

Here kf  is the nodal factor, kµ  is the nodal angle. Both of them depend on the position 

of the lunar node and hence vary slowly with time in the 18.6-year nodal period. The 

nodal correction only applies to lunar tide. So, for solar tide, ,1=kf  0=kµ .  

 
2.3.2 Response analysis 
 
 Although harmonic analysis provides a convenient way to solve the tidal parameters 

(e.g. ,kC  kS ), it has some limitations in data duration and resolvability of terms close in 

frequency. Munk and Cartwright (1966) introduced the so-called response method, which 
expresses the ocean tide as the convolution of the equilibrium tide and a weight function. 

Considering only the main tidal constituents ( 2=l ), the ocean tide height ζ  at time t  

and at location ( φλ, ) is given by 
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⎦
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where  
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is the second-order equilibrium tide as in (2.15), and 

      ∑
−=

∆−=
S

Ss
msm Tstwtw )(),(),,( 22 δφλφλ  (2.23) 

is the weight function. With the response weight msw2  written as 

      ),(),(),( 222 φλφλφλ msmsms ivuw +=  (2.24) 

(2.21) can be given the form 
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In the above expressions, )(tδ  is the Dirac’s unit impulse. T∆  is the lag interval, 

usually taken as 2 days. S determines the number of response weights that will be 
considered, in general 1=S or 2. The negative value of s has no physical meaning, but is 
of mathematical advantage.   

 Since nodal modulation factors have been implicitly contained in *
2mc , there are no 

nodal correction parameters in (2.25). Thus, the response weight ( msms vu 22 , ) in (2.25), 

which defines the admittance function, could be solved using a least squares procedure. 
 
2.3.3 Admittance and orthotide 
 

 The admittance of a tide constituent with angular frequency kθ&  is defined as the 

Fourier transform of the weight function mw2 . 

      dtetwiYXZ ti
mkmkmkm

k∫
∞
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Substituting (2.23), (2.24) into (2.26), one can get 
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and thus  
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 With the assumption of smoothness, the admittance function provides a way to derive 
a number of small tides by interpolating the smooth admittance which is well defined by 
the dominant tides. So, by evaluating only a few parameters, one obtains a complete 
definition of each species of tide, not limited by a selected set of harmonic constants. 
Such a small number of parameters also stabilize the tidal solution (Munk and Cartwright, 
1966). Moreover, smooth admittance also makes it easy to separate tide constituents with 
close frequencies, which is difficult to do in harmonic analysis. With these advantages, 
the admittance parameters (2.28) provide an equivalent way to describe the tides 
compared with the harmonic coefficients (2.18). The following relation between 
admittance and harmonic coefficients has been given by (Cartwright and Ray, 1990; 
Smith, 1999): 
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where kB  is the equilibrium amplitude as in (2.15). 

 Noticing that the terms ma2 , mb2  are generally not orthogonal, which may result in 

an ill-conditioned normal matrix for (2.25), Groves and Reynolds (1975) introduced the 
orthogonalized  convolution method of tide prediction, in which the so-called orthotides 
replace the equilibrium tides used in (2.25). The tidal height is written as  
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where ),(tPm
j  )(tQm

j  are the orthotide functions which are simple linear combinations 

of ),(2 Tsta m ∆−  )(2 Tstb m ∆−  and all combinations of pairs from ( jiji QQPP ,,, ) are 

nearly orthogonal in time. ),( φλm
jU , ),( φλm

jV  are called orthoweights, which should 

be estimated by a least squares procedure.  
 In general, it is adequate to adopt 1=S  to account for most of the tidal variance at 
several sites (Alcock and Cartwright, 1978; Cartwright and Ray, 1990). So for 2=l , 
considering only the diurnal and semidiurnal terms, the orthotide formalism for the tidal 
height can be expressed as 
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where the first few orthotide functions are (Cartwright and Ray, 1990): 
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The coefficients m
ijp , m

ijq  are specially computed and here listed in Table 2.1.  

        
 

 Diurnal 
(m=1) 

Semidiurnal 
(m=2) 

00p  0.0298 0.0200 

10p  0.1408 0.0905 

11p  -0.0805 -0.0638 

20p  0.6002 0.3476 

21p  -0.3025 -0.1645 

21q  0.1517 0.0923 

 
Table 2.1 Orthotide coefficients 
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The transformation from the orthoweights m
jU , m

jV  to the admittance terms is given by
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Cartwright and Ray (1990) as: 
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CHAPTER 3 
 
 

SATELLITE ALTIMETRY AND OCEAN TIDE MODELING 
 

 
3.1 Satellite altimetry 
 
 Before the availability of satellite altimetry, tide gauges have been the major data 
source for ocean tide modeling. But tide gauge measurements have some limitations due 
to the sparseness of the global tide gauge network and their locations along the coasts. 
Compared with tide gauges, satellite altimetry, which is characterized by nearly global 
coverage with an accuracy of a few centimeters, provides an efficient and new way to 
monitor sea level change and do tide modeling. 
 Satellite altimetry is a technique for measuring sea surface height. In general, when 
we talk about satellite altimetry, we mean satellite radar altimetry, which measures the 
travel time taken by a radar pulse to travel from the satellite antenna to the surface and 
back to the satellite receiver. Because of the favorable property of a relatively flat water 
surface, radar altimetry is designed to be especially suitable over the ocean. Nowadays, 
the satellite altimeter ICESat has been in operation since its launch in January 2003, 
which transmits laser pulses and is specifically designed to measure the changes in the 
thickness of the ice sheets in Antarctica and Greenland, and the elevations of both clouds 
and land. Measurement principles of satellite altimetry will be described in the following 
subsection.  
 
3.1.1 Measurement principle of satellite altimetry  
 
 The concept of satellite altimetry was first proposed at the Williamstown Conference 
in 1969 (Kaula, 1969). Since the first satellite altimetry tests during the SKYLAB 
missions (1973-1974), new and improved altimetry missions have been developed and 
launched. In Table 3.1, a list of some of the past, present and future satellite altimetry 
missions is given with their orbital inclination and their repeat periods. 
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Mission Launch time Inclination 
(degree) 

Repeat period 
(days) 

GEOSAT Mar., 1985 108 17 
ERS-1 July, 1991 98.5 3, 35, 168 a 

TOPEX/POSEIDON Aug., 1992 66 9.9 
ERS-2 Apr., 1995 98.5 35 
GFO Feb., 1998 108 17 

JASON-1 Dec., 2001 66 9.9 
ENVISAT Mar., 2002 98.5 35 

ICESat Jan., 2003 94 8, 183 b 

CRYOSAT Mar., 2005 92 2, 369c 
a. The three repeat periods correspond to the mission phases of calibration and ice-sea observation, 

ocean observation, and geodetic observation, respectively. 
b. The verification orbit has the 8-days repeat period, and the mission orbit has the 183-days repeat 

period. 
c. The repeat period is 369 days with 30 days sub-cycle. For validation-orbit phase, the repeat period 

is 2 days,  
 

Table 3.1 Satellite altimetry missions 
 
 

 The measurement principle of satellite altimetry is relatively straightforward which 
involves the geometry illustrated in Figure 3.1 and expressed in (3.1): 

      altorbssh hhh −=  (3.1) 

where sshh  is the sea surface height with respect to the reference ellipsoid, orbh  is the 

satellite altitude above the reference ellipsoid and alth  is the range from the satellite 

altimeter to the instant sea surface, all at time of measurement. 



 15

 

 
 

Figure 3.1 The geometry of satellite altimetry (Courtesy of AVISO) 
 
 

 The satellite altitude can be obtained by a number of tracking techniques aboard the 
satellite, such as DORIS, SLR, PRARE and GPS. The range from the satellite to the sea 
surface is measured by multiplying the speed of light with a half of the two-way travel 
time of the radar/laser pulse transmitted from the altimeter antenna and reflected back by 
the sea surface.  
 Excluding the tidal fluctuations and sea level variations due to effects such as 

changes of solar heating, pressure, and wind, the instantaneous sea surface height sshh  is 

the sum of the geoid undulation N  between the geoid and the reference ellipsoid, and 
the dynamic sea surface topography (DSST) which is also called ocean dynamic 
topography (ODT). DSST consists of the mean dynamic ocean topography and the 
time-varying dynamic ocean topography. The mean dynamic ocean topography, also 
called sea surface topography (SST) (Calman, 1987), is the difference between the mean 
sea surface and the geoid, and caused by different salinity of the ocean waters, large-scale 
differences in atmospheric pressure and strong currents. It can reach 1 to 2 meters, which 
makes it impossible to approximate the geoid by the mean sea level if an accuracy of 
better than 2 meters is required (Seeber, 1993). 
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3.1.2 Corrections to altimeter measurements 
 
 The relation expressed in (3.1) is only good for the ideal case since we assume that 
there is no error in both the satellite orbits and the altimeter range measurements. But in 
reality, due to the inaccuracy in the models which are applied in the orbit determination, 
such as the gravity model and all kinds of perturbation models, and the errors in various 
tracking systems, the satellite altitude must be corrected to remove the effect of any orbit 
errors before it is used to derive the sea surface height. Here we will not discuss the orbit 

errors and assume orbh  is the satellite altitude with orbit errors adequately small for tide 

modeling. 

 The range alth  in (3.1) ought to be the actual range from the satellite altimeter to the 

instantaneous sea surface. Three major kinds of corrections should be applied to the 
altimeter measurements in order to obtain accurate SSH from the satellite altimetry. The 
three categories of corrections are generally classified as instrument corrections, media 
propagation corrections, and geophysical corrections.  
 
(1) Instrument corrections: 
 Instrument corrections belong to the system biases which include Doppler-shift error, 
center-of-mass offset, nadir error, sea state bias, time tag biases and some internal 
calibration biases. Generally, the overall effect of the instrumental errors can be 
determined and controlled in the altimeter calibration over precisely surveyed test areas 
(i.e. “ground truth”). 
 Doppler-shift error is due to the frequency Doppler shift caused by the radial velocity 
of the satellite. It will affect the time delay measurement, thus the range. 
 Center-of-mass offset will account for the difference between the phase center of the 
satellite antenna, where the radar pulse is transmitted and its reflection from the sea 
surface is received, and the mass center of the satellite on which the orbit computation is 
based. 
 Nadir error is due to the deviation of the beam direction from the vertical; thus, the 
range measurement results in a slant-range to a point offset from the nadir. 
 The sea-state bias correction compensates for the bias of the altimeter range 
measurement toward the troughs of the ocean waves. It is thought to arise from three 
interrelated effects: tracker bias, skewness bias, and electromagnetic (EM) bias. 
Sometimes, the sea-state bias together with the following media corrections and 
geophysical corrections are categorized as environmental corrections. 
 
(2) Media corrections: 
 Media corrections are due to the propagation error while the radar pulse passes 
through the atmosphere. As shown in Figure 3.1, the pulse has to go through the
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ionosphere and troposphere before it reaches the sea surface. So the media corrections 
include the ionosphere correction, dry-troposphere correction and wet-troposphere 
correction. 
 The ionosphere correction is frequency dependent. In the frequency domain of 
14GHz, the effect of the ionosphere correction is about 5cm to 20cm, depending on the 
level of ionization (Lorell et al.,1982). Generally it is corrected with dual-frequency 
measurements such as those from the dual-frequency altimeter aboard TOPEX. 
 The dry-troposphere correction is due to the dry-air component in the troposphere. 
Since it cannot be measured directly by sensors aboard altimetry satellites, it is usually 
corrected by certain models such as the model by Saastamoinen (1972). 
 The wet-troposphere correction is due to the water vapor content in the troposphere. 
Compared with the dry part, it is usually worse modeled. But since the wet-troposphere 
correction can be measured by the microwave radiometer loaded on the altimetry satellite, 
it can be computed by some algorithm (Tapley et al., 1982). 
 
