
GPS Radio Occultation and the Role of
Atmospheric Pressure on Spaceborne Gravity

Estimation Over Antarctica

by

Shengjie Ge

Report No. 479

July 2006

Geodetic Science and Surveying

The Ohio State University
Columbus, Ohio  43210

School of Earth Sciences



GPS RADIO OCCULTATION AND THE ROLE OF

ATMOSPHERIC PRESSURE ON SPACEBORNE

GRAVITY ESTIMATION OVER ANTARCTICA

By

Shengjie Ge

Report No. 479

Geodetic Science and Surveying

The Ohio State University
Columbus, Ohio 43210



ABSTRACT

Dedicated satellite gravity missions are anticipated to significantly improve the
current knowledge of the Earth’s mean gravity field and its time variable part–climate
sensitive gravity signals. They could be measured by the Gravity Recovery and
Climate Experiment (GRACE) twin-satellite with sub-centimeter accuracy in terms
of column of water movement near the Earth’s surface with a spatial resolution of
several hundred kilometers or larger, and a temporal resolution of one month or weeks.

To properly recover the time variable gravity signals from space, the gravity mea-
surements require the atmospheric pressure contribution to be accurately modeled
and removed. The sparse coverage of measurements makes the weather products
less accurate in the southern hemisphere, especially over the Southern Ocean and
Antarctica. The asynoptic observation from GPS radio occultation could achieve
dense spatial coverage even in remote regions. In this research, we investigate the
potential use of GPS occultation to improve the pressure modeling over Antarctica.
Atmospheric pressure profiles are retrieved and validated against ECMWF, NCEP
and radiosonde observations. Our results show that occultation can provide compat-
ible observations especially in the upper atmosphere. Large standard deviations and
biases are found near the ground and in the Antarctic region. GPS occultation in the
polar regions is less affected by multipath problem and can penetrate down near the
surface. Through an experiment using a 1-D variational (1DVar) approach, we show
that the high vertical accuracy of GPS occultation can be propagated down to reduce
the uncertainty of surface pressure, indicating that GPS occultation can be expected
to have positive impact on the pressure modeling over data-sparse areas after ob-
taining adequate number of observations (e.g., from Constellation Observing System
for Meteorology, Ionosphere & Climate (COSMIC)). We also find that the retrieved
profiles could be different due to various assumptions and retrieval algorithms.

Pressure uncertainty degrades the GRACE recovered gravity change. We study
the uncertainty of pressure modeling on various temporal scales. Global analy-
sis models show large differences in the Antarctic region. The surface topography
may introduce additional biases if it is not well treated. The atmospheric tides are
non-negligible and need to be properly considered. The real magnitude of the mis-
modeled and un-modeled errors in the analysis is hard to evaluate, especially in
Antarctica. We simulate the errors sensitive to GRACE using the differences be-
tween two global analysis models. Most of the very long wavelength errors are well
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captured by GRACE. Their changes in the form of short-period variation increase the
errors of the middle to high degree spherical harmonic coefficients. After de-aliasing,
middle to high degree coefficients are noticeably improved. The Inverted Barometer
(IB) assumption decreases the amplitude of the aliasing error, and the pattern of
the RMS difference is slightly changed over land by neglecting the large variations in
the Southern Ocean. Our result using more recent ECMWF and NCEP operational
analyses shows reduced aliasing effects, which indicates that two models are becom-
ing increasingly close to each other. The model correlation and IB assumption may
underestimate the true aliasing error.

The analysis models are validated against the unevenly distributed Automatic
Weather Station (AWS) surface pressure observations on the Antarctic continent.
Spectral analysis shows that 6-hour analyzed model data can capture most of the
power in pressure variations. ECMWF exhibits a much better agreement with AWS
than NCEP reanalysis does. Large biases still exist due to the uncertainties of the
station elevations. The comparison statistics show strong correlations with the topog-
raphy with lower standard deviation values in the interior and higher standard devi-
ation values around the coastal area. This result contradicts the distribution derived
from the difference between two analysis models, which exhibits large difference in
the interior of Antarctica.

We also investigate the influences of different algorithms and assumptions of 2-
D or 3-D atmospheric structures on the GRACE atmospheric de-aliasing product.
Air density derived from the hydrostatic equation and the equation of state gives
slightly different results, and the difference is above the expected GRACE sensitiv-
ity. We compare our results with the GRACE atmospheric de-aliasing product and
find that the difference is almost below the GRACE sensitivity, although there are
differences in the algorithms and we use a relatively low resolution model. We also
find that the difference between 3-D hydrostatic formulation and 2-D algorithm is
below the GRACE sensitivity. We discover that the atmospheric structure and lat-
itudinal variations of gravity are largely compensated by removing their respective
long-term means. Consequently, the 2-D method can greatly reduce the requirements
for computational load and data storage. Removing the mean field does not help to
reduce the discrepancies between ECMWF and NCEP. If the computational burden
is not a concern, using our improved 3-D algorithm can bring a better result. After
the full operation of the COSMIC satellites, some major improvement of the pressure
modeling over Antarctica is anticipated. A reprocessing of the GRACE data using
an improved pressure model could bring us better gravity solutions.

iii



PREFACE

This report was prepared by Shengjie Ge, a graduate research associate in the
Geodetic Science and surveying program of the Department of Geological Science at
the Ohio State University, under the supervision of Professor C. K. Shum.

This study was partially supported by grants from NASA Interdisciplinary Science
Program NAG5-9518, and National Science National Space Weather Program ATM-
0418844.

This report was also submitted to the Graduate School of the Ohio State Univer-
sity as a dissertation in partial fulfillment of the requirements for the Ph.D. degree.

iv



TABLE OF CONTENTS

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapters:

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Temporal variable gravity and GRACE . . . . . . . . . . . . . . . . 1
1.2 Atmospheric signals and errors . . . . . . . . . . . . . . . . . . . . 3
1.3 GPS radio occultation . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Outline of the study . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . 8

2. GPS radio occultation profile retrieval using geometric optics . . . . . . . 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The radio signal refraction in the atmosphere . . . . . . . . . . . . 10

2.2.1 The ray trajectory and refractivity . . . . . . . . . . . . . . 11
2.2.2 The Abelian inversion . . . . . . . . . . . . . . . . . . . . . 13

2.3 The relationship between refractivity and atmopheric properties . . 14
2.4 Derivation of the atmospheric properties . . . . . . . . . . . . . . . 15

2.4.1 Dry air density . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Dry air pressure . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Dry air temperature . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4 Air Humidity . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 The excessive phase measurement of the GPS occultation . . . . . 18
2.6 The derivation of bending angles from excessive phases . . . . . . . 23
2.7 The ionosphere correction . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 The ellipsoidal correction . . . . . . . . . . . . . . . . . . . . . . . 26

v



2.9 Upper boundary limit and statistical optimization . . . . . . . . . . 28
2.10 The numerical solution of the bending angle . . . . . . . . . . . . . 30
2.11 The spatial resolution of GPS occultation . . . . . . . . . . . . . . 32

2.11.1 Vertical resolution . . . . . . . . . . . . . . . . . . . . . . . 32
2.11.2 Horizontal resolution . . . . . . . . . . . . . . . . . . . . . . 35

3. Advanced methods for GPS occultation in multipath regions . . . . . . . 36

3.1 Atmospheric multipath . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Single-ray propagation vs. multi-ray propagation . . . . . . . . . . 37
3.3 Radio holographic methods . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Radio-optic (slide spectral) method . . . . . . . . . . . . . . 39
3.3.2 The back propagation method (BP) . . . . . . . . . . . . . 40
3.3.3 Canonical transform method (CT) . . . . . . . . . . . . . . 42
3.3.4 Principle of phase matching and full spectrum inversion method

(FSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.5 The relationship among CT, FSI and phase matching . . . . 51

4. Results from the GPS occultation and their validations . . . . . . . . . . 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 The characteristics of GPS occultation . . . . . . . . . . . . . . . . 54

4.2.1 Spatial coverage . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 CHAMP profile retrieval . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Signal penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 The comparison of CHAMP and SAC-C pressure profiles . . . . . . 60

4.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.2 Comparison results . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Comparison of GPS derived pressure with ECMWF, NCEP and ra-
diosonde data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.1 GPS occultation dataset . . . . . . . . . . . . . . . . . . . . 66
4.6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.3 Comparison results . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 1DVar method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5. The effects of atmospheric pressure on time variable gravity solutions . . 73

5.1 The atmospheric pressure . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.1 The mean pressure field . . . . . . . . . . . . . . . . . . . . 73
5.1.2 The variation of atmospheric pressure . . . . . . . . . . . . 74

5.2 The pressure measurements and modeling . . . . . . . . . . . . . . 75
5.3 Datasets from analyses models . . . . . . . . . . . . . . . . . . . . 76

vi



5.4 The effect of topography on surface pressure . . . . . . . . . . . . . 77
5.5 The uncertainties of the NWP surface pressure . . . . . . . . . . . 78
5.6 Effects of atmospheric pressure on the GRACE gravity solution . . 80

5.6.1 Atmospheric errors in GRACE solutions . . . . . . . . . . . 83
5.6.2 The degree 0 and 1 terms . . . . . . . . . . . . . . . . . . . 85
5.6.3 The degree 2 terms–barometric tides . . . . . . . . . . . . . 86
5.6.4 Inverted barometer effect . . . . . . . . . . . . . . . . . . . 88
5.6.5 The atmospheric aliasing . . . . . . . . . . . . . . . . . . . 89

6. The evaluations of NWP models in Antarctica using automatic weather
station data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 The Antarctica weather . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 The automatic weather station data . . . . . . . . . . . . . . . . . 101
6.4 Temporal interpolation of analysis results . . . . . . . . . . . . . . 104
6.5 Comparisons of surface pressure data . . . . . . . . . . . . . . . . . 105
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7. Mathematical description of GRACE atmospheric de-aliasing model and
its validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1 Equations relating pressure to gravity . . . . . . . . . . . . . . . . 118
7.1.1 Using the equation of state . . . . . . . . . . . . . . . . . . 120
7.1.2 Using the hydrostatic equation . . . . . . . . . . . . . . . . 121
7.1.3 Calculation procedures and the mean field . . . . . . . . . . 124

7.2 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.1 Comparison with the GRACE AOD1B products . . . . . . . 125
7.2.2 Difference between 3-D computations . . . . . . . . . . . . . 127
7.2.3 3-D computation vs. 2-D computation . . . . . . . . . . . . 129
7.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8. Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . 135
8.2 Discussions and outlook . . . . . . . . . . . . . . . . . . . . . . . . 139

Appendices:

A. Conversion between the geopotential height and the geometric height . . 140

vii



B. The computation of surface pressure . . . . . . . . . . . . . . . . . . . . 145

C. The list of automatic weather stations . . . . . . . . . . . . . . . . . . . 147

D. Spherical harmonic analysis with block mean . . . . . . . . . . . . . . . . 149

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

viii



CHAPTER 1

INTRODUCTION

1.1 Temporal variable gravity and GRACE

The Earth is a dynamic system within which different geophysical processes in-
teract to produce variations with a wide range of temporal and spatial scales. The
study of the Earth as a system is a complicated interdisciplinary task. Modeling
and separating all these physical processes, including atmospheric and oceanic circu-
lations, redistribution of continental water, cryosphere mass balance, precipitation,
snow accumulation and melt, sea level change, luni-solar tides, mantle convection,
global isostatic adjustment and plate tectonics, broaden our knowledge of the evolu-
tions of each sub-system and their interactions. Among these physical processes, mass
redistribution and transfer are crucial for geophysicists, oceanographers and climate
scientists to understand the Earth evolution, climate change, and sea level change.
The global climate change signal is directly linked to dynamic processes of the Earth
system in the form of mass changes or gravity variations. Integrated mass changes
induce perturbations on satellite trajectories. Through accurate tracking of orbital
changes, gravity information can be precisely inverted, which indirectly reflects the
mass redistribution within the Earth system. Spaceborne dedicated gravity missions
have the ability to detect mass exchanges within the interior or outer envelope of
the Earth and thus constrain one critical component of the complex Earth system
dynamics.

With the satellite gravity missions over the past several decades, the static and
the longest wavelength gravity fields have been extensively studied. The temporal
gravity change research has been benefiting from the long-term, precise Lageos Satel-
lite Laser Ranging (SLR) observations. The SLR-detected annual variations of the
geocenter (degree 1 spherical harmonic coefficients represent the relation between the
center of mass and Earth’s figure center) are highly correlated with the mass redis-
tribution in the atmosphere, ocean and continental water [Chen et al., 1999]. The
Earth’s response to the seasonal horizontal mass transportation in the hydrosphere
is confirmed from the crustal deformation measured by continuous GPS observations
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[Blewitt et al., 2001]. Another term that has been drawing considerable attention
is J2 – the oblateness of the Earth. The secular change of J2 was first found to be
decreasing from SLR data about 20 years ago [Yoder et al., 1983], which was mainly
caused by the post glacial rebound. The mantle’s viscous relaxation is still going
on due to the ice cap melting since the Last Ice Age. A sudden change of J2 from
decreasing to increasing was recently detected by SLR data from multiple satellites
[Cox and Chao, 2002], and it is asserted to be caused by the surge of sub-polar glacial
melting and mass shifts in the Southern, Pacific and Indian Oceans [Dickey et al.,
2002]. The Lageo-observed annual and seasonal variations of the low degree coeffi-
cients, especially J2 [Chao et al., 1987; Chao and Au, 1991; Cheng and Tapley , 1999;
Nerem et al., 2000] are mainly induced by the redistribution of the atmospheric [Tren-
berth, 1981; Trenberth and Guillemot , 1994; Trenberth and Smith, 2005], oceanic and
hydrological mass.

The comparisons of the long wavelength signals between the geophysical models
and the Lageos observations show very good correlations. However, the results are
limited by the low resolution caused by the high altitude of the satellites. Large
discrepancies cannot be fully explained using the existing observations. More de-
tailed information is expected for each of these subsystems to identify the missing
components, and thus we might have a better understanding of this coupled system.
To be more sensitive to the short wavelength signals, the satellite orbit needs to be
lowered from around 6,000 km for Lageos to around 250-500 km. The lifetime of
such missions, however, is greatly restricted by non-gravitational forces, especially
the atmospheric drag.

Among the Low Earth Orbital (LEO) satellites, one is the NASA/DLR Grav-
ity Recovery and Climate Experiment (GRACE) mission [Tapley et al., 2004a,b].
GRACE consists of two identical satellites, orbiting the Earth at an altitude of 500
km and with an inclination of 89◦. The separation of the two satellites is approx-
imately 220 km. GRACE was launched in March 2002 in a five year mission to
measure climate-sensitive signals in the form of gravity change. The precise orbits of
the spacecrafts in the geocentric reference frame are tracked by the onboard Global
Positioning System (GPS) receivers in High-Low mode. The two satellites are mu-
tually tracked by the K-band microwave ranging system, which has the advantage
of tracking much shorter wavelength signals and is more accurate than the tradi-
tional High-Low GPS system. The auxiliary data include the accelerometer data to
remove the non-gravitational forces and the star camera data to control the attitude.
These subsystems together are able to determine the global gravity field with a spa-
tial resolution from 400 km to 40,000 km approximately every 30 days. GRACE has
been anticipating to has the theoretical and practical capabilities to identify the sig-
nals from the continental hydrology [Wahr et al., 1998; Rodell and Famiglietti , 1999,
2001; Swenson et al., 2003; Rodell et al., 2004a; Swenson and Milly , 2006], postglacial
rebound and polar ice mass balance [Wahr et al., 2000; Velicogna and Wahr , 2002],
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deep ocean currents [Wahr et al., 2002], ocean mass redistribution [Nerem et al.,
2003], and ocean heat content [Jayne and Wahr , 2003]. Early results [Tapley et al.,
2004a; Wahr et al., 2004] demonstrated that annual and seasonal variations of water
storage can be properly recovered in reasonable agreement with geophysical models
for several large drainage basins (e.g., Amazon, and Mississippi) with large signals
after applying appropriate smoothing functions. Experiments by Chen et al. [2005b]
found that 800 km is a suitable radius for the Gaussian smoothing [Jekeli , 1981],
and could achieve the best RMS value for the difference between GRACE and Global
Land Data Assimilation System (GLDAS) [Rodell et al., 2004b] developed at NASA
Goddard Space Flight Center. The very low degree spherical harmonics, especially
J2, are not well sensed by GRACE due to its orbital configuration. Replacing these
coefficients with those derived independently from Earth rotation and satellite laser
ranging improves the agreement for terrestrial water storage [Chen et al., 2005a] and
ocean mass variations [Chambers et al., 2004]. The currently released monthly solu-
tion error is about 40 times worse than the pre-launch estimate [Wahr et al., 2004];
more improvements are expected after better understanding of the measurement sys-
tem and various geophysical modelings.

1.2 Atmospheric signals and errors

What GRACE senses is a combined signal from all processes that can perturb
the GRACE orbit. After removing non-gravitational effects using the precise ac-
celerometer data, measurements still include the tidal effects (solid Earth, ocean, and
pole tides), non-tidal atmospheric, oceanic and hydrological variations, postglacial
rebound, ice sheet and glacier mass balance, other un-modeled processes or signals,
and noise. To obtain any individual contribution, independent knowledge is required
to separate these signals. The candidates of subjects to study largely depend on
whether other processes are precisely modeled or measured and their associated error
characteristics. Dynamic atmospheric circulation is the most rapidly changing and
currently the best measured fluid within the Earth’s subsystems. Numerical Weather
Prediction (NWP) analysis results can routinely be obtained from the European Cen-
ter for Medium-range Weather Forecast (ECMWF) and the National Center for En-
vironmental Prediction (NCEP). So the atmospheric pressure change from a NWP
model, oceanic mass change from a barotropic ocean model as well as tide models
are treated as known, and serve as background models in the data processing. Con-
sequently, the unmodeled signals (e.g. from hydrology) along with the missing and
mis-modeled components in the background models are contained in the estimated
GRACE solution.

Besides GRACE, atmospheric pressure affects a wide range of other high precision
geodetic measurements, such as the tropospheric delay for GPS [Bevis et al., 1992],
Inverted Barometer (IB) effects and the tropospheric delay for satellite altimeters [Fu
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and Pihos , 1994], elastic loading on the Earth surface [van Dam and Wahr , 1987; van
Dam et al., 1994], and surface gravimetric measurements [Boy et al., 2002]. Accurate
atmospheric pressure information is very crucial to improve the quality of these mea-
surements, especially for GRACE. The variation of surface pressure is usually larger
than the oceanic and hydrological variations. The SI unit of pressure is Pascal (Pa).
One Pascal is the pressure generated by a force of 1 Newton on an area of 1 square me-
ter. In meteorology, the commonly used unit is hectopascal (hPa) or millibar (mbar),
where 1 mbar = 1 hPa = 100 Pa = 100 Newton/m2. Under the IB assumption based
on the hydrostatic relation [Wunsch and Stammer , 1997], 1 hPa surface pressure
error in the seasonal signal translates to 1 cm equivalent water thickness. Because
of the nature of the GRACE orbit and the coupling of atmosphere-hydrology-ocean
signals, GRACE satellites see a different temporal sampling of the geophysical signals
along their orbital path. Any error or uncertainty left in the atmospheric model will
inevitably leak into and deteriorate the hydrological or other interesting signals. To
recover the hydrological signal with an accuracy of 1 cm equivalent water thickness
at a scale of a few hundred kilometers or larger, the atmospheric pressure must be
known with an accuracy of 1 hPa or better. Velicogna et al. [2001] compared the
ECMWF surface pressure with ground measurements in the United States continent
and the Arab peninsula over a 30-day period. They found that the error is generally
below 0.5 hPa and concluded that the current analyzed surface pressure is sufficient
for hydrological purposes. However, the result is not applicable to the Southern
Ocean and Antarctica. Over the southern polar region, NWP models suffer from a
combination of factors, which include the lack of observations, remote and unreliable
communication, steep and not well-known topography, extremely cold weather, and
unusual physics in cold environment. Users usually have less confidence on the model
outputs in such regions than in the mid-latitudes. The discrepancies between models
are larger than in any other area, which has been mentioned or confirmed by many
researches [e.g. Trenberth, 1992; van Dam and Wahr , 1993; Ponte and Dorandeu,
2003; Wahr et al., 1998]. Our study [Ge et al., 2002] also shows that the surface
pressure uncertainties can easily exceed 6 hPa in Antarctica. A careful examination
of surface pressure errors over such region is vital to retrieve the postglacial rebound
and ice mass balance signals from GRACE.

The largest uncertainty contributing to the global sea level rise is the stability
of the two largest ice sheets: Antarctica and Greenland. An accurate estimation
of Antarctic mass balance could effectively reduce the uncertainty of present-day
sea level rise. There have been continuous improvements in the understanding of
Antarctic mass balance using contemporary remote sensing techniques [Davis et al.,
2005]. Because of the location, size and complexity of the Antarctic ice sheet, this
region is not adequately measured and each of the remote sensing techniques has its
own limitation [Rignot and Thomas , 2002]. GRACE, as a supplementary technique,
can be used to “weigh” the mass change of the ice sheet. The total ice sheet balance

4



includes the accumulation (surface mass balance), sub-ice-shelf melt, and iceberg
calving. The accumulation generally includes the precipitation, evaporation, blowing
snow, and run-off. The spatial variability of Antarctic precipitation is very large
and generally follows the topography. The precipitation in the interior is less than 50
mm/year (equivalent water thickness) due to lack of forcing and topographic blocking,
but in some coastal regions it could exceed 500 mm/year [van Lipzig et al., 2002].
Blowing snow is relatively small in magnitude and contributes generally less than 5%
across the boundary of the continent. The accuracy of the precipitation from models
is worse than 5%, and therefore, blowing snow is negligible. The run-off can be
neglected as well, since most of the melt water in Antarctica refreezes close to where
it is formed [Liston and Winther , 2005]. Most of the ice lost in Antarctica is from
basal (sub-ice-shelf) melt and iceberg calving, which were shown to be substantial
and hard to measure [Rignot and Thomas , 2002]. The average snow accumulation is
about 160 mm/year over the whole Antarctica [Vaughan et al., 1999], and distributes
unevenly both in space and time. The large uncertainty in the pressure could make
the secular, annual or seasonal ice/snow variations difficult or even impossible to
determine. The spatial distribution of determined ice/snow variations is also affected
by the distribution and variation of the pressure error.

Surface pressure is not the exact representation of the total atmospheric mass. The
vertical structure of the atmosphere may affect the computation of the atmospheric
mass variation. Swenson and Wahr [2002] investigated the effect of the thickness of
the atmosphere-to-mass signal using a simplified two-layer model and drew the con-
clusion that surface pressure could achieve comparable accuracy with respect to the
multi-layered model and significantly reduce the computational requirement. How-
ever, Boy and Chao [2005] suggested that the difference between 3-D and 2-D com-
putations was non-negligible up to spherical harmonic degree of 15-20 in the presence
of the expected GRACE sensitivity. This conclusion might also be sensitive to the
data used. It is required to further validate the influences of these two statements on
the model-pressure calculated mass variations.

In addition, temporal aliasing effect, associated with the non-tidal, short-period
atmospheric and oceanic variations, is another error source for the gravity mapping
[Gruber et al., 2001] from GRACE. Neglecting these errors could cause substantial
errors [Han et al., 2004; Thompson et al., 2004]. It is usually difficult to determine
the real aliasing error contained in the solution. Simulation results largely depend
on the different variations between any two analyzed models (e.g., between ECMWF
and NCEP). The IB assumption may also affect the magnitude and the distribution
of the aliasing error.

The best way to obtain accurate pressure data is to extend the current meteoro-
logical network. This suggestion is sometimes impractical and expensive. To set up
and maintain a US-like barometric network in the Southern Ocean and Antarctica is
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almost impossible. GPS radio occultation has the potential to improve the pressure
field in those remote, hard-to-access areas.

1.3 GPS radio occultation

Radio occultation, as a new remote sensing technique to explore the atmosphere,
was first used in NASA’s planetary missions to probe the planetary atmosphere
[Fjeldbo and Eshleman, 1969]. This technique has been applied for the limb-sounding
of the Earth’s atmosphere from Low Earth Orbiters (LEOs, 400-1300 km altitude).
The GPS receivers carried by the LEO acquire signals from the constellation of GPS
satellites at 20,000 km altitude. The GPS radio occultation concept has been success-
fully demonstrated for the first time by the GPS/MET (MicroLab-1) experiment in
1995 [Ware et al., 1996]. The fundamental principle is that transmitted GPS signals
are delayed when LEO is setting into or rising above the Earth’s atmosphere. This
delay could be measured in the form of radar Doppler shift and a bending angle of
the radar path. Finally, the atmospheric refractivity, temperature, pressure, air den-
sity as well as water vapor can be retrieved by assuming knowledge of appropriate
boundary conditions.

After the success of the GPS/MET [Ware et al., 1996] proof-of-concept mis-
sion, the current German CHAllenging Minisatellite Payload (CHAMP, launched
in July 2000) [Reigber et al., 2002] and Argentina’s SAC-C (launched in November
2000) carrying a new generation of GPS flight receiver (“Blackjack”) provide quasi-
continuous GPS occultation measurements. In addition, the U.S.-German GRACE
mission (launched in March 2002), and the Taiwan-U.S. multi-satellite Constellation
Observing System for Meteorology, Ionosphere and Climate (COSMIC, launched in
April 2006) [Anthes et al., 2000] mission will provide unprecedented opportunities to
continuously observe the Earth’s atmosphere by the GPS radio occultation technique.
The lower troposphere is one of the main foci in atmospheric science. Understand-
ing the Planetary Boundary Layer (PBL), water vapor circulation, heat and energy
transportations, etc., is critical to the further improvement of weather forecasting
and climate research. Because of the rapid change of the moisture content, lower
troposphere inhomogeneities, and the multipath problem, difficulties with the sig-
nal penetration through the lower troposphere are still a big challenge in both the
robustness of the retrieval algorithm and the hardware technology.

The GPS radio occultation technique has been described in numerous literatures
[e.g. Gorbunov and Sokolovsky , 1993; Melbourne et al., 1994; Kursinski et al., 1996;
Gorbunov et al., 1996]. It can provide profiles with a high vertical resolution [Kursin-
ski et al., 1996] and has the best result at 5-30 km altitude. In this range, the
derived temperature agrees with ECMWF better than 1.5-2◦K, and the accuracy
continues to be improved from GPS/MET [Rocken et al., 1997], CHAMP [Wickert
et al., 2001] and GRACE [Beyerle et al., 2005]. Geopotential heights derived from
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early GPS/MET data agrees with that from ECMWF within 20 gpm (geopotential
meter, see Appendix A) [Leroy , 1997]. The GPS occultation measurements are more
suitable for climate study because of their comparable accuracy with radiosonde mea-
surements and no need for heterogeneous instrument calibration [Kuo et al., 2005].
The retrieval methods are further refined to improve the accuracy in the lower tro-
posphere, which include using amplitude data [Sokolovskiy , 2000], radioholographic
method [Hocke et al., 1999; Gorbunov et al., 2000], back-propagation method [Gor-
bunov , 2001], canonical transformation method [Gorbunov , 2002], full spectrum in-
version [Jensen et al., 2003] and other forms of variations. Like other meteorological
observations, GPS radio occultation measurements can be assimilated into the NWP
system to generate an “analyzed” field to correct and initialize the forecast system
[Eyre, 1994]. Active researches and experiments have been carried out for the under-
standing of the impact of this new data type to the weather forecast system using the
limited number of observations from GPS/MET [Zou et al., 1999; Liu et al., 2001]
and CHAMP [Poli et al., 2003; Zou et al., 2004; Healy et al., 2005]. Although some
studies show that the impact was not significant [e.g. Poli et al., 2003], there are
positive improvements on the forecast errors, especially in the southern hemisphere
[Healy et al., 2005].

By using the fully deployed GPS and LEO constellations, radio occultation pro-
vides an alternative way to obtain atmospheric data for all weather conditions and
nearly uniform global coverage, especially for data-sparse regions, e.g., the Southern
Ocean and Antarctica. The newly launched 6-satellite COSMIC constellation is ex-
pected to have 2,500 soundings in 24 hours. These measurements represent a valuable
data source for climate and meteorological researches and for better understanding
of the Earth’s atmosphere. In addition to applications in atmosphere science and
meteorology, GPS occultation data can also be used to improve the global surface
pressure field to exploit the accuracy of dedicated gravity missions for the recovery
of mean and time variable gravity field.

1.4 Outline of the study

In this research, we mainly focus on two topics. One is the implementation of
the methods for accurate GPS-occultation profile retrievals and the discussion of
their current limitations. We will describe in detail the algorithms used to develop
our processing software. The main difficulty for occultation retrieval is related to
the multipath problems at the lower troposphere, which is primarily caused by the
rapid variations of the moisture content in the lower atmosphere. Radio holographic
methods are introduced to handle the multipath problem. We pay special attention to
the properties of occultation profiles over Antarctica, since the polar continental air is
relatively dry, and the profile retrieval is relatively simpler than in the tropical region
where there is greater interference from the water vapor. However, the physics of the
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cold-region atmosphere is distinct from that of middle to low latitude regions, and
warrants special attention. We intend to assess the potential impact of using the radio
occultation measurements from LEOs (CHAMP and SAC-C) to improve the accuracy
of the atmospheric loading for the GRACE temporal gravity field estimation. The
retrieved profiles can also be used as independent measurements to evaluate NWP
models since most of the GPS-occultation profiles have not been assimilated into the
NWP. For the Automatic Weather Station (AWS) observations, some of these ground
data have already been used in the analysis models, which may make comparison
results optimistic. By examining the statistical information in the comparisons of
radio occultation with analysis models as well as inter-occultation and inter-model
comparisons, we try to reveal the benefit and weakness of each data type for better
understanding and utilizing each data type. With the launches of new missions such
as COSMIC, we would expect a better performance of NWP models over data-sparse
regions after including these new occultation data.

In the second part of the research, we investigate the role of atmospheric pressure,
its structure, variation and underlying mechanism responsible for the contribution
of the atmospheric errors to the time-dependent spaceborne gravity estimation. At
present, users have the least confidence in the analyzed products over the southern
polar region. Selecting the best dataset from different analyzed models needs careful
evaluation of their respective performances. In this study, we evaluate different mete-
orological analysis products (e.g., ECMWF and NCEP, operational and re-analysis)
over the Antarctic region using surface AWS observations. The statistics can be used
as a valuable indicator for the model performance, though this data type may not
be completely independent. The discrepancy between analysis models and their im-
pact on time variable gravity field will be discussed. The mathematical modeling is
another important aspect that we focus on. Since there are many assumptions and
approximations in the process of converting pressure to mass, we need to evaluate
their respective influences on the gravity estimation. In addition, we investigate the
effects of different temporal and spatial resolution data, the interpolation method, the
topography, IB, and 2-D/3-D modeling on the monthly gravity solution. The goal is
to assess the potential of improved atmospheric model for more accurate gravity field
solution using GRACE data over the Antarctic region.

1.5 Organization of the dissertation

The rest of the dissertation is organized as follows.
Chapter 2 introduces the basic principle of the GPS occultation. The method

using geometric optics is discussed in detail. The resolution of this method and
processing procedures are summarized as well.

