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ABSTRACT
 
 
During the last decade, numerous Low Earth Orbit (LEO) satellites, including 

TOPEX/POSEIDON, CHAMP and GRACE, have been launched for scientific purposes 
at altitudes ranging from 400 km to 1300 km. Because of highly complex dynamics of 
their orbits, coming from the Earth gravity field and the atmospheric drag, accurate and 
fast LEO orbit determination has been a great research challenge, especially for the 
lowest altitudes. To support GPS meteorology that requires an accurate orbit in near real-
time, efficient LEO orbit determination methods were developed using the triple-
differenced GPS phase observations, as presented in this dissertation. These methods 
include the kinematic, dynamic, and reduced-dynamic approach based on the wave 
algorithm. 

 
To test the developed algorithms, 24 hours of CHAMP data on February 15, 2003, 

which amounts to 15 revolutions, were used for each method. The EIGEN2 geopotential 
model was used with degree and order up to 120. Precise IGS orbits are used for the GPS 
satellites, and 43 IGS ground tracking stations were chosen using the algorithm 
developed in this study, based on the network optimization theory. The estimated orbit 
solutions were compared with the published Rapid Science Orbit (RSO) and the 
consistency testing was performed for the dynamic solution. In addition to the 
comparison with other orbit solutions, the SLR residuals were also computed as an 
independent validation of the methods presented here. 

 
The kinematic orbit solution depends on the satellite geometry and data quality. The 

absolute kinematic positioning solution, with an RMS error of ±26 meters in 3D, was 
used as an initial approximation for the kinematic orbit determination. Because of the 
inaccuracy of the initial approximated orbit, there is a bias up to a few hundred epochs in 
the kinematic solution. This bias is effectively removed with the backward filter by fixing 
the last epoch from the forward filter solution. After the forward and backward filtering, 
the kinematic approach shows accuracy better than ±20 cm in 3D RMS for a half day arc 
compared to the reference RSO. 

 
The dynamic approach requires careful modeling of the atmospheric drag force 

which is the most dominant nonconservative force at LEO’s altitude. In addition, the 
empirical force modeling, which is similar to the stochastic process noise in the reduced-
dynamic approach, absorbs most of the remaining unmodeled forces. The two frequencies 
of the empirical forces, that is, once- and twice-per-revolution, are modeled in this study. 
Also after a thorough testing of the most suitable size of the arc length for the 
atmospheric drag parameters, the scaling factors for the drag force are estimated every 
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hour. With this careful modeling, the dynamic solution shows an agreement within ±8 cm 
in position and ±0.12 mm/s in velocity of RSO. The computation time of the dynamic 
solution for the 24-hour arc is 2.5 hours on a 3 GHz PC platform. 

 
The wave algorithm, as implemented in this study, for the LEO precise orbit 

determination (POD) represents a new approach to the reduced-dynamic technique. This 
approach shows a better fit to RSO for each tested segment. However, there is slightly 
larger bias in its solution, thus, the overall RMS of fit is comparable to the dynamic orbit 
solution. This follows from the fact that the concept of the reduced-dynamic approach is 
already incorporated in the dynamic orbit determination in the form of the empirical force 
modeling. Therefore, there is no room for further improvement by the process noise 
modeling to take care of the unmodeled forces. A simplified force model is considered for 
future study in conjunction with the wave filter approach. 

 
The CHAMP orbit is successfully estimated in this study to support, for example, 

the GPS meteorology, using a new method that is accurate as well as fast and efficient. 
The applied wave algorithm shows the possibility of further improvement in the RMS of 
fit as long as the bias is modeled appropriately. The hypothesis testing indicates that the 
estimated dynamic solution of this study is consistent with the published RSO, thus, 
further accuracy improvement cannot be expected without other types of measurements, 
while its easy and time-effective implementation represents the major improvement, as 
compared to the existing solutions. Also, the SLR residual test shows that the CHAMP 
orbit solution estimated in this study is comparable to solutions determined by other 
analysis centers, such as JPL and GFZ. 
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CHAPTER 1 

 

INTRODUCTION
 
 
During the last two decades, numerous Low Earth Orbit (LEO) satellites have been 

launched for scientific purposes at altitudes ranging from 400 km to 1300 km, including 
TOPEX/POSEIDON (Tapley et al., 1994), CHAMP (Reigber et al., 2002; CHAMP, 
2005), JASON-1 (JASON, 2005), GRACE (GRACE, 2005), ICESat (ICESat, 2005). The 
first multi-satellite constellation FORMOSAT-3/COSMIC was launched in April 2006 
(COSMIC, 2006), and more new missions are expected in the next few years. For 
example, the CHAMP (CHAllenging Minisatellite Payload, launched in July 2000) 
mission is designed for static Earth gravity field recovery, magnetic field mapping, and 
atmospheric and ionospheric profiling. The CHAMP satellite, managed by the German 
GeoForschungsZentrum (GFZ), was placed in an almost circular, near polar orbit with an 
initial altitude of 454 km. The recent LEO missions carry space-grade Global Positioning 
System (GPS) receivers onboard, and the measurements to the GPS satellites are used as 
observations for the precise orbit determination (POD) of these satellites. To meet the 
science mission objectives, precise orbit determination of the LEO satellites must be 
guaranteed, although the required accuracy may be different for various applications. For 
example, 4 cm of vertical coordinate error of a tracking ground station can introduce 
more than 10 mm bias in the total zenith delay (TZD), depending on the quality of the 
GPS orbit solutions (Ge et al., 2002). 

 
The primary objective of the research presented here is to provide an accurate LEO 

orbit for GPS meteorology in near real-time. An acceptable time delay for “near” real-
time orbit should be no longer than 2 hours for a 3-hour arc (König et al., 2002). The 
contribution of ±50 cm of GPS orbit error for a 1000 km baseline would result in ±1 mm 
precipitable water vapor (PWV) error, which is equivalent to ±6 mm TZD error (Rocken 
et al., 1995). Assuming the LEO orbit error has a similar impact as GPS orbit error, the 
LEO orbit accuracy should be better than ±50 cm because ±1 mm PWV is comparable to 
the accuracy level of radiosondes and microwave radiometers (Ge et al., 2002). Also, 
according to Zhao (1998), an orbit error better than ±30 cm is required to estimate the 
temperature profile in GPS soundings to better than ±1 degree K up to an altitude of 40 
km. Therefore, the LEO orbit should be computed with an accuracy better than ±30 cm 
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for a 3-hour arc within 2 hours after the actual measurement. 
 
The LEO satellites experience highly complex dynamics in their orbits, due to the 

significant impact of the high frequency Earth gravity field components and the 
atmospheric drag effects, both of which complicate the determination of an accurate orbit 
solution for LEO. Thus, high-accuracy and fast LEO orbit determination is a great 
research challenge. With the successful mission of TOPEX/POSEIDON (launched in 
1992, the orbit accuracy is around ±2 cm RMS error in radial component and ±8 cm for 
3D; Tapley et al., 2004), numerous efforts were undertaken to develop efficient and 
accurate algorithms for the precise orbit determination using GPS measurements, and 
these have been successfully applied to various LEO missions. With the recently 
improved quality of the space-grade GPS receivers, the LEO double-differenced reduced-
dynamic orbit solution can be obtained in the post-mission mode at an error level of ±4-5 
cm, and ±5-6 cm from the kinematic ambiguity-fixed approach (Švehla and Rothacher, 
2001 and 2003; Kuang et al., 2001). 

 
The primary POD technique for GPS satellites is the dynamic approach, because 

their orbits are high, and thus, smooth enough to use only the low degree/order harmonics 
for the gravitational effect; moreover, the atmospheric drag effect is negligible at GPS 
altitude. In the LEO case, however, kinematic, dynamic and reduced-dynamic techniques 
are used by many researchers. None of them is clearly dominant for all conditions and 
geometries, as each one has its pros and cons for the LEO orbit determination. Thus, a 
combination of these methods is often used to ensure the estimation of the best orbit 
solution. The kinematic approach uses only GPS measurements to determine a time series 
of positions of the satellite; therefore, it is a simple and efficient algorithm. However, the 
orbit quality is strongly dependent on the geometry and continuity of the GPS signals. 
For the dynamic POD, all forces acting on the satellite are computed and numerically 
integrated to estimate the initial state vector and other unknown dynamic parameters. 
Thus, accurate force modeling is a critical issue for a successful POD in the dynamic 
approach. Finally, the reduced-dynamic approach introduces kinematic components to the 
dynamic force models in the form of the process noise parameters. This means that the 
dynamic parameters are estimated first; then the state vector is re-estimated using the 
Kalman filter along with the stochastic process noise which is usually modeled as a first-
order Gauss-Markov process (Bertiger et al., 1994). 

 
The double-differenced GPS carrier phase measurements are widely used as 

observations in the orbit determination procedure. This is because most of the systematic 
measurement error sources are already removed, including the GPS satellite and receiver 
clock errors. Moreover, the integer ambiguity fixing, if possible, provides strong 
constraints to the positioning solution. In the real applications of LEO orbit determination, 
however, since the baselines between the tracking stations and the LEOs are normally 
very long (hundreds to thousands of kilometers), it is not easy to resolve the integer 
ambiguities, primarily due to the residual ionospheric effects (Byun and Schutz, 2001). 
The reported success rate of the ambiguity resolution is about 40 % for the wide-lane 
ambiguities (Švehla and Rothacher, 2003). In order to avoid the time-consuming and 
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complicated ambiguity resolution process, in this research the triple-differenced, 
ionosphere-free GPS carrier phase data are used as the primary observations. A triple-
differencing technique for dynamic orbit determination was first applied for GPS 
satellites at The Ohio State University (OSU) (Grejner-Brzezinska, 1995). This technique 
was later applied for LEO satellites in a kinematic application by the research group at 
OSU (currently called the Satellite Positioning and Inertial Navigation, SPIN Lab.), of 
which the author of this dissertation is also a member (Grejner-Brzezinska et al., 2002; 
Kwon et al., 2002 and 2003), and by others (Byun, 2003; Bock, 2003). It was also used 
for geodetic network adjustment (Eren, 1986 and 1987), baseline estimation of the 
ground stations with Kalman filtering (Remondi and Brown, 2000), an a priori solution 
for the double-differenced approach of LEO POD (Byun and Schutz, 2001), or LEO 
dynamic orbit determination (Bae, 2005b). 

 
The most pronounced advantage of the triple-differencing technique is that the 

unknown phase ambiguities are entirely removed; thus, the size of the system of normal 
equations is significantly decreased while the solution quality is, under certain conditions, 
equivalent to the double-difference float solution, as proved by Schaffrin and Grafarend 
(1986). However, in triple-differencing, the measurement noise is amplified, and the 
observations are epoch-to-epoch correlated due to the differencing in time. In addition, 
potentially strong constraints coming from the fixed integer ambiguities are lost. This 
disadvantage should, however, be considered in the context of the relatively low level of 
success in the ambiguity resolution in the double-differencing mode that heavily depends 
on the data quality, continuity, observational geometry, as well as the level of ionospheric 
activity. The triple-differencing approach is fast, efficient and suitable for real-time 
applications, as shown already by the aforementioned OSU group (Grejner-Brzezinska et 
al., 2002; Kwon et al., 2002 and 2003); thus, it can facilitate efficient LEO orbit 
determination which further supports various applications of LEOs, such as weather 
forecasting and space weather monitoring/prediction based on the LEO occultation events. 

 
Most of the LEO POD strategies use a predetermined set of ground stations for 

differential positioning of a LEO satellite. In this research, to further reinforce the LEO 
POD process, an algorithm for the determination of an optimal configuration of the 
ground stations is proposed, which uses geodetic techniques of network optimization. The 
geometric optimization of the network of ground stations used for LEO orbit 
determination was successfully implemented (Bae, 2005a) by the second order design 
(Schaffrin, 1985). This method was originally designed to maximize the geometric 
strength for point positioning, but it is shown here as applicable to baseline optimization 
for the improvement of the LEO orbit quality. 

 
In this research, all three techniques, namely the kinematic, dynamic and reduced-

dynamic approaches for LEO orbit determination, are implemented to support 
atmospheric profiling for GPS meteorology that requires the near real-time POD 
estimation. Since April 2002, CHAMP Ultra-rapid Science Orbit (USO) has been 
available at 3-hour intervals with a latency of 2 hours after the actual observation (König 
et al., 2002; Wickert et al., 2004), but it is not published with a comparable latency. The 
most efficient method developed here is demonstrated to produce a 26-hour solution in 
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just 2.5 hours. Here, the estimated orbit is comprehensively compared and analyzed using 
the same data set of the CHAMP satellite. The orbit quality is verified in three different 
ways, namely through the direct comparison with the orbit solutions from other analysis 
centers, through the internal consistency check for the overlapping arcs, and through the 
calculation of the Satellite Laser Ranging (SLR) residuals with respect to the orbit 
estimated in this study. 

 
Chapter 2 describes the overview of the satellite positioning techniques. The 

modernization of GPS and the basic concept of GPS occultation as the primary 
application of the LEO orbit determination considered in this study are the main points of 
this chapter. In addition, the measurement models for GPS positioning, including the 
triple-differencing technique, are also presented. 

 
Chapter 3 presents three main orbit determination techniques, namely the kinematic, 

dynamic and reduced-dynamic approaches. The procedures and modeling techniques are 
discussed in detail in this chapter. 

 
Chapter 4 explains the theory of the network optimization and its application to the 

baseline configuration for the precise LEO orbit determination. 
 
Chapter 5 discusses the results of the orbit solutions which are obtained by the three 

different methods described in Chapter 3. These results are analyzed in detail by direct 
comparison with other orbit solutions, checking the overlapping orbit solutions and 
computing SLR residuals. 

 
Chapter 6 provides the summary and conclusions of this research and suggests some 

future research directions. 
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CHAPTER 2 

 

OVERVIEW OF SATELLITE POSITIONING 
 
 

2.1 GPS 

 

2.1.1 Development of GPS 
 
The Global Positioning System (GPS) is a satellite-based positioning and time 

transfer system operated by the US Department of Defense (DoD). Although it was 
originally developed to support military users, it became indispensable to the civilian 
users for their commercial as well as scientific purposes. The advantage of GPS is that 
the receivers can be placed on any kind of platform, such as an aircraft, a ship and even 
fast moving satellites, and most of the time more than 4 satellites are visible to the 
tracking receiver. The GPS satellites are orbiting in six different planes with an 
inclination of 55° at an altitude of 20,200 km, completing one revolution in just under 12 
hours. 

 
The accuracy of GPS is guaranteed by its highly precise satellite atomic clocks. Its 

long term frequency stability is about 10-13 to 10-14 per day (Hofmann-Wellenhof et al., 
2004). Currently, the best cold atomic fountain clock (not adopted by GPS yet) provides 
the fractional frequency stability of approximately 10-16 for the time intervals of a few 
hours to a day. Two L-band carrier waves, L1 and L2, are derived from the fundamental 
frequency, namely: 

 

0

0

L1 154 1575.42 MHz ,

L2 120 1227.60 MHz ,

f

f

= =

= =
 

 
where 0f  is the fundamental frequency of 10.23 MHz. Therefore, the wavelengths 

for L1 and L2 correspond to 19.0 cm and 24.4 cm, respectively. This dual frequency 
capability can be useful for the elimination of a frequency-dependent error, such as an 
ionospheric delay. 
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GPS time is an atomic time scale, coincident with UTC (Coordinated Universal 

Time) on January 6.0, 1980, which is the origin for the GPS time. The UTC is adjusted 
by the leap seconds to keep up with the UT1 (Universal Time corrected for polar motion) 
within 0.9 seconds. GPS time has 19 seconds of constant offset with respect to TAI 
(International Atomic Time). Since the total leap seconds as of January 1.0, 2006 equal to 
33 seconds, the GPS time is currently 14 seconds ahead of UTC. In other words, 

 
33s   since 01 January 2006TAI UTC− = ; 

 
thus: 
 

14s   since 01 January 2006GPS UTC= + . 
 

 

Figure 2.1 GPS Block IIR-M (http://www.lockheedmartin.com/data/assets/10674.jpg). 
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PRN Block Launch Date Freq. Std. Orbit Plane 

01 IIA-16 22 NOV 1992 Cs F6 

02 IIR-13 06 NOV 2004 Rb D1 

03 IIA-25 28 MAR 1996 Cs C2 

04 IIA-23 26 OCT 1993 Rb D4 

05 IIA-22 30 AUG 1993 Rb B4 

06 IIA-24 10 MAR 1994 Rb C1 

07 IIA-20 13 MAY 1993 Rb C5 

08 IIA-28 06 NOV 1997 Cs A3 

09 IIA-21 26 JUN 1993 Rb A1 

10 IIA-26 16 JUL 1996 Cs E3 

11 IIR-3 07 OCT 1999 Rb D2 

13 IIR-2 23 JUL 1997 Rb F3 

14 IIR-6 10 NOV 2000 Rb F1 

15 II-9 01 OCT 1990 Cs D5 

16 IIR-8 29 JAN 2003 Rb B1 

17 IIR-M1 26 SEP 2005 Rb C4 

18 IIR-7 30 JAN 2001 Rb E4 

19 IIR-11 20 MAR 2004 Rb C3 

20 IIR-4 11 MAY 2000 Rb E1 

21 IIR-9 31 MAR 2003 Rb D3 

22 IIR-10 21 DEC 2003 Rb E2 

23 IIR-12 23 JUN 2004 Rb F4 

24 IIA-11 04 JUL 1991 Cs D6 

25 IIA-12 23 FEB 1992 Rb A2 

26 IIA-14 07 JUL 1992 Rb F2 

27 IIA-15 09 SEP 1992 Cs A4 

28 IIR-5 16 JUL 2000 Rb B3 

29 IIA-17 18 DEC 1992 Rb F5 

30 IIA-27 12 SEP 1996 Rb B2 

Table 2.1 Current (as of August 2006) GPS constellation (ftp://tycho.usno.navy.mil/pub/ 

gps/gpsb2.txt). 
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The constellation of 29 Block II satellites (II/IIA/IIR/IIR-M) is currently operational, 
as of August 2006 (Table 2.1); PRN 17, launched on 26 September 2005, is the first 
modernized GPS satellite (IIR-M), broadcasting a second civil signal L2C (Figure 2.1). 

 
 

2.1.2 GPS Modernization 
 
While the demand for more precise GPS positioning increases, the current GPS has 

some weaknesses, such as, for example: 
 
1) A civilian user who operates within the standard positioning system mode has an 

access only to the L1 C/A code; thus, no option for ionospheric delay correction 

with dual frequency is possible. 

2) Because of the relatively weak signals of L1 and L2, it is difficult to perform 

positioning in confined environments. 

3) GPS signals tend to be affected by multipath. 
 
Therefore, it is necessary to extend the capabilities of GPS further to enhance not 

only military users but also civilian and/or commercial users with new GPS signals for 
improved accuracy, integrity and continuity of service. The most significant feature of 
this GPS modernization is the addition of two new navigation signals for civilian use as 
well as a new military code on both L1 and L2 frequencies. The new military signals 
have an increased power for faster signal acquisition and improved security codes. On the 
other hand, the civilian users have the benefit of a second frequency for ionospheric 
correction and redundancy, and a third signal for high accuracy and real-time applications. 

 

1227.60 MHz 1575.42 MHz1176.45 MHz

L2 L1L5

P(Y)P(Y)

C/AC/A

P(Y)P(Y)

C/AC/A

P(Y)P(Y)

P(Y)P(Y)

L2CSL2CS

P(Y)P(Y)

C/AC/A

P(Y)P(Y)

L2CSL2CS

MM MM

Present Signal
(Block II/IIA/IIR)

Next Generation

Of Capability
(Block IIR-M)

Civil Safety of Life

Applications
(Block IIF and beyond)

MM MM

 

Figure 2.2 GPS signal evolution (Novak, 2001). 



 9 

 
A new civil code, L2C, added to the existing GPS L2 frequency has a lower signal 

power than L1 C/A, and its chipping rate is limited to 1.023 MHz to ensure separation of 
the spectrum from the new military M code. Also L2C has an enhanced performance in 
that it divides the transmitted signals into two equal-power components, one with, and 
one without data. This improves the carrier tracking threshold performance by 3 dB and 
provides ‘full-wavelength’ carrier phase measurements, not requiring the phase ambiguity 
resolution needed for signals with bi-phase data modulation (Fontana et al., 2001). 
Therefore, L2C performs significantly better than the L1 C/A signal replica on L2. L2C 
has improved cross-correlation properties for single frequency applications such as for 
positioning in wooded areas or indoor navigation. The L2C capability was first turned on 
for Block IIR-M satellite (PRN 17) on 16 December 2005, and is currently under testing. 

 
Another new signal introduced under the GPS modernization is a third civil signal 

L5. The L5 signal will be provided on GPS Block IIF satellites beginning in 2007 (as of 
May 2006 schedule), and all subsequent GPS satellites (Figure 2.2). Since L5 is not 
shared with military signals, it achieves the power split by using two equal-length codes 
in phase quadrature at 1176.45 MHz with a chip rate of 10.23 MHz. The addition of L5 
will make GPS a more robust radio-navigation service for precision navigation, in 
support of high accuracy and real-time applications.  

 
The next generation GPS III system is expected to have the increased security and 

accuracy as well as higher power signals for better anti-jamming. It will support all of the 
legacy signals (backward compatibility) and, additionally, there will be a fourth civil 
signal, L1C, which will be added to the GPS L1 frequency. This new signal is assured a 
1.5 dB increase in minimum C/A code power to mitigate any noise floor increase, 
providing real-time unaugmented 1-meter accuracy. In addition, it will enable greater 
civil interoperability with the Galileo L1 signal. The first L1C signal will be available 
with the first GPS III satellite launch, which is expected in 2013 (as of May 2006 
schedule). Great effort has been made to ensure it has robust, supportable, flexible, 
international capability for the next 30 years. 

 
For further explanation of GPS modernization, one can refer to the following 

website http://www.navcen.uscg.gov/gps/modernization/default.htm. 
 
