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 ABSTRACT 

Statistical interpolation has been proven to be a legitimate and efficient approach 
for data processing in the field of geodetic and geophysical sciences. Pursuing the 
minimization of the mean squared prediction error, the technique, known as Kriging or 
least-squares collocation, is able to densify, respectively filter a spatially and/or 
temporally referenced dataset, provided that its associated covariance model is given or 
estimated in advance. The involvement of the covariance matrix which to some extent 
reflects the physical behavior of the underlying process may, however, potentially lead to 
an ill-conditioned situation when the data are observed at a relatively high sampling rate. 

A new perspective, interpreting the Kriging equation in the continuous sense, is 
therefore proposed in this research so that, instead of matrix terms, a convolution 
equation is set up for the Green’s function where the covariance function is preserved in 
its analytic form. Two methods to approximate the solution of such a convolution 
equation are employed: One transforms the unknown Green’s function into a series 
consisting of a linear combination of (partial) derivatives of the covariance function so 
that the approximation of the Green’s function can be determined through a term-by-term 
approach; the other one manipulates the convolution equation in the spectral domain 
where the inversion can be treated within the space of real number. 

The proposed approach has been applied to various covariance models, especially 
several more recently established spatial-temporal models which have attracted 
increasing interests for geophysical applications. Examples from geodetic science include 
the cases of data fusion and terrain profile monitoring; although based on simulated data, 
the demonstration of this innovative approach shows great potential. 
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CHAPTER 1 

INTRODUCTION 

Nowadays, data interpolation is among the most significant tasks for which 
geostatistics can provide solutions in the disciplines of geophysics and geodesy. Demands 
for it often arise when the sampling rate of a geo-referenced dataset is below the required 
sampling density, or some sites of interest are overshot by the sampling scheme. 
Moreover, when point-against-point comparison between two datasets is to be made, the 
“relocation” of data sites from one of the dataset is always mandatory. Uniquely different 
from other interpolation techniques, the legitimacy of statistical interpolations is based on 
the principle of regarding the dataset as outcome from one single stochastic experiment. 
As a matter of result, the so-called interpolation can be interpreted as a prediction of the 
next outcome, but over new sites, because the concept of repetitive experiments in 
geostatistics is usually generalized to include probability measures spatially and 
temproally.  Thus, a predictor or function of already sampled data can take the role of an 
interpolation function. In light of this perspective, it is easy to understand that statistical 
interpolation, driven by the probability model, has the edge over other techniques when 
there is no exact physical knowledge available to model the dataset. 

Among the statistical predictors, Kriging characterized by its linear form, without 
any doubt, is among the most efficient and practical statistical techniques. It is similar to 
what became known as least-squares collocation in the geodetic community, and is able 
to reflect the physical behavior of the underlying process to some extent. Considering 
only the pair-wise relations of sites (data points), Kriging predicts the signal at a new site 

0s  by the linear combination of the signal at surrounding sites, using as interpolator a 
coefficient vector λ where each entry assigns a “measure of influence” to each data site. 
In the case that a constant mean of a dataset can be assumed, under the criterion of 
minimum mean squared prediction error, the n×1 coefficient vector λ results from the 
Simple Kriging equation: 

0zzz CC =λ , 

where zzC  is the n×n variance-covariance matrix of the data vector, and 0zC  is a n×1 
vector sequentially recording covariances between the signal )( 0sZ and each entry in the 
data vector [ ])(,),( 1 nsZsZ L ; n here is the sample size. However, the attempt to solve for 
λ, which involves the inversion of this equation, can be plagued by numerical problems 
when the sampling rate of data is increased to a certain extent. One can determine that 
every column in zzC , interpreted as a discretized covariance function, would find the 
previous or next columns to be almost identical, but with a spatial shift from one data site 
to another. Therefore, high sampling rate means tiny shifts among sequential columns 
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and, consequently, an ill-conditioned matrix zzC . As more and more cutting-edge sensor 
equipments become available, owing to the development of remote sensing technology 
such as radar imagery, it indeed shows potential demand for developing suitable 
algorithms to process continuous datasets (Krumm, 1987, and Borre, 2001). 

 To tackle this problem, a new perspective is proposed in this thesis. Conceptually, 
to favor the continuous properties coming from the extremely high sampling rate, the 
underlying random field modeling the high density dataset can be replaced by a 
continuous random function, and the interpolator vector λ will thus result in a continuous 
function )(sG , known as Green’s function.  Accordingly, the Kriging equation is 
generalized to a continuous case, which is the extreme form for high sampling rate 
datasets. Inspired by the pioneering work of Hohlfeld et al. (1993) and Oliver (1998), the 
Kriging equation is interpreted as a Fredholm integral equation where the unknown 
function )(sG is to be solved for. Two approaches are shown in this thesis to solve the 
integral equation: The first directly transforms the equation into the representation in 
form of a series spanned by the partial derivatives of the covariance function; the other 
makes use of the Fourier transform, where the inverse is carried out in the spectral 
(Fourier) domain and then transformed back. Both approaches result in )(sG  being 
represented in the basis of derivatives of the covariance function, which instinctively can 
be associated with the sequential columns in the matrix zzC . 

 Chapter 2 reviews the fundamental theory of random fields, as well as optimal 
linear predictors for data sampled from such a field. Chapter 3 investigates the theoretical 
background of valid covariance functions. Some important historical works are briefly 
introduced, and most importantly, the criteria to construct a valid covariance function are 
discussed in this chapter which will be referred to  frequently in the following chapter. 
Chapter 4 addresses the approach of forming the continuous Kriging equation and 
presents two approaches to its solution which provide analytical representations of 
Green’s functions by basically making use of different transforms to achieve the inverse 
in the continuous fashion. Following the theoretical elaboration on these approaches, 
some Green’s function examples with respect to several well known spatial-temporal 
covariance functions, as well as an example of data fitting, are presented in Chapter 5. 
Afterwards, some promising applications in geodetic science are discussed in Chapter 6, 
and finally conclusions are stated in Chapter 7. 
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CHAPTER 2 

SPATIAL-TEMPORAL DATA 

To deal with applications involving uncertainties associated with spatial and 
temporal references, a statistical approach is often applied to model the data sets. Such a 
perspective regards the observed data as a (single) realized outcome of a random process 
defined on the referenced spatial-temporal domain, so that the mechanism which actually 
generated the observed data can be represented by properties of the referred random 
process.  

2.1 Spatial-Temporal Random Fields 

To stochastically model a uni-variate natural phenomenon which is spatially or 
temporally referenced, a group of random variables subscripted by the respective spatial 
location/temporal epoch are usually employed for the modeling. Conventionally, such set 
of random variables is denoted by 

       ( ){ }UtEstsZ ∈∈ ,:;        (2.1.1) 

where E is the domain where the spatial locations of  all possible “sites” are 
accommodated, and usually but not necessarily referred to as a d-dimensional Euclidean 
space, denoted by Rd . Likewise, U is the domain that contains all the temporal epochs , 
often characterized by the 1-dimensional time axis. In order to emphasize the casual 
property of time, the temporal space is further confined to the interval of [0,∞) sometimes. 
The lowercase letters s and t are the indicators pointing to the positions of data in the 
spatial and time domains, respectively. Certainly, like the definition of any random 
variables, any ( ) UtEstsZ jjjj ∈∈ ,:;  is associated with a probability space ⊂Ω j  R1 
with the probability measure { } 1Pr =Ω j . In this thesis, however, the probability spaces of 
all random variables in a field are assumed to be all the same; namely, 
{ }UEts jjj ∪∈=Ω ),(|1R . 

The lowercase notation { }UtEstsz ∈∈ ,:);(  is employed to denote the realization 
from the random field Z(s;t). The subscripted numbers attached to the spatial or temporal 
indicators s and t refer to the specific spatial location/time epoch of the data. For example, 
the collection of data observed at the same location, but at different time epochs can be 
expressed as {z(sp,t1), z(sp,t2),…,z(sp,tn)}; similarly, the data observed at the same time, 
but at different locations can be written as {z(s1,tq), z(s2,tq),…,z(s1,tq)}. 
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Joint Density of a Random Field 

For a random field Z, the behavior of all sites at all times is governed by the 
associated distribution, defined by finite dimensions, which corresponds to all the data 
sites: 

( ) { });();(),...,;(),(Pr);(),...,;( 1111 qpqpqpqp tsztsZtsztsZtsztszF ≤≤≡ , 

where 

));(,),;((
);();(

));(,),;((
11

11

11
qp

qp

qp
qp

tsztszf
tsztsz

tsztszF
L

L

L
=

∂∂

∂ ×

   (2.1.2) 

provided that f  is a valid joint density function (Sveshnikov, 1978).  

The joint distribution of a set of data sites definitely characterizes all the random 
properties associated with the field (process) in a complete way. Along with the analytic 
form of the joint density, moments of all orders (from first to infinity, if they exist) can 
characterize most of the unique properties of this field (process). For some distributions 
frequently used to model geophysical data, such as the Gaussian, the first two moments 
(centered) are either the most dominant, or even completely sufficient factors to 
determine the properties of a random field. 

In compliance with the notations of most statistical textbooks, the first moment – 
referred to as expectation (also known as probabilistic mean or  probabilistic trend in 
some occasions) – is denoted by 

( ) ( ){ } ( ) );();();(;; tsdztszftsztsZEts ∫
∞

∞−

==µ ,                           (2.1.3) 

whereas the spatial-temporal mean is defined as 

 ( ) ∫∫
∪

=
UE

dsdttsztsZ );();(µ .                 (2.1.3a) 

Under the assumption of “ergodicity”, probabilistic mean and spatial/temporal mean 
coincide. This is a very important issue in spatial-temporal statistics. Although the 
definition of moments is originally given based on the form where the density function is 
integrated over the probability space, in numerous practical problems, however, the only 
available information consists of the dataset observed over UE ∪ , which is actually a 
single realization from the associated random field. In order to assess the properties of a 
dataset, the following definition of the sample mean is adopted if the ergodicity 
assumption holds: 
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( )∑∑
= =

=
n

i

m

j
ji tsz

nm 1 1

;1µ   for Ei∈ and Uj∈ .             (2.1.3b) 

As far as the centered second order moment – variance and covariance – is 
concerned, it indicates the degree of dispersion across the defined space and time domain. 
The definition of covariance is given by 

( ) ( )( ) ( )( ) ( ) ( )( ){ }jjjjiiiijjii tstsZtstsZEtsZtsZC ;;;);(;,; µµ −−=    (2.1.4) 

where Ess ji ∈, , Utt ji ∈, . Obviously, the definition of the (co)variance relies on the 
fist moment, i.e., the expectations µ.  

Alternatively, there is another form to capture the information from the second 
moments, which has attracted increased attention. The semi-variogram is defined by 

( ) ( )( ) ( ) ( ){ }jjiijjii tsZtsZVartsZtsZ ;;
2
1;,; −=γ               (2.1.4a) 

and, under “ergodicity”, can be expressed as  

( ) ( )[ ]{ }2,,));(),;(( jjiijjii tsZtsZEtsZtsZ −=γ .              (2.1.4b) 

Here Var denotes the variance function, similar to (2.1.4) when i=j. 

The semi-variogram spells out the dispersion of a process by way of the 
discrepancy between the signals at two data sites directly, without the direct involvement 
of the mean. Such property shows remarkable advantage when the mean is difficult to 
access. 