Chapter 3 emphasizes the algorithms of the GPS occultation in handling the
multipath problem in the lowest region of the troposphere. The limitation of the
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geometric optics method is addressed and various radio holographic methods (using
wave equations) are discussed and compared.

Chapter 4 gives the GPS occultation retrieval results. Its validation against the
analyzed models, radiosonde measurements and inter-occultation comparisons are
investigated. The special characteristics of the GPS occultation in Antarctica is
addressed as well.

Chapter 5 discusses the uncertainties and other effects on the atmospheric pressure
model. The effects of the topography, atmospheric tide, inverted barometer, and
temporal aliasing on the time variable gravity estimations based on different analyzed
models are examined.

Chapter 6 evaluates the atmospheric error using the AWS observations over Antarc-
tica, and the implication on model accuracy is also discussed in this chapter.

Chapter 7 systematically introduces the mathematical model for atmospheric de-
aliasing. The algorithms based on the hydrostatic equation and the equation of state,
2-D/3-D atmospheric structure, as well as the influence of the mean field and the use
of different NWP models are investigated.

Chapter 8 summaries the results and the conclusions in this study, along with
discussions and outlook.
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CHAPTER 2

GPS RADIO OCCULTATION PROFILE RETRIEVAL
USING GEOMETRIC OPTICS

2.1 Introduction

In geometric optics [Born and Wolf , 1993], the propagation path of electro-
magnetic (EM) waves can be assumed as dimensionless rays connecting the trans-
mitter and the receiver. The solutions are based on the assumption of a spheri-
cally symmetric distributed atmosphere described by Snell’s law. The change of the
Doppler frequency along the orbit of the Low Earth Orbiter (LEO) satellite is used
to derive the incident ray direction (or phase front slope) at each point on the orbit.
The bending angle of the ray is geometrically obtained thereafter. This method is
only valid when no more than one ray arrives at every observation point on the LEO
trajectory. The vertical profile of atmospheric refractivity is related to the bending
angle through the Abel Transformation [Fjeldbo et al., 1971]. Afterward, the at-
mospheric pressure, temperature, and humidity can be inverted from the refractivity
through well established formulas. This method is relatively simple and straight for-
ward. Usually, we apply this method in regions with no multipath effect such as in
the upper troposphere and stratosphere.

2.2 The radio signal refraction in the atmosphere

The propagation speed of the electromagnetic signal in vacuum is the speed of
light. When the same signal passes through the Earth’s atmosphere, it interacts
with the neutral or charged atoms, molecules, or other particles, and the direction
and speed of the wave propagation are changed. The ratio of the speed of the wave
propagation in vacuum (c) to the speed of propagation in the medium (v) is called
the refractive index (n) of the medium:

n =
c

v
(2.1)
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In the neutral atmosphere and for frequencies less than 30 GHz, the phase velocity
and wave number are not dependent on the frequency of the wave. This is known
as a non-dispersive medium. This region includes the troposphere and stratosphere,
ranging from 0 to 50 km altitude. The refractivity in this region is mainly due to the
dipole-type dry air and water vapor molecules, which are polarized by the incident
electric field, such as ultraviolet electronic transitions.

2.2.1 The ray trajectory and refractivity

In geometric optics, the propagation of the electromagnetic waves is treated in
terms of rays. The trajectory of the ray connecting two points when passing through
a region with varying refractive index obeys Fermat’s principle of least time:

∫ 2

1

n(r)ds = min (2.2)

It is usually impossible to retrieve the three-dimensional distribution of the refractiv-
ity in the vicinity of the ray perigee (defined in Figure 2.3) from the one dimensional
measurements along the trajectory of the receiving satellite. The problem can be
simplified by considering the fact that the characteristic horizontal scale of meteo-
rological fields is much bigger than the horizontal displacement of the ray perigee
that crosses the atmospheric layers [Gorbunov and Sokolovsky , 1993]. This implies
that the bending of the ray is generated dominantly by the vertical gradient of the
refractive index in the occultation plane (the plane is formed by connecting two satel-
lite points and the refraction center). The gradient of the refractive index normal
to the occultation plane has negligible effect on the Doppler measurements. Thus,
we assume the ray path resides only in the vertical occultation plane. The gradient
of n is in the radial direction by assuming that the local refractivity distribution is
spherically symmetric in the vicinity of the ray perigee, such that

n(r) = n(r) (2.3)

Substitute the above equation into equation (2.2), the ray path is described as Snell’s
law:

rn(r) sin(φ) = p (2.4)

where φ is the angle between the ray path and the refractivity gradient vector. p
is a constant for a given ray trajectory. It is usually called impact factor or impact
parameter. If the ray passes through a spherical symmetric refractive field and lies
within the occultation plane, the change of the ray direction can be described by a
polar coordinate system in such a plane with the origin at the center of the refractive
field. The refractive index is only a function of the radius r, since the atmospheric
density is distributed symmetrically in layers (like an onion) and its value increases
as r decreases. The geometry of the total bending of a ray is shown in Figure 2.1. φ is

11



φ
+

d
φ

α
+

d
α

θ + dθ

O

A B

C

D E

F

θ

r0

θ
φ α

θ + dθ
dθ

tangent point
(ray perigee)

ray

Figure 2.1: The geometry of the refraction of the ray.

the angle between the ray path and the local radial direction, which can be expressed
using the polar coordinates

tan(φ) =
rdθ

dr
(2.5)

From Figure 2.1, the total bending angle α of the ray is

α = θ + φ − π

2
(2.6)

Differentiating equation (2.6) and combining with equation (2.5), we obtain

dα = dθ + dφ (2.7)

The expressions for dθ and dφ are needed to compute the change of the bending angle
dα.
From Snell’s law, tan φ can be derived in another form from equation (2.4) as:

tan(φ) =
p

√

(nr)2 − p2
(2.8)

Combining the above two equations (2.5) and(2.8), dθ is written as:

dθ =
pdr

r
√

(nr)2 − p2
(2.9)
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For the expression of dφ, we can differentiate equation (2.4),

r sin φdn + n sin φdr + nr cos φdφ = 0 (2.10)

Rewrite above as:

dφ = −tan φ(rdn + ndr)

nr
(2.11)

Substituting equation (2.8) into the above equation for tanφ, yields,

dφ = − p(rdn + ndr)

nr
√

(nr)2 − p2
(2.12)

From equations (2.9) and (2.12), dα in equation (2.7) can be written as:

dα =
pdr

r
√

(nr)2 − p2
− p(rdn + ndr)

nr
√

(nr)2 − p2
= − p

√

(nr)2 − p2

d ln(n)

dr
dr (2.13)

Integrating equation (2.13) along the entire ray path, the total bending angle is
obtained as:

α =

∫ α′

0

dα = −2p

∫

∞

r0

1
√

(nr)2 − p2

d ln(n)

dr
dr (2.14)

The “2” in the above equation is introduced due to the assumption of the spherical
symmetry of the atmosphere, i.e., the ray is symmetric about the tangent point.
Equation (2.14) gives us a forward relationship to compute the bending angle profiles
when we have n(r) along the ray path. It reflects that the bending angle is caused
by the radial variations of the refractivity. This equation is usually called the Abelian
integral equation.

2.2.2 The Abelian inversion

The Abelian integral equation (2.14) can be inverted to express the refractive
index as a function of the bending angle and the impact factor. To facilitate the
derivation of the formula, an auxiliary variable is defined as:

x = nr (2.15)

Equation (2.14) can be rewritten as:

α(p) = −2p

x=∞
∫

x=p

1
√

x2 − p2

d ln(n)

dx
dx (2.16)

Dividing both sides of equation (2.16) by the factor
√

p2 − p2
0 and integrating with

respect to p from p0 to ∞, we obtained the following relation. p0 is the impact factor
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corresponding to the radius r0 at the tangent point:

p=∞
∫

p=p0

α(p)
√

p2 − p2
0

dp = −
p=∞
∫

p=p0

2p
√

p2 − p2
0

[

x=∞
∫

x=p

1
√

x2 − p2

d ln(n)

dx
dx

]

dp (2.17)

Changing the order of the integration and choosing the proper limits corresponding
to the same integral region on the right side of the equation, yields:

p=∞
∫

p=p0

α(p)
√

p2 − p2
0

dp = −
x=∞
∫

x=p0

d ln(n)

dx

[

p=x
∫

p=p0

2p
√

(p2 − p2
0)(x

2 − p2)
dp

]

dx (2.18)

Let us introduce another auxiliary variable u as a function of p,

u(p) =
p2 − p2

0

x2 − p2
0

and du =
2pdp

x2 − p2
0

(2.19)

By substituting (2.19) into the inner integral expression in equation (2.18), it becomes:

p=x
∫

p=p0

2p
√

(p2 − p2
0)(x

2 − p2)
dp =

u=1
∫

u=0

du√
u − u2

= arcsin(2u − 1)|u=1
u=0 = π (2.20)

Then, equation (2.18) is simplified as:

p=∞
∫

p=p0

α(p)
√

p2 − p2
0

dp = −π

x=∞
∫

x=p0

d ln(n)

dx
dx = π ln n(r0) (2.21)

Rearranging equation (2.21), yields:

n(r0) = exp

[

1

π

p=∞
∫

p=p0

α(p)
√

p2 − p2
0

dp

]

(2.22)

This is the classical inverse Abel transformation. The refractivity can be derived from
the bending angles and the impact factors in the occultation plane.

2.3 The relationship between refractivity and atmopheric
properties

The gas contents and properties contribute to the refractive index n in the neutral
atmosphere. Since the value of the refractive index is very close to 1, it is usually
more convenient to use the refractivity N , which is defined as:

N = (n − 1) × 106 (2.23)
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Generally, different gas species contribute differently to the refractivity for radio fre-
quencies. In a neutral atmosphere, the refractivity of the radio waves that pass
through the atmosphere is expressed as a function of the pressure, the temperature,
and the humidity content. A common form of the formula is:

N = k1
Pd

T
Z−1

d +

(

k2
Pw

T
+ k3

Pw

T 2

)

Z−1
w (2.24)

where Zd and Zw are the compressibility factors for the dry and moist air respectively.
They are used to account for the departure of the air from the ideal gas, and their
magnitudes are usually less than 0.001 for the typical atmospheric condition. Pd is
the dry atmospheric pressure in hPa, T is the atmospheric temperature in kelvin, and
Pw is the partial pressure of water vapor. k1, k2, and k3 are empirically determined
coefficients.

In meteorology, the equation for refractivity is often given as:

N = c1
P

T
+ c2

Pw

T 2
(2.25)

where

c1 = k1 (2.26)

c2 = (k2 − k1)T + k3 (2.27)

Equation (2.25) is also known as the Smith-Weintraub equation [Smith and Wein-
traub, 1953]. Where P is the atmospheric pressure in hPa. The values for the constant
coefficients are: c1 = 77.60, c2 = 3.73 × 105. These constant values are usually valid
for radio frequencies less than 20 GHz.

2.4 Derivation of the atmospheric properties

In the neutral atmosphere, both the dry and moist air contribute to the total
refractivity. In the lower part of the atmosphere, especially in tropical regions, the
rapidly changing moisture content is a big contributor to the refractivity, and needs
special considerations. For the regions where there’s no moist air or the moist air
has a negligible effect on the refractivity, the atmospheric parameters can be easily
derived using a combination of equation (2.25) and the ideal gas law (or the Equation
of State):

P =
ρRT

m
= ρRmT with Rm =

R

m
(2.28)

Here ρ is the air density, R is the universal gas constant (R = 8.3144 Jmol−1k−1),
m is the mean molecular mass of the gas, and Rm is the specific gas constant, which
depends on the molecular weight of the air.
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Air is composed of dry and moist air. We can rewrite the ideal gas equation as:

P = Pd + Pw =
ρdRT

md

+
ρwRT

mw

=
RT

V

(

Md

md

+
Mw

mw

)

(2.29)

Where Md is the mass of the dry air, Mw is the mass of the moist air, md and mw are
the molecular weight of the dry and moist air respectively. It is also obvious that:

ρ =
M

V
=

Md + Mw

V
(2.30)

Eliminating V in equation (2.29) by combining with equation (2.30):

P = ρRT

(

Md

md

+
Mw

mw

)

1

Md + Mw

= ρ
R

md

T
1 + q/ε

1 + q
= ρRdT

1 + q/ε

1 + q
(2.31)

In the above equations, we define q = Mw/Md, ε = mw/md and Rd = R/md. A good
approximation for equation (2.31) is given as:

P = ρRdT (1 + 0.608q) = ρRdTv with Tv = T (1 + 0.608q) (2.32)

This is another form of the Equation of State. Tv in the equation is called the virtual
temperature. With this virtual correction, the presence of water vapor is compen-
sated. Therefore, we can use the dry air constant in the Equation of State.

2.4.1 Dry air density

If only the dry part of the air is considered, equation (2.25) becomes:

N = c1
P

T
(2.33)

Combining with equation (2.28), the dry air density profile is given as:

ρd(z) =
md

Rc1

N(z) (2.34)

Where z is the height above a reference surface (ellipsoidal height or mean sea level
height).

2.4.2 Dry air pressure

Usually, for a large volume of air, in the vertical direction, the gravity and the
pressure gradient force are in balance. It is called the hydrostatic equilibrium. The
expression is:

∂P

∂z
= −ρ(z)g(z) (2.35)
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g(z) is the gravity acceleration at height z. Substituting equation (2.34) into the
above equation and integrating it, the pressure is represented as a function of height:

P (z) =

∞
∫

z

g(z′)ρd(z
′)dz′ =

md

Rc1

∞
∫

z

g(z′)N(z′)dz′ (2.36)

2.4.3 Dry air temperature

Using either equation (2.33) or equation (2.28) again, the temperature profile is
given as:

T (z) =
md

RN(z)

∞
∫

z

g(z′)N(z′)dz′ (2.37)

We can directly derive the temperature profile from the refractivity profile under the
assumption of the non-existence of the moist air.

2.4.4 Air Humidity

In the GPS occultation, the retrieval of the pressure and temperature from the
refractivity also requires the knowledge of the water vapor pressure Pw. In the upper
troposphere and stratosphere, the atmosphere can be assumed to be dry with negligi-
ble error. However, in the lower troposphere and the warmer tropical regions, where
the contribution of the wet component to the refractivity is significant, it is some-
times up to 30% of the total refractivity. The water vapor cannot be easily separated
from the dry component. Neglecting the moist component will cause a big error.
The extra moisture term in the equations makes the recovery of the air temperature,
density, and pressure not unique. This ambiguity would not allow us to distinguish
between the contributions of the dry and moist terms in the total refractivity unless
independent or a priori information is provided. Another important reason is that
the hydrostatic equation only works with the total pressure. In order to compute
the water vapor pressure, an accurate and independent estimate of temperature must
be known. This may come from the NCEP or ECMWF meteorological analyses or
forecast models. With the prior knowledge, the water vapor can be computed from
an iterative process [e.g. Gorbunov et al., 1996]. This algorithm suffers from a high
sensitivity to even small errors in the analyzed temperatures, resulting in large uncer-
tainties of the derived water vapor profiles [Marquardt et al., 2001]. A more elaborate
method to retrieve both the water vapor and temperature in an optimal way based
on the variational principle will be introduced in a later chapter.

By substituting ρ in equation (2.32) to equation (2.35), it becomes:

dP

P
= − g

RdTv

(2.38)
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Integrating the above equation from z to z∗, yields:

P (z) = P (z∗) exp

(

z∗
∫

z

g(z′)

RdTv(z′)
dz′

)

(2.39)

If P (z) is known, Pw(z) can be derived from equation (2.25) as:

Pw(z) = T 2(z)
N(z) − c1

P (z)
T (z)

c2

(2.40)

The specific humidity is defined as:

q(z) =
εPw(z)

P (z) − (1 − ε)Pw(z)
(2.41)

where ε is usually given the value of 0.622.
Summarizing, for a given temperature profile, the iterative procedure of calculat-

ing the specific humidity is shown in Figure 2.2.
The mean spatial distribution of the water vapor is similar to the spatial distrib-

ution of the temperature, decreasing from the equator to the pole. This would make
the pressure retrieval in the polar region more easy, accurate and less affected by the
water vapor. Some researchers suggest that water vapor does not need to be consid-
ered until the temperature is larger than 250◦K [Kursinski et al., 1996]. Therefore,
in most of the cases, it is fair to neglect the water vapor when retrieving the profiles
over the cold polar regions.

2.5 The excessive phase measurement of the GPS occulta-
tion

The Global Positioning System (GPS) consists of a constellation of 24 satellites
each with an altitude of 20,200 km. These satellites are evenly distributed in six
orbital planes inclined 55 degrees each. The orbital period is around 11 hours 58
minutes. The GPS carrier phase signals are transmitted on two L band frequencies:
L1–1.57542 GHz and L2–1.2276 GHz. A LEO carrying a GPS receiver can receive sig-
nals from the GPS constellation. Normally, we can express the complex signal received
by the circuit of the GPS receivers as u(t) = A(t) exp(iΦ(t)) = A(t) exp(ikΨ(t)). A(t)
is the amplitude, k = 2π/λ is the wavenumber, and Ψ(t) is the length of the ray path
(unit: meter) from the transmitter to the receiver, it is also called the eikonal of
the ray. Φ(t) = kΨ(t) is the phase of the ray (unit: radian). In the subsequent
derivations, we sometimes treat Ψ as the phase delay expressed in the unit of length.
When a GPS signal is penetrating the neutral atmosphere, it is bent dominantly by
the vertical gradient of the refractive index field. The excessive phase delay ∆Ψ1,2
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Assume the air is dry: q(z) = 0

Virtual temperature profile Tv(z) = T (z) · [1 + 0.608q(z)]
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Figure 2.2: The iterative process of computing a humidity profile.

(unit: meter) from the position of the transmitter a to the position of the receiver b
is defined as:

∆Ψ1,2 = (∆Ψ1,2)geometric + (∆Ψ1,2)optical =

∫ b

a

n(Ψ1,2)dΨ1,2 − Ψ0 (2.42)

where n(Ψ1,2) is the group refractivity index along the ray path for L1 and L2 fre-
quencies, Ψ0 is the length of the straight line connecting the GPS satellite and LEO.
The total atmospheric excessive phase delay ∆Ψ1 and ∆Ψ2 in the occultation link
can be separated to two effects:

Geometrical effect The increased length of the ray path due to the bending (cur-
vature) of the ray in vacuum.

(∆Ψ1,2)geometric =

∫ b

a

dΨ1,2 − Ψ0 (2.43)
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Optical effect the increase of the optical ray path due to traveling through a medium
with a refractive index larger than 1 in both the neutral atmosphere and the
ionosphere.

(∆Ψ1,2)optical =

∫ b

a

(n(Ψ1,2) − 1)dΨ1,2 (2.44)
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Figure 2.3: The geometric map of GPS occultation.

As we already know from the previous section, through the Abelian inversion,
the refractivity profile can be derived from the bending (refraction) angle α and the
impact factor p of the ray trajectory (see Figure 2.3). We usually call the bending
angle and the impact factor the fundamental measurements of the GPS occultation.
The point on the ray path, which is the closest to the Earth’s surface, is called the
ray perigee or tangent point. The impact factor p is defined as the distance between
the ray perigee and the local center of curvature of the ray path.

To derive the bending angle and impact factor, the observed atmospheric excessive
phase will first be needed. A double difference technique is used to eliminate satellite
clock (including the clock error of the GPS transmitter and the GPS receiver onboard
the LEO) errors and to derive the atmospheric excess phase of the occultation link.
The double difference technique can also be used to remove the Selective Availability
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(SA) error, which was added to the GPS satellites’ clock and ephemeris to degrade
the positioning accuracy for civilian users, for the historic GPS/MET data. SA
was officially turned off on May 1, 2000. The carrier phases (L1 and L2) from the
occulting GPS satellite is sampled in 50 Hz by the GPS receiver on the LEO, along
with the measurement from a second, referencing GPS satellite, are synchronized
with interpolated 1 Hz data from a global distributed fiducial network of GPS ground
receivers.

Alternatively, as a result of the termination of the Selective Availability (SA)
mode of the GPS (resulting in enhanced GPS clock stability), the application of
single differencing technique for precise occultation processing becomes feasible and
was demonstrated by Wickert et al. [2002]. Additional data needed for the excess
phase derivation are the precise orbit information (position and velocity) of the GPS
and LEO satellites. Current orbit determination can achieve centimeter accuracy in
position and 0.1 mm/s in velocity, which is adequate for the GPS occultation.

GPS (Occultation)

GPS (Reference)

LEO (Occultation)

Ground Station

Earth

L1 link

L2 link

bending angle α

i

j

A

B

Figure 2.4: The geometric map of single and double differencing.

The GPS phase observation equation between the GPS satellite i and the receiver
A is:

Li
A(t)k = λΦi

A(t) = ρi
A(t) + λkN

i
A(t)k + cδA(t) + cδi(t) − I i

A(t)k + T i
A(t) (2.45)

21



Where Li
A(t) and Φi

A(t) are the measured carrier phases in distance and in cycles
respectively, λ is the wavelength, ρi

A(t) is the geometric distance between the antenna
phase center of satellite i and the receiver at A, c is the speed of light, N i

A(t) is
unknown integer cycles called ambiguity, δA(t) and δi(t) are the receiver and satellite
clock biases respectively, I i

A and T i
A are phase delays due to the ionosphere and the

troposphere along the ray path. The subscript k in the equation indicates the carrier
frequency f1 and f2. The relativity correction term and the receiver noise term are
not included in the above equation, but they will be taken care of in the real data
processing.

In order to derive the atmospheric properties, the first measurement we need to
obtain is the phase range delay T i

B due to the existence of the media in the radio link
between GPS satellite i and LEO B. In the double differencing technique, besides the
GPS occultation satellite and the LEO, another reference GPS satellite and a ground
station are required. The GPS receivers at the ground station and onboard the LEO
are required to be able to observe both GPS satellites (See Figure 2.4). The single
difference Lij

A(t) between the link Ai and Aj is:

Lij
A(t) = Li

A(t) − Lj
A(t) (2.46)

The precise orbit of the GPS and LEO satellites can be obtained by adjusting the
GPS observations from the ground network and the LEO satellite simultaneously.
However, we usually can obtain the GPS precise orbits from the International GPS
Service (IGS), calculated by adjusting the measurements from the ground stations
in the global fiducial network by data Analysis Centers (AC). The IGS final orbit
is a weighted sum of solutions from several ACs. Using the GPS orbit, the Zenith
Troposphere delay (ZTD) of the ground stations and the LEO orbits are calculated.
We can remove the tropospheric term T i

A(t) in equation (2.45) from the ZTD of the
ground station and a proper mapping function (maps the ZTD to the delay of the
real slant path connecting the transmitter and the receiver). The ionospheric effect
I i
A(t)k can be eliminated in their respective links Ai and Aj through the ionosphere

free combination (LC). For link Ai, it is:

LCi
A(t) = κ1L

i
A(t)1 − κ2L

i
A(t)2 (2.47)

with

κ1 =
f 2

1

f 2
1 − f 2

2

and κ2 =
f 2

2

f 2
1 − f 2

2

(2.48)

These particular coefficients keep the other terms in the equation the same after
the linear combination (except the ambiguity term). Similarly, we can derive the
expression for LCj

A(t). The LC form of the single difference equation (2.46) is:

LCij
A (t) = ρij

A(t) + µ1N
ij
A (t)1 − µ2N

ij
A (t)2 + cδij(t) (2.49)
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with

µ1 =
cf1

f 2
1 − f 2

2

and µ2 =
cf2

f 2
1 − f 2

2

(2.50)

For LEO links, the LC equation between the LEO and reference satellite j is equal
to:

LCj
B(t) = ρj

B(t) + µ1N
j
B(t)1 − µ2N

j
B(t)2 + cδB(t) + cδj(t) (2.51)

The tropospheric effect term T j
B(t) is neglected since the link does not penetrate into

the troposphere. The double difference form using 3 LC observation links and one
frequency dependent occultation link can be given as:

LCij
AB(t)k = LCij

A − [Li
B(t)k − LCj

B(t)] (2.52)

Substitute the terms into the above equation and we obtain:

LCij
AB(t)k = ρij

AB(t) + I i
B(t)k − T i

B(t) + N (2.53)

with
N = µ1[N

ij
A (t)1 + N j

B(t)1] − µ2[N
ij
A (t)2 + N j

B(t)2] − λkN
i
B(t)k (2.54)

The excessive tropospheric delay in the occultation link can be derived from equation
(2.53):

∆sk(t) = T i
B(t)k = ρij

AB(t) + I i
B(t)k + N − LCij

AB(t)k (2.55)

This is the stage where the low level data processing ends and the GPS occulta-
tion retrieval process starts. According to the equation (2.42), ∆sk(t) represents the
excessive phase delay in both frequencies.

2.6 The derivation of bending angles from excessive phases

The excessive phase data are first properly filtered using an appropriate running
mean to reduce the noise level, and a running standard deviation σ is used to reject
the un-reasonable observations (using the 3σ criteria). The Doppler shift in the
occultation link is related to the velocity change of the GPS and LEO satellites. It
can be derived from the time derivative of the calibrated atmospheric excess phases
after appropriate filtering. The derivative of the time series is calculated by the
numerical differentiation of a polynomial fit (using Least Squares or SVD) of the
excessive phase.

If we rewrite equation (2.42), the total phase change in distance in the path
between the GPS and LEO satellites is given as:

Ψ(t) = Ψ0(t) + ∆Ψ(t) (2.56)
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The corresponding Doppler frequency change with respect to the carrier frequency is
related to the phase change in (2.56) by the relation:

(fd)k = −fk

c

dΨ(t)

dt
= −fk

c
Ψ̇(t) (2.57)

or

(∆fd)k = −fk

c

d∆Ψ(t)

dt
= −fk

c
∆Ψ̇(t) (2.58)

(fd)k is the total Doppler frequency shift on the frequency k. fk is the carrier frequency
of k. c is the velocity of the light in vacuum. The contribution from Ψ0(t) causes the
frequency shift in vacuum, and the frequency shift (∆fd)k results from ∆Ψ(t), which
is due to the bending of the ray path caused by the existence of the atmospheric
media.

Geometrically from figure 2.3, the change of the optical path Ψ̇(t) is:

Ψ̇(t) = ~v2 ~m2n2 − ~v1 ~m1n1 (2.59)

where ~v1 and ~v2 represent the velocity vectors of the GPS and LEO respectively,
~m1 and ~m2 are the unit vectors of the signal transmitting direction from the GPS
satellite and signal receiving direction to the LEO satellite; and n1 and n2 are the
refractivities at the satellite locations. From equation (2.57), the Doppler frequency
shift has a relationship with the velocity of the GPS and LEO satellites

(fd)k = −fk

c
(~v2 ~m2n2 − ~v1 ~m1n1) (2.60)

If we define unit vector ~m0 as

~m0 = ~r/r, with ~r = ~r2 − ~r1 (2.61)

The frequency shift (fd0)k due to the change of s0 can be expressed as:

(fd0)k = −fk

c
(~v2 ~m0n2 − ~v1 ~m0n1) (2.62)

It is very obvious from Figure 2.3, the bending angle is:

α = φ1 + φ2 + θ − π (2.63)

θ can be easily computed from the position vector of the GPS and the LEO satellite.
φ1 and φ2 are expected to be obtained by equation (2.60) from the Doppler shift and
the velocity of the GPS and LEO satellites. In order to do that, one more equation
is needed. If we assume the local spherical distribution of the refractivity

n = n(r) (2.64)
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then the Snell’s law equation (2.4) can be expressed in another form:

r1n1 sin φ1 = r2n2 sin φ2 (2.65)

n1 and n2 are unknown in the above equations, since our goal is to derive the refrac-
tivity from the occultation measurement, we can not know n1 and n2 before these
processes. However, we can assume n1 = n2 = 1, since it can be proved that when
using iono-free combination of the bending angles, the effect of these two terms can be
neglected [Gorbunov et al., 1996]. Therefore, we can drop these two terms in equation
(2.65).

The above equations can be re-formulated in different ways. If we neglect the
refractive index at the locations of the satellites, equation (2.59) can be written as:

Ψ̇ = vR
2 cos(φ2) + vT

2 sin(φ2) + vR
1 cos(φ1) − vT

1 sin(φ1)

= ṙ2 cos(φ2) + θ̇2r2 sin(φ2)ṙ1 cos(φ1) − θ̇1r1 sin(φ2)

= θ̇p +
ṙ2

r2

√

r2
2 − p2 +

ṙ1

r1

√

r2
1 − p2 (2.66)

where r1 and r2 are the radial distances of the satellite from the Earth’s center.
The angle between the two radial vectors is θ = θ2 − θ1. θ1 and θ2 are the angular
coordinates of the satellites. The impact factors at two satellite locations are p =
r1 sin(φ1) = r2 sin(φ2). The n(r) at satellite locations is 1 since satellite orbits are
at the outside of the atmosphere. Equation (2.66) will enable us to solve the impact
p(t) through the observation Ψ̇(t) and other known time dependent variables. The
bending angle has the following geometrical relation with p:

α = θ − arccos(
p

r1

) − arccos(
p

r2

) (2.67)

There is no analytical way to solve the non-linear equations (2.60) and (2.65)
simultaneously. We can use the iterative method proposed by Gorbunov et al. [1996]
to solve the problem by first detecting the two angles φ1 and φ2. The initial value of
these two angles can be given in vacuum, i.e., φ10 and φ20 are the angles between the
satellite position vectors and ~m0. It is also defined that ∆φk = φk −φk0, and k = 1, 2.
We have the following iterative steps:

1. Starting from an increment value ∆φ2, we compute ∆φ1 using the differential
form of equation (2.65)

2. The computation of the vector ~m1,2 is done by rotating the ~m0 vector at angles
∆φ20 and ∆φ10 around the vector normal to the occultation plane.

3. (∆fd)k = (fd)k − (fd0)k is computed using equations (2.60) and (2.62)
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4. We compare the (∆fd)k from the previous step with the computed (∆fd)
obs
k in

equation (2.58) derived from the observations. If the difference is not small
enough, a new value ∆φnew

2 = (∆fd)
obs
k /(∆fd)

old
k ∆φ2 is generated and return

to step 1.

We should continue this procedure until it converges. Usually, after several iterations,
φ1 and φ2 can be obtained from the converged process. Consequently, the bending
angle ε is readily derived through equation (2.63).

2.7 The ionosphere correction

Since GPS satellites transmit at two frequencies, the L1 and L2 links between
the GPS and LEO satellites travel different paths due to the dispersion property
(inverse proportional to f 2) of the ionosphere (see Figure 2.4). The most commonly
used method to eliminate the first order ionosphere effect is to apply the so called
ionosphere free combination of the phase measurements at two frequencies:

Lc(t) =
f 2

1

f 2
1 − f 2

2

L1(t) −
f 2

2

f 2
1 − f 2

2

L2(t) (2.68)

Afterward, the bending angles are derived from the excessive Lc phase delay. However,
this method would bring systematic error to the bending angle measurements due
to the fact that the two links travel different paths. When combining the phase
measurements at the same moment, the impact factor for the two links have different
values. Their differences will increase as the altitude goes up. Significant difference
may occur at the vicinity of tangent points. It is not feasible to use this combination.
To circumvent this problem, Vorob’ev and Krasil’nikova [1994] suggested to use the
combination of the two bending angles (α1 and α2) derived from the two frequency
links with the same impact factors.

