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ABSTRACT 
 
 

    A new generation of gradiometer technology is currently under development 
based on atom interferometry and applicable to ground and airborne mapping of 
geologic or anthropogenic features with signal strength as low as a few Eötvös, 
entirely embedded in noise and geological background.  With high sensitivities of 
future airborne gradiometers, it may be possible to detect such anomalous sources 
with careful data processing.  Both the detection and the estimation of parameters of 
the feature can be solved as an inverse problem in potential theory.  However, one 
can also use methods developed in communications theory, provided one has some a 
priori, possible uncertain knowledge of the feature in question.  We constructed a 
matched filter as well as a sophisticated estimation technique to detect and 
characterize particular small mass anomalies within general geologic background 
noise using individual gradient and six gradient combination measurements at low 
aircraft/helicopter altitudes of ranges of 10-30m above terrain clearance.  Since both 
detection and estimation portions requires the inversion of large sizes of covariance 
matrices, we applied an orthogonal transformation to the matrices, which become 
diagonal and can then be easily inverted.  In addition, the performance of the 
detection and estimation procedures is quantified by standard test statistics.  With 
these tests, probabilities of false alarm and detection may be assigned to the detection 
results.  We present numerical results in different noise circumstances, for instance, a 
simulation of airborne gradiometry over moderate terrain with the inclusion of 

Hz1E  instrumental white noise.  The proposed approaches are explored and 
evaluated for their effectiveness in association with location, orientation, size, and 
depth of a mass anomaly, and in the use of power spectral density (psd) models 
versus empirical psd’s obtained from the noise backgrounds.  The numerical results 
show that a small anomaly, e.g., 2m x 2m x 10m, is detectable at shallow depths by 
an appropriate matched filter using, not only the empirical psd’s and the gradient 
component Γ33, but also the psd models and the six-gradient combination.  However, 
the analysis shows that a strong noise level, low spatial resolution, and unknown 
depth limit the anomaly detectability.  The parameter estimation performed through 
an iterative least-squares process was shown to be successful in estimating locations, 
orientations, and depth of the anomaly.  Hypothesis testing by means of the F-test was 
used to quantify the performance of the estimation process. 
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CHAPTER 1 
 
 

INTRODUCTION TO SMALL ANOMALY MASS DETECTION 
 

 
1.1 Introduction 
    In the early 1980’s, the US Air Force, NGA (then Defense Mapping Agency), and 
Bell Aerospace Corp. developed a new gravity gradiometer system, called the Gravity 
Gradiometer Survey System (GGSS) that, in conjunction with the Global Positioning 
System (GPS), was designed to survey Earth’s gravity field on a regional basis (Jekeli, 
1987 and 1993).  Although the GGSS was successfully tested in a limited survey of a 
large area, it was unfortunately terminated due to lack of funds.  The existence of the 
GGSS has drawn geophysicists’ attention towards the use of airborne gravity gradient 
data not only for mapping the earth’s gravity field, but also for mineral exploration and 
other small anomalous mass detection.   
    According to Jekeli (1993), the practical accuracy of the GGSS data is on the order 
of 10E (1E = 1Eötvös=10-9  sec-2) per ten-second average (corresponding to noise 
performance of 30E/ Hz ).  The data were obtained on a grid of orthogonal tracks 
spaced 5 km apart, at an altitude of about 700 m in the Texas/Oklahoma area.  In 1999, 
BHP’s Project Falcon and Lockheed-Martin introduced the world’s first airborne gravity 
gradiometer (AGG) system for mineral exploration with noise performance as small as 
7E/ Hz  (van Leeuwen, 1999; Lee, 2001).  The AGG system was capable of sensing 
small variations in the Earth’s gravity at the level required in mineral exploration with 
100m resolution at a typical altitude of 100m above ground.  Lui et al. (2001) 
demonstrated the detectability of Kimberlite pipes as small as 100m in diameter.   
    Despite the AGG’s satisfactory outcome, detecting finer and smaller underground 
structures whose gradient signals have much shorter wavelengths, normally located close 
to the ground surface, is difficult.  Romaides et al. (2001), for instance, conducted a 
ground gradiometric survey in the static mode over an underground Missile Alert Facility 
(MAF-EO), located at Vandenberg Air Force Base, California, by using a vertical spin-
axis Lockheed Martin gradiometer.  The gravity gradient measurements indicated a peak 
gradient signal of approximately 30E over the buried facility, whose center lies at 12m 
depth below the ground surface.  Kastella (2003) also studied the possibilities of using a 
precise airborne gradiometer to detect small objects.  Nonetheless, his assessment of 
flight levels is still unclear.  Although, a precise gradiometer system is essential for 
detecting small objects, to date, no current technology has succeeded in yielding a 
specification of sensing 1E gravity gradient or less for resolutions down to 20-40m. 
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     Meanwhile, the Stanford research group has developed the cold atom 
interferometry gradiometer (Snadden et al., 1998; Peters et al., 2001; McGuirk et al., 
2002).  The overall sensitivity of noise performance is 4E/ Hz  in laboratory tests.  Also, 
the research team at the University of Western Australia (UWA) has developed the OQR1 
gravity gradiometer, which has achieved its target noise performance of close to 1E/ Hz  
in laboratory tests (van Kann, 1992; Matthews, 2002).  With hope towards the success of 
those instrumental developments in the near future, it is expected that the new 
generations of precise gradiometers will be capable of detecting 2m-width x 2m-height x 
1000m-length through 2m-width x 2m-height x 10m-length mass anomalies at depths of 
10-50m, potentially at a very close range of 30-100m. 
    In general, gravity gradiometry is the measurement of the spatial gradients of the 
gravity vector.  It is a method used to extract physical information of the Earth’s upper 
crust for determination of the gravity field and also to explore mineral resources and oil 
deposits.  Unlike gravimetry on a moving platform, airborne gradiometry is not 
dependent on linear accelerations of the vehicle and only sensitive to angular 
accelerations, which can be measured by gyroscopes.  The system may consist of a 
number of gradient sensors permitting the determination of the five independent 
components of the gravity gradient tensor.  The gradiometer is capable of sensing short-
wavelengths of the Earth’s gravity field, generated by the mass density of the upper crust 
and topography.  It may be able to detect and estimate small anomalous masses near the 
Earth’s surface.  Another attraction is that each gradient component itself intrinsically 
provides a different aspect of the geometric shape of the anomaly.  This is because the 
gradient tensors are related to spatial directions and thereby are influenced by shapes of 
the mass sources.  However, it is difficult to detect high-resolution density anomalies due 
to the complexity of the  
instrument, the angular acceleration environment of the vehicle, and the sensitivity of the 
instrument to the very near field.  Moreover, the varying terrain itself may obscure the 
comparatively small signals produced by sub-surface mass anomalies.  Even today, with 
high instrumental sensitivities, processing the data with additive noise is a major 
challenge among geodesists and geophysicists because it fundamentally is a geophysical 
inverse problem which has inherent non-unique solutions.  Robust signal processing 
methods need to be developed to extract meaningful signals from the geographical 
background variation.  
    According to Jordan (1978), over 99% of the gravity gradient signals are due to the 
visible topography as well as the underlying mass anomalies within 1 km below the 
geoid.  This implies that the signals correspond to a contribution of terrain mass.  One 
basic idea of detecting mass anomalies is that, by subtracting known or theoretical 
gradients from the observed gradients, the differences essentially yield the signature of 
anomalies created by unknown density contrasts.  The theoretical gradients can be 
computed using forward modeling approaches (e.g. flat-top rectangular prism and/or 
slope-top triangular prism) applied to Digital Elevation Models (DEM) with the 
assumption of a constant density.  Such finite element models significantly depend on the 
                                                 
1 The Orthogonal Quadrupole Responder (OQR) is designed to measure the off-diagonal components of the 
gravity tensor using two quadrupole responders that are mounted orthogonally to each other. 
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type of geometrical representation and grid spacing, which can corrupt the information to 
be extracted. 
    This research will focus on one class of methods of signal detection and parameter 
estimation to deal with the inverse problem to determine horizontal location, density 
contrasts, and depths of small mass anomalies.  Because the gravity gradients have a 
local behavior, the signals themselves can be severely corrupted by the effect of nearby 
topography.  Filtering techniques for the detection problem will be developed on the 
basis of the matched filter.  The random effects model including stochastic linear 
hypotheses (Schaffrin, 1987, 1989, and 2001; Schaffrin and Bock, 1994) will be adapted 
to the problem of parameter estimation.  Due to the fact that real data are not available, 
the appropriate surveys of airborne gradiometry will be simulated based on the 
combination of the 1987 GGSS data set and finite elements of flat-top rectangular prisms 
from 1″x1″ DEM (Smith et al., 2001), provided by the National Geodetic Survey (NGS).   
 
1.2 Review of previous and current works 
    For over half of a century, several sophisticated techniques for geological 
interpretation have been developed for magnetic and gravity data, but only a few have 
been applied to gravity gradient data.  After Lancaster-Jones (1932), Nettleton (1976), 
Lorenzini et al. (1988), Paik and Moody (1993), van Kann et al. (1993), and the 
development of the GGSS (Jekeli, 1987 and 1993), the usage of gravity gradient has 
become increasingly interesting due to its possibilities for such applications ranging from 
geophysical explorations to space gravity mapping.  Klingele et al. (1991) showed that 
the use of vertical gravity gradient is capable of extracting detailed information of the 
Earth’s structures superior to that of gravity data.  The investigation was done by means 
of the Euler deconvolution method (Thomson, 1982).  Marson and Klingele (1993) 
further investigated the advantage of using the gradient signal to delineate density 
discontinuities in three dimensions.   
    Thurston and Smith (1997) and Smith et al. (1998) introduced the improved Source 
Parameter ImagingTM (iSPITM) method for depth determination, which is independent of 
geometric shapes assigned to the causative bodies.  Aside from the methods of depth 
estimation, vertical gradient data were utilized to model the Earth’s crustal density 
distribution (Forsberg, 1984).  However, because, in theory, an infinity of mass 
distributions solve such an inverse problem, such modeling is not robust without 
constraints.  Vasco (1989) proposed a sophisticated way to deal with the ill-posed 
condition by introducing inequality constraints in linear and nonlinear inversion 
problems over the space of finite rectangular elements.  Then, he compared the capability 
of airborne gradiometer data with gravity data, which were gathered from the airborne 
survey, conducted by the GGSS over Texas/Oklahoma area.  The result showed that the 
gradiometer data improved the model parameter resolution and in turn yielded a 
maximum density error of 0.1 g/cm3 above 20km depth.   
    Vasco and Taylor (1991) extensively tested the nonlinear problem using the same 
set of gradient data to determine the basement topography with a spatial resolution of 
about 1.9 km.  The solution resulted in mapping the basement topography as deep as 
12km.  Talwani (2003) further developed a joint inverse method based on the nonlinear 
problem under a constraining condition (e.g., either fixed tops or bases of rectangular 
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prisms).  The method used gravity data and the full gradient tensor on a 100m grid in a 
small area of size 3km x 3km.  The author showed a significant improvement in obtaining 
positions of the top and the base of salt domes at 1km and 3km depths.  The misclosures 
of modeled and observed gradient and gravity values varied in the range of 2-5E and 0.5-
1mgal, respectively.  A crucial suggestion was made by Tawani (ibid.) that with 5E 
sensitivity of a moving-base gradiometer, a target at a depth of about 600m was 
detectable if its wavelength is as small as one kilometer and the flight height is about 
100m.   
    Another work by Zhdanov et al. (2004) supports Talwani’s suggestion.  They 
developed a new method for interpreting the full gradient tensor based on three-
dimensional regularized focusing inversion.  The gradient data used in this research came 
from FalconTM AGG survey over the Cannington Ag-Pb-Zn orebody (size of about 
400m2 at depths varying from 50m to 500m below the surface) in Queensland, Australia.  
The processed data corresponded to an effective sensor height of 120 m above ground 
level with sampling approximately 20 m along survey lines and with 100 m tracking 
spacing.  The authors showed the potential of the proposed method to reconstruct a 
sharper image of the geological target as deep as 500m.   
    One of major concerns in airborne gradiometry is the effect of topographic mass, 
becoming more significant at decreasing altitude.  A correction to measure gradients must 
be applied in order to reduce the effect as much as possible.  Nonetheless, there are two 
questions that arise in the numerical process of the terrain correction.  First, how can the 
complexity of the terrain be modeled with sufficient accuracy?  Second, how much 
knowledge of the terrain mass densities is required?  These concerns have not yet been 
fully investigated and are outside the scope of this study.   
    There are studies by different authors (e.g., Chinnery, 1961; Dorman and Lewis, 
1974; Hammer, 1976), which are related to the methods of terrain correction with a 
constant density.  However, these studies did not consider the terrain effects in areas of 
complex topography.  Further analyses were performed in a very rough terrain along the 
Rocky Mountain Chain by Tziavos et al. (1988), who developed an algorithm using the 
Fast Fourier Transform (FFT), the definition of which can be found in Brigham (1988).  
Then, Tziavos et al. (1988) compared FFT gradient computation with that generated by 
finite rectangular prisms.  It was shown that the terrain effect significantly depended on 
the ratio between flight elevation and grid spacing, the type of terrain representation, the 
attenuation of the gradient field at flight level, and the order of expansion of the terrain 
correction integral based on Parker’ s formula (Parker, 1972 and 1994).  The authors 
concluded that obtaining accuracy of 0.5E for a flight height of 0.6 km above ground 
required a grid spacing of about 0.25km.  However, most of these analyses did not 
consider smaller scales of grid spacing (e.g. less than 100-meter levels).   
    Using a one-arcsecond DEM, Jekeli et al. (2003) computed the full tensor of 
gravitational gradients from slope-topped triangular and flat-topped rectangular prisms at 
low altitudes of 10m and 100m.  The numerical differences in magnitude increase up to 
9E and 37E at 100-m height and 10-m height, respectively.  These studies agreed with 
previous analyses, given that the gradients strongly depend on the height of computation.  
Further work was done by Jekeli and Zhu (2006), who showed that the resulting 
gradients from triangular prism models depends on the diagonalization of the rectangular 
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grid.  The authors also compared different modeling methods such as triangular prism 
formulas, rectangular prism/numerical integration formulas, Forsberg FFT, and Parker 
FFT.  However, more studies are still needed to better understand the consequences of 
terrain representation effects towards data processing.   
    One may also consider the downward continuation of gradient data using, for 
example, least-square collocation (Moritz ,1980) or Poisson’s integral (Heiskanen and 
Moritz,1979).  A sophisticated technique of downward continuation ideally should 
minimize noise levels inherited from various data sources in some optimal fashion.  
White and Goldstein (1984) developed a continuation technique combining minimum-
variance estimation and computational efficiency by performing some data processing in 
a suboptimal manner.  Jekeli (1985) further studied White and Goldstein’s method by 
comparing with an optimal procedure such as least squares collocation.  He showed the 
additional advantage of yielding error estimates by a suboptimal technique exemplified 
by frequency domain collocation.  Other downward continuation techniques can be found 
in Jekeli (1986), Gleason (1988), and Wang (1988), who however applied them to 
estimate gravity quantities from gradient data.  A number of numerical investigations are 
still needed to broaden the scope of techniques applicable to precise airborne 
gradiometry. 
    Another aspect to consider in the detection and estimation problem is measurement 
noise.  Filtering techniques should minimize the noise and in turn combine the available 
gradient components in an optimal fashion because the gradient signals are 
comparatively small and could be masked by the effect of topography and the longer 
wavelength signals.  One of the robust filtering techniques, widely used in geophysical 
signal processing, is the Wiener filter (Wiener, 1949; Gunn, 1975 and 1978), which is 
based on the principle of minimum-mean-square error.  Pawlowski and Hansen (1990) 
introduced the technique to gravity anomaly separation and showed that the superiority of 
Wiener filter’s scheme over conventional band-pass filters significantly depended on 
utilizing accurate geologic information.  However, the filter did not perform well in the 
presence of increasing spectral overlap between the gravity signal and the spectral 
contributions of other geologic sources.  One possible explanation is the inability of the 
filter to reconstruct meaningful frequencies where the signal-to-noise ratio is low.  The 
matched filter is a robust technique that should be considered because it corresponds to a 
filter whose chosen filter coefficients yield maximum signal-to-noise ratio in the output 
(Turin ,1960 and 1976; Poor,1983; Chen and Kassam. 1985; Cadzow, 1987).  This filter 
is relatively new in the field of gravimetric geodesy and will be the focus in this research.  
 
1.3 A preliminary effort to apply detection and estimation theory for small anomaly 
detection 
    Although a new generation of precise gradiometers is destined to in the civilian 
community in the near future, the detection of small anomalous masses still has  
challenges with respect to signal processing capability.  Some crucial factors are 
emphasized as follows: 

• The six components of the gravitational gradient tensor generated by the 
anomalies are small compared to the geological background, 
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• All wavelength filtering is limited in efficiency if there exist overlapping 
spectra between the signals and geological background, 

• There is rapid signal attenuation with increasing flight altitudes, 
• Aliasing effects are due to data spacing related to flight speed, 
• It is difficult to identify the anomalies if measurements are corrupted by noise, 
• Detection by visualization may be difficult under some circumstances, 
• The spatial location of the detected anomaly may not be as close as possible to 

its true location.  An optimal estimator is needed to refine the spatial location. 
 

    One of the preliminary investigations by Dumrongchai and Jekeli (2004a,b) applied 
the concept of the matched-filter technique to better understand the above factors that 
influence the gravitational gradients.  The matched filter (MF) was first introduced by 
North (1943) in the field of communication systems.  Since then, it has been widely used 
in various applications of electrical engineering, especially, in radar detection and pattern  
-recognition.  The development of the MF has other applications in signal detection.  For 
example, Poor (1983) and Geraniotis and Poor (1987) proposed robust matched filters for 
optical receivers.  Although the MF has a long history of development, the filter has 
rarely appeared in the field of physical geodesy.  One comprehensive work was done by 
White et al. (1983), who introduced MF for the detection of characteristic geoid 
undulation signatures of seamounts in SEASAT radar altimeter data.  Nonetheless, 
applications of the matched filter related to mass anomaly detection remains untested in 
geodesy and geophysics.   
    Dumrongchai and Jekeli (2004a) developed the matched filter for the gravitational 
gradients and preliminarily tested the filters with simulated components of the gradient 
tensor using DEM (Jekeli and Zhu (2004), personal communication).  Figure 1.1 shows 
the results of matched filtering for the case of a non-random effect ijs  and white 
Gaussian noise.  Based on the filtering results, the authors made the following 
conclusions.  Firstly, the ability of matched filters to locate the anomaly is significantly 
impeded not only by noise but also by spatial sampling.  Secondly, since matched filters 
require knowledge of the signal gradients, they perform poorly when geological noise 
spectra overlap the spectrum of the anomaly.  Finally, the geological background should 
be removed beforehand to enhance the capabilities of matched filtering.   
    The problem of detecting the gravity gradients due to shallow small mass 
anomalies in noise can be envisaged as extracting a very small signature from that total 
gravity gradient field of the Earth; see Figure 1.2.  The gravitational gradients due to 
small mass anomalies are relatively small and span small ranges of very short 
wavelengths lying between 10m and a few kilometers, compared with much longer 
wavelengths of the total gradient field of the Earth.   
    The total gradient field measured by a gradiometer can be differenced with a 
gradient field model containing long, medium, and some short wavelengths, so that any 
residual in the measurement will correspond to unmodelled anomalies, potentially the 
anomalies in question.  Nonetheless, the wanted signals due to the anomalies can be 
distorted by measurement noise.  The outcome of such combinations can be described as 
the observation space.   
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    We look for a particular signal due to one or more target anomaly and attempt to 
decide if the target is in observation space.  Hypotheses testing based on a decision rule is 
applied to the problem where 0H  corresponds to no target and iH  (with K,3,2,1i = ) 
corresponds to the presence of the i th target; i  equals one if there is only one target of 
interest.  The essential idea is to model the gradient signal due to the target anomaly if we 
have complete knowledge of its signal waveform, i.e., we are able to construct its 
corresponding matched filter.  To decide which hypothesis is true, the designed matched 
filter is applied to aid the decision.  For several anomalies in question, a bank of matched 
filters should be used.   In practice, it is common that several interfering sources, e.g., 
masses of local topography and near surface density anomalies contribute to the filter 
output.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1: (a) One-arc second DEM and detection of a small anomaly (10m x 10m x 
2000m) in Montana/Wyoming area, (b) six gravitational gradient components of the 
topography and the small anomaly generated using Fast Fourier Transform approach, and 
(c) matched filter outputs of the gradients--circle indicates the successful location of the 
small anomaly (no successful location for Γ22, Γ13, and Γ23.). 
 

Anomaly: 10m x 10m x 2000m

 

 

(a) 

(c) 

(b) 
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Figure 1.2: Signal detection and parameter estimation for small anomaly detection. 
 
 
 
Moreover, we may not have much knowledge about the signal’s waveform.  These 
factors significantly degrade the performance of matched filtering.  Therefore, the idea of 
parameter estimation becomes important to aid in the decision of choosing the most 
probable candidate of the target anomaly. 
 
1.4 The proposed research 
    Gravity gradiometry with its achievable measurement sensitivities provides an 
enormous contribution to the problem of detecting small shallow anomalous mass.  
Overall, the study herein will directly aims at (1) the simulation of gradiometric airborne 
surveys based on the combination of the 1987 GGSS data set and finite elements of flat-
top rectangular prisms, (2) the development of multiple sets of the gradient matched 
filters for the optimal hybrid matched filter of six gradient components, (3) signal 
detection and parameter estimation methodology, and (4) comparative assessments of 
capabilities of the combination techniques and data requirements to achieve the ultimate 
goal of small mass anomaly detection and estimation.  
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    Since a precise gradiometer that measures all components of the gravitational 
gradient tensor is under development, with overall noise performance of about 1 HzE , 
actual gradiometric data with such high precision are not yet available.  For this work, six 
components of the gravitational gradient tensor will be simulated by using the 1987 
GGSS data set and DEM.   
    The matched filter is developed for the six gravitational gradient components 
individually, as well as for combinations of gradients.  Each component of the 
gravitational gradient tensor describes the local structure of the gradient field and 
represents particular characteristics at the same location where measurements are 
obtained by the gradiometer.  To enhance the capabilities of matched filtering, the idea of 
a vector random process is considered.  The hybrid-matched filter optimally combines six 
gradient components in terms of the noise covariances between different types of 
components.  Furthermore, multiple sets of matched filters are also developed.  The idead 
of it is to select the filter for each gradient component, which gives the highest signal-to-
noise–ratio output exceeding a given threshold.   
    Throughout the processes stated above, in order for the matched filter to be 
optimal, complete knowledge (except location) is required about the mass anomaly to be 
detected. In practice, we vaguely know about the anomaly.  However, theoretically at 
least, the structures of the gravitational gradients follow the Newtonian law of 
gravitational potential and can be described as deterministic functions associated with 
unknown parameters such as density contrast, location, orientation, and so on.  These 
attributes are closely related to the problem of parameter estimation which is expanded to 
include signal detection.  A detection and parameter estimation approach is proposed and 
all six components of the gradient tensor will be considered, as shown in Figure 1.3.  The 
performance of detection and estimation will be assessed through the test statistic in view 
of the probability of miss (POM) and the probability of false alarm (POF).  The test 
statistic will measure the quality of the proposed system.  In other words, it will indicate 
the capabilities of that system to discriminate the gradient signals due to an anomalous 
mass from the geological noise background.   
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
Figure 1.3: Detection and parameter estimation. 
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    In conclusion, the ultimate goal of this study is to develop and analyze signal 
detection and parameter estimation techniques using all components of the gravitational 
gradient data (from a simulated survey of airborne gradiometry) to determine the 
horizontal location, depth, orientation, and also density contrast of small mass anomalies. 
 Each gradient component as well as combinations of components will be assessed to 
determine their usefulness.   
 
1.5 Organization 
    This dissertation is organized in the following manner.  In Chapter 2, we study the 
potential theory of gravitational gradients and detectability is studied.  Then, in Chapter 
3, we move to the fundamental theory of signal detection from the perspective of 
communications theory and apply its concept to the problem of small mass anomaly 
detection.   
    The optimal combinations of six components of the gravitational gradient tensor 
are developed in Chapter 4.  In Chapter 5, a prospective airborne gradiometric survey is 
simulated.  Then, using the simulation, developments in of Chapters 3 through 4 are 
tested and assessed in order to determine their mass anomaly signal-detection 
capabilities, in association with various combinations of observed gradient components. 
    Chapter 6 is dedicated to parameter estimation.  The random effects model and 
hypothesis testing are discussed and are developed to support the problem of small mass 
detection.  In Chapter 7, numerical examples are discussed to show the robustness of the 
method.  Finally, in Chapter 8, we conclude our results and suggest further work that can 
be focused to enhance the capability of detection by matched filters and parameter 
estimation. 



 11

CHAPTER 2 
 
 

THE POTENTIAL THEORY OF GRAVITATIONAL GRADIENTS  
AND DETECTABILITY 

 
 

2.1 Introduction 
According to Nettleton (1976), gravity gradiometry was one of the earliest methods used 
to explore for oil deposits.  The first gradiometer used for this purpose was the torsion 
balance, invented by Lorand von Eötvös in Hungary around the turn of the last century.  
Although exquisitely sensitive (for its time) to local crustal density variations, it was 
cumbersome to operate and was soon replaced by the scalar gravimeter that measures the 
(relative) magnitude of gravity acceleration.  Static gravity as a whole, whether with 
gravimeters or gradiometers, is labor intensive and difficult to carry out in remote areas 
of limited accessibility.  Thus, airborne gravimetry is viewed as the most efficient method 
to map the near-Earth gravity field.  However, the main difficulty with a moving platform 
is the inseparability of specific forces coupled with gravitational accelerations to produce 
the total (kinematic) accelerations of the vehicle.  On the other hand, airborne 
gradiometry using a gravity gradiometer on a platform with a gyroscope is believed to 
yield gravity maps of the near-Earth geopotential field without the need to determine the 
kinematic linear acceleration of the vehicle. 
    In general, modern gradiometers are sufficiently sensitive to the point that the 
integration time to produce an accurate measurement is relatively short, meaning that the 
resolution on a moving vehicle is high (on the order of hundreds of meters) and maybe 
higher (on the order of tens of meters).  The resolution (by gradiometer) usually is much 
higher than that of a gravimeter (normally on the order of several, even tens of 
kilometers).  Combined with the high spatial resolution, the high accuracy of a 
gradiometer implies that it is able to sense the fine structure of the gradient field due to 
small shallow mass anomalies.  In the intelligence community, gradiometers are 
considered as a means to identify the small anomalies that inherently have sharp density 
contrasts relative to the surrounding environment.  The detection of these anomalies is 
enhanced considerably by the ability to measure the gradient (or directional derivative) of 
the corresponding gravitational signal.  And, since gradiometers can be combined to 
sense all six gradients, the ability to characterize such anomalies is further maximized. 
    Finding shallow mass anomalies stands out as one of the toughest technical 
challenges in the intelligence community’s efforts to locate and assess targets of interest 
anywhere inside the Earth (Streland, 2003).  To find and target the anomalies effectively, 
it is necessary to understand how they are built.  Understanding the nature of the 
anomalies provides valuable information of what to look for in the problem of detection.  
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This chapter, focuses on the fundamental theory of gravitational gradients.  Detectability 
of the anomalies with respect to spatial resolution (half-wavelength) and flight altitudes at 
which the measurement are obtained are discussed.  The technical details concerning 
instrumental developments will not be discussed any further in this work, and can be 
found in Jekeli (1987), Peters et al. (2001), Matthew (2002), and McGuirk et al. (2002). 
 