Stationarity 

 In an attempt to focus on the stochastic properties of a studied process, 
stationarity is often assumed. This assumption depicts a simplified situation where the 
process has homogeneous stochastic properties across the whole space and time domains; 
in other words, no spatial or temporal variation is introduced by a (non-random) shift. If a 
random process Z is said to be stationary, then, for any subset of sites 
( ) ( ) ( ){ }nm tststs ,,,,,, 1211 L  from UE ∪ , we have 

( ) ( ) ( ) ( )( )nmtnsmts tsZtsZF ,,...,, 11,,...,1,1   

( ) ( ) ( ) ( )( )tnsmtsttnssmttss tsZtsZF ++++++++= ,,...,, 11,,...,1,1    (2.1.5) 

where (s, t) denotes a translating vector defined in UE ∪ .  
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 Since the probability function is often too time-consuming to handle during 
computations, a much simpler alternative –second-order stationarity is introduced instead. 
A process Z is said to be second-order stationary if its expectation would fulfill 

   ( ){ } µ=tsZE ;   for all Es∈ and Ut ∈ ,    (2.1.6) 

and for the covariance function it holds  

  ( ) ( ){ } ( )jijijjii ttssCtsZtsZC −−= ;;,;  for all Ess ji ∈,  and Utt ji ∈, . (2.1.7) 

2.2 Conditional Specification and Markov Random Fields 
Aside from the form of a joint distribution mentioned in (2.1.2), the spatial-

temporal structure across the data sites can be specified by the conditional approach. The 
probability density of a single site xi, conditioned on all the other sites xj in the defined 
domain, is denoted by 

( ) ( )ji xzxzf   for all ( )jxz  where UEji ∪∈,  but ij ≠ , and xj=(sj; tj). (2.2.1). 

In order to simplify the notation, we denote a site in the spatial-temporal domain by 
( )iii tsx ;=  in the following discussion when the difference between the spatial and 

temporal domain is not particularly emphasized. 

The conditional specification, taking the microcosm perspective, turns out to be 
more straightforward in stating certain statistical properties for a random process. For 
example, a lot of geophysical datasets, if not the majority, show very strong effect of 
local domination and the “influence” decreases to almost zero outside a surrounding 
neighborhood. Such properties can be described by the conditional specification as 

( ) ( ) ZN i ii xzfxzf =        (2.2.2) 

where Z denotes the vector collecting values from all sample sites in a defined domain 
UE ∪ , but excluding the selected site ( )ixz . The symbol Ni, however, denotes a subset 

of Z  in which only sites surrounding ( )ixz  are collected; it is called the neighborhood of 
site i. The identity (2.2.2) that expresses the “lack of memory” property is also known as 
Makovian property. 

 In the case of a stationary random field, the joint specification is intuitively 
supposed to be the summation of some forms of the conditional specification since those 
local structures are considered homogeneous everywhere. Methods to associate the joint 
specification with the conditional specification have been thoroughly studied by Besag 
(1974), and Hammersley and Clifford (1971), who introduced the concept of cliques, 
which represent various combinations of neighboring sites. By way of such 
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categorization as neighboring sites,  a joint density can be factorized into a series of 
density functions conditioned on various clique sets.  
 

2.3 The Case of a Gaussian Markov Random Field 
 In Section 2.2, a general perspective on the theory of Markov Random Fields was 
given; however, a specific example may illustrate the theory in a more practical way. The 
case for Gaussian data has been elaborated upon by previous researchers, and would 
serve as a perfect example of a typical Markov Random Field (Cressie, 1991, p.414). Let 
us assume a Gaussian random field that is defined on n sites, and only the pairwise 
relations matters, which means that all the cliques containing more than two members 
would be suppressed. Based on this setting, the conditional density can be written as 

( ) ( ) ( ) ( ) ( )( )[ ]{ })2(:exp2: 222
12

ijiiji ijxzpxzijxzxzf σπσ ≠−−=≠
−

  (2.3.1) 

where f denotes the density function for site i conditioned on all the other sites. 
Furthermore, when the Markovian property is assumed to be effective within a q-site 
neighborhood nearby a centered site i , then the conditional mean, p, in (2.3.1) has the 
linear form of 

{ } ( )( ) ( )( )∑∑
==

−⋅+=−+=≠
q

j
jjiji

n

j
jjijiji xzgxzgijxzxzE

11
:)()( µµµµ .  (2.3.2) 

By way of the factorization theorem by Besag (1974), one can end up with the following 
relation 

( ) ( )( ) ( )( )µµρ −−−−= − zGIDzzf T 1

2
1)(log     (2.3.3), 

where ρ is a constant, [ ]Tnµµµ ,,1 L= , ( )ijgG ≡  is an n×n matrix, and another n×n 

matrix is denoted by ( )22
1 ,, nDiagD σσ L≡ . Since the density function  f is considered to 

be Gaussian, the right hand side of (2.3.3) shows the exponent of an n-dimensional 
Gaussian distribution, that is 

( )( )DGINZ
n

1

1
,~ −

×
−µ  .       (2.3.4) 

 
2.4 Optimal Spatial-Temporal Prediction 

In the effort to make an appropriate prediction, the “local structure“ – density 
function conditioned on neighboring sites – without doubt is one of the most legitimate 
piece of information, unless the genuine physical model is available. If we further discard 
all the conditional densities, except for those defined on one-way cliques, then we 
confine the construction of the predictor to be necessarily linear. 
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Suppose the 1×n  vector ( ) ( )( )Tnn zxzzxzz === ,,11 L denotes a set of observed 
data, and a prediction for the random variable )( 00 xZZ ≡ is made at the location x0 
where no observation is collected. Then a linear predictor would have the form 

∑
=

+=+=
n

i
ciic

T zzz
1

0
~ λλλλ ,        (2.4.1) 

where the 1×n vector ( )Tnλλλ ,,1 L= denotes the unknown “coefficients of influence”, 
and λc is an unknown shift parameter. 

In order to come up with a predictor uniquely, a criterion – for instance a loss 
function – has to be set up so that the coefficients can be determined through its 
optimization. Following this doctrine, the ever popular choice of minimizing the mean 
squared error is adopted; it can be written as the sum of error variance and the squared 
bias 

{ } ( ){ } { } { }( ) min~~~~ 2
0000

2
000 =−+−=−= ZzEZzVarZzEzMSE .   (2.4.2) 

Based on this criterion, and the assumption of a given mean, the coefficient vector λ of 
the optimal predictor is provided by 

zzz CC 0=λ ,         (2.4.3) 
and the shift parameter λc by 

 { } { }zEZE T
c λλ −= 0 ,                  (2.4.3a) 

where zzC  denotes the variance-covariance matrix of the n×1 random vector z, and zC0  
the n×1 covariance vector between the random variable 0Z  and each variable in z. 
Moreover, the mean squared prediction error for the optimal predictor is given by 

{ } ( ){ } λσ T
zz CZzEzMSE 0

22
000 0

~~ −=−= .     (2.4.4) 

The equation (2.4.3), usually termed Simple Kriging Equation, has a unique solution 
provided that zzC  is nonsingular. The solution to this equation provides the Simple 
Kriging coefficients, and the predictor c

T zz λλ +=0
~ from (2.4.1) is indeed the Best 

inhomogeneously Linear Predictor.  
In many applications, however, the mean of the datasets is actually unknown. One 

obvious approach to deal with this situation is to get “clean data” without mean drift 
through some preliminary treatment called “de-trending”. Usually these approaches 
involve either the effort to cancel out the mean by multiple differencing, or to remove an 
estimated trend if such estimation can be made available in advance. If a constant mean µ 
is unknown, the Ordinary Kriging solution is given by 

)ˆ(ˆ)(~~
1

1
00 µτµ −+=

×

−

nzz
T

z zCCxz        (2.4.5) 

with 
 )()(ˆ 1

1

1 τττµ −

×

−= zz
T

nzz
T CzC ,       (2.4.6) 

where [ ]T
n

1,,1
1

L=
×
τ . 
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A more general and adequate approach to handle the data with an unknown, but 
not necessarily constant mean consists in integrating the estimation of the mean into the 
Kriging estimator. To deal with the non-random mean relief, one can assume the non-
random mean to be written as a finite expansion in linear form, 

( )illi xf∑=
l

ξµ ,        (2.4.7) 

or in matrix notation, 
ξµ F

n
=

×1
          (2.4.8) 

where [ ]Tl
ll

ξξξ ,,1 L=
×

, 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

















=
×

nlnn

l

l

ln

xfxfxf

xfxfxf
xfxfxf

F

L

MMM

L

L

21

22221

11211

,       (2.4.9) 

and a singled out column vector for the site 0x :  

[ ]Tl xfxff )(,),( 0010 L= .                     (2.4.10) 

At this point, let us choose the linear predictor to be unbiased, but with a 
homogenously linear form such that 

zz T
hλ=0

~~ ,                   (2.4.11) 

with its bias vanishing: 

 { } { } { }00
~~ ZEzEzE T

h == λ .               (2.4.11a) 
By minimizing the mean squared error 

( ){ } { } min~~var~~
00

2

00 =−=−=Φ ZzZzE ., 

subject to (2.4.11-11a), the Universal Kriging equation 









=





















× 0

0

0 f
C

F
FC

zh

ll

T
zz

γ
λ

                 (2.4.12) 

arises, and the accuracy of this prediction in terms of the mean squared error would be 