α(p) =
f 2

1

f 2
1 − f 2

2

α1(p) − f 2
2

f 2
1 − f 2

2

α2(p) (2.69)

The combination effectively removes most of the first order ionosphere effect on
the occultation link, which can be seen in Figure 2.5. After the linear combination,
LC bending angles are closer to the climatology model MSISE-90 [Hedin, 1991] than
that of L1 and L2. The remaining residual are mainly due to the non-linearity of the
refractivity with respect to the bending angle, but the error is much smaller than the
traditional method from equation (2.68), which assumes that the ray trajectories of
the two GPS frequencies coincide at the same time t.

2.8 The ellipsoidal correction

In the derivation of bending angles and impact factors, we assume that the at-
mosphere is spherically symmetric with respect to the Earth’s center. However, the
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Figure 2.5: The ionospheric correction for bending angles.

more accurate geometric shape of the Earth is not a sphere, but an ellipsoid. The
local center of the refractivity does not coincide with the center of the Earth. The
study by Syndergaard [1998] shows that the neglect of the Earth’s oblateness may
cause a bias on temperature profile at altitudes below 40 km. The bias is increased
with a decrease in altitude and could reach 6◦K above the ground for a particular
occultation geometry and geographical latitude. The geometry of the occultation con-
figuration with respect to these two centers is shown in Figure 2.6. The movement
of the refractive center to the Earth’s center will lead to a series of wrong bending
angles α∗ and impact factors a∗. Consequently, the derived refractivity profile will
be wrong. An algorithm was proposed to correct this problem using geometry. We
need first to find the location p(φp, λp) on the ellipsoid where the sphere is tangent
to the ellipsoid. The azimuth of the occultation plane (decided by GPS, LEO, and
the Earth’s center) passing through point p is determined as αp. The radius of the
sphere (radius of curvature–Rroc) which is tangent to the ellipsoid at the point p can
be calculated by the formula of the geometric geodesy [Jekeli , 2000]:

Rroc =

(

cos2 αp

M
+

sin2 αp

N

)

−1

(2.70)

where M and N in above equation are given as:

M =
a(1 − e2)

(1 − e2 sin2 φp)
3

2

(2.71)
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Figure 2.6: The cross section of the oblate Earth and its tangential sphere.

N =
a

1 − e2 sin2 φp

(2.72)

M and N are the radius of curvature of the meridian ellipse and the radius of curvature
of the prime vertical section at point p, respectively. e is the first eccentricity of the
Earth’s ellipsoid. Once the radius of curvature is computed, the refractive center
departing from the Earth center by ∆r can be easily derived using the geometric
relationship. All the subsequent profile retrievals will refer to this new center of
refractivity.

2.9 Upper boundary limit and statistical optimization

To derive the refractivity profile, we use the inverse Abel transformation repre-
sented by equation (2.22). It is noticed that the integral of the equation needs an
infinite upper boundary limit. Conventionally, the top level can be defined as the
level where no refractivity can be detected by the GPS occultation measurements.
Theoretically, as the altitude increases, the bending angle decreases exponentially.
However, at the same time, the signal to noise ratio becomes very low. The residual
ionosphere error becomes dominant. Generally, at altitudes above 50-60 km, the rel-
ative error of the measured bending angle is greater than 100% [Hocke, 1997]. The
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measurement noise and orbit error contribute to the total error in higher altitude as
well.

We rewrite equation (2.22) into two parts, the integration of the first part is from
p0 to ptop, an initial impact factor. Its corresponding height is htop. The second part
integrates from ptop to ∞.

n(r0) = exp

[

1

π

(

p=ptop
∫

p=p0

α(p)
√

p2 − p2
0

dp +

p=∞
∫

p=ptop

α(p)
√

p2 − p2
0

dp

)]

(2.73)

where p0 = n(r0)r0 at the tangent point. ptop is usually in the range: RE + 45
km ≤ ptop ≤ RE + 60 km. If we choose a top boundary ptop, what we will neglect
is the contribution from the second integral in equation (2.73). The choice of the
initial (top) height can cause significant errors on the temperature profile in the lower
stratosphere. In order to retrieve an accurate temperature profile at the stratosphere
(e.g., at 40 km), requires a bending angle measurement starting at around 100 km.
Unfortunately, the magnitude of the ionospheric component of the measurement is
starting to exceed the magnitude of the bending angle from 45-50 km, and continues
to dominate the combination above this height. A consistent method should reduce
the residual ionospheric error at higher altitude on the final profile retrieval, and at
the same time obtain almost the same temperature profile no matter what initial (top
boundary) height is chosen.

To minimize the observed bending angle error propagating from the higher altitude
to the lower altitude, the bending angles above a certain altitude have to be replaced
by some climatology models with small errors. Some typical models include MSISE-90
[Hedin, 1991], NRLMSISE-00 [Picone et al., 2002], and CIRA 1986 [Fleming et al.,
1988]. Gorbunov and Sokolovsky [1993] replace the refraction angle profile with a
background model profile above the height where the measurement noise exceeds the
normal bending angle variation range. A better way is to derive the new bending
angles by combining the climatology model and the observations in an optimized way
using statistical information. This was first proposed by Sokolovskiy and Hunt [1996],
and adopted by many others with improvements and variations, e.g., Gorbunov et al.
[1996], Hocke [1997], Healy [2001], etc. The bending angle profile is represented by
α = α(p), p = [bottom, top], the two observation equations are:

α = αo + eo eo ∼ (0, Qo) (2.74)

α = αm + em em ∼ (0, Qm) (2.75)

where eo and em are the observation and model error, respectively. Qo and Qm are
the error covariance matrices, respectively. Solving the above equations using the
least square method, we obtain:

αopt = (Q−1
o + Q−1

m )−1(Q−1
o αo + Q−1

m αm) (2.76)
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Healy [2001] adopted the full model and observation covariance matrices in his study.
The difficulty in this method is to find reliable covariance matrices and the assumption
of a reasonable correlation height. To simplify the problem, we can neglect the vertical
correlation in the observation noise and the model error. The covariance matrices
become diagonal, the optimal bending angle for any altitude (or any impact factor)
is given as:

αopt(p) =
σ2

m(p)

σ2
m(p) + σ2

o(p)
αo(p) +

σ2
o(p)

σ2
m(p) + σ2

o(p)
αm(p)

= αm(p) +
σ2

m(p)

σ2
m(p) + σ2

o(p)
(αo(p) − αm(p)) (2.77)

In the lower stratosphere, where the noise is not significant, studies show that when
comparing the occultation profile with a climatology model (e.g. MSISE-90), the
variation of the refractivity is around 5-20%. Thus, an empirical equation for the
uncertainty of the model can be written as:

σm(p) = C · αm(p) (2.78)

C is used as a constant for each profile. Most people adopt C = 0.2 as a value. The
measurement error is estimated by the deviation of the measured bending angle from
the modeled bending angle at higher altitude:

σo(p) = αo(p) − αm(p) (2.79)

This error mainly depends on the ionospheric disturbance. Below the E-layer (A solar
controlled ionospheric region around 80-150 km), the error is typically uniform. We
can use the value obtained at higher altitude to represent the error below a certain
altitude.

A modification of equation (2.77) was given by Hocke [1997]. He replaced the σ2

with σ in the equation:

αopt(p) = αm(p) +
|σm(p)|

|σm(p)| + |σo(p)|(αo(p) − αm(p)) (2.80)

This modification will change the shape of the weighting function.

2.10 The numerical solution of the bending angle

The refractivity profile is solved by the inverse Abel transform equation (2.22).
The integral has a singularity at p = p0. To avoid this “pole” problem, an alternative
form of the inverse Abel transformation equation is derived from the original form.
Considering the relationship:

∫

dp
√

p2 − p2
0

= ln

(

|p| +
√

p2 − p2
0

)

(2.81)
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and starting from equation (2.22), we integrate the right hand side by parts:

n(r0) = exp

[

1

π

(

α(p) ln

(

p +
√

p2 − p2
0

)∣

∣

∣

∣

p=∞

p=p0

−
p=∞
∫

p=p0

ln

(

p +
√

p2 − p2
0

)

dα

)]

(2.82)

We change the expression ln

(

p +
√

p2 − p2
0

)

to another form:

ln

(

p +
√

p2 − p2
0

)

= ln p0 + ln

(

p

p0

+

√

p2

p2
0

− 1

)

(2.83)

Substituting into equation (2.82), it finally becomes:

n(r0) = exp

[

− 1

π

α=0
∫

α=α(p0)

ln

(

p

p0

+

√

p2

p2
0

− 1

)

dα

]

(2.84)

This expression avoids the problem that occurs in equation (2.22), and is suitable for
numerical integration.

Besides the direct numerical integration method, one also can invert the forward
Abelian integration equation (2.16). It can be expressed in discrete form:

αm

2pm

= −
m

∑

k=1

∇ñk
∆xk

√

x2
k − p2

m

(2.85)

In the above equation, the atmosphere is divided into m layers with the thickness of
∆xk. ∇ñk is the gradient of the refractive index in layer k, which is assumed to be
constant within the layer. The matrix form of the above equation (2.85) is:

~(

α

2p

)

= A∇~̃n (2.86)

or














α1

2p1
α2

2p2
α3

2p3

...
αm

2pm















=















A11 0 0 . . . 0
A21 A22 0 . . . 0
A31 A32 A33 . . . 0
...

Am1 Am2 Am3 . . . Amk





























∇ñ1

∇ñ2

∇ñ3
...

∇ñk















(2.87)

With the help of equation (2.81), we can re-write Amk to avoid problems when p = p0:

Amk = − ∆xk
√

x2
k − p2

m

= − ln

(

|xk|+
√

x2
k − p2

m

)

+ ln

(

|xk−1|+
√

x2
k−1 − p2

m

)

(2.88)
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The least square solution of equation (2.86) is:

∇~̃n = (ATA)−1AT

~(

α

2p

)

(2.89)

We can accumulate the layered refractive index gradient to obtain the refractive
index profile. Equation (2.87) can also be solved using the onion peeling method,
which is to divide the atmosphere into thin layers and reconstruct the homogeneous
refractivity in each layer sequentially, like peeling an onion. This is a classical way
of performing ray tracing. Using the characteristics of the triangle matrix A, we can
solve the refractivity layer by layer from the top. The weakness of this method is the
propagation of the error from the top layer to the bottom layer, since the inversion
of the subsequent layers will depend on the results from the previous layers.

A general procedure of retrieving a GPS occultation profile using geometric optical
method is summarized in Figure 2.7.

2.11 The spatial resolution of GPS occultation

In the previous sections, we derived the atmospheric refractive index based on
the assumption of the geometric optical ray trajectory, i.e., the GPS signal passing
through the Earth’s atmosphere and arriving on the receiver onboard the LEO fol-
lows a dimensionless ray trajectory, which assumes no transverse dimension on the
cross-section of the ray path. However, the geometrical ray trajectory is only an
approximation to the Fresnel diffraction as the wavelength approaches zero.

2.11.1 Vertical resolution

According to the Huygens-Fresnel theory [Born and Wolf , 1993], the electro-
magnetic (EM) field at the receiver point equals the superposition of the secondary
waves that proceed from a surface situated between this point and the transmission
source. The theory leads to a cross-section of the beam at the limb consisting of
concentric Fresnel zones with interlaced positive and negative contributions centered
at the ray trajectory. Since the contribution from adjacent Fresnel zones cancels, the
sampling can be effectively represented by the first Fresnel zone [Born and Wolf ,
1993], which can be characterized as the “thickness”of the geometrical optical ray
path. Therefore, the atmospheric delay sensed by the receiver will dominantly be
affected by the refractivity inside the finite Fresnel volume. The first Fresnel zone
is defined as the region where the path delay inside the region does not exceed the
minimum path delay of the region by half of the wavelength (see Figure 2.8). To
determine the radius of the first Fresnel zone rf , the following relationship must be
fulfilled:

(L1 + L2) − (l1 + l2) =
λ

2
(2.90)
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Figure 2.7: The block diagram of radio occultation data processing.
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Figure 2.8: The cross-section of the first Fresnel zone.

with
L1 =

√

l21 + r2
f and L2 =

√

l22 + r2
f (2.91)

Solving for rf from equation (2.90), we obtain:

rf =

√

λl1l2
l1 + l2

≈
√

λl2 (if l1 � l2) (2.92)

For a general configuration of GPS satellites and the LEO satellite, l1 usually is around
25000 km, and l2 is around 3000 km. The assumption of l1 � l2 is valid. Equation
(2.92) gives us the first Fresnel zone in a non-refracting medium. In a refracting
medium, the first Fresnel zone also depends on the gradient of the refractivity. Its
radius in the presence of the refractivity is given approximately as

rf (p) =
√

λl2ζ(p) (2.93)

where ζ(p) is the defocusing factor and is given by [Melbourne et al., 1994]:

ζ(p)−1 = 1 − l1l2
l1 + l2

dα

dp
(2.94)

Theoretically, as the refractivity increases, the Fresnel zone decreases and the reso-
lution is improved as it approaches to the lower atmosphere. For the L1 carrier of
the GPS, the wavelength is around 19 cm, and equation (2.92) yields a value for the
first Fresnel zone radius of 750 m in the upper stratosphere to around 275 m in the
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lower troposphere. Since the L1 and L2 carriers of the GPS satellite have different
wavelengths, the radii of the first Fresnel zones differ by 13%. The diameter of the
first Fresnel zone gives an approximate vertical resolution around 1.5 km in the upper
atmosphere.

2.11.2 Horizontal resolution

The horizontal resolution can be approximately given out as the length of the
ray path that is tangent to two concentric circles whose radii differ by a vertical
resolution of ∆h. We simplify the calculation using Figure 2.9. The horizontal and
vertical resolutions are related by the expression:

∆h

R

∆L

Figure 2.9: The horizontal resolution along the ray trajectory.

∆L ≈ 2
√

2R∆h (2.95)

where R is the radius of the atmosphere from the ray tangent point. Given a vertical
resolution of 1.5 km, the horizontal resolution is about 277 km. Therefore, the bending
angle α measured at the ray perigee is an integral effect, which is contributed to
from the refractivity inside a tube along the ray path with the length of ∆L. The
distribution of the contribution to the bending angle along the ray path is like a
Gaussian distribution, with the largest contribution near the ray perigee point.
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CHAPTER 3

ADVANCED METHODS FOR GPS OCCULTATION IN
MULTIPATH REGIONS

3.1 Atmospheric multipath

In GPS occultation, atmospheric multipath happens when multiple rays arrive at
the receiver on LEO at the same time (Figure 3.1). What the receiver measures is the
superposition of the wave signals from different directions. The way of retrieving the
bending angle from the standard “geometrical optics” method is based on the fact
that the spatial gradient of the phase of the electromagnetic wave along the satellite
trajectory is uniquely related to the direction of the ray projected onto the trajectory.
Only one ray comes to the receiver at a time, thus, every bending angle in the profile
should have a single corresponding impact factor, i.e. the bending angle is a monoto-
nous function of the impact factor and the ray paths are separated. In the previous
chapter, a GPS signal was assumed to propagate as a dimensionless ray. This is valid
when the wavelength of the signal is small and the vertical gradient of the refractive
index is within a certain limit. However, in the lower troposphere, the rapid change of
the moisture content increases the chance of the formation of sharp refraction layers.
The strong vertical refractive index gradient of these layers will cause multipath prop-
agation of the signal and the diffraction effect becomes significant. In this case, the
direct and reflected rays arrive at the receiver antenna at the same time. The phase
measured is the superposition of the phase and amplitude of the interfering rays (see
Equation (3.4) on page 39). This interfering phase measurement can not be used to
derive the refractive angle, since in this region, the geometric optics method would
result in multiple correspondences of bending angles to impact factors. In order to
use the Abel inversion approach, we have to select a single pair of bending angle and
impact factor to avoid an ambiguity in the profile. The multipath leads to substantial
errors in the results. The standard “geometrical optics” method is incapable of sep-
arating the ray paths in the multipath region. Furthermore, the complicated, strong
vertical gradient structure causes significant signal tracking problem for GPS occul-
tation receivers. Under this circumstance, the tracking quality will be degraded with
larger errors and the loss of lock will frequently happen. We can derive the condition
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Figure 3.1: The illustration of Multipath propagation of rays.

for multi-ray crossing at the receiver with an auxiliary Figure 3.2. The solid curve is
an ideal atmospheric relation between the bending angle and the impact factor. α(p)
is a monotonic decreasing function. The dashed line shows a relationship between
the bending angle and the impact factor at a specific measurement epoch by equation
(2.67). The derivative of equation (2.67) with respect to p (for fixed GPS and LEO
position) is:

dαt(p)

dp
=

1

L1

+
1

L2

with Li =
√

L2
i − p2, i = 1, 2 (3.1)

It is a monotonic increasing function. For a single-ray propagation, the two curves
α(p) and αt(p) only have one intersection point. However, if

dα(p)

dp
>

1

L1

+
1

L2

=
L1 + L2

L1L2

≈ 1

L2

(3.2)

there are multiple pairs of bending angles and impact factors corresponding to this
measurement at a specific time, i.e., the choice of rays is not unique.

3.2 Single-ray propagation vs. multi-ray propagation

Single ray propagation refers to the situation that only one ray arrives at every
observation point along the orbit. In this situation, the arriving angle of the ray
can be determined by the derivative of the phase. Figure 3.3 illustrates how a single
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Figure 3.2: The derivation of the condition of multi-ray intersection.
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Figure 3.3: The single ray propagation.

ray propagation allows the determination of the direction of the ray. We assume
the transmitter is stationary and the atmosphere is symmetric. The ray equation
is described by u(x) = A(x) exp(iΦ(x)). In the occultation plane, only the motion
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across the wave fronts contributes to the phase measurements:

dΦ

dx
= k cos φ or fd =

dΦ

dt
= kv cos φ (3.3)

where k = 2π
λ

, is the wave number, φ is the angle between the satellite trajectory and
the ray direction. However, when more than one ray arrive at one location, as shown

v

wave fronts φ

LEO trajectory

dx
=

vdt

Ray 1
Ray 2

Ray 3

Ray 4

Figure 3.4: Multiple rays propagation.

in Figure 3.4, the measured complex wave field is:

u(x) = A(x) exp(iΦ(x)) =
i=N
∑

i=0

Ai(x) exp(iΦi(x)) (3.4)

N is the total number of rays at the location. From the equation above, it is hard to
determine any of the ray directions from the derivative of the total phase.

3.3 Radio holographic methods

Radio holographic methods are a class of methods which are based on the analy-
sis of the received complex electromagnetic signal (amplitude and phase) from the
receiver trajectory.

3.3.1 Radio-optic (slide spectral) method

In single ray areas, the incident ray direction can be inferred from differentiating
the observed signal phase with respect to the time. As shown above, if multiple
rays reach one location, the derivative of the total phase at every epoch does not
automatically give us the instantaneous frequency for each ray. The frequencies can

39



be identified by analyzing the local spectral of the complex signal within a small
aperture (sliding window). The local maxima of the spectral amplitude correspond
to different rays arriving at the center of the aperture. The frequency of each spectral
maxima defines the ray arriving angle. The arriving angle along with the position
of the aperture center determine the bending angles and impact factors of the rays
arriving in the aperture. This method can be considered as a trade-off between the
time resolution and frequency resolution, i.e., the aperture must be large enough for a
suffice spectral resolution and must be small enough for a better resolution of impact
factor. The radio-optic method was originally used for planetary atmosphere [Lindal
et al., 1987], and was later introduced to the Earth’s atmosphere [Hocke et al., 1999;
Gorbunov et al., 2000; Sokolovskiy , 2001].

The Fourier spectral of the sliding window is represented as F (f), where the
frequency f is associated to the ray arriving angle. From equation (3.3), the angle
between the ray directory and satellite trajectory is:

φ = arccos(
f

kv
) (3.5)

Geometrically from Figure 3.3, the impact factor is:

p = rL sin(ε − φ) (3.6)

where ε is the angle between the radial vector and LEO velocity vector. The bending
angle is obtained from equation (2.63):

α = arcsin(
p

rG

) + arcsin(
p

rL

) + θ − π (3.7)

This method is theoretically simple, but it is often difficult to automatically identify
the local maxima when the ray structure is complicated. Sokolovskiy [2001] proposed
a method that uses the spectral power to weigh the spectral content inside the aper-
ture. This method can well resolve the bending angle as a function of the impact
factor, with no need to find the local maxima. In the real data processing, a reference
complex signal um(t) calculated from a smooth model of the refractivity is required
to correct the wave front curvature for the focus of the wave to the aperture [Igarashi
et al., 2000]. This method only has good resolution for the bending angle and impact
factor in the lowest troposphere where strong refraction exists, and sometimes the
diffraction may result in wrong maxima in subcaustic zones [Gorbunov et al., 2000].

3.3.2 The back propagation method (BP)

In the back propagation method, the complex field (amplitude and phase) at LEO
is propagated back to a plane in the atmosphere, where there is no multipath and
rays are well separated. Thus, the standard geometrical optics method can be used
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in this region to reconstruct the profile with improved resolution and less multipath
effect.

The wave propagation in the atmosphere can be described in terms of a scalar
wave equation in the inhomogeneous media [Chew , 1990]:

(∆ + k2n2)u(r) = 0 (3.8)

where k = 2π
λ

is the wavenumber, n is the refractivity, ∆ is the Laplacian, and u

is the complex wave field. The above equation is also called Helmholtz equation.
Being practical, we only use the 2D form of the Helmholtz equation in the GPS radio
occultation plane by neglecting the diffraction effect in the lateral direction. This can
be justified by the lateral size of the first Fresnel zone

√
Lλ. L and λ are the distances

from the receiver to the ray perigee and the wavelength of the signal respectively. The
typical value for L is 3000 km and λ is 20 cm. Consequently, the first Fresnel zone in
the lateral direction is less than 1 km, which is significantly smaller than the nominal
atmospheric inhomogeneities in the lateral direction. This allows us to neglect the
diffraction effects in this dimension. On the other hand, however, the vertical size of
the first Fresnel zone is similar with the vertical atmospheric features, and it cannot
be simply neglected.

We denote the position vector of the source and observation vector as r and r′

respectively. The Green function of the 2-D Helmholtz equation is given as [Chew ,
1990]:

G(r, r′) =
1

4i
H

(1)
0 (kρ) with ρ = |r − r′| (3.9)

where H
(1)
0 (kρ) is the Hankel function of the first kind and 0th order. r and r′ are

the vectors in the 2D occultation plane.
If the complex field along a curve boundary S (LEO orbital trajectory) is known as

u(r′), the field at an arbitrary position r can be given by the solution of the Helmholtz
equation, which is a 2D external boundary problem:

u(r) =
i

2

∫

S

u(r′)
∂

∂nr′
H

(1)
0 (k|r − r′|)dSr′ (3.10)

where nr′ is the external normal to the boundary S. For large argument |r−r′| → ∞,
the Hankel function in equation (3.9) can be approximated by:

H
(1)
0 (k|r − r′|) =

√

2

πk|r − r′| exp[i(k|r − r′| − π

4
)] (3.11)

Substituting equation (3.11) into equation (3.10), the equation for the wave to prop-
agate from the curves source S is given as:

u(r) =

√

k

2π

∫

S

u(r′)
[exp(ik|r − r′| − π

4
)

|r − r′|3/2
|r − r′| · nr′)

]

dSr′ (3.12)
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Similarly, the equation for the reconstruction of the source field is:

u(r) =

√

k

2π

∫

S

u(r′)
[exp(ik|r − r′| + π

4
)

|r − r′|3/2
|r − r′| · nr′)

]

dSr′ (3.13)

Equations (3.12) and (3.13) are two reciprocal transformations.
In most of the situations, the occultation geometry does not lie in a single plane.

Through introducing a proper coordinate system and a suitable transformation method,
the GPS satellite can be treated as stationary and the LEO orbital trajectory can
be approximately treated as a line during the occultation event. This transformation
will conserve the resulted bending angles and impact factors of the rays. We still can
use the regular geometrical optics method to calculate the profiles.

The back propagation plane must be placed inside the atmosphere as well as in
a single-ray zone. Without any prior knowledge of the atmosphere, it is usually not
easy to decide where to place the back propagation plane. Gorbunov et al. [2000]
suggested an empirical formula to calculate the plane position as x = REαmax. RE

is the radius of the curvature of the Earth and αmax is the maximum bending angle
in the occultation. This position is located between the real and imaginary caustics.
We can also use x = 200 km as a typically suggested value.

3.3.3 Canonical transform method (CT)

The back propagation method requires the choice of an appropriate back propa-
gation plane in the single ray area. In the complicated situation such that the real
and imaginary caustics overlap, the single ray area does not exist or is very hard to
locate. This will cause the back propagation method to fail. In order to deal with
this difficulty, a new approach was introduced by Gorbunov [2002] based on the the-
ory of Fourier Integral Operator [Egorov et al., 1999] associated with the canonical
transformation [Arnold , 1978]. The complex field u(x, y) measured along the LEO
trajectory in the occultation plane is first needed to be back-propagated to a vertical
line at a position x. u now becomes a function of the vertical coordinate y. The
geometrical optics can be represented by a Hamilton system in the phase space with
coordinate y and momentum η. This phase space coordinate (y, η) is required by
the canonical method. In a single ray area, the momentum can be explained as the
derivative of the eikonal of the wave field (or ray direction vector). If we find another
coordinate (p, ξ) representing the same phase space, the rays can be described using
the new coordinates. In the new phase space, the new momentum ξ is a single-value
function of the new coordinate p. This allows us to disentangle the interfering rays,
since they always have different momenta. p is typically the ray impact factor, and
the new momentum ξ is the ray direction angle, which can be used to derive the
bending angle using simple geometric relationships. The transformation from the
geometrical coordinate (y, η) to the ray coordinate (p, ξ) is canonical and the phase
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space is preserved. The transformation can be implemented asymptotically using the
Fourier integral operator.

In this section, we briefly introduce the canonical method [Gorbunov , 2001, 2002]
for an asymptotic solution of the wave equation using the Fourier integral operator
[Egorov et al., 1999; Mishchenko et al., 1990].

We use Cartesian coordinates (x, y) to describe the wave field u(x, y) in the occul-
tation plane. x points to the wave propagation direction, and y is perpendicular to x.
The wave field measured along the LEO trajectory needs to be back propagated to a
vertical line at an arbitrary location x. It can be denoted by ux(y). We introduce the
normalized differential operators Dx = 1

ik
∂
∂x

and Dy = 1
ik

∂
∂y

. The Helmholtz equation
(3.8) in vacuum becomes:

(−D2
x − D2

y + 1)u = 0 (3.14)

For very short waves, the backscattering can be neglected. The above equation can
be factorized as [Martin, 1992]:

(Dx +
√

1 − D2
y)(−Dx +

√

1 − D2
y)u = 0 (3.15)

Then, the pseudo-differential equation describes the wave propagating forward in the
x direction is:

− Dxu = H(y,Dy) with H(y,Dy) = −
√

1 − D2
yu (3.16)

This is the 2D form of the “generalized parabolic equation” derived in Martin [1992].
H(y,Dy) is the Hamilton operator. To derive the asymptotic solution of equation
(3.16), the wave field equation is expressed in the form u(x, y) = A(x, y) exp(ikΨ(x, y)).
We substitute this into equation (3.16) and equate the coefficients according to the
same power in k−1. We also neglect the derivative of the amplitude, since it only
contributes to the coefficients of the next order. The coefficients of the highest order
(k0) yield the Hamilton-Jacobi equation:

− ∂Ψ

∂x
= H(y, η), with η =

∂Ψ

∂y
(3.17)

The above equation tells us that the unit ray direction vector is ∇Ψ = (
√

1 − η2, η),
and η geometrically represents the vertical projection of the ray direction vector.

The Hamilton-Jacobi equation can be reduced to a characteristic set of ordinary
differential equations:

ẏ =
dy

dx
=

∂H

∂η
, η̇ =

dη

dx
=

∂H

∂y
, Ψ̇ =

dΨ(x, y)

dx
= ηẏ − H (3.18)

Given a boundary condition in the source plane u0(y) = A0(y) exp(ikΨ0(y)), without
knowing the ray structure, we do not know the relationship between the wave field and
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the ray direction. For single ray propagation, the momentum η(y) at points along the
vertical line can be calculated by ∂Ψ0(y)

∂y
. Using this initial condition, we can integrate

equation (3.18) to find the ray destination at other locations. For an arbitrary ray
structure, however, the relationship in equation (3.17) cannot be applied. Moreover,
when the multipath occurs, the geometrical optics amplitude is singular at the vicinity
of the caustics.

To find a general asymptotic solution to the Cauchy problem in the refracting
medium with the existence of the caustics, we shall use Egorov’s theorem [Egorov
et al., 1999; Mishchenko et al., 1990], which states that the Fourier Integral Operator
(FIO) is associated with a canonical transformation from the old coordinates to the
new coordinates in the phase space. The Hamilton system of the geometric optical
ray describes the dynamics of the ray by coordinates (y, η) in the phase space. We
have options to choose different canonical coordinates (p, ξ) in the same phase space
to represent the same Hamilton system. In a spherical symmetric atmosphere, the
impact factor p can specify a unique ray. Thus, we introduce the new coordinates (p, ξ)
in the phase space, which can disentangle the multiple rays with different momenta.
Along with the change of the coordinates, the wave field can also be asymptotically
transformed to the new coordinates using Egorov’s theorem. For the old coordinates
(y, η) in the phase space, the Hamilton system is in the form −Dxu = H(y,Dy)u.
After introducing the new coordinates (p, ξ), the new Hamilton function becomes
H ′(p,Dp). The wave field in the new coordinates is u′, which is asymptotically equal to
Φ̂u, where Φ̂ is the Fourier integral operator. In this way, we write the new Hamilton
system as −Dxu

′ = H ′(p,Dp)u
′ with the initial condition Φ̂u0. The momentum ξ

in the new coordinates is the ray direction angle, which can be obtained by taking
the derivative of the phase of the transformed wave field with respect to the impact
factor p. Finally, the ray direction ξ can be linked to the bending angle by geometric
relationships.