2.2 The potential theory of gravitational gradients 

Starting from Newtonian potential theory1, the gravitational (not gravity) 
potential2 (a scalar, zero-order-tensor function),U , at a point in a Cartesian coordinate 
system, Txxx ),,( 321=x , due to an (attracting) anomalous mass distribution having 
density function, ),,( 321 xxx ′′′ρ , and volume, v , is defined by: 

 

  123
321 ),,(

)( xdxdxd
r

xxxρ
kU

v

′′′
′′′

= ∫∫∫x                                  (2.1) 

 
with the slant distance 
 
  2

33
2

22
2

11 )()()( xxxxxxr ′−+′−+′−=                             (2.2)  
 
where k  is the Newtonian gravitational constant and Txxx ),,( 321 ′′′=′x  is the integration 
point.  The vector of gravitational acceleration, g , is defined as the gradient of the 
potential (the first-order tensor):  
 

  
123

321 ),,(
)x()x( xdxdxd

xxx
kU
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ρ
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                      (2.3) 
 
where x∇  denotes a vector of partial derivative operators, e.g.,  
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1

x
x
x

x                                               (2.4) 

 
where the subscript identifies the variables with respect to which the differentiation is 
performed.  The gradient of the gravitational acceleration is a tensor of second order, 
consisting of the partial derivatives of the gravitational vector components and arranged 
in matrix form: 
                                                 
1 Understanding the concept of Newtonian potential theory is essentially needed for those who are 
unfamiliar with the field of physical geodesy.  Readers are encouraged to read through some excellent 
textbooks such as Heiskanen and Moritz (1979), Torge (1989 and 2001), and Hofmann-Wellenhof and 
Moritz (2005).  
2 The gravity potential equals the gravitational potential plus the potential of centrifugal force. 
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or  
][ ijs=s                                                   (2.6) 

 
where the elements of the matrix are 
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ij xx
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∂
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2

x  with i  and j  = 1, 2, and 3.                         (2.7) 

 
Clearly, the matrix of second partial derivatives is symmetric and Poisson’s equation 
yields the constraint: 
 

( ) )(4)()()(2 xxxx xxxxx ρkπUtraceUU T −=∇∇=•∇∇=∇                  (2.8) 
 

If the points (i.e. x ’s) are outside the attracting mass, the constraint satisfies the Laplace’s 
condition   
 

0)( 332211
2 =++=∇ sssU xx                                      (2.9) 

 
Only five gradient components are independent, because of (2.8) and the symmetry 
property (i.e., jiij ss = ).  As a consequence of how gradients were measured, for example, 
with the torsion balance, exploration geophysicists have defined combinations of the 
gradients as indicated below (Nettleton, 1976; Torge, (1989); Dransfield (1994)).  
Adopting a coordinate system in which the coordinates, 1x and 2x , are in the horizontal 
plane, the horizontal gravitational gradient vector determines the horizontal variation of 
the vertical component of gravitation, with amplitude and direction in the horizontal 
plane given by 
 

2
23

2
13 sssH +=  and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

23

131tan
s
s

Hα                               (2.10) 

 
Another quantity is defined to describe the variation of curvature of the equipotential 
surfaces, U  = constant, of the gravitational field.  The curvature of a surface is the rate of 
change of the tangent to the surface and thus, for equipotential surfaces, it is related to the 
second derivatives of the potential.  In particular, it can be shown that the difference 
between maximum and minimum curvature at a point is given by the scalar, Cs , called the 
differential curvature, where the minimum corresponds to the tangent in the (horizontal) 
direction, Cα , given by (Dransfield, 1994): 



 14

22
124 Δ+= sssC  with ⎟⎟

⎠

⎞
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⎝
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=

Δ

−

s
s

C
121 2

tan
2
1α                            (2.11) 

and 
1211 sss −=Δ                                                (2.12) 

 
where Δs  is called the inline gradient.   
     So far, the coordinate system being used for the entire study of small mass 
anomaly detection has not been specified.  It is evident that the second derivatives of the 
kernel r/1  of (2.1) rapidly diminish the value of the integrand, when the integration 
points are a great distances from x .  As a consequence, airborne gradiometry is suitable 
for survey areas at local scales, whereas gravimetry is for regional scales.  One may 
extend the integration over an equivalent plane, corresponding to planar approximation 
for the area of integration (i.e., the area of interest is considered using a flat Earth model).  
The local coordinate system (or frame3) can be legitimately defined to be associated with 
the North (N), East (E), and Down (D) directions.  The subscripts )3,2,1( of point x  
indicate (N,E,D) respectively.   
 
2.3 Gravitational gradients of geometric forms 
    In general, the gravitational potential of (2.1) refers to the outcome of integration 
over the volume of an arbitrary shape of the attracting mass, whose density may vary at 
any point (i.e., it is an inhomogeneous body).  It is impossible to determine a closed 
formula of an arbitrary body-type unless some assumptions are made.  For simplicity, we 
assume that a simple geometric and homogenous body (or a finite sum of such bodies) 
can represent any anomalous mass.  Simple geometric shapes delineating constant-
density distributions, in fact, have dominated the modeling of crustal density anomalies, 
including the rectangular prism, the point mass (monopole) and the vertical cylinder and 
line segment, among others.  The motivation for using these is always the mathematical 
simplicity with which the corresponding gradients can be formulated.   
    In this chapter, we are interested in the gravitational gradient (effect) due to the 
point mass and the rectangular prism with a constant density, whose closed formulas can 
be readily derived and also can be found in Forsberg (1984) and Jekeli et al. (2003).  
Other geometric bodies can be found in Dransfield (1994).  According to Newton’s law 
of gravitation4, the particular construction of the rectangular prism can be used to 
approximate, by compact aggregation, any given mass density distribution with a finite 
number of constant-density blocks (prisms) (Jekeli, 2002).  The resolution and accuracy 
of the corresponding gradient are limited only by the number of such blocks.  Some other 
geometric bodies can also be included.  Numerical examples can be seen in Chapter 5.  
The analytic formulas of the gradient effects due to a point mass and a rectangular prism 
with a constant density, ρ , e.g., ρ  = 1.170 g/cm3 for an anomaly (also can be a density 
                                                 
3 In geodesy, a coordinate system and a coordinate frame are different in terms of the definitions used (see 
McCarthy (1996) in Section 3.3).  However, in this work, the terms are equally defined and used 
interchangeably. 
4 If we have a system of several point masses or solid bodies, the gravitational potential of the system is the 
sum of the individual contributions (Heiskanen and Moritz, 1979, pp. 1-2). 
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contrast = an anomaly’s density minus a reference density of 2.670 g/cm3), are given as 
follows: 
(a) The point (homogeneous) mass 
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                                        (2.13) 
and 
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(b) The rectangular (homogeneous) prism with edges parallel to the local coordinate axes 
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    Since we are interested in the rectangular prism, Figure 2.1a shows only six 
components of the gravitational gradients due to a rectangular block having a size of 2m 
x 2m x 50m with density contrast 1.5 g/cm3, computed at 30m above the center of the 
block at every 2m space interval; the monopole has similar characteristics (not shown 
here).  It is evident that, of all the defined gradients, the 33s  component has the highest 
strength of gradient signal; 33max s  = 0.91E, 13max s  = 0.45E, 23max s  = 0.39E, 

12max s  = 0.14E, 11max s  = 0.13E, and 22max s  = 0.11E.  It should be observed that 
each component has its own unique characteristics and in turn reflects the shape of the 
body.  In this way, we may recognize what the target anomaly in question looks like.  For 
example, 33s  has a symmetric and positive envelope.  The gradient signals of the 11s  and 

22s  components have the locations of local maxima appearing at N-S and E-W edges of 
the prism aligned with the local frame of measurements, respectively.  The 13s  and 23s  
components have two (positive and negative) side lobes along E-W and N-S directions, 
respectively.  On the other hand, 12s delineates the corner of the rectangular body - two 
diagonal pairs of positive spikes and the other two of negative spikes (quadrupole).   
    It is interesting to look at the individual gradient components due to the rectangular 
prism in the frequency domain to better understand the signal structure of the body.  
Figure 2.1b displays the (normalized) absolute amplitudes of the gradients in the 
frequency domain.  The response of 33s  dominates over a wide range of wavelengths 
lying between 25m and 1000m along the N-S direction and between 50m and 500m in 
the E-W direction.   
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(a) 
 
 

 
 

(b) 
 
 

Figure 2.1: (a) Six components of gradient tensor due to the 2m x 2m x 50m rectangular  
box with density contrast 1.5 g/cm3, calculated at 30m above the center of the box at 
every 2m space interval along east direction; (b) their (normalized) absolute amplitudes. 
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For 11s  and 13s , two main lobes appear along N-S direction.  The wavelengths of both 
span almost the same range as 33s .  The (magnitude) response of 12s  has four side lobes 
(call this a quadrupole).  We shall see in Chapter 5 that these particular characteristics of 
each gradient component will affect the signal detection by using matched filters.  
 
2.4 Transformation 
    In fact, the feature of the mass anomaly to be detected can exist at any location 
relative to a local coordinate system, call this the a -frame.  For example, consider a main 
water pipe which runs in a N-E direction (45 degrees with respect to North direction).  
The gravitational gradients generated by the pipe are equivalent to the gradients due to 
the pipe parallel to North direction but it is rotated by 45 degrees with respect to the 
north.  The orthogonal transformation of a 3-by-3 matrix representing the gradient tensor 
is given by (Jekeli, 2000, p. 10-13): 
 
  ( ) a

b
ab

a
Tb

a
ab

a
b RsRRsRs ==                                      (2.17) 

 
where as and bs  are the gradient tensors in the a -frame and b -frame respectively.  b

aR  
represents the rotation (orthogonal) matrix from a -frame to b -frame.  The rotation 
matrix is described by a sequence of rotation for each of the triad axes.  The oriented 
angles about the axes are called Euler angles, consisting of γ  about the 1-axis, β  about 
the 2-axis, and α  about the 3-axis (or the vertical axis).  Positive rotations are considered 
counter-clockwise by convention and are viewed from the end point of the coordinate 
frame to the origin. 
    Rotating the measured gradients at various orientations relative to the survey area 
yields a preliminary means of getting insight into the target mass anomalies.  The rotation 
matrix works as a filtering tool that directionally separates anomalies and in turn, 
indicates the anomalies’ features (Dransfield, 1994)).  For instance, the line feature of the 
water pipe is clearly identified, among other features, by the rotation.  It can be 
graphically explained in the frequency domain that the rotation separates the particular 
frequency trend associated with the direction of the pipe, see Figure 5.30 in Chapter 5, 
where the 2m x 2m x 1000m anomaly is considered in a noise environment. 
    Before closing this chapter, we want to emphasize that our objectives are to use 
matched filers to detect a small anomalous mass in strong noise backgrounds.  Consider 
the gravitational gradient signals due to small mass anomalies, e.g., man-made structures 
and voids, which are very small, compared with the Earth’s gradient field.  The desired 
signals can be overwhelmed by unknown mass distributions if the anomalies (i) are not 
shallow enough and/or (ii) do not have gradient signatures of significant magnitude and 
uniqueness.  What ranges and sizes of such causative sources, sampling intervals (relative 
to speeds of airplane or helicopter and sampling rate), and flight altitudes (or depths of 
the sources) impact upon the gradiometer’s ability to sense their corresponding signals?  
These factors are important to conduct an airborne gradiometric survey. 
    Because the gradient signals of small anomalies are rapidly attenuated with respect 
to flight altitudes due to the inverse term of high order of range, see eq. (2.13), a 
gradiometer may not be able to sense the gravitational signals at great depth.  The 
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remainder of dissertation will speculate how these factors can affect the signal detection 
using matched filers.  Characterizing small anomalies relies on the sampling interval; we 
may lose meaningful signals if the interval is too large, i.e., we introduce aliasing effects.  
We can envisage that the detection of small anomalous whose gradient signals are a few 
Eötvös requires not only a very precise gradiometer but also tremendous efforts in 
statistical signal processing, which will be discussed in the following chapters. 
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CHAPTER 3 
 
 

THE THEORY OF SIGNAL DETECTION BY USING MATCHED FILTERS 
 
 

3.1 Introduction 
    In this chapter, we shall leave the theories of physical geodesy and geophysics for a 
moment.  Because the detection theory in the field of communication theory may not be 
familiar for geodesists and geophysicists, we confine our discussion to the concepts of 
detection theory but applied to our problem at hand.  We consider one anomaly 
embedded in strong geological noise.  We discuss only simple hypotheses which describe 
either the presence or the absence of the signal due to the anomaly.   
    In this chapter, the ideas of signal detection and matched filters in white and non-
white Gaussian noise environments are discussed.  Probability related to a likelihood 
ratio test is discussed as well as hypothesis testing under the Neyman-Pearson criteria.  
All necessary notations are appropriately defined and used in the entire study unless 
otherwise specified.  For simplicity of derivations, we assume an infinite sequence of 
measurements unless otherwise specified.  In this chapter, an introduction to detection 
theory relies heavily on some excellent publications on the subject such as by Turin  
(1960 and 1976), Middleton (1960 and 1965), DiFranco (1968), Van Trees (1968), 
Whalen (1971), Cadzow (1987), Poor (1983), Helstrom (1960 and 1995), and, Kay (1993 
and 1998). 
 
3.2 Signal detection 
    The concept of signal detection using matched filters for small mass anomaly 
detection is that it ideally aims to aid in the decision if there exists a wanted gradient 
signal, s , due to a small anomalous mass at a location x  (which is unknown).  We 
assume that s  is entirely embedded in identically-distributed (i.d.) (or wide sense 
stationary) zero-mean noise n  (not necessarily Gaussian).  The two hypotheses are 
defined as: 

 
(i) Case 0: there is a specific gradient signal in measurements )(xv : 

  :0H  )()()( xnxxsxv +−=                                      (3.1) 
 
(ii) Case 1: there is no gradient signal in measurements )(xv : 

  :1H )()( xnxv =                                             (3.2) 
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3.3 Definition of a matched filter 
    Here, the matched filter (MF) function h  of a gradient component is designed such 
that it locates the signal by determining the maximum in the signal-to-noise ratio (SNR).  
The value of SNR plays an important role as indicator of the potential location of the 
signal.  For instance, if the SNR is high, it implies the possible existence of the signal.  In 
other words, the MF attempts to enhance s  while suppressing n .  The optimal weighting 
coefficients of the MF can be determined using Parseval’s theorem and Schwarz’s 
inequality (Papoulis, 1984) as shown below.   
    In this chapter, we demonstrate a simple type of matched filter when white noise 
with variance 2σ  is considered.  Suppose we have discrete observation )( jj xvv = , 

+∞<<∞− j .  Then the discrete filter is formulated as 
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The output, hy , of the filter therefore has a signal part and a noise part.  We determine h  
such that SNR is maximized at x .  Using (3.3), we define the ouput SNR as 
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where s  is a known signal and ε  denotes (ensemble) expectation.  We further assume 
that s  is square integrable, which implies a finite energy.  We make use of the following 
Fourier Transform pair for infinite discrete signals: 
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where tilde “~” indicates the periodicity of spectrum, the Nyquist frequency xf N Δ= 21 , 
and “ xΔ ” denotes data spacing.  By Parseval’s theorem, the numerator of (3.4) can be 
expressed as 
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For the denominator with, for instance, white noise (i.e., )(}{ 2 jinn ij −= δσε , where the 
delta function 1)( =− ijδ  if ij =  and 0)( =− ijδ  for ij ≠ ), 
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Therefore, with (3.4), (3.7) and (3.8), we apply Schwarz’s inequality,    
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where the signal energy  
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Clearly, 2σxEs Δ  is an upper bound for )(SNR x  for any h .  If we want to maximize 

)(SNR x  with respect to h , we find that by choosing  
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we obtain the maximum 2)(SNR σxEx s Δ= .  The transfer (or response) function of the 
matched filter (i.e., eq. (3.11)) is the complex conjugate of the spectrum of the signal to 
which it is matched.  For this reason, a matched filter is often called a “conjugate” filter 
(Turin, 1960).  Thus, the filter function h  that maximizes )(SNR x  is given by the 
inverse Fourier transform of (3.11), 
 

  )(1)( 2 jj xsxh −=
σ

                                           (3.12) 

or 

  )(1)( 2 xxsxxh jj −=−
σ

                                       (3.13) 

 
Substituting (3.12) into (3.3), the filter output becomes 
 

  ∑
+∞

−∞=

−=
j

jjh vxxsxy )(1)( 2σ
                                     (3.14) 

 
We want to emphasize at this point that the matched filter does not preserve the original 
shape of the input signal (i.e., s ).  Since our object is to detect the presence of signal s , 
we consider the task of extracting the signal at a given point in the background noise.  
The decision that the prescribed signal may be present can be made wherever the filter 
output is maximum. 
 
 
3.4 The matched filter for correlated noise 
     In this section, we approach a more general form of matched filter.  We consider 
the matched filter for correlated noise, which is derived by a straightforward modification 
of the derivation of (3.7) and (3.8) noting that eq. (3.4) is also valid for correlated noise.  
By Wiener-Kinchine theorem, for a wide-sense stationary process, the Fourier transform 
of the autocorrelation function, (.)φ , is the power spectral density, (.)nΦ , of the process.  
Thus, we begin with (3.8) by replacing }{ kj nnε  with |)(| kjnn xx −φ , 
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Substituting (3.15) into (3.4) and applying Schwarz’s inequality, 
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Clearly, by choosing 
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the left-hand side of the inequality above equals the upper bound on the right-hand side.  
Thus, we obtain the maximum SNR as follows 
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In addition, the expression (3.17) is easily extended to two dimensions in the frequency 
domain, which will be used for our study, see eq. (5.6) in Chapter 5. 
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At this point, hypothesis testing is required to evaluate the performance of the 
matched filter in a statistical sense.  This brings us to the concept of classical hypothesis 
testing which is based on a likelihood ratio test, which requires a priori knowledge of 
probability density function about the observation (or noise).   
 
3.5 Hypothesis testing under Neyman and Pearson criterion 
    The Neyman and Pearson theory of hypothesis testing antedates the development of 
statistical decision theory (DiFranco, 1968, p. 272).  It does not require knowledge of a 
priori signal statistics, nor does it requires an explicit assignment of cost functions like 
Bayes’ criterion.  Neyman and Pearson define an optimum test as one that minimizes the 
probability of certain errors.  For instance, in a test of hypothesis H , two types of errors  
can be made: H  may be rejected where it is true (i.e., the error is called a type I error), or 
it may be accepted when it is false (i.e., the error is called a type II error).  An optimal 
test should minimize the probability of both types of errors--the test should have a small 
probability of rejecting H  when it is true and a large probability of rejecting H  when it 
is false.  Theoretically, the Neyman and Pearson criterion1 states that the best test is one 
that has either the greatest probability of rejecting H  when it is false or the greatest 
probability of accepting H  when it is true. 
     The Neyman and Pearson test is a test between two alternatives hypotheses.  For 
our study, the two hypotheses are (3.1) and (3.2).  To further discuss the concept of 
Neyman and Pearson criteria, let us assume the observations are in some finite interval, 

JjJ +≤≤− .  We start with a likelihood ratio test (LRT) as follows: 
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 ≥  η                                     (3.19) 

    versus           

  choose 1H  if 
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 <  η                                      (3.20) 

                                                 
1 The Neyman and Pearson criterion 
 
To minimize POF for a given POM = α ′  
 

  choose 0H  if  η′≥
)(
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Hlp
Hlp

                                       (a) 

or 

  choose 1H  if  η′<
)(
)(

1

0

Hlp
Hlp

                                        (b) 

where η′  is obtained from a given α ′  under the constraint 

  ( ) α
η

′== ∫
′

∞−

dlHlp 0POM                                         (c) 

The proof can be found in Kay (1998, pp. 89) and Van Trees (1967, pp. 33-34). 
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where v  is a vector of measurement.  If noise is assumed to be independent and 
identically distributed, the joint probability density function (pdf) of observations (or the 
likelihood functions) is just the product of individual probability density functions.  Thus, 

)/( 1Hp v  and )/( 0Hp v  are called the (joint) conditional pdf’s of v , given 1H  and 0H  
respectively.  The threshold η  is found from a given probability of type I error (see next 
section). 

For simplicity, let n  be a white Gaussian random variable with variance 2σ , then 
so is v .  Thus, we simply write )/( 1Hp v  as the (joint) probability density function of 
(i.i.d.) noise, given by 

 
  )()()()()()()( 211 JnjnJnJnJnn npnpnpnpnppHp ++−+−−== KKnv           (3.21) 

 
where the probability density function of the noise is 
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With (3.21) and (3.22), then we have 
 

  
( )

( )
⎭
⎬
⎫

⎩
⎨
⎧
−= ∑

+

−=
+

J

Jj
jJ nHp 2

2
2

12
2

1 2
1exp

2

1)(
σπσ

v                          (3.23) 

 
Similarly, under hypothesis 0H , where we define nsv +=  and then svn -= , with 
(3.22), we may write 
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Using (3.1), (3.2), (3.23) and (3.24), the corresponding likelihood ratio is 
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Since the exponential function in (3.25) is monotonic, taking the natural logarithm does 
not change the inequalities of (3.19) and (3.20): 
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The second term on the right hand side of (3.26) is just the energy of the signal.  Only the 
first term significantly describes the probabilistic nature of the observations.  This term is 
called a sufficient statistic, say l , (Van Trees, 1968, p. 29).  The hypothesis testing 
criteria of (3.19) and (3.20) become: 
 

choose 0H  if )(xl  ≥  η′                                        (3.27) 
versus           

choose 1H  if )(xl  < η′                                        (3.28) 
 
where  
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                                    (3.29) 
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By comparing (3.14) with (3.29), we immediately see that the sufficient statistic, for the 
case of white Gaussian noise, corresponds to the output of the matched filter at the 
location of the signal.  According to the Neyman-Pearson criterion, either η  or η′  can be 
assigned or is dependent on the predetermined value of a significant level, say α , that 
will be elaborated in the next section.  
 
3.6 Performance of detection 

As mentioned in the previous section, signal detection using the matched filter 
can be assessed statistically using hypothesis testing through the sufficient statistic of 
(3.29).  Figure 3.1 describes error probability densities, which lead to very important 
terms in detection theory as follows.  We define the probability of miss, POM, or the 
probability of a Type I error in this case, as corresponding to rejecting 0H  when it is true.  
We also define the probability of false alarm, POF, or the probability of a Type II error in 
this case, which refers to choosing 0H  when there is no signal.  The probability of 
detection, POD, corresponds to the correct decision and relates to POM as 

 
  POM1POD −=                                             (3.31) 

 
The implicit forms of the error probabilities are given by (see next sections for more 
details): 
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)(POF 1
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)(POD 0
R

dvHlp ,                                         (3.33) 

and 
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  ∫=
1

)(POM 0
R

dvHlp .                                         (3.34) 

 
where p  denotes a probability density and 0R  and 1R  denote the decision regions of 
choosing 0H  and 1H , respectively, and the integral notations are valid for either discrete 
or continuous points.  We can connect POF, POD, and POM with a sufficient statistic as 
in the following sections. 
 
3.6.1 White noise case 
    For a large amount of data, we may assume +∞<<∞− j .  Thus, the equations of 
(3.29) and (3.30) for an arbitrary point x , can be rewritten as follows: 
 

  ∑
+∞

−∞=

−=
j

jj xxsxvxl )()(1)( 2σ
                                    (3.35) 

and  

  ∑
+∞

−∞=

−+=′
j

j xxs 2
2 )(

2
1ln
σ

ηη                                    (3.36) 

 
where η′  is obtained from a given POM (see (3.43)).  Because )(xl  is a linear operation 
on )(xv , it is still a (white) Gaussian random variable.  Following Parseval’s theorem, it 
is straightforward to show that, the conditional expectation of l  on 0H  corresponds to 

maxSNR  in (3.9): 
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and, 0}{ 1 =Hlε .  The conditional covariance (variance) of l  under either hypothesis is 
the same.  We have 



 28

  

{ }

{ }

2

2

2

2
4

1,04

1,021,0

)()(1

)()()(1

)()()()(1

)()(1

d
x
E

xxsxxs

kjxxsxxs

HxvxvCxxsxxs

HxvxxsVarHlVar

s

j
jj

j k
kj

j k
kjkj

j
jj

=
σΔ

=

−−
σ

=

−δσ−−
σ

=

−−
σ

=

⎭
⎬
⎫

⎩
⎨
⎧

−
σ

=

∑

∑ ∑

∑ ∑

∑

∞+

−∞=

∞+

−∞=

∞+

−∞=

∞+

−∞=

∞+

−∞=

+∞

−∞=

              (3.38) 

 
Finally, as shown in Figure 3.1, we select Type I error (i.e., POM=α ) to compute a 
threshold.  We have 
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Then, 
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Equation (3.40) can be rewritten in terms of the complement to the error function, erfc , 
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By selecting POM, the threshold can be computed as 
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  2POM][22 122 −+=′ −erfcddη ,                                 (3.43) 
 

Then, we can compute Type II error ( POF=β ) from (3.43) 
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Figure 3.1: Error probabilities in Gaussian distribution: POF, POD, and POM. 