 

2.1.3 GPS Products 
 
The International GNSS Service (IGS) is committed to providing the highest quality 

of products as the standard for the Global Navigation Satellite Systems (GNSS) in 
support of Earth science research, multidisciplinary applications, and education 
(http://igscb.jpl.nasa. gov/). 
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Products Accuracy Latency Updates 
Sample 

Interval 

orbits ~ ±10 cm Ultra-Rapid 

(predicted half) Sat. clocks ~ ±5 ns 
real-time 

four times 

daily 
15 min 

orbits < ±5 cm Ultra-Rapid 

(observed half) Sat. clocks ~ ±0.2 ns 
3 hours 

four times 

daily 
15 min 

orbits < ±5 cm 15 min 

Rapid Sat. & Stn. 

clocks 
±0.1 ns 

17 hours daily 
5 min 

orbits < ±5 cm 15 min 

Final Sat. & Stn. 

clocks 
< ±0.1 ns 

~13 days weekly 
5 min 

Table 2.2 GPS orbit products (http://igscb.jpl.nasa.gov/components/prods.html). 
 
 
The IGS collects and distributes GPS observation data sets from stations all over the 

world. These data sets include GPS observations from the ground stations and from LEOs, 
GPS broadcast ephemerides, and other meteorological data with a latency of one hour to 
one day (and 4 days of latency in the case of LEO GPS observations). The GPS products 
are analyzed independently by the IGS analysis centers, and combined, constituting a 
single IGS product. For example, the orbit solutions from eight analysis centers are 
combined to produce the final GPS orbit solution. Table 2.2 shows the list of GPS orbit 
products and their accuracies. 

 
More than 250 ground stations are routinely tracking GPS satellites, with the 

accuracy of the station coordinates of ±3 mm and ±6 mm in the horizontal and vertical 
directions, respectively. For the Earth rotation parameters, the final solution is accurate to 
±0.05 mas for the polar motion and less than ±0.2 mas/day for the polar motion rates, 
with a latency of about 13 days. The Length of Day (LOD) which is equivalent to the 
variation in the rotational rate of the Earth, represented by the time derivative of the 
difference between Earth rotational time and dynamical time, is provided with an 
accuracy of ±0.02 ms in the final solution. The final tropospheric zenith delay can be 
obtained with ±4 mm of accuracy at 2-hour averaging intervals. Also the final 
ionospheric TEC (Total Electron Content) can be mapped every 2 hours with a resolution 
of 5 degrees (longitude) by 2.5 degrees (latitude), and an accuracy of ±(2-8) TECU (TEC 
unit, 1016 electrons per m2 which amounts to 16 cm for L1). The latencies for the 
tropospheric zenith delay and ionospheric TEC are within 4 weeks and 11 days, 
respectively. 
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2.1.4 GPS Measurement Models 
 
The GPS observations are ranges, deduced from the measured time of signal travel, 

or phase differences on the basis of a comparison between the received signals and 
receiver-generated signals (Hofmann-Wellenhof et al., 2004). The basic observations for 
GPS positioning are given by (excluding multipath terms) 
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with: 
 

Φ,P : the pseudo-range and phase measurement in distance units, respectively; 

ρ : the geometric range between the transmitter and the receiver at the time 

of signal emission and reception, respectively; 

f : the frequency of the carrier phase; 
2fI : the ionospheric refraction; 

T : the tropospheric refraction; 

λ : the wavelength of the signal; 

N : the integer ambiguity; 

c : the speed of light in vacuum; 

dt : the clock error; 

b : the interchannel bias; 

0ϕ : the initial fractional phase; 

ε,e : the measurement noise for pseudo-range and phase, respectively. 
 
Also, the superscript k  represents the transmitter (GPS satellite) and the subscript 

i  represents the receiver; the subscripted number 1 or 2 means that the term refers to the 
L1 or L2 signals, respectively (for all nomenclature except the interchannel biases). The 
interchannel bias represents the possible time delay between the measurements, which is 
expressed with respect to 1Φ ; 1b  is the bias between 1Φ  and 2Φ ; 2b  is between 1Φ  

and 1P ; 3b  is between 1Φ  and 2P . The full expression of the observation equations for 
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the pseudo-range as well as the phase measurement can be found in Grejner-Brzezinska 
(1995). 

 
The double-differenced observations are often used for GPS positioning applications 

because most of the spatially correlated error sources are eliminated by differencing with 
respect to the simultaneously tracking receivers and satellites. The single-differenced 
observation can be obtained by differencing two one-way measurements from two 
receivers i and j to the common satellite k. The single-differenced observation, however, 
is still affected by the receiver clock error and the interchannel biases, and it is difficult to 
separate these interchannel biases from the ionospheric delay and the ambiguities 
(Grejner-Brzezinska, 1995). Thus, one can further difference two single-differenced 
observations to satellites k and l, resulting in the double-differenced observation in which 
the interchannel biases are removed. 
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While the double-difference observations can eliminate most of the nuisance 

parameters, it is still possible to get additional benefit by forming a linear combination of 
two carrier phase (or pseudo-range) observations with different frequencies. The most 
popular linear combination of carrier phase observations is the ionosphere-free 
combination which can be represented by 

 

, 1 ,1 2 , 2

1 1 ,1 2 2 , 2 1 ,1 2 ,2 ,

kl kl kl

ij ion free ij ij

kl kl kl kl kl kl

ij ij ij ij ij ijT N N

α α

ρ α λ α λ α ε α ε

−Φ = Φ + Φ

= + + + + +
 (2.9) 

 
where 
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2 2
1 2

1 22 2 2 2
1 2 1 2

,
f f

f f f f
α α= = −

− −
 (2.10) 

 
and 1f  and 2f  are L1 and L2 frequencies, respectively. This ionosphere-free linear 

combination of phases can remove the influence of the ionospheric refraction, although 
there still remains a second-order effect. Contrary to the ionosphere-free linear 
combination, the ionosphere-only combination is useful for monitoring the behavior of 
the ionosphere or for cycle-slip detection. This combination can be obtained by 
differencing two phase ranges corresponding to two frequencies, that is, L1 and L2, thus, 
the geometric range term disappears, as can be seen in Eqs. (2.7) and (2.8) which give 
rise to Eq. (2.11): 

 

, ,1 , 2

2 2
1 2

1 ,1 2 ,2 ,1 ,22 2
1 2

.

kl kl kl

ij ion only ij ij

kl kl kl kl kl

ij ij ij ij ij

f f
I N N

f f
λ λ ε ε

−Φ = Φ − Φ

 −
= + − + − 

 

 (2.11) 

 
One thing that should be mentioned here is that the formulation of the differenced 

observations introduces correlations between the newly formed observations; thus, proper 
care should be taken of this correlation in the positioning algorithm. Since the differenced 
observations are considered as a multiplication of the differencing operator with the 
original observations, the law of error propagation must be applied to account for the 
correlation between the differenced observations. 

 
 

2.1.5 Triple-Differencing Technique 
 
It is true that most of the error sources are removed in the double-differenced GPS 

carrier phase observations, but there is still a challenge to resolve the integer ambiguities. 
As long as the integer ambiguities are fixed correctly, one can expect to have strong 
constraints for the positioning solution. In the real applications of the LEO orbit 
determination, however, since the baselines between the tracking stations and LEOs are 
normally very long (hundreds to thousands of kilometers), it is not easy to resolve the 
integer ambiguities due to the residual ionospheric effects (Byun and Schutz, 2001). The 
reported success rate of ambiguity resolution is at the level of about 40 %, based on 
fixing the wide-lane ambiguities, and about 18 % of the subsequent narrow-lane 
ambiguities (Švehla and Rothacher, 2003). In addition, the number of unknown 
ambiguities accounts for most of the unknown parameters in the dynamic POD using 
double-differenced observations. 

 
In order to avoid the time-consuming and complicated ambiguity resolution process, 

the triple-differenced, ionosphere-free GPS carrier phase data are used as primary 
observations in this study. The triple-differencing technique for orbit determination of the 
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GPS satellites was first applied in a dynamic approach by Grejner-Brzezinska (1995), and 
to the LEO satellites in the kinematic application by Byun (1998 and 2003), Grejner-
Brzezinska et al. (2001 and 2002), Kwon et al. (2002 and 2003), and by Bock (2003). In 
contrast, Eren (1986 and 1987) had used the triple-differenced observations for the 
geodetic network adjustment, and Byun and Schutz (2001) used them to get an a priori 
solution for the double-differenced approach. Also the triple-differenced carrier phase 
measurements were processed in a delayed-state Kalman filter for the baseline estimation 
of the ground stations (Remondi and Brown, 2000). It is well-known that the triple-
differencing technique has the advantage of removing the unknown phase ambiguities; 
thus, the normal equations have a significantly reduced dimension. Schaffrin and 
Grafarend (1986) proved that, under certain range space conditions which can be easily 
fulfilled, the solution quality from the triple-differencing technique is equivalent to the 
double-difference float solution. Beside the removed nuisance parameters, the need to 
detect and correct the cycle slips is accommodated by removing data outliers during the 
estimation process using the residual cut-off (threshold) criterion. 

 
The triple-differenced GPS carrier phase observations are given as follows (Grejner-

Brzezinska, 1995): 
 

kl

dtij

kl

dtijkl

dtij

kl

dtij

kl

dtij
f

I
T ,1,2

1

,
,,,1, ερ +−+=Φ , (2.12) 

,
,2, , , ,2,2

2

kl

ij dtkl kl kl kl

ij dt ij dt ij dt ij dt

I
T

f
ρ εΦ = + − + , (2.13) 

 
where the notation follows the earlier explanation except for dt  which now 

represents a difference between two consecutive double-differenced observations. In 
triple-differencing, however, the measurement noise is amplified, and the observations 
are further correlated on the epoch-by-epoch basis due to the differencing in time. In 
addition, the potentially strong constraints coming from the fixed integer ambiguities are 
lost. The correlation between consecutive epochs due to the time-differencing can be 
resolved by a simple and efficient algorithm, which decomposes the covariance matrix 
using the Cholesky factorization (Grejner-Brzezinska, 1995; Kwon, 1997; Byun, 1998; 
Kwon et al., 2003). 

 
Assuming that the covariance matrix for all epochs of the triple-differenced 

observations is represented by 
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the algorithm for the recursive decorrelation of the covariance matrix can be 

summarized as follows: 
 
1) Cholesky decomposition of the covariance matrix of the first epoch: 

TLL 111111 =Σ=Σ  

2) Forward substitution to get the whitened design matrix 1A , and observation 

vector 1y  for epoch 1: 

[ ] [ ]111111 yAyAL =  

3) Store the decomposed matrix, the whitened design matrix and observation vector 

11 1 1, ,ii i iL L A A y y← ← ←  

 
for any {1, , 1}i n∈ −⋯  

4) Read the design matrix, observation vector, covariance matrix for epoch i+1 as 

well as the cross-correlation matrix between epoch i and i+1: 

1 1 1, 1, 1, , ,i i i i i iA y+ + + + +Σ Σ  

5) Cholesky decomposition of the covariance matrix for two consecutive epochs 

(decomposition is to be done only for the lower two blocks): 
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6) Forward substitution to get 11, ++ ii yA  from: 

[ ]1, 1 1 1 1 1 1,i i i i i i i i i iL A y A y L A y+ + + + + + +
   = −     

7) Replace the Cholesky factor iiL  and the whitened ,i iA y  by 

1, 1 1,i i iL A+ + + , and 1 iy + . 

8) Repeat steps 4) through 7) until the process is completed ( 1i n+ = ). 
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2.2 CHAMP 

 

2.2.1 System Description 
 
The German scientific satellite, CHAMP (CHAllenging Minisatellite Payload), was 

launched on July 15, 2000, into an almost circular, near-polar (i = 87°) orbit with an 
initial altitude of 454 km, completing one revolution period in 93.55 minutes. Due to the 
atmospheric drag, the altitude has decreased over the six-year mission. The primary 
science objectives of the mission are (http://www.gfz-potsdam.de/pb1/op/champ/index_ 
CHAMP.html) 

 
1) To provide highly precise global long-wavelength features of the static Earth 

gravity field and the temporal variations of this field; 

2) To provide, with unprecedented accuracy, global estimates of the main and crustal 

magnetic field of the Earth and the space/time variability of these field 

components; 

3) To provide a good global distribution of a large number of GPS signal refraction 

data caused by the atmosphere and ionosphere at the event of satellite occultation 

by the Earth atmosphere, which can be converted into temperature, water vapor 

and electron content profiles. 
 
The atmospheric science objective mandates the availability of CHAMP orbits in 

near real-time, to enable the use of the occultation data in numerical weather modeling 
and forecasting. 

 
The nominal attitude of the CHAMP satellite can be represented by the spacecraft’s 

body-fixed system which has an origin at the center of mass of the spacecraft. Each 
component of the body-fixed system is described in Table 2.3 (CHAMP, 2002). 

 
 

Axis Description 

/S Cx  
aligned with the long side of the spacecraft towards the 

boom, in nominal attitude in flight direction (roll axis); 

/S Cy  completing the triad (pitch axis); 

/S Cz  nadir-looking, positive downward (yaw axis). 

Table 2.3 The spacecraft’s body-fixed system. 
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In order to meet the science mission objectives, CHAMP carries many instruments 
onboard, including a STAR accelerometer, TRSR-2 GPS receivers, a Laser Retro-
Reflector and an Advanced Stellar Compass (CHAMP, 2005). The STAR accelerometer 
sensor is designed to measure all non-gravitational accelerations, such as atmospheric 
drag and solar radiation pressure, acting on the CHAMP satellite. The resolution of the 
linear acceleration is 8 23 10 /m s

−×  for the x-axis and 9 23 10 /m s
−×  for the y- and z-axis 

in the instrument-fixed frame of the accelerometer. The accelerometer-instrument-fixed 
frame is parallel to the spacecraft-body-fixed frame, but pointing in different directions, 
which is explained in CHAMP (2002). It should be mentioned here that, although the 
onboard accelerometer of CHAMP can measure all nonconservative forces in three 
directions (Kang et al., 2003), the total replacement of the nonconservative forces with 
the accelerometer data is not possible. This follows from the fact that the published 
accelerometer data are smoothed over the 10-second intervals, during which there still 
could be more dynamics or maneuvers (Boomkamp, 2004). 

 

 

Figure 2.3 The CHAMP satellite. © Astrium 
 
 
The CHAMP “BlackJack” GPS receiver, manufactured at NASA’s Jet Propulsion 

Laboratory (JPL), serves as the main tool for high-precision orbit determination of the 
satellite. It has 16 channels and can track a maximum of 12 satellites simultaneously for 
POD with a sampling interval of 10 seconds. In the occultation mode the receiver can 
track up to four GPS satellites at 1/50 s sampling interval, which is much faster than that 
used for POD. The Laser Retro-Reflector (LRR) consists of four corner-cube prisms in an 
array which reflects short laser pulses back to a transmitting ground station. The 
measurements reflected by the LRR, a technique known as Satellite Laser Ranging (SLR), 
can be used to validate the GPS-based CHAMP orbit accuracy. The offset of the LRR 
with respect to the center of mass of the spacecraft is 250 mm in the positive z-axis of the 
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spacecraft-body-fixed frame. The Advanced Stellar Compass (ASC) provides high-
precision attitude information for the instrument fixed to the spacecraft body. Another 
ACS is part of the magnetometry optical bench unit on the boom. Also, ASCs are used as 
sensors for the satellite attitude control system. The precision of the attitude 

determination by the ACS is considered as ±
4

3
 arcsec. 

 
 

2.2.2 The Principle of GPS Occultation 
 
With the successful demonstration of GPS/Meteorology (GPS/MET) (König et al., 

2002; GPS/MET, 2006), GPS radio-occultation is considered a valuable data source for 
numerical weather prediction and climate change studies. One of the important objectives 
of CHAMP is to provide atmospheric profiling with high vertical resolution, high 
accuracy, and global coverage in all weather. The GPS radio-occultation technique is 
based on precise dual-frequency phase measurements of a GPS receiver (http://www.gfz-
potsdam.de/champ/science/limb_SCIENCE.html). The GPS occultation occurs when a 
LEO is tracking a setting or rising GPS satellite behind the Earth’s atmospheric limb, 
which typically lasts about 1 minute. The excess phase path delay due to the atmosphere 
can become up to a few kilometers near the surface (Syndergaard, 2005). The derived 
excess phase for the occulting satellites can be converted to the bending angles 
(maximum of up to 2°). This bending angle is used to determine vertical profiles of the 
refractive index with the assumption of a spherically-symmetric atmosphere, and further 
converted to water vapor within the lower troposphere if adequate pressure and 
temperature data are available (Rocken et al., 1995). The vertical profiles of electron 
density can also be derived based on similar principles. The atmospheric profiles have to 
be made available within three hours in order to support weather predictions (König et al., 
2002). Both CHAMP and GPS satellite orbits (position and velocity) should be known 
accurately and continuously to compute the GPS measurement path delay; thus, the 
precise orbit of CHAMP should be available within two hours. However, the CHAMP 
orbit is not currently published with a comparable latency, as mentioned in Chapter 1. 

 
Figure 2.4 shows the concept of GPS radio-occultation in which double-differenced 

observations are assumed. The atmospheric profiling experiment onboard CHAMP began 
on February 11, 2001 (Wickert et al., 2004). Although CHAMP is used for GPS radio-
occultation observation, it cannot provide temporally and spatially dense occultation 
measurements with global coverage. The recently launched COSMIC (Constellation 
Observing System for Meteorology, Ionosphere & Climate) satellites (COSMIC, 2006), 
on the other hand, will significantly increase the radio-occultation measurements on a 
global basis. Thus, it is expected to contribute to the scientific research on climate, 
especially providing a global self-calibrating data set for climate monitoring and model 
testing, and monitoring of the water vapor distribution (Anthes et al., 2000). Figure 2.5 
shows the simulated radio-occultation measurements of COSMIC for 24 hours of an 
operational constellation which has 6 satellites orbiting in six different planes. 
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Figure 2.4 Double-difference geometry of GPS limb sounding with CHAMP 

(http://www.gfz-potsdam.de/champ/science/limb_SCIENCE.html). 
 
 

 
Figure 2.5 Sun-fixed occultation locations for COSMIC (6 spacecrafts, 24 hours) -

simulated by Bill Schreiner (UCAR). 
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CHAPTER 3 

 

ORBIT DETERMINATION TECHNIQUES
 
 
Orbit determination is a process of improving the a priori orbital elements by using 

a large set of tracking data (Montenbruck and Gill, 2001). Three different techniques that 
are widely used for precise orbit determination will be described in this chapter, namely, 
kinematic, dynamic, and reduced-dynamic approaches. As can be seen in Table 3.1, the 
dynamic models are still predominantly used in the CHAMP orbit comparison campaign. 
Notably, the adopted approach varies depending on the purpose of the application as well 
as on the characteristics of the target satellite. 

 
 

Analysis 

Center 
Kinematic 

Reduced-

Dynamic 
Dynamic Mixed 

CSR   �  

TUM  �   

GFZ   �  

GRGS  �   

NCL    � 

DEOS   �  

JPL    � 

AIUB  �   

CNES  �   

ESA �    

UNB �    

UCAR �   � 

Table 3.1 Orbit determination techniques used for the CHAMP orbit comparison 

campaign (Boomkamp, 2003). 
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3.1 Adjustment Theory 

 
Generally the orbit determination problem is characterized by nonlinear relations 

between the observations and the describing parameters. Thus, it is necessary to linearize 
the measurement equations with respect to the nominal reference orbit (which is 
reasonably close to the true trajectory) to benefit from linear estimation theory. 

 
 
Assuming the increments (meaning the differences from the a priori orbits) in the 

linearized system to be small enough, the weighted least-squares adjustment technique 
can be used. The solution, called the LEast-Squares Solution (LESS), provides estimates 
of the unknown parameter increments by minimizing the weighted sum of squared 
deviations or inconsistencies. The linearized Gauss-Markov model is generally 
represented by 

 

2 1
0, (0, )y A e e Pξ σ −= + ∼N , (3.1) 

 
where y  is an 1n×  random vector of measurement increments, A  is an n m×  

design matrix of rank q m≤ , ξ  is an 1m×  non-random (incremental) parameter vector, 

e  is an 1n×  random error vector with zero mean and cofactor matrix of 1
P

− . The 
variance component, 2

0σ , which may or may not be known, can usually be determined in 

the estimation process. Once the a priori information of the parameters is available, it is 
often used in form of stochastic constraints to this model as follows: 

 

2 1
0 0 0 0 0, (0, )z K e e Pξ σ −= + ∼N , (3.2) 

 
where 0z  is an 1l × vector of constraints, K  is an l m×  matrix of known 

coefficients, and 0e  is an error vector for the constraints with the (suitably scaled) weight 

matrix, 0P . In addition, the constraints are usually assumed to satisfy the conditions of 

 

0{ , } 0C e e = , (3.3) 

A
rk m

K

 
= 

 
. (3.4) 

 
The weighted LESS within the Gauss-Markov model with stochastic constraints can 

be obtained by minimizing the Lagrange target function 
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0 0 0 0 02 ( ) 2 ( )T T T T
J e Pe e P e y A e z K eλ ξ ν ξ= + + − − + − − , (3.5) 

 
where λ  and ν  are vectors of Lagrange multipliers. The solution within the 

Gauss-Markov model with stochastic constraints is given by 
 

( ) ( )
1

0 0 0
ˆ T TN K P K c K P zξ

−

= + + , (3.6) 

 
where 
 

,T TN A PA c A Py= = . (3.7) 
 
The dispersion matrix of the estimates is represented by 
 

( )
12

0 0
ˆ{ } TD N K P Kξ σ

−

= + , (3.8) 

 
and the optimal unbiased estimate of the variance component can be computed as 
 

2 0 0 0 0 0
0

ˆ ( )
ˆ .

T T T Ty P y z P z c K P z

n m l

ξ
σ

+ − +
=

− +
 (3.9) 

 
The detailed derivation of the solution is given by Schaffrin (2002). For an 

alternative approach, based on a generalized Lagrange target function, see Schaffrin 
(1995). 

 
 

3.1.1 Batch Filtering 
 
In case of the dynamic POD approach, the batch filter uses all data in the arc to 

estimate the unknown (“state”) parameters at the certain epoch. It is not necessarily the 
first epoch, but, for convenience, the first epoch is assumed hereafter. Therefore, all the 
measurements should be mapped backwards to the first epoch and processed 
simultaneously to obtain an estimate of the state vector at that epoch. State estimates at 
future times are obtained by propagating the estimated epoch state forward using the 
satellite equations of motion. Since the batch filter fits the state vector epoch-wise to the 
entire data span, it is susceptible to dynamic model errors and the assumption of constant 
measurement biases. 