We first define the 1D k-Fourier transformation like in Gorbunov [2002]:

ũ(η) =

∫

e−ikyηu(y)dy (3.19)

u(y) =
k

2π

∫

eikyηũ(η)dη (3.20)

The Fourier integral operator can be given in the following form [Mishchenko et al.,
1990]:

ux(p) =
k

2π

∫

a(p, η)eik(Σ(p,η)+yη)ũ0(η)dη (3.21)

where y is the starting point of the single ray with momentum η and at the end point
p, i.e. y = y(p, η). Functions a(p, η) and Σ(p, η) describe the amplitude and phase
delay of the ray. Since the ray direction is perpendicular to the ray fronts, we have
the differential equation:

dΣ = ξdp − ηdy (3.22)
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We define S(p, η) = Σ(p, η) + yη, then

dS = ξdp + ydη (3.23)

S is the generating function of the canonical transformation [Arnold , 1978]. Given a
generating function S, the canonical transform is defined as:

y =
∂S(p, η)

∂η
, ξ =

∂S(p, η)

∂p
(3.24)

We choose the new coordinate p to be equal to the impact factor to distinguish rays.
The impact factor is the distance from (0, 0) to the ray, which can be derived by
taking the dot product of a point (x, y) and the unit vector perpendicular to the ray
direction vector (

√

1 − η2, η):

p = −xη + y
√

1 − η2 (3.25)

then, the generating function becomes:

S(p, η) =

∫

y(p, η)dη =

∫

p + xη
√

1 − η2
= p arcsin η − x

√

1 − η2 (3.26)

Using equation (3.24), the momentum ξ in the new coordinates is

ξ = arcsin η (3.27)

The amplitude of the ray at the destination point z is derived using the conservation
of the energy flux in the ray tube [Kravtsov and Orlov , 1990]:

A(p) = A0(y)

√

dy

dp(y, η(y))
(3.28)

Function a(p, η) in equation (3.21) reflects the variation of the amplitude. Using
equation (3.28) along with equations (3.24) and (3.26), the amplitude a(p, η) is derived
as:

a(p, η) =

√

dy

dp
=

√

∂2S

∂p∂η
= (1 − η2)−

1

4 (3.29)

By substituting equations (3.26) and (3.29) into equation (3.21), and the Fourier
integral operator takes the following form:

ux(p) = Φ̂ux =
k

2π

∫

(1 − η2)−
1

4 eik(p arcsin η−x
√

1−η2)ũx(η)dη (3.30)

In this way, the wave field is transformed to the expression in the form of the impact
factor p by the operator equation (3.30) and generating function (3.26). If we express
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transformed field as u(p) = A′(p) exp(ikΨ′(p)), the momentum, or the direction angle
ξ is equal to ∂Ψ′

∂p
. Finally, the bending angle is computed as:

α(p) = −ξ(p) + arcsin

( |xGPS| −
√

x2
GPS − 2a(p − a)

a

)

(3.31)

where a is the earth radius, and the second term in the equation corrects the ray
direction angle at the GPS satellite location (xGPS, yGPS).

3.3.4 Principle of phase matching and full spectrum inver-
sion method (FSI)

3.3.4.1 Principle of phase matching

The phase matching technique [Jensen et al., 2004] does not depend on any as-
sumptions or approximations except the geometrical optics and spherical symmetry
of the atmosphere. Meanwhile, there’s no tunable parameter in the method such as
the position of the back propagation plane or the size of the sliding aperture. The
phase matching will be applied along the real satellite orbit, there’s no need to assume
stationary GPS satellites in the canonical transformation method and circular orbit
in the following full spectrum inversion method. In addition, the phase matching
function can be given in an explicit form.

If the wave field is given as u(y) = A(y) exp(ikΨ(y). Here, y is treated as a generic
coordinate such as time t or angle θ. We will replace y in specific coordinates later.
As before, A(y) represents the amplitude, Ψ(y) is the eikonal of the wave. kΨ(y) is
the phase of the wave. In the following derivations, we will omit the wave number k

in phase functions and use the eikonal. We can always multiply k back in the real
computation. Let’s consider a signal as a sum of several subsignals:

u(y) =
∑

n

un(y) =
∑

n

An(y) exp(ikΨn(y)) (3.32)

where n is the number of the interfering subsignals. We introduce a general phase
transformation as proposed by [e.g. Born and Wolf , 1993; Jensen et al., 2004]:

F (c) =

∫ T

0

u(y) exp(−ikΨ0(c, y)dy

=
∑

∫ T

0

An(y) exp[ik(Ψn(y) − Ψ0(c, y))]dy (3.33)

where Ψ0(c, y) is a function of y and can be treated as a GO model. The transformed
space is defined by the parameter c. T is the duration of the occultation. The
above integral transforms the observation from y domain to c domain. Similar to
the generic coordinate y, c can take any value. The technique of phase matching
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can also be explained by the stationary phase method [Born and Wolf , 1993]. The
transformation equation (3.33) is an oscillating integral, the main contribution comes
from the vicinity of the stationary phase point. However, if the integrand does not
contain any stationary phase point, the result of the integral will be zero. At the
stationary point ys, the frequency of one of the subsignals best matches the frequency
of the model Ψ0(c, y). Thus, we have

dΨn

dys

− ∂Ψ0(c, ys)

∂ys

= 0 (3.34)

The frequencies of other signals received at the same point do not match with the
model, therefore, no stationary point exists for these subsignals. Those signals have
very tiny contributions to the integral. Consequently, we can neglect the sum symbol
and the subscript n in (3.33) in the following derivations. Using the stationary phase
method, the result of the equation (3.33) is approximately given by [Jensen et al.,
2004]:

F (c) ≈
√

2πi
d2

dy2 [Ψ(ys) − Ψ0(c, ys)]
A(ys) exp[ik(Ψ(ys) − Ψ0(c, ys))]

∣

∣

∣

∣

d
dy

[Ψ(ys)−Ψ0(c,ys)]=0

(3.35)
The phase of F (c) is a function of c. The stationary point ys can be obtained by
taking the derivative of the phase with respect to c. This will lead to a parametric
pair:

[

c,
∂(Ψ − Ψ0)

∂c

]

(3.36)

where

∂(Ψ − Ψ0)

∂c
=

(

dΨ

dys

− ∂Ψ0

∂ys

)

dys

dc
− ∂Ψ0(c, ys)

∂c
= −∂Ψ0(c, ys)

∂c
(3.37)

This gives us a functional relationship between the parameter c and the partial deriv-
ative of the matching phase.

The phase matching functions Ψ0(c, y) can be designed to have different forms
in order to have desirable properties. If we let Ψ0(c, t) = ct, with y = t, this phase
matching function gives us a Fourier transformation of the original signal. From
equation (3.37), the parametric pair is in the form [c,−t]. The expression for c can
be related to the impact factor from the Doppler equation:

c =
ṙG

rG

√

r2
G − p2 +

ṙL

rL

√

r2
L − p2 + pθ̇ (3.38)

where rL and rG are the distance from the center of the Earth to the satellites. θ is
the angle between two satellite vectors. If we assume a circular satellite orbit and a
spherical Earth, ˙rG = ṙL = 0. The impact factor is thus proportional to the Doppler
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frequency kc. For non-circular orbit, the assumption of the monotonic function t(c)
is not necessarily valid. Special procedures are needed to account for the contribution
from the non-circular elements.

The form of phase matching function that can deal with the non-circular orbit is
given by [e.g. Jensen et al., 2004]:

Ψ0(c, t) = cθ +
√

r2
L − c2 +

√

r2
G − c2 − c arccos

c

rL

− c arccos
c

rG

(3.39)

Geometrically, it represents the sum of two straight distances from LEO and GPS
to the tangent points and an arc connecting these two tangent points with angle
θ − arccos c

rL
− arccos c

rG
and radius c. The derivative of this function has a similar

form to equation (3.38):

ω(c, t) = Ψ̇0(c, t) =
ṙG

rG

√

r2
G − c2 +

ṙL

rL

√

r2
L − c2 + cθ̇ (3.40)

The impact factor p can be determined using the relationship Ψ̇(ts) = Ψ̇0(c, ts), which
gives p = c. This tells us that c actually represents the impact factor. From equation
(3.37), the derivative of the transformed phase is

∂k(Ψ − Ψ0)

∂c
= kα (3.41)

Through this phase matching method, we can directly obtain the bending angle as
a function of the impact factor. However, phase matching functions given on an
arbitrary trajectory are nonlinear, and we cannot perform the integral by the Fast
Fourier Transformation (FFT), which makes this method computationally inefficient.
The phase matching method is closely related to the full spectrum inversion method.
We will introduce their similarity and relationship in the next section.

3.3.4.2 Full spectrum inversion method

The name of the Full spectrum inversion (FSI)[Jensen et al., 2003] is obtained
from the fact that a global Fourier Transformation is applied to the entire complex
occultation signal (radio hologram) in a circular geometry for deriving the instan-
taneous frequencies. If we let η = Ψ̇(t) = dΨ(t)

dt
, the Doppler change ω is equal to

kΨ̇ = kη and the Fourier Transformation is thus defined as:

ũ(η) =

∫ T

0

u(t) exp(−ikηt)dt (3.42)

In the case that the occultation signals consist of several narrow banded subsignals,
the FSI method can resolve the frequency variations of each subsignal. The complex
signal observed at time t in a circular geometry is denoted as u(t). In a single ray area,
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the Doppler frequencies ω(t) of the rays are the derivative of the phases of the signal.
In a multipath zone, however, ω(t) is contributed to by several interfering signals and
can not be simply calculated from the derivative of the phase. Since the Doppler
frequency is proportional to the ray impact factor, which is different for different
rays, we can assume the same frequency will not occur at different times, i.e., t(η) is
a single-valued function. This method can be derived and explained by the stationary
phase method [Born and Wolf , 1993]. To use this method, two requirements must be
fulfilled [Jensen et al., 2003], one is the amplitude of each subsignal must vary slowly
compared to the phase term, the other is the second order derivative of the phase
must be larger than other higher-order derivatives.

Replacing u(t) in equation (3.42) by equation (3.32), yields:

ũ(η) =

∫ T

0

∑

n

An(t) exp(ikΨn(t) − ikηt)dt (3.43)

The above expression is an oscillating integral, and can be evaluated using the sta-
tionary phase method [Born and Wolf , 1993]. The phase of the above equation is
k(Ψn(t) − ωt). The stationary phase point ts(η) is determined from:

d(Ψn(t) − ηt)

dt
=

dΨn(t)

dt
− η = 0 (3.44)

If the subsignal m fulfills the above equation and dominates the Fourier integral
(3.43), the approximate solution of (3.43) is given by the stationary phase method
[Born and Wolf , 1993; Jensen et al., 2003]:

ũ(η) ≈
√

2πi

k d2Ψm

dt2
(ts)

Am(ts(η)) exp[ik(Ψm(ts(η)) − ηts(η))] (3.45)

We represent the transformed wave field (3.43) in the form ũ(η) = A′(η) exp(ikΨ′(η)).
From the solution (3.45), the phase Ψ′(η) in the frequency domain is:

Ψ′(η) = Ψm(ts(η)) − ηts(η) +
γ

k
(3.46)

where γ = ±π
4

depending on the sign of d2Ψm

dt2
. ts(η) is the stationary point from the

solution of equation (3.44). However, The last term can be neglected since it vanishes
asymptotically. If we take the derivative of the phase of the frequency, we obtain:

dΨ′(η)

dη
=

d

dη
(Ψm(ts(η)) − ηts(η)) =

(

∂Ψm(t)

∂t

∣

∣

∣

∣

t=ts(η)

− η

)

∂ts
∂η

− ts(η)

= −ts(η) with
∂Ψm(t)

∂t

∣

∣

∣

∣

t=ts(η)

= η (3.47)
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If the instantaneous frequency η can occur only once, then the arrival time is treated
as a single-valued function. By differentiating the phase with respect to the frequency,
the signal arriving time of the frequency is determined and the coordinate of the GPS
and LEO satellite can be identified.

The time derivative of the eikonal can be found as [Jensen et al., 2003]:

Ψ̇ = η(p, t) =
ṙG

rG

√

r2
G − p2 +

ṙL

rL

√

r2
L − p2 + pθ̇ (3.48)

where rL and rG are the distance from the center of the Earth to the satellites. θ is
the angle between two satellite vectors. If we assume a circular satellite orbit and a
spherical Earth, ˙rG = ṙL = 0. Equation (3.48) is simplified to:

Ψ̇ = η = pθ̇ (3.49)

θ̇ is a constant. The above equation tells us that frequency is proportional to the
ray impact factor. In previous sections, we know that the impact factor can uniquely
identify a ray and is different for each ray. This indirectly proves our assumption that
any instantaneous frequency can occur only once.

In reality, the orbit of the satellites are not strictly circular, and the orbital plane
of the GPS and LEO does not coincide. Meanwhile, due to the oblateness of the
Earth, the center of the refractivity is generally not the center of the Earth. As a
result, we cannot assume the radial velocities of the satellites are zero and θ is no
longer a simple linear function of time when two satellites are not in the same plane.
In such situations, the monotonic relationship between the time and frequency might
be broken since the radial accelerations and higher-order derivatives of θ make the
FSI result too noisy.

In the above discussion, for the circular orbital configuration, the FSI method can
be treated as a special case phase of matching method with Ψ(η, t) = ηt, c = η, and
y = t. It is indeed a Fourier method as discussed in the phase matching section. The
phase matching method can account for the non-circular orbit, but function (3.39) is
not linear and can not use the FFT method. The phase function (3.39) can be revised
to approximate the original function but with the linear form. It can be written as a
function of θ:

ΨFSI(c, c0, θ) = cθ +
√

r2
L − c2

0 +
√

r2
G − c2

0 − c0 arccos
c0

rL

− c0 arccos
c0

rG

(3.50)

Thus, from equation (3.37), we obtain the following parametric pair:
[

c,
∂(Ψ − ΨFSI)

∂c

]

= [c, θs] (3.51)

The impact factor p can be found from the Doppler equation ω(θs) = ωFSI(c, c0, θs),
i.e.,

ṙG

rG

√

r2
G − p2 +

ṙL

rL

√

r2
L − p2 + pθ̇ =

ṙG

rG

√

r2
G − c2

0 +
ṙL

rL

√

r2
L − c2

0 + cθ̇ (3.52)
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p is not equal to c comparing the phase matching method. With the proper choice of
c0, the impact of the radial velocity can be reduced. Finally, the bending angle can
be calculated as:

α = arcsin(
p

rG

) + arcsin(
p

rL

) + θs − π (3.53)

In the real computation, the radio occultation observation needs to be up-sampled
and interpolated with respect to θ coordinates.

3.3.5 The relationship among CT, FSI and phase matching

In this section, the relationship among CT, FSI, and phase matching methods
will be discussed. These methods are theoretically related and some of them can be
mutually explained. We already understand in the above section that the FSI method
is a phase matching method with a linear phase matching function, which enables the
use of the FFT for better computational efficiency. All these methods transform the
signal to another form of representation which is capable of disentangling the inter-
fering rays in the multipath region, and they all use the derivative of the transformed
phase to compute the bending angle and impact factor. On the other hand, they
all have some restrictions, such as CT needs a time-consuming pre-processing step
to back-propagate the signal to a vertical line, FSI works best in a circular orbital
configuration, and the phase matching method can work in arbitrary observation tra-
jectories but FFT cannot be applied. In the following, we interpret these methods
from alternative angles.

3.3.5.1 CT and phase matching principle

We already know that the stationary phase method can be applied both in the
derivation of the canonical transformed method and phase matching method. We
will show here that the canonical transform method can also be derived by the phase
matching principle.

According to equation (3.33), the phase matching function in the frequency do-
main can be defined as:

F̃ (p) =

∫

ũ(η)e−ikΨ̃0(p,η)dη (3.54)

with the phase matching function for frequency representation:

Ψ̃0(p, η) = −
∫

y(p, η)dη (3.55)

It has a similar form to the generating function S(p, η) in equation (3.26), but with
opposite sign. Consequently, we can use the expression for the generating function:

Ψ̃0(p, η) = −p arcsin η + x
√

1 − η2 (3.56)
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From equation (3.37), the derivative of the transformed phase with respect to p is:

∂(Ψ − Ψ0)

∂p
= −∂Ψ0(p, ηs)

∂p
= arcsin η = ξ (3.57)

For a given p, we can compute the ray arriving angle from the above equation, this
is the same equation (3.27) from the CT method.

Substituting equation (3.56) into equation (3.54), yields:

F̃ (p) =

∫

ũ(η)e−p arcsin η+x
√

1−η2

dη (3.58)

It is similar to the FIO equation (3.21) in the CT method:

ux(p) ==
k

2π

∫

a(p, η)eik(p arcsin η−x
√

1−η2)ũx(η)dη

Only the amplitude functions between these two methods are a little bit different.
From the above derivation, we clearly see that the CT method can also be interpreted
by the phase matching principle in the frequency domain.

3.3.5.2 CT and FSI method

The FSI method is a special form of the phase matching method. As shown above,
the CT method can be formulated by the phase matching principle used by the FSI
method. Reversely, the FSI method can be re-formulated by the CT method, which
means FSI is also a CT method but with different coordinate representations. The
FSI method is along a satellite orbit which is close to a circle, while the CT method is
applied to the fields on a back-propagated straight line. The transformed field of the
two methods are different. For the FSI method, the transformed field is a function
of Doppler frequency which is approximately proportional to the ray impact factor.
While for the CT method, it is a function of the impact factor directly. Numerically,
the FSI method is relatively simple, easy to implement, and computationally efficient,
but it requires a small orbital eccentricity.

3.3.5.3 The comparison of radio-holographic methods

In Table 3.1 , the characteristics of different radio holographic methods are com-
pared and summarized.
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Radio
holo-

graphic
methods

Tunable
parameter

Trans-
mitter

position

Observ.
trajectory

FFT

Derived by
stationary

phase
method

Derived by
FIO

Phase
matching

Remove
Diffraction

CPU
power

Back
Propaga-

tion

Position of
BP plane

Stationary
Vertical

line
Yes N/A N/A N/A Yes High

Canonical
Transform

No Stationary
Vertical

line
Yes Yes Yes

Frequency
domain

Yes High

Phase
Matching
method

No
Non-

stationary
Arbitrary No Yes N/A

Coordinate
or time
domain

No Low

Full
Spectrum
Inversion

No
Non-

stationary
Circular

orbit
Yes Yes Yes Yes No Low

Fourier
Integral
type 2

No
Non-

stationary
Arbitrary Yes Yes Yes Yes No Moderate

Radio
Optic

Size of
sliding

aperture

Non-
stationary

Arbitrary
trajectory

Yes N/A N/A N/A No Low

Table 3.1: Comparisons of radio holographic methods
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CHAPTER 4

RESULTS FROM THE GPS OCCULTATION AND THEIR
VALIDATIONS

4.1 Introduction

In order to better understand the GPS occultation retrieval process and better
utilize the high level products, we have been continuously improving our own retrieval
software to obtain accurate atmospheric parameters. In this chapter, we discuss the
characteristics of GPS occultation and its potential to improve the pressure fields. The
retrieved occultation profiles are validated against the numerical weather prediction
products, mainly from ECMWF and NCEP.

4.2 The characteristics of GPS occultation

4.2.1 Spatial coverage

The number of occultation events for a particular satellite mainly depends on its
orbital configurations (e.g. altitude, inclination). The GPS antenna for occultation
is pointing in the direction along the satellite track. Satellites can carry both fore-
looking and aft-looking antennae (e.g. SAC-C) for occultation purposes. The events
are usually called rising and setting events, respectively, and last about one minute. In
practice, however, rising events require accurately predicting and tracking the signals
from the very beginning without the assistance of any prior tracking knowledge,
which is very hard using the current hardware architecture – closed Phase Lock Loop
(PLL). An open loop algorithm is required and is currently under active development.
Therefore, almost all occultation events currently available are setting occultation
events.

The GPS occultation system is an all-weather system, and it is insensitive to
cloud and rain. The basic measurement is the time-delay of the signal when passing
through the Earth’s atmosphere. The occultation events have nearly global coverage.
Typically in one day, there are roughly 250 occultation events. After overcoming
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the difficulty of tracking rising occultations, this number can be doubled. Figure 4.1
shows an example of the spatial coverage for a typical day. The sounding points are
nearly uniformly distributed.

Figure 4.1: Locations of GPS occultation events for one day.

In reality, the occultation events are not strictly uniformly distributed. Due to
the orbital configuration of the GPS satellites, there are more occultation events in
the middle latitude area than in the tropical and polar regions (Please note that the
zonal area becomes smaller when moving from tropics to polar regions). Meridional
distribution is more uniform. The distribution of 3 months of CHAMP occultation
events is shown in Figure 4.2. The events are counted using a 1 degree bin size along
the longitude and latitude, respectively.

In the data sparse regions, such as the Southern Oceans and Antarctica, the short-
age of regular types of observations limits the model performance. As a new type of
observation, the GPS occultation, theoretically has the potential to remedy the data
deficiency by increasing the spatial coverage. Figure 4.3 shows the geographic cover-
age of three different measurement techniques (CHAMP occultation Jan.-Mar., 2003,
automatic weather stations, and radiosondes). It is obvious that these occultations
can provide more geographical coverage over Antarctica compared to the sparsely
located radiosonde stations (15 stations for the entire Antarctic region), while the
other two data types provide dense time series but at fixed locations.
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Figure 4.2: Zonal and meridional distributions of 3 months CHAMP occultation
events.

Figure 4.3: Coverage maps for CHAMP occultation Jan.-Mar., 2003(left), automatic
weather stations (middle) and radiosonde (right) in Antarctica.

4.3 CHAMP profile retrieval

We chose a CHAMP event near a radiosonde station over Antarctica. Figure
4.4 shows the computation results based on the algorithms described in previous
sections. The profile (18.4◦W, 70.1◦S) was recorded on May 21, 2001, 12:54 UTC
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and the data are obtained from the CHAMP data center at GFZ. Level 2 product
(atmospheric excess phase) is used to compute the vertical atmospheric profiles, which
are compared to profiles from other data centers (GFZ level 3 product, JPL level
2 product, UCAR COSMIC Data Analysis and Archive Center (CDAAC) level 2
product) and corresponding ECMWF and NCEP data at the same location. From
the comparison of the temperatures (Figure 4.4c), we see that the occultation results
agree well among the Ohio State University (OSU) solution, UCAR and GFZ solutions
below 30 km. The large disagreement of the temperature profile above 35 km between
OSU and GFZ solutions is primarily due to the different methods adopted for the
boundary condition of the upper atmosphere. The OSU solution chooses a statistical
optimization method above a certain altitude, usually around 35-40 km. At those
altitudes, noises dominate bending angle measurements. The GFZ retrieval software
applies another approach for the optimization. This is the reason for the deviations
observed above 30 km. JPL results agree with OSU, GFZ, and UCAR for 5-25 km,
and they fit well with the NCEP and ECMWF data in the lower troposphere. All the
results from other processing centers also show good agreement with the NCEP and
ECMWF analysis results except in the lower 5 km. We note that the GPS occultation
measurement has a much higher vertical resolution than the weather analysis products
have.

GPS occultation can also be validated by other measurement techniques, like
radiosonde. To demonstrate the potential of the GPS radio occultation technique
for precise and high vertical-resolution temperature profiling above Antarctica, the
CHAMP occultation profile (Figure 4.4) is compared with radiosonde data. The
radiosonde was launched at the German Neumayer station (8.2◦W, 70.4◦S) at 9 UTC
on May 21, 2001. The data were recorded between 9 and 11 UTC. The agreement
between both profiles is very good above the Earth’s surface (temperature here are
about -35◦C) up to about 10 hPa pressure level ( 30 km height). The precise resolution
of the tropopause height and temperature (Figure 4.5) is remarkable. It indicates that
the occultation technique has comparable accuracy with radiosonde data. Statistical
validations using larger data sets from CHAMP and SAC-C missions, as well as
radiosonde and meteorological analysis data are performed in a later section to assess
the potential use of GPS occultation data for improving the pressure modeling in
Antarctica.

4.4 Signal penetration

As discussed in previous chapters, there are many factors that affect the penetra-
tion depth of occultation profiles, such as hardware sensitivity, tracking algorithms,
environmental diffractions, and multipath (due to water vapor). To accurately de-
rive the surface pressure, occultation signals need to penetrate down to the Earth’s
surface. Due to the complexity of water vapor and signal tracking problems in the
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(a) Refractivity profile (b) Pressure profile

(c) Temperature profile

Figure 4.4: A CHAMP profile over Antarctica.

Planetary Boundary Layer (PBL), signals sometimes cannot penetrate down to the
surface. In tropical regions, the water vapor is abundant in the atmosphere; while in
the cold polar region, the air hardly contains moisture. The moisture content could
induce a very strong refractivity gradient, and the tracked signals are noisier than in
the dry air. In severe situations, the signal loss-of-lock could happen. We chose two
occultation events, one is at a tropical region, the other is at a polar region. Figure
4.6 shows that signals tracked in the tropical region have lower signal-to-noise ratios,
and they become much noisier when approaching the ground. The derived excessive
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Figure 4.5: Comparison of CHAMP vertical dry temperature profile with radiosonde
data from the German Neumayer station on May 21, 2001.

Doppler is relatively smooth in polar regions. Consequently, the derived bending an-
gle is also relatively smooth. The results in such region are more reliable and easier
to interpolate and extrapolate to the ground.

We use 3 months of data to investigate the signal penetration to the ground.
Figure 4.7 illustrates the distribution of CHAMP occultation penetration over three
different regions. In the tropical region (defined here as 30◦N-30◦S), only about 10%
of signals penetrate down to 1 km above the MSL (Figure 4.7b). This is caused by
the warm and moist environment in the tropical region. The rapidly changing moist
content in the lower atmosphere also affects signal tracking. CHAMP occultation
performs much better in the Arctic region (Figure 4.7a), nearly 80% of the profiles
reach within 1 km above the MSL. The deeper penetration results because (1) most
of the Arctic region is over the ocean; and (2) the Arctic region is cold and relatively
dry. Figure 4.7c shows the results over Antarctica, where nearly 50% of profiles reach
1 km above MSL. It is noted that Antarctica is a highly elevated region. After remov-
ing the topographic effect (i.e., referencing the occultation profiles to the ECMWF
topography), Figure 4.8 shows that the signal penetration in Antarctica is similar to
that in the Arctic region ( 80% of signals penetrate to within 1 km above the surface).
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Figure 4.6: The comparison of polar and tropical GPS occultation events.

4.5 The comparison of CHAMP and SAC-C pressure profiles

During the past several years, there has been great developments in the GPS oc-
cultation retrieval algorithms, especially for profiles in lower tropospheric multipath
regions. Data processing centers, e.g., JPL, UCAR, and GFZ, are continuously pro-
viding low and high level GPS occultation products. Differences still exist in the
retrieval algorithms among data centers. Data from different centers should be accu-
rate, consistent and comparable. Testing the consistency of these products, especially
the pressure field, will guide us to properly utilize the data.
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Figure 4.7: Histograms of CHAMP occultation penetration depths (referencing to the
MSL) over the Arctic (80% signal penetration), tropical (10%), and Antarctic (50%)
regions. CHAMP occultation data are from Jan.-Mar., 2003.
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Figure 4.8: The lowest penetration altitude above different penetration surfaces.

The co-existence of CHAMP and SAC-C provides a unique opportunity to ex-
amine the inter-satellite consistency. In this particular case study, we compare the
occultation derived pressure profiles at a specific altitude (here, it is 10 km). Occulta-
tion pressure profiles from JPL and UCAR based on identical datasets are analyzed
with 10◦×10◦ block averages on the entire Earth. We will not be able to match
positions between CHAMP and SAC-C profiles. The comparison between CHAMP
and SAC-C is done indirectly by subtracting occultation derived pressure from each
satellite from an identical NWP analysis model. The inter-satellite consistency is eval-
uated by comparing the two differences (CHAMP vs. model and SAC-C vs. model).
Since CHAMP and SAC-C have different orbit configurations, this result can show us
whether the occultation result is mission independent in a relatively short time span
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(e.g., one month). How large a discrepancy of occultation results from independent
data centers can be expected is another question to answer.

4.5.1 Datasets

The period chosen in this study is Sept. 1-30, 2001. The reason for choosing
this period is simply that CHAMP and SAC-C have the same tracking software, but
CHAMP has a later version of a scheduler while SAC-C has a later version of the
master control program (JPL GENESIS website). The level 2 data were downloaded
separately from the UCAR COSMIC website (http://www.cosmic.ucar.edu) and the
GENESIS ftp site (ftp://sayatnova.jpl.nasa.gov). Only profiles that both centers have
are used in this study. There are a total of 1,221 CHAMP profiles and 2,362 SAC-C
profiles for the analysis (Figure 4.9). ECMWF and NCEP profiles are obtained by
interpolating along the occultation path. For pressure measurements, the linear log
interpolation was used along the altitude. Figure 4.9 shows the occultation coverage
during the whole analysis period. Since SAC-C has a relatively higher orbit altitude
(702 km) than CHAMP (initial orbit 454 km), it has more GPS occultation events
than CHAMP. Due to the orbit configuration, mid-latitude and polar regions have
more occultation events than the equatorial region.

CHAMP and SAC-C pressure profiles along with ECMWF and NCEP pressure
profiles are interpolated between 1 km and 30 km altitude above mean sea level in
1 km step. The depth of the CHAMP profile penetration affects the accuracy of the
derived surface pressure. Since the pressure usually increases exponentially with a
decrease in altitude, the extrapolation error also increases exponentially. To avoid
the effects of the lower troposphere multipath and the water vapor ambiguity to the
analysis result, we compare the pressures at 10 km altitude.

4.5.2 Comparison results

The differences between the CHAMP occultation derived pressure and ECMWF
pressure at 10 km altitude are shown in Figure 4.10. The differences are averaged
using the 10◦ × 10◦ block mean and interpolated over the globe. We assume that the
model analysis results can remove most of the time and location dependent pressure
values from occultation profiles. Panel (a) shows the results from two centers. JPL
CHAMP-ECMWF difference has several negative anomalies (< -3 hPa) around the
equatorial region, while UCAR CHAMP-ECMWF difference has positive anomalies
(> 4 hPa) around the southern mid-latitudes. The differences in most of the region in
these two figures are within ±1 hPa. The two figures of CHAMP-NCEP differences
from UCAR and JPL also look slightly different from each other, especially at the
southern polar regions. If comparing the two figures from the same organizations
in Figure 4.10, we can find some common anomalies. Their magnitudes are slightly
different due to the difference between NWP models. In the Southern Ocean and
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Figure 4.9: Locations of the GPS occultation profiles (2,362 for SAC-C and 1,221 for
CHAMP).

Antarctica, JPL’s results show that CHAMP pressure is lower than ECMWF and
higher than NCEP. UCAR’s results tell the opposite, and the CHAMP pressure is
lower than NCEP in such regions. These disagreements reflect the possible influence
of the retrieval algorithms on the occultation derived pressure, and on the large
disagreement between CHAMP and model in Southern Ocean and Antarctica.

The differences between SAC-C data and models are more prominent than that
of CHAMP (Figure 4.11). SAC-C pressure profiles from JPL have positive equato-
rial differences larger than 5 hPa, which can be seen in both ECMWF and NCEP
comparisons (Top two figures in Figure 4.11). This implies that these anomalies
probably originate from SAC-C profiles. As for UCAR’s retrieval results, several neg-
ative anomalies occur near the equatorial and mid-latitude regions in both ECMWF
and NCEP figures (Bottom two figures in Figure 4.11). Among these anomalies,
the occultation pressure is lower than the model pressure. Here once again we see
disagreements between the JPL’s and UCAR’s results. In some areas of Antarc-
tica, JPL’s SAC-C pressure is lower than ECMWF and higher than NCEP. UCAR’s
SAC-C pressure has a smaller value compared to NCEP in the Southern Ocean and
Antarctica, where the pattern looks similar to the UCAR’s CHAMP and NCEP com-
parison. This probably suggests that NCEP performs worse than ECMWF at the
southern polar region.

The occultation pressure results are inconsistent between different processing cen-
ters. Meanwhile, different satellites do not produce a consistent error pattern. For
JPL’s solution, CHAMP pressure seems lower than SAC-C pressure. UCAR’s solu-
tion does not have a clear pattern between CHAMP and SAC-C, and the signs and
locations of the anomalies are also different.
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(b) CHAMP - NCEP

Figure 4.10: Pressure differences between CHAMP occultation profile and analy-
sis models at the 10 km altitude. (Derived by 10◦ × 10◦ block mean, JPL(top),
UCAR(bottom)).