(3) Geophysical corrections: 
 Geophysical corrections include various tide effects (solid earth tide, ocean tide, 
ocean loading tide, pole tide) and the inverted barometer (IB) effect which describes the 
ocean surface deformation due to the atmospheric loading. In general, 1 millibar increase 
in atmospheric pressure will result in 1 cm decrease in the ocean surface height (Ponte   
et al., 1991; Dorandeu and Le Traon, 1999). 
 The solid earth tide correction accounts for the periodic variations in sea surface 
height due to the deformation of the underlying non-rigid earth under the attraction of the 
astronomical bodies (Moon and Sun). It can be derived from the tide generating potential 
introduced in Chapter 2 using the so-called Love numbers. Detailed information can be 
found in IERS Conventions (2000) and the papers by Cartwright et al.’s papers (1971, 
1973). 
 Ocean tides account for a significant part of the variable deformation of the sea 
surface. The effect of ocean tides can be computed from some available tide models, 
which will be introduced in section 3.2. 
 Ocean tides cause a temporal variation of the ocean mass distribution and the 
associated load on the crust, and produce time-varying deformations of the earth, which 
is called ocean loading tide effect. Like the solid earth tide, the displacement of the earth 
crust caused by ocean loading tides can be derived from the tide-generating potential 
(IERS Conventions (2000); Cartwright and Tayler, 1971; Cartwright and Edden, 1973). 
Schwiderski (1980) proposed the 7% rule for ocean loading tides, which means, as an 
approximation, the ocean loading tide height is about 7% of the corresponding ocean tide 
height. 
 The pole tide is generated by the centrifugal effect of polar motion. Its effect can be 
computed if the location of the pole as a function of the polar motion angles is known 
(Wahr, 1985). 
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 Considering all of the above corrections to the altimeter range, we can rewrite (3.1) 
as 

      altorbssh hhh −=  

         ehhhhhhhhhhh IBpoleolocsolwetdryionossbinstr
obs
ssh −−−−−−−−−−−=    

         ehhh oloc
corr
ssh −+−= )(  (3.2) 

where instrh  is the instrument correction, ssbh  is the sea state bias correction, ionoh  is 

the ionosphere correction, dryh  is the dry-troposphere correction, weth  is the 

wet-troposphere correction, solh  is the solid earth tide correction, och is the ocean tide 

correction, olh  is the ocean loading tide correction, poleh  is the pole tide correction, 

IBh  is the inverted barometer correction, and e denotes the observational noise. 

 Actually, depending on the subjects, the media and geophysical corrections can be 
regarded as signals of interest as well. If the altimeter observations are used in the 
determination of the geoid, all of these should be treated as corrections and be removed 
from the observations. But in ocean tide modeling, the ocean tide effect is the signal we 
are interested in, thus it should not be treated as a correction to the observations but as 
signal contained in the observations. 
 
3.2 Ocean tide modeling 
 
 Based on (3.1) and (3.2), after correcting for the instrument correction and for the 
environmental corrections except for the ocean tide and ocean loading tide corrections, 

the instantaneous sea surface height corr
sshh  from satellite altimetry can be expressed as  

      ehDSSTNh tideo
corr
ssh +++=  (3.3) 

where N denotes the geoid undulation and DSST the dynamic sea surface topography; 

furthermore, otideh  includes the effects from both ocean tide och  and ocean loading tide 

olh  stated above. In some literature, otideh  is named as elastic ocean tidal height or 

geocentric tidal height which is used to compute the correction to altimetry; och  is 

named as pure ocean tidal height which is consistent with the tide gauge measurements
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and measured from the ocean bottom. So we have 

      olocotide hhh +=  (3.4) 

 As stated in Chapter 1, satellite altimetry brought the revolution in the study of ocean 
tides. It became possible to derive a global ocean tide model from satellite altimetry 
based on the expression (3.3) and the tidal analysis methods introduced in Chapter 2. In 
general, three kinds of methods for ocean tide modeling are applied to develop ocean tide 
models. In this section, some representative global ocean tide models with their revised 
versions (if applicable) will be briefly reviewed based on their methodologies. 
 
3.2.1 Hydrodynamic models 
 
 Due to the impossibility to get an analytical solution of the LTE, numerical methods 
have long been the objective way to model ocean tides. Hydrodynamic models are 
derived by solving the LTE and using bathymetry data as boundary conditions. In 
hydrodynamic numerical modeling, the dissipation caused by bottom friction is critical. It 
is commonly admitted that the bottom friction is very weak in the deep ocean, but is the 
major contributor to the tidal energy budget over the continental shelves and shallow 
water seas where tidal currents are amplified. Some models have treated this problem by 
using linear or quadratic parameterization of bottom friction and including the shallow 
areas in their domain of integration, some other models by assuming the ocean as 
frictionless but allowing energy to radiate through boundaries with the shallow water 
areas where energy is dissipated. An advantage of numerical models is the introduction of 
solid earth tides, ocean tide loading and self-attraction into the dynamic equations. But 
the weakness in hydrodynamic models is their inadequacy to correctly simulate energy 
dissipation. One way to overcome this weakness is to increase the resolution, and another 
way is to use the finite element method which improves the modeling of rapid changes in 
ocean depth, the refinement of the grid in shallow waters and the description of the 
irregularities of the coastlines (Le Provost, 2001).  
 Two hydrodynamic models are described in this section. The first one is 
Schwiderski’s model. It was developed by Schwiderski (1980), who constructed the 
hydrodynamic interpolation scheme to include the dataset of tidal constants derived from 
a global collection of tide gauge data in the integration of the LTE. Although this model 
depended on the quality of the observations used and is now known to contain some large 
errors, it had been used as the best available model for more than a decade. With a 
resolution of 1o×1o, Schwiderski’s model covers the world ocean, except for some 
semi-enclosed basins like the Mediterranean. A total of 11 tidal constituents is included in 
the model: 4 semidiurnal (M2, S2, N2, K2), 4 diurnal (K1, O1, P1, Q1) and 3 long periods 
(Ssa, Mm, Mf ).  
 The second model is the FES94.1 model, which was developed by Le Provost et al. 
(1994). This model is based on the nonlinear barotropic shallow water equations, initially
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formulated by Le Provost and Vincent (1986), with bottom friction parameterized 
through a quadratic dependency on local tidal velocities and through tidal forcing derived 
from astronomical potential, and including solid earth tides, ocean tide loading, and self 
attraction. The equations were numerically solved by the finite element method. The 
FES94.1 model is “purely hydrodynamic”, fully independent of any measurement data. It 
provides a resolution of 0.5o×0.5o, and has a full coverage of the world ocean, including 
marginal seas and high latitudes, especially areas covered by ice and under permanent ice 
shelves in the Weddel Sea and the Ross Sea, which makes it the default solution in some 
T/P-derived models for the region beyond ± 66o (e.g., CSR4.0, GOT99.2b), but this 
model is undefined in the Mediterranean sea. The FES94.1 model includes 13 
constituents: 8 major constituents (M2, S2, N2, K2, 2N2, K1, O1, Q1) obtained from 
simulation, and 5 secondary constituents (Mu2, Nu2, L2, T2, P1) deduced by admittance 
along with nodal modulations and equilibrium long period tides.  
 
3.2.2 Empirical models 
 
 Empirical ocean tide models own their success to the high precision satellite 
altimeter measurements. They are derived by extracting ocean tide signals from the 
satellite altimetry. The empirical ocean tide models describe the total geocentric ocean 
tides, which include the effects of ocean loading. Thus, those models can be used directly 
in altimetry applications (e.g. for ocean tide corrections). In general, there are two ways 
to produce models: direct analysis of altimetry data, and direct analysis of altimetry 
residual. In the first method, a full tide solution is derived by analyzing the sea surface 
height (SSH) derived from altimetry without applying the correction with an a priori 
ocean tide model. In the second method, the SSH is preliminary corrected for the effect of 
ocean tides with an a priori ocean tide model; then the SSH residuals after the a priori 
ocean tide correction are analyzed to derive the “residual tide solution”, which is actually 
considered as correction to the a priori model and can be added to the a priori model to 
get the new full model. However, the second approach does not fulfill the requirements of 
a rigorous adjustment as it is executed in two steps. 
 The first altimetry-derived model was given by Cartwright and Ray (1990, 1991) 
based on the analysis of 2.5 years of Geosat altimetry data through the orthotide 
formalism. Since the launch of ERS-1 in 1991, and especially since the launch of T/P in 
1992, more than 20 global tide models have been developed from altimetry data. 
Considering the limit of content, only three empirical ocean tide models will be described 
as an illustration of this kind of models. 
 The DW95 model is a purely empirical ocean tide model developed by Desai and 
Wahr (1995, 1997). The present version 7.0 is estimated from the observations that were 
collected during the repeat cycles 10-229 of the T/P altimeter mission. The orthotide 
response formalism is used to represent the diurnal and semidiurnal ocean tides, while a 
constant admittance is assumed across narrow bandwidths around each of the monthly
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(Mm), fortnightly (Mf), and termensual (Mt) tidal components. This model is the most 
exclusively empirical one with no reference to any a priori tide model and no direct or 
indirect information from the dynamics of tides. The tide solution is estimated in bins of 
size 2.834o in longitude by 1o in latitude and then smoothed to 1o by 1o grids within the 
limit of the T/P spatial coverage of ± 66o. Beyond ± 66o, this model is extended with the 
Schwiderski ocean tide model. 
 The CSR4.0 model is the revision of the older version CSR3.0 by Eanes and 
Bettadpur (1995). The CSR ocean tide model series has been developed using T/P 
altimetry data and the orthotide method. The CSR4.0 model is obtained by the analysis of 
about 6.4 years of T/P altimetry data, which were used to solve for corrections to CSR3.0. 
The FES94.1 model is the underlying reference model for CSR3.0, where corrections 
were produced in 3o×3o spatial bins and then smoothed by convolution with a 2-d 
Gaussian for an output on a 0.5o×0.5o grid. 
 The GOT99.2b model is an updated version of the model developed at the NASA- 
GSFC, known as SR94 (Schrama and Ray, 1994), SR95.0/.1, etc. 232 cycles of T/P 
altimetry data were used to derive the solution for 8 major semidiurnal and diurnal tides 
(Q1, O1, P1, K1, N2, M2, S2, K2). The tides were computed as adjustments to the FES94.1 
model, and outside the latitude limit of the T/P data (± 66o) the model defaults to 
FES94.1. The latest version of the GOT model series is GOT00.2. Here, 286 cycles of 
T/P data were used, which were supplemented in shallow seas and in polar seas by 81 
35-day cycles of ERS-1/2 data in the assimilation process. Also the a priori models used 
in GOT00.2 include not only FES94.1 but some local hydrodynamic models 
(ftp://iliad.gsfc.nasa.gov/ray/GOT00.2). As a result, GOT00.2 is different from FES94.1 
in the polar regions. The tide solutions are given on a 0.5o×0.5o grid. 
 