 
In the general orbit determination problem, the measurements have a nonlinear 

relation to the unknown state vector: 
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2
0( , ) , (0, )k k k k k kG t Rσ= + ∼Y X v v N , (3.10) 

 
where kY  and kX  are the observation vector and the unknown state vector at time, 

kt , respectively, and with the observation error, kv , that has zero bias and cofactor matrix 

kR . Once the reference trajectory, which is supposed to be reasonably close to the true 

trajectory, is available, the nonlinear observation equations can be linearized using a 
Taylor’s series expansion. Let *

kX  be the reference trajectory (or reference state vector), 

serving as the Taylor’s series approximation point. Then the observation equations can be 
linearized as follows: 

 

( )
*

* *

( , )

( , ) ,
k

k k k k

k k k k kT

G t

G
G t

= +

∂ 
= + − + ∂ X

Y X v

X X X v
X

 (3.11) 

 
where higher order terms are neglected. This can be abbreviated further to yield the 

form of Eq. (3.1), provided that the reference orbit is considered to be nonrandom: 
 

k k k kH= +y x v , (3.12) 

 
where the following substitution of terms is made: 
 

*

*

*

( , ) ,

,

.

k

k k k k

k T

k k k

G t

G
H

= −

∂ 
=  ∂ 

= −

X

y Y X

X

x X X

 (3.13) 

 
In order to estimate the state vector at the reference epoch, say 0t , the design matrix 

should be mapped to the reference epoch. Hence, 
 

0 0( , ) ,
k k k k

k k k

H

H t t

= +

= Φ +

y x v

x v
 (3.14) 

 
where 0( , )kt tΦ  denotes the state transition matrix from 0t  to kt . Thus, all the 

measurements are expressed in terms of the state vector at the reference epoch ( 0 ξ=x ) 

where the least-squares adjustment solution, as given by Eq. (3.6), can be used in the 
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event that the stochastic constraints, Eq. (3.2), for the reference epoch are available. The 
state transition matrix 0( , )kt tΦ  in Eq. (3.14) can be obtained by integrating the dynamic 

equations numerically. Details of which follow in the next section. 
 
In contrast, since there is no dynamic model involved in the kinematic approach, the 

state vectors at different epochs cannot be connected by the state transition matrix. 
Therefore, the state vector of each epoch becomes part of the unknown parameter vector 
which then should be estimated in the adjustment. In this case the observation model 
follows the first form of Eq. (3.14). 

 
 

3.1.2 Wave Filter 
 
The estimated orbit error resulting from the dynamic approach generally shows an 

error behavior of wave-like structure, notably it can be represented by different shapes of 
waves depending on the size of the segment. Since the statistical representation of the 
process noise requires an average over a substantial length of arc, it might be 
advantageous to model the process noise instead as a wave process. The wave process 
replaces the process noise as a linear combination of known basis functions with 
unknown coefficients (Salychev and Schaffrin, 1992; Salychev, 1998). The coefficients 
used for the wave algorithm are assumed to be piecewise constant. 

 
A wave process can be expressed by (Salychev, 1998, p. 144) 
 

1 1 2 2( ) ( ) ( ) ( )n nw t c f t c f t c f t= + + +⋯  (3.15) 

 
with 
 

1 2( ), ( ), , ( )nf t f t f t⋯ : the chosen basis functions; 

1 2, , , nc c c⋯ : the unknown coefficients which vary from one instant to 

the next. 
 
The basis functions used in Eq. (3.15) can be piecewise constant, linear or 

exponential functions. The choice of the basis functions should be determined from an 
analysis of the process noise before they are introduced into the system description. In the 
orbit determination problem, the orbit error expresses periodic behavior at different 
frequencies; thus, it may be best to describe its orbit error as a linear wave function. 

 
The basic idea of the wave filter is that the entire arc is divided into sub-arcs called 

“cycles,” and each estimation cycle should be chosen to ensure the convergence of the 
state vector. The estimates after each cycle are propagated to the following epochs to 
represent the total state vector behavior. Although the length of one cycle can be different 
from another, it would be convenient to deal with equal cycle lengths in the absence of 
knowledge of their behavior. Instead of estimating the unknown coefficients as given in 
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Eq. (3.15), Dirac functions with unknown intensity can be introduced as well, resulting in 
zero initial conditions. This means that an unknown intensity vector of Dirac functions 
can be added to the state equation, leading to 

 
( ) ( ) ( )t A t t= +ɺx x n , (3.16) 

 
where n  is the Dirac impulse function vector with unknown intensities. Again Eq. 

(3.16) can be discretized to give: 
 

1 1( , )k k k k kt t+ += Φ +x x n . (3.17) 

 
Assuming that the nonzero impulse appears once every cycle, the process noise 

modeling takes the form of an impulse sequence. Therefore, the impulse vector is only 
applied to the first epoch of each cycle and propagated as time proceeds. 

 
The state vector along with the measurement vectors within the cycle can be 

represented by 
 

1 1 1

2 2 1 2

1 0

1 1
0

0 0 0 0

0

0

0k k k k

m m

H

H

H

I I

φ

φ φ

φ φ
−

       
       
       
       = − +
       
       
              

⋮ ⋮ ⋮ ⋮

⋯

ɶ

y v

y v

x n

y v

x v

, (3.18) 

0 0
0 0{ }D = Σv , (3.19) 

 
where kφ  denotes the state transition matrix from kt  to 1kt + , i.e., 1( , )k k kt tφ += Φ , 

and 0ɶx  and 0
0Σ  are the state vector of a priori values of the estimate and its 

corresponding mean square error matrix at the initial epoch, respectively. It should be 
mentioned that Eqs. (3.18) and (3.19) represent a model for one cycle, and this can be 
repeated for each cycle. 

 
For the near real-time processing of the wave algorithm, Eq. (3.18) can be 

expressed with the zero initial condition of the state vector ( 0 0=ɶx , random zero), as 

mentioned earlier. Thus, the model of Eq. (3.18) can be rephrased as 
 

0 0
1 0 0 0 0 0 0 0 0φ φ φ= + − = −ɶx x n v n v , (3.20) 
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0
1 1 0 1 1 0 0

.
k k k k k k

k k k

H H

H

φ φ φ φ φ− −= − +

= +

⋯ ⋯y n v v

x v
 (3.21) 

 
Therefore, a recursive filter form can be represented, until the next impulse, as 
 

( ) ( )
1 1ˆ ˆ( , )j j

k k k kt t−
− −= Φx x , (3.22) 

( ) ( )
1 1 1( , ) ( , )j j T

k k k k k kP t t P t t−
− − −= Φ Φ , (3.23) 

( )( ) ( ) ( )ˆ ˆ ˆj j j

k k k k k kK H− −= + −x x y x , (3.24) 

( ) ( )( )j j

k k k kP I K H P
−= − , (3.25) 

 
where the superscript ( )j  represents the cycle j, and the proper gain matrix is given 

by 
 

( )
1( ) ( )j T j T

k k k k k k kK P H H P H R
−

− −= + . (3.26) 

 
It should be mentioned here that although the initial values of the state vector can be 

obtained from the estimates of the previous cycle, they are assumed to have a 
randomness; therefore, its mean square error matrix should be reinitialized with the 
nominal values at the first epoch of each cycle, namely, 

 

( ) ( 1) 0
0 0{ }j j

NP P D
−= + v , (3.27) 

 
where N  denotes the length of the cycle. 
 
Once the terminal state vector at each cycle is estimated, the smoothing procedure 

should be performed backward in time in order to re-estimate the state vector, kx , based 

on all measurements in the cycle: 
 

1 1ˆ ˆ( , )N N

k k k kt t + += Φx x  (3.28) 

 
because there is no process noise within the cycle, as can be taken from Eqs. (3.17) 

and (3.18). It should be noticed that the superscript ( )j  denoting the cycle is omitted in 
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Eq. (3.28) for convenience. 
 
 

3.1.3 Sequential Filtering 
 
Contrary to batch filtering, sequential filtering, assumed to be of Kalman type in this 

study, updates the estimates at subsequent measurement epochs. Kalman sequential 
filtering (hereafter, Kalman filtering), was originally developed for real-time applications 
such as navigation, and has also been applied to GPS orbit determination (Chadwell, 
1995). It can be considered as two step procedure; the first being the time update which 
predicts the state vector at a subsequent time using the system dynamics model, followed 
by the measurement update that estimates the state vector at the current time based on the 
measurements and the prior information from the first step. 

 
It is worth noting that, in this context, the state vector has random character. Let the 

linear dynamics of the system at discrete time, 
kt , be modeled by (Brown and Hwang, 

1997) 
 

2
1 1 0( , ) , (0, )k k k k k k kt t Qσ− −= Φ + ∼x x w w N , (3.29) 

 
with: 
 

kx : the 1m×  random state vector at kt ; 

1( , )k kt t −Φ : the m m×  state transition matrix, assumed to be constant over the 

time interval 1k kt t t −∆ = − ; 

kw : the 1m×  Gaussian, zero-mean, white noise process vector with the 

cofactor matrix of kQ . 

 
Let ˆ

k

−x  and ˆ
kx  be the estimates of the state vector before and after the inclusion of 

the measurement at time kt , respectively. Then, Kalman filtering can be explained in a 

Dynamic Linear Model which is composed of the observation equation, Eq. (3.12), and 
the state equation, Eq. (3.29), along with the initial condition equation of 

 

0 0 2
1 1 1 1 0 1ˆ , (0, )k k k k kPσ− − − − −= + ∼x x v v N , (3.30) 

 
where 1kP −  denotes the cofactor matrix of the error for 1ˆ

k−x , and the superscript 0  

indicates the initial condition. 
 
It is generally assumed that there are no correlations between the equations of the 
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Dynamic Linear Model; this means: 
 

0 0
1 1{ , } 0, { , } 0, { , } 0    for  all  k k k k k kC C C k− −= = =v w v v w v , (3.31) 

 
and no correlation is assumed between epochs: 
 

{ , } 0, { , } 0    for  k j k jC C j k= = ≠w w v v . (3.32) 

 
Note that, strictly speaking, the matrix kH  in Eq. (3.13) would here be random 

which is, however, neglected in the following. It should also be mentioned that there is no 
redundancy in the state equation and the initial condition equation; therefore, all the 
redundancy comes from the observation equation. 

 
In order to estimate the state vector at kt , the Dynamic Linear Model can be solved 

by the least-squares adjustment. Combining Eqs. (3.29) and (3.30) produces the 
following equation (neglecting the time identifiers on the state transition matrix, for 
convenience): 

 

( )
1

0
1

ˆ ˆ

.

k k

k k k

−
−

−

= Φ

= − − Φ

x x

x w v
 (3.33) 

 
The first equality of Eq. (3.33) comes from the fact that the best estimates at time 

kt  without the measurements can be represented by taking the conditionally expected 

value of the state vector which is propagated from the given state vector, 1ˆ
k −x , at the 

previous time based on the linear dynamics model as taken from Eq. (3.29): 
 

1

1 1 1

1 1

ˆ ˆ{ }

ˆ( , ) { } { }

ˆ( , ) ,

k k k

k k k k k

k k k

E

t t E E

t t

−
−

− − −

− −

=

Φ +

= Φ

x x x

x x w

x

=  (3.34) 

 
where the conditionally expected value of the state vector at time 1kt −  is the best 

estimate at that epoch with the measurement update, 1ˆ
k−x , itself and the noise process 

was assumed to have a zero-mean. 
 
From Eqs. (3.12) and (3.33), the model turns into a condition equation as follows: 
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( )

[ ]

0
1

0
1

ˆ

.

k k k k k k k

k

k k k

k

H H

I H H

−
−

−

− = + − Φ

 
 = − Φ  
  

y x v w v

v

w

v

 (3.35) 

 
The least-squares solution of Eq. (3.35) can be expressed by (Schaffrin, 2002) 
 

( ) ( )
1

1
0

1 1

ˆ
k k

T T T

k k k k k k k k k k k

T T

k k k

R

Q H R H Q P H H

P H

−
−

−

− −

   
     = + + Φ Φ −     
   − Φ   

ɶ

ɶ

ɶ

v

w y x

v

. (3.36) 

 
Therefore, the estimated state vector with measurement update at kt  can be 

obtained from Eqs. (3.33) and (3.36), resulting in the following equation: 
 

( )

( ) ( ) ( )

( )

0
1

1

1 1

ˆ ˆ

ˆ ˆ

ˆ ˆ ,

k k k k

T T T T

k k k k k k k k k k k k

k k k k k

Q P H R H Q P H H

K H

−
−

−
− −

− −

− −

= + − Φ

 = + + Φ Φ + + Φ Φ − 

= + −

ɶ ɶx x w v

x y x

x y x

 (3.37) 

 
where the so-called Kalman gain matrix is given by 
 

( )
1

T T

k k k k k k kK P H H P H R
−

− −= + , (3.38) 

 
and 

kP−  denotes the cofactor matrix of the error for ˆ
k

−x , which can be easily derived 

from Eq. (3.33): 
 

1
T

k k kP Q P−
−= + Φ Φ . (3.39) 

 
Since the mean squared prediction error (MSPE) of ˆ

kx  can be computed by 
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ˆ ˆ{ } { }

ˆ ˆ ˆ{( ) ( )}

ˆ ˆ ˆ ˆ ˆ{ } { , }

ˆ ˆ ˆ ˆ{ , } { } ,

k k k

k k k k

k k k k k k

k k k k k k

MSPE D

D

D C

C D

− −

− − −

− − −

= −

= − − −

= − − − −

− − − + −

x x x

x x x x

x x x x x x

x x x x x x

 (3.40) 

 
the cofactor matrix kP  of the error for the estimated state vector ˆ

kx  can be derived 

from Eqs. (3.33), (3.37), and (3.39): 
 

( )

( ) ( ) .

k k k k

T T

k k k k k k k k

P I K H P

I K H P I K H K R K

−

−

= −

= − − +
 (3.41) 

 
The optimal unbiased estimate of the variance component is given as 
 

0 0
2 1 1 1
0

( )
ˆ

T T T

k k k k k k k k kR Q P

n
σ − − −+ +

=
ɶ ɶ ɶ ɶ ɶ ɶv v w w v v

. (3.42) 

 
This Kalman filtering procedure can be propagated through time from the given 

initial state vector and the cofactor matrix of the errors on the initial information, 0x̂  and 

0P , respectively. 

 
Depending on the strategy of the state vector update, the Kalman filtering can be 

divided into two variants: the Linearized Kalman Filter (LKF) and the Extended Kalman 
Filter (EKF). While only one initial value problem is solved in LKF, the state vector in 
EKF is updated at every measurement epoch; thus, the integration process needs to be 
reinitialized for each measurement epoch (Montenbruck and Gill, 2001). Note that 
Kalman filtering produces the batch filter of Chapter 3.1.1 if 

kQ  is set to 0 for all k . 

 
 

3.1.4 Smoothing 
 
Since the state vector is estimated in Eq. (3.37) based on the measurements up to 

kt  

only, the measurements after this time epoch are not used in the estimation. Therefore, the 
smoothing problem in the Kalman filtering requires obtaining the optimal estimates of the 
state vector at each epoch (Davis, 1996). The smoothing method filters the data in reverse 
time order, with the state vector estimate and its error covariance matrix at the last epoch 
(that were estimated from the forward filtering) as a priori information. Thus, after the 
smoothing procedure, that is, after forward and backward filtering, all the estimated state 
vectors and the covariance matrices of the corresponding errors are derived on the basis 
of the data within the entire arc. 
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Let ˆ l

kx  and l

kP  be the estimated state vector and the cofactor matrix of the errors 

for the corresponding estimates at time kt , respectively, based on all measurements in the 

interval, say 0[ , ]lt t . The estimates of the state vector and the cofactor matrix of the 

errors for the corresponding estimates based on the measurements up to kt  (i.e., ˆ k

kx  and 
k

kP ) are computed from the Kalman forward filter as given in Eqs. (3.37) to (3.41). Then 

the same filtering technique can be performed, but backwards in time right from the 
epoch 

Nt , resulting in ˆ N

kx  and N

kP . The smoothing algorithm can also be explained in a 

Gauss-Markov model with stochastic constraints: 
 

2
1 1 1 1 0 1ˆ ( , ) , (0, )N

k k k k k k kt t Qσ+ + + + += Φ + ∼x x w w N , (3.43) 

0 0 2 0
0 1ˆ , (0, ) , { , } 0k k

k k k k k k kP Cσ += + =∼x x v v w vN . (3.44) 

 
Therefore, the weighted LESS can be derived by differentiating the Lagrange target 

function with respect to kx , and setting these derivatives to zero: 

 

( ) ( )

( ) ( )

( ) ( ) ( )

11 0 0
1 1 1

1
1 1 1 1 1

1

ˆ ˆ( , ) ( , )

ˆ ˆ .

T
T k

k k k k k k

T
N N

k k k k k k k k k

T
k k k

k k k k k

J Q P

t t Q t t

P

−
−

+ + +

−
+ + + + +

−

= +

= − Φ − Φ

+ − −

w w v v

x x x x

x x x x

 (3.45) 

1
0

2 k

J

x

∂
=

∂
. (3.46) 

 
From Eqs. (3.45) and (3.46), the resulting solution can be obtained as 
 

( ) ( )

( )

11 11 1
1 1 1

1

ˆ ˆ ˆ

ˆ ˆ ˆ ,

N k T k k T N

k k k k k k k

k N k

k k k k

P Q P Q

S

−− −
− −
+ + +

+

   = + Φ Φ + Φ      

= + − Φ

x x x

x x x

 (3.47) 

 
where 
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( )

( )

( )

11 1 1
1 1

1

1

1

1 .

k T T

k k k k

k T k T

k k k

k T k

k k

S P Q Q

P P Q

P P

−−
− −
+ +

−

+

−

+

 = + Φ Φ Φ  

= Φ Φ Φ +

= Φ

 (3.48) 

 
The cofactor matrix of the error for the corresponding smoothed estimates is given 

by 
 

( )1 1
N k N k T

k k k k k kP P S P P S+ += + − . (3.49) 

 
A more detailed derivation is given by Tapley et al. (2004, Chapter 4.15). 
 
 

3.2 Kinematic Positioning 

 
Kinematic orbit determination, known also as the geometric approach, is 

accomplished by using GPS measurements only, and is a viable alternative to the 
dynamic POD. It requires neither dynamic force models nor the physical properties of the 
LEO. Consequently, there are no dynamic modeling errors, the result of which is a 
procedure that is simple and computationally efficient. However, the quality and the 
continuity of the kinematic orbit determination are strongly dependent on the available 
GPS data and the observational geometry involved in the measurements (Kwon et al., 
2003; Grejner-Brzezinska et al., 2004). Therefore, strengthening the constellation 
geometry and developing robust data screening techniques that remove weak 
observations are some of the critical steps in the kinematic approach. However, since a 
LEO (such as CHAMP, analyzed here) moves very fast (about two times faster than the 
GPS satellites) and in a much lower orbit, the geometry changes rapidly; thus, it is 
virtually impossible to obtain good continuous results with the kinematic approach 
(Kuang et al., 2001) with the current GPS constellation. However, there will be numerous 
satellites available, making future kinematic POD much more reliable, with the growing 
constellation of Russian GLONASS (GLObal NAvigation Satellite System, http://www. 
glonass-ianc.rsa.ru) and the upcoming GNSS systems, such as Galileo (http://www.esa. 
int/esaNA/galileo.html), EGNOS (European Geostationary Navigation Overlay Satellite 
Service, http://www.esa.int/ esaNA/egnos.html), Japanese MTSAT (Multi-functional 
Transport Satellite, http://www.jma.go.jp/ jma/jma-eng/satellite/) and QZSS (Quasi-
Zenith Satellite System, http://qzss.jaxa.jp/), Chinese Beidou (http://www.astronautix. 
com/craft/beidou.htm), and Indian GAGAN (GPS-Aided Geo-Augmented Navigation, 
http://www.isro.org/) and IRNS (Indian Regional Navigation System, http://www.isro. 
org/pressrelease/Jul04_2006.htm). 
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Figure 3.1 shows the schematic diagram of the data processing for kinematic POD. 
This procedure can be similarly applied to the dynamic and reduced-dynamic approaches, 
except for some modifications of the estimation filter in the main procedure. 
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Figure 3.1 Procedures of LEO kinematic precise orbit determination. 

 
 
3.2.1 Data Preprocessing 

 
As mentioned above, the kinematic method has a strong dependence on the data 

quality and availability; thus, the preprocessing (especially cycle slip detection) is 
important for the precise orbit determination in the kinematic approach. A cycle slip is 
defined as a jump in the instantaneous accumulated phase by an integer number of cycles. 
This can be caused by signal blocking, low Signal-to-Noise Ratio (SNR), and a failure in 
the receiver software (Hofmann-Wellenhof et al., 2004). A cycle slip affects only a single 
epoch in triple-differenced observations; thus, it can just be removed from the database 
instead of attempting to determine its magnitude in order to fix it, which is a time-
consuming and difficult task. 

 
A cycle slip can be detected by the testing quantities which are generally composed 

of measured carrier phases and code ranges. Many algorithms have been developed to get 
the testing quantities (Blewitt, 1990; Bisnath and Langley, 2001; Bae et al., 2002), and 
two of them are considered here. The first method is based on the wide-lane ambiguity 
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and the ionospheric residuals. Expressing the code and phase measurement equation in 
cycle units of the corresponding carrier and neglecting the initial fractional phases as well 
as the interchannel bias, the following equations can be obtained: 
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where sub- and superscripts are omitted. By subtracting these two equations, one can 

arrive at 
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Similarly, by subtracting the code ranges (in distance unit) after dividing by the 

speed of light, the testing quantity for the wide-lane ambiguity is composed as 
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neglecting the random error part. This can be used to determine the cycle slip along 

with the ionospheric residual given by 
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Once the test quantity is available, cycle slips can be detected by differencing the 
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values at two consecutive epochs, which amplifies the effect of a cycle slip to make the 
detection easy. It should be noted that, although Eq. (3.53) is independent of the baseline 
length and the ionospheric effects, it is still affected by the multipath in a different way 
for the carrier phase and code. In addition, CHAMP moves very fast in the middle of the 
ionospheric layer; thus, since Eq. (3.54) is based on the assumption of a quality pseudo-
range measurement and a normal ionospheric condition, it may not work very reliably 
even on moderately active ionospheric days. 
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Figure 3.2 SNR variation of CHAMP with respect to the elevation angle. 
 