 
 

 
3.6.2 Correlated noise case 
    The derivation of detection performance in stationary-non-white Gaussian noise is 
more complicated.  Let v  be a 1×N  vector of the measurement consisting of the 1×N  
signal vector s  and the 1×N  (additive) noise vector n .  To simplify the derivation, we 
assume that the covariance matrix Σ  of the noise is positive definite.  Then, the 
loglikelihood ratio is given by   
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Simplifying: 
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Therefore, the first term of (3.46) is the sufficient statistic l .  Then, decide 0H  if 
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The conditional expectations of the sufficient statistic l  are  
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The conditional variances are  
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     As in the white noise case, we can easily find POF from a given POM.  In practice, 
it should be noted that it is not possible to invert the covariance matrix Σ  in (3.47) and 
also (3.49) if the data vector is large.  In fact, Fourier transforms of v  and n  are formed 
by linear operations on the Gaussian random variables v  and n  respectively.  The 
Fourier transforms themselves are also Gaussian (complex) variables.  By applying the 
orthogonal transformation matrix, F , to (3.47) and (3.49) (see section 6.3.1 for further 
details), the corresponding covariance matrix becomes diagonal--only the diagonal 
elements of the matrix are inverted: 
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and also 
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where S  and V  are Fourier transforms of s  and v  after applying the orthogonal 
transformation matrix F , and N  is the number of measurement points along track.  For a 
large data vector, we may approximate )()(Σ~ 1 fxf nnΦΔ≈ − .  As such, we have 
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Thus, POF can be computed using (3.41) to (3.44) with (3.55).  The expressions above 
can be extended to two dimensions in the frequency domain.  Let M  and N  be the 
number of data tracks and the number of points of measurements along track, 
respectively.  For this case, the symbols v  and s  are the 1×MN  vectors of observation 
and signal respectively.  The MNMN ×  cross-covariance matrix of the 1×MN  noise 
vector n  is Σ′ .  Similar to the derivations of (3.52) through (3.55) but applying the 
orthogonal transformation matrix F′ , described in section 6.3.3 to (3.47) and (3.49) 
instead, we finally arrive at  
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and 
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where S  and V  are Fourier transforms of s  and v  after applying the orthogonal 
transformation matrix F′ .  Then, POF can be easily obtained from (3.41) to (3.44) with 
(3.57).   
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CHAPTER 4 
 
 

THE OPTIMAL COMBINATION OF SIX COMPONENTS OF  
GRAVITATIONAL GRADIENTS 

 
 
4.1 Introduction 
    Thus far, we have learned how the six components of the gravitational gradient 
tensor describe the local structure of gradient field.  Each component represents particular 
characteristics at the same location where measurements are obtained by the gradiometer.  
With multiple sensors, one would expect improved detection of gradient signals in a 
noisy background.  However, independent filters in each gradient seem to be impractical 
for the case of detecting small anomalies in a complex gradient field (numerical analyses 
are discussed in Chapter 5).  Therefore, the idea of a vector random process is considered 
to enhance the capabilities of matched filtering.  We consider the matched filter for a 
combination of six gradient components, with full specification covariances between the 
individual gradients.  The approach processes the combination data in the frequency 
domain using Fourier transforms.  With the property of uncorrelated coefficients at 
different frequencies, the block diagonal matrices to be inverted have the size of 6x6 at 
most, corresponding to the 6 gradient tensor elements.  For simplicity in the derivations, 
we assume an infinite sequence of measurements.  In practice, however, the analysis is 
performed on a finite amount of data, which are further assumed to be periodic.  
Therefore, the matched filter solution may not be optimal (i.e., it is an approximation to 
the solution).  

 
4.2 The combination of matched filter  
    We can generalize the matched filters, discussed in Chapter 3, to the multi-sensor 
case.  From (3.1), we extend the measurement pv  for sensor p , with },...,2,1{ Pp = , 
containing the infinite sequence signal ps  and noise pn .  The observation becomes  
 
  )()()( jpjpjp xnxxsxv +−=   with +∞<<∞− j                       (4.1) 

 
or in a vector format 
 
  )()()( jjj xxxx nsv +−=                                       (4.2) 

 
where each vector has the size of 1×P  at point jx .   
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    Here, we desire to construct a filter that in its output indicates potential locations x  
for the signal.  The filter has the form 
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where now h  is a PP ×  matrix function and y  is a 1×P  vector function.  As before, we 
define signal and noise components of the output 
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and we need to define a SNR which at a particular xx =  is maximized, thus determining 
h .  We define the SNR as follows 
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Note that numerator and denominator are vector dot-products, i.e., scalars.  In the 
numerator, the components of each vector are  
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where T

ph  is the thp  vector of h .  By Parseval’s theorem, we then have 
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where [ ]TpPpp fHfHf )(~)(~)(~
1

∗∗∗ = KKH  and [ ]TP fSfSf )(~)(~)(~
1

∗∗∗ = KKS .  This is the 
thp  component of the vector appearing in the numerator of the SNR.  Therefore, the 

numerator is given by 
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For the denominator of the SNR, we proceed similarly.  Again, it is the expectation of a 
dot-product of vectors, whose components are 
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Therefore, the expectation of the dot-product is given by 
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Taking the expectation inside the sums, according to the assumption of stationary process 
in Chapter 3, we can write  
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with the PP ×  covariance matrix  
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We allow correlated noise, i.e., this could be a combination of geologic background plus 
observation error (white or correlated).  For one of the quadruple sums (4.10), we have 
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With (4.13), the denominator of (4.10) is given by 
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where nnΦ~  is the PP ×  cross power spectral density matrix.   
    We revisit the numerator of the SNR and write each sum as  
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Again, by Schwarz’s inequality, this is 
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Hence, with (4.14), the SNR is bounded by 
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As before, if we choose  
 
  )(~)(~)(~ 1 fff nnp

∗−Φ= SH  for all p                                  (4.18) 
 

then the numerator of the SNR becomes 
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and the denominator of the SNR becomes 
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Therefore, 
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which is the maximum value.  Thus, for SNR to be the maximum at x  we choose the 
transfer function of the combined filter according to (4.18).  The filter is the same for all 
outputs of the vector y , which means the filter transforms all inputs from multiple 
sensors into one-dimensional output.  We can simply define the combination of matched 
filters (vector) as  
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The derivations discussed above are for the case of a single data track and multiple 
sensors (SM) (see also Section 6.3.2 in Chapter 6).  For multiple data track and multiple 
sensors (MS), we simply extend (4.22) and the transfer function of (4.23) such that 
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where x′  is a point across track and  Φnn has the size of P×P.   
    Following the same procedure as for the single sensor in Chapter 3, the next section 
will show the connection between the combination of matched filter and hypothesis 
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testing under the Neyman and Pearson criterion.  The derivations in turn indicate that y  
corresponds to a sufficient statistic in a log-likelihood ratio test.  Although it is rather 
tedious to do so, still, the derivations reveal a significant contribution concerning the 
inversion of the covariance matrix in the frequency domain (intuitive details, also, can be 
found in Chapter 6). 
 
4.3 Hypothesis testing and performance of detection 
    Similar to section 3.7, with (4.2) and (4.12) we assume some finite amount of data 
for the convenience of derivations, e.g., N  data points.  Then, the sufficient statistic SMl  
for a single track and multiple sensors can be given by  
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where SMΣ  is the PNPN ×  covariance matrix of the 1×PN  noise vector n .  Then, the 
conditional expectations and variances of SMl  under 0H  and 1H  can be obtained (see 
also (3.48) to (3.52) for comparison).  Using the orthogonal transformation SMF  as (C.11) 
in Appendix C the transformed covariance matrix SMSM

H
SM FΣF  becomes diagonal, 
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For a large amount of data, we may approximate nnx ΦΔ≈ − ~1

SMSM
H

SM FΣF  (see also 
(6.65)).  Then,  
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Similar to the derivations of (4.26) through (4.29), for the case of multiple data tracks, 
say N ′  tracks with track spacing x′Δ , and multiple sensors, we have (see also Section 
6.3.4 in Chapter 6) 
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For a large amount of data, 
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CHAPTER 5 
 
 

NUMERICAL DISCUSSIONS ON  
SHALLOW SMALL ANOMALOUS MASS DETECTION 

 
 
5.1 The simulated survey of airborne gradiometry 
    Since a precise gradiometer that measures all components of the gravitational 
gradient tensor, with overall noise performance of about 1 HzE  is still under 
development; actual gradiometric data with such high precision do not exist in an 
operational setting.  For this work, six components of the gravitational gradient tensor are 
simulated by using the 1987 GGSS data set and the gradients computed from a digital 
elevation model (DEM).  Although the GGSS system was corrupted by vehicle vibrations 
and data outages along several survey tracks, the test data demonstrated an extraordinary 
accomplishment of technology and associated signal processing (Jekeli, 1986).  Vasco 
(1989) and Vasco and Taylor (1991) showed that the GGSS gradient data reflect 
subsurface structures as deep as 12km over the Texas/Oklahoma area.  The survey area 
for the simulation is chosen for its moderate terrain surface; see Table 5.1.  The area has 
the size of 36km x 36km and lies above the Meunster uplift.  The densities of the region, 
where the survey was planned, vary in range from 2.500 to 2.960 g/cm3.  For simplicity, 
we use the average density of 2.670 g/cm3. The DEM data sets used in this work are the 1 
arcsec National Elevation Dataset (NED), which are producted by the U.S. geological 
survey1 (USGS). 
    Having selected the area site, the gradiometric survey can be designed.  The survey 
data should be sufficiently dense so as to allow the detection of meaningful gradient 
signals due to small mass anomalies and in turn to avoid aliasing effects.  However, the 
sampling spaces and track spacing should be large enough to represent reasonably cost-
effective and timely surveys.  We choose the helicopter velocity, v , of 10m/s with the 3-
second sampling interval, τ , (in other words, the sampling frequency, τ1=Δ f , is 1/3 
Hz), which is equivalent to the spatial interval, 2xΔ ,of 30m.  The track spacing, 1xΔ , is 
30m and the flying (constant) altitude, h , is at 10m above maximum ground elevation.  
All these parameters are summarized in Table 5.1. 
    According to the work done by Vasco and Taylor (1991), the gravitational 
gradients are simulated by assuming that the GGSS data contain the long and medium 
wavelength information corresponding to subsurface structures below the geoid (the
                                                 
1 NED is designed to provide National elevation data in a seamless form with a consistent datum, elevation 
unit, and projection (one can visit the USGS’s website at http://www.usgs.gov/ for more information and 
data availability). 
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The statistical description of terrain 

mean (m) max.(m) min.(m) std.(m) rms. (m) 

302.2 346.2 263.3 13.2 302.7 

NOTE: 
• The area size of about 36x36 km2 covering the latitudes of 33.7-34.1°N and the 

longitudes of 261.3-261.6°E 
• The average density of 2.670 g/cm3 
• Velocity of helicopter, v  = 10m/s 
• Altitude of helicopter = 355m altitude (10m above the maximum ground)  
• Sampling interval, τ  = 3 seconds (sampling frequency = τ1=Δ f  Hz) 
• Track spacing, 1xΔ  = 30m 
 
 
Table 5.1: The survey area of airborne gradiometry and a prospective survey plan. 
 
 
 
nominal gravitational gradients are excluded: E308033 ≈Γ , E154022 ≈Γ , and 

E154011 ≈Γ ).  The simulated observation data of six gradients are obtained as follows.  
Since the GGSS data set is adversely affected by noisy platform accelerations and 
gradiometer outputs, and by poor navigation, we interpolate all data tracks onto a 
30mx30m grid.  Then, we perform downward continuation from the GGSS altitude of 
1000m to 355m by, first, taking the Fourier transform of the data and then multiplying all 

data by the attenuation factor }2exp{
λ

π h
− , where h  = altitude and λ  = wavelength.  

Because the high frequency noises in the GGSS data set are amplified in downward 
continuation, only the gradient signals with longer than 5km wavelengths are used.  The 
shorter wavelength signals are removed before downward continuation by applying the 
low-pass filter2, L , with the cut-off frequency, cf , of 1/5000 [cyc/m] to the GGSS data 
in the frequency domain.   

                                                 
2 The low-pass filter with the cut-off frequency, cf , of 1/5000 [cyc/m]: 
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    For the remaining part of the data simulation, the gradient signals having 
wavelengths shorter than 5km, which are assumed to reflect the topographic masses, are 
generated from finite elements of flat-top rectangular prisms using the 30m DEM3 (the 
number of prisms for an integration area is limited to 20 on either side of the central 
computation point; and the density is a constant of 2.670 g/cm3).  They are added to the 
corresponding GGSS data in the frequency domain4.  Finally, we include 1E/ Hz  zero-
mean white Gaussian noise along the track or 300 E2/(cyc/m)2 at a grid point5.   
    Figure 5.1 shows an example of data simulation in the survey area using the 1987 
GGSS data set at an altitude of 1000m above the geoid, then downward continued to 
355m and supplemented by the gravitational gradients computed at 355m altitude using 
30m rectangular topographic prisms.  Also added is 1 HzE  white noise (see 
                                                                                                                                                 
where 1N  and 2N  are the number of tracks and the number of points along track, and 1xΔ  and 2xΔ  are 

the track spacing and the spatial sampling interval, respectively; 1N  = 1200 tracks, 2N  = 1200 data points 

along track, 1xΔ  = 30m and 2xΔ  = 30m. 
 
3  The gradient signal using the 30m DEM, where the number of prisms for an integration area is limited to 
20 on either side of the central computation point ),( nm ,  

∑ ∑
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qnpm

DEMDEM
nm xnxm  for 10 1 −= Nm K  and 10 2 −= Nn K   (b) 

where the 30mx30m rectangular prism prismΓ  is computed at 355 m altitude using the equation of (2.15) 
and (2.16) in Chapter 2. 
 
4  The data simulation, ),( 21 ffijΓ , at the spatial frequency ),( 21 ff  with ),( ji  = (1,2,3) is 

),(),(),(),( 21212121 ffffHffff DEM
ij

GGSS
ijij Γ+Γ=Γ                        (c) 

where 
  ),( 21 ffGGSS

ijΓ  = the Fourier transform of GGSS data of component ),( ji  multiplied by the 

downward continuation factor }2exp{
λ

π h
−  with h  = 1000-355 = 645m and λ  = 2

2
2

11 ff + . 

  ),( 21 ffDEM
ijΓ  = the Fourier transform of the ),( ji  gradient component using the 30m DEM 

  ),( 21 ffH     = ),(1 21 ffL− (i.e., the high-pass frequency with the cut-off frequency cf ) 
 
5 We assume the helicopter is moving with the constant velocity, v , of 10m/s.  Thus, the along-track 
gradient (white noise) variance is computed at a point along the track using the sampling frequency fΔ = 

1/3 Hz is 2
wσ  = 1E2/Hz x 1/3 Hz = 1/3 E2.  Furthermore, we simply convert the along-track 1E/ Hz  

noise at points along the track to the noise at grid points by multiplying the product of (1E2/Hz)x(10m/s) 
with the track spacing 1xΔ  = 30m; we obtain the 300 E2/(cyc/m)2 noise at grid points.  In addition, the 

Hz1E  zero mean white Gaussian noise is generated using the MATLAB function 

“normrnd(mean, wσ ,m,n) with mean = 0E, wσ  = 31 E, m (the number of tracks) = 1200 and n (the 
number of points along track) = 1200”.  
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Footnotes); we call this the full geological background plus 1E2/Hz white noise.  The 
observation, finally, are obtained by adding the gradient signals due to the 2m x 2m x 
1000m target anomaly to the simulated background.  Observe that the gradient signals 
due to the 2m x 2m x 1000m anomalies are not visible in the observations.  Table 5.2 lists 
the root-mean-square (rms) values of the anomaly at 30m below the constant flight 
altitude, compared with the values of full geological background plus 1E2/Hz white noise.   
    Figure 5.2 shows the (azimuth-averaged) empirical power spectral densities (psd’s) 
of the simulated 33Γ  gradient component at 355m altitude and its corresponding psd 
models.  The psd of the observation (red-dot line) has large amplitudes at the long 
wavelengths; its trend quickly decreases and then becomes flat at short wavelength (about 
300m and shorter) (high frequencies).  The magenta-dot line indicates the empirical psd 
of the residual gradients, 33δΓ , after the removal of the gradient field model6, model

33Γ ,(or 
trend surface) (i.e., model

33
nObservatio

3333δ Γ−Γ=Γ ).  The blue-dot line is the empirical psd of 
the GGSS gradient plus 1E2/Hz white noise; as indicated, wavelengths of 5km and 
shorter are essentially removed but noise at all frequencies still remains.   
    The psd models (smooth curves in Figure 5.2) of all types of gradient observations 
(except the 1E2/Hz white noise) at 355m altitude are constructed using the reciprocal 
distance function models of the disturbing potential (eqs. (B-49) and (B-52) in Jekeli 
(2003)), based on the 30m DEM over Texas/Oklahoma area.  Appendix A lists the 
corresponding values of the parameters.  In this study, we shall assess the limitation of 
the matched filters that use the psd models, compared with the matched filters that use the 
empirical psd’s7 obtained from the simulated observations (that exclude the gradient 
signals due to the anomaly).  One may consider these types of filters (with empirical 
psd’s) as ideal filters.  Furthermore, the combination of individual matched filters are 
assessed.  We shall consider no correlation between gradient sensor errors under the 
white noise assumption.  The correlated background field “noise” is accounted for in the 
filter (unless other specified) using equation (A.1).    

                                                 
6 The gradient field model, model

ijΓ  for )3,2,1(),( =ji , is generated from 120m rectangular topographic 
prisms at the altitude of 355m using the 120m x 120m DEM (the number of prisms over an integration area 
is limited to 20 on either side of the central computation point, and the density is a constant 2.670 g/cm3).  
Then,  the gradients at 120m x 120m grids are interpolated onto  30mx30m grids (we use a bicubic spline 
interpolation function in MATLAB tools for the computation). 
 
7 The characteristics of such ideal psd’s are similar to the empirical psd’s of the observations (wiggly 
curves) in Figure 5.2.  
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(a) 
 

 
 
 

(b) 
 
 

Figure 5.1: (a) The survey area of GGSS airborne gradiometry (b) an example of data 
simulation by combination of the 1987 GGSS data set and 30m DEM, compared with six 
gradient components due to the 2m x 2m x 1000m anomaly (see orange circles). 
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Full geological background plus 1E2/Hz white noise 

Statistics 33Γ  22Γ  11Γ  12Γ  13Γ  23Γ  

mean -4.1710 2.4256 1.7451 3.4673 -0.5019 1.7312

med -5.3099 2.2716 1.4840 3.8059 -0.6960 1.4717

min -39.0344 -22.3920 -20.4062 -5.0273 -13.8893 -11.5058

max 37.5898 26.5314 18.8898 11.3453 13.9873 18.8403

std 13.2361 9.0212 6.6315 2.9447 3.7420 4.0559

rms 13.8777 9.3416 6.8573 4.5490 3.7755 4.4099

The 2mx2mx1000m anomaly (azimuthal orientation = 90°) 

mean 0.000 0.000 0.000 0.000 0.000 0.000

med 0.000 0.000 0.000 0.000 0.000 0.000

min -0.9275 -0.1277 -0.1170 -0.1450 -0.4449 -0.3799

max 0.1052 0.1714 0.8881 0.1450 0.4449 0.3799

std 0.0262 0.0028 0.0257 0.0027 0.0188 0.0040

rms 0.0262 0.0028 0.0257 0.0027 0.0188 0.0040

Signal energy 27.7275 0.3274 26.6476 0.2892 14.2964 0.6333

Ns
N

i
i∑

−

=

=
1

0

2rms ; Signal energy = ∑
−

=

1

0

2
N

i
is  with N = 1200x1200 

density contrast of anomaly = -1.500 g/cm3 

 
 
 
Table 5.2:  The statistical description of full geological background plus 1E2/Hz white 
noise  and the 2m x 2m x 1000m anomaly at 30m depth from a flight line; the unit of all 
values is Eötvös. 
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Figure 5.2: The (averaged-azimuth) empirical psd’s of the 33Γ  component and its 
corresponding psd models (for other components, the same parameters of the psd models 
are used, and the corresponding psd’s agree with the empirical psd’s of those components 
(not shown here)). 
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5.2 CASE I: White noise environment 
     In an example of detectability using the matched filter for the case of Hz/E1  
white noise ( 312 =wσ E2 for v  = 10m/s and fΔ  = 1/3 Hz), we consider the gravitational 
gradients due to the target anomaly of 2m-width x 2m-height x 1000m-long, at the depth 
(D) of 30m below a flight line, shown in Figure 5.3a. 

 
 

 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 

Figure 5.3: (a) The gradiometry survey; (b) The 10m x 5m x 1000m anomaly at the 
azimuthal  orientation of β′. 
 
 
 
The center of anomaly is at =1x 18000.0m and =2x  18000.0m of the survey grid.  The 
anomaly is rotated by 90 degrees about the vertical axis (i.e., β′ = 90°), positive in 
clockwise direction, with respect to the N-direction, shown in Figure 5.3b.  Figure 5.4 
shows the observations of all six gradient components in 1E2/Hz white noise.  It should 
be noted that the gradient signals due to the anomaly are not detectable visually.   
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Figure 5.4: Six gradient components due to the 2m x 2m x 1000m anomaly in 1E2/Hz 
white noise. 
 
 
 
    Suppose we know the parameters of the target anomaly except its location, i.e., we 
know its size, depth, and orientation.  Based on (3.12), we design the two-dimensional 
matched filter function ijh  for the ),( ji  gradient component, with )3,2,1(),( =ji , as a 
reversed replica of the actual signal such that 
 

  ),(1),( 21221 xxsxxh ij
w

ij −−
σ

=                                     (5.1) 

 
where ),( 21 xx  is an arbitrary location.  The unit of h  is defined as E1  so that the filter 
output is unitless for convenience.  The transfer function of ijh  is:  
 

  ),(~1),( 21221 ffSffH ij
w

ij
∗

σ
=                                      (5.2) 
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the unit of which is 
2

cyc
m

E
1

⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡ .  Figure 5.5 shows the pairs of the matched filter 

functions and their transfer functions for individual gradient components.   
    If the filter matches the gradient signal, it yields the maximum signal-to-noise ratio 
 

  2
21

maxSNR
w

s

xx
E

σΔΔ
=                                          (5.3) 

 
where, using Parseval’s theorem as (3.10) in Chapter 3, the signal energy sE  is 
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The symbol “ ijS~ ” is the (periodic) Fourier transform of ijs  and Nyquist frequencies 

1Nf  
and 

2Nf  are 121 xΔ  and 221 xΔ  respectively.  It should be noted in (5.3) with (5.4) that a 
matched filter performs best for detecting a signal in the presence of noise only if the 
gradient waveform is known completely.  The location of the maximum (highest peak) 
output of the matched filter corresponds to the maximum SNR.   
    As regards (3.14) but applied to two dimensions, the matched filter yields the 
highest peak ),( 21 xxyh  at the point ),( 21 xx  which is the center location of the anomaly 
to be detected such that  
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                 (5.5) 

 
Clearly, the first term on the right-hand side of (5.5) equals SNRmax.  Practically, it 
should be noted that the highest peak may be larger or smaller than SNRmax since the 
second term of (5.5) can be either positive or negative.   
    The noise in the second term of (5.5) may cause the highest output peak to be not at 
the true location, i.e., the point ),( 21 xx , if the gradient signal is embedded in a strong 
noise background (see the examples in Table 5.2 where the filters of the components 22Γ , 

12Γ , and 23Γ  have small rms values compared with those of full geological background 
plus 1E2/Hz.  The consequence of small signals relative to strong noise background will 
be discussed later). 
    In Figure 5.6, the matched filters for gradient components maximize the SNR at the 
true location of the anomaly, see Table 5.3.  The locations of the output peaks  
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Figure 5.5: The matched filter functions and the transfer functions (using Psd model 4) 
for the individual gradients due to the 2m x 2m x 1000m anomaly at the azimuthal 
orientation of 90° and 30m depth in 1E2/Hz white noise.  
 
 
 



 51

 
 

 
Gradient component  

33Γ  22Γ  11Γ  12Γ  13Γ  23Γ  

ΔN (m) 0.0 5400.0 0.0 4830.0 0.0 -6030.0

ΔE (m) -90.0 -6030.0 30.0 -7230.0 0.0 4440.0

 
 
Table 5.3: Signal detection in 1E2/Hz white noise environment; ΔN  and ΔE  are the 
difference of the location of the highest peak minus the true location of the 2m x 2m x 
1000m anomaly. 
 
 
 
(symbol “×”) for the 33Γ  and 11Γ  components are shifted from the true location (symbol 
“+”) by 90m westward and 30m eastward, respectively.  These errors are due to the 
gradient signals corrupted by the white noise.  This noise has a much greater effect on the 
filters for components 22Γ , 12Γ , and 23Γ , which cannot locate the anomaly at all. 
    According to (3.29), the matched filter output is indeed the test statistic (or 
sufficient statistic) (which contributes towards a means of making a decision about the 
acceptance of 0H  (i.e., if 0H  is true, the gradient signal due to the anomaly is present)).  
The performance of signal detection can be statistically described by defining an a priori 
POM such that it is a useful confidence level related to the decision to accept 0H  in 
(3.1).   The corresponding threshold can be computed from (3.43) for a given POM.  If 
the highest peak after matched filtering exceeds the threshold, then the signal is presumed 
to be presented.   
    Table 5.4 shows the detectability performance of the matched filters for given  
POM = 0.001, 0.050, and 0.010.  The 33Γ , 11Γ , and 13Γ  matched filters yield the highest 
output peaks at or close to the true location.  These outputs imply high performance of 
the filters.  For instance, POF = 0.000 for the given POM’s, for these components.  0H  
although, in fact, the highest peak output occurs at a point different from the true location 
(see also Figure 5.6) by 4830m northward and 7230m westward (taken from Table 5.3).  
In this study, although the threshold seems to be useless because the highest peak is 
selected regardless of it, it is a preliminary step that statistically describes the possible 
candidate(s).  
    The POF obtained from (3.44) is a useful probability when making a decision to 
accept 0H .  It should be noted, however, that POF increases if we decrease POM.  Thus, 
the POM should be carefully chosen so that the corresponding POF is useful at most to 
aid the decision.  In Table 5.4, the POF’s of the component 12Γ  indicate that a chance of 
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no signal present is high; POF = 0.983, 0.911, and 0.762 for the given POM’s 0.001, 
0.010, and 0.050, respectively.  
    For the case of 1E2/Hz white noise environment, the shape of the gradient signal 
does not affect the performance of the matched filter if Psd model 4, which is flat and 
constant (shown in Figure 5.2), is used.  Therefore, the gradient signals render the same 
detection performance if their energies are similar, see (5.3) with (5.4).  The next 
example will show how correlated noises affect signal detection by the matched filters to 
which Psd model 1 and empirical psd’s are applied. 
 
 
 

 
 

 
 
Figure 5.6: The matched filter outputs (for 1E2/Hz white noise): “+” = the true location of 
the 2m x 2m x 1000m anomaly to be detected; “×” = the location where the highest peak 
occurs. 
 