{ } ( ){ } 00
22

000 0

~~~~ fCZzEzMSE T
z

T
hz γλσ −−=−= .               (2.4.13) 

 More details regarding the derivation of optimal predictors can be found in the 
comprehensive textbook by Chilès and Delfiner (1999). 
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CHAPTER 3 

SPATIAL-TEMPORAL COVARIANCE FUNCTIONS 

As discussed in Chapter 2, the structural characteristics of spatial-temporal data 
are determined by the associated probability distributions or, alternatively, by the 
associated moments. As far as most distributions are concerned, the first two moments 
significantly dominate the stochastic characteristics, especially when Gaussian density 
can be assumed where the first two moments suffice to describe all of them. 
Consequently, in regard of a stationary random field, the covariance function uniquely 
determines the coherency of a random field. In this chapter, necessary criteria to 
construct covariance functions for spatial-temporal data will be explored so that decent 
covariance model can be employed to attain the genuine properties of datasets.  

3.1 Fundamental Criteria for Covariance Functions  

All of the fundamental criteria required for covariance functions are, in the 
consequence, derived from the definition of variance, or its related properties. A 
covariance function, defined on a domain of any dimension, usually is not considered 
legitimate unless all of the criteria are fulfilled; otherwise, some problems may occur, 
either in the modeling of the random field, or when carrying out a prediction. At some 
occasions, however, those criteria, although assumed, may still have to be more or less 
compromised  (Stein, 2003). 

First, by definition, the covariance of any two random variables is a symmetric 
relation, ( )00 ,cov),cov( ZZZZ hh = , so we have  
Criterion 1: A stationary covariance function must be an even function, which means 
  ( ) ( )hChC −= .         (3.1.1) 
Then we must consider the stochastic properties of the random field; the variance at any 
site ix  must be larger than zero (and usually smaller than infinity), resulting in 
Criterion 2:  ( ) ( ) 00 >= CZVar i .       (3.1.2) 
Moreover, for any two sites ix  and jx  with distance h, the respective variances and the 

covariance fulfill the  Cauchy-Schwarz inequality ( ) ( ) ( )jiji ZVarZVarZZCov ≤, ;  
the covariance function, therefore, must fulfill 
Criterion 3: ( ) ( )hCC ≥0 .        (3.1.3) 
Incidentally, as was discussed in the previous chapter, the signal 0Z at a site 0x  of a 
stationary random field ought to have predictors which are linear combinations of the 
observed signals at all the other sites, collected in the vector [ ]Tnzzz ,,1 L= ; thus, once 
again, the variance ensures the following property: 
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 ( ) ( )( ) =−=−≤ µλµ zVarzVar T
00

~0       (3.1.4) 

 ( )( ){ }λµµλ TT zzE −−= .        

where µ0=E{z0}and µ=E{z}are the respective mean and mean vector. This leads to the 
nonnegative-definiteness of a variance-covariance matrix. As the random vector z at 
discrete sites is generalized to the continuous case, a covariance function is required to be 
positive-definite as well. Inferentially, one can check the positive-definiteness of a  
covariance function through 
Criterion 4:  A continuous function ( )hC  is positive-definite if and only if its Fourier 
representation ( )ωf  is a positive real-valued function in the sense that 

{ } ∫ ≥== − 0)(:)()( dhhCeCf hiωωω F  for all ω,    (3.1.5) 

where 

( ) ( ) { } )(
2
1 1 hfdfehC hi −== ∫ Fωω
π

ω .     (3.1.6) 

This Fourier validation was first proposed by Bochner(1955); for more geodetic 
references see K. P. Schwarz et al. (1990) . Notice that the Fourier transform in equation 
(3.1.5) will end up being a real-valued function provide that the covariance function C(h) 
fulfills Criterion 1 (Kreyszig, 1983, p.175).  

3.2 Separable Spatial-Temporal Covariance Functions 
So far, all of the criteria address only the validation of covariance functions in the 

space domain alone. For many applications in geophysics, data are labeled by spatial 
locations and time spot together, which means that a covariance function ought to 
illustrate statistical relations over both spatial and temporal spaces. The very 
straightforward method to construct such a spatial-temporal covariance function involves 
the selection of a valid covariance function that is defined for the signals in the space 
Rd+1, thereby devoting one dimension for time. In most cases, by following this method, 
the covariance function can be decomposed into the product of two functions that are 
defined solely on spatial parameters, or on the temporal parameter, respectively. 

As far as the validation of these combined covariance functions is concerned, the 
product combinations also have to fulfill the criteria listed in Section 3.1. Among all the 
criteria, the positive-definiteness is without any doubt the most demanding one, since it 
requires the Fourier transform, which is not always analytically feasible. One easy 
instinctive method to obtain a positive-definite covariance function in space and time is 
to multiply positive-definite functions on either domains with each other. 

Proposition 3.2.1:  If ( )hf  and ( )ug  are both positive-definite functions, the 
product function, ( ) ( ) ( )ughfuhk =; , is also positive-definite. 

Proof: Since ( )hf  and ( )ug  are both positive-definite, we have 
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0)(
T

>∫ dhehf ωih ,        (3.2.1) 

and 

0)()(
T

>= ∫ dueugG τiuτ .                 (3.2.1a)  

As a result, 

{ } =











== ∫ ∫ ∫∫ + dhdueugehfdhdueughfk τiuihτ)uωi(h TTTT

)()()()();( ωτωF  

0)()()()(
TT

>











== ∫∫ dhehfGdheGhf ihih ωω ττ  

because both (3.2.1) and (3.2.1a) are positive functions. 

In light of this proposition, any available covariance function ( )hC , ∈h Rd, 
defined in a d-dimensional spatial domain, multiplied by a positive-definite covariance 
function ( )uC  defined in the one-dimensioned time domain, can lead to an eligible 
spatial-temporal covariance function. On the other hand, covariance functions of this kind 
can always be decomposed into the product of several positive-definite covariance 
functions; so the name separable covariance function is attached to this family. For 
example, a Gaussian covariance function, defined in the space of x and y, joined with a 
Gaussian covariance functions, defined in t, would be 

( )
( ) 








−−−= 2

2

2

2

2

2

32 exp1,,
c
t

b
y

a
x

abc
tyxC

π
.     (3.2.2) 

Mathematically, covariance functions from such a family are valid covariance functions; 
their application to real data, however, is quite limited since no interaction between space 
and time domains is modeled (Cressie and Huang, 1999). 

 On the other hand, not any linear combination of spatial covariance functions with 
a temporal covariance function guarantees that the newly constructed function will be a 
valid covariance function. The linearity of the Fourier transform would turn this into the 
same linear combination of two positive functions in the spectral domain. This is valid, 
for instance, if addition and multiplication with positive coefficients is exclusively 
involved in the combination; otherwise, the new one could still end up being negative in 
the spectral domain and, consequently, would not be a valid covariance function. 

3.3 Space-Time Covariance Functions Proposed by Cressie and Huang 
To overcome the drawback of separable covariance functions, Cressie and Huang 

(1999) proposed an alternative principle to create a new family of non-separable 
covariance functions ( )uhC ; . 
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Proposition 3.3.1: A continuous, integrable function ( )uhC ; , defined on Rd× R1, 
is a valid space-time covariance function if and only if 

( ) ( )dhuhCeuFuf
Tih ;;)( C ∫ −== ω

ω ω                    (3.3.1) 

is a covariance function for almost all  ∈ω Rd.  

The temporal parameter u and the spatial spectral parameter vector ω are tangled 
together in (3.3.1) to ensure the interaction between space and time domain. However, 
some separable parts should still be allowed in the covariance representation, so that it 
can be multiplied by other positive functions in the spatial spectral parameter vectors 

)(ωg , which action still keeps the entire covariance function positive in the spectral 
domain. As a consequence, a non-separable spatial-temporal covariance function C (h; u) 
can be generated by the spatial inverse Fourier transform of  

( ) ( ) ( )∫ −= dhuhCegguf ih ;)(
Tω

ω ωω .      (3.3.2) 

It is not difficult to assemble some “ready-to-use” covariance functions, defined 
in spatial and in temporal domains, into one function which fulfills (3.3.1). However, for 
any arbitrary combination of functions, challenges arise when the representation (3.3.2) 
in the spectral domain needs to be transformed backwards to the original space-time 
domain. To construct closed-form examples of spatial-temporal covariance functions, 
Cressie and Huang (1999) make use of covariance functions and spectral density 
functions, given by Matérn (1960), which assure an analytical form in the original 
domain. 

3.4 Gneiting’s Theorem of Space-Time Covariance Functions 
The method proposed by Cressie and Huang (1999) provides a feasible way to 

generate limited classes of non-separable spatial-temporal covariance functions. However, 
the Fourier transform in (3.3.2) still cannot be avoided, which often turns out to be a quite 
demanding job. To further explore a method covering a more generalized class of 
covariance functions, Gneiting (2002) attempted to work on the alternative criteria in the 
original domain, rather than in the spectral domain.  

 Proposition 3.4.1: If ( )tϕ , for 0≥t is a completely monotone function, and ( )tψ , 
for 0>t is a positive function with a completely monotonic derivative, then 

( ) ( ) ( )












= 2

2

22

2

;
u

h

u
uhC d ψ

ϕ
ψ

σ       (3.4.1) 

is a spatial-temporal covariance function.  

Definition: An analytic function ( )tf  in Rd is said to be completely monotone if it 
possesses derivatives ( )nf of all orders n∈N that fulfill the inequalities 

( ) ( ) ( ) 01 ≥− tf nn .        (3.4.2) 
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From the form of (3.4.1), one can easily conclude that any covariance function of 
this form will be an even function, that is, );();( uhCuhC =−− . The property ensures that 
all covariance functions of the Gneiting form will have a real-valued Fourier transform in 
the spectral domain (Kreysig, 1983, p.175). 

3.5 Smoothness of Covariance Functions 
Aside from the propositions mentioned in the previous sections of this chapter, 

Stein (1999) further argues that any lack of smoothness of a spatial-temporal covariance 
function around the origin would cause disturbances if the locations of the observations 
involved in the linear predictor had any small deviations. In other words, the linear 
predictor would be fairly unstable when small scale errors are introduced into the location 
of observations. In consideration of this point, a covariance function is required to 
possess some smoothness, or more specifically, differentiability, at least around the area 
near the origin; otherwise, some numerical problems may occur in practical applications. 

Once again, such a property can better be studied in the spectral domain. To 
enforce the requirement of this differentiability on covariance functions, Stein (2003) 
showed that, if the derivatives of a Fourier transformed density have certain moments, 
then the corresponding covariance function possesses derivatives away from the origin. 
Based on this theorem, a rich class of Fourier transformed densities (probability density) 
has been proposed to have the form of 

( ) ναα τωτω
−





 +++=

2
1

22
22

22
11 )(),( acacf ,    (3.5.1) 

with parameters 2121 ,,, aacc  and properly chosen exponents ναα ,, 21 , where 2
2

2
1 αα + is 

positive and 

 2
2

2

1

1 <+
νανα

dd  for 1d  as spatial and 2d  as temporal dimension  (3.5.2) 

Analytically, the inverse Fourier transform of such a density has turned out to be quite 
difficult to compute; so far, closed forms seem only possible for some special cases 
involving choices of 21 ,αα , and ν , as shown by Stein (2003). However, from the 
perspective in Chapter 4 below, such representation in the spectral domain is still very 
appreciable, considering the inverse problem in constructing Green’s function. As a 
matter of fact, it is easier to invert a function in the spectral domain than in the original 
space-time domain provided that an analytical form is available. As far as the 
representation in the original space-time domain is concerned, there is almost never a 
lack of numerical tools to overcome such a problem in its implementation. 

3.6 Convolution Operators 
In order to assure the positive-definiteness, new covariance functions can be 

generated by the convolution of various functions. The first example is the approach of 
auto-convolution. 
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Proposition 3.6.1: For any even and continuous function )(xq : Rd→ R1, ∈x  Rd, 
with the Fourier transform )(ωQ : Rd→ R1, ∈ω  Rd, the self-convolution 

)(*)()( xqxqxW =  is a positive-definite function. 
Proof: The spectral representation of )(xW is real-valued with 

{ } { } { } [ ]2)()()()( ωωωω QqqW =⋅= FFF , 

which 
h is a positive function. So the composite function )(xW is a positive-definite function. 
 Another possible way to come up with a new positive-definite function is through 
the convolution of two other positive-definite functions in accordance with Proposition 