 
Another method, useful in cycle slip detection, is analyzing the Signal-to-Noise ratio 

(SNR). The low-rate CHAMP SST (Satellite-to-Satellite Tracking) data provide three 
types of SNR data: S1 and S2 which correspond to the L1 and L2 channels, respectively, 
and SA for the C/A channel. The SNR generally changes its amplitude according to the 
elevation angles of the GPS satellites (Figure 3.2), which is the reason why the low 
elevation data are generally not used in the processing. Under the low SNR condition, 
there is a greater chance of cycle slip occurrence. 
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The challenge for the cycle slip detection when using the SNR data lies in the proper 
selection of the SNR threshold. One possibility is to perform the preliminary analysis on 
the cycle slips. This analysis can be done by checking the triple-differenced least-squares 
residuals, based on a good a priori orbit (for example, the published Rapid Science Orbit), 
followed by a comparison with the SNR values. Once the cycle slips are identified, they 
can be removed from the database because, as mentioned earlier, the cycle slip affects 
only a single epoch in triple-differenced observations. 

 
The objective of this study, however, is to provide the near real-time orbit solution, 

thus, it should be independent of the a priori orbit. Fortunately, the triple-differenced 
observations are not very sensitive to the data quality, and the cycle slips are usually 
identified as data outliers (indicated by large residuals of the measurements) without any 
external orbit solutions, as demonstrated in Chapter 5. 

 
 

3.2.2 Mathematical Model 
 
As can be seen in the equation of the triple-differenced ionosphere-free carrier phase 

observations which is written as 
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only the geometric and tropospheric terms (with the exception of the random errors) 

are left in the equation. Assuming that the GPS satellite orbits and the coordinates of the 
ground stations are available and the tropospheric effect is modeled, then the coordinates 
of the LEO satellite are the only remaining unknowns. After the linearization of Eq. 
(3.55), the observation equations are given by 
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where r  denotes the position vector and the superscript 0 represents an evaluation 

with the approximate values. The rest of the notation is the same as in Chapter 2. The 
observation equations can be accumulated during the batch and solved for the LEO orbit 
in a batch processor. Since the triple-differenced observations contain only the relative 
information between the consecutive epochs, it is necessary to introduce the datum 
reference at the specific epoch, usually the first epoch of the batch. Stochastic constraints 
for all epochs can also be used to eliminate the rank deficiency. It should be noted, 
however, that the fixed datum reference can introduce a bias in the orbit solution because 
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of an inaccuracy of the datum (Kwon et al., 2003). Therefore, one may have to run a 
backward filter by fixing the coordinates of the last epoch from the forward filter to 
reduce the effect of this bias. 

 
As can be seen in Eq. (3.56), the only term to be taken care of, except for the 

geometric range, is the tropospheric delay. The tropospheric effect is generally accurately 
modeled for the dry component. Most of the model error, however, comes from the 
modeling of the wet component because of the difficulties in the water vapor modeling 
(Hofmann-Wellenhof et al., 2004). The modified Hopfield model by Goad and Goodman 
(1974), one of the widely used tropospheric models, was empirically derived from the 
global data as a function of range from the station to the satellite and the elevation angle 
(equivalently the zenith angle). Thus, the mapping function is already included in the 
model, and the dry and wet path delays can be computed separately. One of the recent 
models is UNB3, developed at the University of New Brunswick for the Wide Area 
Augmentation System (WAAS) program (Leandro et al., 2006). This model uses the 
Saastamoinen zenith delay models, Niell mapping functions, and a look-up table for 
temperature, pressure and water vapor pressure, varying with respect to latitude and 
height. This look-up table uses an annual mean and the amplitude of a cosine function to 
facilitate interpolation of the meteorological parameters for a particular latitude and day 
of year. However, it is noteworthy to mention that these data can usually experience 
and/or exhibit sudden changes. Moreover, this model is validated by the stations in North 
America only; therefore, the modified Hopfield model is used in this study. The details of 
the modified Hopfield model technique can be found in Goad and Goodman (1974) or 
Hofmann-Wellenhof et al. (2004). 

 
The deficiency in the tropospheric model can usually be compensated for by 

estimating the scaling factor for each site and session. In LEO POD, however, the LEO 
position is generally the only concern; thus, the scaling factors to compensate the 
tropospheric model error are not estimated, since the GPS measurements from the ground 
stations are involved only when they have common visibility with the LEO satellite, in 
case the differenced observations are used. Fortunately, in the triple-differenced 
observations, the impact of the biases in the tropospheric model is not significant because 
the tropospheric condition is almost identical between the measurement intervals (30 
seconds in this study); therefore, the biases are removed by differencing in time. 

 
 

3.2.3 Augmentation of the Positioning Satellites 
 
The most difficult problem to be overcome in the kinematic approach is that of a 

data gap which will result in the singularity in the system of normal equations. Once the 
singularity occurs, the orbit determination procedure should be restarted with a new 
segment. Other than the data gaps, the quality and continuity of kinematic orbit 
determination can be improved by augmenting the positioning satellites. Augmentation 
can be made possible in many ways: 1) by incorporating other GNSS satellites, such as 
those of the upcoming Galileo system (http://www.esa.int/esaNA/galileo.html); 2) by 
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placing pseudolite (PL) transceivers on the ground; 3) by placing the PLs on other LEOs. 
The PL transceivers can transmit and receive GPS compatible signals. The concept of 
PLs is similar to DORIS (Doppler Orbitography and Radio positioning Integrated by 
Satellite) which measures the Doppler count emitted by ground beacons (Willis et al., 
2005). Some practical problems, however, need to be considered for the application of 
PLs (Grejner-Brzezinska et al., 2004). 

 
A simulation study was performed to verify how much improvement can be 

expected from the GPS augmentation. Considering the fact that the kinematic approach is 
highly dependent on the geometry of the positioning satellites, the simulation can be 
focused on the measure of geometric strength, which is represented by the geometric 
dilution of precision (GDOP). Two revolutions of CHAMP data on February 15, 2003 
were selected for the simulation. The GPS and Galileo orbits were propagated from the 
almanac data, and the PL transceivers were located on the 40 IGS ground stations. 

 
As can clearly be seen in Figures 3.3 and 3.4, the largest effect comes from the 

incorporation of the Galileo constellation, while the PLs also contribute to the overall 
geometric strength. Of course, the benefits of the modernized GPS signal, discussed in 
Chapter 2, can further contribute to the improvement of the kinematic approach. However, 
a problem of coverage from PLs still exists since the LEO orbits are at very low altitude 
compared to the GPS altitude. Therefore, the configuration of PLs as well as the ground 
stations must be optimally distributed, the relevant issues of which will be discussed in 
Chapter 4. 
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Figure 3.3 The number of range measurements. 
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Figure 3.4 The geometric dilution of precision (GDOP). 
 
 

3.3 Dynamic Precise Orbit Determination 

 
Unlike the kinematic POD, in the dynamic POD method all forces acting on the 

satellite are computed and integrated numerically to estimate the initial state vector 
(position and velocity) and other unknown parameters, such as the scaling factors for the 
solar radiation pressure and atmospheric drag (Schutz et al., 1994; Grejner-Brzezinska, 
1995; Bock, 2003). These parameters are connected to the GPS measurements via the 
variational partials; therefore, the final orbit solution can be improved by estimating these 
unknown parameters together with the initial state vector. Once the initial state vector and 
other dynamic parameters are estimated, the state vector for the following epochs can be 
propagated using the force models used in the estimation process, and as a result, the 
errors in the dynamic approach will grow as the arc length increases. Sometimes, pseudo-
stochastic pulses are set up at pre-determined epochs to introduce the velocity change in a 
pre-determined direction (Švehla and Rothacher, 2003; Bock, 2003), similarly to the 
earlier “wave filter” of Salychev and Schaffrin (1992). Given that the reduced-dynamic 
approach tends to be classified based on the inclusion of additional process noise to 
absorb the unmodeled forces, the practice of including the empirical forces in the 
dynamic approach makes it difficult to differentiate decisively between the dynamic and 
reduced-dynamic techniques of POD. 
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As already mentioned in Chapter 2, the CHAMP accelerometer data cannot reflect 
accurately all nonconservative forces acting on the satellite. In addition, the preliminary 
test results done in this study show that the bias of the accelerometer data in along-track 
component amounts to 0.06 mGal (1 mGal = 5 210 /m s

− ). Therefore, the nonconservative 
forces, which are dominated by the atmospheric drag forces, must be modeled and 
improved in the dynamic orbit determination process. 

 
 

3.3.1 Dynamic Force Models 
 
The equation of motion of the satellite is generally expressed in the Earth Centered 

Inertial (ECI) frame as follows (Hugentobler et al., 2001): 
 

3
( , , , )

kM
t

r
= − +r r a r r pɺɺ ɺ , (3.57) 

 
with 
 

r : the 3 1×  satellite position vector in the inertial frame at time t; 

rɺ : the velocity of the satellite at time t; 

rɺɺ : total acceleration of the satellite at time t; 

kM : the product of the gravitational constant and the mass of the Earth; 

r : the magnitude of the position vector r; 

a : total perturbing forces; 

t : time, at which the acceleration is calculated; 

p : the dynamic parameter vector which induces the perturbing acceleration. 
 
 
The sum of all perturbing forces, a , represents the third-body gravitational forces, 

atmospheric drag, solar radiation pressure and/or some empirical force terms which 
normally account for all unmodeled forces, including the nonspherical part of the Earth’s 
gravity field. These perturbing forces as well as the Keplerian accelerations are computed 
at each epoch and then numerically integrated to get the position and velocity of the 
satellite in the next epoch. The obtained position and velocity of the satellite are used to 
validate the measurements from GPS satellites at the same epoch, and finally update the 
unknown parameter vector including the initial state vector, as was mentioned earlier. 

 
Table 3.2 shows the summary of the models and the conventions, which are related 

to the perturbing forces and are used in this study. EIGEN2 is the geopotential model, 
maximum degree and order up to 140, which is generated from six months of CHAMP 
data only. 
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Model Standard 

Geopotential EIGEN2 (140 140× ) 

Earth orientation parameters IERS Bulletin B 

Solid Earth tides IERS Conventions (2003) 

Ocean tides CSR 3.0 

Atmospheric density NRLMSISE-00 

Third body Moon and Sun 

Conventional inertial system J2000.0 

Terrestrial reference frame ITRF2000 (velocity applied) 

Precession/Nutation IAU 2000A 

Planetary ephemerides JPL DE405 

Relativistic correction IERS Conventions (2003) 

Tidal displacement of stations IERS Conventions (2003) 

Reference ellipsoid CHAMP reference ellipsoid 

Table 3.2 Summary of the strategies for the dynamic precise orbit determination. 
 
 
Solid Earth tides are implemented for both the temporal variation of the geopotential 

coefficients and the displacement of the IGS ground stations based on IERS Conventions 
(2003); see McCarthy and Petit (2003). It should be mentioned here that since EIGEN2 
geopotential model is the “conventional tide-free” model, the permanent part (zero 
frequency) of the tidal effects can be taken care of by the full tidal model given by IERS 
Conventions (2003). For the ocean tides, the CSR 3.0 model obtained from the analysis 
of TOPEX/POSEIDON altimeter data is used. Only the Moon and the Sun are considered 
for the third-body perturbations. The equation of motion can be solved by any numerical 
integration method in the inertial frame; therefore, all the coordinates and the force 
components computed in the terrestrial frame should be transformed into the inertial 
frame. For this transformation, the new IAU 2000A resolutions are used for the 
precession/nutation model (see Appendix C), based on the reference origin at J2000.0. 
Since the atmospheric and empirical force modeling is critical in dynamic orbit 
determination of a LEO, these models, along with other perturbing forces, are described 
in detail in the next section. 

 
 

3.3.1.1 Gravitational Acceleration 
 
CHAMP experiences significant perturbations from the nonspherical gravitational 

potential because of its very low altitude above the Earth. Let V  be the gravitational 
potential, then it can generally be represented in the form of spherical harmonics (see 
Heiskanen and Moritz (1967), Eq. (2-39)), including the Keplerian term (central part of 
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the Earth gravity field): 
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with 
 

V : the gravitational potential; 

kM : the product of the gravitational constant and the mass of the Earth; 

R : the mean radius of the Earth; 

r : the radial distance from the center of the Earth; 

,θ λ : the geocentric co-latitude and longitude, respectively; 

nmP : the fully normalized associated Legendre functions; 

,n m : the degree and order of nmP , respectively; 

maxn : the maximum degree; 

,nm nmC S : the spherical harmonic coefficients corresponding to nmP . 

 
 
Since the force vector is just the gradient vector of the scalar-valued potential 

function V, the gravitational perturbing forces can be obtained by taking derivatives of 
the potential with respect to the position vector: 
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V V V
V

x y z

 ∂ ∂ ∂
= ∇ =  

∂ ∂ ∂ 
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As can be seen in Eq. (3.58), the potential is expressed as a function of the spherical 

coordinates, ( , , )r θ λ . Similarly, the partial derivatives can be evaluated in this 
coordinate system, and then transformed into the Cartesian coordinates of the Earth-
centered and Earth-fixed (ECF) frame. Afterwards, it should be transformed again into 
the inertial frame to be combined with other perturbing forces. The detailed partial 
derivatives of the geopotential with respect to the spherical coordinates are given in 
Appendix A. 

 
The fully normalized associated Legendre functions are easier and more convenient 

to handle as compared to the unnormalized ones, thus, the former is more widely used. 
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Many efforts were directed towards developing an efficient method to compute the fully 
normalized associated Legendre functions (Colombo, 1981; Tscherning et al., 1983; 
Jekeli, 1996), and these are given in Appendix B. 

 
 

3.3.1.2 Third-body Attraction 
 
The acceleration of a satellite by a point mass, M, can be computed by the following 

equation (Montenbruck and Gill, 2001): 
 











+

−

−
−=

33
s

s

sr

sr
r kMɺɺ , (3.60) 

 
where k  is the gravitational constant, and s  represents the geocentric coordinates 

of the perturbing mass (i.e., the position vector of the Moon and the Sun, respectively, in 
this study). The partial derivatives of the acceleration with respect to the satellite position 
vector are represented by 
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where 3I  represents the 3 3×  identity matrix. 

 
In this study, the attractions from the Moon and the Sun are considered. The 

recommended planetary ephemerides is DE405 developed by JPL (McCarthy and Petit, 
2003). DE405 provides the relative position and velocity between Sun, Moon and nine 
planets in three-dimensional space, as well as some constants for the ephemerides. 
DE405 is based on the ICRF (International Celestial Reference Frame), and the time-
independent input variable is TDB (Barycentric Dynamic Time) in fractional Julian days. 
The description and software to compute the coordinates of the planet can be found at 
ftp://ssd.jpl.nasa.gov/pub/eph/export/. 

 
 

3.3.1.3 Solar Radiation Pressure 
 
Solar radiation pressure is the perturbation due to the photons coming from the Sun. 

Therefore, it is dependent on the mass and surface area of the satellite, as well as on the 
geometry of the satellite with respect to the Earth and the Sun. This perturbing force is 
very difficult to model because of the irregular shape of the spacecraft and the highly 
complex properties of the surface materials. Contrary to the GPS satellites, there is no 
recommended model for the CHAMP satellite; thus, the simple area-to-mass ratio or 
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“cannonball” model is generally used together with the estimation of the scaling factor to 
compensate for any model error. 

 
Solar radiation pressure acting on the spacecraft can be computed from the 

simplified equation of 
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with 
 

r
�

: the vector from the satellite to the Sun; 

r
�

: the magnitude of the vector r
�

; 

rC : the scaling factor for the solar radiation pressure; 

mA : the area-to-mass ratio; 

AU : Astronomical Unit. 
 
The partial derivatives of the acceleration with respect to the satellite position vector 

are given by 
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where 3I  represents the 3 3×  identity matrix as before, and s  represents the 

geocentric position vector of the Sun. The partial derivative of the acceleration with 
respect to the solar radiation scaling factor, 

rC , is simply obtained from Eq. (3.62). 

 
Due to the estimated scaling factor, the solar radiation pressure can be accounted for 

with high accuracy without knowing the details of the structure, orientation and 
reflectivity of the spacecraft (Montenbruck and Gill, 2001). 

 
 

3.3.1.4 Atmospheric Drag Forces 
 
As mentioned earlier, since the atmospheric effect is significant at the LEO altitude, 

the acceleration due to atmospheric drag must be properly evaluated in the LEO POD 
process. The orbit error, for example, reaches approximately ±1000 m after two 
revolutions without proper modeling of the atmospheric drag (Bae, 2005b). It is difficult, 
however, to model the atmosphere accurately because the physical properties of the 
atmosphere (particularly the density of the upper atmosphere) are not sufficiently known. 
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Moreover, a detailed knowledge of the interaction of neutral gases as well as charged 
particles with the different spacecraft surfaces is required. In addition, the varying 
attitude of nonspherical satellites with respect to the atmospheric particle flux makes its 
modeling even more difficult (Montenbruck and Gill, 2001). Numerous atmospheric 
models have been published and are currently in use. Among these models, the most 
recently published NRLMSISE-00 model is used in this study. 

 
The NRLMSISE-00 (NRL Mass Spectrometer, Incoherent Scatter Radar Extended 

Model) was developed based on the satellite mass spectrometer and ground-based 
incoherent scatter data, and provides a single analytic model for calculating temperature 
and density profiles (Hedin, 1991; MSIS, 2004). This model is a function of many 
different variables, including local time, latitude, annual/semiannual, and longitude 
variations. It is expanded in terms of the lower-order spherical harmonics and the Fourier 
series with the parameters of the temperature profile and density boundary conditions at 
120 km. This model allows for easy determination of temperature and density profiles for 
specific geographic and solar/magnetic parameters. The official release of the FORTRAN 
code for the NRLMSISE-00 atmospheric model can be found at http://uap-www.nrl.navy. 
mil/models_web/msis/NRLMSISE-00.DIST17.TXT. This subroutine requires time, 
location, solar radio flux at 10.7 cm in units of 10-22 W/(m2Hz) and the magnetic activity 
index as input variables, and provides the atmospheric densities as well as total mass 
density and temperature at the desired altitude. The actual solar flux and the magnetic 
index data with their formats are available at ftp://ftp.ngdc.noaa.gov/STP/GEOMAG 
NETIC_DATA/ INDICES/KP_AP/. 

 
Figure 3.5 represents the total mass density variation along the CHAMP trajectory 

using the NRLMSISE-00 atmosphere model on February 15, 2003. It should be noted 
that the atmospheric density repeats itself for every orbit with a slight change; therefore, 
the selection of the time interval for the estimation of the coefficients is an important 
issue for the precision orbit determination. 

 
With the assumption that the atmosphere co-rotates with the Earth, the atmospheric 

drag forces can be computed by 
 

rrD v
m

A
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1
−=ɺɺ , (3.64) 

rωvv ×−=r
, (3.65) 

 
where ρ  is the atmospheric density at satellite position and rv , which has a 

magnitude of rv , represents the relative velocity of the satellite with respect to the 

atmosphere. The Earth angular velocity vector ω  is given as 
 

[ ]0 0 T

eω=ω  (3.66) 
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with the nominal value of 57.292115 10 rad/sec

e
ω −= × . The dimensionless quantity, 

DC , is an unknown parameter to be estimated in the orbit determination procedure; it 

compensates the atmosphere model error. 
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Figure 3.5 Total mass density along the CHAMP trajectory. 
 
 
The partial derivatives of the acceleration with respect to the drag coefficient, CD, 

can be computed as follows: 
 

T

D D DC C C

∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂

r r r r

r

ɺɺ ɺɺ ɺɺ
. (3.67) 

 
The first term on the right side of Eq. (3.67) represents the explicit component of 

the partial derivatives, which can easily be computed from Eq. (3.64). The second term, 
however, is an implicit part of the partial derivatives, which requires more careful 
attention. The partial derivatives of the position vector with respect to the drag coefficient 
can be obtained by numerical integration of Eq. (3.67) up to the current epoch. The 
partial derivatives of the acceleration with respect to the position vector can be derived 
analytically as follows: 
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[ ]3

1 1 1

2 2
T

D r r D v v rT T

r

A A
C v C v I

m m v

ρ
ρ
 ∂ ∂

= − + + × 
∂ ∂  

r
v v v ω

r r

ɺɺ
, (3.68) 

 
where 3I  represents the 3×3 identity matrix and, from Eq. (3.66), 

 

[ ]
0 0

0 0

0 0 0

e

e

ω

ω

− 
 × =  
  

ω . (3.69) 

 
The partial derivatives of the acceleration with respect to the velocity vector can also 

be derived as 
 

3

1 1

2
T

D r r rT

r

A
C v I

m v
ρ
 ∂

= − + 
∂  

r
v v

v

ɺɺ
. (3.70) 
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Figure 3.6 Density variation with altitude for different latitudes (longitude is 0°). 
 
 
It should be mentioned that the partial derivative of the density with respect to the 
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position vector cannot be easily computed analytically. This is so because the 
atmospheric density models are very complex and, thus, difficult to be expressed as 
simple analytical functions. Therefore, this partial derivative should be computed by 
numerical differentiation (Montenbruck and Gill, 2001). The test results indicate that the 
numerical differentiation of the density for different positional variations makes only an 
insignificant difference (submillimeter level). This is so because the magnitude of density 
is small as compared to the magnitude of the position vector (see the ratio / Tρ∂ ∂r  in Eq. 
(3.68)) and it changes very smoothly at CHAMP altitude (see Figure 3.6); thus, it is not 
so sensitive to the position changes. 