3.2.3 Assimilation models 
 
 In contrast to the hydrodynamic modeling of ocean tides, the empirical approach 
does not require the knowledge of either bathymetry or coast geometry, nor some other 
complicated assumptions upon the dissipation laws, the bottom friction coefficient, and 
how to solve the hydrodynamic equations. However, the weakness of satellite altimetry, 
coming from the aliasing problem (which will be introduced in Chapter 4) due to the 
sampling period of the satellite altimeter, the limit of spatial coverage, and the spatial 
sampling resolution, has brought up some questions in the altimetry-derived empirical 
models (e.g., the relatively poor accuracy in the coastal regions where data are sparse). 
While, on the other hand, the numerical nature of hydrodynamic modeling makes it 
possible to design the resolution of the models as high as desired, provided that the 
computer capacity permits it. But the hydrodynamic models always exhibit the potential 
of inaccuracy arising from inadequate bathymetry data and unknown friction and 
viscosity parameters (Ray et al., 1996), which especially affect the modeling of shallow 
water tides. So here comes the third modeling method, named assimilation method,
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which solves the hydrodynamic equations with altimetric and tide gauge data  
assimilation. In this section, three tide models are reviewed as examples for these            
assimilation models. 
 The NAO.99b is a global ocean tide model developed by Matsumoto et al. (2000). It 
uses the hydrodynamic tidal equations derived by Schwiderski (1980), and the tide 
solution is estimated on a 0.5o×0.5o grid by assimilating about 5 years of T/P altimeter 
data into the barotropic hydrodynamic model. The response method with orthotide 
formulation is applied to analyze the residual sea surface heights. The free core nutation 
(FCN) resonance effect and the radiational potential are included through slight 
modification of the standard orthotide method. 
 The TPXO.6.2 model is the current version of the global tidal solution developed by 
Egbert et al. (1994, 2002) using the inverse scheme OTIS (Oregon State University Tidal 
Inversion Software) to assimilate observation data to the hydrodynamic equations by a 
representer approach. The tides are provided as complex amplitudes of earth-relative 
sea-surface elevation for eight primary (M2, S2, N2, K2, K1, O1, P1, Q1) and two 
long-period (Mf, Mm) harmonic constituents on a 0.25o×0.25o full global grid.  
 The FES99 model is an improvement over its predecessor FES98 (Lefèvre et al., 
2000) which only included tide gauge data in the assimilation, but no altimetry data. In 
FES99, approximately 700 tide gauges and 687 T/P altimetric crossover datasets were 
assimilated by a revised representer assimilation method to improve the accuracy of 
FES98. For both models, the solutions are distributed on a 0.25o×0.25o global grid. The 
latest version of the FES model series is FES2004, which is the last update of the 
FES2002 solution. 
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CHAPTER 4 
 
 

TIDAL ALIASING 
 
 

4.1 Introduction to tidal aliasing in satellite altimetry 
 
 Based on the sampling theorem, to reconstruct the original analog signal, it is 
necessary to sample the signal at a rate higher than twice the highest frequency v  in the 

signal, i.e. vf N 2= , where Nf  is called Nyquist frequency. In terms of periods, a 

time-continuous signal of period wT  can be fully reconstructed from its sampled values 

if the samples are taken over at least wT  at an interval of less than 2wT . However, if the 

sampling interval exceeds 2wT , the signal of period wT  will be aliased to a longer 

period aT  , which is called aliased period. 

 For an altimeter satellite in a repeat orbit with a period of P days, the altimeter 
samples the tide at a given point on the groundtrack once every P days. Since in general, 
the repeat period P of an altimeter satellite is a few days or more, e.g. for T/P, 

9156.9=P  days, for ERS-1/2, 35=P days, for GEOSAT/GFO, 0505.17=P days, the 
diurnal and semidiurnal tides are always aliased to long period signals by the periodic 
sampling of the satellite altimeter. This is the inherent problem in satellite altimetry and 
causes the difficulty in the separation of tide constituents when trying to extract tide 
signals from altimetry data using harmonic analysis. 

 For a tide constituent of frequency kf , its aliased frequency af  can be calculated by 

(Yuchan Yi, personal communication) 
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f
ff −+=  (4.1) 

where sf = P1  is the sampling frequency of the satellite altimeter. For M2, its original 

frequency is 1.9305 cycles per day, so its aliased frequency sampled by T/P is 0.0161 
cycles per day, the corresponding aliased period of which is 62.107 days. Table 4.1 lists 
the aliased periods of the major diurnal and semidiurnal tide constituents sampled by T/P, 
ERS-1/2 and GEOSAT/GFO. From the table, it can be seen that the period of K1 is 
aliased to 173.192 days by T/P which is close to the period of the semiannual signal, and
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aliased to 365.242 days by ERS-1/2 which is the same as the aliased period of P1 by 
ERS-1/2 and the period of the annual signal. Especially, because of the sun-synchronous 
orbit of ERS-1/2, S2 is aliased to infinite period. 
 According to the Rayleigh criterion, in order to separate two neighboring tides which 

have nearly the same angular frequencies 1w  and 2w , the minimum time span of the 

data which should be analyzed is determined by  

      π221 ≥− wwTr  (4.2) 

where rT  is known as Rayleigh period, and can be calculated by  

      
21

111
TTTr

−=  (4.3) 

with 11 2 wT π= , 22 2 wT π= . So, for T/P, all the major tides with the aliased periods 

listed in Table 4.1, can be resolved and separated by using 3 years of T/P data except that 
the separation of K1 from Ssa can only be obtained by the use of 9 years worth of data. For 
ERS-1/2 and GEOSAT/GFO, since the aliased periods and the Rayleigh periods are 
generally much larger, it means that more data are needed to obtain reliable tidal 
estimates from ERS-1/2 and GEOSAT/GFO altimetry. For example, 9 years of ERS-1/2 
data are required to separate M2 and N2, and since M2 is aliased to 317 days by 
GEOSAT/GFO, which is close to the period of the annual signal, it is difficult to separate 
M2 from the annual signal from less than 6 years of data (see Table 4.1, Smith, 1999). 
 

Aliased Period (days) 
Tide 

Constituent 

True 
Period 
(days) 

Sampled by 
T/P 

( 9.9=P days)

Sampled by 
ERS-1/2 

( 35=P days) 

Sampled by 
GEOSAT/GFO 
( 17=P days) 

M2 0.518 62.107 94.486 317.108 
S2 0.5 58.742 ∞  168.817 
N2 0.527 49.528 97.393 52.072 
K2 0.499 86.596 182.621 87.724 
K1 0.997 173.192 365.242 175.448 
O1 1.076 45.714 75.067 112.954 
P1 1.003 88.891 365.242 4466.665 
Q1 1.120 69.365 132.806 74.050 

 
Table 4.1 Aliased periods of major tide constituents sampled by three altimetry satellites 
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 To decorrelate the aliased tides, Smith (1999) proposed two methods in his 
dissertation, using phase advance differences from adjacent groundtracks and crossing 
groundtracks. In this study, we investigate the possible improvement of extracting ocean 
tide signals from altimeter data at crossover points by frequency analysis based on a 
global optimization and an interval method. 
 
4.2 Study of tidal aliasing in satellite altimetry based on frequency analysis  
 
 Periodic sampling of the altimetry satellite causes the aliasing of short period tides, 
which makes it difficult to extract the tide signals using harmonic analysis with single 
satellite altimetry data due to the correlation of aliased tides and the demand of long data 
series to decorrelate the tides. In this section, an effort to investigate the feasibility of 
improving the tidal aliasing problem based on frequency analysis is described, using 
simulated along-track altimetry data and altimetry data at crossovers.  
 
4.2.1 Global optimization method 
 
 Global optimization can be based on a global search method which may be used for 
spectral analysis of a time series with unknown frequencies. Compared with spectral 
analysis using Fourier series, in which the frequencies are chosen beforehand and are not 
necessarily based on the physical reality, or on a priori physical knowledge, the global 
approach allows one to find the physically meaningful frequencies more accurately and to 
describe the data with fewer parameters (Mautz, 2002). 
 Global search is based on the idea to evaluate the objective function at various points 
and to determine the global minimum according to certain decision criteria. Let us 
assume that the model function 
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consists of m superimposed harmonic functions and is a qualified description for the time 

series )(ty , where ka  is the amplitude, kϕ  is the (initial) phase, and kf  is the 

frequency. To find the unknown frequencies in the time series, we construct the objective 
function: 
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which is minimized at certain values for ka , kϕ , and kf . To apply a global method to 

the optimization problem (4.5), we rewrite (4.5) into  
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 The primary procedure of finding the global minimum of (4.6) is to construct values 

for the frequencies within the interval [ ]2,,0 nL , n is the number of observations. A 

random search procedure is applied which is advantageous, due to the robustness towards 

special properties of the objective function. Then kA , kB  and finallyQ are calculated.   

By calculating several values of Q at various points, the optimal set of frequencies, which  
makes Q globally minimum, can be found through a sophisticated iteration process 
(Mautz, 1999). 
 The above global optimization procedure is equally applicable to any observation 
models that also contain non-periodic parts such as polynomial terms, which lead to:  
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4.2.1.1 Numerical experiments using simulated along-track altimetry data 
 
 To validate the software of the global optimization method in searching tidal 
frequencies in altimetry data, which are affected by the aliasing problem, we applied the 
frequency analysis based on the global optimization to simulated T/P and ERS altimetry 
data and compared it to the results of least squares procedure with known frequencies.
 First, simulated time series sampled by T/P, ERS and GFO are generated using given 
amplitudes/phases and true frequencies of major diurnal and semidiurnal tides and an 
annual signal. Tables 4.2, 4.3 and 4.4 show the results from frequency analysis using the 
global optimization method, where the frequencies are estimated along with amplitudes 
and phases. From the results, it can be seen that the amplitudes and aliased tidal periods 
due to the periodic sampling of the altimeters are almost exactly identified using the 
global optimization approach. But there are some problems in getting the original phases 
back that were used in generating the simulated time series.  
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 For simulated time series sampled by the T/P repeat period, only the phases of M2 
and O1 are recovered correctly; the phases of other major short period tides are different 
from the given values by the sign. 
 
 

 
Table 4.2 Frequency analysis of a simulated time series sampled by the T/P repeat period 
 
  
 As stated before, the aliased period of S2 by the ERS sampling rate is infinity, which 
makes it impossible to extract S2 from harmonic analysis, since it may have merged into 
the constant term as bias.  This is also true for the frequency analysis in our study, where 
S2 cannot be identified although the original frequency of S2 is included in the simulated 
time series sampled by the ERS repeat period. Also, since the periods of both K1 and P1 
are aliased to an annual period, the same as that of the annual signal, these three 
components cannot be separated by the frequency analysis using the global optimization 
approach. In addition, contrary to the case displayed in Table 4.2, the phase estimates in 
Table 4.3 are problematic for M2 and O1, whereas in Table 4.2 only the estimated phases 
for M2 and O1 are identified correctly.  
 

Period (days) Amplitude (cm) Phase (degree) 
Aliased period  True 

period Theoretical 
value 

Estimated 
value 

Given 
value 

Estimated 
value 

Given 
value 

Estimated 
value 

M2 0.518 62.107 62.107 16.6 16.6 -8 -8 
S2 0.5 58.742 58.742 5.0 5.0 -22 22 
N2 0.527 49.528 49.528 4.0 4.0 7 -7 
K2 0.499 86.596 86.596 1.4 1.4 -20 20 
K1 0.997 173.192 173.192 11.1 11.1 -49 49 
O1 1.076 45.714 45.714 10.9 10.9 -45 -45 
P1 1.003 88.891 88.891 3.8 3.8 -44 44 
Q1 1.120 69.365 69.364 2.6 2.6 -81 81 

Annual 
signal 365.242 365.242 365.242 8.5 8.5 0 0 
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Table 4.3 Frequency analysis of a simulated time series  

sampled by the ERS repeat period 
 
 

 The same problem appeared in the case displayed in Table 4.4 where, based on the 
global optimization procedure, the phase estimates for M2 and O1 are problematic which 
were derived from the simulated time series sampled by the GFO repeat period. 
 To further validate the results from the frequency analysis using global optimization 
which searches for unknown frequencies, a least squares procedure with known 
frequencies is applied to the above three simulated along-track time series. As for the 
global optimization procedure, there is no problem in amplitude estimation from the least 
squares procedure. The phase estimates from the least squares procedure are listed in 
Table 4.5, where two cases are considered. The first case (I) used the true original tidal 
frequencies as known frequencies and gave out correct phase estimates from the least 
squares procedure. The second case (II) used the aliased tidal frequencies as known 
frequencies, and the same problems for phase estimates appeared as seen in Tables 4.2, 
4.3 and 4.4. 