3.2.2. A good example is when the new function )(xρ : Rd→ R1 is unknown and 
involved in a convolution equation, 

)()(*)( xxKx ψρ = ,        (3.6.1) 

where )(xK  and )(xψ are both positive-definite mappings of type Rd→ R1. After taking 
the Fourier transform on both sides, the solution can be written as 

{ } )(*)(
)(

1)( 1 xx
K

x ψ
ω

ρ








= −

F
F ,      (3.6.2) 

which is the convolution of two positive-definite functions; so )(xρ is positive-definite.  

A typical example is the Kriging equation, where the solution of Green’s function 
will be represented by the convolution of a covariance function with other positive-
definite terms. So the Green’s function, as a byproduct, can potentially serve as a new 
covariance model. More details will be discussed in Section 4.8 below.  

 However, the other criteria discussed previously are also mandatory, besides the 
positive-definiteness, for a new function to qualify as a covariance model. Generally, to 
make the new function fulfill those criteria, the “ingredient” functions should follow 
them because of the properties of convolution operation. 

Proposition 3.6.2: Suppose )(xq is an even and squared-integrable function, then 
the new function )(xW created by self convolution of )(xq , )(*)()( xqxqxW = , is also 
an even function. 
Proof: Since we know )()( xqxq =− , so the self-convolution exists and reads 

=−−−−=−−=− ∫∫
∞

∞−

∞

∞−

)()())(()()()( uuuuuu xdxqxxqdxxqxxqxW  

)()(*)()()( xWxqxqdxxqxxq vvv ==−= ∫
∞

∞−

, 

thus showing that )(xW is also an even function. This proposition can be easily 
generalized into the case of ∈x  Rd by 
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=−−−−=−− ∫∫
∞

∞−

∞

∞−
uuuuudxx dxdxxxqxxxxqxxW

c
LLLLLL 1d1dd111 ),,(),,(),,(

1
 

)()()(),,())(,),(( d1d1d1dd11 1
xxWxdxdxxqxxxxq

dxxuuuuu LLLLL L=−−−−−−−−= ∫∫
∞

∞−

∞

∞−

. 

Proposition 3.6.3: Suppose that )(xg  is an even and continuous function with 
0)0( >q , then the self-convolution function )(xW  also implies that 0)0( >W . 

Proof: [ ]∫∫
∞

∞−

∞

∞−

=−= uuuuu dxxqdxxqxqW 2)()()()0( . 

Now, [ ]2)(xq is an all non-negative function, and 0)( >> δxq  for some ε<x  due to 
continuity; this implies 0)0( >W . Once again, this proposition can be generalized to the 
case of ∈x  Rd where the integral 

[ ]∫ ∫= d1
2

d11 ),,()0,,0( uuuuxdx dxdxxxqW LLLLL  

would be larger than 0 as well. 

 Proposition 3.6.4: Suppose )(xq is even and continuous with )()0( hqq ≥  for all 
∈h  R , then also )()0( hWW ≥  for all ∈h  R . 

Proof:   ∫ ∫ −=−= uuuuuu dxxqhxqdxxqxhqhW )()()()()(  

Let )( uxf denote )( uxq and )( uh xg  denote )( hxq u − ; then by Cauchy-Schwartz 
inequality, we have 

[ ] [ ] ∫∫∫ ⋅≤= uuhuuuuhu dxxgdxxfdxxgxfhW 2222 )()()()()( .  (3.6.3) 

The left hand side of (3.6.3) reaches its maximum when )()( uhu xgxf = , that means  
when 0=h . So, we can conclude that )()0( hWW ≥ . 
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CHAPTER 4 

THE REPRESENTATION OF GREEN’S FUNCTION 

In this chapter, the numerical properties regarding the linear predictor associated 
with a random field are further explored. Let the random field be denoted by 

 { }DxtssZtsZxZ d ∈== :),,...,(),()( 1 ,  ⊆D  Rd+1. 

In order to concentrate on the random properties, let us assume the random process Z to 
be second order stationary throughout the discussions in this chapter, unless otherwise 
specified. Furthermore, there is no need to set up a boundary for the domain D, which 
means that it can stretch from minus infinity to infinity in each dimension.  

In the case when the mean is given, the best linear (unbiased) predictor of Z0, also 
known as the predicted conditional mean, is shown in  (2.4.1) in conjunction with (2.4.3-
3a) as  

) z( z(~ T
0

1
00 µλµµµ -)-CCz zz

T
zo +=+= − , where  µ0=E{Z0}, µ=E{z}.   

However, the wonderful theoretical structure above will sometimes cause problems when 
performing the numerical computations, as each column in Czz is a vector depending on 
displacements in the domain D relative to the next column. If the displacement is very 
small, the matrix will show the problem of ill-conditioning and, consequently, the 
numerical computation of an inverse is not feasible.  

4.1 Green’s Function and a Continuous Form of Kriging Coefficients 
Despite the fact that the discrete covariance matrices/vectors are often employed 

in the models, the sampling of a random field can actually be further generalized to 
continuously cover the spatial and temporal domains. This portrays a perspective that the 
originally finite, discretized data vector is instead selecting continuous samples from a 
field whose domain is a continuum. Especially when the sampling rate is quite high, it 
would be more appropriate to replace the vector representation with a function 
representation. 
Therefore, the linear predictor (2.4.1) after applying (2.4.3a) is modified as 

( ) ( )∫
∪

−+=
TD

0000 dd)],(,z[,,,~ tststststsz µλµ .    (4.1.1) 

Such a perspective broadens our view to look at the Kriging coefficient vector as 
continuous function ),,,( 00 tstsλ in both (s,t) and (s0, t0), which is, in fact, associated with 
the Green’s function to represent the solution of certain boundary value problems. 
Suppose we have the stochastic boundary values 

 )()()( vevZvz +=  for Ω∂∈v                 (4.1.2a) 

collected and wish to determine 
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 ( ) 00 ZvZ =   for any Ω∈0v .               (4.1.2b) 

The general solution of this boundary value problem may formally be represented as: 

dvvvZvvGvZ )]()([),()( 000 µµ −+= ∫
Ω∂

,     (4.1.3) 

if the respective Green’s function ),( 0 vvG is readily available. Even then Z(v) needs to be 
replaced by the observed z(v) which leads to the prediction of Z0 through  

( ) ( ) ∫∫
Ω∂Ω∂

+=−+= dvvevvGZdvvvzvvGz )(),()]([,~
00000 µµ .  (4.1.4) 

By comparison with (4.1.1), the Kriging coefficients turn out to be (descretized) values of 
the appropriate Green’s function. 

In many cases, especially when data come in high resolution, the construction of 
the linear predictor form is plagued by numerical problems in forming the matrix inverse. 
But, for the case that a Green’s function exists, the following sections discuss approaches 
to overcome the numerical difficulties in pursuit of the approximated Green’s function. 

4.2 Densification of Kriging Coefficients 
An intuitive approach to pursue Green’s function is to densify the discrete Kriging 

coefficients vector through some interpolation techniques. Figure 4.1 superimposes the 
Kriging coefficients calculated from three sub-datasets that were derived from an original 
dataset with sampling rate h by re-sampling into these three sub-datasets (denoted by red 
cross, blue cross and blue circle, respectively) with lower sampling rate 3×h.  

 
Figure 4.1: The superimposition of three lower resolution datasets 
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It shows that the low resolution samplings still result in Kriging coefficients that 
are approximately consistent with these coefficients calculated from the original high- 
resolution dataset. Therefore, to make up for any deficiency in resolution, one can 
interpolate the Kriging coefficients to fulfill the requirements. Since we have 

( ) ),,,(,, 001

1
001

tstsλCCs,ttsG
nzozzn ×

−

×
=≈  for fixed (s0, t0),  (4.2.1) 

some interpolation function )(λp  goes through each component in the vector λ, 
corresponding to a site (s,t) within the covariance matrix/vector. We could thus obtain an 
approximation of the associated Green’s function, by identifying ( );s,ttsGp 00 ,)( ≅λ , for 
arbitrary ),( 00 ts and ),( ts .      

4.3 Continuous Representation for the Kriging Equation  
In accordance with the perspective proposed in Section 4.1, a continuous variation 

to the Kriging equation (2.4.3) is given by  

{ } ( ) ( ) ( )∫==
D

jjjiii dxxxGxxC
D

xxCZzC 0000 ,,1,,  for =∈Dxxx ji 0,, Rd+1          (4.3.1a) 

∑≈
D

qqp xxGxxC ),(),( 0  for =∈Dxxx qp 0,,  Rd+1,             (4.3.1b) 

where { } ( )qpqp xxCzzC ,, = . 

The mechanism of integration in (4.3.1a) corresponds to that of the multiplication 
of vectors/matrices. Suppose we first start with the discretized random field Z, in which, 
all the n data sites are sequentially labeled by a one-dimensional index nxx ,,1 L , while 

0x stands for the location at which the prediction is to be made. The discrete Kriging 
equation would take the form of (4.3.1b). To illustrate the mechanism of vector 
multiplication in the Kriging equation, Figure 4.2 shows a segment cut from a very large 
Kriging equation of matrix/vector form. Here every column (or row) in the matrix 
represents the covariance function relative to a “center” site, which varies from 1−px  
through ,px  to 1+px  (or from px to 3+px ).  
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Figure 4.2: The segment of matrix multiplication in the Kriging equation 

 Such multiplication mechanism finds its analog in the integration in equation 
(4.3.1a). In the continuous form, the integration variable xj varies over the integration 
domain while the column index moves through },1,,1,{ LK +− ppp  in the covariance 
matrix, and, in the mean time, the first index of the Green’s function varies through all 
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the data sites. In such a perspective, the integration over the parameter xj inherits the 
algebra of multiplication between a matrix and a vector. 

We recall from Section 2.1 that the site location increment is the essential variable 
for covariance functions (and for Green’s functions as well); so, instead of the location of 
two sites, one may replace the function variables ),( ji xx  with the incremental vector 

)( ji xx −  in case of stationarity, leading to 

{ } )(),(, jijiji xxCxxCzzC −== . 

Consequently, the continuous Kriging equation would turn to 

{ } ( ) ( ) ( )∫ −−=−=
D

jjjiii dxxxGxxC
D

xxCZzC 0000
1, .            (4.3.2a) 

As stationarity is assumed, the covariance function would be invariant to a parallel shift 
to the location anywhere in the field. Consequently, without lost of generality, one may 
set up the coordinate origin of D at 0x , which means that all variables in equation (4.3.2a) 
are displaced by 0x− , so the notation in equation (4.3.2a) would turn to 

 =−−− ])[]([ 0000 xxxxC i  

( ) ( ) ⇒−−−−−−−= ∫
D

jjji xxdxxxxGxxxxC
D

)(][][][][1
000000  

( ) ∫ −−−−−=−⇒
D

jjjii xxdxxGxxxxC
D

xxC )(])([])[]([1][ 00000 .        (4.3.2b) 

Now let 0xxi − be replaced with x , and 0xx j − with ux . Although the new notations 
x and ux are in fact incremental vectors, yet they can also be interpreted as the site 
locations with respect to a coordinate system defined at 0x . By way of this notation, 
replacements of the covariance function and Green’s function in (4.3.2b) can be written 
as 

)(),()( 0000 xCxxxCxxC i =+=− , 

and  )(),()( 000 uuj xGxxxGxxG =+=− . 

The site locations x and ux , in the coordinate system centered at 0x , become the sole 
parameters for a covariance function or Green’s function. However, the subscript in 

)(0 xC denoting the origin of the coordinate system cannot be erased, although the 
stationarity grants the invariance property; it is necessary to indicate that the process 
value Z0 is to be predicted on the basis of the noisy sample value in z. Figure 4.3 shows a 
covariance function )(xC centered at the origin T]0,0[ , while the covariance function 
( )uxxC −  is identical to the previous one, but now centered at ux .  
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Figure 4.3: The shift of covariance functions 

As a consequence, equation (4.3.2b), when introduced with the convolution 
operator ∗ , takes the form of 

( ) ( ) ∑∫
∈

−≅=−=
Dx

ii
D

uuu
i

xGxxCxGxCdxxGxxCxC )()()(*)()(0 ,            (4.3.2c) 

 provided that )(xC  and )(xG are well normalized over D. Apparently the term uxx − , 
instead of a displacement between sites, actually represents a shifting vector moving the 
covariance function )(xC through the entire domain D. In such a perspective, the 
integrand in equation (4.3.2c) can be interpreted as the superposition of )(xC , at various 
locations of the domain D, with weighting values given by )(xG . Figure 4.4 shows the 
superimposition of a covariance vector rewritten from the segment shown in Figure 4.2. 
On the right hand side, two covariance vectors centered at 1−px  and px , are multiplied by 

)( 1−pxG  and )( pxG , respectively; together with the covariance vectors centered 
elsewhere in D and their corresponding Green’s function values, their linear combination 
turns into the covariance vector centered at 0x . 
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Figure 4.4: Superimposition of covariance vectors from different locations  

 For the case when the dimension of ∈≡ T
dxxx ],,[ 1 L D is d, it is not difficult to 

generalize the forms from the case of R1 because the convolution is, in fact, composed of 
layers of integrals with respect to each dimension: 

( ) ∫ =−=
D

uuu dxxGxxCxxC )()(,, d10 L  

d1d1dd11

1 d

),,(),,( u
D D

uuuuu xddxxxGxxxxC∫ ∫ −−= LLLL  

By way of the above interpretation, equation (4.3.2c), in the form of a Fredholm 
integral equation of the first kind, is now the continuous counterpart for the Kriging 
equation (2.4.3) where, through the convolution operator (including the integral and the 
kernel )(⋅C ), the function :)(xG Rd→R1 is mapped into :)(0 xC Rd→R1, and )(xG is the 
unknown function. The solution of equation (4.3.2c) is supposed to have the form of 

)(*)()( 0 xCxRxG =                   (4.3.2d) 

for some function R(x): Rd→R1. 
Equation (4.3.2d) can be compared with the discrete form as shown in Figure 4.5, 