 
 
 
 
 
 



 53

     

Grad. 2d  maxy  α  = 0.001 α  = 0.010 α  = 0.050 

   η′  β   η′  β   η′  β  

33Γ  76.231 84.516 49.250 0.000 55.920 0.000 61.870 0.000

22Γ  0.963 4.577 -2.070 0.983 -1.320 0.911 -0.651 0.746

11Γ  73.008 81.431 46.603 0.000 53.130 0.000 58.953 0.000

12Γ  0.867 4.331 -2.011 0.985 -1.299 0.918 -0.665 0.762

13Γ  39.197 50.090 19.850 0.001 24.632 0.000 28.899 0.000

23Γ  1.881 6.210 -2.357 0.957 -1.310 0.830 -0.375 0.608
 
 
 
Table 5.4: Performance of matched filter in white noise environment; 2d  = SNRmax,  

maxy  = the highest peak output, β = POF, η′  = the computed threshold with a given POM 
= α and 2d (unitless). 
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5.3 CASE II: Correlated noise environment 
    In practical gradiometry, geological background and instrumental noises are the 
primary noise sources that corrupt the gradient signal due to an anomalous source.  As 
described in Section 5.1, Figure 5.2 shows the power spectrum obtained by the simulated 
gradient field.  The red-dot line presents the empirical psd of the observation, which does 
not flat.  We use Psd model 1 (red-solid line) to show the result of detection by the 
matched filtering technique.  As stated in Section 5.1, we shall assess the limitation of the 
matched filters with the use of the psd models (see also the smooth curves in Figure 5.2), 
compared to the ideal filters for which the empirical psd’s are obtained from the 
simulated gradient field (without the gradient signal due to the anomaly).   
    This example shows the anomaly detection by matched filters in a correlated noise 
environment.  The corresponding filters can be expressed and numerically computed 
using the equations in Section 3.5 in Chapter 3 but extended to the two-dimensional case: 
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with a  = psd model and b  = empirical psd, and its transfer function is 
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    What follow are the results of detecting the 2m x 2m x 1000m anomaly by the 
matched filters using Psd model 1 versus the empirical psd for full geological background 
plus 1E2/Hz white noise.  The cases of the anomaly at the azimuthal orientation, β′, of 
90°, 45°, and 0° are included.  Although we perform matched filtering through the entire 
area of data simulation (i.e., 36km x 36km), only the filtering output covering the 20km x 
20km innermost area of the simulation is used to avoid edge effects and also cyclic 
convolution errors8.   
    Figures 5.7 and 5.9 show the pairs of the matched filters and their transfer functions 
using Psd model 1 and the corresponding empirical psd, respectively, where β′ = 90° is 
                                                 
8 Since Fortran 90 codes for this study have a limitation of array memory, we are not able to apply zero-
padding to the original signal array (having 1200x1200 arrays); efficient algorithms should be considered 
for future work.  However, cyclic convolution errors can be reduced by considering only a subset of the 
domain of the computation of the convolution.   
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considered.  The matched filter outputs are shown in Figures 5.8 and 5.10 in sequence.  
Table 5.5 summarizes the filter outputs and their detection performance.  Only the 
matched filters for the 33Γ , 11Γ , and 13Γ  components, either using the psd model or the 
empirical psd, provide the highest peak at or close to the true location.  However, there 
are no significant differences between the performance of the filters using the psd model 
and the empirical model although, for instance, the corresponding SNR values are 2d  = 
71.503 and 249.512 for the 33Γ component, respectively.  That is POF = 0.000 for the 
given POM = 0.001, 0.010, and 0.050 in both cases.  The filters using either the psd 
model or the empirical psd yield large values of POF when the highest peaks do not 
locate or are close to the true location.  Note that the 22Γ , 12Γ , and 23Γ  filters using either 
the smooth psd or the empirical psd can not locate the anomaly for β′ = 90° and β′ = 0°, 
see also Tables 5.7.  This is because the gradient signals are relatively small, compared 
with the noise background; the capability of the filters has its limitation in a strong noise 
background.   
    For β′ = 45° and the component 11Γ , the signal is not detectable by the 11Γ  matched 
filter using Psd model 1 whereas the filter using the empirical psd is; see Table 5.6.  The 
capabilities of the filters between using Psd model 1 and the empirical psd are 
significantly different.  The latter shows larger magnitudes of the transfer functions (eq. 
(5.8)) of the matched filters than those using the psd model.  For instance, shown in 
Figure 5.11 versus 5.13, the maximum magnitude of the 11Γ  transfer function using the 
psd model is about 5x104 2]mcyc[]E1[  which is smaller than the maximum magnitude 
using the empirical psd ( = 5x106 2]mcyc[]E1[ ).  This is because noise (empirical) 
spectrum can contain many larger “spikes”.  The matched filter using the smooth psd can 
not sufficiently represent all these spikes while the filter using the empirical psd can.   
    By comparing the detection results, shown in Figure 5.12 versus 5.14, the matched 
filters using the empirical psd outperform the filters using the psd model.  Detecting the 
anomaly by the former is done successfully.  In Table 5.6, although POF = 0.171 for the 
given POM = 0.001, the 11Γ  matched filter using the psd model mislocates the target 
anomaly.  By using the empirical psd’s, the filters provide improved noise suppressing 
capabilities and can better locate the true location of the anomaly.  It is clear that the more 
accurate the psd modeling, the better is the performance of matched filter.   
    Figures 5.15 – 5.18 show the case β′ = 0°.  Table 5.7 summarizes signal 
detectability and performance of matched filters.  Although the performance of the 33Γ  
matched filter using Psd model 1 is relatively high, compared to other filters, the filter 
can not locate the target, which can be detected by the filter using the empirical psd.  
Therefore, this result confirms that a more accurate psd model than Psd model 1 is needed 
to improve the detectability.  In this section, we have not discussed how orientations will 
affect the detectability of matched filters.  More details will be discussed in Section 5.6. 
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Figure 5.7: The matched filter functions and the transfer functions (using Psd model 1) 
for the individual gradients due to the 2m x 2m x 1000m anomaly at the azimuthal 
orientation of 90° and 30m depth in the full geological background plus 1E2/Hz white 
noise. 
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Figure 5.8: The matched filter outputs (using Psd model 1 for the full geological background plus 1E2/Hz white noise); “×” indicates 
the location of highest peak; “+” indicates the true location of the 2m x 2m x 1000m anomaly at the azimuthal orientation of 90° and 
30m depth.
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Figure 5.9: The matched filter functions and the transfer functions (using the empirical 
psd) for the individual gradients due to the 2m x 2m x 1000m anomaly at the azimuthal 
orientation of 90° and 30m depth in the full geological background plus 1E2/Hz white 
noise. 
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Figure 5.10: The matched filter outputs (using the empirical psd for the full geological background plus 1E2/Hz; white noise) “×” 
indicates the location of highest peak; “+”  indicates the true location of the 2m x 2m x 1000m anomaly; at the azimuthal orientation 
of 90° and 30m depth. 
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Type Grad. ΔN  ΔE  2d  maxy  POM = 0.001 POM = 0.010 POM = 0.050 
      η′  POF η′  POF η′  POF 

33Γ  0.0 -90.0 71.503 68.124 45.372 0.000 51.832 0.000 57.595 0.000

22Γ  -720.0 -3150.0 0.941 40.628 -2.057 0.983 -1.316 0.912 -0.655 0.750

11Γ  0.0 30.0 68.884 67.895 43.236 0.000 49.576 0.000 55.232 0.000

12Γ  -810.0 -3090.0 0.807 8.049 -1.969 0.986 -1.283 0.923 -0.671 0.772

13Γ  0.0 0.0 35.893 32.385 17.379 0.002 21.956 0.000 26.039 0.000

a 

23Γ  -690.0 -3180.0 1.766 32.331 -2.341 0.961 -1.325 0.841 -0.420 0.624

33Γ  0.0 0.0 249.512 254.065 200.699 0.000 212.765 0.000 223.530 0.000

22Γ  4740.0 5070.0 5.102 9.059 -1.878 0.797 -0.153 0.527 1.387 0.267

11Γ  0.0 0.0 334.154 353.945 277.665 0.000 291.629 0.000 304.086 0.000

12Γ  7410.0 2670.0 5.034 9.067 -1.899 0.801 -0.186 0.533 1.343 0.275

13Γ  0.0 0.0 178.949 185.643 137.611 0.000 147.829 0.000 156.946 0.000

b 

23Γ  -4530.0 -7950.0 9.824 13.829 0.138 0.482 2.532 0.209 4.668 0.068
 
 
 
Table 5.5: Detectability and performance of the matched filter using (a) Psd model 1 and (b) the empirical psd for the full geological 
background plus 1E2/Hz white noise; ΔN  and ΔE  are the difference of the location of the highest peak minus the true location; the 
2m x 2m x 1000m anomaly at the azimuthal orientation of 90° and 30m depth. 
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Figure 5.11: The matched filter functions and the transfer functions (using Psd model 1) 
for the individual gradients due to the 2m x 2m x 1000m anomaly at the azimuthal 
orientation of 45° and 30m depth in full geological background plus 1E2/Hz white noise.  



 

62

 
 
 

Figure 5.12: The matched filter outputs (using Psd model 1 for the full geological background plus 1E2/Hz white noise); “×” indicates 
the location of highest peak; “+” indicates the true location of the 2m x 2m x 1000m anomaly at the azimuthal orientation of 45° and 
30m depth. 
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Figure 5.13: The matched filter functions and the transfer functions (using the empirical 
psd) for the individual gradients due to the 2m x 2m x 1000m anomaly at the azimuthal 
orientation of 45° and 30m depth in the full geological background plus 1E2/Hz white 
noise. 
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Figure 5.14: The matched filter outputs (using the empirical psd for the full geological background plus 1E2/Hz white noise); “×” 
indicates the location of highest peak; “+” indicates the true location of the 2m x 2m x 1000m anomaly at the azimuthal orientation of 
45° and 30m depth. 
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Type Grad. ΔN  ΔE  2d  maxy  POM = 0.001 POM = 0.010 POM = 0.050 
      η′  POF  η′  POF η′  POF 

33Γ  -30.0 -30.0 62.852 50.517 38.353 0.000 44.409 0.000 49.812 0.000

22Γ  -240.0 -300.0 17.347 71.246 4.476 0.141 7.658 0.033 10.496 0.006

11Γ  6870.0 1800.0 16.320 18.657 3.836 0.171 6.922 0.043 9.675 0.008

12Γ  -90.0 -90.0 15.573 27.688 3.378 0.196 6.392 0.053 9.082 0.011

13Γ  -60.0 -60.0 27.562 31.288 11.339 0.015 15.349 0.002 18.927 0.000

a 

23Γ  -300.0 -300.0 28.987 74.179 12.349 0.011 16.462 0.001 20.131 0.000

33Γ  0.000 0.000 424.216 413.879 360.568 0.000 376.301 0.000 390.338 0.000

22Γ  0.000 0.000 112.838 96.789 80.012 0.000 88.127 0.000 95.366 0.000

11Γ  0.000 0.000 114.111 113.064 81.101 0.000 89.261 0.000 96.541 0.000

12Γ  0.000 0.000 106.288 116.318 74.429 0.000 82.305 0.000 89.331 0.000

13Γ  -30.000 -30.000 189.514 189.830 146.972 0.000 157.488 0.000 166.870 0.000

b 

23Γ  -30.000 -30.000 190.639 192.157 147.972 0.000 158.519 0.000 167.929 0.000
 
 
 
Table 5.6: Detectability and performance of the matched filter using (a) Psd model 1 and (b) the empirical psd for the full geological 
background plus 1E2/Hz white noise; ΔN  and ΔE  are the difference of the location of the highest peak minus the true location; the 
2m x 2m x 1000m anomaly at the azimuthal orientation of 45° and 30m depth 
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Figure 5.15: The matched filter functions and the response transfer functions (using Psd 
model 1) for the individual gradients due to the 2m x 2m x 1000m anomaly at the 
azimuthal orientation of 0° and 30m depth in the full geological background plus 1E2/Hz 
white noise.  
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Figure 5.16: The matched filter outputs (using Psd model 1 for the full geological background plus 1E2/Hz white noise); “×” indicates 
the location of highest peak; “+” indicates the true location of the 2m x 2m x 1000m anomaly at the azimuthal orientation of 0° and 
30m depth.
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Figure 5.17: The matched filter functions and the transfer functions (using the empirical 
psd) for the individual gradients due to the 2m x 2m x 1000m anomaly at the azimuthal 
orientation of 0° and 30 m depth in the full geological  background plus 1E2/Hz white 
noise.
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Figure 5.18: The matched filter outputs (using the empirical psd for the full geological background plus 1E2/Hz white noise); “×” 
indicates the location of highest peak; “+” indicates the true location of the 2m x 2m x 1000m anomaly at the azimuthal orientation of 
0° and 30m depth. 
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Type Grad. ΔN  ΔE  2d  maxy  POM = 0.001 POM = 0.010 POM = 0.050 
      η′  POF  η′  POF η′  POF 

33Γ  540.0 1560.0 74.966 71.006 48.210 0.000 54.824 0.000 60.724 0.000

22Γ  -870.0 -1920.0 72.923 120.288 46.534 0.000 53.057 0.000 58.876 0.000

11Γ  -6870.0 6930.0 0.767 3.719 -1.939 0.987 -1.270 0.926 -0.674 0.779

12Γ  -840.0 -1770.0 0.824 10.262 -1.981 0.985 -1.288 0.922 -0.669 0.769

13Γ  5190.0 8250.0 1.562 6.407 -2.300 0.967 -1.345 0.859 -0.494 0.653

a 

23Γ  570.0 1680.0 39.006 88.642 19.706 0.001 24.477 0.000 28.733 0.000

33Γ  0.000 0.000 209.710 208.713 164.959 0.000 176.021 0.000 185.890 0.000

22Γ  0.000 0.000 291.702 291.370 238.923 0.000 251.969 0.000 263.609 0.000

11Γ  3420.0 -7560.0 5.080 9.561 -1.885 0.799 -0.163 0.529 1.373 0.271

12Γ  -690.0 180.0 4.819 10.459 -1.965 0.815 -0.288 0.552 1.208 0.291

13Γ  210.0 5280.0 9.843 13.591 0.148 0.481 2.544 0.209 4.682 0.068

b 

23Γ  0.000 0.000 162.902 169.744 123.461 0.000 133.210 0.000 141.908 0.000
 
 
 
Table 5.7: Detectability and performance of the matched filter using (a) Psd model 1 and (b) the empirical psd in the full geological 
background plus 1E2/Hz white noise; ΔN  and ΔE  are the difference of the location of the highest peak minus the true location; the 
2m x 2m x 1000m anomaly at the azimuthal orientation of 0° and 30m depth.
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5.4 CASE III: Anomaly detection in correlated noise using the combination of six 
gradient components 
    Rather than attempt to seek an accurate psd model for individual matched filters, as 
described in the previous case, this section shows how the matched filter using the 
combination of six gradient components with Psd model 1 performs in terms of signal 
detectability.  The (vector) transfer function of the filter, ),(~

21 ffH , is obtained from the 
equation (4.18) and is extended to the two dimensional case 
 
  ),(~),(~),(~

1111
1

MM2111 ffffxxff ∗−ΦΔΔ= SH                            (5.10) 
 

where the MxM cross psd matrix, MM
~Φ , between M sensors for { }6,5,4,3,2,1M∈ , is 

constructed according to (6.97) in Chapter 6 using (A.1) with the parameters of Psd 
model 1 plus the instrumental noise FN  in Table A.1: MM21MM

~~ Σxx ΔΔ=Φ (physical 
correlations between sensor outputs are considered) + FN .  The vectors ),(~

21 ffH  and 
),(~

21 ffS  have size Mx1.  We also assume the matrix MM
~Φ  is invertible.   

    As shown in Figures 5.19 - 5.21 where the 2m x 2m x 1000m anomaly is oriented 
at β′ = 90° , 45°, and 0°, respectively, the filter outputs clearly indicate an improvement 
of signal detection and performance.  The results are shown in Tables 5.8 – 5.10, where 
other combinations of gradients are also considered.  For example, for β′ = 90°, the 
combination of 22Γ  and 12Γ  can not locate the true location where NΔ  = -5940.0m and 

EΔ  = 7770.0m (Table 5.8), which shows the low performance: POF = 0.970 for given 
POM = 0.001 and d2 = 1.461.  However, the highest peak occurs at the true location  
using all six components.  The performance by the six combination is high: POF = 0.000 
for given POM = 0.001 and 2d = 175.213. 
    Another example is addressed to show how well the matched filter performs for 
combinations of gradients.  Refer to CASE II in section 5.3 where Table 5.7a shows that 
no matched filter for individual gradients can detect the target anomaly for β′ = 0°,  (e.g., 
the 33Γ  matched filter mislocates the true location, i.e.,ΔN  = 540.0m andΔE  = 1560.0m 
whereas POF = 0.000 for given POM = 0.001 and 2d  = 74.966).  In comparison, shown 
in Table 5.10, when all six combined gradients are used, the highest peak output occurs at 
the true location with a high performance.  However, it should be noted that if POM is 
defined too high, the highest peak maxy  = 142.656 does not exceed the computed 
thresholds, i.e., η′  = 153.379 and 144.360, for given POM = 0.010 and 0.050, 
respectively.  As such, we falsely reject 0H .  (Making a decision to either accept 0H  or 

1H  is controlled by choosing POM)  The POM = 0.001, where η′  = 134.250 and POF = 
0.000, is an appropriate level of significance for this case.   
    We further test the capability of the matched filter using the combination.  But 
here, consider the anomaly for β′ = 90° at the deeper depth = 60m where the gradient 
signals are much smaller.  As expected, the matched filter using all six combined 
gradients yields the most reliable detection, shown in Figure 5.22.  The highest peak 
output exists at the true location with POF = 0.254 for POM = 0.001 and 2d  = 14.068, 
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shown in Table 5.11.  However, the performance of the combination filter is downgraded 
as compared to the case where β′ = 90° and depth = 30m: POF = 0.000 for POM = 0.001 
and d2 = 175.213 (Table 5.8).  Overall, the matched filters using all six gradients with Psd 
model 1 are successful in locating the true anomaly and have an increased performance. 
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Figure 5.19: The matched filter output of the combination of six gradients in the full geological background plus 1E2/Hz white noise 
using Psd model 1; “×” indicates the location of highest peak; “+” indicates the true location of the 2m x 2m x 1000m anomaly at the 
azimuthal orientation of 90° and 30m depth. 
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Orient. Grad. ΔN (m) ΔE (m) 2d  maxy  POM = 0.001 POM = 0.010 POM = 0.050 
      η′  POF η′  POF η′  POF 

2,4 -5940.0 7770.0 1.461 6.052 -2.274 0.970 -1.351 0.868 -0.527 0.669
2,4,6 6120.0 1530.0 2.893 9.019 -2.363 0.918 -1.064 0.734 0.095 0.478
2,4,6,5 0.0 0.0 38.474 48.312 19.306 0.001 24.044 0.000 28.271 0.000
2,4,6,3 0.0 0.0 71.403 79.042 45.291 0.000 51.745 0.000 57.504 0.000
2,4,6,1 0.0 0.0 73.694 76.954 47.166 0.000 53.724 0.000 59.574 0.000
2,4,6,5,3 0.0 0.0 106.049 121.491 74.225 0.000 82.092 0.000 89.110 0.000
2,4,6,5,1 0.0 0.0 108.142 115.451 76.006 0.000 83.950 0.000 91.037 0.000
2,4,6,3,1 0.0 0.0 141.005 155.654 104.310 0.000 113.381 0.000 121.473 0.000

90° 

2,4,6,5,3,1 0.0 0.0 175.213 192.861 134.308 0.000 144.420 0.000 153.440 0.000
NOTE: 
1 = 33Γ , 2 = 22Γ , 3 = 11Γ , 4 = 12Γ , 5 = 13Γ , 6 = 23Γ  

 
 
 
Table 5.8: Detectability and performance of the combination of matched filter using Psd model 1 in the full geological background 
plus 1E2/Hz white noise; ΔN   and ΔE  are the difference of the location of the highest peak minus the true location of the 2m x 2m x 
1000m anomaly at the azimuthal orientation of 90° and 30m depth. 
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Figure 5.20: The matched filter output of the combination of six gradients in the full geological background plus 1E2/Hz white noise 
using PSD model 1; “×” indicates the location of highest peak; “+” indicates the true location of the 2m x 2m x 1000m anomaly at the 
azimuthal orientation of 45° and 30m depth. 
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Orient. Grad. ΔN (m) ΔE (m) 2d  maxy  POM = 0.001 POM = 0.010 POM = 0.050 
      η′  POF η′  POF η′  POF 

2,4 30.0 30.0 30.994 28.545 13.790 0.007 18.042 0.001 21.836 0.000
2,4,6 -60.0 -60.0 57.614 52.813 34.158 0.000 39.956 0.000 45.129 0.000
2,4,6,5 -60.0 -60.0 84.070 82.164 55.736 0.000 62.740 0.000 68.988 0.000
2,4,6,3 0.0 0.0 73.372 68.446 46.901 0.000 53.445 0.000 59.282 0.000
2,4,6,1 0.0 0.0 117.581 103.604 84.072 0.000 92.356 0.000 99.745 0.000
2,4,6,5,3 -60.0 -60.0 99.720 96.342 68.861 0.000 76.490 0.000 83.295 0.000
2,4,6,5,1 0.0 0.0 143.700 130.771 106.656 0.000 115.813 0.000 123.982 0.000
2,4,6,3,1 0.0 0.0 133.139 119.166 97.482 0.000 106.296 0.000 114.159 0.000

45° 

2,4,6,5,3,1 0.0 0.0 159.194 146.547 120.204 0.000 129.842 0.000 138.441 0.000
NOTE: 
1 = 33Γ , 2 = 22Γ , 3 = 11Γ , 4 = 12Γ , 5 = 13Γ , 6 = 23Γ  

 
 
 
Table 5.9: Detectability and performance of the combination of matched filter using Psd model 1 in the full geological background 
plus 1E2/Hz white noise; ΔN  and ΔE  are the difference of the location of the highest peak minus the true location of the 2m x 2m x 
1000m anomaly at the azimuthal orientation of 45° and 30m depth. 
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Figure 5.21: The matched filter output of the combination of six gradients in the full geological background plus 1E2/Hz white noise 
using Psd model 1; “×” indicates the location of highest peak; “+” indicates the true location of the 2m x 2m x 1000m anomaly at the 
azimuthal orientation of 0° and 30m depth. 
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Orient. Grad. ΔN (m) ΔE (m) 2d  maxy  POM = 0.001 POM = 0.010 POM = 0.050 
      η′  POF η′  POF η′  POF 

3,4 2490.0 7290.0 1.461 6.296 -2.274 0.970 -1.351 0.868 -0.527 0.669
3,4,5 -3030.0 9000.0 2.893 8.045 -2.363 0.918 -1.064 0.734 0.095 0.478
3,4,5,6 0.0 0.0 38.471 34.559 19.304 0.001 24.042 0.000 28.269 0.000
3,4,5,2 7560.0 1110.0 71.403 60.961 45.290 0.000 51.745 0.000 57.504 0.000
3,4,5,1 -3960.0 1800.0 73.690 59.023 47.163 0.000 53.720 0.000 59.570 0.000
3,4,5,6,2 0.0 0.0 106.014 85.513 74.196 0.000 82.062 0.000 89.079 0.000
3,4,5,6,1 0.0 0.0 108.251 91.010 76.099 0.000 84.047 0.000 91.137 0.000
3,4,5,2,1 0.0 0.0 141.007 110.614 104.312 0.000 113.383 0.000 121.475 0.000

0° 

3,4,5,6,2,1 0.0 0.0 175.148 142.656 134.250 0.000 144.360 0.000 153.379 0.000
 
NOTE: 1 = 33Γ , 2 = 22Γ , 3 = 11Γ , 4 = 12Γ , 5 = 13Γ , 6 = 23Γ  
 

 
 
 
Table 5.10: Detection and performance of the combination of matched filter using Psd  model 1 in the full geological background plus 
1E2/Hz white noise; ΔN  and ΔE  are the difference of the location of the highest peak minus the true  location of the 2m x 2m x 
1000m anomaly at the azimuthal orientation of 0° and 30m depth. 
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Figure 5.22: The matched filter output of the combination of six gradients in the full geological background plus 1E2/Hz white noise 
using Psd model 1; “×” indicates the location of highest peak; “+” indicates the true location of the 2m x 2m x 1000m anomaly at the 
azimuthal orientation of 90° and 60m depth. 
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Orient. Grad. ΔN (m) ΔE (m) 2d  maxy  POM = 0.001 POM = 0.010 POM = 0.050 
      η′  POF η′  POF η′  POF 

2,4 -5760.0 6030.0 0.237 3.852 -1.267 0.995 -0.895 0.967 -0.564 0.877
2,4,6 -6600.0 4710.0 0.442 4.183 -1.612 0.992 -1.105 0.952 -0.652 0.836
2,4,6,5 480.0 -1230.0 5.220 10.540 -1.840 0.790 -0.095 0.517 1.462 0.261
2,4,6,3 -120.0 -2130.0 5.190 10.606 -1.850 0.792 -0.110 0.519 1.442 0.263
2,4,6,1 -5250.0 5700.0 5.457 12.298 -1.762 0.775 0.022 0.496 1.614 0.245 
2,4,6,5,3 0.000 0.000 9.600 13.674 0.025 0.497 2.392 0.220 4.504 0.073 
2,4,6,5,1 -5250.0 5700.0 9.855 14.957 0.154 0.480 2.552 0.208 4.692 0.067 
2,4,6,3,1 -90.0 -240.0 9.831 15.568 0.142 0.482 2.537 0.209 4.674 0.068 

90° 

2,4,6,5,3,1 0.000 0.000 14.068 19.750 2.478 0.254 5.343 0.077 7.899 0.018
 
NOTE: 1 = 33Γ , 2 = 22Γ , 3 = 11Γ , 4 = 12Γ , 5 = 13Γ , 6 = 23Γ  
 

 
 
 
Table 5.11: Detection and performance of the combination of matched filter using Psd  model 1 in the full geological background plus 
1E2/Hz white noise; ΔN  and ΔE  are the difference of the location of the highest peak minus the true  location of the 2m x 2m x 
1000m anomaly at the azimuthal orientation of 90° and 60m depth. 
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5.5 CASE IV: Anomaly detectability versus sizes and depths 
    Thus far, we have discussed the anomaly detection by matched filtering techniques 
in 1E2/Hz white noise and full geological background plus 1E2/Hz white noise.  The 2m x 
2m x 1000m anomaly was considered.  The numerical results indicate that, overall, the 

33Γ  matched filter is able to detect the anomaly best among other components.  Psd 
modeling affects the filter detectability, as compared to the case where the empirical 
psd’s were applied.  Although more accurate psd models are needed to enhance the 
capability of matched filters, the matched filter using all six gradients with Psd model 1 
shows an improvement of signal detection and performance superior to the individual 
matched filters with Psd model 1. 
    This section examines the detectability associated with sizes and depths of 
anomalies at the azimuthal orientations of 90°, 45°, and 0°.  More types of noise 
backgrounds are included to see how they affect the detectability associated with  
these sizes and depths using both psd models and empirical psd’s.  The noise 
backgrounds are as follows (i) full geological background plus 1E2/Hz white noise (or 
instrumental white noise), (ii) full geological background plus 1E2/Hz white noise minus 
a geological model obtained as described in section 5.1 (see Footnote 6), (iii) the longer 
than 5km wavelength GGSS data plus 1E2/Hz white noise, and (iv) only 1E2/Hz white 
noise (considered as the best-case detection situation). 
    The parameters of anomalies for the investigation are defined in Table 5.12.  Figure 
5.23 shows the test strategy to determine anomaly detectability with respect to sizes and 
depths.  To determine the maximum depth, maxD , at which different anomalies can be 
detected using individual gradients and all six combined gradients, the detectability 
criterion is defined by three steps as follows: 
 

I. At depth i for { }maxD,,m30,m20,m10i K∈ , select the location, ( ii E,N ) ,of the 
matched filter output where the highest peak imax,y  occurs.  