Period (days) Amplitude (cm) Phase (degree) 
Aliased period  True 

period Theoretical 
value 

Estimated 
value 

Given 
value 

Estimated 
value 

Given 
value 

Estimated 
value 

M2 0.518 94.486 94.487 16.6 16.6 -8 8 

S2 0.5 ∞  - 5.0 - -22 - 

N2 0.527 97.393 97.393 4.0 4.0 7 7 

K2 0.499 182.621 182.621 1.4 1.4 -20 -20 

K1 0.997 365.242 365.243 11.1 19.384 -49 -17.2 

O1 1.076 75.067 75.067 10.9 10.9 -45 45 

P1 1.003 365.242 - 3.8 - -44 - 

Q1 1.120 132.806 132.806 2.6 2.6 -81 -81 
Annual 
signal 365.242 365.242 - 8.5 - 0 - 
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Table 4.4 Frequency analysis of a simulated time series  

sampled by the GFO repeat period 
 
 

 These results show that, due to the altimeter sampling, the tidal signals along track 
are aliased tidal signals, and the results from the global optimization procedure are 
correct, as they are consistent with the result from the least squares approach with the 
aliased frequencies as known frequencies. It shows that aliased tidal periods have some 
effect on the correct extraction of phase information from the along-track altimetry data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Period (days) Amplitude (cm) Phase (degree) 
Aliased period  True 

period Theoretical 
value 

Estimated 
value 

Given 
value 

Estimated 
value 

Given 
value 

Estimated 
value 

M2 0.518 317.108 317.109 16.6 16.6 -8 8 
S2 0.5 168.817 168.817 5.0 5.0 -22 -22 
N2 0.527 52.072 52.072 4.0 4.0 7 7 
K2 0.499 87.724 87.724 1.4 1.4 -20 -20 
K1 0.997 175.448 175.448 11.1 11.1 -49 -49 
O1 1.076 112.954 112.954 10.9 10.9 -45 45 
P1 1.003 4466.665 4466.664 3.8 3.8 -44 -44 
Q1 1.120 74.050 74.050 2.6 2.6 -81 -81 

Annual 
signal 365.242 365.242 365.243 8.5 8.5 0 0 
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Sampled by T/P Sampled by ERS Sampled by GFO 

 Phase 
estimates 

( I ) 

Phase 
estimates 

( II ) 

Phase 
estimates 

( I ) 

Phase 
estimates 

( II ) 

Phase 
estimates 

( I ) 

Phase 
estimates 

( II ) 
M2 -8 -8 -8 8 -8 8 
S2 -22 22 - - -22 -22 
N2 7 -7 7 7 7 7 
K2 -20 20 -20 -20 -20 -20 
K1 -49 49 -17.2 -17.2 -49 -49 
O1 -45 -45 -45 45 -45 45 
P1 -44 44 - - -44 -44 
Q1 -81 81 -81 -81 -81 -81 

Annual 
signal 2.66e-7 2.66e-7 - - 1.76e-6 1.76e-6 

 
Table 4.5 Phase estimates from the least squares procedure using known frequencies 

 
 

4.2.1.2 Numerical experiments using simulated ERS data  
at single satellite crossovers 

 
 At single satellite crossovers, the sampling rate by satellite altimeters does not 
change significantly, neither do the aliased tidal periods (Andersen, 1994). But due to the 
characteristics of crossovers, which are the intersections of ascending and descending 
tracks, twice the observations are available at crossovers.  
 Let us assume 1.389 days delay between ERS ascending and descending tracks; 
simulated time series of ERS altimetry data at one single satellite crossover are generated 
without noise included. Now we apply the global optimization method to the      
simulated data, and it is found that aliased periods, although not exactly identical with the 
theoretical values, are obtained. Table 4.6 displays the results from the globally optimal 
frequency searching procedure. 
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 Estimated 
period (days) 

Estimated 
amplitude (cm) 

Estimated 
phase 

(degree) 
M2 93.66 9.43 63.86 
S2 - - - 
N2 97.70 1.12 -21.26 
K2 181.96 1.06 -50.86 
K1 362.09 13.28 3.21 
O1 74.49 6.09 -7.24 
P1 - - - 
Q1 131.65 1.95 -38.64 

Annual 
signal - - - 

 
Table 4.6 Frequency analysis of a simulated time series  

at ERS single satellite crossovers (no Gaussian noise is assumed) 
 
 

 Similar least squares procedures using true original frequencies (I) and aliased 
frequencies (II) as known frequencies are tested, respectively. The results are listed in 
Table 4.7. Comparing the results in Table 4.6 and 4.7, it can be seen that the global 
optimization approach leads to estimated amplitudes which are comparable with those 
from the least squares procedure using known aliased frequencies; but the phase 
estimates end up being much different from each other, especially for N2 (-21.26o from 
the global optimization approach versus -61.23o from the least squares procedure with 
known aliased frequencies). Also, when compared with the given amplitudes and phases 
used in the generation of the simulated data, the estimated amplitudes and phases deviate 
much from the given values. For example, for M2, the given amplitude and phase are 16.6 
cm and -8o; but the estimates of amplitude and phase from the global optimization are 
9.43 cm and 63.86o, and those from the least squares procedure (II) are 9.64 cm and 
62.70o. This seems to show that neither the global optimization method, nor the least 
squares method is a good enough tool to extract tidal signals from altimetry data at single 
satellite crossovers, although the least squares method with true original frequencies as 
known frequencies performs better than the two others. 
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Amplitude (cm) Phase (degree) 

 Given 
value 

Estimated 
value ( I ) 

Estimated 
value ( II )

Given 
value 

Estimated 
value ( I ) 

Estimated 
value ( II )

M2 16.6 16.65 9.64 -8 -7.67 62.70 
S2 5.0 - - -22 - - 
N2 4.0 3.99 1.36 7 5.50 -61.23 
K2 1.4 1.56 1.04 -20 -35.86 -60.43 
K1 11.1 11.97 13.28 -49 -45.11 3.59 
O1 10.9 11.10 6.17 -45 -44.82 -10.58 
P1 3.8 - - -44 - - 
Q1 2.6 2.73 1.95 -81 -78.72 -37.92 

Annual 
signal 8.5 - - 0 - - 

 
Table 4.7 Estimates of amplitudes and phases from the least squares procedure  

 
 

4.2.2 Interval method 
 
 Due to the poor performance of the global optimization method in frequency analysis 
of simulated time series at single satellite crossovers, we applied an interval method, 
which is another kind of frequency search method (Rainer Mautz, personal 
communication). The basic idea of the interval method is described in the following with 
the same model function and objective function as for the global optimization method. 

 For equally spaced data, a discrete set of orthogonal frequencies if  is given by 
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nN ; 1t  is the first observation time, nt  is the last 

observation time, and n is the number of observations. The Nyquist frequency Nf  is 

determined by 
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and the aliased frequency of the original frequency f  is given by  
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      Na mfff 2−±=  (4.11) 

where m are positive integers. 

 As an example, for a time series with 185=n  and 47.1824=∆ totalt days, we have 

0504.0=Nf  cycles per day, which is the maximum frequency that can be detected from 

the time series. For the M2 tide with 9323.1=f  cycles per day, we have 0161.0=af  

cycles per day with 19=m . So af  is in the detectable frequency interval [0, Nf ], but 

f is beyond the detectable frequency interval. However, since the frequency spectrum 

repeats after [0, Nf ], by applying an interval method, which searches for frequencies 

interval by interval (which explains the name of this method), we can go beyond the limit 

of [0, Nf ] and get the real, non-aliased frequency with additional information such as 

long data series, which provides the minimum Q (Rainer Mautz, personal 
communication). For the M2 tide, it is 1.9323 cycles per day with 0=m . So, the interval 
method seems to better identify the true signals in the time series, no matter what the 
sampling rate is. 
 For unequally spaced data, such as the combined time series sampled at multiple 
rates, the interval method is still applicable, and the true frequencies can be detected. 
 The interval method is applied to the simulated altimetry time series at T/P single 
satellite crossover and T/P_ERS dual satellite crossover. It is interesting to find that, 
when there is no noise assumed for the simulated time series, the true original frequencies 
along with the given amplitudes and phases can be accurately identified with the interval 
method for time series at single satellite crossover. If Gaussian noise is assumed, 4 tidal 
components (S2, N2, K2, Q1) cannot be accurately extracted when using time series at T/P 
single satellite crossover, 3 tidal components (P1, K2, Q1) cannot be accurately extracted 
when using time series at T/P_ERS dual satellite crossover. Especially, S2 and N2 can be 
better identified from data at dual satellite crossover than from data at single satellite 
crossover. To save space, only the results where noise is assumed, which are certainly 
more realistic for actual altimetry data, are listed in Table 4.8 and 4.9. All of the outputs 
from the programs are attached in the Appendix A, where the phase output should be 
transformed via the following relation: 
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 34

 
  The results in Table 4.8 and 4.9 show that appropriate harmonic analysis with single 
and dual satellite crossover data can accurately identify true, non-aliased frequencies and 
corresponding amplitudes and phases for dominant tides. The estimates of amplitudes are 
better than those of phases, the largest error in the phase estimate reaches up to 177.087o 
and 174.737o for Q1 in two tables, and the corresponding vector differences are 5.09 cm 
and 5.72 cm, respectively. The vector difference here is defined as the root sum of 

squared differences in cosine and sine amplitudes, i.e. 2
2

2
1 hh ∆+∆ , where 1h∆  is the 

cosine amplitude difference between true and estimated values, 2h∆  is the sine 

amplitude difference. 
 
 

Frequency 
(cycles/day) Amplitude (cm) Phase (degree) 

 
True 
value 

Estimated 
value 

Given
value 

Estimated
value 

Given 
value 

Estimated 
value 

Vector 
difference 

(cm) 

M2 1.932274 1.932273 16.6 16.78 -8 -8.017 0.18 
S2 2.000000 0.017011 5.0 5.09 -22 25.399 4.06 
N2 1.895982 1.432113 4.0 3.86 7 -10.440 1.20 
K2 2.005476 0.616650 1.4 1.04 -20 18.849 0.88 
K1 1.002738 1.002734 11.1 11.44 -49 -48.384 0.36 
O1 0.929536 0.929538 10.9 11.06 -45 -46.224 0.28 
P1 0.997262 0.997243 3.8 3.81 -44 -32.314 0.78 
Q1 0.893244 0.417808 2.6 2.49 -81 96.087 5.09 

Annual 
signal 0.002738 0.002737 8.5 8.42 0 -0.308 0.09 

 
Table 4.8 Frequency analysis at T/P single satellite crossovers  
using the interval method (Gaussian noise of 3 cm is assumed) 
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Frequency 
(cycles/day) Amplitude (cm) Phase (degree) 

 
True 
value 

Estimated 
value 

Given 
value 

Estimated
value 

Given 
value 

Estimated 
value 

Vector 
difference 

(cm) 

M2 1.932274 1.932279 16.6 16.62 -8 -10.158 0.63 
S2 2.000000 2.000010 5.0 5.21 -22 -25.847 0.40 
N2 1.895982 1.895984 4.0 4.04 7 9.974 0.21 
K2 2.005476 1.339448 1.4 1.40 -20 221.464 2.41 
K1 1.002738 1.002737 11.1 11.03 -49 -48.566 0.11 
O1 0.929536 0.929541 10.9 11.14 -45 -46.437 0.37 
P1 0.997262 0.291314 3.8 3.75 -44 -48.273 0.29 
Q1 0.893244 0.316966 2.6 3.13 -81 93.737 5.72 

Annual 
signal 0.002738 0.002731 8.5 8.50 0 7.458 1.11 

 
Table 4.9 Frequency analysis at T/P_ERS dual satellite crossovers using the interval 

method (Gaussian noise of 3 cm is assumed for T/P data and 8 cm for ERS data) 
 
 
 Due to the better performance of the interval method with simulated time series at 
dual satellite crossovers, we use this interval method to extract major tidal signals from 
actual altimetry data at TOPEX_ERS-2 dual satellite crossovers. The altimetry data at 
several crossovers are used and the results are attached in Appendix B. The results show 
that some of the dominant tidal constituents (M2, S2, N2, K1, P1, O1) can be identified 
from the frequency analysis of actual altimetry data at dual satellite crossovers. 
 