where )(xR stands for elements in the inverse covariance matrix 1−
zzC . Like the case of 

equation (4.3.1a-b), each column/row represents the function )(xR , evaluated at various 
locations. 
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Figure 4.5: Green’s function discretely approximated by a matrix multiplication 

In the case when the mean function is unknown, the Universal Kriging solution, 
as shown in equation (2.4.12), can have the continuous expressions 
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∑
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l

i
ii xfxCxGxC

1
0 )()()(*)( γ                 (4.3.3a) 

∫ =
D

ii xfdxxGxb )()()( 0   for li ,,1L= ;              (4.3.3b) 

where )(xfi are the basis functions that span the mean function, and iγ  are the constant 
coefficients (scalar) to be determined. 

Before proceeding to solve these integral equations, some properties of the 
convolution operator are worth being reviewed once again. Let  f, g, and h be arbitrary 
functions and α a constant, then the convolution operator satisfies: 

1. commutative law: fggf ** =                 (4.3.4a) 
2. associative law: hgfhgf *)*()*(* =                (4.3.4b) 
3. distributive law: )*()*()(* hfgfhgf +=+               (4.3.4c) 
4. )(**)()*( gfgfgf ααα ==                 (4.3.4d) 

5. 
dx

xdgxfxg
dx

xdfxgxf
dx
d )(*)()(*)())(*)(( ==               (4.3.4e) 

The proof of above properties can be found in many textbooks, including Bracewell, 
(1965, p.118).  

4.4 Solving the Fredholm Integral Equation in R1 
 As discussed in Section 4.3, the simple Simple Kriging equation is interpreted by 
a convolution equation (4.3.2c), which maps the Green’s function G(x) into the 
covariance function C0(x). Under certain conditions the unknown Green’s function may 
be determined by a numerical approach following Hohlfeld et al. (1993) where the 
Green’s function as well as the mapping kernel C(x,xu) – expanded into the a series of 
pseudo-function that span the space of hyperdistribution and involved the Dirac delta 
function. Such representation grants a way to substitute the inversion in equation (4.3.2c) 
with convolution algebra so that the solution of Green’s function can be approximated in 
terms of pseudo-derivatives of the covariance function. In this section, we will introduce 
the essential theorem in R1  because of its simplicity; it will then be generalized to Rd in 
the next section. To begin with the approach proposed by Hohfeld et al. (1993), a 
differential operator is introduced by  
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nn αααα ∇+∇++∇+=∇ −

−

1
0 11

)( LnL .      (4.4.1) 

In case of univariate functions in x,  the notation p
a p

∇ stands for the pth-order derivative 

with coefficient )(xpα ; hence the operator )(∇L can also be expressed by  

n

n

n x
x

x
xx

∂
∂

++
∂
∂

+=∇ )()()()( 10 ααα LnL      (4.4.2) 

when applied to functions in x. Meanwhile, a second operator is notated by  
n-

n nβββ ∇++∇+=∇ L
10

1 )(L ,       (4.4.3) 
which, in the univariate case, translates into 
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It is meant to be the inverse operator to (4.4.2) for suitable choices of the function βp(x). 
The Green’s function in (4.3.2d), by identifying the inverse convolution operator [R(x)*] 
with (4.4.4), is expressed as  
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0
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0
1 xCxRxCxLxCxxCxG - =∇=∇=∇= −

∞−
−
∞−∞ δδLL , (4.4.5) 

where δ(x) stands for the Dirac delta function. Meanwhile, the original convolution 
operator [C(x)*] takes, in accordance with (4.3.4c), the form  

( ) ( ) ( ))(*)()()(*)()()()()(*)( xxxxxxxC ρδρδρρ ∇=∇=∇= ∞∞∞ LLL ,  (4.4.6) 

where )(xρ is any arbitrary function. So, the equation (4.3.2c) now has the form 
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0 xCxxGxCxC -LL δ      

 { } { } )(*)()(*)()()(*)()(*)()( 0
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0
1 xCxxxCxx -- δδδδ ∇∇=∇∇= ∞∞∞∞ LLLL , (4.4.7) 

following rule (4.3.4b), and results in the identity 
( ) ( ) )()()(*)()( 1 xxx - δδδ =∇∇ ∞∞ LL .      (4.4.8) 

Since C0(x) is quite arbitrary. In finite approximation, this formula reads 
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As the Green’s function (4.4.5) is unknown, the variable coefficients 
)(,),(0 xx nββ L  in the representation (4.4.4) are left to determine. On the other hand, 

since the coefficients )(,),(0 xx nαα L  in (4.4.2) are possible to be calculated by 
expanding the covariance function starting from the convolution with a Dirac delta 
function δ(x), namely 
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Then, the delta function )( uxx −δ is expanded into an analog of Taylor’s series, so that 
the covariance function C0(x) in equation (4.3.2c) would translate into a representation in 
a new basis formed by the pseudo-derivatives of the Dirac delta function, namely 

( ) ( ) ( ) ( ) ( ) ( ) =














 +

′′′
−

′′
+′−== ∫ )(*

!3!2
)(*)( 22

0 xGdxxCxxxxxxxxGxCxC
D

uuuuu L
δδδδ   

( ) ( ) ( ) ( ) ( ) ( ) =












−






′′
+








′−








= ∫∫∫ )(*

!2
2 xGdxxCxxdxxCxxdxxCx uu

D
u

D
uuu

D
uu L

δδδ    

=








±+
′

−≅ ∑ ∑∑
∈ ∈∈

)(*)(
!

)()(
!1

)()()(
)(

xGxCx
n

xxCxxxCx
Dx Dx

i
n
i

n

Dx
iii

i ii

δδδ L               



 25

( ) ( ) ( ) ( )( ){ } )(*210 xGxxxx n
nδαδαδαδα ++′′+′+= L .                         (4.4.9) 

One should keep in mind that this representation is only possible if it is placed within the 
convolution integrals, for instance in the sense 
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uuu xGdxxGxxxGx )()()()(*)( 000 αδαδα , 
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Incidentally, the coefficients in the vector [ ]Tnαααα ,,, 10 L= are associated with 
the moment generator of the covariance function as follows: 
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After the coefficients αi of the covariance representation are calculated by the moment 
generator, the equation (4.3.9) will be spread out, using (4.4.4-5), and then aggregated 
into various terms. By the Bochner-Martin algebra (Bochner and Martin, 1948), based on 
(4.4.8), this would lead to the identity  
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where the coefficients βj are still unknown. By comparing both sides term by term, the 
following equations arise: 
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             (4.4.11) 

The solution of integral equation (4.3.2c), finally surfaces once the coefficients 
[ ]Tnβββ ,,0 L= are solved through (4.4.11) sequentially, provided that the vector 

T
n ],,[ 0 ααα L= had been obtained  through equation (4.4.10). 

 As far as the solution of Universal Kriging is concerned, one can regard the right 
hand side of equation (4.3.3a) as a compound function ),,;( 1 lx γγφ L , so it takes the 
form  
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ii xxfxCxGxC γγγφγ L==⋅−= ∑

=

.                  (4.4.12) 

Following the same principle, the terms on the left hand side are expanded by the 
derivatives of );(0 γφ x , which means 
 ( ) ( )( ));(*)();()()( 0

1
0

1 γφδγφ xxxxG - ∇=∇= −
∞∞ LL ,              (4.4.13) 
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and the convolution equation turns out as 
( ) ( ) =∇∇== ∞∞ );()(*)()()(*)();( 0

1 
0 γφδγφ xxxGxCx -LL  

( ) ( )[ ] ),(*)()(*)()( 0
1 γφδδ xxx ∇∇= −
∞∞ LL . 

Notice that γ is the vector of constant coefficients; they do not have any interaction with 
the differential operator )(1- ∇∞L . Therefore, through the Bochner-Martin algebra that led 
to the equations (4.4.11), the operator )(1- ∇∞L  can still be determined as above, and the 
Green’s function will have the representation (4.4.13) involving );(0 γφ x where γ 
undetermined yet.  
 The coefficient vector γ is now to be derived from equations (4.3.3b) which, after 
separating );(0 γφ x again, read: 
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4.5 Solving the Fredholm Integral Equation in Rd 
Most often a random field )(xZ  will be defined in the case where ⊂∈Dx  Rd 

and d>1; the theorem from the previous section, therefore, needs to be further 
generalized. The operator of equation (4.4.1), namely  
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Likewise, the inverse operator from equation (4.4.4), namely 
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will have the terms in ∇ generalized via 
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By extending the notations developed so far, the Kriging equation (4.3.2c) in the form of 
(4.4.7) will read     
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using the approximate identity (4.4.8a), namely 
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Once again, the vector of coefficients { }LLL ,,,,, d,1-d1,1d1 βββββ ≡  is unknown; in 
contrast, the coefficient vectors { }1d,d1,1d1 ,,, −≡ ααααα LL  has to be determined from 
the covariance function. Since Taylor’s expansion can be applied on a d-dimensional 
domain, the d corresponding covariance function )(xC , within the convolution operator, 
can be expanded into  
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As a result, the coefficients can be determined by the (generalized) moment generator 
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Once again, after computing the vector α , the coefficient vector β can be determined 
sequentially from a similar scheme as in (4.4.11). Starting from the system 
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we would develop the following equations 
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An example for the case ⊂∈Dx  R2 will be demonstrated in Section 6.1. 

4.6 Convolution Inverse in Fourier Transform 
In the previous Section 4.3, the task was indentified to solve for the Green’s 

function in the Fredholm integral equation (4.3.2c). The problem, however, can be solved 
by the Fourier transform as well, that is the integral with the negative transform kernel of 
the harmonic functions 

ωωω TTix xixe
T

sincos −=− ,       (4.6.1) 

where [ ]Tdωωω ,,1 L=  denotes the transformed vector of frequency variables in the 
spectral domain, and  T

dxxx ],,[ 1 L= denotes the vector of variables in the original 
space-time domain. The Fourier transform of a d-dimensional function ∈)(xh Rd is 
defined, in analogy to 3.3.1, by the d-dimensional integral 
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dd11 ωωω ωω hdxdxexxhH xxiTT FLLLL L ,            (4.6.1a) 

where the integral with exponential kernel can be operated on, layer by layer, with 
respect to each individual variable dd11 ,, ωω →→ xx L . 

As for most problems involving a convolution form, by the transformation into 
the Fourier (spectral) domain its manipulation will be simplified. As defined in equation 
(4.3.2d), we denote the convolution inverse of the covariance kernel by ( )xR ; therefore, 
the convolution inverse can be transformed into the Fourier space as 

 ( ) ( ) ( )⇒=∗ xxRxC δ  
 { }( ) { }( ) { }( ) 1==⋅⇒ ωδωω FRC FF ,      (4.6.2) 

by exploiting the Fourier transform pair 1)( ↔xδ  (Arsac, 1966, p.95). Some 
computational advantages would be provided by this form. Observe that in equation 
(4.6.2), the convolution turns into a product in the spectral domain and, furthermore, 
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)(xC  as well as )(xR  are both mappings from the domain D with dimension d into a 
one-dimensional domain. Therefore, the solution of the unknown function )(xG  can be 
given the simple form 

{ } )(*)(
)(

1)(*)()( 0
1

0 xCx
C

xCxRxG








== −

ωF
F .    (4.6.3) 

If the rational term inside the parentheses results in some linear form of 
polynomials in the spectral domain, then an identity deduced from the Fourier transform 
pair can easily transform the inverse back to the original space-time domain x. Suppose 
that );( \kkk xH ω (where “\” means “exclude”) and ),,( 1 dxxh L form a Fourier transform 
pair in terms of the kth  variable, defined by 
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accordingly, the transform pair for the first k variables is defined by 
=+ ),,;,,( d11,,1 xxH kkk LLL ωω  

== ∫
∞

∞−
−−

−
kkkk

ix dxxxHe kk ),,;,,( d111,,1 LLL ωωω  

=







⋅= ∫ ∫

∞

∞−
−−−−

∞

∞−

−− −−
kkkkk

ixix dxdxxxHee kkkk
1d1212,,1 ),,;,,(11 LLL ωωωω  

k1d1
)( ),,(11 dxdxxxhe ixx kk LLL L∫ ∫

∞

∞−

∞

∞−

−− ⋅= ωω .     (4.6.5) 

Now for a derivative defined on the first variable, the transform in the uni-variate 
case is given by (Arsac, 1966, pp.39-41) : 
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By re-arranging the operators so that only related terms are left as operands, the equation 
(4.6.5) can be generalized to the derivative defined on a second variable by 
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By repeating the same manipulation, the case involving only one variable from equation 
(4.6.6) can be eventually generalized into the case of d variables, leading to 
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where the integers n1,…, nd are equal or larger than zero. 
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 By introducing the convolution with Dirac’s delta function δ(x) the identity (4.6.8) 
is further re-shaped into  
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or 
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As (4.6.9a) is valid for any arbitrary function h(x), we obtain, for the Dirac’s delta 
function, the following Fourier transform pair 
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Example: A well known covariance model in R1, the exponential covariance, can serve as 
a good example: 
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which has the Fourier transform pair (Oberhettinger, 1990) 