The above results show inconsistency between different centers and between differ-
ent satellites. At 10 km altitude, there is no multipath and no water vapor ambiguity
problem, but the pressure difference sometimes exceed 5 hPa. In UCAR’s results,
large disagreements with NCEP are around the Antarctic region. JPL’s SAC-C pres-
sure results show big equatorial difference with both models. The reason for these
differences is at present unclear. All the profiles used in this study have passed quality
control.

When comparing each single profile from different centers, we find that they usu-
ally do not agree with each other perfectly. Pressure has a relatively larger range com-
pared to temperature or water vapor (one order of magnitude larger). It also increases
or decreases exponentially with the change of height. The cause of inconsistency be-
tween different centers might be due to different retrieval algorithms, initialization
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Figure 4.11: Pressure differences between SAC-C occultation profile and analy-
sis models at the 10 km altitude. (Derived by 10◦ × 10◦ block mean, JPL(top),
UCAR(bottom)).

and optimization methods, and different approximations adopted in the processing
procedures. Assessing these procedures and approximations and their sensitivities to
the pressure retrieval can help us to better understand how these differences could
occur. Especially, the steps that are related to the definitions or approximations of
geopotential height need to be carefully validated.

Current ECMWF analysis is already working very well compared to other models.
If one wants to improve the models using occultation measurements, errors and incon-
sistencies must be identified. A stringent quality control procedure is also required.
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4.6 Comparison of GPS derived pressure with ECMWF, NCEP
and radiosonde data

4.6.1 GPS occultation dataset

The period chosen in this study is April, 2003 (or day 091-120, 2003). The data are
obtained from the COSMIC data center. ECMWF and NCEP profiles are obtained
by interpolating along the occultation path. If we consider CHAMP and ECMWF
only, there are a total of 4,574 matched profiles, while for radiosonde data, only 1,279
matched profiles exist.

4.6.2 Method

Before the comparison, the CHAMP, ECMWF, NCEP, and radiosonde pressure
profiles are interpolated between 1 km and 30 km altitude above MSL in 1 km step.
No extrapolation is performed if the data did not reach a certain altitude, e.g., 1 km
or 2 km. The comparison is done to the levels where each two types of data exist.
Since usually models are expected to perform differently in different regions, we divide
the whole globe into 5 regions according to the latitudes: Southern Polar (SP, 60◦S-
90◦S), Southern Mid-latitude (SM, 30◦S-60◦S), Tropical (TP, 30◦S-30◦N), Northern
Mid-latitude (NM, 30◦N-60◦N), and Northern Polar (NP, 60◦N-90◦N) regions. Since
the extrapolation error increases exponentially with a decrease in altitude, the depth
of the CHAMP profile penetration affects the accuracy of the derived surface pressure.
The mean and standard deviation (STD) are calculated for each pair of data in the
analysis period. In order to compare with radiosonde data, many profiles in the other
datasets have to be discarded simply because radiosonde measurements only exist
over land area. There are only a few match-ups in the southern hemisphere (Figure
4.12, right panels). Without losing generality, we compute and compare the statistics
of 4,574 and 1,279 matched CHAMP and ECMWF profiles (reduced to 1,279 in order
to match radiosonde profiles). Since the statistics behave similarly, we ignore the
different number of observations when we discuss our results.

4.6.3 Comparison results

The differences among 4 types of pressure profiles are shown in Figure 4.12. We
compare CHAMP with ECMWF, NCEP and radiosonde pressure profiles in the first
sets of panels in Figure 4.12. From the left panel of (a), (b), and (c), it is obvious
that the mean CHAMP pressure at the SP region is lower than that of any of the
other 4 regions, or CHAMP is biased negatively versus the other models or data. It
is nearly 3 hPa at 1 km altitude for the Antarctic region (SP). The biases for other
regions in (a) and (b) are within 1 hPa at 1 km altitude. Larger STD differences
for the SM and SP regions at 1 km altitude are shown in the middle figures in (a)
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Figure 4.12: Inter-comparisons (pressure difference) of CHAMP derived pressure pro-
file (PCHAMP ), ECMWF pressure profile (PECMWF ), NCEP pressure profile (PNCEP )
and radiosonde pressure profile (PSON). In the figures: SP–southern polar region
(60◦S-90◦S), SM–southern mid-latitude region (30◦S-60◦S), TP–tropical region (30◦S-
30◦N), NM–northern mid-latitude region (30◦N-60◦N), NP–northern polar region
(60◦N-90◦N). For each figure: left panel–mean of pressure difference, middle panel–
standard deviation (STD) of pressure difference, right panel–number of values in each
level used for the comparisons.
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and (b). STD differences at 1 km altitude in all other regions are generally around 1
hPa. It is surprising to find that the tropical region (TP) has the smallest STD. In
the comparison of the ECMWF pressure with the CHAMP pressure, the agreement
in the SP region is the worst both in bias and STD.

In (b) of Figure 4.12, the large bias between NCEP and CHAMP pressure profiles
also occurs around the tropopause (SP). The SP area still has the largest bias at 1
km altitude. It is expected to be even larger at the Earth’s surface. The STD figure
shows a similar pattern to that of ECMWF. The tropical region (TP) still has the
smallest STD. The similarity of (a) and (b) directly causes the outputs of ECMWF
and NCEP to agree relatively well as shown in (d). The bias is within 1 hPa and the
STD difference for all regions are around 1 hPa except for the SP region. The largest
bias occurs at around 4 km altitude. Although the STD is relatively small compared
to other figures, SP is still the region which has the largest discrepancy between these
two models.

As an independent measurement technique, radiosonde is a valuable data source in
this study. The remaining figures (c, e, and f) in Figure 4.12 compare the radiosonde
pressure with the pressure from CHAMP, ECMWF, and NCEP. The figure in the left
panel of (c) could probably confirm that the biases between CHAMP and ECMWF
and between CHAMP and NCEP come from the CHAMP pressure profiles. The
STD figure in (c) also shows big value at the bottom, and the TP region has the
smallest value. We should point out that the match between the occultation and the
radiosonde profile cannot be exactly both in location and time, i.e., the match is only
defined within a certain period of time (e.g. ±1 hour) and within a certain distance
(e.g. 200 km). The comparisons between ECMWF/NCEP and radiosonde have the
same problem. The variation of pressure is usually larger in the mid-latitude and in
polar regions than in the tropical region (see Chapter 5, Figure 5.2). Therefore, the
mis-match of time and/or position of two profiles will increase the STD of all regions
with the SP region as the highest. This is confirmed by the middle panel of (c), (e),
and (f).

Figure (e) and (f) in Figure 4.12 show that there are large mean differences be-
tween the model pressure and radiosonde pressure in the SP region. This is reasonable
because that the lack of data in the southern polar region causes poor model perfor-
mance. The differences are larger near the surface. One should note that the number
of radiosonde stations in Antarctica is very small (see right panel of (c), (e), and (f)),
the statistics for such a region should be carefully interpreted.

Through the analysis of Figure 4.12, we find that the pressure bias is large at
or near the Earth surface, especially in the SP region. CHAMP derived pressure
has smaller value in each level compared to other data in the SP region. From the
STD of CHAMP and radiosonde difference, we can see that the two measurement
techniques do not agree very well. One reason could be that the radiosonde has lower
vertical resolution than the occultation does; the other possibility is that they do not
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exactly match both in space and time. The biggest advantage of GPS occultation
is its spatial coverage. Once the biases are removed and the errors are detected, it
can be used to improve the model performance, especially in data-sparse regions. We
will show in the next section that we could use techniques such as one-dimensional
variational (1DVar) method to combine occultation and model values in an optimal
way to improve the accuracy.

4.7 1DVar method

The variational approach is a method to obtain a statistically optimal atmospheric
state by combining a background model (a priori) with observations. We have seen
that GPS occultation has many attractive characteristics. It has high vertical reso-
lution and accuracy. The sounding points have global coverage and are almost un-
affected by precipitations and clouds. Unlike the radiosonde, its instrument requires
no calibration, no instrument drift and no bias exist for different satellites. However,
GPS occultation observation represents a new type of observation, which is not a
traditional meteorological measurement and cannot be directly used. The vertical
profile is not at a single position. Instead, it is along a slant path of about 200-300
km. Even a single point in a vertical profile can not be simply viewed as a local
measurement. It is shown that converting the path delay to meteorological quantities
is subject to various assumptions and errors (e.g., spherical geometry, choice of opti-
mization methods, height of initialization, etc). The results are sensitive to various
algorithms.

To avoid the above mentioned problems, one can choose to assimilate the quanti-
ties obtained in the early steps of the profile retrieval. The possible choices include
(1) excessive phases and/or amplitudes; (2) bending angles; (3) refractivity; and (4)
retrieved pressure, temperature and humidity profiles. The model assumptions and
approximations have almost no effect on the raw data (1), but this method requires
a complete modeling of wave propagations and ionospheric effects, as well as the
satellite orbital information. It is computationally expensive and impractical. Choice
(2) does not require the orbital information any more, but needs a 3-D ray tracing
operator to connect the bending angle and numerical weather analysis quantities [Zou
et al., 1999]. It is also computational demanding. Choice (3) only requires an upper
boundary initialization, and the observation operator is relatively easy, though there
are errors in this choice. The implementation is relatively inexpensive. Choice (4),
obviously, is not a good candidate, because it includes all the errors in the algorithms.

Assimilating the occultation profiles to real numerical weather models requires the
development of a 3-dimensional or 4-dimensional variational system, which is out of
the scope of this research. Here, we want to present a simulation result to combine
a radio occultation profile with a profile from an analysis model in the framework of
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1DVar to solve the “water vapor ambiguity” and assess the impact of occultation on
the analyzed surface pressure. We use the refractivity as observation in our simulation.

The penalty function for 1DVar is set up in the form [Eyre, 1994; Healy and Eyre,
2000]:

J(x) =
1

2
(x − xb)

T B−1(x − xb) +
1

2
(y0 − H(x))T (E + F )−1(y0 − H(x)) (4.1)

The mathematical task here is to minimize the penalty function. x in this case is
a vector including a profile of pressure, temperature and water vapor (i.e. the most
probable atmospheric state). xb is the state vector of the atmospheric background
(a priori, derived from the background information). B is the covariance matrix of
the a priori information. H(x) is the forward model, which maps the background
information to a “background measurement”, in our case, the refractivity, N.

y = H(x) (4.2)

E and F are the expected covariances of the measurements and forward modeling,
respectively. By solving (minimizing) this penalty equation using the least squares
principle, profiles of pressure, temperature and water vapor can be obtained simulta-
neously. The gradient of the penalty function J is:

∇J = B−1(x − xb) − H ′ T (E + F )−1(y0 − H(x)) (4.3)

The penalty function (4.1) can be minimized iteratively using the steepest descent
method, conjugate gradient method or quasi-Newton method. The covariance matrix
Q of the final solution is given by [Bouttier and Courtier , 1999]:

Q−1 = J ′′ = ∇∇J = B−1 + H ′ T (E + F )−1H ′ (4.4)

In our simulation, the state vector consists of 33 elements:

x = [T (P16), · · · , T (P1), ln(Q(P16)), · · · , ln(Q(P1)), Ps]
T (4.5)

where T and Q are the temperature and the specific humidity on 16 pressure levels
from 1000 hPa to 10 hPa. Ps is the surface pressure. The measurement from GPS
occultation y0 is a one-dimensional vertical profile of refractivity as a function of
impact factor at fixed tangent points:

y0 = [N(a1), N(a2), · · · , N(anobs)]
T (4.6)

The background information is taken from ECMWF analysis. Its covariance matrix
is constructed as diagonal for this experiment, since there is no full matrix available
to use. The observation error matrix E is formed empirically as follow:
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• The percentage error in refractivity is 1% at the surface and decreases linearly
to 0.2% at the height of 10 km. Above 10 km, the error remains 0.2%.

• The correlations are assumed to be an exponential decay with the separation in
geopotential heights, given by:

Enm = σnσm exp(−l(zn − zm)) l = 3 × 10−4 m−1 (4.7)

where σn and σm are the observation errors at the height zn and zm.

The forward model H(x) → y converts the state vector x at model levels to the
refactivity N at observation levels. Usually, the observation levels have much higher
resolution than the model levels. First, the virtual temperatures and geopotential
heights at model levels are calculated, which enables the calculation of the gradient
of ln(specific humidity), temperature and virtual temperature with respect to the
geopotential height between any two adjacent model levels. Then the specific humid-
ity , temperature and pressure at any observation height between two adjacent model
levels can be calculated using linear interpolations and gradient values. Finally, the
refractivities are obtained at the observation levels. The forward modeling error F is
ignored in our simulation by assuming that the interpolation errors from the model
levels to the observation levels are minor. The gradient of the forward model H ′ is
required by the gradient of the penalty function J in (4.3) and the covariance matrix
of the final solution Q in (4.4). The procedure of calculating H ′ is simple but very
tedious, one needs to apply the chain rule to the formulas in each step of the forward
model calculation.
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Figure 4.13: The 1DVar simulation results.
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Figure 4.13 (a) shows the simulated background errors for the temperature. After
assimilating the GPS occultation measurements, the ratio between the estimated error
and the background error of temperature shows great improvement on the 200-300
hPa region (Figure 4.13b). The errors are reduced up to 80%-90%. The error for the
surface pressure obtained from the covariance matrix of the solution is reduced to
70% of the original background value (2.5 hPa). Since the surface pressure is related
to the variables on each layer through the hydrostatic equation, any change of the
observations on any layer could affect the surface pressure value. Consequently, the
highly accurate GPS occultation observations at 5-30 km can bring positive impact
on reducing the uncertainty of the surface pressure. The improvement of other state
variables (e.g., temperature) can also indirectly improve the accuracy of the surface
pressure. Although our simulation is only based on limited test, it does show that
GPS occultation measurements have potential to improve the pressure modeling.
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CHAPTER 5

THE EFFECTS OF ATMOSPHERIC PRESSURE ON
TIME VARIABLE GRAVITY SOLUTIONS

5.1 The atmospheric pressure

5.1.1 The mean pressure field

Mass variations of the atmosphere contribute to the total mass change of the Earth
system. The total pressure measurement (total surface pressure = dry air surface pres-
sure + water vapor surface pressure) on the Earth surface (or integrated column of
air) reflects the mass change in the atmosphere. The total mass of the atmosphere has
been studied and constantly updated as the most recent model analyses become avail-
able [Trenberth, 1981; Trenberth and Guillemot , 1994; Trenberth and Smith, 2005].
The total mass of the atmosphere from a recent analysis Trenberth and Smith [2005]
based on the 40-year ECMWF re-analysis (ERA 40) is 5.1480 × 1018 kg, and the
water vapor changes annually in a range of 1.2 or 1.5×1015 kg depending on whether
surface pressure or water vapor data is used. In his previous research [Trenberth and
Guillemot , 1994], the total mass from the operational analysis is 5.1441×1018 kg with
a change of 1.93 × 1015 kg throughout the year associated with the changes of water
vapor in the atmosphere. According to his paper, the increase of the total mass is
mainly due to the continuous improvement of the topography model.

It is usually assumed that the total mass of the Earth system is conserved. We do
not solve the total mean mass (degree zero term in spherical harmonics) in gravity
solutions. The approximate mass of the Earth is around 5.97× 1024 kg and the mass
of the atmosphere is only 10−6 of the total mass of the solid earth. The global mean
surface pressure given by Trenberth and Smith [2005] is 985.5 hPa, and the water
cycle has a maximum fluctuation in July of 2.62 hPa and a minimum in December
of 2.33 hPa. Figure 5.1 shows a time series of the global mean surface pressure from
the NCEP re-analysis.
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Figure 5.1: The global mean surface pressure from the NCEP re-analysis.

5.1.2 The variation of atmospheric pressure

Although the global mean atmospheric mass change is in a small range, the re-
distribution of the atmospheric mass is continuous. As one of the biggest signals
in the time variable gravity field, atmospheric phenomena can be classified into two
categories based on their time variability. The first category represents long-term
atmospheric variations, including seasonal, annual, and inter-annual variations. Be-
cause of their long term characteristics and large magnitudes, these variations defi-
nitely can be sensed by satellite-to-satellite missions like GRACE. The features in-
clude the global atmospheric pressure annual cycle, which is high in July and low in
December (see Figure 5.1), the seasonal variation between the northern and southern
hemispheres, the formation of regular high-low pressure systems, and the mass move-
ment between land and ocean, such as the Indian monsoon. As for the inter-annual
variability, the El Niño-Southern Oscillation (ENSO) and the North Atlantic Oscil-
lation (NAO) are the dominant features for the atmosphere. Most of these features
can be resolved or represented by numerical models. The validation of such mod-
els requires multiple years of gravity observations. The other category reflects the
short-term atmospheric variations. The most popular ones include the mid-latitude
cyclones and anticyclones which can last for less than 10 days and cause 10-50 hPa
surface pressure variation. The other short-term variations are the diurnal and semi-
diurnal solar tides caused by heating and solar radiation [Chapman and Lindzen,
1970]. The atmospheric tides are more prominent in the tropics. The tides can be
different by up to 2.0 hPa with respect to the mean daily pressure [van den Dool
et al., 1997].

The variation of the surface pressure is typically in the range of 10-20 hPa. The
pressure difference or the pressure gradient force induces air flows or winds. In tropical
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regions, winds are weak and the surface pressure anomaly is expected to be small.
In the mid-latitude and polar regions, the surface pressure anomaly is larger. Figure
5.2 shows the RMS pressure variability using the NCEP re-analysis data in 2003.
The mid-latitude region has the largest pressure variability. Some extreme conditions
may also happen to introduce a large surface pressure anomaly. A hurricane is one of
such phenomena that originates from the oceans. In the U.S., most of the hurricanes
happen around the Gulf of Mexico region. A hurricane is an extremely low pressure
system. The surface pressure at the center of the hurricane could drop 100 hPa in a
very short period. The phenomena mentioned above may change rapidly, and may not
be totally sensed by the gravity missions, but their resonance could affect certain orbit
configurations and introduce observable secular or other long term perturbations.
These high frequency signals also interfere with the gravity measurements, thereby
they severely corrupt the lower frequency signals.
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Figure 5.2: The RMS of global surface pressure for 2003 from NCEP re-analysis.

5.2 The pressure measurements and modeling

Pressure is the least variable property of the atmosphere compared to other prop-
erties. For temperature or precipitation, a small shift of the location could introduce a
substantial error. Usually, there are two sources to obtain the pressure measurement,
one is from in-situ measuring devices, such as barometers, anemometers, radiosondes
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etc. Another way is to obtain data from numerical model analysis results. Real mete-
orological observations are not evenly distributed to cover the globe, but results from
Numerical Weather Prediction (NWP) models provide spatially uniform coverage
and internally consistent datasets. The most commonly used NWP models are those
from ECMWF and NCEP. These models are used to predict the future state of the
atmosphere by modeling the dynamic and physical processes of the atmosphere. Mod-
ern numerical forecast models are based on a formulation of the dynamic equations,
which are referred to as primitive equations. Variables in the models are represented
by either grid or spectral forms. Currently, most of the global operational models
utilize spectral models for better computational efficiency. Grid models are generally
adopted in high resolution, regional or limited-area models (e.g. MM5). To integrate
the dynamic equations, accurate initial conditions are required to be consistent with
the model initialization. This dataset is derived from various observations, including
ground weather stations, upper air stations (e.g., radiosonde), ship, aircraft and po-
lar and geostationary satellites. The process of establishing the grids for the initial
condition from all the observations in a limited time span is called data assimilation.
The processes include objective analysis, which is the error checking and the inter-
polation of the observation to the grids, and data initialization, which removes the
spurious wave noise to prevent them from exaggeration. The resulted analyzed grid
represents a best approximation (estimation) of the true state of the atmosphere at
a given time, which is a linear combination of the observations and a first guess from
previous forecasts. We mainly use the analyzed (not forecasting) fields in this study.

Two kinds of analysis products are usually available: operational analyses and re-
analyses. The assimilation method of operational analyses is constantly evolving as
time goes on. Variations of the initialization methods, physics, grid resolution, data
availability, and handling techniques will disrupt the consistency and the continuity
of the analyses. To provide a consistent dataset, many organizations established
their own project to produce the re-analyzed fields for various time spans such as the
ECMWF 40-year re-analysis (ERA40) and NCEP reanalysis. In these products, the
assimilation schemes do not change over time, but the observations will change due
to the data availability over time (e.g., no satellite data in the past). Unfortunately,
the ECMWF 40 year re-analysis does not cover the time span for GRACE. Instead,
ECMWF operational analyses will be used.

5.3 Datasets from analyses models

The analysis data we use are from ECMWF WCRP/TOGA data sets (TOGA
stands for Tropical Oceans Global Atmosphere, a program under the World Climate
Research Program (WCRP)) and the NCEP operational analyses. The ECMWF
archive is directly interpolated from the ECMWF operational, full resolution, surface,
and model level data. The dataset is represented in a horizontal resolution of T106
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(truncated at wavenumber 106) in spherical harmonics, and vertical resolution of
21 standard pressure levels from 1000 hPa to 1 hPa, although the original models
run at a much higher resolution (T799 in horizontal and L91 in vertical as of 2006).
Geopotential height, temperature and relative humidity are available 4 time daily at
00Z, 06Z, 12Z, 18Z (Z stands for Greenwich time).

The NCEP operational dataset we use are those from the Final (FNL) Global
Data Assimilation System (GDAS) on a 1◦ × 1◦ grid covering the entire Earth every
6 hours. It is one of the models from the NCEP’s global parallel system. The other
alternative is from the Global Forecast System (GFS). The FNL run provides the best
analysis results since it waits to collect data for at least 6 hours past the synoptic
time, while GFS only incorporates data for 2 hours 45 minutes past the synoptic
time. The FNL runs at the highest resolution T254 and L64, which corresponds to
55 km horizontal grid. GFS runs at the same resolution but with less data included.
We choose FNL over GFS in the study and it is on a regular latitude-longitude grid.
In the datasets, geopotential height, temperature, and relative humidity are available
on surface and 26 mandatory pressure levels from 1000 hPa to 10 hPa. Both datasets
were obtained from the National Center for Atmospheric Research (NCAR).

Both datasets are stored in GRIdded Binary (GRIB) format, which is a widely
used bit-oriented format proposed by the World Meteorology Organization (WMO)
to exchange large volume of data among the meteorological communities. Analyses
centers do not strictly follow the standard, and format variations exist for different
products. The description for the NCEP dataset can be found from the NCEP GRIB
document ON388 [Gordon, 2002]. The local GRIB extensions for ECMWF datasets
are listed at the official ECMWF website.

5.4 The effect of topography on surface pressure

For in-situ barometric measurements, the use of the data is straightforward, re-
gardless of the instrument measurement error. Some NWP analysis products directly
include the surface pressure. However, most of the time, these values are not suitable
to be used directly. The terrain in numerical weather models (or model orography)
are converted from Digital Elevation Models (DEM) using different methods, which
include (1) mean orography (average of the terrain data inside a model grid box);
(2) envelope orography (cover all but the very sharpest peaks); (3) Silhouette orogra-
phy (averages only the tallest features in each grid box). Comparison of the surface
pressure directly from model output may cause some problematic effects. Since the
topography alters the flow of the atmosphere, the real topography is adjusted or
smoothed to best fit the physical model and its resolution. Sometimes, biases exist
between the real and the artificial model surface pressure, i.e., the surface pressure
from the NWP model is different from the surface pressure on the real physical Earth.
The accuracy of the conversion from the 3D global analysis data to surface pressure
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is greatly affected by the complexity of the land topography. The surface topography
represented in the models also differs by its resolution depending on the scale of the
model. In the region with the steepest elevation change, the difference and variability
are more obvious. In addition, many NWP models use surface spherical functions
to represent the surface topography, which may lead to spurious ripples in the area
of steep elevation change. This is the Gibbs phenomenon caused by the truncation
of the spherical harmonics. The topographical discrepancy in coastal areas is also
largely due to the adoption of different land sea masks in the models. The procedures
for the computation of the surface pressure is briefly introduced in appendix B.

Figure 5.3 shows the differences among ECMWF, NCEP, and ETOPO2 topogra-
phy. ETOPO2 is the 2-minute Gridded Global Relief data from the NOAA National
Geophysical Data Center. This topographic mosaic is converted to a grid resolution
of 1◦ × 1◦. In the global and Antarctic maps, significant differences are found in the
high elevation areas and along the coastal lines. ECMWF and NCEP also use differ-
ent elevation data in their models. Therefore, we cannot trust the surface pressure
data in these areas.

In the GRACE de-aliasing model (see chapter 7), a mean field covering at least
one year is removed from the 6-hourly model output. Most of the effects of the
topography in the residual atmosphere are canceled. The remaining part is not on
the same order of magnitude.

5.5 The uncertainties of the NWP surface pressure

In the GRACE processing procedures, atmospheric effects need to be first re-
moved before solving for the time variable gravity signal. In order to evaluate the
NWP model performance, Velicogna et al. [2001] compared the surface pressure from
ECMWF and NCEP with surface barometric measurements in the United States and
on the Arabic peninsula. In their analysis, the point accuracy of the global model is
around 1.0-1.5 hPa. The accuracy could be improved to 0.5 hPa by taking the spatial
and temporal average over a period of one month. The authors concluded that the
analyzed pressure fields are adequate to remove the atmospheric contribution from
GRACE hydrological estimates to sub-centimeter levels.

However, this analysis does not apply to the Southern Ocean and Antarctica,
where models have a bad performance because of lack of in-situ measurements. Mod-
els are also not consistent with each other. To compare the surface pressure, we
interpolate the ECMWF and NCEP pressure fields to the same topographical sur-
face. Figure 5.4 (a–e) shows a 4 times daily example of the pressure difference between
NECP and ECMWF based on the ECMWF topography. Only the 00Z difference is
plotted as a global view in (a). Significant difference (8 hPa) can be found over some
regions in the Southern Ocean and the Antarctic continent. The pattern alters with
time. This large disagreement between the two models shows the uncertainty and
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Figure 5.3: The differences of ECMWF, NCEP and ETOPO2 topography.

79



inconsistency of these two data products over the Southern Ocean and Antarctica.
We also examine the difference in the monthly mean field in Figure 5.5, where the
ECMWF and NCEP agrees reasonably well except for the southern high latitude
region. A 6 hPa discrepancy is found in the east Antarctic region.

Compared to other regions of the globe, the Southern Ocean and Antarctica are
data-sparse regions. The lack of observation networks and traditional measurements
greatly affects the model performance. We can not tell which model performs better
by simply comparing them. In-situ observations are needed to validate their respec-
tive performances. However, a large part of these observations (e.g., surface pressure)
have already been assimilated into these models, which means that the model result
is a weighted sum of the real observation and a background model, and the observa-
tions are not fully independent. Meanwhile, ECMWF and NCEP also have errors in
common. If we use such datasets, the comparison results would be a little optimistic.
As discussed earlier, the analyzed fields do not necessarily represent the true state
of the atmosphere, they are mainly used as an initial condition for forecasting pur-
poses. The initial guess field (background field) may have a weight as much as the
real observations. In Antarctica, the in-situ observations are very limited, we have to
neglect this effect in the comparison, but we should carefully interpret these results.

5.6 Effects of atmospheric pressure on the GRACE gravity
solution

By measuring with space geodetic techniques, signals are contaminated when pass-
ing through the Earth’s atmospheric envelope. The atmosphere can delay the distance
measurement, cause deformation of the surface of the solid Earth, and redistribute
mass as air flows.

The main objective of the GRACE mission is to recover the time variable gravity
field signals with a resolution of several hundred kilometers or larger, and monthly
time resolution accuracy around 2 mm of water thickness over land and 0.1 hPa or
better for ocean bottom pressure. Such a signal can constrain the processes of mass
redistribution and facilitate the research related to the geophysical evolution and
circulations on the Earth.

The atmosphere error also affects the determination of the non-steric components
(caused by the change of mass) in the sea surface height using GRACE and altimeter
measurements. The mass variation causes changes in both GRACE ocean bottom
pressure measurements and altimeter measurements, while the steric components
(change of density) are only reflected at the altimeter sea surface height measure-
ments. The combination of the two can determine the non-steric part of the sea
surface height change. There are two approaches to remove the mass redistribution
from the atmosphere above the ocean as suggested by Wahr et al. [1998]. One is to
remove the mass of atmospheric redistribution without removing the ocean response

80



−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−4

−4−2 −2

0

0

0

0

0

0

0

0

0

0

0
00

0

0
0

0

0

0

0

00
0

0

0

0 0

00 0
0

00

2

2
4

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−8
−7
−6
−5
−4
−3
−2
−1

0
1
2
3
4
5

hPa

(a) July 01, 2004,00Z, ECMWF-NCEP

0˚

60˚

12
0˚

180˚

240˚

30
0˚

−6

−4

−4

−4

−4

−2
−2

−2

−2

−2

0

0

0

0

0

0

2

2
2

6

0˚

60˚

12
0˚

180˚

240˚

30
0˚

−8
−7
−6
−5
−4
−3
−2
−1

0
1
2
3
4
5

hPa

(b) July 01, 2004, 00Z

0˚

60˚

12
0˚

180˚

240˚

30
0˚

−6

−4

−4

−4

−4

−2

−2
−2

−2

−2

0

0

00

0

0

0

0

0

2

2

2

22

4

0˚

60˚

12
0˚

180˚

240˚

30
0˚

−8
−7
−6
−5
−4
−3
−2
−1

0
1
2
3
4
5

hPa

(c) July 01, 2004, 06Z

0˚

60˚

12
0˚

180˚

240˚

30
0˚

−6

−4

−4

−4

−4

−2

−2

−2

−2

−2

−2

0

0

0

0

0

0

2

2

2

2

2

4

0˚

60˚

12
0˚

180˚

240˚

30
0˚

−8
−7
−6
−5
−4
−3
−2
−1

0
1
2
3
4
5

hPa

(d) July 01, 2004, 12Z

0˚

60˚

12
0˚

180˚

240˚

30
0˚

−4

−4 −4

−2

−2

−2

−2

0

0

0

0

0

0

2

2

2
2

2

4

6

0˚

60˚

12
0˚

180˚

240˚

30
0˚

−8
−7
−6
−5
−4
−3
−2
−1

0
1
2
3
4
5

hPa

(e) July 01, 2004, 18Z

Figure 5.4: The differences between the ECMWF and NCEP surface pressure on the
ECMWF topography.
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Figure 5.5: Monthly surface pressure difference between ECMWF and NCEP on the
ECMWF topography.
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to such redistribution. The error in the atmospheric product contaminates the gravity
measurements (ocean bottom pressure). The other is to remove both the atmospheric
mass redistribution and oceanic response from GRACE data, as well as the ocean’s
equilibrium response to the atmosphere from the altimeter measurements. In this
case, atmospheric errors enter into the altimeter measurements.

Hydrological information is also greatly affected by the accuracy of the surface
pressure measurement. The uncertainty of surface pressure errors over the land area
varies vastly depending on the region of interest. The Southern Ocean and Antarctica
have the highest uncertainty concerning the meteorological measurements.