4.3 Summary 
 
 Tidal aliasing is caused by the periodic sampling of satellite altimeters. The aliased 
information is inherent in along-track altimetry data. Based on the above numerical 
experiment with simulated and actual altimetry data, we can see that it is possible to 
extract the original ocean tide signals by use of altimetry data at crossover locations with 
a proper analysis method. In our experiments, the software for the interval method 
performs better than that for the global optimization method in recovering the ocean tide 
signals with altimetry data at crossovers in spite of the existence of tidal aliasing. Also 
since at crossover locations, much denser altimetry data are available than at along-track 
locations, this provides a possible basis for our later ocean tide modeling effort using 
various altimetry data at crossovers. 



 36

CHAPTER 5 
 
 

OCEAN TIDE MODELING IN THE SOUTHERN OCEAN 
 
 

 Ocean tides play a significant role in the complex interactions between solid earth, 
ocean, sea ice, and floating glacial ice shelves. Tidal currents create a turbulent mixing at 
the bottom of an ice shelf, contributing to the creation of rifts for the possible detachment 
of parts of icebergs, and tides can influence heat transport between the ice shelf and sea 
water (Robertson et al., 1998). Tides near and under floating ice shelves and sea ice 
influence grounding line locations and, depending on surface and basal slopes, grounding 
lines migrate with time within a grounding zone (Rignot, 1998; Metzig et al., 2000). 
Improved knowledge of grounding lines is inherently necessary to study the ice mass 
balance and its contribution to the global sea level change.  
 A number of global ocean tide models have been developed since the launch of the T/P 
satellite altimeter. Those models have achieved an accuracy of ± (2-3 cm) in deep oceans 
(Shum et al., 1997, 2001), but they are much less accurate in coastal seas (Shum et al., 
2001). In addition, ocean tide models are largely unreliable in parts of the polar oceans 
which are covered by permanent or seasonal sea ice and which are beyond the geographical 
coverage of the T/P satellite altimeter. In this chapter, we first present an evaluation of the 
performance of current tide models in the Southern Ocean, and then an empirical ocean 
tide solution for the area below -50o in latitude is presented using the orthotide 
formulation; its performance is evaluated by intercomparison with several other tide 
models. 
 
5.1 Accuracy assessment of ocean tide models in the Southern Ocean 
 
 Global ocean tide models have been very accurate in deep oceans, but their 
performance in the polar areas which are beyond the T/P satellite altimeter coverage is 
constrained by hydrodynamic models such as FES94.1. For the tides in the polar areas, 
several studies have been carried out, including tide studies in the Weddell Sea and Ross 
Sea in Antarctic (Robertson et al., 1998; Rignot et al., 2000; Padman et al., 1998, 1999, 
2002, 2003; Fricker and Padman, 2002) and tide studies in the Arctic ocean (Kowalik and 
Proshutinsky, 1994; Padman  and Erofeeva, 2004). In this section, two global models 
(GOT99.2b, NAO.99b) and one regional model (CATS02.01) are evaluated by their 
performance in the Southern Ocean which is below -50o in latitude. 
 The CATS02.01 (hereafter CATS) model is a Circum-Antarctic Tidal Simulation 
model developed by L. Padman (personal communication). It is a 10-constituents model 

(M2, S2, N2, K2, O1, K1, P1, Q1 and Mm, Mf) on a 12141 ×  degree (lon.× lat.) grid of
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resolution, covering the area from -58o to -86o in latitude. It uses linear drag 
parameterization, which leads to a better agreement with the Antarctic tide height data 
than the earlier CATS01.02 which was based on quadratic drag. GOT99.2b (hereafter 
GOT) and NAO99.b (hereafter NAO) are both global models with 0.5o×0.5o resolution. 
They have been introduced in Chapter 3. 
 The evaluation is based on the intercomparison of the above three models using the 
RMS deviation of the amplitude of each tidal constituent, sea surface height residual 
analysis and comparison with available “ground truth”, such as tide gauge and 
gravimetric data. 
 To compare two models, the inphase and quadrature terms (see definition in Chapter 
2) of each constituent from a tide model are computed and compared in terms of the RMS 
deviation of amplitude defined as follows: 
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where ,1h  2h  are inphase and quadrature terms, and superscripts a , b  stand for two 

different models. N  is the total number of locations where 1h  and 2h  are computed.  

 In the comparison, the major diurnal constituents (K1, O1, P1, Q1) and semidiurnal 
constituents (M2, S2, N2, K2) are included. To account for the total effect of 8 major 
constituents, we define RSS (root sum of squares) as  
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where j  is the index for the 8 tidal constituents stated above, and RMS is defined in (5.1) 

for each tidal constituent.  
 Table 5.1 illustrates the RMS deviation between each pair of the three models in the 
Southern Ocean. From the table, we can see M2, S2 and K1 have the largest differences 
between paired models. And the differences between the CATS model and the GOT 
model as well as the difference between the CATS model and the NAO model are smaller 
than the difference between the NAO model and the GOT model for all the major 
constituents except for Q1. The RMS deviation of M2 between the NAO and the GOT 
models is ± 8.74 cm, the largest among all the differences listed in Table 5.1. 
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 K1 O1 P1 Q1 M2 N2 K2 S2 

CATS-GOT 3.31 3.67 1.02 0.68 3.42 1.62 1.13 3.40 

CATS-NAO 3.58 3.01 1.28 0.87 7.97 1.45 1.55 5.01 

NAO-GOT 4.41 4.01 1.43 0.82 8.74 1.83 1.66 5.42 

 
Table 5.1 Comparison of tide models in the Southern Ocean  

in terms of RMS deviations (unit:± cm) 
 
 

 To display the geographical distribution of the difference between the models, for 
each paired models, the RSS for the 8 major constituents are computed according to (5.2) 
at each model grid point and then the obtained RSS’s are averaged over the three pairs. 
The final difference distribution between models in terms of RSS for the South Ross Sea 
area is shown in Figure 5.1. The distribution shows that the difference becomes larger 
towards the south pole, and the largest difference between models occurred in the glacial 
ice shelf covered oceans which is as large as ± 30 cm (and more). 
 Ocean tides are a major factor for the sea surface height variation. Using the 
altimetry sea level data opens another way to evaluate the performance of ocean tide 
models. Since geocentric ocean tides should be used for altimetry data and the CATS 
model only provides the pure ocean tides, the ocean loading tides derived from the NAO 
model are added to the pure ocean tides from the CATS model to obtain the required 
geocentric tides for the CATS model. 9 years of T/P and 6 years of ERS-2 altimetry sea 
level data below -50o are used in the study to investigate the performance of the different 
tide models in terms of the sea level residual after correcting the tide effects using 
different models. The T/P and ERS-2 along-track data used in this study have been 
generated from the altimetry Stackfiles (Yuchan Yi, personal communication). The 
comparison of the studied three models is shown in Table 5.2.  
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Figure 5.1 Combined model difference in the Ross Sea area 

 

 NAO.99b GOT99.2b CATS02.01 

T/P (10/24/1992-12/06/2001) 29.1± 9.7 29.1± 9.7 28.5± 10.2 

ERS-2 (05/16/1995-01/08/2001) 31.7± 21.6 31.6± 21.7 31.0 0.22±  

 
Table 5.2 Model validation with altimeter sea level data of T/P and ERS-2 below 50S 

(mean difference ± standard deviation in cm) 
 
 

 From Table 5.2, the NAO and GOT models provide almost the same magnitude of 
the residuals, with a standard deviation of ± 9.7 cm for T/P and ± 21.6 cm for ERS-2. 
The CATS model has slightly larger standard deviation of ± 10.2 cm for T/P altimetry 
residuals and ± 22.0 cm for ERS-2 altimetry residuals.  
 “Ground truth” data are often used to validate tide models. The tide harmonics 
derived from those “ground truth” data, such as tide gauge and gravimeter results, are 
compared with those from the tide models. Here, in Table 5.3, the three tide models are 
compared with the gravimeter result (Williams and Robinson, 1980) at Little America V 
(~ 78.2S, 197.73E) using the individual RMS deviations and the RSS as defined in (5.1) 
and (5.2). Since only 6 tidal constituents have been analyzed from the gravimeter result, 
RSS is the total effect of these 6 constituents. The comparison results show that that 
CATS02.01 model agrees best with the gravimeter data at Little America with an RSS of
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 ± 9.7 cm. Also, the K1 and O1 constituents of the three models show the largest 
differences from the gravimeter data. 
 
 

 Tide 
Model K1 O1 P1 M2 N2 S2 RSS 

NAO.99b 10.4 6.5 3.3 1.7 1.8 0.6 13.0 

GOT99.2b 6.4 4.7 2.3 4.4 2.9 2.6 10.1 

CATS02.01 6.0 6.3 2.0 1.9 2.2 2.6 9.7 

 
Table 5.3 Tidal comparison at Little America V (unit:± cm) 

 
 

 Tide gauge data are another form of independent “ground truth” data, which allow us 
to validate the tide models. Figure 5.2 shows the distribution of the 102 pelagic tide 
gauges (denoted by inverted triangles) and 739 coastal tide gauges (denoted by circles) 
obtained from Richard D. Ray (1999, personal communication), where red symbols 
denote those gauges below -60o. 
 

 
Figure 5.2 Distribution of tide gauges  

 
 

 Table 5.4 and 5.5 show the comparison of the individual RMS deviations and the RSS 
between the tide models and the tidal harmonics derived from tide gauge data below -60o. 
Due to the latitude limitation, only 3 pelagic tide gauges and 12 coastal tide gauges below 
-60o are available. The comparison results show that the GOT model performs best when 
compared with pelagic or coastal tide gauges, and the CATS model is a little worse than
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the other two models when compared with pelagic tide gauges; the NAO model is the 
worst when compared with coastal tide gauges. But since at some coastal tide gauges the 
tide models have no definition, which results in a different number of locations included 
in each tide model, and since also some tidal harmonics were not derived from some tide 
gauge records, the comparison with the coastal tide gauges seems not to provide 
appropriate information about the performance of the tide models.  The numbers in the 
parentheses in Table 5.5 denote the number of tide gauges which have those tidal 
harmonics. For example, for K1, 11 tide gauges have this tidal harmonics and can be 
interpolated from the NAO model, but only 1 tide gauge can be interpolated from the 
GOT model, and 7 tide gauges can be interpolated from the CATS model. 
 