II. If 10i xNN δ≤−  and 20i xEE δ≤− , then the target signal is detected at 
depth i. 

III. Return to step I if the anomaly is located at depth i; otherwise declare depth i-1 
as the maximum depth maxD . 

 
 
 

Type Width (m) Height (m) Length (m) 

I 5 5 5,10, and 100 
II 2 2 10,100, and 1000 

 
 
Table 5.12: The various types of target anomalies. 
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The symbol ( 0N , 0E ) is the true location of target anomalies of types I and II (which is 
given).  Based on a number of numerical experiments, the tolerances of 1xδ  = 90m and 

2xδ  = 90m are an appropriate choice for the criterion of step II.  The values in Tables 
5.13 to 5.22 provide a detailed analysis, which we briefly discuss in terms of how the 
factors stated above affect the anomaly detectability. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.23: Block diagram of anomaly detectability criteria. 
 
 
 
    The maximum detectable depths obtained from the matched filters for individual 
gradients using the psd models are summarized in Tables 5.13 – 5.15 at β′ = 90°, 45°, and 
0°, respectively.  These values of the detectable depths are compared to the results for the 
case at which the empirical psd’s are applied for the detection, summarized in Tables 
5.16 – 5.18.  The results show that the anomalies are detectable at deeper depths using the 
filters with the empirical psd’s.  We also see that the size of anomaly affects the 
detectability, e.g., in Table 5.13, the matched filters can detect the 5m x 5m x10m as deep 
as 20m, as compared to the deepest depth of 50m for the 5m x 5m x 100m anomaly in 
full geological background plus 1E2/Hz white noise.  However, the background noise 
only slightly affects the detectability by using the matched filters with the psd models, 
e.g., see the detectable depths of the 2m x 2m x 1000m anomaly in Tables 5.13.- 5.15 
hardly changes with different background noises.  (However, when wrong psd models are 
applied to the matched filters, the anomaly can not be detected at all; not shown here)  By 
comparing the detection results, the orientation also affects the detectability, particularly 
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12Γ  whose magnitude increases at β′ =  45°.  (More details related to orientations will be 
discussed in the next section). 
    As discussed in CASE II, the psd modeling affects the detectability.  The numerical 
details of model versus empirical psd are summarized in Tables 5.16 – 5.18.  For 
example, the anomaly having the cross section area of 2m x 2m can not be detected at all 
using the 22Γ  matched filters using the psd models in Table 5.13 whereas it is detectable 
at depth of 10m using the empirical psd (Table 5.16).  Overall, the 33Γ  matched filters are 
able to detect the target anomalies best among other component filters.  Also we found 
from our numerical results that the detectability of the 33Γ  matched filter does not depend 
on the orientations β′ = 90°, 45°, and 0° since 33Γ  is independent of orientation according 
to eq. (B.5). 
    The matched filters using all six combined gradients improve the anomaly 
detectability.  (For simplicity, assume no correlation between sensors in the white noise 
environment)  For instance, consider the 2m x 2m x 1000m anomaly at β′ = 90° in 
1E2/Hz white noise.  The deepest depth of 80m can be detected using the combination 
(Table 5.19), compared with the deepest depth = 60m in Table 5.13 where the 13Γ  
matched filter performs best to detect the same anomaly (Psd model 4 is used in both 
cases).   
    Table 5.20 shows that the location of the target affects the detectability.  This is due 
to random noise effects (from 1E2/Hz white noise) and geological interferences (from full 
geological background) at that location.  Here, we only show the cases of the target 
anomalies at β′ = 90°.  Note that using the same noise contents, e.g., 1E2/Hz white noise, 
the detectable depths, maxD , may not be equal at different true locations, e.g. maxD  = 80m 
at the true location of (N24000m, E24000m) versus maxD  = 100m at the true location of 
(N24000m, E12000m).   
    We also consider when the true location of the target anomaly is inside a grid 
square.  Table 5.21 shows the detectability results.  They show that the detectability is 
slightly downgraded when the true location is not on a grid intersection.  For instance, 
consider the 2m x 2m x 100m anomaly having the true location at N18013m and 
E18018m.  In the case of full geological background plus 1E2/Hz white noise, the 33Γ  
filter using the empirical psd gives maxD  = 30m, whereas the 33Γ  filter in Table 5.16, 
where the true location is at (N18000m, E18000m), yields maxD  = 40m. 
    Finally, the detectability also depends on the resolution of a gradiometric survey.  
The numerical analyses in Table 5.22 indicate the effects of the spatial interval on the 
detectability.  For instance, compare the cross-track spacing 1Δx  = 30m and the along 
track spacing 2Δx  = 15m with 1Δx  = 15 and 2Δx  = 5m for detecting the 2m x 2m x 
100m anomaly.  The latter case yields maxD  = 60m whereas maxD  = 40m for the former. 
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Table 5.13: Anomaly detectability versus sizes and depths at the azimuthal orientation of 
90° by the matched filters using the psd models for various noise environments; the 
center of anomaly is at N18000m and E18000m. 
 
 
 
 
 

  
Anomaly Maximum depth (m) 

  
Width x Height (m2) Length(m) 33Γ  22Γ 11Γ  12Γ  13Γ  23Γ

Psd model 1 for geological background + 1E2/Hz white noise 
 5 20 10 10 - - -

5x5 10 20 10 20 - - -
 100 50 10 50 30 50 20
 10 10 - 10 - - -

2x2 100 20 - 20 - - -
 1000 30 - 40 - 50 -

Psd model 2 for geological background +1E2/Hz white noise - geological model
 5 20 10 10 - - -

5x5 10 20 10 20 - - -
 100 70 20 60 30 40 20
 10 10 - 10 - - -

2x2 100 20 - 20 - - -
 1000 30 - 40 - 40 -

Psd model 3 for the longer-5km-wavelenth GGSS data + 1E2/Hz white noise 
 5 20 10 10 - - -

5x5 10 20 10 20 - - -
 100 70 30 60 40 50 40
 10 10 - 10 - - -

2x2 100 20 - 20 - - -
 1000 40 - 40 - 60 -

Psd model 4 for 1E2/Hz white noise 
 5 20 10 10 - - -

5x5 10 20 10 20 - - -
 100 70 30 60 40 50 40
 10 10 - 10 - - -

2x2 100 20 - 20 - - -
 1000 40 - 40 - 60 -
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Anomaly Maximum depth (m) 
  

Width x Height (m2) Length(m) 33Γ  22Γ 11Γ  12Γ  13Γ  23Γ

Psd model 1 for geological background + 1E2/Hz white noise 
 5 20 10 10 - - -

5x5 10 20 10 20 - - -
 100 50 20 60 40 70 30
 10 10 - 10 - - -

2x2 100 20 10 10 10 10 -
 1000 30 10 20 30 30 10

Psd model 2 for geological background +1E2/Hz white noise - geological model
 5 20 10 10 - - -

5x5 10 20 10 20 10 - -
 100 60 30 50 30 40 30
 10 10 - 10 - - -

2x2 100 20 10 10 10 - -
 1000 40 20 20 30 30 20

Psd model 3 for the longer-5km-wavelength GGSS data + 1E2/Hz white noise 
 5 20 10 10 - - -

5x5 10 20 10 20 - - -
 100 70 30 60 30 50 40
 10 10 - 10 - - -

2x2 100 20 10 10 10 10 -
 1000 30 20 30 40 30 20

Psd model 4 for 1E2/Hz white noise 
 5 20 10 10 - - -

5x5 10 20 10 20 - - -
 100 70 30 60 30 50 40
 10 10 - 10 - - -

2x2 100 20 10 10 10 10 -
 1000 30 20 30 40 30 20

 
 
 
Table 5.14: Anomaly detectability versus sizes and depths at the azimuthal orientation of 
45° by the matched filters using the psd models for various noise environments; the 
center of anomaly is at N18000m and E18000m. 
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Anomaly Maximum depth (m) 
  

Width x Height (m2) Length(m) 33Γ  22Γ  11Γ  12Γ  13Γ  23Γ  
Psd model 1 for geological background + 1E2/Hz white noise  

 5 20 10 10 - - -
5x5 10 20 10 20 - - -

 100 40 30 40 30 40 30
 10 10 10 - - - -

2x2 100 20 10 - - - -
 1000 20 20 - - - -

Psd model 2 for geological background + 1E2/Hz white noise - geological model
 5 20 10 10 - - -

5x5 10 20 10 20 - - -
 100 60 40 40 30 40 30
 10 10 10 - - - -

2x2 100 20 10 - - - -
 1000 30 30 - - - 10

Psd model 3 for the longer-5km-wavelength GGSS data + 1E2/Hz white noise 
 5 20 10 10 - - -

5x5 10 20 10 20 - - -
 100 70 40 50 40 40 50
 10 10 10 - - - -

2x2 100 20 10 - - - -
 1000 30 40 - - - 30

Psd model 4 for 1E2/Hz white noise 
 5 20 10 10 - - -

5x5 10 20 10 20 - - -
 100 70 40 50 40 40 50
 10 10 10 - - - -

2x2 100 20 10 - - - -
 1000 30 40 - - - 30

 
 
 
Table 5.15: Anomaly detectability versus sizes and depths at the azimuthal orientation of 
0°  by the matched filters using  the psd models for various noise environments; the center 
of anomaly is at N18000m and E18000m. 
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Anomaly Maximum depth (m) 
  

Width x Height (m2) Length(m) 33Γ  22Γ 11Γ  12Γ  13Γ 23Γ

The empirical psd for geological background + 1E2/Hz white noise 
 5 30 20 20 - - -

5x5 10 30 20 30 10 20 30
 100 100 60 70 50 80 70
 10 20 10 10 - - -

2x2 100 40 10 30 10 30 20
 1000 50 10 60 - 60 20

The empirical psd for geological background + 1E2/Hz white noise - geological model
 5 30 20 20 - - -

5x5 10 40 20 30 10 20 30
 100 110 50 90 50 80 80
 10 20 10 10 - - -

2x2 100 40 10 30 10 20 20
 1000 60 20 90 - 70 20

The empirical psd for the longer-5km-wavelength GGSS data + 1E2/Hz white noise 
 5 30 20 20 - - -

5x5 10 40 20 30 10 20 30
 100 110 50 80 60 90 70
 10 20 10 10 - - -

2x2 100 40 10 30 10 20 20
 1000 60 20 70 - 90 20

The empirical psd for 1E2/Hz white noise 
 5 30 20 20 - - -

5x5 10 40 20 30 10 20 30
 100 120 50 80 50 80 70
 10 20 10 10 - - -

2x2 100 40 10 30 10 30 20
 1000 70 20 70 - 80 20

 
 
 
Table 5.16: Anomaly detectability versus sizes and depths at the azimuthal orientation of 
90° by the matched filters using the empirical psd’s for various noise environments; the 
center of anomaly is at N18000m and E18000m. 
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Anomaly Maximum depth (m) 
  

Width x Height (m2) Length(m) 33Γ  22Γ  11Γ  12Γ  13Γ  23Γ  
The empirical psd for geological background + 1E2/Hz white noise 

 5 30 20 20 - - -
5x5 10 30 20 30 10 20 30

 100 80 60 80 70 70 100
 10 20 10 10 - - -

2x2 100 30 20 20 20 30 30
 1000 80 40 40 60 50 60

The empirical psd for geological background + 1E2/Hz white noise - geological model
 5 30 20 20 - - -

5x5 10 40 20 30 10 20 30
 100 110 60 80 60 70 90
 10 20 10 10 - - -

2x2 100 40 20 20 20 30 30
 1000 110 40 50 60 50 80

The empirical psd for the longer-5km-wavelength GGSS data + 1E2/Hz white noise 
 5 30 20 20 - - -

5x5 10 40 20 30 10 20 30
 100 100 60 80 60 70 80
 10 20 10 10 - - -

2x2 100 40 20 20 20 30 20
 1000 100 40 50 60 50 70

The empirical psd for 1E2/Hz white noise 
 5 30 20 20 - - -

5x5 10 40 20 30 10 20 30
 100 100 60 80 60 70 80
 10 20 10 10 - - -

2x2 100 40 20 20 20 30 20
 1000 100 40 50 60 50 70

 
 
 
Table 5.17: Anomaly detectability versus sizes and depths at the azimuthal orientation of 
45° filters using the empirical psd’s for various noise environments; the center of 
anomaly is at N18000m and E18000m. 
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Anomaly Maximum depth (m) 
  

Width x Height (m2) Length(m) 33Γ  22Γ  11Γ  12Γ  13Γ  23Γ  
The empirical psd for geological background + 1E2/Hz white noise 

 5 30 20 20 - - - 
5x5 10 30 20 30 10 20 30

 100 100 60 70 50 80 80
 10 20 10 10 - - -

2x2 100 20 10 10 - - -
 1000 50 120 10 - 20 60

The empirical psd for geological background + 1E2/Hz white noise - geological model
 5 30 20 20 - - -

5x5 10 40 20 30 10 20 30
 100 100 60 80 50 80 80
 10 20 10 10 - - -

2x2 100 40 20 10 - 20 40
 1000 70 60 10 - 50 80

The empirical psd for the longer-5km-wavelength GGSS data + 1E2/Hz white noise 
 5 30 20 20 - - -

5x5 10 40 20 30 10 20 30
 100 110 60 80 60 90 70
 10 20 10 10 - - -

2x2 100 40 20 10 - 20 30
 1000 60 70 10 - 40 70

The empirical psd for 1E2/Hz white noise 
 5 30 20 20 - - -

5x5 10 40 20 30 10 20 30
 100 110 60 70 50 80 80
 10 20 10 10 - - -

2x2 100 40 20 10 - 20 40
 1000 70 70 10 - 90 80

 
 
 
Table 5.18: Anomaly detectability versus sizes and depths at the azimuthal orientation of 
0 ° by the matched filters using the empirical psd’s for various noise environments; the 
center of anomaly is at N18000m and E18000m. 
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Anomaly Geo. Back. 
+  

1E2/Hz 
white noise 

 

Geo. Back. 
+  

1E2/Hz 
white noise  

– Geo. 
model 

The longer-5km-
wavelength  

GGSS data + 
1E2/Hz white noise 

1E2/Hz 
white noise 

     
Orient. Width x Height x 

Length (m3) 
Depth 

(m) 
Depth 

(m) 
Depth 

(m) 
Depth 

(m) 
5x5x5 20 20 20 20 
5x5x10 20 20 30 30 
5x5x100 70 70 90 80 
2x2x10 10 10 10 10 
2x2x100 30 40 30 30 

90° 

2x2x1000 60 70 80 80 
5x5x5 20 20 20 20 
5x5x10 20 20 30 30 
5x5x100 80 60 80 80 
2x2x10 10 10 10 10 
2x2x100 20 20 20 20 

45° 

2x2x1000 50 50 60 60 
5x5x5 20 20 20 20 
5x5x10 20 20 30 30 
5x5x100 60 60 80 80 
2x2x10 10 10 10 10 
2x2x100 20 20 20 20 

0° 

2x2x1000 40 40 50 50 
 
 
 
Table 5.19: Anomaly detectability versus sizes, depths, and orientations by the matched 
filters for all six combined gradients using psd models; for 1E2/Hz white noise, assume 
no correlation between sensors; the center of anomaly is at N18000m and E18000m. 
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Anomaly Maximum depth (m) 
       

Noise background. The center’ location 33Γ 22Γ 11Γ  12Γ  13Γ  23Γ

(N18000m, E18000m) 50 10 60 - 60 20
(N24000m, E24000m) 70 10 60 - 50 20
(N24000m, E12000m) 60 10 90 20 60 10
(N12000m, E12000m) 50 10 50 - 60 20

Geo. Back. +  
1E2/Hz white noise 
 

(N12000m, E24000m) 50 10 60 - 50 10
(N18000m, E18000m) 60 20 90 - 70 20
(N24000m, E24000m) 90 10 60 - 50 20
(N24000m, E12000m) 70 10 100 - 30 10
(N12000m, E12000m) 70 10 60 - 60 20

Geo. Back. +  
1E2/Hz white noise  
– Geo. model 

(N12000m, E24000m) 60 10 90 - 60 10
(N18000m, E18000m) 70 20 70 - 80 20
(N24000m, E24000m) 80 10 50 - 50 20
(N24000m, E12000m) 100 10 110 10 50 10
(N12000m, E12000m) 100 10 90 - 70 30

1E2/Hz white noise 

(N12000m, E24000m) 100 20 80 - 60 10
 
 
 
Table 5.20: Anomaly detectability of the matched filters using the empirical psd’s versus 
locations and depths in various noise environments; the 2m x 2m x 1000m  anomaly at the 
azimuthal orientation of 90°. 
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Anomaly Geo. Back. +  

1E2/Hz white noise 
 

Geo. Back. +  
1E2/Hz white noise  

– Geo. model 

The longer-5km-wavelength 
GGSS data + 

1E2/Hz white noise 

1E2/Hz white noise 

     
Width x Height x 

Length (m3) 
Depth

(m) 
ΔN
(m)

ΔE 
(m) 

Depth
(m) 

ΔN
(m)

ΔE 
(m) 

Depth 
(m) 

ΔN 
(m) 

ΔE 
(m) 

Depth
(m) 

ΔN 
(m)

ΔE 
(m) 

 10 -13 +12 10 -13 +12 10 -13 +12 10 -13 +12
2x2x10 10 -13 +12 10 -13 +12 10 -13 +12 10 -13 +12

 10 -13 +12 10 -13 +12 10 -13 +12 10 -13 +12
 10 -13 +12 10 -13 +12 10 -13 +12 10 -13 +12

2x2x100 30 -13 +12 30 -13 +12 40 -13 -18 40 -13 -18 
 10 -13 +12 20 -13 -18 20 -13 -18 20 -13 -18 
 20 -13 -18 20 -13 -18 20 -13 -18 20 -13 -18 

2x2x1000 40 -13 +12 60 -13 -18 70 -13 -18 70 -13 -18 
 50 -13 -18 60 -13 -18 70 -13 -78 70 -13 -78 

NOTE:  
Normal fonts indicate the detection results by the 33Γ  matched filter with the “smooth” psd models. 
Bold fonts indicate the detection results by the 33Γ  matched filter with the empirical psd’s. 
Italic fonts indicate the detection results by the combination of the matched filters for all six combined gradients 
using the psd models (assume no correlation between sensors). 

 
 
 
Table 5.21: The anomaly detectability of the 33Γ  matched filter using the psd models versus the empirical psd’s for various noise 
backgrounds.  The matched filter for all six combined gradients are used in comparisons.  The center of the anomaly at the azimuthal 
orientation of 90° is located at N=18013m and E=18018m.   
 



 

93

     
Anomaly m30x1 =Δ  

m15x 2 =Δ  
m30x1 =Δ  
m5x 2 =Δ  

m15x1 =Δ  
m15x 2 =Δ  

m15x1 =Δ  
m5x 2 =Δ  

     
Width x Height x 

Length (m3) 
Depth 

(m) 
ΔN 
(m) 

ΔE 
(m) 

Depth 
(m) 

ΔN 
(m) 

ΔE 
(m) 

Depth 
(m) 

ΔN 
(m) 

ΔE 
(m) 

Depth 
(m) 

ΔN 
(m) 

ΔE 
(m) 

 10 -13 -3 10 -13 -3 10 +2 -3 10 +2 +2
2x2x10 10 -13 -3 20 -13 -3 10 +2 -3 20 +2 +2

 10 +17 -3 10 -13 +2 10 +2 -3 20 +2 -3
 20 -13 -3 30 -13 -8 30 +2 -3 40 2 -8

2x2x100 40 -13 -3 50 -13 -18 50 +2 -3 60 2 -13
 30 -13 -18 50 -13 +2 40 +2 -3 60 +2 +7
 50 -13 -18 70 -13 +87 70 +2 -18 80 +2 +7

2x2x1000 80 -13 -18 110 +17 -7 120 +2 -3 130 +17 -88
 90 +17 -3 70 -13 +52 90 +2 -3 100 +2 +17

NOTE:  
Normal fonts indicate the detection results by the 33Γ  matched filter with the psd model = 21

2
w xx ΔΔσ  [E2/(cyc/m)2]

Bold fonts indicate the detection results by the 33Γ  matched filter with the empirical psd’s for 1E2/Hz white noise 
Italic fonts indicate the detection results by the combination of the matched filters for all six gradient components  
using the psd models (assume no correlation between sensors). 

 
 
Table 5.22: The anomaly detectability of the 33Γ  matched filter using the psd model versus the empirical psd for 1E2/Hz white noise 
(or 312

w =σ  E2 for the sampling frequency of 31  Hz) with respect to the cross-track spacing 1xΔ  and the along-track data spacing 

2xΔ .  The matched filter for all six combined gradients are used in comparisons.  The center of the anomaly at the azimuthal 
orientation of 90° is located at N=18013m and E=18018m.   
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5.6 CASE V: Anomaly detectability versus orientation 
    In the previous sections, we only consider the matched filters fixed at the azimuthal 
orientations β′ = 90°, 45°, and 0° (in x -triad frame in Figure B.1) to detect the 2m x 2m 
x 1000m anomaly having the same orientations, respectively, in noise environments.  
Since the component 33Γ  due to the anomaly is invariant with respect to the orientations 
according to eq. (B.1), the 33Γ  matched filter yields the best detection among other 
components.  For this example, we investigate how sensitive the matched filters using a 
psd model are if they are rotated with respect to an anomaly in x -triad frame.  We test 
the gradient signals due to the 2m x 2m x 1000m anomaly added to 1E2/Hz white noise 
(i.e., best-case detection scenario).  The center of the anomaly is at N = 18000m and 
E=18000m.  The anomaly has the azimuthal orientations, β′, of 5°, 47°, and 86° at 30m 
depth.  Figure 5.24 shows the results of matched filtering in the noise.  The matched filter 
using Psd model 4 is azimuthally oriented by 3° increments from 0° to 90°.  For the 
anomaly at β′ = 5°, only the filters for the 33Γ , 22Γ  and 23Γ  components yield their the 
highest peaks close to the true orientation; the difference of the location at the highest 
peak minus the true location ΔN  and ΔE  approaching to zero in these components as 
shown in Figure 5.25.   
    For the anomaly at β′ = 47°, only the 33Γ  and 12Γ  matched filters give the highest 
peaks at 48° (Figure 5.24b) close to the true orientation where ΔN  = 0m and ΔE  = 0m 
(in Figure 5.26).  For the anomaly at β′ = 86°, in Figure 5.24c, the plot shows that the 
anomaly is detectable using the 33Γ , 11Γ , and 13Γ  components; see also Figure 5.27.  
Overall, the 33Γ  matched filter gives the best anomaly detectability with respect to all 
orientations (i.e., β′ = 5°, 47°, and 86°) of the anomaly.  
    As seen in Figure 5.28 the detection results are improved when the combination of 
all six combined gradients is used.  The plot in Figure 5.28a shows that the highest peaks 
occur at 6° and are located at or near the true location of the anomaly at β′ = 5°, where 
ΔN and ΔE at 6° equal zero as can be seen in Figure 5.28d.  The matched filters yield the 
best result for the multiple of 3° closest to the true orientation.   
    However, the results may deteriorate if the orientation increment increases.  For 
example, if the increment is 6°, the highest peaks occurs at false locations offset by 
several kilometers with respect to the true location, see Figure 5.28a-f.  For example, at 
the orientation of 12° in Figure 5.28a where the highest peak is 62.175, the differences 
are ΔN  = -630m and ΔE  = 4710m (Figure 5.28d).  It can be explained that only when 
the filter is rotated close to the true orientation, the transfer function passes the 
frequencies of interest.  For instance, figures 5.30b and 5.30e show the matched filter 
outputs in the frequency domain using the 33Γ  matched filters at the false orientation (i.e., 
β′ = 0°) versus the correct orientation (i.e., β′ =86°), respectively (figure 5.29 shows the 
characteristics of the gradient signals having β′ = 86° and the observations in the space 
domain and the frequency domain).  As such, the rotation can act as a band pass filter 
whose transfer function for different orientations scans through the frequencies of 
interest. 
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Figure 5.24: Anomaly detectability versus orientations in 1E2/Hz white noise; the 2m x 
2m x 1000m anomaly has the azimuthal orientations of (a) 05° (b) 47° and (c) 86° at 30m 
depth.   
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Figure 5.25: Anomaly detectability versus orientations in 1E2/Hz white noise; the 2m x 
2m x 1000m anomaly has the azimuthal orientation of 5° at 30m depth; ΔN  and ΔE  are 
the difference of the location of the highest peak minus the true location. 
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Figure 5.26: Anomaly detectability versus orientations in 1E2/Hz white noise; the 2m x 
2m x 1000m anomaly is has the azimuthal orientation of 47° at 30m depth; ΔN  and ΔE  
are the difference of the location of the highest peak minus the true location. 
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Figure 5.27: Anomaly detectability versus orientations in 1E2/Hz white noise; the 2m x 
2m x 1000m anomaly has the azimuthal orientation of 86° at 30m depth; ΔN  and ΔE  are 
the difference of the location of the highest peak minus the true location. 
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Figure 5.28: Anomaly detectability versus orientations in 1E2/Hz white noise using all six 
combined gradients to detect the 2m x 2m x 1000m anomaly having the azimuthal 
orientations of (a) 5° (b) 47° and (c) 86° at 30m depth; (d), (e), and (f) show ΔN  and ΔE  
with respect to (a), (b), and (c), respectively. 
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Figure 5.29: (a) 1E2/Hz white noise; (b) The 33Γ  gradient signal due to the 2m x 2m 
x1000m anomaly having the azimuthal orientation of 86°; (c) The observation: 1E2/Hz 
white noise plus the 33Γ  gradient signal; (d) The (magnitude) spectrum of (a); (e) The 
(magnitude) spectrum of (b); (f) The (magnitude) spectrum of (c). 
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Figure 5.30: The upper row shows the case of using the false azimuthal orientation of 0° 
for the 33Γ  matched filter to detect the 2m x 2m x 1000m anomaly having the azimuthal 
orientation, β′, of 86°; (a) The transfer function of the matched filter (b) The (magnitude) 
spectrum of the matched filter output; (c) The highest peak output.  The lower row shows 
the case of using the correct azimuthal orientation (i.e., β′ = 86°) for the 33Γ  matched 
filter to detect the anomaly; (d) the transfer function of the matched filter; (e) The 
(magnitude) spectrum of the matched filter output; (f) The highest peak output.  The 
symbol “×” indicates the location of the highest peak and “+” indicates the true location 
of the target anomaly.  