 
 

3.3.1.5 Empirical Forces 
 
While the atmospheric modeling and estimation in the orbit determination procedure 

can considerably reduce the orbital errors, there still remain significant contributions of 
unmodeled forces; (in practice, there is no model that provides a totally correct 
description of a phenomenon that it represents). Therefore, a number of empirical 
functions can be used to absorb the variability of the nonconservative forces. A better 
approach is to estimate the pseudo-stochastic parameters which represent the magnitude 
of the frequent, instantaneous velocity changes as originally introduced as “wave filters” 
by Salychev and Schaffrin (1992). However, the empirical force modeling can also 
absorb the high-frequency effects, such as thrusters firing, during the orbit determination 
process. Since the radial direction is dynamically coupled with the along-track direction, 
it is not explicitly modeled in the orbit determination process to avoid the ill-conditioning 
of the system (Colombo, 2002; Boomkamp, 2004). Therefore, only the along-track and 
cross-track once-per-revolution components are estimated together with other parameters. 
The constant bias and the twice-per-revolution terms can also be modeled, depending on 
the type of satellites considered. 

 
The periodic properties of the nonconservative (predominantly once-per-revolution 

and twice-per-revolution) forces can be clearly seen in Figures 3.7 and 3.8. Thus, the 
empirical force model can be expressed as a sum of sine and cosine terms in each 
direction: 

 

cos( ) sin( )

cos( ) sin( ) ,
cross c c

along a a

r C u S u

r C u S u

= +

= +

ɺɺ

ɺɺ
 (3.71) 

 
with 
 

, , ,c c a aC S C S : the coefficients of sine and cosine in each direction; 

u : the argument of latitude of the satellite. 
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Figure 3.7 STAR accelerometer data of CHAMP (two revolutions). 
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Figure 3.8 Fourier spectrum of STAR accelerometer data for CHAMP (along-track). 
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Since the empirical forces are modeled in the RTN (Radial/Transverse/Normal) 
frame, they should be transformed into an inertial frame to be combined with other 
accelerations. Assuming that the attitude of the spacecraft remains in the nominal in-
flight direction (i.e., the z-axis is nadir-looking and positive downward, the x-axis is 
aligned with the long side of the spacecraft towards the boom, and the y-axis completes 
the triad), the transformation matrix can be computed using the satellite inertial position 
and velocity, which is given as follows: 

 

1 1 1

2 2 2

3 3 3 0

cross

inertial along

x N T R r

y N T R r

z N T R

     
     = =     
          

r

ɺɺ ɺɺ

ɺɺ ɺɺ ɺɺ

ɺɺ

, (3.72) 

 
where the symbols are defined as 
 

[ ]1 2 3 / ,
T

R R R= =R r r  (3.73) 

[ ]1 2 3 ,
T

N N N= = ×N v R  (3.74) 

[ ]1 2 3

T
T T T= = ×T R N  (3.75) 

 
with the position vector, r , and the velocity vector, v , of the satellite in an inertial 

frame. The partial derivatives of the acceleration with respect to the unknown coefficients 
are easily derived from Eq. (3.71) in the RTN frame, and these can be transformed into 
the inertial frame using the same matrix as given in Eqs. (3.72)-(3.75). 

 
 

3.3.2 Parameter Estimation 
 
As mentioned earlier, the initial state vector (position and velocity at the first epoch) 

and other dynamic parameters are estimated in the dynamic orbit determination. Since all 
measurements can be used to estimate these unknown parameters, it is justified to use the 
batch filter solution for the dynamic approach. Once the a priori information on the 
unknown parameters is available, for example, from the previous day estimation, the 
forces and the variational partials can be computed and integrated numerically to be 
propagated to the next epoch. This process continues to the last epoch of the batch, and 
the position and velocity as well as the integrated variational partials can then be stored in 
a file using a tabulated form. 

 
The propagated position vector is used to evaluate the design matrix, 

kH , at time 
kt  

in Eq. (3.13), and it should be mapped back to the initial epoch of the batch using the 
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state transition matrix in order to parameterize the initial state vector. The state transition 
matrix is also obtained by numerical integration as explained in the next section. Let G  
be the range measurement between GPS satellite and the receiver onboard the LEO; it is 
represented by 

 

2 2 2( ) ( ) ( )s s s

r r rG x x y y z z= − + − + − , (3.76) 

 
where s and r indicate the GPS satellite and the receiver, respectively. Then the 

mapping of the design matrix back to the initial epoch can be represented by 
 

0 0
0 0

0

0
0 0
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k k k
kT T T T T T

k k k

k k k
kT T T T

k

G G G
O G d d d
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d
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∂ ∂ ∂∂ ∂ ∂
− = + + +

∂ ∂ ∂ ∂ ∂ ∂

 
 ∂ ∂ ∂∂  = +   ∂ ∂ ∂ ∂    

r r r
r r p

r r r r r p

r
r r r

r
r r r p

p

ɺ
ɺ

ɺ
ɺ

v

v

 (3.77) 

 
where O  denotes a measurement, G  represents a computed measurement using 

the known GPS position and the propagated LEO position at this time epoch. r  and rɺ  
denote position and velocity vector, p  is a dynamic parameter vector as before, and 

kv  

is the random measurement error. The partial derivatives of the position vector at time 
kt  

with respect to the unknown parameters (that is, 0 0, ,T T T

k k k∂ ∂ ∂ ∂ ∂ ∂r r r r r pɺ ) can be 

computed by integrating the following equations numerically to the next epoch, kt : 

 

1 1 1 1 1 1 1 1 1

0 1 0 0 1 0 1

, ,k k k k k k k k k

T T T T T T T T T

k k k

− − − − − − − − −

− − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

r r r r r r r r r

r r r r r r p r p

ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ

ɺ ɺ
, (3.78) 

 
where the first term on the right hand side of each equation (that is, 1 1

T

k k− −∂ ∂r rɺɺ )  is 

given in Chapter 3.3.1 (the partial derivatives for all forces should be summed up), and 
the second terms are being propagated from the initial conditions as will be explained in 
detail in the next section. Eq. (3.77) is further simplified into the form of a batch filter 
given in Eq. (3.14). The vector of the partial derivatives, T

kG∂ ∂r , can be found in many 

references; see, e.g., Hofmann-Wellenhof et al. (2004, Chapter 9.4). 
 
 

3.4 Reduced-Dynamic Modeling 

 
The reduced-dynamic approach, which was initially developed at the Jet Propulsion 

Laboratory (Yunck et al., 1990 and 1994; Wu et al., 1991; Bertiger et al., 1994; Kuang et 



 52 

al., 2001), resolved the weakness of the kinematic approach by combining the user 
dynamics with the geometric information and an appropriate weighting scheme according 
to the dynamic model quality while preserving the kinematic solution. The term 
“reduced-dynamic” was derived from the reduced susceptibility of the sequential process 
noise filter to dynamic model errors in comparison to the classical batch filter (Davis, 
1996). The basic idea here is to introduce the kinematic components to the dynamic force 
models in the form of the process noise parameters (fictitious “accelerations” that 
compensate for the perturbations that are missing from the dynamic model); they are 
controlled by the a priori uncertainty, the steady-state uncertainty, and the correlation 
time. Thus, it is considered as a fast and efficient method, especially for real-time 
applications. 

 
In the post-processed reduced-dynamic approach, the dynamic parameters are 

estimated first, and then the state vector is estimated again using the Kalman sequential 
filter along with the stochastic process noise which is usually modeled as first-order 
Gauss-Markov process. The process noise level and the correlation time can be chosen 
from the analysis of the overlapping orbit solutions in the process of filter tuning (Kuang 
et al., 2001). This operation must be “customized” for each satellite or constellation 
separately. According to Wu et al. (1991), the satellites at altitudes 400 km to 2000 km 
will receive the greatest benefit from the reduced-dynamic approach. 

 
While the dynamic orbit is generally estimated by the batch least-squares adjustment 

methods, the reduced-dynamic approach is based on the Kalman sequential filtering 
algorithm. In this method, the estimates are propagated using the state transition matrix, 
and then the propagated estimates are updated by the measurement at each epoch; thus, 
this method is usually chosen for (near) real-time applications. In order to bring the 
Kalman sequential filtering technique into practice, one must assume that the estimated 
system state vector k

ɶx  contains all the information accumulated by the system up to the 

time epoch kt  (Jekeli, 2001). This means that, once the current state vector is known 

(estimated), the system state cannot be improved by any state vector prior to this epoch, 
which can be expressed by 

 

( ) ( )1 1 0 1| , , , |k k k k k+ − +=ɶ ɶ ɶ ɶ⋯x x x x x xP P , (3.79) 

 
where P  denotes the conditional probability density. Moreover, the statistics of the 

observation vector at the current epoch, 
ky , are independent of all the previous 

observations in the case where the current state vector is given: 
 

( ) ( )1 1| , , , |k k k k k− =ɶ ɶ⋯y x y y y xP P . (3.80) 
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3.4.1 Error Dynamics Equation 
 

Let [ ]3 1

T
x y z× =r , 3 1

T

x y zv v v×
 =  v  be the position and velocity vector of a 

satellite at an arbitrary epoch, respectively, and [ ]T

rr ppp ⋯211 =×p  be the vector 
of dynamic parameters, for example, the atmospheric drag coefficients. Then, the total 
error dynamics as a set of the first-order linear differential equations can be represented 
by 

 

3 3 3 3

3 3 3 3 3

3 3

r
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r

r r r r
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δ δ
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δ δ
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0 0
r r

r r r
v v

r v p
p p

0 0 0

ɺɺ ɺɺ ɺɺ
, (3.81) 

 
with 
 

δ : the differential operator (assuming that the operators δ  

and dtd  are interchangeable); 

3I : the 3 3×  identity matrix; 

mn×0 : the mn ×  matrix of zeros; 

3 1×rɺɺ : the acceleration vector of the satellite at the chosen epoch. 
 
The partial derivatives of the satellite acceleration with respect to the position, 

velocity and other dynamic parameters (i.e., / T∂ ∂r rɺɺ , / T∂ ∂r vɺɺ  and / T∂ ∂r pɺɺ ) can be 
formulated by the variational partials with the inclusion of the explicit part for the 
velocity and the dynamic parameters (same as in the dynamic approach). 

 
The total error dynamics equation can be further simplified as 
 

)()()( ttAt xx =ɺ , (3.82) 

 
where )(tA  is the coefficient matrix for the dynamics equation, and )(tx  is the 

incremental state deviation vector which is given by the difference between the true 
trajectory, ( )tX , and the reference trajectory, *( )tX , that is, 
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( ) ( ) ( )
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T T T

T
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t

t t

δ δ δ =  

= −

 = − − −  

r v p

r r v v p p

x

X X  (3.83) 

 
The general solution of Eq. (3.82) for a given initial vector ( )k kt=x x  can be 

represented by 
 

kkttt xx ),()( Φ= , (3.84) 

 
where kx  is the state vector at time kt , and the matrix ( , )kt tΦ , known as the state 

transition matrix, connects the state vectors between the two time epochs kt  and t . 

Some useful properties of the state transition matrix can easily be shown via Eqs. (3.82) 
and (3.84): 

 

1

1 1

( , )

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , ) ( ) .

i i

k i k j j i

k i i k

k i k i k

t t I

t t t t t t

t t t t

d
t t t t A t

dt

−

− −

Φ =

Φ = Φ Φ

Φ = Φ

 Φ = −Φ 

 (3.85) 

 
For the computation of the state transition matrix ( , )kt tΦ , one can combine Eqs. 

(3.82) and (3.84) to obtain the following condition: 
 

( ) ( , ) ( ) ( , )k k k kt t t A t t t= Φ = Φɺɺx x x , (3.86) 

 
which should be satisfied for any state vector at time kt . Thus, the following 

differential equation for ( , )kt tΦ  can be arrived at: 

 

),()(),( kk tttAtt Φ=Φɺ  (3.87) 

 
with the initial conditions 
 

Itt kk =Φ ),( . (3.88) 

 
Expressing Eq. (3.87) element-wise demonstrates that the columns of the 
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derivatives of the state transition matrix are independent of each other in that the first 
column of ( , )kt tΦɺ  does not contain elements of ( , )kt tΦ  from the second column 

(Lundberg, 1984; Tapley et al., 2004). In other words, the coefficient matrix for the 
dynamics equation (see Eq. (3.81)) can be simplified to 

 

3 3 3 3

3 3 3 3 3

3 3

r

r

r r r r

I

A B C D

× ×

× × ×

× × ×

 
 =  
  

0 0

0 0 0

 (3.89) 

 
by renaming the blocks in the second row. Also, the state transition matrix can be 

partitioned into sub-matrices of the same dimension as A : 
 

1 2 3

4 5 6

7 8 9

φ φ φ

φ φ φ

φ φ φ

 
 Φ =  
  

. (3.90) 

 
Then Eq. (3.87) becomes 
 

1 2 3 4 5 6

4 5 6 1 4 7 2 5 8 3 6 9

7 8 9 0 0 0

B C D B C D B C D

φ φ φ φ φ φ
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ɺ ɺ ɺ

. (3.91) 

 
From Eq. (3.91), three components 7 8,φ φ  and 9φ  are constant at all times, a result 

equivalent to the initial condition in Eq. (3.88) where, 7 8 0φ φ= =  and 9 Iφ = . The 

upper two rows of Eq. (3.91) can be represented by three second-order differential 
equations: 

 

1 1 4

2 2 5

3 3 6

,

,

,

B C

B C

B C D

φ φ φ

φ φ φ

φ φ φ

= +

= +

= + +

ɺɺ

ɺɺ

ɺɺ

 (3.92) 

 
for which the initial conditions are obtained from Eq. (3.88) 
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1 2 3

1 2 3

0 0

0 0

I

I

φ φ φ

φ φ φ

   
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  

ɺ ɺ ɺ  (3.93) 

 
with the relation of 4 1 5 2,φ φ φ φ= =ɺ ɺ  and 6 3φ φ= ɺ . 

 
Therefore, the numerical integrator solves the second-order differential equation of 

the forces acting on the satellite for the position and velocity of the satellite and, at the 
same time, the second-order differential equation of Eq. (3.92) is used to obtain the state 
transition matrix between epochs. The position and velocity obtained from the numerical 
integrator are again used to evaluate the coefficient matrix, )(tA , as seen in Eq. (3.81). 

 
 

3.4.2 Numerical Considerations 
 
As can be seen in Eq. (3.41), the a posteriori mean squared error matrix is always 

smaller than that of the a priori mean squared error matrix (notice that a positive-definite 
matrix is subtracted there), no matter what observations are used. This could mean that 
the estimation procedure finally becomes insensitive to further measurements. In this case, 
the filter diverges due to the dynamic model errors. The process noise, as implemented in 
this study, plays the role of overcoming this problem. Other types of process noise 
modeling, such as Dynamic Model Compensation (DMC), for instance, are also used in 
the orbit determination problem (Tapley and Ingram, 1973; Davis, 1996; Cruickshank, 
1998). 

 
The first expression of Eq. (3.41) can fail to yield a symmetric positive-definite 

matrix; thus, the second equation is sometimes used instead. Even if the symmetric form 
of the mean squared error matrix is used, it is worth forcing its computed version to be 
symmetric by replacing it with its “symmetric kernel” as follows: 

 

( ) ( )1 1
( ) ,

2 2
T T

k k k k k kP P P P P P
− − −= + = + . (3.94) 

 
While the numerical stability will be similar for both the batch and the sequential 

filtering, multiple iterations are needed for the system convergence in the batch filtering, 
because of the nonlinearity between the measurements and the state parameters. The 
Kalman sequential filter, however, generally does not need to iterate because the 
reference solution is changed with each new observation. It should be kept in mind that 
there could be a problem in the case of large deviations between the a priori state and the 
actual state, as well as in the case of a poor management of the mean squared errors. Also, 
if the covariance matrix for the process noise is too large, it will allow larger 
measurement errors to be accepted. 
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CHAPTER 4 

 

NETWORK OPTIMIZATION
 
 
Kinematic orbit determination of LEO satellites, as pointed out in Chapter 3, can 

only be guaranteed by the quality and continuity of GPS data, and the geometry between 
the GPS satellites and the LEO. Therefore, a pseudolite transceiver network is proposed 
as one of the methods to strengthen the constellation geometry of the positioning 
satellites. Although the PL hardware can theoretically be installed onboard LEOs, the 
optimization problem of the network is restricted only to the ground stations. The issue 
addressed here concerns the definition and implementation of an optimal configuration of 
the ground stations where the PLs should be located. Since it can be assumed that the 
LEO satellite orbits the Earth almost uniformly (a repeat period of ~15 days), the problem 
can be redefined as “How does one optimally design the PL station network independent 

of the position of LEO satellites?” Of course, this network optimization problem can be 
applied to both the augmentation of PLs and the selection of the ground stations for GPS 
differential positioning. In an ideal case, it is a matter of determining the position where 
the network stations should be. However, since most of the Earth surface is covered by 
water, a totally uniform design is impossible, and the existing ground stations, such as the 
IGS stations, should be selected for convenience. 

 
 

4.1 Optimization Theory 

 

4.1.1 Optimal Network Design 
 
The optimal network criteria can be composed of three components, i.e., precision, 

reliability, and costs. Since these three components are related to each other, this problem 
can be handled as a multi-purpose optimization problem as discussed in Schaffrin (1985): 

 

1( ) ( ) ( ) max.p r cprecision reliability costsα α α −⋅ + ⋅ + ⋅ = , (4.1) 
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Figure 4.1 Constellation geometry of the positioning satellites, LEO, 

and ground tracking stations. 

 
 
where 

pα , 
rα  and 

cα  are chosen weight coefficients. However, this approach is 

not very effective because it depends on the choice of the weight coefficients. Therefore, 
it is generally recommended that one deals with precision, while keeping reliability and 
costs under control. 

 
Grafarend (1972) proposed the requirements of the ideal network; homogeneity and 

isotropy of its point errors. Homogeneity means that there is invariance with respect to a 
translation in space, and isotropy represents the invariance with respect to a rotation. 
Under these properties, a uniform quality of the network can be achieved, resulting in 
circular/spherical local error ellipses/ellipsoids of equal size. A variance-covariance 
matrix which is homogeneous and isotropic in an ideal network (called a “criterion 
matrix”) possesses the Taylor-Karman structure (TK-structure), which defines the 
covariance of the phenomenon (point errors) between two points. The TK-structure will 
be discussed in detail in the next section. Also, since the measurement type is not 
specified, this criterion matrix is independent of any linear models with specific rank-
deficiency. 

 
An optimal design problem can be considered as a process on the cofactor matrix. 

This can be categorized into four approaches: Zero Order Design (ZOD), First Order 
Design (FOD), Second Order Design (SOD), and Third Order Design (TOD) (Grafarend, 
1974; Schaffrin, 1985). ZOD optimizes the cofactor matrix by varying the datum choice 
based on the best possible similarity to the chosen criterion matrix. FOD uses the varying 
design matrix, which is valid only in the domain of linearization. SOD determines the 
weights of the measurements to generate optimal results; therefore, this will be 
emphasized in this study. TOD is similar to the SOD except that the weights of additional 
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measurements are sought for the improvement of the existing cofactor matrix. 
 
 

4.1.2 Taylor-Karman Structure 
 
The Taylor-Karman structure defines the auto- and cross-covariances of a 

phenomenon between two points in the network. The distance between two points iP  

and jP  is defined as 

 

2 2 2: ( ) ( ) ( )i j i j i j i js x x y y z z= − = − + − + −r r , (4.2) 

 
where ( , , )T

i i i ix y z=r  and ( , , )T

j j j jx y z=r  represent the Cartesian coordinates of 

iP  and jP , respectively. Following Grafarend (1972), the general expression for the TK-

structured criterion matrix between iP  and jP  is given by 

 

[ ] 2 3 3

3 3

( ) 0 0
1

: 0 ( ) 0 ( ) ( ) ( )( )

0 0 ( )

m

T

ij m l m i j i j

m

s

C s s s
s

s
×

×

Σ 
   = Σ + Σ − Σ ⋅ − −  
 Σ 

r r r r , (4.3) 

 
where ijC  denotes the ideal cofactor matrix of the estimated network points iP  and 

jP , ( )l sΣ  and ( )m sΣ  represent the longitudinal- and cross-covariance functions, 

respectively. If the points 
iP  and 

jP  coincide, the two covariance functions have the 

same value, i.e., 
 

2(0) (0)m l σΣ = Σ = , (4.4) 

 
where 2σ  is the expected or desired variance of the estimated coordinates of the 

network (1 dm
2 is used here). The correlation function of an autoregressive process of the 

first order is given by (Grafarend and Schaffrin, 1979; Schaffrin, 1985) 
 

[ ] 2
1

1
( ) ( ) ( )

2 m l

s s
s s s K

d d
σ

   
Σ = Σ + Σ = ⋅ ⋅   

   
, (4.5) 

 
where 1K  is the modified Bessel function of the second kind and first order, s is the 

distance between two points, and d  is the characteristic distance of the network, which 
has not yet been determined clearly. Two feasible choices for the characteristic distance 
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are suggested: 
 
1) d should be chosen smaller than the minimum baseline in the network (Schmitt, 

1980); 

2) the maximum distance of the network is an upper bound for 10d (Wimmer, 1982). 
 
For the “potential type,” additional conditions are required to distinguish the 

longitudinal- and cross-covariance functions 
 

2 0

2
( ) ( ), ( ) ( )

s

l m m

d
s s s x x dx

ds s
Σ = Σ Σ = Σ∫ . (4.6) 

 
In order to calculate the covariance functions, Eq. (4.6) should be evaluated in 

advance, which is somewhat complicated. Instead, by assuming a 2-D Markov process of 
the first order, Grafarend and Schaffrin (1979) provided analytical formulas for the two 
covariance functions, namely, 

 
2

0 1 12 2

1 4 4
( ) 2 ( / ) ( / ) 2 ( / )l

d d s
s K s d K s d K s d

s s dσ
Σ = − + + + , (4.7) 

2

0 12 2

1 4 4
( ) 2 ( / ) ( / )m

d d
s K s d K s d

s sσ
Σ = + − − , (4.8) 

 
with 
 

0K : the modified Bessel function of the second kind and zero order; 

1K : the modified Bessel function of the second kind and first order. 
 
Figure 4.2 illustrates the longitudinal- and cross-covariance functions. The 

covariance functions are mostly decreasing with the distance between two points. As 
/s d  gets closer to 10 (i.e., as the baseline length approaches ten times that of the 

characteristic distance), the two points become almost decorrelated. That is the basic idea 
as suggested by Wimmer (1982). 