 

Tide Model K1 O1 P1 Q1 M2 N2 K2 S2 RSS 

NAO.99b 1.46 1.01 0.43 0.55 1.90 0.36 0.38 0.99 2.92 

GOT99.2b 1.36 0.82 0.27 0.41 1.43 0.24 0.43 1.09 2.50 

CATS02.01 1.11 0.92 0.29 0.51 2.12 0.44 0.37 1.29 2.99 

 
Table 5.4 Comparison of tide models with pelagic tide gauges  

below -60 degree (unit:± cm) 
 
 

Tide Model K1 O1 P1 Q1 M2 N2 K2 S2 RSS 

NAO.99b 11.36 
(11) 

11.77 
(11) 

3.36 
(9) 

2.21 
(4) 

6.53 
(12) 

2.45 
(9) 

1.71 
(10) 

5.44 
(12) 19.10

GOT99.2b 4.55 
(1) 

6.10 
(1) 

1.08 
(1) 

1.13 
(1) 

2.70 
(1) 

0.73 
(1) 

0.84 
(1) 

3.61 
(1) 9.05 

CATS02.01 4.13 
(7) 

8.31 
(7) 

1.49 
(7) 

1.07 
(2) 

6.11 
(7) 

2.66 
(7) 

1.69 
(7) 

6.23 
(7) 13.25

 
Table 5.5 Comparison of tide models with coastal tide gauges  

below -60 degree (unit:± cm) 
 
 

5.2 Empirical tide modeling in the Southern Ocean 
 
 Tides are major causes of time-dependent ice shelf elevation variations. Removal of 
tides from the remote sensing measurements of ice shelf surface elevation changes and 
the study of ice motion require accurate tidal prediction models. Recent global models are
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constrained to fit T/P data, which are limited within ± 66o latitude. However, ERS-1/2 
and Geosat/GFO satellite altimeters have more extended spatial coverage than T/P; these 
provide a possible source of data that can be used in tide modeling, especially for the area 
beyond T/P coverage. In this study, a modified orthotide formulation is applied to analyze 
the T/P and ERS-2 altimetry data at dual satellite crossover locations and single satellite 
crossover locations to obtain a point-wise empirical tide solution for the Southern Ocean 
below -50o. 
 
5.2.1  Data 
 
 Crossovers are those locations where the ascending and descending tracks of the 
altimeter satellites intersect. Due to the tidal aliasing resulting from the altimeter periodic 
sampling and due to the relatively sparse track spacing of the T/P satellite, we choose to 
use the T/P and ERS-2 altimetry data at crossover locations for tidal analysis. There are 
several advantages to use altimetry data at crossovers: At single satellite crossovers, 
although the aliasing period is not changed, the number of observations can double if 
compared to along-track data (Andersen, 1994); at dual satellite crossovers, due to the 
different sampling rate of two satellites, the aliasing problem can be dampened. 
 In this study, three groups of datasets at crossover locations are generated from the 
altimetry Stackfile (Yuchan Yi, personal communication). Except for ocean tide and 
ocean loading tide corrections, the general corrections to these altimetry data, which are 
introduced in Chapter 3, have been applied to the Stackfile data. These three groups of 
datasets at crossovers are TOPEX altimetry data at TOPEX single satellite crossovers, 
ERS-2 altimetry data at ERS-2 single satellite crossovers, and altimetry data from 
TOPEX and ERS-2 at TOPEX_ERS-2 dual satellite crossovers. The TOPEX and ERS-2 
Stackfile data used to generate these datasets for tide modeling in the Southern Ocean are 
summarized in Table 5.6 (no POSEIDON data are used in this study).  
 
 

Altimeter Cycles Latitude 
coverage ( o ) 

Longitude 
coverage ( o ) 

TOPEX 4-364 -50 ~ -66 0 ~ 360 

ERS-2 1-79 -50 ~ -81.5 0 ~ 360 

 
Table 5.6 Altimetry data used for tide modeling in the Southern Ocean 
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5.2.2 Empirical tide modeling using an orthotide formulation 
 
 Response methods have been extensively used in tide modeling because of their 
advantage when deriving a solution for any constituent from a relatively few parameters. 
These few parameters are used to describe the supposedly smooth admittance function 
within each tidal band. To evade the tidal aliasing problem, somewhat described in 
Chapter 4, we adopted the orthotide formalism as proposed by Groves and Reynolds 
(1975) for our empirical tide modeling in the Southern Ocean. Since no a priori tide 
models have been applied in the corrections to the altimetry data we used, the ocean tidal 
solution we obtained is the full geocentric tidal solution. A modification to the orthotide 
formalism, which includes annual, semiannual, monthly and fortnight tide components in 
harmonic forms, was made in our study. 
 Considering the major diurnal and semidiurnal tidal bands and the stated 4 long- 

period tides, the sea surface height (SSH) ),,( tϕλζ , which contains the total effect of 

pure ocean tides and ocean loading tides, is described using the extended orthotide 
formulation as follows: 

      [ ]∑∑
= =

+=
2
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2

0

)(),()(),(),,(
m k

mkmkmkmk tQvtPut ϕλϕλϕλζ     

                [ ] noisebiastwatwa
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where )(tPmk  and )(tQmk  are orthotide functions, which can be determined by the tide 

generating potential; mku  and mkv  are the location-dependent orthoweights, which will 

be solved for together with the cosine and sine amplitudes 1ia and 2ia  for the four 

long-period tides (Sa, Ssa, Mm and Mf ). In (5.3), iw  are the frequencies of the four 

long-period tides, respectively. For each satellite altimeter, a bias term is evaluated 
together with the tide components. So, for a tide solution using altimetry data at single 
satellite crossovers, there are 21 unknowns in (5.3), and for a tide solution using altimetry 
data at dual satellite crossovers, there are 22 unknowns.  
 We write (5.3) in a general linear observation model as .eAXY +=  The 
incorporation of a priori information can be treated in two ways as stated by Jackson 
(1979). In a general way, the a priori information can be treated in form of 
“pseudo-observations” explicitly, thus we have 

      
00 eXX

eAXY
+=
+=

 (5.4) 
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where Y is the 1×n  observation vector, X  is the 1×m  unknown parameter vector, A 

is the mn×  coefficient matrix, ),0(~ eCNe  is the random observation error, 0X  is 

the a priori vector for X, ),0(~0 XCNe  is the random error vector of the a priori 

information and 0),( 0 =eeCOV . Then an estimate of X  is given by (Jackson, 1979) 

      )()(ˆ
0

11111 XCYCACACAX Xe
T

Xe
T −−−−− ++=  (5.5) 

 If the unknown parameters are treated as Gaussian random variables with given 

mean 0X and dispersion matrix XC  (Jackson, 1979), the prediction of X is also given 

by (5.5), which, in the special case of 00 =X  (Jackson, 1979), reduces to: 

      YCACACAX e
T

Xe
T 1111 )(ˆ −−−− +=  (5.6) 

 In this study, we assume eC  and XC  to be diagonal. The a priori accuracy of ± 3 

cm for T/P altimetry data and ± 8 cm for ERS-2 altimetry data are specified based on the 
empirical accuracy of altimetry data. For T/P data, 1002 cm2 is used on the diagonal of 

XC , and for ERS-2 data, 1000 cm2 is used on the diagonal of XC  (Andersen, personal 

communication). Also, a value of 1000 cm2 is used as the diagonal values of XC  when 

both T/P and ERS-2 altimetry data at dual satellite crossover locations are used. 
 The ocean tide solutions we derived are point-wise solutions, this means that for each 
location, a solution was obtained by adjusting (5.3) using formula (5.6) and a group of 
observation data at that location. Considering the iteration process used in the least 
squares procedure where the weights are updated based on residuals, the weights applied 
to the observations are different from location to location. This approach is denoted as 
different weights in the following section. 
 For comparison, least squares procedures using one common weight, one value 
which is used for the observational data at all locations, are also carried out to get the full 
tide solution. The first case is to use the a priori accuracy (± 3 cm for T/P, ± 8 cm for 
ERS-2, both squared) as common weight for the observations of the respective altimeters, 
and the second case is to use the accuracy estimates derived from the different weighting 
procedures as common weights for the observations of the respective altimeters. These 
two approaches are denoted as constant weight I and constant weight II. 
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5.2.3 Tide solutions and their evaluation 
 
 Point-wise empirical tide solutions have been obtained based on the above extended 
orthotide formulation and the respective weighting methods. Using the three groups of 
datasets introduced in 5.2.1, tide solutions at three groups of crossover locations have 
been obtained respectively. To validate the tide modeling procedure and to evaluate the 
obtained tide solutions, the point-wise solutions are compared with three other models 
regarding their performance in reducing the standard deviation (hereafter STD) of the 
SSH residuals after the ocean tide correction, and in terms of the individual RMS 
deviations and the RSS of the tide constituents. 
 The three other models used in the evaluation are summarized in Table 5.7, in which 
the ocean loading tide from NAO.99b (NAO) is added to the CATS02.01 (CATS) model 
so that the CATS model can be applied to the altimetry data. 
 
 

Model Coverage Resolution 
(lat× lon) Constituents Tide constituents 

Grid provided 

NAO.99b 90S-90N 
0-360  0.5 o × 0.5 o 

8 major,  
16 minor,  

long period 

geocentric tide, 
pure ocean tide,  

ocean loading tide 

TPXO.6.2 90S-90N 
0-360  0.25 o ×  0.25 o 8 major,  

Mm, Mf 
geocentric tide, 
pure ocean tide 

CATS02.01 58S-86S 
180W-180E 1/12 o ×  1/4 o 8 major,  

Mm, Mf pure ocean tide 

Note 8 major means the 8 major diurnal and semidiurnal tide constituents 

 
Table 5.7 Summary of the tide models used in this evaluation 

 
 

 First, the efficiencies of three weighting methods are evaluated. When using three 
weighting methods, three sets of tide solutions are obtained. Their performances in 
reducing the STD of the SSH residuals are compared with each other. Table 5.8 lists the 
comparison between the three weighting methods when TOPEX and ERS-2 data at the 
dual satellite crossovers are used to obtain the tide solution at dual satellite crossovers. 
Considering later comparisons with other models which do not include annual tide, the 
tide component inseparable from the annual signal due to the ocean thermo effect, we 
define SSH residuals here as  
 
      SSH residuals = SSH - (diurnal + semidiurnal tides) – LP (5.7) 
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The effects of diurnal and semidiurnal tides are obtained from our solution, and the 
equilibrium long-period tides, LP, are calculated using the subroutine written by 
Cartwright (adopted from the GOT99.2b model). 
 If TOPEX data are considered to evaluate the performance of the tide solution, the 
tide solution using the first weighting method in Table 5.8 gives the smallest STD of the 
SSH residuals (± 8.98 cm). But if considering the reduction of the STD of the SSH 
residuals for ERS-2 data, the second weighting method in Table 5.8 performs best 
( ± 12.73 cm). For both cases, the use of different weights shows the second-best 
performance. The minor change in values for the TOPEX data seem to suggest that the 
weighting method does not affect the result for TOPEX data too much, which is also 
evidenced by the result in Table 5.9. 
 