Band-passed spectrums

Band-passed spectrums
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5.7 Performance of matched filters 
    This section describes the detection performance of matched filters in various noise 
environments.  We show the plots of the probability of false alarm versus depths for a 
given POM and different sizes and orientations of the target anomaly of interest.  Based 
on the numerical results in CASE’s I and II, we have chosen POM = 0.001 considered as 
a marginal probability level of the signal detection, since it effectively describes false 
locations by matched filtering, e.g., the detection results by using all six combined 
gradients in Table 5.10 ( maxy  exceeds η′  if POM is set too high). 
    Figures 5.31 – 5.33 show POF’s versus depths for the matched filters using, 
respectively, the psd model versus the empirical psd for 1E2/Hz white noise, with respect 
to 30m grid resolution and β′ = 0°, 45°, and 90°.  As described in CASE VI, the deepest 
detectable depths correspond to the detection performances portrayed by the plots in this 
section.  The use of the empirical psd’s indicates the increased detection performance, 
compared to the use of the psd model.  For example, consider the 2m x 2m x 10m 
anomaly at and β′ = 90° in 1E2/Hz white noise, summarized in Table 5.16.  The anomaly 
is detectable as deep as 20m by applying the 33Γ  matched filter using the empirical psd, 
whereas only 10m if the psd model is used, see Table 5.13.   
    In Figure 5.31b, the  detectable depth = 20m shows POF = 0.264.  The failure of 
detection at 30m depth corresponds to POF = 0.973 which indicates a high chance of no 
signal at the location where the highest peak exists.  It should be noted in Figure 5.32 that 
the orientation does not affect the performance of the 33Γ  matched filter to detect, for 
example, the 2m x 2m x100m anomaly.  For all curves, POF rapidly increases at short 
ranges (10-30m) as depth increases, particularly for smaller sizes of the target anomaly. 
    Figure 5.34 provides the detection performance with respect to depths and sizes 
using the combination of all six gradients and the psd models for different types of noise 
backgrounds.  The plots indicate the improvement of detection performance with the 
combination as compared to the case of the individual gradients shown in Figures 5.31(a) 
- 5.33(a).  For example, the performance of the 33Γ  matched filter using Psd model 4 for 
1E2/Hz white noise to detect the 2m x 2m x 100m anomaly at β′ = 0° and 30m depth 
corresponds to POF = 0.614 (see Figure 5.32) while POF decreases to 0.097 using the 
combination (see Figure 5.34).   
    As can be seen in Figure 5.31, the detection performance for the target size of 2m x 
2m x 10m (in 1E2/Hz white noise), whose dimension is smaller than the spatial resolution 
of 30m, slightly increases when all six combined gradients are used (see the line “--+--“ 
in Figure 5.35).  Note that the higher the spatial resolution is, the more the SNR 
increases.  Thus, the performance of matched filter also increases.  For example, at a 
depth of 30m, POF decreases, roughly, 20% in association with the increase of the 
resolution from ( 1xΔ  = 30m and 2xΔ  = 30m; POF = 0.982) to ( 1xΔ  = 15m and 2xΔ  = 
5m; POF = 0.797). 
    In summary, according to a number of numerical results from the previous cases, 
the detectability varies as the gradient signal due to the target anomaly attenuates with 
respect to the depth.  The use of psd models slightly affects the matched filter detection. 
However, more accurate psd modeling is needed in order to enhance the capability of 
matched filter.  Rather than doing so, the combination of all six combined gradients is an 
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alternative way to improve the detectability.  The matched filters using empirical psd’s 
show an advantage of signal detection because the characteristics of the psd’s correspond 
to the noise signature.  Furthermore, the location of the target anomaly affects the 
matched filter detectability. 
    In this study, although the performance of the matched filter can be improved by 
using the empirical psd’s, the signal detectability still is limited if the signal signature 
strength (magnitude) is small, relative to strong noise backgrounds, e.g., the 12Γ  gradient 
due to the 2m x 2m x 10m anomaly, shown in Figure 5.31.  The spatial resolution is also 
a factor that affects the detectability which can be improved by considering higher 
resolution in an airborne gradiometric survey. 
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Figure 5.31: Performance of matched filters using (a) Psd model 1 and (b) the empirical psd for 1E2/Hz white noise 
to detect the 2m x 2m x 10m anomaly. 
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(b) 

 

Figure 5.32: Performance of matched filters using (a) Psd model 1 and (b) the empirical psd for 1E2/Hz white noise to detect 
the 2m x 2m x 100m anomaly 
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Figure 5.33: Performance of matched filters using (a) Psd model 1 and (b) the empirical psd for 1E2/Hz white noise to detect 
the 2m x 2m x 1000m anomaly. 
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Figure 5.34: Performance of all six combined gradient matched filter; “�”= the full 
geological background plus 1E2/Hz white noise; “◊” = the full geological background 
plus 1E2/Hz white noise minus a geological model; “o” = the 5-km longer wavelength 
GGSS data plus 1E2/Hz white noise; “×” = 1E2/Hz white noise; solid line indicates the 
2m x 2m x 10m anomaly; dashed line indicates the 2m x 2m x 100m anomaly; dotted line 
indicates the 2m x 2m x 1000m anomaly. 
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Figure 5.35: Performance of all six combined gradient matched filter for the 2m x 2m x 
10m anomaly in 1E2/Hz white noise with respect to spatial resolutions. 
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CHAPTER 6 
 
 

THE THEORY OF PARAMETER ESTIMATION 
 
 
6.1 Introduction 
    In previous chapters, we consider the gravitational gradients ijs , with 

)3,2,1()j,i( = , due to a mass anomaly, are exactly known except that the location of the 
anomaly is unknown.  The matched filter is a function of every point of the observations, 
i.e., we wish to maximize the signal-to-noise ratio at the location, x , of the anomaly.  
The most probable candidate(s) of the anomaly is chosen with a given probability of a 
miss at the point, where the highest filter output peak occurs.  Throughout the filtering 
process, the matched filter requires a complete knowledge of the anomaly’s signal so that 
the filter can accurately determine the location of the anomaly.  In practice, we vaguely 
know about the anomalous source to be detected.  Such a consequence greatly limits the 
performance of matched filters.  The gradient signal ijs , in turn, can be characterized by 
unknown parameters such as density contrast, 3D-location, shape, and orientation.  The 
idea is to determine the parameters as accurately as possible and to use the corresponding 
estimates to reconstruct the matched filter.  Therefore, when ijs  is not exactly known, the 
measured gradients becomes 
 

)();()( ijijij xnxsxv += θ                                         (6.1) 
 

where ),,,( m21 θθθ K=θ  is generally a mx1 vector of unknown parameters, including 
x , to be determined.   
    In communications theory, the theory of parameter estimation mostly relies on 
certain assumptions of a-priori probability densities for the measurements (e.g., Gaussian 
type).  They imply various types of parameter estimations, for instance, Bayes estimation, 
maximum a-posteriori estimation (equivalent to Bayes estimation after a quadratic cost 
function and a unimodal probability density function are applied, or known as minimum-
mean-square-error estimation), and maximum likelihood estimation.  More details can be 
found in Van Trees (1968), Whalen (1971), Poor (1983), and Kay (1993).  For simplicity, 
we shall work on robust alternatives, which directly depend on a signal model, i.e., 

)(ij θs .  The estimation method of interest is based on the fundamental concept of least 
squares (Koch, 1999; Schaffrin, 1987, 1989, and 2001; Schaffrin and Bock, 1994): 
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θ

θsvθsv min)]([)]([ ij
1T

ij →−− −
nΣ                                  (6.2) 

 
where nΣ  is a nxn positive definite covariance matrix of n .  The nx1 signal vector ijs  is 
linearized and can be expressed as 
 
  ΑΘΘ +=+= )()()( 0ij0ijij θsθsθs                                 (6.3) 

 
where A  is the nxm coefficient matrix associated with θ , 0θ  are a-priori (known) values 
of the parameters and Θ  are the “m” unknown (increment or perturbed) parameters; A  
has the rank of m.  In this study, we adopt this concept to the problem of spatial 
refinement of the anomaly location based on the random effects model (Schaffrin and 
Bock, 1994).  The justification for using this approach is that the matched filter output 
has a statistical nature in the sense of random errors in the observations.  Thus, the 
refinement of the anomaly location regarding to the perturbed parameters Θ  should be 
treated as “random effects” whose expectations are taken from a priori knowledge. 
 
6.1 The random effects model and hypothesis testing 
    The approach treats 0θ  as random approximation of (non-random) parameters θ  
and, therefore, the Θ  unknown parameters as “random effects (or random parameters)” 
whose first and second moments are given and considered as prior information.  It should 
be kept in mind that the sum of 0θ  and Θ  is “non-random” so that θ  are “non-random” 
(see eq. (6.5)).  The linearized model, which integrates stochastic prior information and 
actual observational information, is given by 
 

  
Θ0

ijij

nΘΘ

nAΘy

+=

+=
   with ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
σ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

Θ

n2
0

Θ

ij ,~
C0
0C

0
0

n
n

                   (6.4) 

 
where )( 0ijijij θsv −=y .  Our a-priori information is the vector of expected (bias) 
parameters, 0Θ , such that  
 
  }{}{ 000 θθθθ ε−=−ε=Θ                                       (6.5) 

 
For instance, 0Θ  can be initially given as a zero vector and 0θ  can be the location x  of 
the anomaly obtained as a consequence of signal detection by matched filters.  (It should 
be noted that the non-random )(θsij , generated by a small anomalous mass, is entirely 
embedded in geological background noise; generally speaking, we may not know where 
the anomaly is in practice.  Several matched filters may be needed for an appropriate 
choice of 0θ , e.g., good approximate values of x .  Thus, signal detection by matched 
filtering is useful, as a pre-processing stage contributing a priori information). 
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    Generally, Α  is a stochastic coefficient matrix due to the randomness of 0θ , i.e., 

0
])([ ij θθθ =∂∂=Α θs , and also }{}{ ΘAy ε≠ε  due to the second and higher order terms of 

Θ  (Schaffrin, 1985, pp. 285-300).  The latter property leads to the requirement of higher-
order terms in the Taylor series for the model.  However, for simplicity in this study, we 
consider that }{}{ ΘAy ε=ε  throughout.  
    The positive-definite covariance (or dispersion) matrix, n

2
0Cσ  (or nΣ ), of zero-

mean gradient noise (geophysical noise) vector n  is obtained from a reciprocal distance 
model of gravitational gradient (Jekeli, 2003), where nC  is a cofactor matrix and 2

0σ  is 
the a-priori variance component.  The vector of random errors Θn  has zero mean, with 
the positive-definite covariance matrix, Θ

2
0CΣ σ=Θ , given from signal detection 

processing.  We also have ),(~ Θ
2
00 CΘΘ σ .  Since the prior information and the 

observation may be taken from different sources, we further assume the uncorrelated-ness 
of the respective random error vectors such that 
 
  ]0[}{},{ T

ΘΘ =ε= nnnnC                                        (6.6) 
 

The predicted parameters of Θ , which is called the Best inhomogeneously LInear 
Prediction (inhomBLIP), is given by 
 

  
( ) ( )
( ) ( )0

111-
Θ0

0
1-
n

T1
n

T11
n

T1-
Θ0

~

ΘCNNNCΘ

AΘΣAyΣAAΣAΣΘΘ
- −++=

−++=
−

−−−

                     (6.7) 

 
together with the matrix of mean square prediction errors 

 
  ( ) ( ) 11-

Θ
2
0

11
n

T1-
Θ}~MSPE{ −−− +σ=+= NCAΣAΣΘ                         (6.8) 

 
with ACAN 1

n
T −=  and yCAC 1

n
T −= . 

Let the predicted residuals be 
 

  ΘAyn ~~ −=                                                (6.9) 
and  
  ( ) ( )0Θ-CNNNCΘΘn 111-

Θ0
~~ −−

Θ +−=−=                            (6.10) 
 
The estimate 2

0σ̂  of 2
0σ  is  

 

  { }2
0R

R2
0ˆ

σε
=σ

Ω
Ω                                             (6.11) 

where 
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and { } n2

0R =σε Ω , (see (6.20)).  The quadratic form Ω  (unconstrained case) in (6.12) is 
given by 
 

  

( ) ( )
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n
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T
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−
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43421                                 (6.13) 

with  
  CΘN =ˆ   and CNΘ -1ˆ =                                        (6.14) 

 

Using the definition of { } { }[ ]TT tr aaBBaa ε=ε , where the “tr” is the trace operator and “a” 
and “B” are an arbitrary vector and an arbitrary square matrix, the expectation of (6.13) is 

  { } { } { }[ ] [ ] mntrtr mn
1

n
T1

n
T1-T1

n
2

0
2
0 −=−=ε−εσ=σε −−−− IIACyyCANyyCΩ       (6.15) 

with { } n
2
0

T Cyy σ=ε .  Consequently, from (6.10), the relative increase R  to the sum of 
squares Ω  of the residual n  after the inclusion of the stochastic constraint ΘΘ nΘΘ +=  
in the linearized model (see also (6.4)) is obtained by 
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It can be shown that the term in“

43421
” of (6.16) is zero:   
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Clearly,  
  0≥R                                                    (6.18) 
 
The expectation of 2

0σR  is  
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Thus, with (6.15) and (6.19),  
 
  { } ( ){ } n2

0
2
0R =σ+ε=σε RΩΩ                                   (6.20) 

 
    For the situation that a gradient signal generated by an anomaly to be detected is in 
strong geological noise, we may consider whether or not the prior information, which is 
the output of detection by matched filtering, is consistent with the actual data (i.e., y ).  
Thus, we proceed with hypothesis testing: 
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  { } { } 0ΘΘΘΘ =−ε=−ε 000 :H                                   (6.21) 
versus 
  { } { } 0ΘΘΘΘ ≠=−ε=−ε 0001 :H w                               (6.22) 

 
Note that the parameters Θ  and 2

0σ  are unknown and the expectation of Θ~  in (6.7) is 
 

  

{ } ( ) ( ){ }
( ) { }( )
( ) { }( )

{ }Θ

ΘΘNNCΘ

ΘnAΘyCANNNCΘ

ΘCNNNCΘΘ
-

-

ε=

−ε++=

−+=ε++=

−++ε=ε

−

−−

−

43421
0

0
11-

Θ0

0
1

n
T111-

Θ0

0
111-

Θ0
~

                  (6.23) 

 
Equivalently, we may test (based on Schaffrin (2001)) 
 
  { } { } 0ΘΘΘΘ =−ε=−ε 000

~~:H                                   (6.24) 
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~~:H w                                (6.25) 
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The test statistic relating to this set of hypotheses can be expressed as (Koch, 1999, 
p.271-280): 
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where ( )m-n2

0 Ω=σ  is the estimate of 2
0σ  without the stochastic constraint of (6.4).  We 

immediately see the test contains the inverted term of (6.26).  That is, T is significantly 
greater than zero if 1H  is true.  The distribution of the test statistic follows a central F-
distribution 
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  )mn,mF(~T −                                             (6.28) 
 

if the null hypothesis 0H  is true--it means the prior information is consistent with the 
actual data.  Otherwise, 
 
  );mn,mF(~T λ−                                            (6.29) 

 
with the non-centrality parameter defined as (see also Koch, 1999, p. 126-131): 
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2
0 ww CNCC -+σ=λ −                                    (6.30) 

 
if the alternative hypothesis with specified values of 0w  and 2

0σ  is correct—it means the 
prior information is not consistent with the actual data.   
 
 
 

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 
 
 
 
 
 

Figure 6.1: Acceptance and rejection region. 
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    As shown in Figure 6.1, the test statistic basically follows the traditional F-test 
(centrality versus non-centrality).  With a significance level α  defined as the probability 
of a Type I error (i.e., we accept 1H  but 0H  is true (Jekeli, 2006)), we accept 0H  (i.e., T  
is below the threshold 0ψ ) rather than 1H .  Consequently, the probability of a Type II 
error, β, (i.e., we accept 0H  but 1H  is true) can be determined based on 0ψ  and the non-
central parameter, λ ,of (6.30).  The error probabilities are defined as 
 

  ∫
ψ

ψ=λ−−=α
0

0

d)0;mn,m(f1                                    (6.31) 

and 

  ∫
ψ

ψλ−=β
0

0

d);mn,m(f                                         (6.32) 

 
where f is the probability density function of F-distribution and 0ψ  is computed based on 
(6.31) with a chosen value of α .  

 
6.3 Implementation  
    In this section, we apply the random effects model for the case of single and 
multiple data tracks with single and multiple sensors.  A main concern of using the 
approach is the problem of matrix inversion, especially, the inverse of the large 
covariance matrix.  In order to deal with the problem, we introduce a transformation 
matrix, which is orthogonal, and apply it to the first observation equation in (6.4) and its 
covariance matrix.  As a consequence, the corresponding covariance matrix becomes 
diagonal and can be inverted simply—only diagonal elements or blocks are inverted.  The 
following is a brief discussion of the derivations and implementation for the prediction of 
parameters, Θ~ , together with their covariance matrix.  More details of derivations can be 
found in Appendix C. 
 
6.3.1 Single data track and single sensor (SS) 
     The 1N×  observation vector y can be transformed by using an orthogonal matrix, 
F , such that IFF =H  and 1H -FF =  where the “H” is complex conjugate transpose.  The 
orthogonal matrix containing the N orthonormal basis vectors 1-N10 ,,, vvv K  is defined 
as (Kay, 1998, p.38-35): 
 
  [ ]1-N10 vvvF L=                                        (6.33) 
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and  
  ∗

− = ppN vv                                                  (6.35) 
 

where 
xN

pfp Δ
=  for 1N,,2,1,0p −= K , the asterisk denotes complex conjugate, and xΔ  

is a sampling interval.  It can be shown that the normalized exponential vectors are 
orthogonal as follows 
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By multiplying the orthogonal matrix HF  on both sides of y  in (6.4), we have 