The uncertainty of mean surface pressure, particularly at Antarctica, is a big
problem for retrieving the post glacial rebound signal. This has implications as to the
deterioration of the ice-sheet and mass balance study. The sparsely located stations
have a great impact on the performance of the numerical models over such an area.
The inter-comparison of two popular meteorological models (ECMWF and NCEP)
shows some inconsistency, the difference between them usually exceeds 6 hPa.

5.6.1 Atmospheric errors in GRACE solutions

The atmospheric mass signal is relative large. Figure 5.6 shows that signals from
ECMWF surface pressures are bigger than the GRACE GGM02S [Tapley et al., 2005]
estimated (approximately calibrated) error at around degree 30. The difference be-
tween ECMWF and NCEP is below the current sensitivity, but is larger than the
pre-launch sensitivity (40 times better than the current sensitivity) at around degree
30. The error curve for GRACE includes the contributions from the un-modeled at-
mospheric signals and measurement errors. Those errors degrade the accuracy of the
recovered gravity signals.

One of the GRACE science products is the monthly gravity solution, which is a
set of spherical harmonics computed from one month of GRACE observations. From
these piecewise monthly solutions, one can infer the mass variation. The residual
pressure variation is also included in this solution. Since we are only interested in the
variational signals, the total pressure is separated into two parts:

1. A long-term mean surface pressure

2. Short period pressure variations

The long term mean surface pressure is included in the static gravity field, while the
remaining short period variation is reflected in the monthly solution. There might
be errors in this mean surface pressure, but it is easy to fix once a better mean field
is available. Meanwhile, if we subtract one monthly solution from another, the com-
mon errors are canceled. Among different mass variations contained in the monthly
solution, atmospheric variations are better known from numerical models than other
signals (e.g., hydrology). To separate the total mass variation, atmospheric mass
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Figure 5.6: The sensitivity of GRACE to atmospheric surface pressure.

variations need to be accurately removed. Outputs from the numerical meteorologi-
cal models contain errors. These errors enter into a monthly solution in two different
ways:

1. The mis-modeled and un-modeled pressure errors

2. The un-modeled pressure variability – aliasing error

The mis-modeled and un-modeled pressure errors are those signals that can be cor-
rectly sensed by GRACE, but are missing or mis-represented in weather models. The
GRACE solution can capture most of the large spatial features represented by low
degree spherical harmonics. However, because of the continuous motion of the large
atmospheric mass during the estimation span (30 days), part of the signals (e.g., at
the boundary) are interpreted as short wavelength features. As near polar-orbiting
satellites, the twin GRACE satellites can achieve a denser spatial sampling while
there is no improvement for the temporal sampling. The high-degree features which
mostly consist of the short wavelength signals can not be fully captured by GRACE.
The aliasing error mainly comes from the orbital characteristics of the satellites and
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the mis-representations of the variability by the NWP models. If de-aliasing (nomi-
nal) models can correctly capture the true variability of the atmosphere, the monthly
gravity estimations can produce the mean difference between the true atmosphere
variation and the nominal model. Otherwise, solutions are corrupted by aliasing,
which will be discussed in detail in later sections.

5.6.2 The degree 0 and 1 terms

The pressure field is usually transformed to spherical harmonics before it is used as
a GRACE background model. The degree 0 and 1 terms are excluded from the later
computations. These terms can affect some of our later analyses. We should mention
these factors here. The degree 0 term reflects (is proportional to) the total mass of
the atmosphere. For the whole Earth system, this term represents the total mass of
the Earth, which is often assumed to be a constant. While for each subsystem, the
total mass is not necessarily zero, the net mass variation of the whole system is zero.
Therefore, the ∆C0,0 term can be neglected from the GRACE solutions. Figure 5.7
shows the change of this term in two one-month periods. They do not agree very
well, which implies that the NWP models generate different mass fluxes to other sub-
systems. The bias in the 2003 NCEP operational analysis may indicate some model
change with respect to the pressure field in 2001.
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Figure 5.7: The C0,0 term calculated from surface pressure models, a 2001 mean field
is removed from each time series. (a) ECMWF and NCEP reanalysis in April, 2001;
(b) ECMWF and NCEP operational analysis in April 2003.
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The degree 1 terms represent the relative position between the Earth’s center of
mass and the center of the coordinate system. For the mass change in the atmosphere,
these terms are also non-zero. In the GRACE data processing, the coordinate center
is assumed to coincide with the center of mass. Thus, the degree 1 terms also vanish.

The RMS value is often used to indicate the variation of the sampled data. When
computing the RMS value of the surface pressure, the direct use of the gridded values
is inappropriate. Degree 0 and 1 terms must be removed first. The statistics with and
without the degree 0 and 1 terms are different, which might affect the interpretation
of the variability of the surface pressure change.

5.6.3 The degree 2 terms–barometric tides

As mentioned earlier, the amplitude of the barometric tides caused by the thermal
forcing can be as large as 2 hPa. It is relatively small compared to other variations,
but the signal is still sensible to GRACE. The most dominant barometric tides are
diurnal (S1) and semi-diurnal (S2) tides, with a larger amplitude for semi-diurnal tide.
Analysis products from meteorological centers are usually given every 6 hours, which
just coincides with the Nyquist frequency of the S2 tide. Consequently, the S2 tide
waves resolved from these products are stationary rather than moving westward as
predicted by theory. The sampling rate can also result in reduced tide amplitude if
the tide does not happen right at the sampling time. To recover the traveling S2 tide,
van den Dool et al. [1997] proposed a temporal interpolation method to resolve the
temporal change of the tide phase.

Figure 5.8 shows a frequency-degree variance spectrum for the surface pressure
fluctuation in the NCEP and ECMWF analysis fields using one year of 4 times daily
data from each dataset. The method is identical with that described by Wunsch
and Stammer [1995] for altimetric datasets. In the figure, there are two sharp spikes
around 1 cycle/day (cpd) and 2 cpd (see Figure 5.9), which indicate that the energy
for S1 and S2 are dominant. Following the interpolation method by van den Dool et al.
[1997], some researchers examined the S2 tide derived from gridded data using NCEP
re-analysis and ECMWF operational analysis against the meteorological station data
[Ray , 2001; Ray and Ponte, 2003]. They found that the ECMWF derived tide is
more realistic than the tide derived from other commonly available surface pressure
datasets after properly correcting the systematic phase error. Most of the ocean
models account for the solar radiation tide, and the air tides are usually treated as
part of the ocean tide. Therefore, before forcing the ocean model, the S2 atmospheric
tide needs to be filtered out from the surface pressure data. A procedure was proposed
by Ponte and Ray [2002] based on the algorithm of van den Dool et al. [1997]. In
the GRACE data processing, the S2 tide needs to be first removed from the C̄22 and
S̄22 of the Atmosphere and Ocean De-aliasing 1B (AOD1B) product. The value of S2

is obtained from the difference between the TEG4 estimation of this tidal harmonic
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(a) NCEP re-analysis from year 2003

(b) ECMWF operational analysis from year 2001

Figure 5.8: Frequency-degree variance spectrum for surface pressures from NCEP
re-analysis and ECMWF operational analysis.
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Figure 5.9: Globally integrated spectrum of ECMWF surface pressure for year 2001.

and altimetric determination of the tidal harmonic from the CSR 4.0 tide model
[Bettadpur , 2004]. In this way, the ocean tide model will include the S2 atmospheric
tide.

5.6.4 Inverted barometer effect

Under the Inverted Barometer (IB) assumption, the atmospheric error over the
ocean is ignored. This is because that we assume an equilibrium response of the ocean
to the pressure [Wunsch and Stammer , 1997]. An equilibrium response is very close
to the IB response, i.e, 1 hPa increase in atmospheric pressure depresses the ocean
surface by 1 cm. There is no net change of ocean bottom pressure. In other words,
there is no mass change when integrating the vertically overlaying atmosphere and
the ocean column. Usually, ocean does not respond like IB perfectly, even with a
longer average time for GRACE. Previous study by Ponte and Gaspar [1999] found
significant deviations from IB in the tropics and some regions of the Southern Ocean.
Wind effects can explain most of the deviations in the middle and high latitudes, and
true non-IB effects are responsible for most of the decreases in the tropics. Therefore,
both IB and non-IB are incorrect, the real response may reside somewhere in between.
Under the IB assumption, atmospheric variations are required to be removed only
over land. The error source includes the atmosphere error over the land area and
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the leakage of the atmospheric signal along the coasts through an averaging function.
In the following, we demonstrates the aliasing error under both the IB and non-IB
assumptions.

5.6.5 The atmospheric aliasing

Aliasing is caused by the fact that the sampling frequency is lower than the high-
est frequency of the signal. Polar orbiting satellites can nearly cover the entire globe
within a certain period of time. However, the data measured in this way are both time
and position dependent. Depending on the orbital design, some areas of the earth
are densely covered, while other areas are under-sampled such as the gap between
two satellite tracks. Temporally, the observations covering the globe are not synop-
tic (observed at the same time) and the time interval for subsequent observations
surrounding the same location is usually not a constant.

The time-variable product from GRACE is usually the monthly solution. Short
period variations of the atmosphere, ocean, and other non-tidal signals are merged
into the monthly solution due to the space and time aliasing. Among those signals,
the atmosphere has the biggest input. Therefore, de-aliasing models are critically
needed. Unlike the tidal signal, the spectrum of the atmosphere signal is very broad,
which makes the effect of aliasing on the gravity solution very complicated and hard
to remove.

The best way to reduce aliasing is to use state-of-the-art weather products. Han
et al. [2004] simulated the effect of the model error on the monthly GRACE solution
using the energy conservation method [Jekeli , 1999]. It is shown that the unaccounted
atmosphere corrupts the whole spectrum of the gravity solution and errors beyond
degree 30 have larger magnitudes than the observation noise. Thompson et al. [2004]
examined the impact of the short-period, temporal mass variation on the GRACE
monthly estimate. It is found that the degree error relative to the measurement error
increases by a factor of 20, due to the atmosphere aliasing; and the de-aliasing gives
the greatest reduction in aliasing errors for the coefficients in mid-degrees and higher.

Since there is no easy way to quantify the real aliasing error in the GRACE
solution, we exploit a similar simulation strategy as described in Han et al. [2004]
and Thompson et al. [2004], but with alternative analysis models. Our simulation
shows similar results as in previous studies, but there are also noticeable differences.
The correlation between the RMS of pressure fields and the aliasing are examined
under both IB and non-IB assumptions. In addition, we further demonstrate that
the aliasing errors for the middle to high degree coefficients are mainly caused by the
variability of the long wavelength terms. The effect of the interpolation of the 6-hour
coefficients to the aliasing error is investigated as well. In the simulation, the aliasing
error in Antarctica is also studies. To mimic the GRACE de-aliasing process, a mean
field is pre-removed from each time series using its own mean in 2001. The differences
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between the mean fields for different models are neglected. Chapter 7 describes the
atmospheric de-aliasing model in detail.

5.6.5.1 Definition of the aliasing error

The aliasing error is defined by equation (5) in Thompson et al. [2004] and is given
here for reference.

ε = δĜ(Ts) − (< δGtrue(t) > − < δGnom(t) >) (5.1)

ε is the aliasing error. δGtrue is the true perturbation potential, and δGnominal is the
nominal perturbation potential. <> denotes the time average. δĜ(Ts) is the updated
gravity estimation during the time span Ts. In our simulation, ECMWF is used as
the true model and two NCEP analyses are treated as the nominal models.

5.6.5.2 Simulation procedures

A 30-day orbit is generated by giving the GRACE orbital configuration as the
initial condition. EGM 96 is used as the gravity model for the orbit. The inclination
is 89◦, and the separation of the two satellites is 2◦ at 450 km altitude. The inte-
gration step and the data output are both at 10 second interval. An error is applied
to the observation to simulate the GRACE measurement error. The geopotential
coefficients are inverted using a rigorous formula implemented in a parallel platform
(32 node Linux cluster) [Xie et al., 2004]. The coefficients are limited to degree 60 in
both forward model and inversion process. To quantify the aliasing error in different
scenarios, ECMWF TOGA is used as the true model both in April, 2001 and April,
2003. The nominal models are NCEP reanalysis for April, 2001 and NCEP opera-
tional analysis for April, 2003, respectively. The analysis models are only available
every 6 hours. The simulation needs pressure values every 10 seconds. There are two
methods to handle this problem. One is to treat the pressure as a constant within
±3 hours of the sample time, the other is to linearly interpolate the surface pressure
within the 6 hour interval. Both cases are tested by examining their aliasing errors
defined by the equation (5.1). It is found that the linear interpolation method has
lower aliasing errors for low degree terms (Figure 5.10). As a result, we adopt the
linear interpolation method in the simulation.

5.6.5.3 Results

Figure 5.11 shows the simulation results for 3 cases: IB and non-IB cases in April
2001 using NCEP reanalysis model as the de-aliasing model (top and middle), and
non-IB case in April, 2003 using NCEP operational model as the nominal model
(bottom). In each figure of the left panel, the quantities represented by the right
side of the equation (5.1) are plotted by letting δGnom(t) equal to 0 or NCEP model
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Figure 5.10: Comparison of two methods of using the surface pressure.

value to simulate the aliased and de-aliased cases. The simulated measurement error
is plotted in all figures to indicate that it is an approachable, but unachievable ideal
error. Curve (1) and (2) in (a), (c), and (e) of Figure 5.11 illustrate the monthly
mean ECMWF field and the GRACE recovery result in the case of no de-aliasing
model is present. The difference between curve (1) and (2) reflects the aliasing error
without a de-aliasing model. In a similar way, the difference between curve (3) and
(4) reflects the aliasing error with a nominal de-aliasing model. From the figures, we
can see that the GRACE solution can capture most of the low degree (< 10◦, long
wavelength) features, though the agreement is not exact. The two curves start to
deviate from each other from around degree 10, while a previous study found that
the deviation occurred at around degree 30 [Han et al., 2004]. (b), (d), and (f) in
Figure 5.11 depict the aliasing error in each case. The most noticeable change after
applying the de-aliasing model is the error reduction for the middle to high degree
coefficients, which agrees with the previous study [Thompson et al., 2004]. We also
plot the calibrated error for the GRACE RL01 solutions, which can be treated as an
upper bound for the GRACE error. The aliasing error is an optimistic estimate, since
there are common errors in the ECMWF and NCEP fields. It is fair to guess that
the real GRACE error resides between these two curves.
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By comparing the curve (2) in figure (a) and (c), we can see that under the
IB assumption, the mean field becomes much smaller. This is also confirmed by
the geographic map (Figure 5.12). The aliasing error in the non-IB case is much
smaller than in the IB case (Figure 5.11d). Some of the variability above the ocean
is removed with the IB assumption. In some regions of the curve, the aliasing error
approaches the measurement noise. For the simulation in April, 2003 using the NCEP
operational analysis, it is surprising to see that the aliasing error becomes small even
in the non-IB case (Figure 5.11f). It does not necessarily mean that the real aliasing
error in the GRACE solution is small. It only indicates that the ECMWF and NCEP
operational results are becoming more similar to each other, and NCEP can follow
the variability of ECMWF very well. People commonly consider that ECMWF has
a better performance. Thus our results implies that the NCEP operational model is
continuously improving. Using variations of their difference to quantify the aliasing
error becomes too optimistic when the two models become more similar.

The monthly mean fields in Figure 5.12 still show big differences in the Antarctic
continent. In the non-IB case (3 figures on the left), we can see large mass features
around the Southern Ocean area. Such features are masked out in the IB case (3
figures on the right). The RMS value of the monthly pressure field can show us the
variations of the pressure within one month. Large variations in the middle to high
latitudes are shown on the RMS figure of the ECMWF field (Figure 5.13a). After the
de-aliasing process, the RMS value becomes much (about 4 times) smaller (Figure
5.13c). The IB assumption omits the large variations in the Southern Ocean (Figure
5.13d). The NCEP operational analysis agrees with ECMWF very well, even in the
non-IB situation, the RMS value is very small (Figure 5.13b). The small RMS value
may indicate a possible model improvement.

The degree RMS does not give us a sense of the spatial distribution of the aliasing
error. In Figure 5.14, the error in the recovered GRACE signal is compared with
the truth error. Figure 5.14a shows the total errors embedded in the GRACE signal,
including the aliasing error plus the mis-modeled or un-modeled error. After applying
the Gaussian filter of 600 km radius (Figure 5.14b), the magnitude of the aliasing error
is greatly reduced, the mis-modeled long wavelength error shows up. Figure 5.14c and
Figure 5.14d illustrate the total aliasing error before and after applying the 600 km
Gaussian filter. The biggest error is reduced by a factor of 8. Figure 5.14e is the true
atmospheric error. Its difference with Figure 5.14b reveals the difference between the
true error in the model and the total error in the GRACE solution. Obviously, the
amplitude of some long wavelength errors is reduced by the smoothing. For example,
the error over Antarctica in Figure 5.14b was reduced. One side effect of smoothing
is that the amplitude of signals is also reduced.

The aliasing effect is not a localized feature. We consider a situation that the
pressure variations only exist around the Antarctic area (defined here as latitude >
60◦S). In all other areas, variations are set to zero. The simulation result (Figure
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Figure 5.11: The degree RMS errors from atmospheric aliasing. Top: non-IB (April,
2001); Middle: IB (April, 2001); Bottom: non-IB (April 2003).
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(a) Mean ECMWF surface pressure, non-IB,
in April, 2001
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(b) Mean ECMWF surface pressure, IB, in
April, 2001
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(c) Mean NCEP reanalysis surface pressure,
non-IB, in April, 2001
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(d) Mean NCEP reanalysis surface pressure,
IB, in April, 2001
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(e) Mean difference between ECMWF and
NCEP reanalysis, non-IB, in April, 2003
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(f) Mean difference between ECMWF and
NCEP reanalysis, IB, in April, 2001

Figure 5.12: The monthly mean surface pressures in the simulation.
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(a) RMS ECMWF surface pressure, non-IB,
in April, 2001
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(b) RMS of the difference between ECMWF
and NCEP operational analysis, non-IB, in
April, 2003
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(c) RMS of the difference between ECMWF
and NCEP reanalysis surface pressure, non-
IB, in April, 2001
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(d) RMS of the difference between ECMWF
and NCEP reanalysis surface pressure, IB, in
April, 2001

Figure 5.13: The monthly RMS surface pressures in the simulation.

5.15) shows that the aliasing errors spread over the globe, which indicates that the
variations in one area could introduce aliasing error in other areas. Improving the
pressure modeling in Antarctica is therefore helpful to reduce the global aliasing error.

5.6.5.4 Summary and discussion

We investigate the atmospheric aliasing error using ECMWF TOGA analysis as
the true model, and NCEP reanalysis and NCEP operational analysis as de-aliasing
models. Both IB and non-IB are considered. It is found that there are more noticeable
improvements for the middle to high degree coefficients after applying a de-aliasing
model. From the simulation result, most of the long wavelength errors can be correctly
captured by GRACE as mis-modeled or un-modeled errors. The motion of the long
wavelength features induces short period, small scale variations, which will further
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(a) GRACE recovered ECMWF-NCEP re-
analysis+noise in April, 2001
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(b) 600 km smoothing of (a)
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(c) Aliasing error (a)-(e)
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(e) True surface pressure error, monthly mean
ECMWF-NCEP in April, 2001
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Figure 5.14: The simulation results for the atmospheric de-aliasing.
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Figure 5.15: The aliasing error caused by the pressure variations in Antarctica only.

increase the errors for the higher degree terms. The magnitude of the aliasing error
is correlated with the RMS of the pressure field. The simulation using the NCEP
operational analysis in 2003 shows relatively smaller aliasing error. It implies that
the NCEP model agrees better with the ECMWF than before and the model is
continuously improving.

Under the IB assumption, the degree variance of the pressure field becomes much
smaller compared to the non-IB case, and so does the geoid change. Large variations
around the Southern Ocean area are neglected, which, in turn, leads to smaller alias-
ing error. By neglecting the pressure over the ocean, the global mean value (C0,0) is
changed at each time. Since the degree 0 and 1 terms are neglected, the RMS value
over land areas under IB assumption is slightly different from the land RMS value un-
der non-IB assumption. The aliasing error caused by the pressure variations over the
land is different in these two cases. Due to the truncation of the spherical harmonics,
a strong Gibbs phenomenon is present around the continents. Some variations can
leak into the oceans. The IB assumption might lead to an optimistic estimate of the
aliasing error, while the non-IB assumption can give us a more conservative error
estimation.

Spatial smoothing greatly reduces the amplitudes of both the un-modeled/mis-
modeled and aliasing errors with the sacrifice of the amplitude of the signal. The
aliasing is not a localized phenomenon. Variations in one area might relate to the
aliasing error in a remote area.

The uncertainty of the surface pressure measurements in the Southern Ocean and
Antarctica is very big. The best way to obtain precise surface pressure in data-poor
regions is to extend the current barometric network. Because of the expense for the
instruments and their maintenance, this suggestion is less favorable and impracti-
cal. GPS occultation, as a promising technique, provides a potential to improve the
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pressure field over the Southern Ocean and Antarctica. It already appears in many
publications that the accuracy of the GPS-occultation derived profiles is commensu-
rate with the analysis model output and radiosonde measurements. We also believe
that surface pressure derived from GPS occultation can provide information with the
same accuracy. GPS occultation can be treated as another independent measurement
to validate other sources of surface pressure measurements. Another application is
to directly combine the occultation measurements with a numerical analysis model,
i.e. to assimilate the bending angle or refractivity into the numerical models. Some
studies, e.g., [Zou et al., 1999], show that the assimilation of atmospheric refractivity
is very effective in recovering the vertical profiles of water vapor. The accuracy of the
derived water vapor field is significantly better than that obtained through traditional
retrieval techniques. This would, in turn, improve the surface pressure fields.
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CHAPTER 6

THE EVALUATIONS OF NWP MODELS IN
ANTARCTICA USING AUTOMATIC WEATHER

STATION DATA

6.1 Introduction

For higher southern latitudes, especially the Antarctic continent, the numerical
model outputs are not as consistent as in other parts of the world. Our comparisons
of pressure in the southern polar region show large discrepancies for different models.
The lack of observation data is counted as a major obstacle for the improvement of
model performance. In Antarctica, the extreme weather conditions and special ge-
ographical location present big challenges for standard meteorological observations.
Since the area is less accessible, the calibration and maintenance of instruments some-
times need extensive periods of time. Instrument failure and communication problems
further reduce the quality and quantity of the data. In addition, due to the sharp
topography change, which rises quickly inland, and extremely cold weather over the
ice sheet, the physical modeling and numerical representation are quite different from
the situation in the mid-latitudes. These factors jointly degrade the model perfor-
mance.

For the GRACE mission, the mass balance signal is contaminated by the at-
mospheric pressure residual error. Theoretically, 1 hPa pressure error causes a mass
change represented by water thickness of 1 cm. The ECMWF pressure is adopted
to remove the atmospheric mass change. Trenberth [1992] evaluated the ECMWF
and NCEP analyses during 1979-1986, and found major problems in both datasets
in the southern polar region. Cullather et al. [1997] compared the ECMWF and
NCEP analyses with observations during the period 1985-1994, and it is found that
ECMWF pressure correlates reasonably well with the AWS data, and NCEP analyses
show substantial improvement.Velicogna et al. [2001] validated the surface pressure
over the U.S. continent and Arabic peninsula, and the authors concluded that the
model output from ECMWF is adequate for the GRACE mission over such regions.
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It is also pointed out in the paper that model outputs have problems in the south-
ern polar region, but without further validation. New types of satellite observations
are continually incorporated, and the operational models are routinely evolving with
updated and improved methods. However, trends could be introduced with the alter-
ation of data and model algorithm [e.g. Marshall , 2002; Hines et al., 2000]. Therefore,
the continuous monitoring and assessment of the model pressure during the GRACE
period is necessary. In this chapter, the accuracy of the surface pressure from the
most recent ECMWF and NCEP re-analysis is validated against the observations
from the automatic weather stations.

6.2 The Antarctica weather

Most of the Antarctic continent is situated within the Antarctic Circle (60◦S of
the Earth). The continent has an area of 1.4 × 107 km2, consisting of nearly 10% of
the Earth’s total land area. Nearly 97% of the area is covered with ice, which greatly
affects the heat balance of the continents. Most of the solar (short wave) radiation
energy is reflected back because of the high albedo of the ice. The long wave energy is
further lost due to the high emissivity of the ice. The annual average temperature is
around -35◦C. The temperature is only above freezing in the west side of the Antarctic
Peninsula. The low surface temperature causes strong temperature inversion in the
boundary layer.

The weather in Antarctica is greatly affected by its topography, which has a
notably asymmetric feature. The average elevation is around 2,000 m, with most of
the west Antarctica below 2,000 m except some mountain regions with elevation of
3,000 m. The highest elevation is on the east Antarctica ice sheet, with a central
dome over 4,000 m. Another feature of Antarctica is that the elevation rises rapidly
from the coast. It could reach 2,000 m just within 500 m distance. The topography
has a strong influence on the pattern of temperature, surface wind, pressure, and
precipitation. The correlation between the elevation and temperature is very strong.
In the coast and peninsula area, the temperature has a regular pattern of a maximum
in summer and a minimum in July and August. Further inland, a maximum summer
season exists, but with a “coreless” winter with little temperature variation. The
strong surface cooling at the boundary layer causes the dense, cold, and dry air
flow downhill following the slope of the topography. This gravity induced air flow
(katabatic wind) is the dominant wind pattern, which is more intense in the winter
season. The elevation also forms a natural barrier and prevents most of the synoptic
weather system from penetrating into the interior of Antarctica. Most of the heavy
precipitation is concentrated along the coast line, where the adiabatic cooling as the
moist air from ocean climbs up the steep topography is the major mechanism for the
formation of precipitation.
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The dominant feature of the Mean Sea Level Pressure (MSLP) in the Antarctica
region is the circumpolar trough, which is usually situated between the latitude 60◦S
– 70◦S. The circumpolar trough oscillates semi-annually in both position and time
[Simmonds and Jones , 1998]. The trough is the deepest in spring and autumn and the
most shallow in summer and winter. However, the reduction of the surface pressure
to mean sea level is less accurate and less reasonable due to the high elevation and the
cold environment. 500 hPa is the lowest standard pressure level that is everywhere
above the Antarctic continental surface. Generally, the pressure is higher when mov-
ing toward the interior. Surface pressure can decrease up to 20 hPa over the continent
during a four day period [Parish and Bromwich, 1998]. The seasonal variations of
surface pressure are more obvious in the coast than that in the interior. Figure 6.1
shows the monthly mean surface pressure of AWS in Antarctica for 2003, which are
grouped according to their geographical regions. A mean value is removed from each
time series. In the figure, the maxima are clearly shown around the summer and
winter solstices. It indicates that there is a net transport of air into high latitude in
the early winter and spring, and corresponding export of atmospheric mass to lower
latitudes in late winter and summer [King and Turner , 1997].

6.3 The automatic weather station data

The extreme cold, icy environment in Antarctica posts a huge challenge for in-
struments to work in normal situations. Sometimes, the wind and snow can bury,
even damage the instruments. It is very expensive to use man-operated stations to
obtain in situ measurements. Most of the manned stations are located in the exter-
nal margins of the Antarctic coast line. There are few stations in the interior of the
Antarctic continent. The unmanned AWS makes a large supplement to the high-cost
research stations, and provides valuable surface observations to support weather re-
search. Since 1980, a network has formed with a growing number of stations. The
number of stations is not stable due to the ending of various projects and equipment
failures. Currently, there are under 60 stations in operation, which are clustered in
some research areas. Most of them are along the coast. There are only a few stations
in East Antarctica. Typically, the AWS units measure wind speed, direction, and
air temperature at a nominal height of 3 m above the surface. The air pressure is
measured at an electric enclosure at the height of about 1.75 m. The height varies
from time to time due to snow accumulations. The equipment is powered by battery
and solar panels. It can usually work through to next field season. It is reported
that some stations can work on the same batteries and solar panel for 6-10 years.
The stored data are transmitted to two NOAA satellites with an orbital period of
102 minutes. The accuracy of the pressure transducer is around 0.25 hPa [King and
Turner , 1997]. Figure 6.2 shows a schematic figure for a typical AWS.
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Figure 6.1: Monthly mean AWS surface pressure in different regions of Antarctica
(Year 2003). A yearly mean was subtracted from the monthly mean for each time
series.
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Figure 6.2: A schematic figure for Automatic Weather Stations, figure is from the
Wisconsin AWS project.

The automatic weather stations project at the Antarctica Meteorological Research
Center of The University of Wisconsin-Madison maintains an archive of AWS data.
The data are available from its anonymous ftp site. The AWS 10-minute data are
available in raw format without being corrected for bad data. There are also 3-hour
data available after some extensive period, which has been corrected for bad obser-
vations by hand. However, after 1998, the 3-hour data are not readily available. As
an alternative, a whole year of 10-minute data for 2003 is downloaded. The “raw”
data have various data gaps in it; and sometimes there are numbers of unreasonable
data records. The missing and invalid records are probably mainly caused by com-
munication problems. Manually fixing the data would take a lot of work. A program
is designed by first filling the gap using linear interpolation if the gap is less than
6 hours. Our model data is available every 6 hours. If the data gap is longer than
6 hours, the time series for the whole year is divided into segments. For each seg-
ment, the outliers are detected, removed and fixed by a polynomial using the singular
value decomposition method. At the final step, some outliers cannot be identified or
removed. These remaining bad data are removed by manual editing. When compar-
ing AWS with the model data, a 6-hour time series is excerpted from the corrected
10-minute AWS data.
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6.4 Temporal interpolation of analysis results

Most of the meteorological analysis models only produce output every 6 hours.
The processing of GRACE data needs to remove pressure contribution every couple of
seconds. A temporal interpolation is required within the 6-hour period. We need to
examine how much information is included in the 6-hour data and whether a simple
linear interpolation can fulfill the requirement of the accuracy.

We randomly select a station and plot the time series of surface pressure of 10-
minute AWS, 6-hour ECMWF, and NCEP in Figure 6.3. The figure shows that the
analysis results follow the variation of the surface pressure very well, though they do
not agree exactly. Notable differences occur at some peaks and valleys of the curve.

60 70 80 90 100 110 120 130

950

960

970

980

990

1000

1010

Days in 2003

P
re

ss
ur

e 
(h

P
a)

AWS
NCEP
ECMWF

Figure 6.3: AWS, ECMWF, and NCEP Surface pressure records at Cape Bird.

We also examine the Power Spectrum Densities (PSD) of AWS and ECMWF
datasets with distinct sampling intervals. Figure 6.4 shows the PSDs of 10-minute
AWS data and 6-hour ECMWF output for two selected AWS locations. These two
AWS stations have the smallest missing data in the one year period, and the gaps are
filled using linear interpolation. The Nyquist frequency of 6-hour ECMWF data is
marked by a vertical red line at 2 cycles/day. Below the Nyquist frequency, the PSD
curves agree very well. The tail of PSD after the Nyquist frequency is not included
in the ECMWF data. The missing power is the integration of this tail. For these two
particular stations, the missing power is on the order of 0.01 hPa, which corresponds
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to 0.1 mm equivalent water thickness. It is negligible for current GRACE sensitivity.
We conclude that 6-hour data can capture most of the pressure variations, and a
simple linear interpolation is sufficient for higher sampling data.