 
Once the criterion matrix is designed, the weights of each measurement between 

stations can be computed from the SOD approach. In the SOD the difference between the 

cofactor matrix of the estimated point coordinates in ξ̂ , that is, ˆQ
ξ

, and an ideal 

criterion matrix (e.g., with TK-structure), C, will be minimized by varying the weights: 
 

ˆ minQ C
ξ

− = . (4.9) 

 



 

 61

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1.0

s/d

C
o
v
a
ri
a
n
c
e
 [

d
m

2
]

Σm
(s)

Σ(s)

Σl
(s)

 
Figure 4.2 Longitudinal- and cross-covariance functions. 

 
 
Assuming uncorrelated observations in a Gauss-Markov model, 

2 1
0, ~ (0, )y A e e Pξ σ −= + , this condition can be transformed into 

 

1

:
minT

P diag
A PA C −

=
− =

p
, (4.10) 

 
where C  is a criterion matrix with TK-structure and p  is the vector of diagonal 

elements of the weight matrix P . Using an appropriate operator and a weighted 2l -norm, 
Eq. (4.10) becomes 

 
21( ) minT T

C C vecdiagP
A A vecC

−

⊗ =
− =

p
p� , (4.11) 

 
where vecdiag represents an operator which vectorize the diagonal elements of a 

matrix. The symbol �  denotes the Khatri-Rao product which is defined as 
 

� [ ]1 1, ,
m m

nl m

A B α β α β
×

= ⊗ ⊗⋯� , (4.12) 

 
for two matrices [ ]1, ,n m mA α α× = ⋯  and [ ]1, ,l m mB β β× = ⋯  with the same 



 

 62

number of columns, while ⊗  denotes the Kronecker-Zehfuss product defined by 
 

[ ]ij pn qm
p qn m

G H g H ×
××

⊗ = ⋅ . (4.13) 

 
After some manipulation of Eq. (4.11), the normal equations for the weights are 

given by 
 

1ˆ( ) ( )( ) ( ) ( )T T T T T T T T

vecC

A A C C A A A A C C vecC− ⊗ = ⊗  p
�		
		�

� � � , (4.14) 

 
and finally by 
 

ˆ( ) ( )T T TACA ACA vecdiag ACA∗ =p , (4.15) 
 
where the symbol ∗  now defines the Hadamard product of matrices with equal size, 

namely, 
 

[ ]ij ij k l
k lk l

G H g h ×
××

∗ = ⋅ . (4.16) 

 
For more details concerning the above matrix products, see Schaffrin (1985, 

Appendix 2). 
 
 

4.1.3 Sequential Algorithm for Finding the Optimal Network Configuration 
 
In order to find optimal stations from the candidate group, the algorithm starts from 

one station and keeps adding one station at a time, which satisfies the optimality criterion 
at each selection step. The first station could be anywhere in the network, and the final set 
of stations will be different depending on the first station. However, the resulting set 
should always satisfy the requirements, i.e., be approximately homogeneous and isotropic. 
The station selection procedure can be summarized as follows (see Figure 4.3): 

 
1) Choose one station from the stations list as the 1st station of the network. 

Although different choices of the 1st station will provide different resulting sets, the error 
situation is expected to be approximately uniform. 

 
2) Find the 2nd station, which has the maximum distance from the 1st station. This 

maximum distance will serve as an upper limit of the characteristic distance for the 
computation of the covariance functions. This also gives an optimal network for the case 
of two stations. 
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Figure 4.3 Flow chart of the algorithm for optimal network selection. 

 
 
3) Build a criterion matrix for two network stations. This criterion matrix will be 

used in the next step of the selection process. It should be mentioned that a criterion 
matrix will be almost the identity matrix if the characteristic distance is smaller than the 
minimum baseline in the network, because the minimum baseline is quite small if 
compared to other baselines. Therefore, it would be better to use one tenth of the 
maximum baseline as an upper limit of the characteristic distance according to Wimmer 
(1982). 

 
4) Compute the weights of all combinations of ‘network-to-candidate station’ 

baselines. This can be done using Eq. (4.15). The criterion matrix is continuously 
accumulated up to the last network station. For example, for the jth network station, the 
3( 1) 3( 1)j j− × −  criterion matrix will be reused for the 3 3j j×  criterion matrix of the 
current candidate station. The number of rows of the design matrix will be the same as 
the number of network stations because no further measurements between existing 
network stations are assumed. 
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5) Find the station that has the most uniform weights to all network stations by 
computing the Root Mean Square (RMS) deviations of weights. Since the weight of a 
short baseline is larger than that of a long baseline, and the stations need to be as wide-
spread as possible for the optimal configuration, the station which has the minimum RMS 
deviation of weights is chosen as the next network station. Once a station is added to the 
network, it is removed from the candidate group. 

 
6) Save the criterion matrix up to the newly chosen network station and update the 

maximum and characteristic distance in the network for the next step of the selection 
process. 

 
7) Repeat steps 4)-6) until the desired number of stations is reached. 
 
 

4.2 Network Optimization for LEO Orbit Determination 

 
For the application of the optimal network design technique, as investigated in this 

study, a total of 269 IGS tracking network stations are prepared; see http://itrf.ensg.ign.fr/ 
ITRF_solutions/2000/results/ITRF2000_GPS.SSC.txt. All coordinates are computed at 
epoch 2004.0 by applying the velocity information. As can be seen in the figure 
illustrating the network stations (Figure 4.4), the distribution of stations is denser in 
North America and Western Europe, while fewer stations are available in Africa, South 
America and Antarctic area. 
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Figure 4.4 IGS network stations used (269 stations). 
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It should be mentioned here that distance measurements between two stations are 
used as observations. Although any kind of measurement (direction, distance, distance 
ratio or angular observations, etc.) can be used, only distance measurements are 
introduced here for the optimal network design, because, in fact, GPS observations are 
used for the LEO orbit determination process. Without the loss of generality, it is possible 
to use different types of measurements for a network design for different purposes. It is 
assumed that only the measurements between one additional candidate station and the 
already selected network stations are considered, as only one candidate station is added at 
a time. Once a station is added to the network, this set of stations is optimal for the case 
of that specific number of stations. 

 
Figure 4.5 shows the result of the optimized network. The numbers in the figure 

represent the sequence in the selection process. The first chosen station is ALBH in North 
America (marked as blue circle), and the 2nd one, KERG, is on the opposite hemisphere to 
station 1. Although a large number of stations are concentrated in North America and 
Western Europe, a few of them are chosen in the final result, ensuring generation of a 
network of greater uniformity. 
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Figure 4.5 Selected stations using the optimal selection process (43 stations). 

 
 
Since the goal of the optimal network design is to make the cofactor matrix of the 

estimated point coordinates, ˆQ
ξ

, as close to the criterion matrix as possible, the cofactor 

matrix should be computed using the estimated weights for each baseline. However, in 
spite of numerous advantages of the Gauss-Markov model for geodetic networks, such as 
easily programmable computer calculation, the covariance matrix of the parameter 
estimates as a byproduct, and easily understandable results (Caspary, 1987), the 
conventional geodetic networks experience certain datum deficiencies. In 3-D networks 
with distance measurements, the rank deficiency is 6 (3 translations and 3 rotations).  
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Figure 4.6 Relative trace of the cofactor matrix. 
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Figure 4.7 Derivative of the relative trace of the cofactor matrix. 
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Therefore, the resulting normal matrix also has a rank deficiency and the standard 
matrix inversion is not possible. Instead of a standard inversion, the pseudoinverse can be 
used for the computation of the cofactor matrix, for instance by using the Singular Value 
Decomposition (SVD) method (Strang and Borre, 1997). 
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Figure 4.8 Error ellipses of the optimal network. 

 

-140 -120 -100 -80 -60 -40
-30

-20

-10

0

10

20

30

40

50

60

70

1

22

25

28

29

32

42

43

Longitude [deg]

L
a
ti
tu

d
e
 [

d
e
g
]

 

 

Real cofactor matrix

Criterion matrix

 

Figure 4.9 Error ellipses of the optimal network (magnified in North America). 
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Figures 4.6 and 4.7 show the measure of optimality. Figure 4.6 represents the scaled 

trace of the cofactor matrix, and Figure 4.7 is a finite “derivative” of Figure 4.6 by 
depicting the improvement of the trace per additional station. It should be mentioned that 
the trace of the cofactor matrix is averaged by the number of nonzero eigenvalues. As can 
be seen in Figure 4.7, there is practically no improvement beyond 40 stations. 

 
Figures 4.8 and 4.9 illustrate the error ellipses in the local plane. These figures are 

plotted with the same scale in both latitude and longitude directions; thus, the 
requirements of the optimal network, i.e., homogeneity and isotropy, can be clearly seen 
in the results. 

 
To compute the error ellipses in the local plane, the cofactor matrix in the Cartesian 

coordinate system should be transformed into the local plane using the relation given by 
(Hofmann-Wellenhof et al., 2004) 

 

( ) ( )ˆ ˆ
T

neu xyz
Q R Q R

ξ ξ
= , (4.17) 

 
where R  is a rotation matrix from the Cartesian to the local-level system (North-

East-Up), see Leick (1995): 
 

[ ] [ ]
T T

n e u R x y z∆ ∆ ∆ = ⋅ ∆ ∆ ∆ , (4.18) 

 
where R  is defined by 
 

sin cos sin sin cos

sin cos 0

cos cos cos sin sin

R

ϕ λ ϕ λ ϕ

λ λ

ϕ λ ϕ λ ϕ

− − 
 = − 
  

 (4.19) 

 
with the latitude (ϕ ) and longitude ( λ ) given as the geodetic station coordinates. 
 
Table 4.1 explains how well the result follows the requirements of the optimal 

network. maxλ  and minλ  represent the semi-major and semi-minor axes of the error 

ellipses, respectively, the square of which corresponds to the maximum and minimum 
eigenvalues. The difference between the maximum and minimum values in each direction 
is on average less than 10 %, as compared to the mean value of maxλ  or minλ . Also, the 

ratio of the semi-major to semi-minor axis has a mean value of 1.10, which means that 
they create almost circular ellipses. Even the largest value of the ratio is less than 1.3. The 
standard deviation of the semi-major or semi-minor axis is about ±0.77 (less than 10 % 
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compared to the corresponding mean values), which is an evidence that the error ellipses 
are almost equal size. 

 
 

 
maxλ  

[cm] 
minλ  

[cm] 
max minλ λ−  

[cm] 
max min/λ λ  

 

Mean 8.40 7.66 0.75 1.10 

Std. ±0.76 ±0.77 ±0.37 ±0.05 

Max. 9.60 8.93 1.77 1.26 

Min. 6.56 5.83 0.13 1.02 

Table 4.1 Statistics for the error ellipses. 
 
 
Figure 4.10 illustrates the eigenvalues of the criterion matrix and the actual cofactor 

matrix in decreasing order. Since the estimates and the corresponding variance-
covariance matrix are not invariant quantities of the model (as they depend on the 
geodetic datum choice), the eigenvalues of the cofactor matrix can be used as a measure 
of accuracy in certain (hyper-)dimensions defined by the corresponding eigenvectors. 
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Figure 4.10 Eigenvalues of criterion and actual cofactor matrix. 

 
 
In order to test the stability of the algorithm, another case of different starting station 

is tested. As can be seen in Figure 4.4, the IGS stations are clustered in North America 
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and Western Europe; thus, it is difficult to regenerate the network stations with different 
starting station. In other words, stations which are close to each other do not make any 
practical difference in the network optimization process, but the actual choice within the 
cluster can be different depending on the starting station. Therefore, in order to 
demonstrate that optimal station selection is repeatable regardless of the first station 
selection, 63 IGS stations are pre-selected based on the data availability and the distance 
to the neighboring stations. As shown in Figure 4.11, the station clusters from Figure 4.4 
were practically replaced with single stations; notice that this pre-selection is still out of 
balance in terms of station distribution (Figure 4.11). Figures 4.12 and 4.13 illustrate the 
cases where different starting stations were used, namely, ALBH in North America and 
TIDB in Australia. As can be seen in the figures, both cases generate network stations 
almost uniformly, and more than 88 % of selected stations (38 out of 43 stations) coincide. 
Further testing of 63 cases with different starting station shows a consistency of 36 
stations on average and its standard deviation is 2.2. 
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Figure 4.11 IGS network stations (63 pre-selected stations). 
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Figure 4.12 Optimal network stations from the pre-selected stations 

(starting from ALBH in North America). 
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Figure 4.13 Optimal network stations from the pre-selected stations 

(starting from TIDB in Australia). 
 
 
 



 

72 
 

CHAPTER 5 

 

ANALYSIS OF THE ORBIT ERRORS
 
 
Once the estimated orbit is available, its error should be evaluated as accurately and 

reliably as possible. Unfortunately, the true orbit can never be known, thus, the accuracy 
of the orbit solution can only be measured indirectly. The commonly used methods of 
evaluation include the comparison with other orbit solutions, internal consistency checks 
for the overlapping arcs of the solution, and independent validation with SLR (Satellite 
Laser Ranging) residuals or crossover data. In this chapter, the orbit solutions from 
different methods are analyzed in detail using the aforementioned methods. In the 
absence of the absolute reference orbit, the RSO is assumed to be the best orbit available 
to the public, thus, in this study the triple-difference based CHAMP orbits are compared 
to the RSO as an independent reference. It should be mentioned here that the dynamic 
solution of the CHAMP orbit, as computed in this study, is more thoroughly compared 
with the published RSO with regard to the consistency of the estimation methods. 

 
 

5.1 Data Processing Strategy 

 
To demonstrate the application of the techniques discussed in this study, the 

CHAMP data collected on 15 February 2003 are processed. Since the kinematic approach 
is practically dependent on the measurements and their geometry only, 24 hours of data 
are considered here as a sufficient sample. In the dynamic approach, however, it is a well-
known strategy to estimate an additional arc before and after the main arc to reduce the 
edge effect of the orbit solution. Usually a 30-hour arc (24 hours of data plus 3 hours of 
data before and after each day) is used for the LEO dynamic POD, and the redundant 
parts, namely those, before and after the primary 24-hour arc, are usually discarded in the 
orbit solution. In this study, however, a decision was made to estimate 24 hours of arc for 
each day plus 2 extra hours of arc the next day, to facilitate computational efficiency. To 
be more specific, since the initial state vector is estimated using the observations of the 
entire arc, the orbit solution at the beginning of the 24-hour arc is sufficiently accurate. In 
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addition, the 30-hour arc produces a 24-hour primary arc, with only a negligible 
difference over the one derived from the 26-hour solution as shown in Figure 5.9 (see 
next section). The data arc for the reduced-dynamic orbit with the wave algorithm is the 
same as that coming from the dynamic approach. 

 
The triple-differenced, ionosphere-free GPS phase observations are used in this 

study to compute the orbit solution in near real-time. Along with the processing efficiency, 
it is also important to satisfy the orbit accuracy to support GPS meteorology for 
atmospheric profiling. The triple-differenced observations can be obtained via epoch-by-
epoch differencing of the consecutive double-differenced observations. The baseline is 
formed by a LEO and an IGS ground station at each end, respectively. The precise IGS 
orbits are used for the GPS satellites, and the ground station coordinates are referenced to 
ITRF2000. It should be mentioned that the published station coordinates are referenced to 
a specific epoch (for example, the position and velocity of ITRF2000 stations are given at 
1997.0); thus, the velocity should be corrected to the measurement epoch to account for 
the plate tectonic motion of any station. Furthermore, the displacement of the stations due 
to the solid Earth tides and the polar motion should be applied to these coordinates (ocean 
tide loading effect is neglected here). 

 
The elevation cutoff angles are set to 16 degrees for the 43 IGS ground stations and 

10 degrees for the CHAMP satellite, which are rather conservative choices. Table 5.1 
shows the relative percentage of observations for different elevation cutoff angles with 
respect to the case of 10° for CHAMP and 15° for the ground. Although it is possible to 
increase the number of observations up to 20 % by setting both cutoff angles to 5°, the 
quality of the observations might be poor due to the low antenna gain for low elevation 
angles. The impact of using observations from lower elevation cutoff angles needs to be 
investigated further, especially for the ground stations. It should be mentioned here that 
CHAMP has an altitude of more than 400 km, thus, there is no tropospheric effect on 
GPS measurements in this case, and it is set to zero in the data processing. While the GPS 
measurements from the CHAMP receiver are provided in 10-second intervals, data points 
at 30-second intervals are provided by the IGS stations; thus, the GPS triple-differenced 
measurements are formed every 30 seconds. 

 
 

CHAMP 

Stations 
0° 5° 10° 15° 

0° 125.07 % 123.34 % 116.69 % 104.67 % 

5° 124.32 % 122.61 % 116.01 % 104.06 % 

10° 118.95 % 117.31 % 110.99 % 99.51 % 

15° 107.26 % 105.78 % 100.00 % 89.45 % 

Table 5.1 Relative number of observations for different cutoff angles (with respect to the 

case of 10° for CHAMP and 15° for the ground stations). 
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Figure 5.1 illustrates the number of baselines and triple-differenced observations for 
the test data. There are data gaps in the latter part of the data and almost singular points 
around 6 o’clock. Also, it shows almost periodic changes of the geometry due to the near 
polar orbit of the CHAMP satellite. 
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Figure 5.1 Number of baselines and triple-difference combinations (43 ground stations). 
 
 

5.2 Analysis of Orbit Solutions 

 

5.2.1 Kinematic Solution 
 
The orbits estimated by the kinematic approach might suffer from the singularities 

caused by the lack of GPS data. The solution is also dependent on the satellite and 
baseline geometry and the data quality. Figure 5.2 shows the receiver clock offset 
computed from the absolute kinematic positioning. As can be seen in the figure, the 
CHAMP clock occasionally shows an unusually large correction, which is considered to 
be partially affected by the multipath errors in the aft-looking hemisphere due to cross-
talk between the occultation antenna string and the primary POD antenna (Montenbruck 
and Kroes, 2003). 
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Figure 5.3 illustrates an orbit solution of absolute kinematic point positioning using 
pseudo-ranges. The overall accuracy compared to the RSO is ±26 meters in 3D RMS 
deviation after interpolating the epochs with data gaps (Table 5.2). This result is used as 
an initial approximation of the CHAMP satellite orbit for all kinematic solutions in this 
study. 

 
 

 X [m] Y [m] Z [m] 3D [m] 

Mean 1.074 -0.054 0.614  

Std. ±12.900 ±13.173 ±18.650 ±26.225 

Table 5.2 Statistics for the absolute kinematic positioning (24 hours). 
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Figure 5.2 CHAMP receiver clock offset (24 hours). 
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Figure 5.3 Comparison of the absolute kinematic orbit solution w.r.t. RSO. 

 
 
It should be mentioned here that the term RMS deviation used in this study is 

defined as follows: 
 

2 2( ) ( ) ( )RMS X Mean X Std X= + , (5.1) 

2 2 23 ( ) ( ) ( )D RMS RMS X RMS Y RMS Z= + + . (5.2) 

 
As mentioned earlier, the triple-differenced observations are not very sensitive to the 

data quality. Thus, the cycle slips are treated as data outliers, and excluded by pre-setting 
the threshold values in the data processing. 

 
Since the triple-differenced observations contain the relative information only, 

namely, the position change between epochs, a datum should be provided in the 
adjustment model (Kwon et al., 2003). Thus, one can provide a fixed constraint at any 
epoch and estimate the unknowns of the remaining epochs. The adjustment with 
stochastic constraints for all epochs can also be applied, but the convergence is 
significantly slower and might result in a biased solution for the loose constraints (ibid.). 
Therefore, the position of the first epoch is fixed to estimate the LEO orbit and 
consequently, the number of unknowns is reduced by 3. 
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Fixing the initial position, however, will introduce errors to the solution at the 
subsequent epoch because the initial values are connected to the positions at all other 
epochs through their variance-covariance matrix. Therefore, because of these biases in 
the fixed initial orbit, the solution might not converge after the first epoch. In this case, 
both the forward and backward filtering should be applied in order to reduce the effect of 
the biased initial coordinates. Figure 5.4 represents the orbit solution of the forward filter 
for different sizes of the processing batch. It is clear from the figure that it takes about 
300 epochs to converge, which means that the backward filtering is needed for the 
converged solution of all epochs. 

 
The backward filtering can be performed by fixing the orbit solution from the 

forward filter at the last epoch, and then running the filter in the opposite direction. After 
the backward filtering, see Figure 5.5, most of the errors caused by the bias at the initial 
epoch is removed. It should be noted that the big jumps in the forward filter correspond 
to the epochs where the number of observed satellites drops. 
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Figure 5.4 Effect of the batch size on the orbit solution (forward filter). 
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Figure 5.5 Forward and backward filter solutions (500 epochs). 
 
 
Figure 5.6 shows the RMS orbit errors for different sizes of the batch. Usually the 

length of the batch is determined by the data gaps, cycle slips and large GDOP values 
which introduce singularities to the solution (Kwon et al., 2003). As can be seen in the 
figure, however, for a short length of arc, say, 300 epochs or less, the biases might not be 
sufficiently removed even by the backward filtering. In this case the iterative scheme is 
required until the solution converges. Three iterations of forward and backward filtering 
seem to be sufficient according to the tests done in this study, which can still be done in 
near real-time due to the short arc to be processed. 
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Figure 5.6 Orbit errors for different batch sizes (backward filter). 

Bottom figure is the magnification of top figure. 
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Figure 5.7 Backward filter solution (1500 epochs). 
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Figure 5.7 illustrates the kinematic orbit solution for 1500 epochs of data after 
backward filtering. This is almost the largest batch possible in this test data set because of 
a data gap beyond the final point of the processed arc. It should be noticed here that the 
singularity at some epochs cannot be overcome even when the backward filtering is 
applied; notice the peak around 6 o’clock in the figure. Based on this study, one can claim 
that the achievable accuracy of the kinematic approach is better than ±20 cm in 3D RMS 
deviation when compared to the reference RSO (Table 5.3) after removing the points with 
singularities. The processing time for the 1500 epochs of data in a batch solution takes 
about 1.7 hours for both forward and backward filtering on a 3 GHz PC platform. 

 
 

 X [m] Y [m] Z [m] 3D [m] 

Mean 0.049 0.021 -0.033  

Std. ±0.072 ±0.109 ±0.131 ±0.185 

RMS ±0.087 ±0.111 ±0.135 ±0.195 

Table 5.3 Statistics for the kinematic orbit solution (1500 epochs). 
 