 
  SSSSSS

~~~ nΘAy +=                                             (6.37) 
 

where yFy H=SS
~ , AFA H=SS

~ , and nFn H=SS
~  and the subscript “SS” stands for 

“Single data track and Single sensor”.  For a convenience, let nSS ΣΣ = , the 
corresponding psd becomes diagonal and is given by 
 
  ( ))f(~,),f(~,),f(~),f(~diag~

1NSSiSS1SS0SSSS
H

SS −ΣΣΣΣ== KKFΣFΣ  with          (6.38) 
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According to the definition of F , the predicted parameters of Θ in (6.7) can be expressed 
as  
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(6.40) 
 

with the matrix of mean square prediction errors (see also eq. (6.8)) 
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or a more compact form is 
 
  )]f(a~[]a~[~

ipipSS ==A  for 1m,,1,0p −= K  and 1N,,1,0i −= K ,             (6.43) 
 

hence, we can write 
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In addition, with (6.44), the test statistic of (6.27) can be easily transformed using  
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where FCFCΣ n

H2
0SS

2
0SS
~~ σ=σ= .  It should be noted that if we assume sufficiently large 

number of data, N, or as ∞→N , then the summation term in (6.39) becomes  
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  )f(Pe)k(rlimx p
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where )f(P P is the psd of gradient noise at frequency pf  and )f(P)f(P pNp −= , according 

to ∗
− = pvv pN  (see eq. (6.35)).  If the value of N is much greater than the interval over 

which )k(r  is significant, the expression of (6.38) can be approximated by 
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6.3.2 Single data track and multiple sensors (SM) 
     In many applications of interest, the received data samples are vectors from 
multiple sensors.  The extension of the single sensor to multiple sensors is discussed in 
this section.  We assume that the N data record is large and represents a zero-mean-wide-
sense-stationary multi-sensor random process.  Suppose we have K sensors.  We define 
all the data samples at points 1N10 x,,x,x −K  in a large vector as  
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where vectors y  and n  have dimension KN x 1.  The KN x m coefficient matrix A  
consists of N x m sub-matrices iA , for 1K,,1,0i −= K .  The KNKN×  cross-covariance 
matrix of the data is given by  
 
  ][ ijSM ΣΣ =  with 1K,,1,0)j,i( −= K                                (6.50) 
 
where the [i,j] block ijΣ  is the cross-covariance matrix between sensors i and j.  Each 
block matrix has dimension N x N and its elements are cross-covariance (or cross-
correlation) functions ijr of sensors i and j 

 

  [ ]
n,mijij )nm(r −=Σ   for 1N,,1,0)n,m( −= K                          (6.51) 

 
Since SMΣ  to be inverted is large, we transform it to a block diagonal matrix using a 
transformation matrix defined in (6.33) through (6.36); then only diagonal blocks are 
inverted.  The transformation matrix is defined by  
  ),,,,,(diag 1Ki10SM −= FFFFF KK  with FF =i  for all 1N,,1,0i −= K           (6.52) 
Then, applying (6.52) to the observation y  
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~ =                                                  (6.53) 

and  
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The [i,j] block FΣF ij

H  becomes a KK×  diagonal matrix (see Appendix C), given by 
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Next, rearranging rows and columns of (6.53) and (6.54) [by applying the KNKN×  
permutation matrix, SMZ , constructed by the algorithm of (C.12) with KM =′  and 

NN =′ , (see Appendix C)], we have 
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with its covariance matrix  
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where the ith block )f(~

iSMΣ  is  
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Therefore, the predicted parameters of Θ  are 
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where 
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The matrix SM

~A  has dimension mKN× .  The mK×  block )f(~
iSMA  with its elements 

a~  is  
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or in a compact form 
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We have 
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We easily have a test statistic (not shown here) based on (6.63); the relative increase is 
analogous to (6.46) with subscript “SM” instead of “SS”.  Note that, for a large data 
vector, the psd of (6.58) can be approximated by 
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Thus, each block has dimension M x M.  At frequency fi, element )f(P imn  is the auto- and 
cross- spectrum density of sensors m and n for n = m and n ≠ m, respectively.   
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6.3.3 Multiple data tracks and single sensor (MS) 
    For the case of multiple data tracks, we assume we have a large number of tracks, 
say M , and N  data samples per track and track spacing is yΔ .  The MN  x 1 data vector 
is  
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In Appendix C, the MNMN×  cross-covariance matrix is given and has the following 
structure 
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where ijΣ  is the N x N block cross-covariance matrix between tracks i and j.  
Rearranging (6.66) and (6.67), based on orthogonal transformations and permutations 
(see Appendix C), we finally have  



 125

  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

− )f(~

)f(~

)f(~
)f(~

~

1NMS

iMS

1MS

0MS

MS

y

y

y
y

y

M

M
 with 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′

′
′

=

− )f,(fy~

)f,(fy~
)f,(fy~

)f(~

1Mi

1i

0i

iMS M
y  for 1N,,1,0i −= K           (6.68) 

and  
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where the ith block, )f(~

iMSΣ , is 
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Note that only blocks )f(~

MSΣ  are inverted.  As such, the predicted parameters of Θ  are 
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The matrix MS

~A  has dimension mMN× .  The mM×  block )f(~
iMSA  with elements a~  

is  
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or in a compact form 
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  [ ])f,f(a~)f(~
jijkiMS ′=A   for 1M,,1,0j −= K  and 1m,,1,0k −= K             (6.74) 

 
Similar to (6.63) and (6.64) but considering two dimensions, we have 
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Then, test statistic is easily obtained.  For a large number of data, we may approximate  
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where P is the psd of gradient noise.  Thus, we can approximate (6.75) and (6.76) in 
terms of (6.77) as 
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for 1m,,1,0)q,p( −= K . 
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6.3.4 Multiple data tracks and multiple sensors (MM) 
    For this case, we assume K sensors.  The 1KMN×  data vector is 
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From Appendix C, the KMNKMN ×  cross-covariance matrix is given and has the 
following structure 
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The [i,j] block, ijΣ , having dimension MNMN× , is  
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The [n,m] block, )n,m(Σ , is the NN×  cross-covariance matrix between tracks m and n 
given by 

 
  ijmn )]nm,ji(r[)n,m( −−=Σ  for 1N,,1,0)j,i( −= K                      (6.83) 
 
where mnr  is a cross-correlation (covariance) function between tracks m and n.   
Applying orthogonal transformations and permutations in Appendix C throughout (6.80) 
and (6.81), we finally have  
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with the 1KM×  vector  
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and the 1K×  vector  
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The corresponding psd is 
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The ith block )f(~

iMMΣ  having dimension KMKM×  is 
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  ( ))f,f(~,),f,f(~,),f,f(~),f,f(~diag)f(~
1Miji1i0iiMM −′′′′= ΣΣΣΣΣ KK                (6.88) 

 
with the KK×  block  
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where mnr  is the cross-correlation function between sensors m and n (also see (6.83)). 
Therefore, the predicted parameters of Θ  are 
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The matrix MM

~A  has dimension mKMN× .  The mKM×  block )f(~
iMMA  is 
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where the mK×  sub-block matrix )f,f(A~ ji ′  with elements a~  is 
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From (6.91) to (6.93), we have 
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In addition, the test statistic can be easily obtained.  For a large number of data, we may 
approximate  
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where P is the cross psd of gradient noise between sensors p and q.  Thus, the psd 

)f,f(~
ji ′Σ can be approximated: 
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CHAPTER 7 
 
 

NUMERICAL DISCUSSIONS ON PARAMETER ESTIMATION 
 
 
7.1 Introduction 
    In this section, numerical investigations for cases of multiple tracks with single and 
multiple sensors are conducted.  Provided that matched filters give the grid location of a 
detected anomaly, that is the location of the highest peak in the output, and the 
approximated depth and orientation are acquired during the detection attempts, the 
estimation approach can perform as a tool of refinement of the location, orientation, and 
density contrast.  For our study, we only show the robustness of the random effects model 
and its hypothesis testing with respect to the a priori information achieved by matched 
filtering.  We thus consider the 2m x 2m x 1000m anomaly at 50m depth with the 
azimuthal orientations, β′, of 90°, 47°, 45°, and 0°.  We evaluate the capability of 
estimating parameters as well as hypothesis testing in various noise environments.  All 
least-squares adjustment examples discussed here are based on the set of simulated 
observations described in Chapter 5.  To provide intuitive discussions of (1) the 
numerical results of parameter estimation and (2) the influence of noise levels affecting 
the estimation and hypothesis testing, we demonstrate the estimation with respect to 
several types of observations obtained from the gradient signals due to the anomaly in 
different noise backgrounds such as 0.01E2/Hz and 1E2/Hz white noise alone, and the full 
geological background plus 1E2/Hz white noise before and after the subtraction of the 
geological model defined in Chapter 5.  Table 7.1 lists the root-mean-squares (rms’s) of 
the noises and the gradient signals due to the anomaly at β′ = 0°, 45°, 47°, and 90°. 
    For simplicity, we assume we have many data with 30m sampling interval (i.e., 3s 
temporal spacing with the helicopter’s speed of 10m/s) and 30m track spacing.  The psd 
of the geological noise backgrounds is computed according to (6.97) using Psd models 1 
or 2.  To avoid the confusion of terminology used in this study, the terms “estimate”, 
“predict”, and “adjust” are used interchangeably unless otherwise specified.   
    Since we linearize the observation model, iterations are required.  The equation of 
(6.4) refers to the uncorrelated-ness between the observations and the a priori 
information, where Θ

2
0Θ CΣ σ=  is guessed from the stage of signal detection attempts as 

a covariance matrix of Θ .  We consider updates to the predicted parameters while 
keeping ΘC  unchanged as follows (e.g., the case of multiple data tracks and multiple 
sensors, MM): 
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rms (Eötvös) Grad. 

33Γ  22Γ  11Γ  12Γ  13Γ  23Γ  

90° 5.347E-3 0.844E-3 5.147E-3 0.831E-3 5.100E-3 1.184E-3

47° 5.289E-3 2.614E-3 2.930E-3 2.506E-3 3.856E-3 3.621E-3

45° 5.291E-3 2.773E-3 2.773E-3 2.512E-3 3.739E-3 3.739E-3Si
gn

al
 

0° 5.347E-3 5.147E-3 0.844E-3 0.831E-3 1.184E-3 5.100E-3

0.01E2/Hz  5.769E-2 5.773E-2 5.771E-2 5.771E-2 5.766E-2 5.770E-2

1E2/Hz 5.785E-1 5.775E-1 5.777E-1 5.775E-1 5.769E-1 5.770E-1

WOB 5.720E+0 5.420E+0 3.715E+0 3.990E+0 3.476E+0 2.636E+0N
oi

se
 

WB 1.218E+1 6.889E+0 7.186E+0 4.005E+0 4.119E+0 3.049E+0

nsrms
1n

0i

2
i∑

−

=

=  where is  = signal or noise and n = 400x4001 

WB = full geological background plus 1E2/Hz white noise 
WOB = full geological background plus 1E2/Hz white noise minus a geological model2

 
 
Table 7.1: CASE I: The root-mean-square (rms) of the gradient signals due to the 2m x 
2m x 1000m anomaly at the azimuthal orientations of 90°, 47°, 45° and 0° at 50m depth 
versus noise backgrounds. 
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−−−− +=+= ACACAΣAΣΘ          (7.2) 

 
where the subscript “i” is the number of the iteration and the approximated 0θ  is obtained 

from the matched filter detection output.  The 1-i
~θ  are updated by the computed 1i

~
−Θ , 

then i
~θ  can be achieved.  The 2

i0,σ̂  is computed using eq. (6.11).  Theoretically, for “i” 

iterations, if the adjustment properly converges, i
~Θ  should converge to zero according to 

the linearized equation of (6.3).  The i
~Θ  should be close or equal to 0Θ  (with uncertainty 

implied by the a priori variance) in the statistical sense according to (6.24).  Therefore, 
the null hypothesis H0 is accepted if the test statistic of (6.27) is below the threshold 0ψ  
for a given α .   

                                                 
1 Due to the memory limitation of the Fortran 90 program used, we consider only a 12km x 12km study 
area (or 400 x 400 grid points with 30m spacing along track and 30m track spacing).   
 
2 A geological model is constructed using the 120m x 120m DEM (refer to Section 5.1 on page 42). 
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    Suppose the true location of the center of the anomaly is at N21013m and 
E18018m, and 50m depth, and the anomaly is rotated by the different azimuthal 
orientations }90and,47,45,0{ oooo=β′ .  The location where the output of the matched 
filter is highest, is given by 
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where the depth of 60m is chosen in the detection process and β′  also is obtained from 
the banked-filter process.  For a strict constraint, we set 0Θ →Σ , which implies ΘΘ =0  
and that the parameters Θ  are assumed known perfectly.  In general, we consider Θ  as 
“random effects” and choose the suitable values for ΘΣ .  It should be kept in mind that 
the smaller the covariance ΘΣ  is, the closer we gain perfect satisfaction of our strict 
constraint.  We want to choose the a priori variances applicable to our objective of not 
only improved localization but also hypothesis testing.  For the first example (i.e., CASE 
I), three possible a priori depth variances are selected to show how the adjusted solutions 
and their respective test statistics behave and then we shall select the most reliable one 
for further analyses: 
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  (a) 0.10mσD ±= , (b) 1.00mσD ±=  , and (c) 10.00mσD ±=               (7.4) 
 
The Nσ  and Eσ  are given on the basis of 30m grid points which are used for the multiple 
sets of matched filtering detection attempts.  The standard deviation of the orientation, 

β′σ , is given as a reasonable guess, but could also be based on results from applying a 
bank of matched filters.  What follow are several possible cases to test the method of 
parameter estimation with respect to various noise environments.  
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7.2 CASE I: The impact of the a priori depth variance on localization and test 
statistic 
    Prior to showing the numerical solutions of parameter estimation with respect to 
orientations and several types of noise backgrounds, let the impact of the a priori 
covariance matrix on the (depth) parameter estimates and their respective test statistics be 
discussed first.  In this example, consider the problem of estimating the location of the 
2m x 2m x 1000m anomaly, where the azimuthal orientation β′ = 90° is assumed known 
perfectly (i.e., β′σ  = 0°) and no orientation estimation is taken into account.  We consider 
the case of multiple data tracks and the single sensor (MS) for the gradient component 

33Γ  only.  The gradient signals due to the anomaly are corrupted by 0.01E2/Hz white 
Gaussian noise (equivalently, the variance, 2

Γσ , is 3001  E2); the flat psd of (6.77) is 
3E2/(cyc/m)2 for all frequencies.  We initially set 0Θ  equal to zero (refer to eq. (7.1)).  
For the different values of Dσ  in (7.4), we assess the adjusted solutions using five 
iterations.  These solutions are summarized in Table 7.2. 
    Note that selecting m10.0D ±=σ  yields the estimates of the depth with slower 
convergence compared to the other cases.  As the Dσ  increases, the errors get smaller 
with further iterations, particularly, in the depth estimation.  The fifth iterated solutions 
for cases (b) and (c) yield estimates of north and east position with sub-meter and 10-m 
errors, respectively.  Both cases yield similar results in the estimates.  However, the test 
statistic differs significantly.  As such, it indicates that the choices of Dσ  affect the test 
statistic (6.27).   
    All cases of 2

Dσ  show reasonable convergence of the iterative solutions; the errors 
generally decrease with respect to the number of iterations.  Note that the larger values of 
the assigned variance 2

Dσ  affect the test statistic obtained from (6.27).  For instance, the 
test statistic in case (c) is smallest as compared to the other cases.  (It should be kept in 
mind also that, based on (7.1), the algorithm updates the initial approximate 0θ  and in 
turn 0Θ  for each iteration, while ΘC  is unchanged.)  A suitable choice of 2

Dσ  should be 
carefully defined.  As regards to the numerical experiments in Table 7.2, we have 
selected 22

D m1=σ as the a priori variance of depth for our study because it yields 
reasonable convergence of the iterative solutions (particularly in the depth estimation) 
associated with the test statistic (6.27).  However, we shall see later in CASE III that 
selecting 22

D m100=σ  yields more stable solutions (although the test statistic seems to be 
suspect with this choice). 
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Table 7.2: The impact of the a priori depth variance on the parameter estimation and test statistic using 33Γ  only. 

   
ΔN (m) ΔE (m) ΔD (m) Test statistic, T (eq. 6.27) Iteration 

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) 
0 4.795 4.795 4.795 2.546 2.546 2.546 9.983 8.954 7.418 1.7832 1.1854 0.2927

1 3.171 2.859 2.420 12.298 12.251 11.787 9.898 4.593 0.468 24.3461 9.4588 0.6142

2 1.041 0.262 0.230 8.039 8.802 8.955 9.742 0.138 0.204 26.8938 0.1159 0.2388

3 1.290 0.553 0.511 10.258 8.872 8.805 9.514 1.640 0.155 26.7164 4.0497 0.0052

4 0.017 0.493 0.481 9.149 8.831 8.986 9.216 1.274 0.137 25.6626 2.4410 0.0001

5 0.699 0.493 0.479 9.418 8.894 8.840 8.849 0.321 0.140 24.0367 0.1854 0.0000

ΔN = the absolute error of north coordinate 

ΔE = the absolute error of east coordinate 

ΔD = the absolute error of depth 

(a) m10.0D ±=σ ; (b) m00.1D ±=σ ; (c) m00.10D ±=σ  
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7.3 CASE II: Predicted location and fixed orientation using individual gradient 
components in 0.01E2/Hz (or 3E2/(cyc/m)2) white noise environment 
    We consider the case of multiple data tracks and single sensors.  The gradient 
signals of the anomaly are corrupted by 0.01E2/Hz white Gaussian noise; the flat psd of 
(6.77) is 3E2/(cyc/m)2 for all frequencies.  The initial value of 0Θ  is equal to zero and the 
a priori covariance matrix of Θ  is taken from (7.4b).  The azimuthal orientation is 
assumed to be known completely (i.e., no orientation estimation).  The parameter 
estimation is independently conducted for each gradient component at β′ = 90°, 45°, and 
0°.  Through 50 iterations, the absolute errors, ΘΘ -~ , of the location (north and east 

coordinates and depth) using individual gradients are plotted in Figures 7.1 to 7.3 as well 
as their respective test statistics.   
    Figure 7.1a shows the case where the anomaly is at β′ = 90°.  The location errors 
vary in the range of 1 to 20 meters through the iteration process.  The components 33Γ , 

11Γ , and 13Γ  yield smaller errors (a few meter level) in the north direction than the other 
components whose errors fall between 5 and 15 meters.  The depth errors for the 
components 33Γ , 11Γ , and 13Γ  are about 1 meter, while they vary in the range of 2 – 10m 
after 50 iterations for the other components.   
    Figure 7.2a, for β′ = 45°, shows an improvement in estimating the east coordinate 
using 33Γ , relative to the case of β′ = 90°.  The east error is about 4m.  The different 
orientation also affects the estimation of the north coordinate.  For instance, the 
estimation using 11Γ  shows an increase to 5m in the north error from 1m in the β′ = 90° 
case, see also Figure 7.1a.  The depth error varies in the range of 1 to 3m for all 
components.   
    Consider β′ = 0°, where the 1000m length-side of the anomaly is parallel to the 
north direction.  This case is opposite to the case where the orientation is 90°.  The error 
in the estimate of the north coordinate is 2m larger than that of the east coordinates using 

33Γ , shown in Figure 7.3a.  The depth errors by using 12Γ , 11Γ , and 13Γ  oscillate like they 
do when using 12Γ , 22Γ , and 23Γ  for β′ = 90°, shown in Figure 7.1a.  These results are 
due to a high weight (the inverse of 22

D 1mσ = ) for the depth estimate.  We shall see later 
in CASE III that taking a lower weight (i.e., the inverse of 22

D 100mσ = ) yields more 
stable solutions.  
    The MSPE3 (7.2) given in the equations (7.5) and (7.7) show very small correlation 
among the estimates using 33Γ  where the anomaly is at β′ = 90° and 0° respectively.  At 
β′ = 45°, the MSPE in equation (7.6) indicates a high correlation between north and east 
coordinates.  (For the other gradient components, the results are similar (not shown 

                                                 
3 In the view point of “pseudo-observation” constraints, these results turn out to be the standard deviations 
of the estimates of the “non-random” parameters, whereas the standard deviations of the “random effects” 
parameters for our case are known a priori (refer to eq. (7.4)).  For further details, see Leick (1995, pp. 126) 
and Mikhail and Ackerman (1976, pp. 343-352). 
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here).)  However, the adjusted horizontal coordinates are independent of the depth 
estimation.  Examples of { }50

~MSPE Θ  at iteration 50 for 33Γ  obtained from eq. (7.2) are: 
 
I: The azimulthal orientation is 90° and =σ2

0ˆ  0.998316 

  { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0.4088230.0000000.000000
0.00000024.9575170.000016
0.0000000.0000160.710125

.9983160~MSPE 50Θ  [m]2            (7.5) 

 
II: The azimulthal orientation is 45° and =σ2

0ˆ  0.998331 

  { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0.3872880.0000000.000000
0.00000012.27031311.622539
0.00000011.62254012.271421

0.998331~MSPE 50Θ  [m]2            (7.6) 

 
III: The azimulthal orientation is 0° and =σ2

0ˆ 0.998314 

  { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0.3761070.0000000.000000
0.0000000.6186680.000010-
0.0000000.000010- 22.390881 

.9983140~MSPE 50Θ  [m]2          (7.7) 

 
    Finally, Table 7.3 lists the root-mean-square-error (rmse) of the estimates for each 
gradient component, obtained from the square root of the diagonal elements of eqs. (7.2); 
for instance, for β′ = 90° and 33Γ  in eq. (7.5), 0.824m0.7101250.998316rmse =×= .  
It should be noted that the rmse’s of the estimates reflect the actual estimate errors.  For 
instance, in the case of β′ = 0°, the rmse of the east coodinate using 33Γ  is 0.786m which 
reflect the actual east error in the magnitude of about 0.700m, illustrated in Figure 7.3a.   
    To asses the estimation performance by the random effects model, the test statistic 
of (6.27) is computed.  The estimated locations (i.e., Θ~ ) and the a priori information (i.e., 

0Θ ) do not have to be numerically equal but under the null hypothesis they should be 
statistically equal in the sense of (6.24) with (6.26).  In Figures 7.1b -7.3b, with the 
significant level 05.0=α , using 33Γ  for instance, the values of test statistic exceed the 
threshold 0ψ  for the first five iterations.  Such a failure indicates a (significantly) large 

value of Θ~  relative to 0Θ .  For instance, Figure 7.1a shows the errors using 33Γ  are 
about 10m at most and become stable after 5 iterations.  Correspondingly, the values of 
the test statistic (red solid line) are significantly large, but then quickly diminish after 5 
iterations.   
    Although there are large variations in location errors using 22Γ , 12Γ , and 23Γ  at β′ = 
90° (see also 11Γ , 12Γ , and 13Γ  at β′ = 0°), the test statistic is not sensitive to these errors, 
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The root-mean-square-error (m)  

33Γ  22Γ  11Γ  12Γ  13Γ  23Γ  

The azimuthal orientation fixed to 90° 

Northing  0.842 14.862 0.881 5.431 0.716 6.399 
Easting 4.991 9.398 8.251 8.909 6.271 6.421 
Depth 0.639 0.931 0.659 0.978 0.580 0.977 

The azimuthal orientation fixed to 45° 

Northing  3.500 5.688 5.504 9.435 4.882 5.043 
Easting 3.499 5.184 6.055 9.435 5.135 4.797 
Depth 0.622 0.826 0.846 0.867 0.756 0.748 

The azimuthal orientation fixed to 0° 

Northing  4.728 8.236 7.913 15.215 7.047 7.064 
Easting 0.786 0.876 12.819 10.624 7.056 0.838 
Depth 0.613 0.657 0.990 0.994 0.980 0.640 

 
 
 
Table 7.3: CASE II: The root-mean-square-error (rmse) of the adjusted parameters after 
50 iterations 
 
 
 
i.e., the test statistic is below the threshold.  The null hypothesis 0H  is accepted for all 

iterated solutions.  It thus interprets that Θ~  and 0Θ  are not statistically different; there is 
a consistency between the a priori information and the observations.  The following 
discussions concern the test statistic when the signal is small in a strong noise 
background. 
    Consider Γ12 at iteration 50 for the case of β′ = 90°, where the location errors, 
shown in Figure 7.1a, are relatively large, compared with the errors using the other 
components.  However, the plot in Figure 7.1b shows the values of the test statistic are 
smaller than the threshold (red solid line).  Table 7.4 shows A = 0.2322, B = 0.9993, and 
the test statistic T = 0.23 is below ψ0 = 2.60 after 50 iterations.  Since the Γ12 signal is 
small relative to the noise background (i.e., 0.01E2/Hz), the test statistic may not provide 
useful information for the test.   
    Table 7.5 shows the ratio of the rms of the signal and the rms of the noise (SNR), 
taken from Table 7.1.  For instance, for β′ = 90°, the SNR of Γ12 (=0.014) is about 17% 
of the SNR of Γ33 (=0.093).  The test statistic for Γ33 is able to indicate large location 
errors, i.e., T > ψ0 for the first 5 iterations whereas the test for Γ12 is not affected by large 
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location errors, i.e., T < ψ0, shown in Figure 7.1b.  Interestingly, the increase of Γ12 at β′ 
= 45°, where SNR = 0.044, yields larger values of the test statistic which is consistent 
with large location errors.  Figure 7.2b shows that the values of test statistic exceed the 
threshold for the first 4 iterations where the location errors significantly change.  For 
these iterations, the hypothesis test would indicates the rejection of H0 for the given  α = 
0.05. 
    The values of SNR imply that the robustness of the estimation method is 
downgraded if the anomaly’s signal is small and almost entirely corrupted by strong 
noise, thus making the test statistic unreliable; 12Γ  at β′ = 90° or 0° is such a case.  
Therefore, the unwanted part of the observations (i.e., noise backgrounds) should be 
removed as much as possible.  Alternatively, the signals should be significantly larger 
than the noise background.  To improve the capability of the test statistic (i.e. eq. (6.27) 
in Table 7.4), we require a reduction of the noise background in the observation y  in eq. 
(6.13) so as to get B smaller and/or an increase of signal gradient so as to get A larger. 
    Table 7.6 shows the example of the test statistic operations for 12Γ  associated with 
β′ = 90° versus 45° (where SNR = 0.014 and 0.044, respectively, in Table 7.5).  It should 
be noted that the values of mR  of the test statistic for β′ = 90° are smaller than those for 
the case of β′ = 45°.  The numerical analyses indicate that not only the strong noise 
background but also the magnitude and orientation (i.e., the signal strength) of the target 
anomaly greatly affect the test statistic.   
    Referring to these numerical results, overall, the parameter estimation and 
hypothesis testing using the component 33Γ  is superior to other components with respect 
to β′ = 90°, 45° and 0°.  The next section will show how a stronger noise background will 
affect the parameter estimation and test statistic. 
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(a) 

 
(b) 

Figure 7.1: CASE II: (a) The absolute errors of north (red solid line), east (black dotted 
line), and depth (blue dashed line) at the azimuthal orientation of 90°; (b) Test statistic 
(red solid line) and 0ψ  = 2.60 (black dotted line) with m = 3 and n = 400x400.  
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(a) 

(b) 
Figure 7.2: CASE II: (a) The absolute errors of north (red solid line), east (black dotted 
line), and depth (blue dashed line) at the azimuthal orientation of 45°; (b) Test statistic 
(red solid line) and 0ψ  = 2.60 (black dotted line) with m = 3 and n = 400x400. 
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(a) 

 
(b) 

Figure 7.3: CASE II: (a) The absolute errors of north (red solid line), east (black dotted 
line), and depth (blue dashed line) at the azimuthal orientation of 0°; (b) Test statistic (red 
solid line) and 0ψ  = 2.60 (black dotted line) with m = 3 and n = 400x400. 
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 Test statistic 

Grad. 90° 45° 0° 
 A B T A B T A B T 

33Γ  0.000038614 0.998335258 0.000038678 0.000018235 0.998349319 0.000018265 0.000022515 0.998333284 0.000022552

22Γ  0.106384272 0.999775010 0.106408213 0.025982421 0.999770320 0.025988390 0.000000122 0.999761903 0.000000122

11Γ  0.000000807 0.999139475 0.000000807 0.232206423 0.999308548 0.232367093 0.000014251 0.999308051 0.000014261

12Γ  0.232206423 0.999308548 0.232367093 0.000014251 0.999308051 0.000014261 0.120432754 0.999308234 0.120516123

13Γ  0.002614437 0.997571500 0.002620802 0.000317048 0.997580698 0.000317817 0.018275475 0.997622775 0.018319023

23Γ  0.097842498 0.998931656 0.097947139 0.003639826 0.998934764 0.003643707 0.003657164 0.998926845 0.003661092

B
AT =  with mA R=  and mnB −= Ω                                                                                                                     eq. (6.27) 

)mn,m(F10 −=ψ α−  = 2.604964777                                                                                                                             eq. (6.28)
with 05.0=α , m = 3, and n = 400x400 

 
 
 
Table 7.4: CASE II: Hypothesis testing after 50 iterations in cases of the 2m x 2m x 1000m anomaly at the azimuthal orientations of 
90°, 45°, and 0° in 0.01E2/Hz white noise. 
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SNR Orient 

33Γ  22Γ  11Γ  12Γ  13Γ  23Γ  

90° 0.093 0.015 0.089 0.014 0.088 0.021 

45° 0.092 0.048 0.048 0.044 0.065 0.065 

0° 0.093 0.089 0.015 0.014 0.021 0.088 

SNR = (the rms of gradient signal)/(the rms of noise background) 
 
 
 
Table 7.5: CASE II: The ratio of the gradient signals due to the 2m x 2m x 1000m 
anomaly at 50m depth and 0.01E2/Hz white noise. 
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Orient. Iteration 
0i

~ ΘΘ −  iN  11
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⎣

⎡

002-1.169E00
0003-3.388E006-1.429E
0006-1.429E003-8.301E

 
⎥
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

86.54200
0003-1.475E008-6.274E-
0008-6.274E-003-1.259E

50.99931942