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The transform relation between polynomial terms in the spectral domain and derivative 
terms in the original domain had been provided by Arsac (1966); here it was further 
generalized to the d-dimensional case through equation (4.6.4)-(4.6.10). 
 As in the majority of cases in reality, when 1/FC(ω)does not turn out to be in 
polynomial form and no analytical form of the inverse Fourier transform is available, one 
can still approximate the fractional term 1/FC(ω) into a polynomial through a power 
series expansion for which the inverse Fourier transform can be analytically determined 
term by term. 
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 As far as a spatial-temporal covariance function is concerned, the temporal 
variable, usually defined in R1, can be regarded as an additional variable and calculated 
separably in the Fourier transform. For a spatial-temporal covariance function );( uhC  
defined on a 2-D space, its Fourier transform may be denoted by { } );( τωCF ; then the 
formalism of inversion in this section still applies. The  convolution inverse covariance 
function );( uhR , where );();(*);( uhuhRuhC δ= , would be 

( ) { }( )
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4.7 Normalization by Scaling 
As concluded in Chapter 2, any predictor that ought to fulfill the unbiasedness 

criterion would have the property 
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which leads to the constraint 
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If G(x) is represented by (4.4.5), the constraint (4.7.2) implies 
 10 =β . 

On the other hand, the zero order coefficient α0 for the covariance function in 
(4.4.9) must comply  

100 =βα , 
in observance of the identity (4.4.11). Consequently, one concludes that β0 has to be 1 as 
well, hence the normalization condition of covariance function 

 ( )∫ ==
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has to be fulfilled. 
Incidentally, this conclusion can be applied to the case in Rd by observing the 

equation (4.5.5). 

4.8 Positive-Definiteness of the Green’s Function  
Based on equation (4.6.3), the Green’s function can be expressed by 
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where r(ω) denotes the Fourier transform of R(x). If the positive-definite function )(xC is 
continuous and smooth, then the following three statements can be ensured by Bochner’s 
theorem (Bochner, 1955): 
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1. The function )(ωr is guaranteed to be a smooth, continuous, all positive function, 
because the transform { } )(ωCF is a positive function, and the corresponding 
function { } )(1:)( ωω Cr F= as well. 

2. The backward transformed { } )()(1 xr-
C ωF  thus is a positive-definite function. 

3. { } )(ωCF is a continuous, positive function because )(xC is known as a positive-
definite function. In the mean time, { }{ } )()()(1 ωω xr-FF is also a positive function, 
because of result 2. 

Consequently, it makes the spectral representation of )(xG , namely 

{ } { }{ } { } )()()()()()()( 0
1 ωωωω xCxrxG - FFFF ⋅= ,    (4.8.2) 

the product of two all positive functions. Once again by Bochner’s theorem, )(xG  is 
ensured to be a positive-definite function. 
Proposition 4.6.1: A Green’s function )(xG is a positive-definite function since both 
covariance functions )(xC  and )(0 xC  are positive-definite functions. 
 This conclusion provides a new way to create covariance functions. Since the 
Green’s function )(xG  fulfills the requirement of positive-definiteness, as long as 

)(xG also fulfills the criteria 1, 2 and 3 in Section 3.1, it will qualify as a new covariance 
model. 

4.9 Convolution Inverse in Discrete Fourier Transform  
In session 4.4, the computation of the inversion in the Spectral domain looks very 

promising because the analytical form of a covariance function is preserved all the way to 
the inverse solution, in terms of its parameters. However, such doctrine does require the 
form of the inverse Fourier transform pair to be analytical, which will be available only 
for very few special examples rather than for the general case. To overcome this technical 
problem, numerical solutions may be obtained from a discrete Fourier transform, such as 
DFT(Bachman et al., 2000, chapter 6), FFT(Loan, 1992) and are supported by efficient 
computer programs. The inverse transform in equation (4.8.1), with a properly selected 
interval [a1, b1]×…× [ad, bd] will be approximated by 
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For many covariance models, the spectral representation in analytical form is indeed 
available because the positive-definiteness has to be established this way. Therefore, the 
inverse transform back to the original domain is the concern, where the discrete Fourier 
transform can serve well. In other cases, the analytical form of a covariance function is 
only available in the spectral representation. This will not cause much problems since 
manipulations are primarily carried out in the spectral domain and the final transform 
back to the original domain can be approximated using discrete techniques. 
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4.10 Green’s Function and Parameter Estimation of the Random Field 
In this section, we are going to have an outlook on the approach to fit random 

field data into its parametric model. By way of the approach discussed early in this 
chapter (4.4, 4.5, and 4.6), Green’s function can be represented by the same parameters 
with the covariance function. Therefore, when combined with conditionally specified 
parametric model of the random field, those parameters is able to be estimated from the 
observed data directly. 

The Section 2.3 concludes that the joint distribution of a random field can be 
factorized into terms of suitable conditional distributions. In the case of a Gaussian 
density, the random field Z has the joint density 
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in accordance with (2.3.4), ( )22
1 ,, nDiagD σσ L≡  and the n×n matrix ( )ijgG ≡  is 

unknown parameters of this random field, which can be estimated by the maximization of 
the negative loglikelihood when the observed data 

1×n
z  is provided. In Cressie (1991, 

p467), the negative loglikelihood of the model for a site x0 is given by 
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Figure 4.6: The estimated coefficients of ( )ijgG ˆˆ ≡  
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To determine the unknown ( )jgG 0≡  through (4.10.1), additional information can 

often be fed through the parameters µ, 2
0σ , and G on the respective applications. For 

example, the mean is often either provided, or at least assumed to be constant; constraints 
are imposed onto the matrix ( )jgG 0≡ , based on assumption about the field such as 
isotropy. Afterwards, the remaining unknowns will be estimated by minimizing the 
negative loglikehood. Figure 4.6 shows a computation of example of the negative 
loglikehood estimator, where the estimated parameters in ( )jgG 088

ˆˆ ≡
×

, constrained by 

isotropy condition, are plotted. 

Meanwhile, in accordance with (2.3.2), the conditional mean at x0 has a linear 
form involving those undetermined coefficients goj : 
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Such a linear form shows analogy with linear predictor discussed in Chapter 2 and 4; By 
the comparison with (4.1.4), the coefficients gij is associated with the Kriging coefficients, 
or discretized Green’s function if the condition mean is considered as the 
inhomogeneously Best Linear predictor. Moreover, the conditional variance is given by 
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which is the Kriging variance in (2.4.4). Such an association between the optimal 
predictor and the conditional density has been revealed in Cressie (1991, p.108, p.469). 

 Now that the unknown ( )jgG 0≡  in (4.10.1) is considered as discretely evaluated 
Green’s function G(xa), where xa runs through the set of all the observation sites, we can 
join together the estimated matrix ( )ijgG ˆˆ ≡  along with its dispersion matrix { }GD ˆ , with 

the analytically represented Green’s function G(xa). In order to simplify the notation, we 
can sequentially record the matrix ( )ijgG ˆˆ ≡  over one dimension after another so the 

matrix Ĝ  is collected by a vector in the same order as xa, which is denoted by { }Gvec ˆ . If 
we further considering the { }Gvec ˆ  as observation vector, the parameters of associated 
function, embedded in the Green’s function expression (4.4.5),  can be estimated through 
the following Gauss-Markov model as 

{ } exxCvecGvec a +== −
∞ );(ˆ 1 ξL                 (4.10.2) 

eA +≈ ξ          
{ }( ))ˆ( ,0~ GvecDe ,                  (4.10.3) 

where ξ denotes the parameters of the covariance function, and A is the Jacobian matrix 
of the function in (4.10.2) with respect of ξ.  



 35

 

CHAPTER 5 

EXAMPLES AND EXPERIMENTS 

5.1 Green’s Function for a Separable Covariance Function 
The first example shows the representation of Green’s function associated with a 
stationary 2-dimensional random field with a known mean. Let us suppose that the 
isotropic covariance function is given by 
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Figure 5.1: The covariance function of equation (5.1.1) 

This 2-D covariance function is expanded as in (4.5.3), yielding 
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                      (5.1.2)  
Consequently, an operator can be written as 
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where the coefficients ijα are calculated from the correspondent moment generators, 
written in matrix form: 
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Meanwhile, the convolution inverse R(x,y) of the covariance function is also written in 
terms of delta function derivatives, with unknown coefficient ijβ  
For a 2-dimensional covariance function, the analog of equation (4.4.8) in conjunction 
with (4.5.1-2), leads first to: 
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where ij∇  denotes the partial derivative jiji yx ∂∂∂ + )( , and consequently to the following 
identities as in (4.5.5): 

10000 =βα  100 =⇒ β  
010000010 =+ βαβα  010 =⇒ β  
001000001 =+ βαβα  001 =⇒ β  

00011100101101100 =+++ βαβαβαβα  011 =⇒ β  

0002010102000 =++ βαβαβα  2
20 4

1 a−=⇒ β  
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0000201010200 =++ βαβαβα  2
02 4

1 a−=⇒ β  

020010021012011102100 =++++ βαβαβαβαβα  021 =⇒ β  
002100012100211011200 =++++ βαβαβαβαβα  012 =⇒ β  

0002210120121200202201111121021012200 =++++++++ βαβαβαβαβαβαβαβαβα  
4

22 16
1 a=⇒ β  

After the determination of coefficients ijβ , the Green’s function has the form of 
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Figure 5.2: The Green’s function according to equation (5.1.4) 
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So we have a representation of Green’s function which retains the parameter of the 
original covariance function in the 3-D plot in figure 5.2. 
The next example is an anisotropic covariance function, defined by 
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and plotted in Figure 5.3 

 
Figure 5.3: The covariance function of equation (5.1.5) 

 
According to the equation (5.1.2), the coefficients αij are calculated from the moment 
generators in the following manner, listed in matrix form: 
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Once again, through the expansion of (5.1.3), the coefficients ijβ  can be calculated for 
3,0 ≤≤ ji  as follows: 
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with the following partial derivatives of C0(x, y; a, b): 
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The Green’s function now has the form 
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and is plotted in Figure 5.4.  

 
Figure 5.4: The Green’s function according to ( 5.1.6) 
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5.2 Green’s Function for Cressie and Huang’s Covariance Function 

Cressie and Huang (1999) had proposed several spatio-temporal covariance 
functions. The following expression is a selection from that family of functions: 

{ }2222222 exp)|;( hcuhbuauhC −−−= σθ .     (5.2.1). 

For the sake of visual illustration, the spatial variable h is assumed to be defined in a one-
dimensional space. Equation (5.2.1) is a two-dimensional covariance function 
parameterized by the vector [ ]Tcba 2,,, σθ = . In this case, not all the moments have an 
analytical integral readily available although we do not face integrability problems per se. 
So, approaches of numerical analysis can indeed provide a powerful tool to approximate 
the integrals for every moment. 
 

  
Figure 5.5: Spatial-temporal covariance function of equation (5.2.1) 

Let us assume that the parameters of the covariance function are given as 2a =1.0, 
2b =3.0, c =1.0, and 2σ =1.0 (Figure 5.5).  Similarly to the computations in Section 5.1, 

the moments of the covariance foundation from equation (5.2.1) now are computed by 
numerical integration. Let αij denote the moment integral with power of h equal to i and 

power of y equal to j, for example, ∫∫= Cdxdyxy 2
12 !2

1α , so the moment integrals are 

tabulated as  
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100 =α  001 =α  2229.002 =α  003 =α  

010 =α  011 =α  012 =α  013 =α  

0743.020 =α  021 =α  0135.022 =α  023 =α  

030 =α  031 =α  032 =α  033 =α  

Figure 5.6 and Figure 5.7 depict the moment integrands of α10 and α22. By the 
computation of moment integrals, the covariance function is transformed into a  Taylor’s 