 
In order to demonstrate the achievable accuracy of the kinematic approach under 

good geometry, a 10-minute arc with the maximum number of observations was chosen 
from the simulation study (just before 2 o’clock; see Figure 3.3). As can be seen in Table 
5.4, this solution, as compared to the RSO, gives less than ±1 cm of orbit differences in 
each component, except for a few-centimeter bias in Y and Z directions. Therefore, this 
clearly shows that the kinematic approach has a potential to provide much improved orbit 
solutions with the inclusion of the upcoming GNSS satellites (the reasonable tracking 
geometry of the ground stations is also required for the differenced observations). 

 
 

 X [cm] Y [cm] Z [cm] 3D [cm] 

Mean -0.30 8.23 4.57  

Std. ±0.83 ±0.75 ±0.60 ±1.27 

RMS ±0.88 ±8.26 ±4.60 ±9.50 

Table 5.4 Statistics for the kinematic orbit solution for a 10-minute arc. 
 
 
In her recent work, Bock (2003) reports that when the best zero-differenced 

kinematic solution using code and phase-difference observations is compared to the TUM 
(Technical University of Munich) solution, an RMS error per coordinate is obtained about 
±10 cm after a Helmert transformation between the orbit solutions. Also, Bisnath (2004) 
shows an orbit difference of about ±32 cm in 3D RMS error for 24 hours of arc compared 
to the JPL solution, using single-receiver data and a geometric approach. 
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It should be mentioned that the POD procedure should be reset and a new segment 
created whenever a singularity occurs due to the lack or loss of the GPS signal. As 
mentioned in Chapter 2, an orbit error of ±30 cm is required to support the GPS 
atmospheric profiling. Therefore, the kinematic approach with triple-differenced 
observations is capable of supporting this requirement under a favorable geometry. 

 
 

5.2.2 Dynamic Orbit 
 
The primary unknowns in the dynamic approach are the initial states, which are 

composed of the position and velocity vectors at the first epoch of the arc, and some other 
dynamic parameters. The a priori values for the initial state vector can be obtained, for 
example, from the adjustment of the previous day. For this study, the uncertainties of the 
initial state vector are set to ±1 m and ±0.1 m/s for the position and velocity, respectively. 
A numerical integrator with a variable order and step size is used, and set to provide the 
output at a 30-second interval that corresponds to the time interval of the RSO solution 
and GPS measurements update from the ground stations. The tropospheric delay for the 
IGS ground stations was corrected using the modified Hopfield model (Goad and 
Goodman, 1974). The NRLMSISE-00 model is used for the atmospheric drag force 
modeling, with the area-to-mass ratio of the CHAMP satellite given as 0.00138 m2/kg. 
For simplicity, the cannon ball model is used for the modeling of the satellite’s body to 
compute both the atmospheric drag and the solar radiation pressure. 

 
 

Parameters Frequency Number 

Position - 3 Initial state 

vector Velocity - 3 

Atmospheric drag One per hour 26 

Solar radiation One per arc 1 

Once/rev. Every orbit 68 
Empirical force 

Twice/rev. Every four orbits 20 

Total  121 

Table 5.5 The parameters to be estimated in the “reference case.” 
 
 
The parameters to be estimated and the model used in this study (called the 

“reference case”) are listed in the following, and summarized in Table 5.5: 
 

� The initial state vector (position and velocity), 
� The atmospheric drag coefficients (1 parameter/hour), 
� The solar radiation scale factor (1 parameter/arc), 
� The once-per-revolution empirical force parameters (every orbit), 
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� The twice-per-revolution empirical force parameters (every four orbits), 
� Geopotential model (EIGEN2, degree/order 120×120), 
� The arc length (26 hours). 

 
 
It should be noted that only 121 parameters are estimated for one full day orbit since 

there are no ambiguity parameters. This is a significant computation load reduction, as 
compared to 13200 ambiguity parameters (from about 100 IGS ground stations) in the 
double-differenced dynamic POD (Švehla and Rothacher, 2003). Assuming GPS 
measurements from the IGS ground stations are ready for processing, the processing time 
to estimate the 121 parameters for the 26-hour arc is about 2.5 hours (30 minutes per 
iteration), on the same machine as mentioned in the previous section. Currently, the 
latency of the RSO daily solution is claimed at about 16 hours (not being published at this 
latency), and the JPL solution has similar latency (Kuang, 2006). The ground contact of 
CHAMP satellite for data downloading is done about every 86 minutes, and the RINEX 
files from the ground stations are transferred to the processing centers with a maximum 
time delay of 15 minutes (Wickert et al., 2004); thus, the time delay due to the data 
transfer can be neglected. The 3-hour arc solution, as the criterion for the “near” real-time, 
based on the technique presented in this study, can be obtained in about 20 minutes and 
shows a comparable accuracy to the 26-hour arc solution (Bae, 2005b). 

 
 

Degree/order N [cm] T [cm] R [cm] 3D [cm] 

Mean -1.50 2.49 -2.28  
50×50 

Std. ±17.66 ±16.72 ±10.33 ±26.42 

Mean -0.86 1.59 -2.36  
70×70 

Std. ±4.99 ±7.52 ±3.92 ±9.84 

Mean -0.89 0.54 -2.08  
90×90 

Std. ±4.33 ±6.31 ±3.57 ±8.45 

Mean -0.76 1.39 -1.93  
120×120 

Std. ±3.80 ±6.10 ±3.33 ±7.91 

Mean -0.73 1.38 -1.94  
140×140 

Std. ±3.77 ±6.07 ±3.30 ±7.87 

Table 5.6 Orbit differences for various choices of degree/order of the gravity model when 

compared with the RSO in the RTN frame. 
 
 
Table 5.6 shows the dynamic-orbit solution for various choices of degree and order 

of the geopotential model used. The geopotential model used in this study, EIGEN2, has a 
maximum degree/order of 140. As can be expected, considering CHAMP’s altitude, the 
CHAMP orbit is visibly sensitive to the degree/order up to 70, and only moderate, but 
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increasing improvement can be obtained for the higher degree/order. 
 
It should also be noted here that the error in the along-track direction is almost twice 

as big as the other two components, especially in the case of the solutions with the 
gravity model developed to degree/order 120 and 140. This follows from the fact that the 
most dominant nonconservative force, which is the atmospheric drag, points in the 
opposite direction of the velocity component. In reality, the along-track component 
diverges the fastest if the atmospheric drag is not modeled appropriately. 
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Figure 5.8 Orbit differences in the “reference case” when compared 

with the RSO in the RTN frame. 
 
 
Figure 5.8 illustrates the orbit difference in the RTN frame in the “reference case” 

after 5 iterations of the batch filter, with the geopotential developed to degree/order 120 
and with a 1-hour interval for the atmospheric drag parameter estimation. The result is 
plotted for the 24-hour span, although it converged for the entire 26 hours of arc. 

 
Another orbit accuracy assessment can be made by performing the internal 

consistency check of the overlapping arcs. Figure 5.9 shows the 24-hour orbit difference 
between the “reference case” and the 30-hour arc, which extends 3 hours before and after 
one full day. As can be seen in the figure, the two orbit solutions are close to each other, 
except for the first few epochs. The results show differences of less than ±1.3 cm of RMS 
error in each direction, and ±2 cm in 3D deviation (not shown in this figure). The 
difference at the beginning of the arc is due to the fact that the coordinates at the first 
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epoch were unknown in the “reference case,” and no epochs prior to the first epoch were 
used in the processing. The frequent fluctuations in the along-track and radial 
components are considered as phase shift in the empirical force modeling. 
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Figure 5.9 Internal consistency of the orbit solution; 

the “reference case” vs. 30 hours of arc. 
 
 
As discussed earlier, the force modeling of the satellite dynamics is not accurate 

enough for precise orbit determination. Therefore, the empirical force parameters can be 
included in the state vector to improve the orbit solution. A closer look at the STAR 
accelerometer data reveals the periodic properties of the once- and twice-per-revolution 
nonconservative forces (see Figure 3.8), which are predominantly in the along-track 
component. Figure 5.10 shows the orbit solution of the “reference case” after these 
empirical parameters has been modeled in the dynamic POD. Apparently, once- and 
twice-per-revolution components are significantly reduced in the Fourier spectrum of the 
orbit error in the along-track direction. It should be mentioned here that the along-track 
and radial components are estimated for the twice-per-revolution empirical forces, which 
gives better results than in the other case (i.e., estimating the cross- and along-track 
components). The reason for this is not clearly understood and should be investigated 
further. 
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Figure 5.10 Fourier spectrum of the orbit error (along-track). 
 
 

Drag interval N [cm] T [cm] R [cm] 3D [cm] 

Mean -0.76 1.39 -1.93  
1 hr 

Std. ±3.80 ±6.10 ±3.33 ±7.91 

Mean -0.76 0.12 -1.85  
2 hrs 

Std. ±3.81 ±6.67 ±3.31 ±8.36 

Mean -0.75 -0.23 -1.80  
4 hrs 

Std. ±3.74 ±8.53 ±5.24 ±10.69 

Mean -0.81 0.35 -2.15  
8 hrs 

Std. ±5.80 ±25.24 ±21.61 ±33.73 

Mean -0.68 0.75 -2.05  
10 hrs 

Std. ±5.36 ±19.94 ±15.90 ±26.06 

Table 5.7 The statistics of the orbit solutions with various time intervals for the 

atmospheric drag parameter estimation. 
 
 
In order to find out the optimal arc length of the atmospheric drag force parameters, 



 

 86 

a total of five different cases was tested based on the “reference case” (Table 5.7); the 
atmospheric drag parameters were estimated every 1 hour, 2 hours, 4 hours, 8 hours and 
10 hours of arc, where the 1-hour arc case corresponds to the “reference case.” The 
results suggest that the orbit differences will dramatically increase if the drag coefficient 
is estimated with a frequency less than once per 4 hours. This is so because the 
atmospheric density at CHAMP altitude can fluctuate rapidly due to the varying density 
of the Sun flux particles and changing geographic location of the CHAMP satellite. 

 
The velocity of the CHAMP satellite is obtained simultaneously by solving the 

equations of motion of the satellite in the dynamic POD via numerical integration 
techniques. Figure 5.11 illustrates the velocity differences in each component of the 
CHAMP orbit. The differences between the estimated and the published RSO velocity in 
the inertial frame are transformed to the RTN frame. It should be noted here that the noise 
level of the three components is almost the same, although the along-track component is 
slightly larger than the other two. The resulting velocity differences are at the level of 
±0.07 mm/s in each component and ±0.12 mm/s in 3D RMS. These quality-of-fit results 
are comparable or even better than those for the CHAMP dynamic velocity estimates of 
various POD analysis centers. This result is computed by cross-comparison among the 
solutions from the IGS analysis centers, reporting average RMS deviation for each pair of 
solutions below the ±0.1 mm/s level (Švehla and Rothacher, 2003). 
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Figure 5.11 Velocity differences in the “reference case” when compared 

with the RSO in the RTN frame. 
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5.2.3 Reduced-Dynamic Solution with the Wave Algorithm 
 
The reduced-dynamic solution is usually performed in two steps: estimation of the 

dynamic solution followed by process noise estimation (Yunck et al., 1994; Kuang et al., 
2001). Once the dynamic solution has converged, all the dynamic parameters are fixed, 
for convenience, to the estimated values; then, the process noise in form of impulses can 
be estimated with the wave algorithm. As explained in Chapter 3, the wave algorithm is 
considered as a zero initial condition problem of the state vector. Thus, the estimated 
Dirac impulse vector is propagated to the last epoch of each cycle, which then becomes 
an update to the reference orbits. The fundamental difference between the reduced-
dynamic algorithm developed at JPL and the wave algorithm used in this study is the fact 
that the process noise is estimated once every predetermined cycle instead of every epoch. 
The rationale of this approach is that the behavior of dynamic orbit errors shows a wave-
like pattern even after the empirical parameters have been estimated (see Figure 5.8); thus, 
the error for a certain number of epochs is considered as one wave to be estimated. 

 
Since the reference orbit for the wave filter is propagated from the initial epoch 

using the parameters which have been estimated in the dynamic approach, it should be 
close to the dynamic orbits. The only difference comes from the fact that the state 
transition matrix in Kalman sequential filtering is reinitialized at every epoch contrary to 
the dynamic solution. Thus, the remaining orbit errors are fitted to the wave function and 
finally added to the reference orbit to generate a wave estimated orbit. As is the case for 
the kinematic approach, the estimated wave (as correction to the state vector) has a bias at 
the initial epoch of each cycle. Therefore, this bias should be removed by the smoothing 
filter which computes the estimates backwards by using the state transition matrix that 
was stored during the forward filter. Also, the last epoch of the forward filter should be 
fixed for the smoothing process. 

 
Figure 5.12 shows the variation of the error variances for the position vector after 

the forward wave filter was applied. Since the initial state vector of each cycle is assumed 
to have randomness, there are peaks at each cycle which will decrease as the 
measurements are processed. After smoothing, the sigma values remain at a level of a few 
millimeters with some fluctuation. 
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Figure 5.12 Error variances of the position vector (wave forward filter). 
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Figure 5.13 Position updates (wave-smoothed filter). 
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Based on the test to determine a suitable number of epochs for each cycle, the wave 
filter is applied to the 16 hours of arc with 300 epochs of cycle length, since there is a 
data gap beyond this point. During this gap, the estimates should be propagated using the 
dynamic model only because the filter diverges quickly without the measurement updates. 
Once the observations are available again, this filter can proceed furnishing the updates 
with the measurements. Figure 5.13 illustrates the position updates after the backward 
smoothed filter. Since the estimated values have not converged at the beginning of each 
cycle, the process should be smoothed by the backward smoothed filtering. The drawback 
of the wave filter is that there are discontinuities on both sides of each cycle, as can be 
seen in the figure. Although the orbit remains smooth in spite of these discontinuities, it is 
desirable to have smoothed updates for the orbit. Therefore, one must interpolate the 
position updates at the points of discontinuity using the data on both sides. 

 
 

Method N [cm] T [cm] R [cm] 3D [cm] 

Mean 0.53 -0.72 1.96  
Dynamic orbit 

Std. ±3.60 ±5.28 ±2.83 ±6.99 

Mean 0.54 -1.92 2.06  
Wave filter 

Std. ±3.47 ±5.05 ±2.82 ±6.75 

Correlation coef. 0.98 0.93 0.97  

Table 5.8 Comparison of dynamic orbit and wave filter solution. 
 
 
As can be seen in Table 5.8, there is a little improvement in the variance of the orbit 

difference of the wave filter solution; note that both orbits were compared with the 
published RSO. However, the wave filter solution has a slightly larger along-track bias. 
This seems to be a property of the wave filter, which means that each cycle must be 
estimated to compensate for the error in that cycle. Thus, the entire arc of the orbit might 
be biased depending on the error behavior of each cycle. The correlation coefficients in 
the table tell how much two orbit solutions are similar to each other in their behavior. 

 
Clearly, the overall RMS fit of the wave filter solution is similar to that of the 

dynamic orbits. This is so because the dynamic approach already includes the empirical 
force models which correspond to the stochastic process noise in the reduced-dynamic 
approach. Thus, the unmodeled forces are absorbed by this modeling to a large extent. 
Also the reduced-dynamic procedure is performed after the dynamic solution has 
converged; therefore, there is no room for much variation from the dynamic orbits. In 
summary, the wave algorithm used in this study can absorb the unmodeled forces in the 
form of process noise while following the wave-like shape of the orbit errors favorably. It 
is expected that more pronounced impact of the wave algorithm could be observed if 
simplified force model were used in the dynamic solution 
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5.3 Consistency Testing 

 
The orbit comparison for different solutions can also be accomplished by the 

consistency testing. Since the kinematic solution is interrupted due to the data gaps, and 
the published RSO is a solution based on the dynamic approach, it was decided to have a 
consistency test only for the dynamic solution. The basic idea of the consistency testing is 
to check the change in the sum of squared residuals of the measurements due to 
constraining the solution. Therefore, one can begin the consistency testing from the well-
known Gauss-Markov model used here. 

 
The Gauss-Markov model with stochastic constraints is again given by 
 

2 1
1 0, (0, )n m my A e e Pξ σ −

× ×= + ∼N , (5.3) 

2
0 1 0 0 0 0 0, (0, ), { , } 0l m mz K e e Q C e eξ σ× ×= + =∼N , (5.4) 

 
where n denotes the number of observations, m the number of unknown parameters 

and l denotes the number of stochastic constraints; N  indicates the normal distribution. 
Along with the least-squares solutions, the sum of squared residuals, which is used for the 
hypothesis testing, is given by 

 

ˆ: T T

uy Py cξΩ = − , (5.5) 

1 1
0 0 0

ˆ ˆ: ( ) ( ) ( )T T

u uR z K Q KN K z Kξ ξ− −= − + − , (5.6) 

 

where :=  means “equal by definition” and ûξ  denotes an unconstrained solution, 

which is the solution of Eq. (5.3) only, with the notation of 
 

[ ] [ ]T
N c A P A y= . (5.7) 

 
In order to check whether the stochastic constraints are consistent with the 

observation model, it is necessary to test the null hypothesis of 
 

0 0:oH z K eξ= +  (5.8) 

 
against the alternative hypothesis of 
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0 0:aH z K eξ≠ + . (5.9) 

 
The test statistic for the hypothesis testing can be represented by 
 

/
: ( , )

/( )

R l
T F l n m

n m
= −

Ω −
∼ , (5.10) 

 
which means that, under oH , it follows the F-distribution with degrees of freedom 

of l  and n m− . Let α  be the significance level of the test which represents the 
probability of rejecting the null hypothesis when it is true – also called a type I error. 
Thus, the null hypothesis, oH , is rejected if the test statistic, T , is greater than the 

criterion, ( , )F l n mα − . 

 
In this study the published RSO is used as stochastic constraints during the 

adjustment of dynamic parameters. The RSO is given for all epochs in the arc, though the 
satellite state is estimated for the first epoch. Therefore, it is reasonable to constrain the 
RSO (position only) for all epochs as stochastic information because the consistency of 
the entire arc is not guaranteed by the first epoch only. Since the unknown parameter 
vector, ξ , refers to the initial epoch of the arc, all the stochastic constraints should be 
mapped again back to the initial epoch to be consistent with the observation model. In 
other words, the stochastic constraints of the RSO can be expressed in detail to be 
identical with Eq. (5.4): 
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where ( )

k

o

RSO t−r r  represents the difference between the RSO and the 

approximated coordinates of LEO at time kt , Φ  is the state transition matrix as 

explained in Chapter 3, and the coefficient matrix K  is given by 
 

3 3 ( 3) 3
0 m m

K I × − ×
 =    (5.12) 

 
because it is assumed that only the CHAMP position is constrained in this study. As 

can be seen in Eqs. (5.6) and (5.11), the matrix to be inverted is very large when the 
entire RSO is constrained. Therefore, it would be better to estimate the unknown 
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parameters first for the stochastic-constraints model, and then compute R  by subtracting 
Ω , as given by Eq. (5.5), from the total sum of squares of the residuals: 

 

0 0 0 0 0
ˆ( ) ( )T T T TR y Py z P z c K P zξΩ + = + − + , (5.13) 

( )R R= Ω + − Ω , (5.14) 

 
with 1

0 0:P Q−= . 

 
Table 5.9 shows the results of the hypothesis testing with the stochastic constraints 

of the RSO. For 26 hours of arc, three components of the position vector are constrained 
at each epoch as given by Eq. (5.11). Therefore, the total number of 9330 constraints is 
used in the hypothesis testing. The number of unknowns in the parameter vector, ξ , is 
121 as mentioned in the previous section. Given the degree-of-freedom and the 
significance level, : 5%α = , the criterion for the hypothesis testing will be 

 

.95( , ) (9330,139104) 1.025F l n m Fα − = = . 

 
 

RSOσ  ±5 cm ±4 cm ±3 cm d.o.f 

Ω 144852.293 144852.293 144852.293 139104 

R 6599.331 9070.863 13620.958 9330 

T 0.679 0.934 1.402  

 accept 
oH  accept 

oH  reject 
oH   

Table 5.9 The results of the hypothesis testing. 
 
 
As can be seen in Table 5.9, the dynamic orbit solution obtained in this study is 

consistent with the published RSO, as long as the absolute accuracy of RSO is considered 
to be no better than ±3 cm, which is a quite convincing result. In other words, this result 
indicates that the triple-differenced solution proposed here is of accuracy equivalent to 
RSO, while it offers the benefit of an algorithmic simplicity and efficiency combined 
with affordable processing time and smaller computational overhead. 

 
 

5.4 SLR Residuals 

 
Given that the absolutely true orbit solution is not known, SLR (Satellite Laser 

Ranging) residuals are commonly used as a means of independently validating the GPS-
based orbit solution. SLR is still the most accurate satellite tracking method, claiming a 
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precision of just a few millimeters in RMS error for the normal point (NP) corrected data, 
which are derived from the statistical compression of the measured ranges. As explained 
in Chapter 2, CHAMP carries a Laser Retro-Reflector (LRR) onboard to reflect the laser 
signal back to the ground tracking stations. More than 50 SLR stations are currently 
operating - their network is shown in Figure 5.14. The performance of the SLR stations 
(since the year 2000) can be found in the station performance charts (http://ilrs.gsfc.nasa. 
gov/stations/station_info_plots_since_2000/index.html). 

 
With the improved precision of SLR in the late 1980’s, it was found that the ranging 

data from some satellites were distributed non-symmetrically (http://ilrs.gsfc.nasa.gov/). 
Thus, it was suggested that the full-rate data be reduced to the normal point using a 
statistical approach, and now NP data form the primary ILRS (International Laser 
Ranging Service) station data product. The idea behind this algorithm is to formulate 
range residuals from a trend function and data screening, and then compute the normal 
point by locating the particular observation to a certain bin (fixed interval). For the 
detailed algorithm of the normal point formulation, one can refer to Sinclair (1997). 

 

 
Figure 5.14 International Laser Ranging Service (ILRS) network 

(http://cddis.gsfc.nasa.gov/images/ilrsmap.gif). 
 