 

SSH Data at 
TOPEX/ERS-2 

dual satellite 
crossovers  

No. of 
locations

Constant weight I 
(Topex: ± 3 cm 
ERS-2: ± 8 cm) 

Constant weight II  
(Topex: ± 9 cm 

ERS-2: ± 12 cm) 

Different 
weights 

TOPEX data  21408 8.98 9.01 9.00 

 ERS-2 data 21408 12.92 12.73 12.77 

 
Table 5.8 STD of the SSH residuals at dual satellite crossovers below -50o 

(where tidal effects are corrected using respective tide solutions, unit:± cm)  
 
 

 Intercomparison of the NAO model, the TPXO.6.2 (TPXO) model and the CATS 
model with the above mentioned three sets of tide solutions using data at dual satellite 
crossovers are also carried out to evaluate the efficiency of the alternative weighting 
methods. Table 5.9 lists the comparison results in terms of the RSS defined in (5.2). The 
results show that the use of different weights gives the smallest RSS, no matter whether 
compared with the NAO model (RSS = ± 2.16 cm), the TPXO model (RSS = ± 2.24 cm), 
or the CATS model (RSS =±  2.34 cm). The bottom two rows in Table 5.9 show the 
effect of the weighting methods on the tide solutions when using data at single satellite 
crossovers. It is interesting to find that the tide solution using TOPEX data at single 
satellite crossovers was almost not affected by the weights applied to the data, which is 
shown by an identical RSS, no matter which kind of weighting method is applied. 
Considering the comparison result related to the three weighting methods, we prefer the 
use of different weights. Therefore, in the following discussion, we concentrate on the 
evaluation of the tide solutions obtained by using the different weights. 
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Constant weight I Constant weight II Different weights  

NAO TPXO CATS NAO TPXO CATS NAO TPXO CATS 

Topex/ERS-2 
data at dual 

satellite 
crossovers 

2.22 2.30 2.38 2.22 2.29 2.41 2.16 2.24 2.34 

Topex data  
at single 
satellite 

crossovers 

1.72 1.81 1.98 1.72 1.81 1.98 1.72 1.81 1.98 

ERS-2 data  
at single 
satellite 

crossovers 

11.66 11.67 14.53 10.89 10.89 13.58 10.47 10.48 12.98 

 
Table 5.9 Intercomparison of tide solutions using three weighting methods with 

selected models in terms of RSS (unit:± cm) 
 
 

 To compare our solution with other tide models, we use the three models in Table 5.7 
to predict geocentric tidal height at the dual satellite crossovers, then apply the tidal 
height to correct the SSH at dual satellite crossovers; thus we get the SSH residuals after 
tidal corrections from the tide models. Table 5.10 lists the comparison between the tide 
models and our tidal solution at dual satellite crossovers, using different weights in terms 
of the STD of the SSH residuals.  
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STD of SSH residuals after tidal correction (± cm)SSH Data at 

TOPEX/ERS-2 
dual satellite 
crossovers 

STD of SSH 
before tidal 
correction 

Solution of 
our study NAO99 TPXO.6.2 CATS02.01 

TOPEX data 20.55 8.27 
(13518) 

8.51 
(13518) 

8.68 
(13505) 

9.13 
(13389) 

ERS-2 data 23.30 13.57 
(13518) 

13.69 
(13518) 

13.77 
(13505) 

14.21 
(13389) 

  Note: Numbers in parentheses stand for the valid number of locations included in the 
       calculation, where tide solutions are available from the model 
 

Table 5.10 STD of the SSH residuals after tidal correction  
(dual satellite crossovers, latitude: < -58o) 

 
 
 As in Table 5.8, two cases are considered in this comparison. Since the CATS model 
is only valid for the area from -58o to -86o, the comparison region is constrained to below       
-58o instead of -50o.  Define the tidal power as STDa

2-STDb
2, where subscript a and b 

denote the results from two tidal corrections, we can say that the tidal power of our 
solution over the NAO model is 2.02 cm2, the tidal power over the TPXO model is 2.62 
cm2, and the tidal power over the CATS model is 3.92 cm2, if considering TOPEX data. 
For ERS-2 data, the tidal powers are 1.82 cm2, 2.32 cm2 and 4.22 cm2, respectively. 
  To illustrate the spatial distribution of the difference demonstrated in Table 5.10, the 
STD of the SSH residuals are plotted in Figure 5.3 and 5.4 for TOPEX data and in Figure 
5.5 and 5.6 for ERS-2 data. However, due to the small differences between models, the 
figures don not show the detail of the differences very clearly. In Figure 5.7, the 
differences between the two figures (left – right) from Figure 5.3 are plotted to show that 
the differences are less than 0.2 cm with a maximum of 0.12 cm and a minimum of -5.03 
cm; at most locations, they are negative. Similarly for ERS-2 data, in Figure 5.8, the 
differences between the two figures (left – right) from Figure 5.5 are plotted and the 
difference has a maximum of 1.49 cm and a minimum of -2.28 cm, with most of them 
being less than zero. Both the comparison results in Table 5.10 and the plots of the 
differences show that our tide solution performs a little better than the other three models 
in reducing the STD of the SSH residuals. However, we should mention that the good 
performance of our solution is an internal agreement because those altimetry data have 
already been used in the least squares procedure for the tide solution. Therefore, it is 
recommended to use some other independent data to validate the performance of our 
solutions with respect to other models. Also, because of the difference among tide models 
in those tide constituents included in the tidal height calculation, the small differences of 
the STD of the SSH are reasonable. 
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Figure 5.3 Standard deviation of the SSH residuals for TOPEX data (latitude: < -58o) 
(left: this study, right: NAO99 tide model) 

 

 

 

Figure 5.4 Standard deviation of the SSH residuals for TOPEX data (latitude: <-58o) 
(left: TPXO.6.2 tide model, right: CATS02.01 tide model) 
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Figure 5.5 Standard deviation of the SSH residuals for ERS-2 data (latitude: <-58o) 

(left: this study, right: NAO99 tide model) 

 

 

 

 

 

 

 

 

Figure 5.6 Standard deviation of the SSH residuals for ERS-2 data (latitude: <-58o) 
(left: TPXO.6.2 tide model, right: CATS02.01 tide model) 
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 Table 5.11 shows the comparison between the NAO model, the TPXO model, the 
CATS model, and the tide solutions obtained by use of altimetry data at TOPEX or   
ERS-2 single satellite crossovers in terms of the STD of the SSH residuals. Here the tide 
solution of our study uses different weights. 
 
 

STD of SSH residuals after tidal correction (± cm) SSH Data at 
single satellite 

crossovers 

STD of SSH 
before tidal 
correction 

Solution of 
our study NAO99 TPXO.6.2 CATS02.01 

TOPEX 20.53 8.31 
(2023) 

8.46 
(2023) 

8.63 
(2021) 

9.09 
(2020) 

ERS-2 23.56 13.24 
(5129) 

13.95 
(5129) 

14.05 
(5124) 

14.58 
(4672) 

 
Table 5.11 STD of the SSH residuals after tidal correction 

(single satellite crossovers, latitude: < -58o) 
 
 

 Comparing the number of locations in Table 5.10 and 5.11, we can see that 
combining ERS-2 data with TOPEX data can improve the spatial resolution of the tide 
solutions, which is actually attributed to the dense spatial sampling characteristics of

 

Figure 5.7 Difference between the STD of 
the SSH residuals for TOPEX data

Figure 5.8 Difference between the STD 
of the SSH residuals for ERS-2 data
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ERS-2 coupled with the lower orbital inclination of T/P. But due to the relatively poor 
accuracy of the ERS-2 data, the resulting tide solutions using TOPEX and ERS-2 data at 
dual satellite crossovers did not improve over the tide solutions using TOPEX data only 
at single satellite crossovers. That is shown in Table 5.9 (where different weights were 
used); for when compared with the NAO model, the tide solution using both altimeter 
measurements gives an RSS of ± 2.16 cm. It is slightly larger than the RSS of ± 1.72 cm 
when only TOPEX data are used for the tidal analysis. 
 Table 5.12 lists the differences between the 8 major tidal constituents from our 
solution (using different weights) and those from the NAO model, the TPXO model and 
the CATS model in terms of the RMS deviations defined in (5.1). Among these, the S2 
tide has the largest RMS deviation, and K1 has the second-largest RMS deviation when 
intercompared with these three models. Also, the RMS deviation shows that our solution 
has slightly better agreement with the NAO model and the TPOX model than with the 
CATS model.  
 Moreover, it is obvious that the poorer accuracy of and severe aliasing problem with 
the ERS-2 data have significant effects on the resulting tide solutions. The tide solutions 
using ERS-2 data only have much larger differences. Especially for the S2 tide, the vector 
differences reach up to 8.71 cm from the NAO model, 8.72 cm from the TPXO model, 
and 10.71 cm from the CATS model.   
 Since the annual signal of sea level change caused by the solar heating of the ocean 
water has the same frequency as the annual tide component, it is difficult to separate the 
annual signal from the annual tide. To demonstrate the influence of the annual terms, 
which may contain the annual tide component and the annual signal of sea level change, 
we subtract Sa obtained from our study  from the SSH and compare the SSH residuals as 
we did for Table 5.10. The results are shown in Table 5.13. 
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DATA M2 S2 N2 K2 K1 P1 Q1 O1 Model 

0.58 0.95 0.46 0.19 0.89 0.30 0.46 0.62 NAO 

0.57 1.06 0.48 0.38 0.88 0.36 0.46 0.59 TPXO 
Topex data at 
single satellite 

crossovers 0.65 1.03 0.53 0.45 1.06 0.31 0.50 0.70 CATS 

1.89 8.71 1.59 2.66 3.59 1.18 1.72 1.87 NAO 

1.90 8.72 1.60 2.65 3.55 1.20 1.73 1.87 TPXO 
ERS2 data at 

single satellite 
crossovers 2.18 10.71 1.89 3.26 4.84 1.56 2.00 2.22 CATS 

0.76 1.15 0.61 0.28 1.10 0.36 0.62 0.78 NAO 

0.76 1.25 0.63 0.43 1.08 0.41 0.62 0.76 TPXO 

Topex/ERS-2 
data at dual 

satellite 
crossovers 0.80 1.20 0.69 0.50 1.20 0.37 0.65 0.82 CATS 

 
Table 5.12 Intercomparison of our tide solution with selected models 

 in terms of the RMS deviations for 8 major tidal constituents (unit:± cm) 
 
 
 

STD of SSH residuals after tidal correction (± cm)SSH Data at 
TOPEX/ERS-2 

dual satellite 
crossovers 

STD of SSH 
before tidal 
correction 

Solution of 
our study NAO99 TPXO.6.2 CATS02.01 

TOPEX data 20.55 8.16 
(13518) 

8.42 
(13518) 

8.60 
(13505) 

9.05 
(13389) 

ERS-2 data 23.30 13.38 
(13518) 

13.50 
(13518) 

13.61 
(13505) 

14.05 
(13389) 

 
Table 5.13 STD of the SSH residuals (annual terms removed) after tidal correction  

(dual satellite crossovers, latitude: < -58o) 
 
 

 Comparing the results in Table 5.10 and 5.13, we can see that the STD reduced about 
0.1 cm for TOPEX data and 0.2 cm for ERS-2 data if the annual term is removed from 
the sea surface height. This seems to show that the annual term has a certain effect on the 
calculation of the SSH residuals. 
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CHAPTER 6 
 
 