type representation in the space spanned by its derivatives, following the same approach 
as in previous section. Let us truncate the terms after the third order; then the 
coefficients ji,α , 3,0 ≤≤ ji , will be zero, except for 100 =α , 0743.020 =α , 

2229.002 =α , and 0135.022 =α  

 

 
Figure 5.6: The moment function hC(h,u,θ) 
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Figure 5.7: The moment function h2u2C(h,u;θ) 

Consequently, the representation of the convolution inverse R(x,y;θ)is given by 
the coefficients 100 =β , 0743.020 −=β , 2229.002 −=β , and 0417.022 =β . The 
associated Green’s function is then represented by combination of the partial derivatives 
of covariance function C0(h,u;θ), which leads to 
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The resulting Green’s function is illustrated in figure 5.8. 
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Figure 5.8: The Green’s function as derived from the covariance function (5.2.1) 
 
5.3 Green’s Function for Gneiting’s Covariance Function Family 
 Another covariance function which had been proposed by Cressie and Huang 
(1999) and can serve as an example of Gneiting’s general form, is formulated by (5.3.1) 
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and plotted in Figure 5.9. 

 
Figure 5.9: Covariance function of equation (5.3.1) 
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Figure 5.10: The moment function hC(h,u;θ) which leads to divergent integrals 
 

This is a very good example where some moments do not exist. For example, the integral 
of the moment generator 

∫∫ ⋅ dhduuhCh );;( θ , 

does not converge for any choice of θ. Figure 5.10 illustrates this moment function, 
suggesting a  tendency for divergence. Such a property shatters the hope to express this 
covariance function in the space spanned by its derivatives simply by computing the 
moment generators.  
 Alternatively, the Fredholm integral equation can be solved by the Fourier 
representation since the Fourier transform of this function still exists. But first, the 
Fourier representation of the covariance function in (5.3.1)needs to be found analytically. 
Cressie and Huang (1999) provided a partially complete transform with respect to h, thus 
it is only necessary to further integrate the transform with respect to the remaining time 
variable u. The Fourier representation of C(h,u;θ) from (5.3.1) is derived through 
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We notice that only terms of even power remain in the equation, which ensures that the 
inverse Fourier transform will be a real-valued function, formally represented as 
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following (4.6.3), the Green’s function associated with (5.3.1) is now readily obtained as 
{ } == − );,(*);();,( 1 θτωθ uhCvuhG F  

L+
∂

∂










+

∂
∂











+−= 2

22

2

2 );,(4);,(
2

1);(
2 u

uhC
h

uhCkC θ
πς
πθ

π
ς

πς
τω

π
ς

 (5.3.2) 

Illustration of the Green’s function is provided in Figure 5.11; notice that the example has 
not been normalized to follow the scaling conditions from Section 4.7. 

 
Figure 5.11: Green’s function from equation (5.3.2) 

5.4 Green’s Function for Stein’s Covariance Function Family 
 In his report, Stein (2003) mentioned a spatial-temporal covariance family which 
is represented in the spectral domain. The backward transform onto the original space-
time domain for such a covariance family turns out to be quite a demanding job and only 
feasible with certain constraints. With the help of the convolution inverse theorem and 
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some numerical analysis tools, the associated Green’s functions represented in the space-
time domain can be computed. 
 One example, selected from Stein’s covariance family, is formulated as 

{ } 122
22

322
11 )()();( −

+++= τωτω acacfC ,     (5.4.1) 
and plotted in Figure 5.12 as a function of the spatial variableω , and the temporal 
variable τ in the spectral domain. It depends on the four parameters 1a , 2a , 1c  and 2c . 

 
Figure 5.12 Stein’s covariance function (1st quadrant) 
 
Following the notation used before, the spatial variable h, and the temporal 

variable u denote the correspondent counterpart of ω and τ in original domain; that is, 
{ } );();();( τωτω fuhC =F . Based on the relation (4.6.3) involving the convolution 

inverse, the Green’s function associated with (5.4.1) can be written as 
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Accordingly, the convolution inverse would be formally obtained as 
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Consequently, Green’s function could be derived through 
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provided that );(0 uhC and its derivatives are available. It surely is challenging to 
derive );(0 uhC analytically from the Fourier transform of );( uhC  in (5.4.1); but  
numerical representations of );( uhC , as well as of the respective partial derivatives, are 
easily found. Figure 5.13 shows the function in space-time domain, by the Discrete 
Fourier Transform (DFT, only the 1st quadrant is shown), Both second numerical and 
fourth numerical derivatives, with respect to h, are shown in Figure 5.14 and Figure 15, 

 
Figure 5.13: Spectral representation of the  covariance function (5.4.1) by DFT 

 
Figure 5.14: Numerically derived 2nd order derivative of );(0 uhC  
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Figure 5.15: Numerically derived 4th order derivative of );(0 uhC  

 
Figure 5.16: The Green’s function as computed from equation (5.4.3) 

respectively. Finally, the Green’s function (5.4.3) is illustrated in Figure 5.16 (in non-
normalized form). 
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5.5 Determining the Interpolator by Identifying the Covariance 
Function 

In order to demonstrate the processing of data, a simulated random field is 
employed in this study. One basic principle to simulate a dataset with spatial or temporal 
correlation consists in the factorization of the related variance-covariance matrix. In this 
perspective, matrix factorization provides a way to isolate one of the random variables to 
be independent from the others, and by choosing the structure of lower or upper 
triangular matrix, all other random variables can be simulated sequentially, based on the 
first independent initial realization. The actual decomposition of a matrix, however, 
would cause a tremendous challenge should the size of the matrix increase considerably. 

 
Figure 5.17: Simulated stationary random dataset for a given covariance function 

Chan and Wood (1997) proposed an algorithm to simulate a Gaussian random 
field defined on a d-dimensional Euclidean cube [ ]d1,0 . In their algorithm, the eigenvalue 
decomposition is excuted by applying the transformation into the spectral domain. After 
the sequential simulation is carried out, the simulated data of the random field are 
available by backward transformation into the original domain. In addition, to take care 
of any edge effects, the variance-covariance matrix, which is known to be a Toeplitz 
matrix, has to be augmented in advance by periodical duplications and will so become a 
circulant matrix. Figure 5.17 shows the simulated data of a regular grid field with 
128×128 sites 
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Figure 5.18: The close-up view near the benchmark point 0x  
 
 

 
Figure 5.19: The benchmark point )( 0xZ  (marked by “+’), and the predicted value 

)(~
0xz (marked by “*”) as derived from a 16×16 neighborhood. 

 
After the identification of the covariance function and its parameters (2D- 

Gaussian with the only parameter 2σ ), the Green’s function can be calculated 
accordingly, following the approach discussed in Section 4.5. In order to demonstrate the 



 51

interpolation by Green’s function, a data point )60,60(0 =x , is chosen as a benchmark 
point, and its value )( 0xz  is marked by “+” in Figure 5.18, along with the nearby 
landscape adopted from Figure 5.17. Meanwhile, the predicted signal )(~

0xz  is calculated 
using the data from the 1616×  neighborhood only and marked by “*” in Figure 5.19, 
which provides a better close-up view around site 0x and shows the remaining 
discrepancy between )(~

0xz and )( 0xZ . 
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CHAPTER 6 

APPLICATIONS IN GEODETIC SCIENCE 

We have introduced the interpolation approach to deal with data sets of 
reasonably high sampling rate in Chapter 4 and demonstrated the numerical handling in 
Chapter 5. However, there may still exist a need to further enhance the sampling situation. 
Insofar as, when two datasets are to be analyzed jointly, they may often be required to 
have identical sampling configurations (in space and time). If not, then at least one of the 
datasets has to be later synchronized with the other one. This would be one of the 
situations in which to employ the interpolation technique. 

Another occasion to apply such an interpolation technique is given in the case 
where some filtering is demanded prior to the follow-up data processing. Usually, a mask 
is empirically used to cover the data sites located within a neighborhood, before defining 
the functional relationship between the signal of the center site and all the other neighbor 
sites; this filter would sequentially move over the entire surveyed area and replace the 
raw signal at each site with a suitable combination from its neighbors. Following the 
principles developed here, one can could determine an optimal filter, in accordance with 
the properties prevalent within a specific dataset, by analyzing certain statistical measures. 

6.1 Data Fusion of InSAR and LIDAR Data Sets 
 Slatton (2001) studied the issue of fusing InSAR and LIDAR data. Both datasets 
are topographic measurements collected by active sensors; the background principles of 
InSAR and LIDAR can be found in recent papers or textbooks, such as Hassen (2001). 
Generally, InSAR provides a broad coverage while LIDAR has the higher sampling rate 
compared with InSAR (along the track). In order to integrate the two datasets, the InSAR 
data, although in a quite fine grid format, ought to be further densified in order not to 
have to downgrade LIDAR’s resolution (sampling rate) so that the two datasets can 
match in terms of sampling configuraton. In Slatton (2001), this task is performed by 
Kalman filtering where the conventional epoch index t is used to denote the layers of 
different resolutions, and one dataset is considered to be collected in the vector y, 
awaiting to be fused with the other dataset x  at the resolution layer t : 

)()()(
1)(1)(

tetxAty
tntn
+⋅=

××
,  ) ,0(~)( eΣte ,     (6.1.1) 

)()1()(
1)1(1)(
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+−⋅Φ=
×−×

, ) ,0(~)( wtw Σ , { } ,0)(),( =twteC  (6.1.2) 

where n(t) and n(t-1) denote the data volume at resolution layers t and t-1, respectively. 
Slatton (2001) sets up a coarse-to-fine and a fine-to-coarse pyramid scheme so that, in the 
state update equation (6.1.2), the fixed-size neighborhoods in layer t-1 would generate 
new data in layer t, which means each row in matrix Φ represents an interpolator drafting 
data from one neighborhood as illustrated in Figure 6.1. 
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 Definitely, the various Kriging techniques will be among the most legitimate 
approaches to construct the matrix Φ in the state update equation, instead of the so-called 
empirical methods. Moreover, the update error w(t) can be interpreted as prediction error 
if Kriging models are applied. In consideration of the high resolution of either the InSAR 
or LIDAR data set, the inversion approach proposed in this thesis will be of great help in 
the fusion process.  
 
 
 
 

 
Figure 6.1: Data sets of different resolution (layer t and layer t-1). The pixel 0 in the layer 
t is interpolated by pixel 1, 2, 3, and 4 in the layer t-1.  

To serve as a demonstration of the data fusion process, an InSAR and a LIDAR 
dataset, simulated by the random field simulation algorithm of Chan and Wood (1997), is 
adopted in our study. Two different situations, with assumed trend and with unknown 
trend, are discussed individually. Figure 6.2 shows the patch of a surveyed field where 
the InSAR terrain data have been generated in a regular grid format. Meanwhile, Figure 
6.3 shows the result after the trend, treated as assumed or provided as information, has 
been removed, leading to a stationary zero-mean random field. This trend removal 
usually happens during the calibration phase, in which time the data collection is carried  
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Figure 6.2: The surveyed field scanned by InSAR (F1_a) 

 
Figure 6.3: InSAR Dataset after the removal of trend (zero mean random field) 
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 Figure 6.4 InSAR dataset at resolution t=2 

 
Figure 6.5 LIDAR dataset at resolution t=3 (F2_a) 
 

out on a field where the “ground truth” has been well studied, so that the desired  
parameters can safely be determined, either for bias correction or stochastic modeling. 
According to the algorithm of Slatton (2001), the dataset is generated at different 
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resolutions hierarchically; here, the dataset of resolution t=2, with unit length (20 meter) 
in each grid, is designated as F1_a and illustrated in Figure 6.4. 

Like the simulated InSAR dataset, the de-trended LIDAR dataset is designated as 
F2_a and shown in Figure 6.5. The F2_a file has been generated at the resolution t=3 
(half the sampling interval to the previous layer t=2); due to different sampling 
characteristics however, the alignment of LIDAR data patch is oblique relative to the 