6.5 Comparisons of surface pressure data

As stated above, we use the corrected AWS surface pressure series for this compar-
ison. The data from 40 stations are included in this study. The geographic locations
for these stations are shown in Figure 6.5. The detailed information for each station is
listed in Appendix C. For the analysis datasets, ECMWF TOGA global advance sur-
face analysis from the NCAR data center and NCEP reanalysis data from the NOAA
Climate Diagnostics Center are used. The ECMWF dataset is in N80 Gaussian grid
and stored in GRIB format, with 1.125◦ in the longitude direction and approximately
1.125◦ in the latitude direction. This dataset is interpolated later to a 1◦×1◦ regular
grid. The NCEP reanalysis data is on a 2.5◦×2.5◦ regular grid and stored in netCDF
format.

Directly comparing the model surface pressure with the AWS surface pressure is
questionable since the model elevation is usually not the representation of the real
Earth surface. In the coastal area, the difference is rather big. Bromwich et al. [1999]
reported that the difference could be as large as 140 hPa in the steeply topographic
area. In the last two columns of Table 6.1, the topographic differences between
ECMWF and AWS as well as NCEP and AWS are listed. For some stations, the
difference is as high as 900 m. NCEP reanalysis data has a coarser resolution, and the
corresponding difference is larger. In the past, the AWS elevations were determined
by a variety of inaccurate methods, that were best at the time, including using the
older GPS system onboard an aircraft that was deployed to the station locations, and
using USGS elevation maps. Recently, there have been efforts to tie the AWS stations
to the UNAVCO GPS locations in Antarctica. This is an ongoing process and can
only be applied to the stations that can be visited. In Appendix C, the AWS stations
used in this study are listed. Sites that have been surveyed by UNAVCO are marked
in the table.

The monthly mean difference between AWS and ECMWF is shown in Figure 6.6.
The bias between AWS observations and ECMWF is almost constant across the year,
which implies that there are some systematic errors between the two datasets. The
most possible cause is the elevation error, either in the model or in the nominal height
of AWS. When the elevation rises approximately 10 m near the ground, the pressure
changes 1 hPa. There are better agreements for the stations in the high polar plateau
and Ross Ice Shelf. On the contrary, the biases for some stations in the peninsula area
are rather big (> 20 hPa). If a mean is removed from each time series before taking
the difference, the two series agree better. The bias is not an exact constant value,
it does vary in time as depicted in Figure 6.7a at station Dome C II. To determine

105



10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency (cycles/day)

P
S

D
 (

hP
a2 /(

cy
cl

es
/d

ay
))

AWS station 08901

AWS
ECMWF

(a) Cape Bird

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency (cycles/day)

P
S

D
 (

hP
a2 /(

cy
cl

es
/d

ay
))

AWS station 21357

AWS
ECMWF

(b) Pegasus North

Figure 6.4: The power spectrum densities of AWS surface pressure observations (10
minute interval) and ECMWF surface pressure at AWS locations (6 hour interval)
for year 2003.
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Figure 6.5: The locations of 40 AWS stations.

whether the bias has periodicity we need to analyze at least two years of data. For the
monthly mean difference between AWS and NCEP, Figure 6.8 shows similar patterns,
though the bias curves are not as flat as that in the ECMWF case. The biases in
NCEP have the similar sign and amount of magnitude as in ECMWF, which implies
that the two analysis models are also correlated.

The comparison of the mean difference is hindered by the uncertainty of the AWS
elevation height. The standard deviation of these monthly mean differences, on the
other hand, may reveal the real agreement between the observations and models. In
Figure 6.9, some stations at coastal regions have relatively higher standard deviation
values. Stations at the high polar plateau, west Antarctica and Ross Ice Shelf have
standard deviation values less than 2 hPa. We examine the stations that have higher
standard deviation values and find that the AWS records have large fluctuations
around those times (see Figure 6.7b). From the figures, the big values are usually
around winter time. Possibly some weather activities are developed. The standard
deviation comparison for the monthly difference between NCEP and AWS shows a
different picture (Figure 6.10). There is no similarity with the ECMWF comparison.
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Figure 6.6: Monthly mean of the surface pressure difference between AWS and
ECMWF at AWS stations (Year 2003).

108



0 50 100 150 200 250 300 350

−4

−2

0

2

4

6

8

10

12

P
re

ss
ur

e 
(h

P
a)

days in 2003

Dome C II

(a) AWS-ECMWF pressure difference at Dome C II

0 50 100 150 200 250 300 350
−10

−8

−6

−4

−2

0

2

4

6

8

10

P
re

ss
ur

e 
(h

P
a)

days in 2003

Cape Bird

(b) AWS-ECMWF pressure difference at Cape Bird

Figure 6.7: The surface pressure differnce between AWS and ECMWF at two AWS
stations.
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Figure 6.8: Monthly mean of the surface pressure difference between the AWS and
NCEP re-analysis at AWS stations (Year 2003).
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The values are large even in the interior region. There is almost no seasonal difference.
It is clear that the agreement between ECMWF and AWS is much better than that
between NCEP and AWS.

In a past study [Ge et al., 2005], we also compared one month of surface pressure
from Polar MM5 [Bromwich et al., 2001] with the ECMWF and the surface AWS
measurements. The MM5 surface pressure is available in a 60 km stereographic
projection grid and has a temporal resolution of 1 hour. The spin-up time for the
model is 24 hours. The output from MM5 is 24-48Z (Z stands for Greenwich time)
forecast, which achieves a reasonable performance, but the difference is still large at
some time. Since MM5 outputs are prediction results and there is no other input
except the initialization, its agreement with AWS is not better than that of the
ECMWF.

Generally, the statistical patterns should be similar within same region. There are
also some times, when the meteorological sensor reports suspicious values and causes
large standard deviations. In addition, these values vary from month to month, in-
dicting a possible correlation with seasonal synoptic weather activities. The standard
deviation for the whole year of the difference between ECMWF and AWS is plotted
on a geographic map in Figure 6.11. The numerical values are listed in the 4th column
of Table 6.1.

6.6 Summary

We compare the mean and standard deviation of the difference between model
analyses and AWS surface pressure observations using one year of data. ECMWF
shows a much better agreement with the AWS in terms of standard deviation. The
uncertainty in elevation causes large bias between the model and AWS. The bias
is not always a constant throughout the year. Part of the bias can be removed by
subtracting a yearly mean. The statistics reveal the spatial and temporal distributions
of errors. Coastal regions tend to have higher errors than the interior areas, which
correlated with the Antarctica weather pattern, i.e. the synoptic weather in coastal
areas is more active. Another reason is that the spherical model poorly represents
the steep change of the topography. Large disagreements also tend to happen in
winter and in regions with increasing weather activities. In Antarctica, the standard
deviation of the pressure difference is around 2 hPa in the interior and larger than 2
hPa along the coast. One should also note that AWS data may already have been
assimilated into the models and are not fully independent. This makes our analysis
too optimistic. In this study, other factors such as different model resolutions also
affect the comparison results.

In the GRACE data processing, a mean value of at least one year is subtracted
from the 6-hour field, which alleviates part of the bias problem if the bias is a constant.
In the case where the difference varies with time, the error source has to be identified.
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Figure 6.9: Monthly standard deviation of the surface pressure difference between the
AWS and ECMWF at AWS stations (Year 2003).
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Figure 6.10: Monthly standard deviation of the surface pressure difference between
the AWS and NCEP re-analysis at the AWS stations (Year 2003).
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Figure 6.11: The yearly standard deviation for the surface pressure difference between
ECMWF and AWS.

The above statement is based on the assumption that the process is linear. For
a general gravity inversion problem, there are many non-linear processes. Further
simulations are needed to quantify the errors. From our comparisons, the error is not
as good as in other parts of the world. Due to the limitation of the data and clustering
of the stations, we cannot calculate a large area mean (e.g. Gaussian smoothing) in
terms of a radius as regularly used in GRACE. A larger than average error budget
has to be expected in Antarctica.

Since there is usually no accuracy information given for the analysis models, peo-
ple usually use the difference between ECMWF and NCEP as an indicator of errors.
These two fields always have something in common, such as model algorithm, data,
etc. The common errors are canceled by subtracting one from the other, and thus,
the difference between these two models may not represent the true error distribution.
Topographic difference is one such contribution. In previous chapters, large surface
pressure differences are seen in the interior part of Antarctica, which does not agree
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with the difference between ECMWF with AWS. If we can trust the AWS observa-
tions, the statistics of the difference could be used as a valuable error indicator.
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Station obs. AWS-ECMWF AWS-NCEP hecm− hncp−
Name num. ave std corr. ave std corr. haws haws

Adelie Coast
Port Martin 658 -5.4 2.3 0.9612 -3.6 3.3 0.9231 659.43 615.38
D-10 931 -8.7 0.9 0.9962 -8.0 2.2 0.9789 374.58 502.53
D-47 1320 -2.9 1.0 0.9959 -1.5 1.0 0.9943 -269.19 -412.27
Cape Denison 1385 -6.8 2.9 0.9632 -5.5 4.1 0.9274 579.64 572.71
Dome C II 1455 6.0 1.9 0.9826 3.5 2.9 0.9514 -37.11 -170.23

High Polar Plateau
Dome Fuji 1256 0.9 0.7 0.9973 3.2 4.2 0.9280 -77.96 -638.00
Relay Station 1455 3.2 0.7 0.9975 3.2 3.5 0.9506 -62.44 -475.27
Henry 1286 1.4 0.9 0.9955 -9.4 4.6 0.8791 -60.67 -914.17
Clean Air 1331 0.3 1.1 0.9934 -1.1 1.1 0.9925 13.54 68.00
Mizuho 1383 3.0 0.7 0.9972 0.8 2.1 0.9756 -28.80 -383.40

West Antarctica
Harry 1456 -2.3 1.0 0.9957 -2.9 2.5 0.9738 11.88 224.57
Byrd 1295 2.3 0.9 0.9970 1.9 2.5 0.9757 -14.06 -77.74
Brianna 1455 -1.3 1.2 0.9945 -3.2 2.7 0.9723 14.41 228.09
Siple Dome 1456 -15.8 1.6 0.9919 -16.0 2.5 0.9810 -412.99 -505.39
Mount Siple 1080 0.6 1.3 0.9959 -0.9 3.1 0.9723 -38.34 -30.62
Theresa 601 -1.5 0.8 0.9963 -0.1 0.7 0.9976 260.68 217.33

Ross Ice Shelf
Lettau 1138 -0.5 1.1 0.9962 -1.6 0.7 0.9986 -29.00 -63.71
Gill 1456 -1.7 0.8 0.9980 1.1 1.0 0.9968 -25.03 -193.11
Schwerdtfeger 1456 -1.6 1.0 0.9965 -0.1 0.6 0.9987 -56.99 -32.73
Elaine 541 2.1 1.0 0.9964 2.6 2.4 0.9788 169.99 590.15
Marilyn 1456 2.4 1.1 0.9952 3.0 1.3 0.9935 -70.46 364.97

Weddell Sea/Peninsula Region
Sky Blu 1222 -22.2 1.1 0.9936 -24.1 3.4 0.9468 -63.23 -666.84
Uranus Glacier 1376 7.6 1.0 0.9970 3.1 2.6 0.9792 -255.70 7.95
Bonaparte Point 1242 -25.5 2.0 0.9886 -24.2 2.4 0.9827 157.89 160.04
Larsen Ice Shelf 1454 -1.6 1.6 0.9900 -0.5 2.2 0.9840 -19.39 162.85
Racer Rock 1452 -0.6 1.0 0.9968 0.6 1.4 0.9943 147.49 146.16

Continued

Table 6.1: The statistics of automatic weather stations in Antarctica for 2003
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Table 6.1 Continued

Station obs. AWS-ECMWF AWS-NCEP hecm− hncp−
Name num. ave std corr. ave std corr. haws haws

Ross and Ocean Island (McMurdo Area)
Cape Spencer 1124 3.4 1.0 0.9956 4.9 1.3 0.9941 37.01 153.86
Herbie Alley 1424 3.0 1.4 0.9921 4.0 1.2 0.9941 14.91 251.80
Cape Bird 1456 0.7 1.9 0.9857 0.6 2.2 0.9810 -31.53 275.94
Marble Point 1456 -1.9 1.2 0.9943 -0.1 1.4 0.9921 343.49 547.37
Windless Bight 1453 8.9 1.6 0.9892 10.2 2.0 0.9849 -10.22 99.86
Ferrell 1456 0.6 0.8 0.9974 2.5 1.4 0.9940 -51.64 -103.36
Pegasus South 1456 3.5 1.3 0.9926 4.4 1.3 0.9935 37.11 281.06
Pegasus North 1456 0.7 1.1 0.9950 1.6 1.1 0.9952 31.63 285.67
Laurie II 1331 0.7 0.9 0.9971 2.6 1.4 0.9933 -42.17 -103.38
Linda 1166 -0.4 1.6 0.9894 1.3 1.6 0.9900 -8.43 75.53
Willie Field 1232 1.1 0.9 0.9966 2.1 1.2 0.9950 27.73 224.06
Manuela 1456 -2.7 1.9 0.9858 -2.4 3.1 0.9604 233.98 835.50
Whitlock 1456 1.8 1.2 0.9945 1.9 1.6 0.9904 -272.51 -100.40
Possession Island 1453 -7.9 1.1 0.9948 -8.0 2.8 0.9661 -35.55 245.50
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CHAPTER 7

MATHEMATICAL DESCRIPTION OF GRACE
ATMOSPHERIC DE-ALIASING MODEL AND ITS

VALIDATION

The GRACE mission requires the accurate removal of the atmospheric mass vari-
ations. The contributions of atmospheric mass to the geopotential include the di-
rect mass attraction and the indirect loading effect caused by the deformation of
the Earth. Conventionally, the atmosphere is treated as a dimensionless thin layer
around the spherical Earth. Surface pressure is usually used as data to account for the
atmospheric mass. For the GRACE mission, such assumptions bring non-negligible
errors and are no longer valid [Swenson and Wahr , 2002]. In this chapter, the rig-
orous formulas to compute geopotential coefficients from the 3-D pressure field are
introduced. Its difference with other approaches is quantified. In addition, we use
alternative analysis outputs (ECMWF TOGA and NCEP operational analyses) to
validate the current GRACE AOD1B product.

7.1 Equations relating pressure to gravity

The Earth’s gravitational field is usually described by a set of spherical harmonic
coefficients [Heiskanen and Moritz , 1967]. Since the atmosphere mass is enclosed
within an envelope with the boundaries at places where the pressure is zero, we
can write the potential ∆V caused by the atmosphere mass at an arbitrary position
(r′, θ′, λ′) outside the atmospheric envelope in the same form as the potential of the
Earth’s gravitational field, but normalized by the Earth’s mean radius a and other
constants (e.g., Me).

∆V (r′, θ′, λ′) =
GMe

r′

∞
∑

n=0

∞
∑

m=0

(

a

r′

)n

Pnm(cos θ′)(∆Cnm cos mλ′ + ∆Snm sin mλ′)

(7.1)
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where

[

∆Cnm

∆Snm

]

=
1

(2n + 1)Mean

2π
∫

0

π
∫

0

rtop
∫

rs

rnPnm(cos θ)

[

cos mλ
sin mλ

]

dM (7.2)

dM = ρ(r, θ, λ)dV = ρ(r, θ, λ)r2dr(sin θdθdλ) = ρ(r, θ, λ)r2drdS (7.3)

Substituting equation (7.3) into equation (7.2), results in

[

∆Cnm

∆Snm

]

=
1

(2n + 1)Mean

2π
∫

0

π
∫

0

K(n)Pnm(cos θ)

[

cos mλ
sin mλ

]

sin θdθdλ (7.4)

with

K(n) =

rtop
∫

rs

rn+2ρ(r, θ, λ)dr (7.5)

where in above equations:
G: The gravitational constant
a: The mean radius of the Earth (scale factor)
dS: The surface element (unit area)
Me: The mass of the Earth
ρ: The air density, a function of location
rs: The radius of the computation point at the Earth’s surface
rtop: The radius of the computation point at the top of the atmosphere
θ: The geocentric co-latitude θ = 90 ◦ − φ of the computation point
λ: The geocentric longitude of the computation point

The radial distance r (from the computational point to the geocenter, OP ) is
illustrated in Figure 7.1, which shows a cross section of the ellipsoidal Earth. The
coordinates of the computational point in the plane are represented as [Jekeli , 2000]:

x = (N + h) cos φ (7.6)

y = [N(1 − e2) + h] sin φ (7.7)

where N is the radius of curvature of the point in the plane, h is the ellipsoidal height,
φ is the geodetic latitude, and e is the eccentricity. Thus, the radial distance is:

r =
√

(N + h)2 cos2 φ + [N(1 − e2) + h]2 sin2 φ (7.8)

An approximate expression for the radial distance r is often used in the literature
[Swenson and Wahr , 2002; Boy and Chao, 2005]:

r = r0 + ζ(φ, λ) + H(φ, λ) = r0 + h(φ, λ) (7.9)
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Figure 7.1: The distance from the computational point to the geocenter.

where ζ is the geoid undulation, and H is the orthometric height of the computational
point. r0 is the distance of OP ′, which is approximated by the Earth’s mean radius
a in the above references.

Usually, the air density is not explicitly given in the meteorological products. To
evaluate equation (7.4), we need to derive the air density ρ(r, θ, λ) from the grid
values of pressure, temperature, and humidity given in model analyses. We have two
options to obtain this relationship. One is the equation of state of an ideal gas (ideal
gas law), the other is the hydrostatic equilibrium.

7.1.1 Using the equation of state

The equation of state gives a relationship among pressure, temperature, and den-
sity.

P = ρRTv or ρ =
P

RTv

(7.10)
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P is the pressure, R is the gas constant, Tv is the virtual temperature, and ρ is the
air density. Substituting (7.10) into (7.4), yields,

[

∆Cnm

∆Snm

]

=
a2

(2n + 1)Me

2π
∫

0

π
∫

0

[

rtop
∫

rs

(

r

a

)n+2
P

RTv

dr

]

Pnm(cos θ)

[

cos mλ
sin mλ

]

sin θdθdλ

(7.11)
where

rs = r0 + ζ(φ, λ) + Hs(φ, λ) (7.12)

Hs is the height of the surface topography. Normally, variables in meteorological
products are defined on standard pressure levels, whose vertical position is given by
their geopotential heights. The definition of the geopotential height and its relation-
ship with the geometric height are described in detail in Appendix A, where we also
compared various approximate methods. We choose the Smithsonian method be-
cause of its accuracy and computational simplicity. From equations (A.9) and (7.9),
we obtain

r = r0 + ζ +
Rf (φ)Φ

g(φ)
g0

Rf (φ) − Φ
(7.13)

After replacing r in (7.11) by equation (7.13), we can calculate the spherical harmonic
coefficients using 3-D gridded pressure, temperature, and geopotential height.

7.1.2 Using the hydrostatic equation

For synoptic scale atmospheric motions, the vertical accelerations in the dynamic
equations are normally negligible. The atmosphere is in nearly hydrostatic balance
[Holton, 1992]. The differential form of the hydrostatic equation for an air column is:

ρ(r, θ, λ)dr = − dP

g(θ, r)
(7.14)

or in 2-D form:

σ(θ, λ) = − Ps

g(θ)
(7.15)

Ps is the surface pressure and σ(θ, λ) is the surface density. For computational sim-
plicity, the gravity g is only a function of co-latitude θ and height r in 3-D form and
a function of co-latitude θ in 2-D case. Substituting (7.14) into equation (7.5), gives
us:

K(n) = −
0

∫

Ps

rn+2 dP

g(θ, r)
(7.16)
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The r in the above equation can be replaced by equation (7.13). Finally, considering
the elastic deformation of the solid Earth, equation (7.4) becomes:

[

∆Cnm

∆Snm

]

= − a2(1 + kn)

(2n + 1)Me

2π
∫

0

π
∫

0

[

0
∫

Ps

(

r

a

)n+2
dP

g(θ, r)

]

Pnm(cos θ)

[

cos mλ
sin mλ

]

sin θdθdλ

(7.17)
where kn is the load Love number for degree n [Farrel , 1972].

7.1.2.1 Layered pressure on real Earth’s surface

In reality, the surface pressure is not a complete measure of the atmospheric mass
[Trenberth, 1981]. Due to the curvature of the Earth, the vertical atmospheric columns
become wedges with inclined lateral surfaces. The mass of every wedge is balanced by
not only the pressure at the bottom of the surface but also the support to its lateral
surfaces [Rannon et al., 1997]. As a result, the product of the surface pressure and
the bottom area is always less than the overlaid air weight above that area. In the
3-D case, the equation (7.16) can be re-written as:

K(n) = −
∫ 0

Ps

(rs + z)n+2 dP

g(θ, rs + z)
(7.18)

with

rs = r0 + ζ +
Rf (θ)Φs

g(θ)
g0

Rf (θ) − Φs

(7.19)

z is the height above the Earth’s topographic surface. Replacing K(n) in equation
(7.4) by (7.18), we have a formula that converts the layered (3-D) pressure field to
geopotential coefficients.

The meteorological products are given either on isobaric levels (equal pressure)
or hybrid half levels. For the product provided on isobaric levels, the goepotential
heights are explicitly provided, the layered temperature and humidity data are used
for the computation of the virtual temperature. For the products provided in hy-
brid coordinates, the temperature and humidity data are given at half levels. The
coordinates define the edge of the atmospheric layers in terms of the surface pressure.

Pi+ 1

2

= ai+ 1

2

+ bi+ 1

2

Ps (7.20)

ai+ 1

2

and bi+ 1

2

are model dependent coefficients for every half level. The subscript

(i+ 1
2
) indicates that the variable is at the half level. Using the digitized hypsometric

equation [Holton, 1992], the geopotential height at each half level is given by:

Φi+ 1

2

= Φs +
1

g0

n=Ntop
∑

n=i+1

RdryTv ln
Pi+ 1

2

Pi− 1

2

(7.21)
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where Φs is the surface orography, Rdry is the gas constant for dry air and Tv is the
virtual temperature and can be computed by equation (2.32)

Under different assumptions of the atmospheric structure and approximations of
reference surfaces, equation (7.18) can be simplified to different forms. The top
standard pressure level is approximately 50 km above the MSL, which is very small
compared to the radius of the Earth. Using equation (A.2) for g, the rs + z term in
(7.18) can be approximated by its first order expansion:

K(n) = −(rs)
n+2

g(θ)

∫ 0

Ps

(

1 + (n + 4)
z

rs

)

dP (7.22)

The above equation can be re-organized as:

K(n) =
(rs)

n+2

g(θ)

[

Ps −
∫ 0

Ps

(n + 4)
z

rs

dP

]

(7.23)

The second term in the bracket (a negative value) represents the missing part if only
the surface pressure is used in the computation. To quantify the effect of this term,
we use the U. S. Standard Atmosphere [U. S. Standard Atmosphere, 1976] to calculate
the integral. By letting n = 0, and rs = 6371 km, the magnitude of this term is about
4.7 hPa, and it increases as n becomes larger.

7.1.2.2 Surface pressure on a spherical Earth

We can neglect the thickness of the atmosphere (z = 0) and assume that the
pressure only concentrates on a thin layer above the Earth’s surface approximated by
a reference sphere with a radius a (neglecting the oblateness of the Earth and real
surface topography). Let rs = a and g(θ) = g0, equation (7.23) is simplified to:

K(n) = an+2Ps(θ, λ)

g0

(7.24)

The final formula is:

[

∆Cnm

∆Snm

]

=
a2(1 + kn)

(2n + 1)Me

2π
∫

0

π
∫

0

[

Ps(θ, λ)

g0

]

Pnm(cos θ)

[

cos mλ
sin mλ

]

sin θdθdλ (7.25)

This expression can be computed using the FFT method.

7.1.2.3 Surface pressure on the real Earth’s surface

The surface topography is usually described as the orthometric height above the
Mean Sea Level. If we only neglect the thickness of the atmosphere, equation (7.23)
becomes:

K(n) = rn+2
s (θ, λ)

Ps(θ, λ)

g(θ)
(7.26)
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Thus, equation (7.17) is simplified to:

[

∆Cnm

∆Snm

]

=
a2(1 + kn)

(2n + 1)Me

2π
∫

0

π
∫

0

(

rs

a

)n+2
Ps(θ, λ)

g(θ)
Pnm(cos θ)

[

cos mλ
sin mλ

]

sin θdθdλ

(7.27)
Equation (7.18) becomes similar to formula (3-18) given in the GRACE AOD1B

description document [Flechtner , 2005] if we assume g(θ) = g0 and Rf (θ) = a. In the
document, they also use the surface geopotential height Φs to approximate the geoid
undulation ξ. The difference of these two values sometimes is very big. In addition,
their method ignores the dependence of the gravity on latitudes.

7.1.3 Calculation procedures and the mean field

The datasets used include the ECMWF TOGA operational analysis and NCEP
final (FNL) operational analysis. They are both available 4 times daily. ECMWF
TOGA is in the spherical harmonic format and has a horizontal resolution of T106.
Vertically, it has 21 standard pressure levels from 1000 hPa to 1 hPa. Before the com-
putation, we first extract the 3-D geopotential height, temperature, specific humidity
and surface orography from the dataset, and then convert them to a 3-D regular
1◦ × 1◦ grid. The NCEP dataset is converted to a 1◦ × 1◦ regular grid from a much
higher resolution. Vertically, it has 26 mandatory pressure levels from 1000 hPa to
10 hPa. We extract the same 3-D variables as in ECMWF from the original file to
save storage space.

To evaluate the atmospheric variations, a long-term (usually longer than one year)
mean is subtracted from pressure fields. For the formulas using 2-D surface pressure,
it is relatively easy to compute the mean of the surface pressure. For the 3-D case,
the computation is intensive. The integral (7.18) has to be calculated for each grid
and each degree. If we want to compute a 3-D yearly mean, there are 365 × 4 3-D
fields. For each field, there are 360 × 180 vertical columns. For each air column, we
need to compute the integral (7.18) for each degree (< 100).

A mean field for the year 2001 was prepared at the beginning. For surface pressure,
we do not directly use the surface pressure provided in the datasets. Instead, we cal-
culate the surface pressure for both ECMWF and NCEP using the same topography
based on their own 3-D fields, which guarantee that the two surface pressure fields
are referenced to the same topography. For each grid, 4 corner points are used to
compute a block mean. The geopotential coefficients are calculated by the numerical
integration method (See Appendix D) after the subtraction of the mean field.
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7.2 Computational results

In order to remove the short term variations in the atmosphere and ocean, GFZ
has been preparing the Atmosphere and Ocean De-aliasing (AOD) product, which
is released as AOD1B. This product is based on the ECMWF Integrated Forecast
System (IFS) at synoptic time 00Z, 06Z, 12Z, 18Z (Z stands for Greenwich time).
The horizontal resolution of the data is T213/N160, which corresponds to about
0.56◦. Vertically, the data are given on 60 layers from the surface to 0.1 hPa. We
summarize the datasets used in this study in Table 7.1.

Dataset Interval Horizontal Vertical
Level
type

Representation

ECMWF
(AOD1B)

6 hours
T213/N160
approx. 0.56◦

60 layers from
surface to 0.1
hPa

hybrid
levels

spherical har-
monics

ECMWF
TOGA

6 hours
T106/N80
1.125◦

21 layers from
1000 hPa to 1
hPa

pressure
levels

spherical har-
monics

NCEP
FNL

6 hours 1◦× 1◦
26 layers from
1000 hPa to
10 hPa

pressure
levels

regular grid

Table 7.1: The meteorological data used in the study

It is apparent that GFZ uses much higher resolution data than we do. Our dataset
(pressure level) is derived from the original dataset (hybrid level) for diagnostic pur-
poses, but with a lower resolution. It is obtained from the National Center for At-
mospheric Research (NCAR) data center. The original ECMWF data is not available
to us. In order to validate our computation, we first compare our results with the
GFZ AOD1B product.

7.2.1 Comparison with the GRACE AOD1B products

Two methods are introduced to obtain the air density in the formula which con-
verts pressures to geopotential coefficients. One is the equation of state formula for
ideal gases, the other is the hydrostatic equation. We use the hydrostatic equation
to compare with the AOD1B products, since it uses the hydrostatic formula as well.
However, we adopt more precise formulas in the computation, e.g.,

• A better formula in the conversion of geopotential height and geometric height;
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• The latitudinal variation of the gravity is considered;

• The exact ellipsoidal Earth radius is computed;

• Real geoid height is used in the formula (AOD1B approximates the geoid height
using the surface topography).

Some of these factors may or may not affect the accuracy of the final results, this is
assessed in this study.

Figure 7.2 shows the degree amplitude for a whole month of AOD1B product and
our hydrostatic computation in April, 2003. The expected GRACE measurement
error is plotted in the figure to indicate the GRACE sensitivity. The monthly mean
differences are below the GRACE sensitivity except the first several degrees. Con-
sidering the fact that the actual GRACE sensitivity is worse than this ideal case, we
might conclude that their differences are below the GRACE sensitivity. The RMS dif-
ference (defined as the RMS of their differences) is also below the GRACE sensitivity
except for degree 2, which might be caused by the latitudinal variation of the gravity
or the different model resolutions. These differences are also plotted in a geographic
map in Figure 7.3. The mean difference is relatively larger in the polar region and a
clear zonal feature is depicted in the RMS map.
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Figure 7.2: Spectrum of the AOD1B product and our hydrostatic computation for
April, 2003.
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Figure 7.3: Mean and RMS differences between the AOD1B product and our com-
putation.

It is surprising to see that the difference of these two computations are below the
GRACE sensitivity. The approximation of the geoid by the topography adopted in
the GFZ AOD1B product has little effect on the results. We suspect that a large part
of the differences in the algorithms are canceled by their respective yearly mean fields.
Since we do not have the original ECMWF data to produce the AOD1B product, in
the following comparisons, it is replaced by our ECMWF data but with a similar
algorithm to AOD1B (We also call this AOD1B).

7.2.2 Difference between 3-D computations

7.2.2.1 Hydrostatic vs. AOD1B

To verify the effect of the mean field, we compute the spherical harmonic coeffi-
cents from the same ECMWF data using our formula and the AOD1B formula. For
each method, two sets of 30-day coefficients are calculated. A yearly mean is only re-
moved from one set of coefficients. The coefficients with and without their respective
means removed are compared in Figure 7.4. It is shown that the monthly mean differ-
ence with mean removed is almost below the sensitivity, while the difference without
removing their respective means is more than one order of magnitude larger than the
other, but their RMS difference is very small except for degree 2. This implies that
the two mean fields for our hydrostatic and AOD1B computations are different. The
effects of the topography, latitude dependent gravity and other aspects commonly
exist in both monthly and yearly mean fields. These effects are mostly canceled after
subtracting the mean field. This would explain why the results are similar, despite of
the differences in their assumptions.
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Figure 7.4: Spectra for the comparisons of hydrostatic and AOD1B computation with
and without mean removed.