CONCLUSIONS  
 
 
 In this study of ocean tide modeling in the Southern Ocean, an empirical ocean tide 
solution was presented using an orthotide formulation and altimetry data at crossover 
locations. The combination of TOPEX and ERS-2 data at dual satellite crossover 
locations for tidal solution was investigated using the method of different weights. 
Compared with two other weighting methods, which assume constant weights to the 
altimetry data, no matter where the location is, the method of different weights gives a 
little better results in the ocean tide solution.  
 The empirical ocean tide solutions are evaluated by comparison with the NAO model, 
the TPXO model and the CATS model. The intercomparison shows that our empirical 
solution using TOPEX and ERS-2 data at dual satellite crossover locations agrees well 
with the selected models, with an RSS in the magnitude of 2 cm. The comparison in terms 
of the standard deviation of the SSH residuals shows that our solution is slightly better 
than the selected models. For TOPEX data, the standard deviation of the SSH residuals 
after ocean tide correction using our solution is ± 8.27 cm at 13518 dual satellite 
crossover locations. Compared with this, the NAO model gives ± 8.51 cm at 13518 
locations, the TPXO model gives ± 8.68 cm at 13505 locations and the CATS model 
gives ± 9.13 cm at 13389 locations. For ERS-2 data, the corresponding values of the 
standard deviation are ± 13.57 cm for our solution, ± 13.69 cm for the NAO model, 
± 13.77 cm for the TPXO model, and ± 14.21 cm for the CATS model.  
 Besides the ocean tide solution based on TOPEX and ERS-2 altimetry data at dual 
satellite crossover locations, two other groups of ocean tide solution are presented by use 
of altimetry data at TOPEX single satellite crossover locations and ERS-2 single satellite 
crossover locations. Due to the less accurate altimetry data from ERS-2, the tide solution 
by incorporating ERS-2 data to TOPEX data did not perform better than the tide solution 
obtained using TOPEX data only. Also, the solution using ERS-2 data only at single 
satellite crossover locations does not agree well with the selected models, which is shown 
by the RSS growing as large as ± 10 cm when compared with the tide constituents from 
selected models. This suggests a problem to tidal solutions using multiple satellite 
altimetry data, especially when including less accurate data. So before combining 
altimetry data from different satellite altimeters, a good data editing to remove those data 
with large errors (e.g., poor data quality due to instrument maneuvers) and using some 
retracked data, which enable a better correction for different instrumental, environmental 
and orbit errors, would be recommended. 
 Because of the limited spatial coverage of TOPEX, the combination of TOPEX and 
ERS-2 data at dual satellite crossover locations is also confined to -66o. Although the
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coverage of the ERS-2 altimeter can reach -81.5o by its orbital characteristics, the ERS-2 
altimetry data we obtained are confined to the mostly south of -70o because the ocean 
mode was switched to ice mode when the satellite flew over the area below -70o, where it 
is assumed to be inappropriate for ocean mode operation of altimeter. So, to some extent, 
the tide solution provided in this study is still relatively far away from the ice-covered 
ocean in the Antarctic area, even though the tidal solutions using the ERS-2 data at single 
satellite crossovers extend a little beyond -66o latitude and near to -70o latitude in some 
area.  
 The combination of ERS-2 data with TOPEX data at dual satellite crossovers 
improved the spatial resolution of tidal solutions. This is shown by the location numbers 
in Table 5.10 for dual satellite crossovers and in Table 5.11 for single satellite crossovers. 
Also, the combination of data from two satellite altimeters with different repeat periods 
provides a way to reduce tidal aliasing. The techniques used in this study for dual satellite 
crossovers can be applied to other combinations of high-latitude satellite altimeters to 
improve the geographical coverage of empirical tide solutions. For example, the 
combination of ERS-1/2 with GFO can extend the spatial coverage to -72o latitude and at 
the same time, the tidal aliasing may be reduced by use of the data at dual satellite 
crossover locations.  
 With the launch of ICESat in January, 2003, accurate measurements over the ice 
surface at the Antarctic area would provide a promising contribution to the data that could 
be included in the tide modeling. GEOSAT/GFO, ERS-1/2, and ENVISAT data, can also 
contribute to the data source for ocean tide modeling, which all have a spatial coverage 
beyond -66o in the Southern Ocean. How to use those data to derive an ocean tide model 
for the Southern Ocean beyond -66o latitude is what we would do in the future. 
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APPENDIX A 
 
 

OUTPUT FROM A FREQUENCY ANALYSIS OF SIMULATED ALTIMETRY 
DATA AT SINGLE/DUAL SATELLITE CROSSOVERS WITH/WITHOUT 

NOISE ASSUMED 
 

(1) Topex single crossover (noise-free): 

 

Frequency and Phase in data units:  

fno= 1 vv=     0.0000000 f=   1.9322736160 a=16.600000 p= 1.431170 

fno= 2 vv=     0.0000000 f=   1.0027379093 a=11.100000 p= 0.715585 

fno= 3 vv=     0.0000000 f=   0.9295357068 a=10.900000 p= 0.785398 

fno= 4 vv=     0.0000000 f=   0.0027379093 a= 8.500000 p= 1.570796 

fno= 5 vv=     0.0000000 f=   2.0000000000 a= 5.000000 p= 1.186824 

fno= 6 vv=     0.0000000 f=   1.8959819690 a= 4.000000 p= 1.692969 

fno= 7 vv=     0.0000000 f=   0.9972620907 a= 3.800000 p= 0.802851 

fno= 8 vv=     0.0000000 f=   0.8932440597 a= 2.600000 p= 0.157079 

fno= 9 vv=     0.0000000 f=   2.0054758185 a= 1.400000 p= 1.221731 

fno=10 vv=     0.0000000 f=   1.1061388347 a= 0.000000 p= 0.483413 m0= 

0.00000 

Time [sec]  : 11695600.000000 f(x) evaluations: 322961 f'(x): 85093 

 

 

(2) Topex single crossover (Gaussian noise, std=± 3cm) 
 

 

Frequency and Phase in data units:  

fno= 1 vv=  5211.8945901 f=   1.9322733362 a=16.780001 p= 1.430872 

fno= 2 vv=  5211.8945901 f=   1.0027341310 a=11.436730 p= 0.726343 

fno= 3 vv=  5211.8945901 f=   0.9295379345 a=11.064322 p= 0.764039 

fno= 4 vv=  5211.8945901 f=   0.0027374508 a= 8.422965 p= 1.565428 

fno= 5 vv=  5211.8945901 f=   0.0170114600 a= 5.086918 p= 2.014097 

fno= 6 vv=  5211.8945901 f=   1.4321128113 a= 3.863072 p= 1.388586 

fno= 7 vv=  5211.8945901 f=   0.9972430855 a= 3.811809 p= 1.006804 

fno= 8 vv=  5211.8945901 f=   0.4178075129 a= 2.493147 p= 3.247828 

fno= 9 vv=  5211.8945901 f=   0.6166498950 a= 1.043724 p= 1.899771 

fno=10 vv=  5211.8945901 f=   2.1903246491 a= 0.703447 p= 4.397803 m0= 

2.99509 

Time [sec]  : -18681972.960000 f(x) evaluations: 639457 f'(x): 169255 
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(3) Topex_ERS dual crossover (noise-free) 

 

 

Frequency and Phase in data units:  

fno= 1 vv=    15.9211602 f=   1.9322734681 a=16.589476 p= 1.432996 

fno= 2 vv=    15.9211602 f=   1.0027377221 a=11.135939 p= 0.717163 

fno= 3 vv=    15.9211602 f=   0.9295357671 a=10.896686 p= 0.784696 

fno= 4 vv=    15.9211602 f=   0.0027387135 a= 8.519029 p= 1.560009 

fno= 5 vv=    15.9211602 f=   2.0000005610 a= 4.997541 p= 1.179313 

fno= 6 vv=    15.9211602 f=   1.8959818914 a= 3.993610 p= 1.693905 

fno= 7 vv=    15.9211602 f=   2.2074802237 a= 3.784328 p= 0.750106 

fno= 8 vv=    15.9211602 f=   0.3170134345 a= 3.833826 p= 2.479731 

fno= 9 vv=    15.9211602 f=   2.0054685056 a= 1.369663 p= 1.308259 

fno=10 vv=    15.9211602 f=   0.8931276334 a= 1.455574 p= 4.650055 m0= 

0.20857 

Time [sec]  : 10868600.000000 f(x) evaluations: 453941 f'(x): 120114 

 

 

(4) Topex_ERS dual crossover (Gaussian noise, std=± 3cm for Topex, ± 8cm for 
ERS) 

 

 

Frequency and Phase in data units:  

fno= 1 vv=  7807.5008916 f=   1.9322791207 a=16.618595 p= 1.393501 

fno= 2 vv=  7807.5008916 f=   1.0027367748 a=11.031371 p= 0.723152 

fno= 3 vv=  7807.5008916 f=   0.9295408356 a=11.140399 p= 0.760323 

fno= 4 vv=  7807.5008916 f=   0.0027314763 a= 8.500846 p= 1.700957 

fno= 5 vv=  7807.5008916 f=   2.0000097990 a= 5.211391 p= 1.119687 

fno= 6 vv=  7807.5008916 f=   1.8959843543 a= 4.040949 p= 1.744868 

fno= 7 vv=  7807.5008916 f=   0.2913142675 a= 3.747735 p= 0.728266 

fno= 8 vv=  7807.5008916 f=   0.3169662288 a= 3.125893 p= 3.206809 

fno= 9 vv=  7807.5008916 f=   1.3394478012 a= 1.400511 p= 5.436078 

fno=10 vv=  7807.5008916 f=   0.6360388891 a= 1.300588 p= 0.759651 m0= 

4.61865 

Time [sec]  : 18071500.000000 f(x) evaluations: 736270 f'(x): 195125 
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APPENDIX B 
 
 

OUTPUT OF A FREQUENCY ANALYSIS USING REAL ALTIMETRY DATA 
AT TOPEX_ERS-2 DUAL SATELLITE CROSSOVERS 

 
 

Latitude: -66.148155 Longitude: 278.278389 

     freqency        amplitude   phase 

 1     1.9322745040  0.243175  3.183915 M2 

 2     1.0027287771  0.111892  4.614719 K1 

 3     0.9295598607  0.103420  6.041701 O1 

 4     1.9999954180  0.080732  0.480312 S2 

 5     2.2389016070  0.062814  1.739715 

 6     0.9973009546  0.051486  2.913246 P1 

 7     0.9220391655  0.034026  4.256537 

 8     1.9161008354  0.017390  6.186920 

 9     0.0004214765  0.024891  3.843082 

10     0.0084901752  0.021623  5.162586  vv=     1.3755098 m0= 0.06361 

 

 

Latitude: -66.144067 Longitude: 278.988569 

     freqency        amplitude   phase 

 1     1.9322726598  0.247918  3.186657 M2 

 2     1.0027221463  0.124900  4.852426 K1 

 3     0.9295629933  0.124587  5.932807 O1 

 4     0.2855504393  0.081163  4.678486  

 5     1.8959872087  0.066850  6.268541 N2 

 6     0.9972867398  0.057678  3.246870 P1 

 7     0.8933140697  0.031409  1.438027 Q1 

 8     1.7139305886  0.022634  4.796221 

 9     1.5494683055  0.021300  5.867979 

10     1.7180154180  0.019893  1.566437  vv=     1.2752415 m0= 0.06226 

 

 

Latitude: -66.136403 Longitude: 279.706746 

     freqency        amplitude   phase 

 1     1.9322692906  0.241143  3.266511 M2 

 2     1.0027280675  0.129110  4.668623 K1 

 3     0.9295517625  0.112002  6.270998 O1 

 4     1.9999969301  0.087477  0.294764 S2  
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5     1.8959911512  0.068525  6.088107 N2 

 6     0.9972036083  0.060526  5.693939 P1 

 7     0.0516620149  0.027059  3.169843 

 8     1.4262524937  0.029294  3.779874 

 9     1.1098648846  0.024852  1.545104 

10     0.4148890439  0.040287  2.839791  vv=     1.4173545 m0= 0.06505 

 

 

Latitude: -66.125519 Longitude: 280.405495 

     freqency        amplitude   phase 

 1     1.9322715019  0.243559  3.197524 M2 

 2     1.0027237507  0.135149  4.713791 K1 

 3     0.9295558576  0.120175  6.163970 O1 

 4     1.9999972642  0.084556  0.370234 S2 

 5     1.8959829095  0.065164  0.006977 N2 

 6     1.9049536963  0.043620  3.963417 

 7     0.2882127665  0.038028  0.897952 

 8     0.8073343432  0.033031  0.512909 

 9     0.1900934554  0.029407  4.666463 

10     0.2004151246  0.026819  4.456079  vv=     1.6118140 m0= 0.06835 

 

 

Latitude: -66.093498 Longitude: 281.806583 

     freqency        amplitude   phase 

 1     1.9322728988  0.249569  3.163803 M2 

 2     1.0027114534  0.126662  5.132785 K1 

 3     0.9295696807  0.115785  5.733053 O1 

 4     1.9999958763  0.085736  0.436807 S2 

 5     1.8959798612  0.060372  0.083465 N2 

 6     0.9972966478  0.053004  3.049961 P1 

 7     0.6057042263  0.044336  4.329572 

 8     1.7158329744  0.037863  4.099537 

 9     1.5993206667  0.032063  0.382270 

10     0.7094872917  0.028131  1.062462  vv=     2.1722955 m0= 0.07935 
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