format of the F1_a file. The sampling schemes of both datasets are plotted in Figure 6.6, 
where the InSAR sites are marked by blue crosses, and the LIDAR sites by the red ones. 
A close-up look at the sampling sites of both datasets is provided in Figure 6.7.  

The determination of the spatial covariance model usually relies on the 
information stemming from the sample covariance. By equation (2.1.4), the sample 
covariance of the F1_a file is computed in pairs, and the resulting scatter plot, is shown in 
Figure 6.8. The sample covariance data are then divided into groups, according to their 
ranges, to fit into the selected parametric model as seen in Figure 6.9. Since isotropy is 
not assumed in this case, sample covariance in various directions have to be analyzed 
individually. For the F1_a file, sample covariance in three sectors of the first quadrant 
were analyzed with consideration to generate even functions. The compound estimated 
covariance function is shown in Figure 6.10.  
 By the convolution theorem introduced in Section 4.6 and following the examples  

 
Figure 6.6: The data allocation sites of InSAR(blue) and LIDAR(red) 
 



 57

 
Figure 6.7: The data sites of InSAR and LIDAR in close-up view 
 
 
 
 

 
Figure 6.8: The scatter plot of the pairwise sample covariances (InSAR data) 
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Figure 6.9: Discrete empirical covariance values (InSAR data) 

 
Figure 6.10: The compound estimated covariance function in a 40×40 mask matrix  
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Figure 6.11: Calculated Green’s function in a 40×40 mask matrix 

 
Figure 6.12: Coefficients of the interpolation mask at (2391,1573) for InSAR 

in Section 5.3 and 5.4, the Green’s function is now calculated with respect to the 
estimated covariance function, and plotted in Figure 6.11. with respect to a new location 
where the signal is to be interpolated, This Green’s function is discretized by a suitable 
mask, so providing the elements for Ф in (6.1.2). Figure 6.12 shows such a mask for 
interpolation at the location (2391, 1573). Based on the Green’s function, the InSAR 
dataset is transfered to a new dataset R1_a, which is entirely in synch with the dataset 
F2_a. The InSAR and LIDAR data are thereby fused together using the model (6.1.1-2), 
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and the result is shown in Figure 6.13. Incidentally, compared with the “true” terrain from 
the simulation, the residule of interpolation in InSAR dataset is plotted in Figure 6.14. 
The root mean squared prediction error is ±0.13 at its minimum level. The mean squared 
prediction error within a regular grid is plotted in Figure 6.15. 
 As indicated by Slatton (2001), the hierarchical transformation of datasets can as 
well be carried out the other way around. Namely, the dataset of higher resolution, F2_a, 
is downgraded into rougher resolution (t=2) and fused with F1_a by the same approach; 
only this time, the transform filter entails the use of the Green’s function associated with 
the covariance function of the F2_a file. Figure 6.16 shows the dataset generalized from 
F2_a by the backward transform filter, and  Figure 6.17 shows the final fusion result with 
F1_a at the t=2 resolution level. 

 Following the first experiment where datasets are assumed with given mean 
functions, the second experiment demonstrates a different situation where the mean 
functions are unknown. Figure 6.18 illustrates the landscape of the InSAR dataset F1_b, 
which represents the InSAR data collected from the second surveyed field. Like the 
dataset F1_a in the previous experiment, the dataset F1_b is of the same resolution t=2. 
On the other hand, Figure 6.19 shows the LIDAR data in file F2_b that were collected at 
a higher resolution (t=3), but over a smaller area inside the InSAR surveying ground. 
Figure 6.20 shows the configuration of two data patches, where the blue crosses mark the 
sites of the F1_b file and red crosses of the F2_b file.  

 
Figure 6.13: The fused InSAR and LIDAR datasets at resolution t=3 
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Figure 6.14: The residual of interpolation for InSAR dataset 
 
 
 
 
 

 
Figure 6.15: The plot of mean squared prediction error within a region of grid (in squared 
units) 
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Figure 6.16: LIDAR dataset after downgrading its resolution to t=2 

 
Figure 6.17: The fusion result of InSAR and LIDAR data at resolution t=2 
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Figure 6.18: InSAR dataset with unknown mean (F1_b) 

 
Figure 6.19: LIDAR dataset with unknown mean (F2_b). 
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Figure 6.20: The overlap of InSAR(blue) and LIDAR(red) 
 

 
Figure 6.21: Interpolated InSAR data (from t=2 to t=3) 
 The covariance model of dataset F1_b is assumed to be given, and identical to 
that of dataset F1_a, which can be considered as stemming from the calibration site that 
serves to determine the stochastic model for all the following datasets. The Green’s 
function of dataset F1_b is calculated through the Universal Kriging approach introduced 
in equation (2.4.12). Figure 6.21 shows the transformed InSAR dataset from resolution 
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level t=2 to t=3, it is designated as R1_b. Now the datasets R1_b and F2_b have a 
common registration for every data point, and can be combined to form a homogeneous 
dataset through the Kalman filtering data fusion approach; see Figure 6.22. The estimated 
mean function of dataset F1_b is illustrated in Figure 6.23. 
 Tthe backward transformation from the dataset F2_b (t=3) into the resolution 
level of the dataset F1_b (t=2) is shown in Figure 6.24, and the fusion result at the coarser 
level t=2 is shown in Figure 6.25. 

 

Figure 6.22: The fusion result of InSAR and LIDAR datasets at resolution t=3 

 

Figure 6.23: The estimated mean function of the InSAR dataset 
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Figure 6.24: LIDAR dataset with downgraded resolution t=2. 

 

Figure 6.25: Fusion result of the two datasets at resolution t=2 

6.2 Spatial-Temporal Interpolation for Terrain Profiles 
The spatial-temporal analysis is a very attractive issue in geophysical studies. In 

order to demonstrate the interpolation of spatial-temporal datasets, we assume having 
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constantly scanned the terrain along a fixed profile-line at different time epoch. Dataset 
ST_1 simulates the monthly scanned terrain profiles in which the one-dimensional 
elevation data are recorded successively according to their scanning time. Figure 6.26 
displays portion of the dataset in which the terrain profile scanned at time epochs 1 to 5 
are plotted from top to bottom and the horizontal axis stands for the locations along the 
profile-line. The one-dimensional example can help us visually recognize the correlation 
existing between time epochs with respect to locations along the profile-line; we can see 
some terrain features gradually change from one profile to the next profile. Now the task 
is: could we generate a new elevation profile for the time between the two scanning 
epochs 3 and 4 (say)? In this dataset, the stationarity assumption holds, and the constant 
mean is given by µ=0. 

Conceptually, the dataset ST_1 is a realization taken from a two-dimensional 
random field; every data point in the ST_1 file is denoted by ∈);( uhz  R1 ⊕ R1. 
However, since the indices involve both spatial and temporal dimensions, the underlying 
random process must assume a spatial-temporal covariance model. Figure 6.27 shows the 
estimated covariance function of type (5.2.1) for the dataset ST_1.  

The associated Green’s function can be determined after the covariance function has 
been estimated from the data. As a consequence, the supposed terrain profile at time 
epoch 3.5 is interpolated by the so specified interpolating mask as seen in Figure 6.28. 

 

Figure 6.26: Terrain profiles from scannings at time epoch 1 to 5 (bottom to top) 
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Figure 6.27: The estimated spatial-temporal covariance function 

 

 

Figure 6.28: Interpolated terrain profile at time epoch 3.5 
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6.3 Filter Selection for de-Noising and Data Generalization: An Outlook 
 As the technology evolves, surveying instruments often collect massive amounts 
of data with a sampling rate higher than necessary; sometimes data overflows cause 
problems in the following analysis. Meanwhile, since every data set more or less carries 
some sort of unwanted random noise, the redundancy from the oversampling provides a 
possibility to enhance the signal. 
 The GPS observations used for altimeter calibration may serve as one example 
(Shum et al., 2003). The GPS antenna set-up at Marblehead had collected data at the 
sampling rate of 1Hz; the dataset was then resampled to a sparser sampling rate of 1/3600 
Hz by averaging (equally weighted). Apparently the average with equal weights cannot 
replace the optimal filter for data generalization unless the temporal correlation is zero 
among successive sampling epochs. 
 The Kriging interpolator would be an appropriate choice in order to model the 
averaging filter, if spatial-temporal randomness is considered to be one of the factors 
governing the outcome. As indicated previously in this thesis, to fill-in the weight 
coefficients by the Green’s function (or to compute Kriging coefficient in the discrete 
sense), one needs to either analyze the sample covariance function, or fit the data into a 
random field model. An optimal averaging filter could then be determined based on the 
theorems from Section 4.10 and 5.5. 



 70

 

 

CHAPTER 7 

CONCLUSION AND OUTLOOK 

 In this thesis, a new perspective for the well known Kriging equation is 
introduced in order to keep the covariance model, as well as the unknown interpolator, in 
the continuous forms; thus some potential numerical problems in the manipulation of 
large matrices can be avoided. The continuous form of the Kriging equation in such a 
revised representation is solved either by an expansion in the space of so-called 
hyperdistributions or by the Fourier transform in the spectral space, both of which 
methods provide the desired interpolator in terms of a Green’s function. Several well 
established covariance models serve as test examples whose corresponding interpolators 
(Green’s functions) are calculated to demonstrate this approach. We learn that the ill-
conditioned problem, in the case of a high sampling rate, should better be approximated 
in function space by some expansion techniques. 

 In addition to the advantage in its numerical computation, the representation of a 
continuous interpolator solution, in form of a Green’s function, provides a possibility to 
connect the observations from a random field with the unknown parameters of a 
covariance model directly. Such an estimation may not only serve as an alternative in 
stochastic model calibration, but also to create an analysis tool for applications in signal 
processing. By using methodology introduced here, one can take many other tasks related 
to spatially and/or temporally referenced datasets. 

 As far as the spatial-temporal covariance models are concerned, the derivation of 
such new models is very much needed for various applications; but it proves to be not an 
easy task. New advanced covariance models of this kind, however, can most directly be 
derived by the convolution technique based on simpler models currently available. A 
number of guidelines are suggested here to assist with the construction of such new 
models. 

 More importantly, even when physical knowledge is not available for a dataset, 
the covariance function can still reflect some of the physical behavior that would 
otherwise be expressed as a boundary value problem. Such a perspective provides as an 
alternative approach with respect to physical modeling; the massive dataset may give 
hints towards yet concealed physical properties before the physical model can be 
developed.  

 Certainly, there are still open questions worth pursuing after the conclusion of the 
present research. The first issue is to generalize the above results to the spherical domain. 
So far, to simplify the presentation of the new techniques, all the functions have been 
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defined in Euclidean space, represented in the Cartesian coordinate system. The 
representation on the sphere, however, is oftentimes more suitable for applications in 
geodesy. The interpolator approximated by the Green’s function may leave some hints 
for the construction of appropriate spherical basis functions. 

 Secondly, the estimator of a random field still deserves more investigation. Here, 
only a simple likehood-based estimator has been applied, which still leaves much to ask 
for in terms of the tight interconnection between likehood and covariance parameters. In 
the future, however, an estimator based on the least-squares approach may show some 
promising efficiency. Moreover, as far as the random field estimator is concerned, the 
model selection (for the covariance in this case ) is always a challenging, but nonetheless 
attractive issue.  

 Finally, the application of this approach to more problems from geodetic 
science is surely a desirable task. It could both help the analysis of specific datasets in 
certain scientific projects, and further the efficiency of this approach. 
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