7.2.2.2 3-D Hydrostatic equation vs. Equation of state

The air density can be derived from the hydrostatic equation or the equation
of state. One can use either equation (7.11) or (7.17) to calculate the geopotential
coefficients. In Figure 7.5, the spectra for the mean and the RMS difference between
the coefficients computed using the equation of state and the hydrostatic equation
are plotted. All the curves in the figure are above the GRACE sensitivity at around
degree 12. It is shown that using the same dataset with different methods as well as
using the same method with different models brings the same level of difference. There
is no clear explanation for the differences between the two methods. Theoretically,
they should bring the same result. In reality, however, 3-D datasets may not strictly
obey these two equations, i.e., the air is not in perfect hydrostatic balance and/or
does not strictly follow the ideal gas law. In the hydrostatic equation (7.17), no
temperature is required for the integration, while in the equation of state formula
(7.11), no gravity information is needed for the integration. These effects cannot be
removed by subtracting the mean field.

The spatial differences are shown in Figure 7.6. The monthly mean difference
between the hydrostatic and the equation of state is larger over Antarctica for both
ECMWF and NCEP. The magnitude of ECMWF is relatively smaller. These two
equations are not consistent for the fields over Antarctica. (c) and (d) illustrate again
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Figure 7.5: Spectra for the montly mean and the RMS difference between the coeffi-
cients computed using the equation of state and the hydrostatic equations in April,
2003.

the large difference between ECMWF and NCEP at Southern Ocean region. It is still
a question of which equation gives a better result. This is under investigation.

7.2.3 3-D computation vs. 2-D computation

Sometimes, it is convenient to use the surface pressure to compute the mass varia-
tions of the atmosphere by neglecting its vertical thickness. Equation (7.25) assumes
that Earth is a sphere and equation (7.27) considers the roughness of the Earth’s
topography. By using the surface pressure, computation loads can be greatly reduced,
and the FFT method can be applied to further improve the computational efficiency.
Figure 7.7 shows the monthly mean difference between the 3-D computation and the
2-D spherical Earth assumption. The differences between 3-D hydrostatic results
and 2-D spherical results are smaller than the expected GRACE sensitivity for both
ECMWF and NCEP, which was not expected based on studies in some previous pub-
lications [e.g. Swenson and Wahr , 2002]. The differences using the equation of state
are above the sensitivity around degree 12. For the comparisons of the 3-D compu-
tation with the 2-D realistic Earth assumption in Figure 7.8, the results are similar.
The 2-D results do not suffer from neglecting the vertical atmospheric structure. The
spatial distribution of these difference is plotted in Figure 7.9. For the figures re-
lated to the 3-D hydrostatic comparisons (a, b, e), there is almost no difference in
the tropical region. The discrepancies concentrate in the middle and high latitudes.
The southern ocean area shows relatively larger differences. Similar features are not

129



−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−0.5 −0.3 −0.1 0.1 0.3 0.5

mm

(a) ECMWF hydro - ECMWF state

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

mm

(b) NCEP hydro - NCEP state

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

mm

(c) ECMWF hydro - NCEP hydro

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

mm

(d) ECMWF state - NCEP state

Figure 7.6: The spatial differences for the coefficents computed using two models and
two methods.

present in the 3-D state figures (c, d, f). The magnitude of the difference is larger
than that of the 3-D hydrostatic comparisons. The difference exists in the tropical
region as well, but is dominant in the Antarctica region.

In order to investigate whether those effects are canceled by their respective yearly
mean fields, we re-compute the coefficients without removing their yearly means.
Figure 7.10 shows that there are biases between the 3-D and 2-D computations when
leaving the mean field intact, and the RMS of their differences are below the sensitivity
except for degree 2. The 2-D realistic assumption does bring a smaller bias when
compared to the 3-D computation.

7.2.4 Summary

New gravity missions require an accurate modeling of the atmospheric mass change.
We introduce rigorous formulas to convert the 3-D meteorological fields (pressure,
temperature, and humidity) to geopotential coefficents. We use a more precise for-
mula to convert the geopotential height to geometric height. The oblateness of the
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Figure 7.7: Monthly mean difference between 3-D computations and 2-D spherical
Earth in April, 2003.

Earth and the latitude dependence of gravity are also carefully taken care of. The
required air density can be derived either by the hydrostatic equation or the equa-
tion of state. With some approximation, the 3-D formula can be simplified to a 2-D
version, which only requires the surface pressure. Using surface pressure only can
greatly reduce the computational load.

It is surprising to find that the differences between the 3-D computation using
the hydrostatic equation and the 2-D formulas are below the expected GRACE sen-
sitivity after removing their respective mean fields, which disagrees with a previous
study [Swenson and Wahr , 2002]. We further prove that the effects of the vertical
atmospheric structure, topography, and the oblateness of the Earth can be largely
compensated by subtracting the mean field for both ECMWF and NCEP data. Con-
sequently, we could argue that the surface pressure is adequate for the atmospheric
de-aliasing purposes. However, the comparison between the 3-D hydrostatic formula
and the 3-D equation of state formula shows slightly different results. The exact
reason for this discrepancy is not known yet. We suspect that the consistency be-
tween the data and the model might cause the problem. In a previous study, Boy
and Chao [2005] showed agreement between these two formulas on a high resolution
hybrid level dataset, but the authors reported disagreement between the hybrid level
data and pressure level data based on the same hydrostatic equation. This contra-
dicts our analysis. The difference between our results and AOD1B products using

131



0 10 20 30 40 50 60 70 80 90 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Degree

G
eo

id
 a

m
pl

itu
de

 (
m

m
)

ECMWF hydro 3D−2D real surface (mean)
ECMWF state 3D−2D real surface (mean)
ECMWF hydro 3D−2D real surface (RMS)
ECMWF state 3D−2D real surface (RMS)
GRACE measurement error

Figure 7.8: Mean and RMS difference between 3-D computations and 2-D realistic
Earth.

the hydrostatic equation is almost below the theoretical GRACE sensitivity except
for the first several degrees. We have addressed the fact that there are differences
in the detailed implementations, and our dataset consists of low resolution pressure
level data. The AOD1B product was produced by a high resolution hybrid level data.
We suspect the dataset used may also affect the conclusion of the analysis.

The difference between ECMWF and NCEP, once again, reveals the discrepancy
between these two models, especially over the Antarctic region. Their difference
cannot be canceled by removing their respective mean fields, which indicates that the
atmospheric variations are modeled differently by these two models.

Usually, it is hard to know the exact error in the 3-D fields. Surface pressure
can be validated by ground station measurements, like we did with AWS. For 3-D
fields, comparisons with radiosondes or radio occultation profiles can reveal some of
the story. In those measurements, however, there also exists errors, which makes
the comparison a difficult task. Fortunately, the NWP models are keep improving in
precision, and horizontal and vertical resolutions. Especially the improvements over
southern latitudes are noticeable by assimilating more satellite measurements.

For the areas with large hydrological signals, omitting of the vertical structure of
the atmosphere brings negligible error. The surface pressure is adequate for those
applications.
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Figure 7.9: The spatial difference for the coefficients computed using 2-D and 3-D
methods.
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Figure 7.10: Monthly Mean and RMS difference between 3-D and 2-D computations
with the yearly mean un-removed.
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CHAPTER 8

CONCLUSIONS AND OUTLOOK

8.1 Summary and conclusions

Atmospheric mass is only about one millionth of the mass of the solid Earth, but it
has the largest temporal variation compared to the hydrological, cryospheric, oceanic
and solid earth signals. The amplitude of its variation is similar to that of the hydro-
logical signal. Unlike the tidal signals, the atmospheric variation has wide temporal
and spatial spectra. Modeling such a signal and determining its error distribution
become very complicated. Satellite gravity missions such as GRACE provide an un-
precedented opportunity to sense those hard-to-measure signals in remote regions as
mass constraints for geophysical models, but they require an accurate pressure model
to separate other interesting signals. Antarctica represents one such regions with
many mysteries undiscovered due to its remote location and extreme environment.
Since NWP models largely depend on the accuracy and the distribution of in-situ
observations, atmospheric pressure from NWP model has the biggest uncertainty in
the Southern Ocean and Antarctic regions. The atmospheric errors increase the un-
certainty of the recovered integrated mass signal, and prevent a clear separation of
the contributions from each of the Earth’s sub-systems. Quantifying the error bud-
get from the atmospheric contribution and improving the current NWP modeling in
Antarctica become very important tasks.

In this research, we investigated the potential of using GPS occultation pressure
profile to improve the Antarctic pressure modeling. We paid special attention to
the characteristics of GPS occultation measurement in the polar regions. A software
system has been developed to retrieve the pressure, temperature, and humidity pro-
file from excessive delay measurements based on the geometrical optics and radio
holographic methods. By analyzing results from our software, we confirmed that the
occultation measurement has the best resolution in the vertical range around 5-30 km
for pressure and other variables. In the lower troposphere especially in the tropics,
the errors become relatively large because the measurements suffer from the rapidly
varying moisture content and receiver tracking problem. Various methods to deal
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with this problem have been introduced in Chapter 2 in the “software” and “algo-
rithm” aspects. A complete solution requires the change of the GPS “hardware”
tracking to an “open loop algorithm” [Sokolovskiy , 2004]. In the polar regions, the
multipath problem is alleviated and becomes less critical because that the extremely
cold temperature makes the air relatively dry and hardly holds moisture. Our results
show that occultation measurements have higher SNR and reduced noise than in the
tropics. Consequently, most of the profiles in polar regions can penetrate down to
less than 1 km above the ground surface. The profile retrieval algorithms are based
on various assumptions, simplifications, smoothing and initializations. To test the
sensitivity of the final retrieval results to factors like algorithm, time, satellite, and
area of interest, we examined the CHAMP and SAC-C profiles from UCAR and JPL
with the interpolated ECMWF and NCEP pressure profiles at 10 km altitude (less
affected by moisture), and chose a period that the two LEOs used a similar version of
tracking firmware and all the profiles have passed the quality control. We found that
they generally agree with each other in most of the regions, but there are discrepan-
cies possibly caused by different retrieval algorithms and satellite signal tracking in
some regions. Southern Ocean and Antarctica have the largest disagreement, where
the difference can be as large as 5 hPa. Individual profile needs to be examined
to pinpoint the cause of the difference. NWP models usually have distinct regional
performance primarily due to the unevenly distributed observations. We chose to
validate the CHAMP profiles against ECMWF, NCEP and radiosonde data in 5 geo-
graphic regions. It is found that the regional averaged pressure bias and the standard
deviation difference are still large at or near the Earth surface, especially over the
southern polar region (> 3 hPa). CHAMP derived pressures is systematically smaller
compared to other data in all altitudes (1-30 km) in the southern polar region. The
regional averaged ECMWF and NCEP do agree well in the profile locations, with a
slightly larger standard deviation difference only in the southern polar region. This
depicts the internal consistency between NWP models; on the other hand, it also
implies that common errors may exist in both models. Identifying whether the bias
exists in the model or comes from the occultation profile is very meaningful. It can
be used to improve either the NWP model or occultation depending where the error
resides, although it is a difficult task in such a data-sparse region.

To avoid the effects of various assumptions, errors and approximations in the final
occultation retrieval results, we have the option to assimilate the quantities in the
early stage of the occultation retrieval procedure directly to NWP models. These vari-
ables can be the high-level pressure, temperature and moisture profiles, middle-level
refractivity profiles, and low-level bending angles or excessive phase measurements.
Assimilating high-level data is relatively easy, but it suffers from all the errors in
the algorithm. While for the low-level data, the non-linear relationship makes the
formulation for the forward and adjoint modeling very complicated. In this study, we
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adopted a 1-D variational approach and chose CHAMP refractivity profiles as obser-
vation (relatively cost effective) to combine with a background model from ECMWF.
Our 1DVar results show remarkable improvement of the temperature in 200-300 hPa
region. In addition, the high vertical accuracy of the occultation measurements in
the upper atmosphere can be propagated down to have positive impact (error re-
duced to 70% of the original) on the surface pressure though the hydrostatic relation.
This demonstrates the potential of the occultation measurements for the improvement
of pressure field. After eliminating the existing limitation of the occultation, the in-
creased number of observations and the reduced multipath effect make the occultation
a very promising technique to improve the weather modeling in the Antarctic region.

The pressure errors and uncertainties embedded in NWP models degrade the
GRACE recovered gravity change. The anticipated pressure error should be under 1
hPa. We examined the model uncertainties and found that the discrepancy can be
as large as 6-8 hPa around the Southern Ocean and the Antarctic regions on daily
and monthly time scale. Topographical effects need to be taken care of when NWP
models adopt different terrain models. The effects of topography can be reduced
by removing a long-term mean field. After converting pressure fields to spherical
harmonic coefficients, the degree 0 and 1 terms are neglected by assuming that the
total mass is conserved and the coordinate center is at the center of mass. Barometric
(thermal) tides are not negligible and are usually well treated in the ocean tide model.
The difference between ECMWF and NCEP is currently lower than the calibrated
error of the GRACE monthly solution, but it contributes to the total error budget.
We separate the total atmospheric errors into (1) the mis-modeled or un-modeled
error that can be correctly sensed by GRACE; (2) the aliasing error caused by the
imperfect modeling of the variability. The exact magnitude of (1) is hard to assess
unless independent in-situ ground truth is available. The contribution from (2) can
be simulated using an exact satellite orbit configuration with one model as truth and
the other as nominal de-aliasing model. After de-aliasing using NCEP re-analysis
data, we found that the middle to high degree spherical harmonic coefficients have
noticeable (3-7 times smaller) improvements. Most of the long wavelength errors
are well captured by GRACE. Their variations induce extra errors for the middle to
high degree coefficients. Simulation using recent ECMWF and NCEP operational
fields gave reduced aliasing error, indicating that the variations of the two models
becomes similar and NCEP has improved skills. The IB assumption further decreases
the amplitude of the aliasing error. The RMS pressure difference over land is also
slightly changed for the IB case. We argue that the IB assumption makes the aliasing
estimation too optimistic. In addition, the simulated aliasing error also depends on
the models chosen in the simulation and may not represent a realistic distribution.
In addition, we also show that aliasing is not a local phenomenon. The un-modeled
pressure variations in Antarctica produce aliasing errors over the globe. Improving
Antarctic pressure modeling can help to reduce the global aliasing error.
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The NWP models was validated against the AWS data in Antarctica. Using the
10-min sampling interval surface pressure measurements, we demonstrated that the
6-hour analyzed model data can capture most of the power by a spectral analysis.
Linear interpolation is applicable for obtaining high sample-rate pressure data. In the
validation, ECMWF exhibits a much better agreement with the AWS observations
in terms of standard deviation than NCEP re-analysis. The not-well-surveyed AWS
station elevation increases the pressure bias, although the bias is not always a constant
value throughout the whole year. Part of the biases can be removed by subtracting a
long-term mean. The standard deviation differences reveal that larger disagreements
tend to happen during winter months, in the coastal regions where increasing weather
activities occur, and in regions with sharp elevation change. The standard deviation
in the high-elevation interior is generally lower than 2.0 hPa, and is larger than 2.0
hPa around the coastal region. NCEP re-analysis depicts a much larger disagreement.
The comparison result between ECMWF and AWS might bring an optimistic result,
since some AWS observations might have already been assimilated into ECMWF.
The errors revealed in this study can serve as a realistic low bound for the model
errors, provided that there is little error in the AWS observations. However, the
AWS observations are not always reliable due to the harsh weather conditions and
poor maintenance. We also found that the error distribution between the AWS and
NWP models is different from the difference between two NWP models. The AWS
data show that the errors are large along the coastline, while NWP model difference
is large in the interior of Antarctica, which implies that some of the simulations using
the model difference may not reflect the realistic error distributions.

In the final chapter, we investigated the influences of different algorithms and
assumptions of 2-D or 3-D atmospheric structures on the atmospheric de-aliasing
product. Calculating the air density by the hydrostatic equation or the equation of
state brings non-negligible difference. The exact reason is at present unknown. To
generate our own AOD product, we proposed several improvements compared to the
GFZ’s AOD1B algorithm. Meanwhile, we use a relatively low resolution ECMWF
analysis data. It is found that the difference between these two AOD products is
almost below the expected GRACE sensitivity. Surprisingly, we also found that the
difference between the 3-D hydrostatic method and 2-D method is below the GRACE
sensitivity. It is discovered later that the atmospheric structure and the latitudinal
variation of gravity are largely compensated by removing their respective long-term
means. If this is true, the computational load and storage space for atmospheric
de-aliasing model can be greatly reduced by using the simplified 2-D method (surface
pressure only). Removing the mean fields does not help to reduce the difference be-
tween the ECMWF and NCEP. There are still some fundamental differences between
these two models. If computational burden is not a concern, using our improved
model should bring a better result. Validation of the 3-D fields (temperature, pres-
sure and humidity) is not as easy as the comparison using those surface observations.

138



These 3-D observations are hardly available in Antarctica. GPS occultation can be a
good candidate in this situation.

8.2 Discussions and outlook

We have shown that accurate atmospheric modeling is important for reducing
the total errors in GRACE gravity estimation. Improving not only the atmospheric
modeling but also the ocean modeling as background models for de-aliasing the high-
frequency variations is expected to have some significant impacts on the GRACE
gravity solution, especially over the Antarctic region. Simulations based on model
difference may incorrectly reflect the real error distribution. Sometimes, these errors
are underestimated because of the correlation of the data and models. In addition,
due to the nature of the GRACE orbital sampling, the aliasing of the interesting
signals also needs to be well treated.

The NWP operational models are continuously improving their skills over southern
latitudes [Pendlebury et al., 2003] with better physical and dynamic modeling and by
incorporating new satellite observations. Monitoring the change of NWP models can
reduce the artificial errors introduced by the new data, e.g. the trends introduced
by adding new satellite observations [Hines et al., 2000; Bromwich and Fogt , 2004].
The new released GRACE solutions show a lower calibrated error after updating the
onboard tracking firmware and background models. Further reducing the error is
anticipated to achieve its baseline performance. At present, only the largest basins
with large signal amplitude can be well recovered.

The assimilation of radio occultation measurements and its impact to the NWP
models are restricted by the limited number of occultation data from current available
satellites. The GPS occultation retrieval algorithm and onboard tracking software are
being continuously improved for the lower troposphere. With the launch of the 6-
satellite COSMIC constellation, the polar and other regions of the world will be more
densely covered. A major improvement of the atmospheric modeling in Antarctica
is expected. A re-processing of GRACE data with a most recent NWP model will
increase the accuracy and resolution of gravity solutions, with reduced errors caused
by the unknown atmospheric variability.
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APPENDIX A

CONVERSION BETWEEN THE GEOPOTENTIAL
HEIGHT AND THE GEOMETRIC HEIGHT

In most meteorological products, the pressure serves as the “natural” vertical
coordinate. Normally, geopotential heights are given at the standard pressure levels,
or it can be derived from hybrid model levels. The geopotential height Φ is defined
as:

Φ(H,φ) =
1

g0

∫ H

0

g(H ′, φ)dH ′ (A.1)

where g0 is defined as a constant value (9.80665 ms−2), which was originally the grav-
ity at the 45 ◦ latitude set by World Meteorological Organization (WMO). However,
as gravity models continually improve, this value is slightly different from the current
gravity at 45 ◦. g(H ′, φ) is the local gravity (latitude and height dependent). H is the
height above the Mean Sea Level. The geopotential height can be understood as a
scaled geopotential, similar to the dynamic height in geodesy. Figure A.1 shows that
the differences between the geometric height and geopotential height as a function of
the geometric height at different latitudes. The differences increase with the altitude.
We now introduce an approximate method to convert between the geometric (strictly
speaking, the height should be the orthometric height) and the geopotential height
without using complicated gravity models.

If we approximate the gravity at H by applying the inverse square law:

g(H,φ) = g(φ)

(

R

R + H

)2

(A.2)

Here R is an appropriate radius of the Earth at a given geodetic latitude. g(φ) is the
gravity on the geoid at the latitude φ. H is the height of the computational point
above the geoid. Substituting (A.2) into (A.1), we obtain

Φ =
g(φ)

g0

RH

R + H
(A.3)

H can be derived as:

H =
RΦ

g(φ)
g0

R − Φ
(A.4)
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Figure A.1: The geometric height minus geopotential height derived using the EGM
96 model.

In reality, Earth is not a non-rotating, homogeneous sphere, its gravity does not
strictly follow the inverse square law. Meanwhile, as the Earth is rotating, the cen-
trifugal component of the gravity tends to increase with the increase of the parallel
radius. To compensate the effect of the gravity variation and centrifugal force but
still keep the form of expression in (A.3) and (A.4), a strategy suggested by W.D.
Lambert[List , 1951] is to adjust R as a fictitious radius for the expressions to obtain
the right value. Differentiating the equation (A.2) with respect to H and evaluating
at H = 0, we obtain

Rf (φ) =
2g(φ)

−∂g(H,φ)
∂H

∣

∣

H=0

(A.5)

Rf is the fictitious radius and is used to replace R in (A.3) and (A.4).
The gravity at the geoid can be approximated by the normal gravity. From

Heiskanen and Moritz [1967], the normal gravity above the reference ellipsoid can
be computed using equation (2-123):

g(H,φ) ≈ γH = γ(φ)

[

1 − 2

a
(1 + f + m − 2f sin2 φ)H + 3

(

H

a

)2]

(A.6)

Following quation (A.5), yields,

Rf (φ) =
a

1 + f + m − 2f sin2 φ
(A.7)
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Figure A.2: The fictitious radius and the radius of reference ellipsoid.

The variables can be replaced from Moritz [1992], finally, (A.3) and (A.4) becomes

Φ =
g(φ)

g0

RfH

Rf + H
(A.8)

H(Φ, φ) =
Rf (φ)Φ

g(φ)
g0

Rf (φ) − Φ
(A.9)

In the literature, there exists simplified versions of above formulas. In order to
verify the accuracy of these formulas. We compare the geopotential height calculated
using EGM 96 and the following variations of formulas:

1. Φ = aH
a+H

, a = 6,378.137 km

2. Φ = g(φ)
g0

aH
a+H

, a = 6,371 km

3. Φ = g(φ)
g0

aH
a+H

, a = 6,378.137 km

4. Φ = g(φ)
g0

aH
a+H

, a = radius of the ellipse (7.8)

5. Φ = g(φ)
g0

Rf H

Rf+H
(A.8)

6. Numerical integration of the equation (A.6)
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The differences between each of these six cases and the EGM 96 derived geopoten-
tial height are shown in Figure A.3. Considering the latitudinal variation of gravity
g greatly reduces the conversion error. Case 1 gives the worst result, which is the for-
mula used in the GRACE AOD document [Flechtner , 2005]. After further adopting
the Smithsonian radius Rf , the error was reduced by one order of magnitude. The
numerical integration formula performs equally well with equation (A.8), but it is less
favorable since equation (A.8) is very simple and easy to implement.
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(a) case 1
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(b) case 2
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(c) case 3
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(d) case 4
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(e) case 5
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(f) case 6

Figure A.3: Different formulas to compute geopotential height.
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APPENDIX B

THE COMPUTATION OF SURFACE PRESSURE

To account for the fact that the artificial topography in numerical models are
different from the realistic Earth surface, it is needed to compute the surface pressure
from upper air analyses. In a large scale, the atmosphere is assumed to be in static
equilibrium in the vertical direction, which is the hydrostatic equilibrium (2.35):

dP = −g(z)ρ(z)dz (B.1)

z is the geometric height. In meteorological products, geopotential heights are com-
monly used. The equation can also be written in terms of the geopotential height
from the definition of equation (A.1):

dP = −g0ρ(Φ)dΦ (B.2)

Φ represents the geopotential height. The density ρ in the above equation can be
derived from the ideal gas law (or equation of state) (7.10):

P = ρRTv or ρ =
P

RTv

(B.3)

Substituting (B.3) into (B.2), yields

ln
P2

P1

= − g0

RTv

(Φ2 − Φ1) (B.4)

See equation (7.10) for the definition of the variables.
If the topographic surface is between two mandatory pressure levels (smaller than

P1 and larger than P2), the surface pressure can be derived as:

ln
Ps

P1

= ln
P2

P1

Φs − Φ1

Φ2 − Φ1

(B.5)

Where Ps is the surface pressure. The above equation assumes the virtual temperature
Tv is a constant in the layer between P1 and P2.
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Sometimes, the topographic surface is below the lowest mandatory pressure level
P1. If we can assume a uniform temperature lapse rate α = 6.5 K/km, the surface
temperature can be extended as:

Ts = T1 + α(Φs − Φ1) (B.6)

The surface pressure is derived from (B.4):

Ps = P1 exp

(

− g0(Φs − Φ1)

R · 0.5(Ts + T1)

)

(B.7)

For the case that only sea level pressure P0 and temperature T0 are available, the
surface pressure can be obtained in a similar way. The surface temperature is:

Ts = T0 − αΦs (B.8)

and surface pressure

Ps = P0 exp

(

− g0Φs

R · 0.5(Ts + T0)

)

(B.9)
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APPENDIX C

THE LIST OF AUTOMATIC WEATHER STATIONS

ID Station Lat Lon Height (m) GPS Surveyed
Adelie Coast

08909 Port Martin 66.820 S 141.400 E 39 0
08914 D-10 66.710 S 139.830 E 243 0
08986 D-47 67.397 S 138.726 E 1550 0
08988 Cape Denison 67.009 S 142.664 E 31 0
08989 Dome C II 75.121 S 123.374 E 3250 0

High Polar Plateau
08904 Dome Fuji 77.310 S 39.700 E 3810 0
08918 Relay Station 74.017 S 43.062 E 3353 0
08985 Henry 89.011 S 1.025 W 2755 0
21356 Clean Air 90.000 S 0.000 E 2835 0
21359 Mizuho 70.700 S 44.290 E 2260 0

West Antarctica
08900 Harry 83.003 S 121.393 W 945 0
08903 Byrd 80.007 S 119.404 W 1530 0
08931 Brianna 83.889 S 134.154 W 525 1
08938 Siple Dome 81.656 S 148.773 W 668 1
08981 Mount Siple 73.198 S 127.052 W 230 0
21358 Theresa 84.599 S 115.811 W 1463 0

Continued

Table C.1: The automatic weather stations in Antarctica.
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Table C.1 Continued

ID Station Lat Lon Height (m) GPS Surveyed
Ross and Ocean Island (McMurdo Area)

08695 Cape Spencer 77.967 S 167.531 E 24 1
08697 Herbie Alley 78.100 S 166.670 E 24 0
08901 Cape Bird 77.224 S 166.440 E 42 1
08906 Marble Point 77.439 S 163.754 E 108 1
08927 Windless Bight 77.728 S 167.703 E 60 0
08929 Ferrell 77.884 S 170.818 E 45 1
08937 Pegasus South 77.990 S 166.568 E 5 1
21357 Pegasus North 77.952 S 166.500 E 8 1
21360 Laurie II 77.529 S 170.807 E 38 1
21362 Linda 78.451 S 168.394 E 43 1
21364 Willie Field 77.866 S 166.983 E 14 1

Ross Ice Shelf
08905 Manuela 74.946 S 163.687 E 78 0
08907 Whitlock 76.144 S 168.392 E 275 0
08984 Possession Island 71.891 S 171.210 E 30 0
08908 Lettau 82.518 S 174.452 W 30 0
08911 Gill 79.985 S 178.611 W 25 0
08913 Schwerdtfeger 79.875 S 170.105 E 54 1
08915 Elaine 83.134 S 174.169 E 60 0
08934 Marilyn 79.954 S 165.130 E 75 0

Weddell Sea/Peninsula Region
08917 Sky Blu 74.792 S 71.488 W 1395 0
08920 Uranus Glacier 71.430 S 68.930 W 780 0
08923 Bonaparte Point 64.778 S 64.067 W 8 0
08926 Larsen Ice Shelf 66.949 S 60.897 W 17 0
08947 Racer Rock 64.067 S 61.613 W 17 0
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APPENDIX D

SPHERICAL HARMONIC ANALYSIS WITH BLOCK
MEAN

The equations to convert the 3-D meteorological fields to spherical harmonic co-
efficients have the common form of:

[

Cnm

Snm

]

=
a2

(2n + 1)M

2π
∫

0

π
∫

0

f(θ, λ, n)Pnm(cos θ)

[

cos mλ
sin mλ

]

sin θdθdλ (D.1)

where f(θ, λ, n) represents the vertical integral in equations (7.11) or (7.17). The value
of f was evaluated as an area mean using the four corner points of the equiangular
blocks on the reference ellipsoid. There are N = π/∆λ blocks in the latitude direction
and 2N blocks in the longitude direction. A numerical quadrature formula can be
formed using a digitized version of (D.1) as suggested by Colombo [1981]:

[

Cnm

Snm

]

=
a2

(2n + 1)M

N−1
∑

i=0

2N−1
∑

j=0

f̄i,j(n)

θi+1
∫

θi

Pnm(cos θ) sin θdθ

λj+1
∫

λj

[

cos mλ
sin mλ

]

dλ

(D.2)
The above formula can be re-written as:

[

Cnm

Snm

]

=
a2

(2n + 1)M

N−1
∑

i=0

2N−1
∑

j=0

f̄i,j(n) IP i
nm

[

ICj
m

ISj
m

]

(D.3)

where

IP i
nm =

θi+1
∫

θi

Pnm(cos θ) sin θdθ (D.4)

and
[

ICj
m

ISj
m

]

=

λj+1
∫

λj

[

cos mλ
sin mλ

]

dλ (D.5)

149



The integral in equation (D.5) has a closed analytical solution along the longitude. We
will now give a recursive formula to compute the integrals of the associated Legendre
functions in (D.4).

The fully normalized associated Legendre functions can be computed by the fol-
lowing recursive formulas [Heiskanen and Moritz , 1967; Jekeli , 1996]:

Pn,n(cos θ) = Wn,n sin θPn−1,n−1(cos θ) (D.6)

Pn,n−1(cos θ) = Wn,n cos θPn−1,n−1(cos θ) (D.7)

Pn,m = Wn,m

(

cos θPn−1,m(cos θ) − W−1
n−1,mPn−2,m(cos θ)

)

(D.8)

where m = 0, 1, 2, · · · , n ≥ m, and

W1,1 =
√

3 (D.9)

Wn,n =

√

2n + 1

2n
for n > 1 (D.10)

Wn,m =

√

(2n + 1)(2n − 1)

(n + m)(n − m)
(D.11)

These recursive relations can be initialized by P0,0 = 1. Based on the above formulas,
one can derive the following recursive formulas to compute the integrals of the fully
normalized associated Legendre function (D.4) [Paul , 1978]:

IPn,n =
Wn,n

n + 1

[

nWn−1,n−1IPn−1,n−2 − cos θ2W
−1
n,nPn,n(cos θ2) + cos θ1W

−1
n,nPn,n(cos θ1)

]

(D.12)

IPn,n−1 =
Wn,m

m + 1

[

sin2 θ2Pn−1,m(cos θ2) − sin2 θ1Pn−1,m(cos θ1)

]

(D.13)

IPn,m =
Wn,m

m + 1

[

(n−2)W−1
n−1,mIPn−2,m +sin2 θ2Pn−1,m(cos θ2)− sin2 θ1Pn−1,m(cos θ1)

]

(D.14)
The above recursive relations are initialized by:

IP0,0 = cos θ1 − cos θ2 (D.15)

IP 1,1 =
W1,1

2

[

θ2 − θ1 − cos θ sin θ

∣

∣

∣

∣

θ2

θ1

]

(D.16)
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