 
The header record of the published ILRS NP data provides the wavelength of the 

laser and its time scale. The time of laser firing, the two-way time-of-flight as well as 
surface pressure, temperature and relative humidity are also in the SLR data record. Since 
the wavelength of the laser is very short (about 0.5 µm), only the tropospheric correction 
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needs to be applied to the measured range. The general relativistic correction is also too 
small and, thus, just neglected here. The formulation of the Marini and Murray model is 
generally used for the correction of SLR range measurements. The one-way range 
correction, which is subtracted from the measured range, is given by 

 

( )
/( )( , ) sin

sin 0.01

f A B
R

B A Bf H
E

E

λ

φ

+
∆ = ⋅

+
+

+

 (5.15) 

 
with 
 

R∆ : the range correction in meters; 

( )f λ : the laser frequency parameter; 

( , )f Hφ : the laser site function; 

E : the true elevation angle of the satellite; 

λ : the wavelength in micrometers; 

φ : the geodetic latitude; 

H : the height above the geoid in kilometers. 
 
The detailed expressions of A and B as well as ( )f λ  and ( , )f Hφ  can be found in 

(McCarthy and Petit, 2003). 
 
 
CDDIS (Crustal Dynamics Data Information System) archives and provides the SLR 

data for each satellite and receiver (ftp://cddis.gsfc.nasa.gov/slr/). Unfortunately, since a 
small amount of SLR data for CHAMP is available (5 stations per day on average, and 
less than 5 minutes of arc for each station), only a small fraction of CHAMP orbit can be 
validated by SLR data. For the test data used in this study (February 15, 2003), the SLR 
data from two stations are available; Yarragadee has 38 observations of NP data (3.5 
minutes of arc) and Riga has 16 (1.5 minutes of arc) for the entire 24-hour arc (see Figure 
5.15). The published SLR station coordinates can be obtained at the ITRF (International 
Terrestrial Reference Frame) website (http://itrf.ensg.ign.fr/). Table 5.10 shows the 
published SLR station coordinates used in this study. 
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Figure 5.15 Geometry of two SLR stations and CHAMP orbits (Feb. 15, 2003). 
 
 

Station Position [m] Velocity [m/yr] 

X -2389006.924 -0.0470 

Y 5043329.339 0.0079 Yarragadee 

Z 3078524.890 0.0488 

X 3183895.938 -0.0221 

Y 1421497.041 0.0131 Riga 

Z 5322803.772 -0.0001 

Table 5.10 The position and velocity of two SLR stations (1997.0). 
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Figure 5.16 Comparison of the SLR residuals (Feb. 15, 2003). 

 
 
Figure 5.16 shows the SLR residuals for two stations using three different orbit 

solutions, namely, the published RSO, the solution from JPL (denoted as JPL), and the 
dynamic orbit solution computed in this study (denoted as OSU). As can be seen in 
Figure 5.16 and Table 5.11, the dynamic solution of this study gives better results (up to 
more than two times) than the RSO in terms of the SLR residual RMS errors. 

 
 

Station Orbit Mean [cm] Std. [cm] RMS [cm] 

RSO -6.92 ±1.71 ±7.13 

JPL 0.14 ±1.61 ±1.62 Yarragadee 

OSU 2.48 ±5.36 ±5.91 

RSO -11.97 ±2.62 ±12.25 

JPL -2.83 ±0.58 ±2.89 Riga 

OSU -4.42 ±0.40 ±4.44 

Table 5.11 Statistics of the SLR residuals (Feb. 15, 2003). 
 
 
For the comprehensive understanding of these results, three orbit solutions are 

compared to each other. Since the JPL orbit is provided in the 60-second intervals, the 
orbit comparison is done using this time interval. As can be seen in Table 5.12, the cross-
comparison shows similar results for all three orbit solutions, although OSU is a little 
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closer to JPL than RSO. In particular, the bias of the radial component between JPL and 
OSU is almost negligible. Assuming that two orbit solutions (say A and B) are 
independent, the difference between the two solutions can be represented by (Boomkamp, 
2003) 

 

2 2
AB A BRMS RMS RMS= + , (5.16) 

 
where ,A BRMS RMS  denote the RMS of differences between the (unknown) true 

CHAMP orbit and the orbit solution A and B, respectively. Therefore, the pair-wise value 
RMS can imply the true orbit errors. 

 
The RMS error of the residuals of the triple-differenced ionosphere-free phase 

observations used in this study are at the level of ±1.6 cm, which is quite reasonable 
when compared to JPL’s undifferenced ionosphere-free phase residuals of ±5-6 mm RMS 
error (Kuang, 2006). Based on the analyses performed in this chapter, the orbit accuracy 
estimated in this study is comparable to those from other analysis centers. 

 
 

Solution pair N [cm] T [cm] R [cm] 3D [cm] 

Mean 0.48 -0.25 1.94  

Std. ±3.68 ±7.12 ±3.29 ±8.67 RSO - JPL 

RMS ±3.71 ±7.13 ±3.82 ±8.90 

Mean 0.76 -1.39 1.93  

Std. ±3.80 ±6.10 ±3.33 ±7.92 RSO - OSU 

RMS ±3.87 ±6.25 ±3.85 ±8.30 

Mean -0.28 1.15 0.01  

Std. ±3.19 ±5.61 ±2.93 ±7.09 JPL - OSU 

RMS ±3.21 ±5.72 ±2.93 ±7.19 

Table 5.12 Orbit differences between various solutions (24 hours, 60 s interval). 
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Figure 5.17 Comparison of the SLR residuals (Feb. 16, 2003). 
 
 

Station Orbit Mean [cm] Std. [cm] RMS [cm] 

RSO -12.15 ±0.70 ±12.17 

JPL -9.25 ±0.39 ±9.26 Grasse 

OSU -2.87 ±0.66 ±2.95 

RSO -10.38 ±9.30 ±13.93 

JPL 4.00 ±2.34 ±4.64 Borowiec 

OSU 7.88 ±6.54 ±10.24 

Table 5.13 Statistics of the SLR residuals (Feb. 16, 2003). 
 
 
For further validation of the orbit solutions suggested in this study, another data set 

(16 February 2003, the following day) was processed with the dynamic approach. On this 
day, two SLR stations are available; Grasse (26 observations, 3.2 minutes) and Borowiec 
(22 observations, 2.3 minutes). As seen in Figure 5.17 and Table 5.13, the RMS error of 
the SLR residuals for the OSU solution for Grasse is less than ±3 cm, although 8 cm of 
bias is seen in Borowiec. However, as mentioned before, these results represent only a 
few minutes of coverage of the CHAMP orbit and are derived from only a few stations; 
thus, more comprehensive orbit validation by using SLR data over longer time periods 
(i.e., considering numerous date arcs) is recommended in a future study. 
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According to Boomkamp (2003), the RMS absolute orbit error can be computed 
from the RMS error of the SLR residuals using the following empirical relationships: 

 
( ) (1.52 0.18) ( )RMS orbit RMS slr= ± , (5.17) 

 
which can be roughly understood by the geometric relation that there is a difference 

between the 3D orbit error vector and the SLR line-of-sight; thus, it can be considered as 
the lower limit of the 3D RMS orbit error. 
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CHAPTER 6 

 

SUMMARY AND CONCLUSIONS
 
 
Notably, CHAMP is the first “authentic” LEO, given that it experiences much more 

perturbations because of its low altitude than satellites with higher altitudes. The precise 
orbit of CHAMP is estimated in this study in order to test different POD techniques based 
on GPS triple-differenced observations. The objective of this research was to estimate 
LEO orbits in near real-time to support GPS meteorology. Therefore, an accurate and 
efficient algorithm, as presented here, as well as its easy implementation, are important 
for this purpose. The triple-differenced observations, which are free from the 
cumbersome ambiguity-fixing step, are successfully applied in LEO orbit determination 
with far fewer unknown parameters, as compared to methods based on double-
differenced, single-differenced or undifferenced measurements. 

 
The widely used POD techniques include the kinematic, dynamic and reduced-

dynamic approaches. It should be emphasized that new LEO precise orbit determination 
algorithms have been developed for all three methods and implemented in this study. This 
new approach is simple, fast and efficient, and includes no legacy software, and has been 
demonstrated to provide solutions of the accuracy equivalent to the existing solutions. 
The approach presented here is very easy to maintain and understand; and, if needed, it 
can be easily extended for more functionality. Simplicity, efficiency, easy maintenance, 
and no extra computational overhead are the primary advantages of this implementation, 
not to mention that it runs on a PC platform. The algorithms are ready to support near 
real-time operational LEO orbit determination and assure latency required by operational 
weather forecasting. 

 
The kinematic method has its own benefit of being purely based on measurements, 

and not requiring complex force modeling. However, it is highly dependent on the quality 
and continuity of GPS data. Despite these drawbacks, the kinematic method, after 
backward filtering, satisfies the accuracy requirements pursued in this study. This is 
possible due to the insensitivity of the triple-differenced observations to the data quality, 
and careful modeling of correlation between the data point, as well as, optimal selection 
of ground station geometry. 
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The dynamic orbit, commonly used for POD, and less sensitive to the satellite’s 

instantaneous perturbations, shows the best achievable accuracy. The modeling of the 
atmospheric drag force is crucial in the LEO dynamic orbit determination because it 
accounts for most of the nonconservative forces. The dynamic orbit has a predominantly 
large orbit error in the along-track component, because the most significant 
nonconservative force, which is, again, the drag force, is acting on the satellite in the 
direction opposite to the satellite motion. The proper modeling of the atmospheric drag, 
including the optimal arc length for the drag parameter estimation as addressed in this 
study, provides an orbit solution of about ±8 cm in 3D RMS error-of-fit with respect to 
the published RSO. The orbit errors, as a function of the degree/order of the geopotential 
model used, were also analyzed here. As expected, the higher the degree of the 
geopotential model, the better the results obtained; however, more sensitivity was 
observed for degree/order up to 70. The future studies should consider expanding the 
degree and order up to 200 or more, using for instance the newly published EIGEN-
CG01C model. The different gravity models were not tested thoroughly in this study 
because the EIGEN2 gravity model is generated using CHAMP data only, and is thus 
assumed to be the most suitable for CHAMP dynamic orbit determination. 

 
The reduced-dynamic technique with the wave algorithm shows slightly better 

results in its variance, but with a moderately larger bias in the along-track direction 
(about ±1 cm), resulting in similar statistics with the dynamic solution in 3D RMS errors. 
This is so because the dynamic approach, as used in this study, already includes the 
empirical force modeling for once- and twice-per-revolution parameters; thus, the 
unmodeled forces are assumed to be absorbed significantly by these parameters. Also, the 
wave filter is applied when the dynamic orbit solution has already converged. The 
discontinuities of the orbit update at each cycle need to be interpolated for smoother 
updates. The results indicate that the wave filter solution can be further improved as long 
as the biases are properly taken care of. 

 
The internal consistency check shows that the redundant part before the main arc 

does not play an important role in the final orbit solution. This means that the accuracy 
orbit solution from 26 hours of arc is comparable to that from the 30-hour arc. Therefore, 
from the computational efficiency point of view, it is highly beneficial to estimate the 
initial state vector at the beginning of the target arc. Also, since there are only 121 
unknowns (as mentioned in the previous chapter), the reduction of the observations takes 
the majority of the processing time, which is almost linearly increasing with the length of 
the processing arc. 

 
The estimated orbit solution with once- and twice-per-revolution empirical forces 

significantly reduced the orbit errors at both frequencies. However, the actual correlation 
between the along-track and the radial components for the twice-per-revolution 
parameters was not clearly verified; this should be studied more rigorously in the future 
studies. The time interval for the estimation of the atmospheric drag parameters should 
not exceed 2 hours in order to obtain a precise orbit solution, because of the rapid change 
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in the atmospheric density along the trajectory. The CHAMP velocity results prove to fit 
the reference RSO solution with RMS errors better than ±0.073 mm/s in each component. 

 
An efficient ground station network optimization algorithm was developed in this 

study, based on the network optimization theory. Although the ground station network 
should be chosen according to data availability and the quality of the GPS measurements, 
it should also be supported by the theoretical foundation. With this algorithm, the criteria 
to configure the ground station network are suggested; the algorithm is also applicable to 
the augmentation of the positioning satellites, as discussed in Chapter 4. 

 
The computed orbits are validated independently using the SLR residuals. The SLR 

residuals are considered as an absolute orbit error in the absence of the true orbit. After 
applying the tropospheric correction for the laser signals, the measurements are compared 
with the geometric range between the estimated/interpolated CHAMP orbit and the SLR 
station. The results prove that the dynamic orbit computed in this study is comparable to 
the orbit solutions from other analysis centers, such as GFZ and JPL, which process 
CHAMP data routinely. This is also confirmed by the hypothesis testing to establish the 
consistency of the orbit solutions. 

 
The precise orbit determination techniques presented and used in this study are 

believed to be applicable to other LEOs, especially the GRACE satellites which are 
orbiting with almost the same altitude and inclination. Also, the upcoming gravity 
mission satellite, GOCE (Gravity field and steady-state Ocean Circulation Explorer) 
which has a mean altitude of 250 km, can also use the techniques implemented here with 
further refined modeling of the atmospheric drag, higher degree/order geopotential 
models, and the inclusion of the Earth’s radiation. 

 
Currently, most LEO orbits are estimated separately by fixing GPS orbits and 

ground station coordinates; this can result in a bias in the final LEO orbit solution. As 
pointed out by Zhu et al. (2004), however, it would be desirable to estimate GPS and 
LEO orbits in one simultaneous least-squares solution (integrated or one-step adjustment), 
together with the coordinates of the ground stations, and, if needed, other Earth system 
parameters, such as geocenter variation and low-degree gravity field parameters. This is 
so, because the LEO orbit solution can be strengthened by the strong algebraic 
correlations between its ephemerides throughout the arc and the GPS constellation as 
well as the ground reference frame (ibid.). Therefore, the POD approaches in this study 
need to be reformulated and executed to include better constraints for multi-satellite 
missions, such as COSMIC, in the future. 

 
Another issue to be considered is the fact that the accelerometer and attitude 

information from the CHAMP satellite is not used in this study. Theoretically, the 
accelerometer data should be suitable to replace all the nonconservative forces. The 
accelerometer data, however, are published at 10-second intervals by smoothing the 
sensed acceleration during that interval; but, in reality, there could be many more 
perturbations during the 10-second interval. Therefore, this information cannot be used to 
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replace completely the nonconservative force modeling. In spite of this drawback, use of 
the accelerometer data should be investigated in the future since these data will be 
improved further and can serve as useful information in orbit determination, indeed. 
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APPENDIX A 

 

THE PARTIAL DERIVATIVES 

OF THE GEOPOTENTIAL
 
 
Let V  be the gravitational potential (see, Heiskanen and Moritz (1967), Eq. (2-39)) 

that can be represented as a function of ( , , )r θ λ : 

( )
max

0 0

( , , ) cos sin (cos )
nn n

nm nm nm

n m

kM R
V r C m S m P

r r
θ λ λ λ θ

= =

 
= + 

 
∑∑ , (A.1) 

 
where 
 

V : the gravitational potential; 

kM : the product of the gravitational constant and the mass of the Earth; 

R : the mean radius of the Earth; 

r : the radial distance from the center of the Earth; 

,θ λ : the geocentric co-latitude and longitude, respectively; 

nmP : the fully normalized associated Legendre function; 

mn, : the degree and order of 
nmP , respectively; 

maxn : the maximum degree; 

nmnm SC , : the spherical harmonic coefficients for each degree n and order m. 

 
 
The variational partials of the gravitational forces with respect to the position vector 
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can be expressed by the chain rule (McCarthy et al., 1991): 
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The partial derivatives of the potential with respect to the spherical coordinates, 

( , , )r θ λ , can easily be obtained as 
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The computation of λmcos  and λmsin  can be accomplished recursively by the 

following relationships: 
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The components of Eqs. (A.4)-(A.7) and the transformation matrix between the 

spherical coordinates and Cartesian coordinates can be represented based on the 
relationship between the two coordinate systems, specifically 

 

222 zyxr ++= , (A.18) 

1cos
z

r
θ −= , (A.19) 

x

y1tan−=λ . (A.20) 

 
From (A.18)-(A.20) the transformation matrix from the spherical coordinates to the 

Cartesian coordinates will be given by 
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The second derivatives of the ( , , )r θ λ  with respect to ( , , )x y z  can be obtained by 
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APPENDIX B 

 

THE FULLY NORMALIZED ASSOCIATED 

LEGENDRE FUNCTIONS
 
 
The fully normalized associated Legendre functions are convenient to handle, thus, 

widely used in practice. The main advantage of the fully normalized spherical harmonics 
is that the average square of any fully normalized harmonic is a unity, where the average 
is taken over the sphere (Heiskanen and Moritz, 1967). The recursive method of 
computing these functions has been developed and tested by many researchers, such as 
Colombo (1981), Tscherning et al. (1983) and Jekeli (1996). These functions are 
summarized as follows: 
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where 
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where 
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The 2nd partial derivative of the associated Legendre function can be computed using 

the following equation (see, Heiskanen and Moritz (1967), Eq. (1-49)): 

2
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APPENDIX C 

 

REFERENCE FRAME TRANSFORMATIONS 

USED IN ORBIT ESTIMATION
 
 
Due to the fact that no clear distinction can be made between precession and 

nutation, the International Earth Rotation and Reference System Service (IERS) adopted 
new methods for the transformation between the celestial and terrestrial reference 
systems based on the kinematical definition of the Celestial Reference System (CRS) 
(Capitaine, 2002; McCarthy and Petit, 2003). 

 
Let 0P  and 0σσσσ     be the reference pole and the reference origin of the right ascension 

at some fundamental epoch, 0t , respectively. The position of the instantaneous pole, P, 

on the celestial sphere at the epoch of date, t, can be described by two celestial 
coordinates, declination (d) and right ascension (E) (see Figure C.1). The origin for the 
right ascension, σσσσ , at the epoch of date, t , is defined kinematically under the condition 
that there is no rotation rate in the CRS about the pole due to precession and nutation, 
which is the concept of the non-rotating origin (NRO). This origin for right ascension on 
the instantaneous equator is called the Celestial Ephemeris Origin (CEO). This CEO-
based transformation is consistent with IAU 2000A precession-nutation model. 

 
The new method of coordinate transformation between the terrestrial reference 

system (TRS) and CRS at the epoch, t , of the observation can be given by 
 
[ ] ( ) ( ) ( ) [ ]CRS Q t R t W t TRS= ⋅ ⋅ , (C.1) 

 
where 
 

( )Q t : the matrix arising from the motion of the celestial pole in the celestial 

system; 

( )R t : the matrix arising from the rotation of the Earth around the axis of the 
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pole; 

( )W t : the matrix arising from the polar motion. 
 
 

dE

P

P0

EΣΣΣΣ0 N

dσσσσ
s+E true equator at t reference equator

 

Figure C.1 Coordinates of instantaneous pole in the celestial reference system. 
 
 
The frame, as realized from the TRS, by applying the transformations ( )W t  and 

then ( )R t  is called “the intermediate reference frame of epoch t.” 
 
The transformation matrix, ( )Q t , from the system of the instantaneous pole and 

origin to the CRS, can be represented as 
 

3 2 3 3( ) ( ) ( ) ( ) ( )Q t R E R d R E R s= − ⋅ − ⋅ ⋅ , (C.2) 

 
where 1R , 2R  and 3R  denote the rotation about the x-axis, y-axis and z-axis, 

respectively, by the angle given as the parameter. Eq. (C.2) can be easily understood by 
considering the transformation of the origin point between the CRS origin, 0ΣΣΣΣ , and σσσσ . 

The additional parameter, s, in Eq. (C.2), is given by 
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0

0

( ) ( ) ( ) ( )
( ) ( )

1 ( )

t

t

X t Y t Y t X t
s t s t dt

Z t

−
= −

+

⌠

⌡

ɺ ɺ
, (C.3) 

 
where the arbitrary constant 0( )s t  is chosen to ensure continuity with the classical 

procedure at the date of change (1 January 2003) (McCarthy and Petit, 2003), that is, 
 

0 0( ) 94s s t asµ= = + . (C.4) 

 
Since E and d are the coordinates of the instantaneous pole, P , in the CRS, the 

coordinates used in Eq. (C.3) can be defined by 
 

sin cos

sin sin

cos

X d E

Y d E

Z d

   
   

=   
   
   

. (C.5) 

 
Substituting Eq. (C.5) into Eq. (C.2) yields the transformation matrix, Q, in a more 

explicit form as 
 

( )

2

2
3

2 2

1

( ) 1 ( )

1

aX aXY X

Q t aXY aY Y R s

X Y a X Y

 − −
 

= − − ⋅ 
 
 − − − + 

, (C.6) 

 
where ( )1/ 1 cosa d= + . The quantities used in Eq. (C.6) can be computed by the 

routine which is available at ftp://maia.usno.navy.mil/conv2003/chapter5/XYS2000A.f. 
 
The transformation matrix for the polar motion, ( )W t , can be expressed in terms of 

three fundamental components as follows: 
 

3 2 1( ) ( ) ( ) ( )p pW t R s R x R y′= − ⋅ ⋅ , (C.7) 

 
where 

px  and 
py  are the “polar coordinates” of the Celestial Intermediate Pole 

(CIP) in the TRS, and s′  is a quantity which provides the position of the Terrestrial 
Ephemeris Origin (TEO) on the equator of the CIP. The TEO is the non-rotating origin of 
the longitude, as is the case with the CEO. It should be noted that both the CEO and TEO 
represent an origin point associated with an instantaneous coordinate system which 
moves with respect to the reference system. The quantity, s′ , is necessary to provide an 
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exact realization of the “instantaneous prime meridian,” which is given by 
 

( 47 )s as tµ′ = − . (C.8) 

 
The parameter, t , in Eq. (C.8) is defined by 
 
 = (TT 2000 January 1d 12h TT) in days / 36525t − , (C.9) 

 
where TT represents the Terrestrial Time. 
 
The transformation matrix for the Earth rotation, ( )R t , is represented by 
 

3( ) ( )R t R θ= − , (C.10) 

 
where θ  denotes the Earth rotation angle between the CEO and the TEO at time t  

on the equator of the CIP, which provides a rigorous definition of the sidereal rotation of 
the Earth. The Earth rotation angle, θ , is given by 

 
( ) 2 (0.7790572732640 1.00273781191135448 )u uT Tθ π= + , (C.11) 

 
where (Julian UT1 date 2451545.0)uT = − . 

 
For further explanation on this transformation method, one can refer to McCarthy 

and Petit (2003) and Jekeli (2005). 
 
 