21.22853378  90° 

2 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1.902-
3.744-
3.168

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2-2.369E00
0003-3.428E006-1.700E
0006-1.700E003-8.438E

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
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Table 7.6: CASE II: The example of the test statistic operations for 12Γ  with respect to the azimuthal orientations of 90° and 45°. 
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7.4 CASE III: Predicted location and fixed orientation using individual gradient 
components in 1E2/Hz (or 300E2/(cyc/m)2) white noise environment 
    This example investigates the capability of the parameter estimation when the noise 
background increases.  Consider the gradient signals due to the 2m x 2m x1000m 
anomaly in 1E2/Hz (or 300E2/(cyc/m)2) white noise environment.  Here, the flat psd is 
300E2/(cyc/m)2 for all frequencies.  The initial value of 0Θ  is set to zero.  The a priori 
covariance matrix of Θ  is taken from (7.4).  The depth variances 2

Dσ  = 1m2 and 2
Dσ  = 

100m2 are considered for the estimation.   
    We begin with the choice of 2

Dσ  = 1m2.  Figures 7.4 – 7.6 plot the horizontal 
location and depth errors as well as the corresponding test statistics associated with β′ = 
90°, 45°, and 0°, respectively.  For β′ = 90°, the east coordinate errors for all components 
vary from 1m to 560m through the iterative procedure.  The component 12Γ  yields the 
largest error of about 560m at iteration 50.  The north coordinate is accurately estimated 
within 10m using 33Γ , 11Γ , and 13Γ  after 15 iterations.  For the depth estimation, the 
components 33Γ  and 11Γ  yield the errors that are about 5m smaller than using the other 
components. 
    For β′ = 45°, the values of the north errors are about 15-70m after 50 iterations, 
shown in Figure 7.5.  The east and north errors vary in the range of 10-300m and oscillate 
towards convergence (except in the 22Γ  case).  At the end of this section, we shall show 
that the choice of a priori variance 2

Dσ  = 100m2 provides more stable results. 
    Examples of { }50

~MSPE Θ  at iteration 50 for 33Γ  obtained from eq. (7.2) are 
summarized as follows: 
 
I: The azimulthal orientation is 90° and =σ2

0ˆ  1.004195 

  { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0.9907540.0000000.000000
0.000000726.5427250.000347-
0.0000000.000347-98.252285

1.004195~MSPE 50Θ  [m]2          (7.8) 

 
II: The azimulthal orientation is 45° and =σ2

0ˆ  1.004178 

  { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0.9913080.0000000.000000
0.000000419.664694315.857464
0.000000315.857464419.723839

1.004178~MSPE 50Θ  [m]2         (7.9) 

 
III: The azimulthal orientation is 0° and =σ2

0ˆ  1.004202 

  { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1.7490410.0000000.000000
0.0000001.8279060.000009-
0.0000000.000009- 59.206306

1.004202 ~MSPE 50Θ  [m]2           (7.10) 
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The MSPE’s indicate that the north and east estimates, especially where the anomaly is at 
β′ = 45°, are mutually correlated and independent of the depth.  Finally, the rmse’s of the 
adjusted estimates obtained from the diagonal elements of eq. (7.2) are summarized in 
Table 7.7. 
    As stated in the previous case, since the signals are small compared to the strong 
noise, Figures 7.4b – 7.6b show that the values of test statistic do not provide useful 
information in the hypothesis testing after 50 iterations. 
 
 
 

rmse (m)  

33Γ  22Γ  11Γ  12Γ  13Γ  23Γ  
The azimuthal orientation fixed to 90° 

Northing  9.933 29.694 3.984 29.171 9.394 14.873 
Easting 27.011 29.097 24.840 29.640 28.065 13.849 
Depth 0.997 1.000 0.971 1.000 0.994 0.995 

The azimuthal orientation fixed to 45° 
Northing  20.530 25.997 17.166 19.208 20.757 19.914 
Easting 20.528 24.923 18.317 19.211 21.584 19.160 
Depth 0.998 0.997 0.989 0.989 0.995 0.992 

The azimuthal orientation fixed to 0° 
Northing  27.003 28.631 28.981 27.727 26.743 28.083 
Easting 9.990 9.405 29.661 24.355 26.748 9.235 
Depth 0.997 0.995 1.001 0.999 0.999 0.994 

 
 
Table 7.7: CASE III: The root-mean-square-error (rmse) of the adjusted parameters after 
50 iterations 
 
 
 
The values of the test statistic after iterations 50 are summarized in Table 7.8.  These 
values for all gradient components are below the threshold 0ψ  for 05.0=α ; the null 

hypothesis, 0H , is accepted.  Thus, Θ~  and 0Θ  are statistically equal according to (6.24).  
Since the gradient signals are embedded in strong noise (i.e., 1E2/Hz white noise), the test 
statistic is not able to identify the inconsistency between Θ~  and 0Θ  unless a complete 
reduction of noise backgrounds has been done.  Table 7.9 shows, for instance, the SNR 
for 33Γ  at β′ = 90° (whose signal magnitude is largest) is only 9.243E-3 (even smaller, for 

12Γ ; it is 15% of 33Γ ).  The numerical analyses of CASE II provide a good comparison.  
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One can compare the results discussed above with those in CASE II where the white 
noise level is only 0.01E2/Hz. 
    The adjusted estimates stabilize with respect to the iterative procedure, 

0~~
1-ii →−ΘΘ  with the updated 1i0

~
−= ΘΘ  (as the a priori information for the next 

iteration, i.e., the ith iteration), and in turn yield the relative increase R  of (6.16) and 
subsequent smaller test statistics.   
    Refering to the choice of 2

Dσ  = 1m2, we have seen that the depth errors oscillate 
with the iterations (Figures 7.4a-7.6a).  These results occur due to overweighting of the 
depth parameter whereas its initial approximation is assigned to 60m (the true depth = 
50m).  In comparison, Figure 7.7 provides an example of the estimation for the case of β′ 
= 90° with the choice of 2

Dσ  = 100m2.  The plots show that selecting 2
Dσ  = 100m2 affects 

the adjusted solutions.  However, the north error using 12Γ  continually grows with respect 
to the number of iterations.  The next sections show how the adjusted solutions can be 
improved using all six combined gradient components. 
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(a) 

 
(b) 

Figure 7.4: CASE III: (a) The absolute errors of north (red solid line), east (black dotted 
line), and depth (blue dashed line) at the azimuthal orientation of 90°; (b) Test statistic 
(red solid line) and 0ψ  = 2.60 (black dotted line) with m = 3 and n = 400x400. 
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(a) 

 
(b) 

Figure 7.5: CASE III: (a) The absolute errors of north (red solid line), east (black dotted 
line), and depth (blue dashed line) at the azimuthal orientation of 45°; (b) Test statistic 
(red solid line) and 0ψ  = 2.60 (black dotted line) with m = 3 and n = 400x400. 

0 10 20 30 40 50
0 

20 
40 
60 
80 

m 

33 

0 10 20 30 40 50
0

20

40

60

80

100

m

22

0 10 20 30 40 50
0 

20 
40 
60 
80 

m 

11 

0 10 20 30 40 50
0

100

200

300

m

12

0 10 20 30 40 50
0 

50 
100 
150 
200 

m 

13 

Iteration 0 10 20 30 40 50
0

50

100

150

200

250

m

23

Iteration 

0 10 20 30 40 50
0 

1 

2 

3 33 

0 10 20 30 40 50
0

1

2

3
22 

0 10 20 30 40 50
0 

1 

2 

3 11 

0 10 20 30 40 50
0

1

2

3
12 

0 10 20 30 40 50
0 

1 

2 

3 13 

Iteration 0 10 20 30 40 50
0

1

2

3
23 

Iteration 



 151

 
(a) 

 
(b) 

Figure 7.6: CASE III: (a) The absolute errors of north (red solid line), east (black dotted 
line), and depth (blue dashed line) at the azimuthal orientation of 0°; (b) Test statistic (red 
solid line) and 0ψ  = 2.60 (black dotted line) with m = 3 and n = 400x400.
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 Test statistic 

Grad. 90° 45° 0° 
 A B T A B T A B T 

33Γ  0.064350953 1.004212279 0.064081026 0.010591046 1.004196414 0.010546787 0.047610305 1.004220127 0.047410228

22Γ  0.738065812 1.000573658 0.737642657 0.540727323 1.000562533 0.540423317 0.010036160 1.000591197 0.010030230

11Γ  0.031714186 1.001325206 0.031672214 0.089353678 1.001338422 0.089234245 0.058996333 1.001360611 0.058916171

12Γ  0.536019127 1.000548146 0.535725471 0.260545184 1.000566849 0.260397578 1.733903010 1.000537582 1.732971395

13Γ  0.027702024 0.998572817 0.027741616 0.366835329 0.998555888 0.367365847 1.192317190 0.998559085 1.194037696

23Γ  0.220645007 0.998676353 0.220937450 0.028394839 0.998681319 0.028432332 0.100707828 0.998712830 0.100837623

B
AT =  with mA R=  and mnB −= Ω                                                                                                                           eq. (6.27) 

)mn,m(F10 −=ψ α−  = 2.604964777                                                                                                                                   eq. (6.28) 

with 05.0=α , m = 3, and n = 400x400 

 
 
Table 7.8: CASE III: Hypothesis testing after 50 iterations in cases of the 2m x 2m x 1000m anomaly at the azimuthal orientations of 
90°, 45°, and 0° in 1E2/Hz white noise environment.
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SNR Orient 

33Γ  22Γ  11Γ  12Γ  13Γ  23Γ  

90° 9.243E-3 1.461E-3 8.909E-3 1.439E-3 8.840E-3 2.052E-3

45° 9.146E-3 4.802E-3 4.800E-3 4.350E-3 6.481E-3 6.480E-3

0° 9.243E-3 8.913E-3 1.461E-3 1.439E-3 2.052E-3 8.828E-3

SNR = (the rms of the gradient signal)/(the rms of the noise background) 
 
 
 
Table 7.9: CASE III: The ratio of the gradient signals due to the 2m x 2m x 1000m 
anomaly at 50m depth and 1E2/Hz white noise. 



 154

 
(a) 

(b) 
Figure 7.7: CASE III: (a) The absolute errors of north (red solid line), east (black dotted 
line), and depth (blue dashed line) at the azimuthal orientation of 90° with 2

Dσ  = 100m2; 
(b) Test statistic (solid line) and 0ψ  = 2.60 (dotted line) with m = 3 and n = 400x400. 
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7.5 CASE IV: Predicted location and fixed orientation using the combination of all 
six gradient components in 0.01E2/Hz (or 3E2/(cyc/m)2) white noise environment 
    Consider only the case where the azimuthal orientation, 90°, of the 2m x 2m x 
1000m anomaly is assumed known perfectly (i.e., no orientation estimation).  We test the 
robustness of the random effects model using all six combined gradients in 0.01E2/Hz 
white noise environment.  The initial value of 0Θ  is zero and we choose 2

Dσ  = 1m2.  The 
parameter estimation pertains to the case of multiple data tracks and multiple sensors 
(MM) in Section 6.3.4.  We consider no correlation between sensors in the white noise 
environment. 
    Figure 7.8 shows the numerical results for all combined gradients versus the results 
of using individual components obtained from CASE II.  Overall, the combination 
provides an improvement in the estimation.  The north errors decrease to 0.17m after 50 
iterations.  Although the combination does not give the smallest error in the east 
coordinate, about 0.5m, it is superior to the estimation using the other components except 
the component 11Γ   for which the error is about 0.11m.  The depth errors become 
stabilized after 5 iterations; these results imply that the iterated solutions, i

~Θ , converge 
faster than those from using the individual gradients.   
    The MPSE of 50

~Θ , obtained from (7.2) and =σ2
0ˆ  0.998846, is: 

 

 { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0.17464400
0 8.3541250.000017-
00.000017-0.216992

 0.998846~MSPE 50Θ  [m]2           (7.11) 

 
 
 

rmse(m) 

Northing Easting Depth 

0.465 2.889 0.418 

 
 
Table 7.10: CASE IV: The root-mean-square-error (rmse) of the adjusted parameters 
after 50 iterations 
 
 
    Taken from (7.11), the rmse of the east coordinate in Table 7.10 significantly 
decreases, compared to the rmse using the individual gradients in Table 7.3. 
    Table 7.11 describes the acceptance of the null hypothesis statistically indicating 
the equivalency of Θ~  and 0Θ  after 50 iterations at  α  = 0.05 level of significance.  In 
Figure 7.9, after only four iterations, the test statistic is below the threshold.  Therefore, 
the numerical analyses show that the use of the six gradient combination leads to an 
improvement of parameter estimation by the random effects model. 
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Figure 7.8: CASE IV: The absolute errors at the azimuthal orientation of 90° in 
0.01E2/Hz white noise. 
 
 
 

 Test statistic 
 A B T 

All gradients 0.001219191 0.998849044 0.001220598 

B
AT =  with mA R=  and mnB −= Ω                                                eq. (6.27) 

=−=ψ α− )mn,m(F10 2.604918546                                                         eq. (6.28)
with 05.0=α  m = 3 and n = 6x400x400 

 
 
 
Table 7.11: CASE IV: Hypothesis testing after 50 iterations for the case of the 2m x 2m x 
1000m anomaly at the azimuthal orientation of 90° in 0.01E2/Hz white noise 
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Figure 7.9: CASE IV: The test statistic (red solid line) and threshold =ψ 0  2.60 (black 
dashed line) for a given α = 0.050. 
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7.6 CASE V: Predicted location and fixed orientation using the combination of all 
six  gradient components in 1E2/Hz (or 300E2/(cyc/m)2) white noise environment 
    Suppose the output of matched filtering for β′ = 90°is given as in CASE IV 
together with an a priori covariance matrix corresponding to 1E2/Hz white noise.  We 
consider no correlation between sensors in the white noise environment.  Figure 7.10 
shows the results of all six combined gradients versus the adjusted results of using 
individual components obtained from CASE III.  Note that although the combination 
does not provide the best estimates among the other components, its solutions are much 
more stable for the north and east estimates.  The estimates of depth, though, either using 
the combination or individual components, yield small fluctuation during the iterative 
process.  It means that the choice of the a priori variance 22

D m1=σ  may not be applicable 
when the noise is high in association with the initial approximation of depth = 60m.  
Furthermore, a larger number of iterations may be needed due to a slow convergence of 
the solution. 
    We thus use 22

D m100=σ  instead to relax the constraint of (6.4).  The results are 
drawn in Figure 7.11.  The plot also includes the results of individual gradients where 

22
D m100=σ  is employed, taken from Figure 7.7.  Note that the depth estimation is more 

stable, as compared to the case 22
D m1=σ  in Figure 7.10.  The rapid stability of the 

solution renders the values of the test statistic significantly smaller after the first 2 
iterations which then quickly approach zero; whereas, for 22

D m1=σ , the test statistic 
oscillates and only gradually diminishes with the iterations, see Figures 7.10b versus 
7.11b.  (Note that the depth solution in Figure 7.10a causes the oscillation of the test 
statistic in Figure 7.10b.)  The rmse’s of the adjusted parameters, obtained from (7.2), 
and the test statistic computation are summarized in Tables 7.12 and 7.13, respectively.   
 
 
 

rmse(m) 2
0σ̂  Choice 

Northing Easting Depth  
22

D m1=σ  4.106 19.821 0.972 1.000656 
22

D m100=σ 4.270 20.181 3.919 1.000656 
 
 
Table 7.12: CASE V: The root-mean-square-error (rmse) of the adjusted parameters 
using all six combined gradients and the a posteriori variances after 50 iterations. 
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Choice Test statistic 
 A B T 

22
D m1=σ  0.000254465 1.000659663 0.000254297 

22
D m100=σ  0.004578409 1.000659439 0.004575392 

B
AT =  with mA R=  and mnB −= Ω                                                eq. (6.27) 

=−=ψ α− )mn,m(F10 2.604918546                                                         eq. (6.28)
with 05.0=α  m = 3 and n = 6x400x400 

 
 
 
Table 7.13: CASE V: Hypothesis testing after 50 iterations for the case of the 2m x 2m x 
1000m anomaly at the azimuthal orientation of 90° in 1E2/Hz white noise using all six 
combined gradients. 
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(b) 

 
Figure 7.10: CASE V: (a) The absolute errors at the azimuthal orientation of 90° using all 
six combined gradients in 1E2/Hz white noise with 22

D m1=σ ; (b) The test statistic (red 
solid line) and threshold =ψ0  2.60 (black dashed line) for a given α = 0.050. 

0 5 10 15 20 25 30 35 40 45 50 0 

0.5 

1 

1.5 

2 

2.5 

3 

Iteration

Te
st

 s
ta

tis
tic

Γ23 Γ23 

Γ22 

Γ13 

Γ33 

Γ11 

All gradients 

Γ12 

Γ23 

Γ22 

Γ13 
Γ33 

Γ11

All gradients 

Γ12 

Γ22 

Γ13 

Γ33 

Γ11 

All gradients 

Γ12 



 161

0 20 40 60
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4 North

m

0 20 40 60
10

0

10
1

10
2

10
3 East

Iteration
0 20 40 60

10
-2

10
-1

10
0

10
1

10
2

10
3 Depth

 
(a) 

 
(b) 

 
Figure 7.11: CASE V: (a) The absolute errors at the azimuthal orientation of 90° using all 
six combined gradients in 1E2/Hz white noise with 22

D m100=σ ; (b) The test statistic 
(red solid line) and threshold =ψ 0  2.60 (black dash line) for a given α = 0.050. 
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7.7 CASE VI: Predicted location and fixed orientation using individual gradients in 
geological background 
     For this case, we add the full geological background plus 1E2/Hz white noise to 
the gradient signals due to the 2m x 2m x 1000m anomaly at β′ = 90°.  We use the same a 
priori information as in the previous cases except that only the a priori variance of depth 

22
D m100=σ  is used.  The parameter estimation is conducted independently by using 

different gradient components.  The physical correlations between observations are taken 
into account and eq. (A.1) in Appendix A is applied (the instrumental noise FN  in Table 
A.1 is also included).  Figures 7.12 through 7.14 show the iterated solutions of north and 
east coordinates and depth, respectively, using the different psd models shown in 
Appendix A.  We compare the iterative solutions before and after the subtraction of a 
geological model described in Chapter 5 (called WB and WOB respectively) using Psd 
models 1 (black dotted line) and 2 (red solid line).  We also show that the small change of 
Psd model 1 (i.e., we slightly change the parameters of Psd model 1) affects the 
parameter estimation. 
    Overall, the numerical results of 33Γ , 11Γ , 13Γ , and 23Γ  for WB and WOB stabilize 
except the east coordinate error of 13Γ  after 15 iterations.  For other components, the 
north, east, and depth errors steadily increase with respect to the number of iterations. 
     The numerical results shown in Figures 7.12 – 7.14 indicate that the parameter 
estimation using one gradient component, for the WOB case using Psd model 2, does not 
give a better result of estimating coordinates than that for the WB using Psd model 1.  For 
instance, after 50 iterations in Figure 7.12, the north error with 13Γ  and the WB case is 
42.501m (black-dotted line) whereas the error is 199.460m for WOB (red-solid line).  
However, using 33Γ  in the WB case, the north error is 4.750m; while using 33Γ  in the 
WOB case, the error is only 1.061m.  One possible reason is that the psd’s may not be 
accurately modeled.  To support this statement, we slightly change the parameters of Psd 
model 1 to see how it affects the results by replacing 2

10σ  = 2.0x10-10 m4/s4 and 2
11σ  = 

3.0x10-13 m4/s4.  After 50 iterations, the numerical results show that, for instance, the 
north error by using 13Γ  largely increases to several thousand meters (see blue dashed 
line in Figure 7.12).   
    The 22Γ , 12Γ , and 23Γ  signals are small with respect to the 90° orientation of the 
anomaly and can be entirely corrupted by noise. For example, the rms of the signal 12Γ  
(0.831E-3 Eötvös, taken from Table 7.1) is only about 0.02% of the full geological 
background plus 1E2/Hz white noise (4.005 Eötvös).  As a consequence, the location 
errors of 22Γ , 12Γ , and 23Γ  are large, about 10-100m.   

    Examples of { }50
~MSPE Θ  for 33Γ  at iteration 50 obtained from (7.2) are: 

(a) The geological model was not removed (and Psd model 1 was used) and 2
0σ̂  = 

16.843036: 
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  { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

44.61903500
0698.2544060.000052
00.000052 75.745876

16.843036~MSPE 50Θ   [m2]        (7.12) 

 
(b) The geological model was not removed (and Psd model 1 was changed) and 2

0σ̂  = 
17.901517: 

  { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

48.24567700
0714.1788360.001380-
00.001380-86.585646

17.901517~MSPE 50Θ   [m2]        (7.13) 

 
(c) The geological background was removed (and Psd model 2 was used) and 2

0σ̂  = 
13.087721: 

  { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

45.1528340 0
0693.5794630.000513-
00.000513-77.354893

13.087721~MSPE 50Θ   [m2]        (7.14) 

 
    We assess the success of the parameter estimation.  At iteration 50, the values of 
the test statistic in Table 7.14 are below the threshold 0ψ  at α  = 0.05 level of 
significance; the null hypotheses are accepted.  Although the estimated locations do not 
coincide with the true locations, especially the results of using 22Γ , 12Γ , and 23Γ , they 
equal 0Θ  statically.  As stated in the previous cases, since the anomaly signals are small, 
compared to the noise background, the test statistic is not able to identify for large 
location errors.  It should be noted also that the values of m)(n −Ω  are large, compared 
to mR , especially, for component 22Γ .  These results are due to an incomplete reduction 
of noise backgrounds. 
    Of interest is, assuming the a priori variance component to be unity, i.e., 12

0 =σ , 
whether or not the a posteriori variance component without constraint, i.e., 

mn2
0 −=σ Ω , in the adjustment is significantly different from its a priori value.   

With the 2χ -distribution, where 2
mn2

0

2
0 ~

)mn(
−χ

σ
σ−

 holds, the two-tailed hypothesis test 

can be set up as follows (Leick, 1997, pp. 142-143, and Kock, 1999, pp. 286-287):   
 
  H0: 2

0
2
0 σ=σ    versus   H1: 2

0
2
0 σ≠σ                                 (7.15) 

 
It will be rejected with a significance level of α  if the test statistic, χT , 
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  2

mn,
2

1
T

−
α

−
χ χ>  or 2

mn,
2

T
−

αχ χ<  with 2
0

2
0

2
0)mn(

T
σ

=
σ

σ−
=χ

Ω                  (7.16) 

 
For our case, the rejection of H0 is taken as an indicator that the reduction of the noise 
background in the observation y  in eq. (6.13) is not significant.  The results of the 2χ  
test are given in Table 7.14.  For α  = 0.05, the hypothesis H0 has been rejected for all 
gradients in either WB (using Psd model 1) or WOB (using Psd model 2) case.  For 
instance, for 33Γ  in WOB, χΤ  = 26.949x105 > 2

975.0χ  = 1.611x105.  The specific test 
indicates that the full geological background plus 1E2/Hz white noise needs to be reduced 
as much as possible so as to be accept the null hypothesis.  To support this statement, we 
estimate the same parameters due to the same anomaly but in 0.01E2/Hz white noise (as 
an ideal case).  We only show the 2χ  test (see CASE II for the F-test).  As shown in 
Table 7.14, the test statistics χΤ  for all components fall inside the acceptance interval.  

(More details using 2χ  test for various noise cases are discussed in CASE IX.)   
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Figure 7.12: CASE VI: The absolute errors of north coordinates using individual gradient 
components in geological noise; black-dotted line indicates a geological model was not 
removed and Psd model 1 was used; blue-dashed line indicates a geological model was 
not removed and Psd model 1 was used but its parameters were slightly changed (see 
text); red-solid line indicates a geological model was removed and Psd model 2 was used. 
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Figure 7.13: CASE VI: The absolute errors of east coordinate using individual gradient 
components in geological noise; black-dotted line indicates a geological model was not 
removed and Psd model 1 was used; blue-dashed line indicates a geological model was 
not removed and Psd model 1 was used but its parameters were slightly changed (see 
text); red-solid line indicates a geological model was removed and Psd model 2 was used. 
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Figure 7.14: CASE VI: The absolute errors of depth using individual gradient 
components in geological noise; black-dotted line indicates a geological model was not 
removed and Psd model 1 was used; blue-dashed line indicates a geological model was 
not removed and Psd model 1 was used but its parameters were slightly changed (see 
text); red-solid line indicates a geological model was removed and Psd model 2 was used. 
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 Test statistic 
Grad WB WOB WN 

 A B T Tχ x 10-5 A B T Tχ x 10-5 Tχ x 10-5

33Γ  0.000005106 16.843352731 0.000000303 26.949 0.000027626 13.087966819 0.000002110 20.940 1.597

22Γ  12.329603691 90.663134823 0.135993573 145.058 17.249267597 84.536278081 0.204045742 135.256 1.599

11Γ  0.000000494 1.073199580 0.000000460 1.717 0.000009433 1.201789677 0.000007849 1.922 1.598

12Γ  3.279046755 10.836256313 0.302599593 17.338 0.088554138 10.869512897 0.008147019 17.390 1.600

13Γ  2.471165296 14.977656919 0.164990112 23.964 0.001416550 14.927722893 0.000094893 23.884 1.597

23Γ  0.088554138 17.696517774 0.000001760 28.313 0.000088649 17.263880658 0.000005134 27.622 1.597

BAT =  with mA R=  and mnB −= Ω                                                                                                             eq. (6.27) 

=−=ψ α− )mn,m(F10 2.604964777                                                                                                                         eq. (6.28) 

Reject H0 if =χ>
−

α
−

χ
2

mn,
2

1
T  1.611E+5 or =χ<

−
αχ
2

mn,
2

T  1.589E+5 

with 2
0

2
0

2
0)mn(T σ=σσ−=χ Ω , 05.0=α , m = 3, n = 400x400, and 12

0 =σ   

WB = full geological background plus 1E2/Hz white noise 

WOB = full geological background plus 1E2/Hz white noise minus a geological model 

WN = 0.01E2/Hz white noise 

 
 
Table 7.14: CASE VI: Hypothesis testing via F test and 2χ  test after 50 iterations
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7.8 CASE VII: Predicted location and fixed orientation using six combination of 
gradient components in geological background 
    The case where the parameter estimation using all six gradient components is 
performed simultaneously in the full geological background plus 1E2/Hz white noise is 
tested.  The a priori information of (7.3) and (7.4) with m1002

D =σ is used.  The physical 
correlations between observations are taken into account; the equation of (A.1) and the 
instrumental noise FN  in Table A.1 is used. 
 
 

 
 

Figure 7.15: CASE VII: The absolute errors of location; black-dotted line indicates a 
geological model was not removed; red-solid line indicates a geological model was 
removed. 
 
 
 
    Figure 7.15 shows the results of all combined gradients.  When six gradient 
components are simultaneously observed, the absolute errors of north and east 
coordinates for the case of WOB (Psd model 2 was used) (red-solid line) are smaller than 
those for the case of WB (Psd model 1 was used) (black-dotted line).  For instance, the 
north coordinate error of the latter case is about 12m while it is 3m for the former case at 
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iteration 50.   The mean square prediction errors, { }50
~MSPE Θ , obtained from (7.2) for 

both cases at iteration 50 are: 
 
  (a) The geological model was not removed (Psd model 1 was used) and 2

0σ̂  =  
  68.181258: 

  { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

10.57016300
0339.2751220.000437
00.00043711.921697

68.181258~MSPE 50Θ   [m2]        (7.17) 

 
  (b) The geological model was removed (Psd model 2 was used) and 2

0σ̂  = 33.682292: 

  { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

11.13183700
0341.8847440.000855
00.00085512.637481

33.682292~MSPE 50Θ   [m2]        (7.18) 

 
Note that the diagonal elements of (7.17) are slightly smaller than those of (7.18).  This is 
due to the influence of psd modeling as discussed in CASE VI.  Finally, the root-mean-
square-error’s of the adjusted parameters taken from the diagonal elements of (7.17) and 
(7.18) with 2

0σ̂  are given in Table 7.15a.  Table 7.15b shows the hypothesis testing at the 
significance level α  = 0.05 after 50 iterations.  Using F-test, the null hypotheses for both 
cases are accepted.   
For the χ2 test, the rejection of the null hypothesis (two-tailed test) indicates an 
incomplete reduction of the noise background in the observation y  in eq. (6.13). 
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rmse(m)  
Northing Easting Depth 

WB 28.510 152.092 26.845 
WOB 20.631 107.310 19.363 

 
 

(a) 
 
 

Test statistic  
WB WOB 

A 0.007862339 0.004185320 
B 68.181471318 33.682397807 
T 0.000115314 0.000124258 

Tχ x 10-5 654.540 323.350 

B
AT =  with mA R=  and mnB −= Ω                                                              eq. (6.27) 

=−=ψ α− )mn,m(F10  2.604918546                                                                      eq. (6.28)
Reject H0 if =χ>

−
α

−
χ

2

mn,
2

1
T  9.627E+5 or =χ<

−
αχ
2

mn,
2

T  9.572E+5 

with 2
0

2
0

2
0)mn(T σ=σσ−=χ Ω , 05.0=α , m = 3, n = 6x400x400, and 12

0 =σ  
WB = full geological background plus 1E2/Hz white noise 
WOB = full geological background plus 1E2/Hz white noise minus a geological model 

 
 

(b) 
 
 

Table 7.15: CASE VII: (a) The root-mean-square-error (rmse) of the adjusted parameters 
after 50 iterations; (b) Hypothesis testing via F-test and 2χ  test after 50 iterations.
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7.9 CASE VIII: Predicted location and orientation in 0.01E2/Hz white noise 
environment using six gradient components 
    For this case, we want to evaluate how well the parameter estimation using the 
random effects model approach is able to refine the azimuthal orientation of the 2m x 2m 
x 1000m anomaly.  Suppose the anomaly is rotated by 47 degrees with respect to north 
direction in the 0.01E2/Hz white noise environment.  Let the output of the matched 
filtering be given as in the previous cases except that the azimuthal orientation will be 
determined using six gradient components.  We shall also determine how the hypothesis 
testing in association with the choices of 2

Dσ  behaves when estimation of the orientation 
is included.  Here, we consider no correlation between sensors under white noise 
circumstances.  Provided that the approximate orientation is obtained from the detection 
process, we rewrite (7.3) and (7.4): 
 

  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

β′

=

o50
00.60

m00.18000
m00.21030

Depth
East

North

0θ                                    (7.19) 

 
together with the a priori covariance matrix  
 

  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

σ=

′
2
β

2
D

2
E

2
N

2
0Θ

σ000
0σ00
00σ0
000σ

Σ  with 
o3σ

30.00mσ
30.00mσ

β

E

N

±=

±=
±=

′

  

  (a) 1.00mσD ±= , and (b) 10.00mσD ±=                           (7.20) 
 
Figure 7.16a shows that the absolute errors of parameter estimates using 

1.00mσD ±= and 10.00mσD ±=  are slightly different.  The estimation method can 
refine the orientation to better than 0.172° after 50 iterations.  The mean square prediction 
errors, { }50

~MSPE Θ , after 50 iterations obtained from (7.2) are as follows: 
 
(i) For the case of 22

D m1=σ  and 2
0σ̂  = 0.998844, 

{ }

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅
⋅
⋅
⋅

σ=

=

2

222

222

222

2
0

50

deg1.051294deg0.008235mdeg0.000041m-deg0.000034m-
deg0.008235m0.179762m7m-3.267E-7m-2.664E-
deg0.000041m-7m-3.267E-4.643856m4.124023m
deg0.000034m-7m-2.664E-4.124023m4.073396m

ˆ

~MSPE Θ

(7.21) 
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(ii) For the case of 22
D m100=σ  and 2

0σ̂  = 0.998845, 

{ }

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅
⋅
⋅
⋅

σ=

=

2

222

222

222

2
0

50

deg1.051021deg0.010155mdeg0.000035m-deg0.000046m-
deg0.010155m0.218655m7m-3.390E-07m-4.516E
deg0.000035m-7m-3.390E-4.642434m4.122719m
deg0.000046m-7m-4.516E4.122719m4.072151m

ˆ

~MSPE Θ

(7.22) 

 
As seen above, the depth and orientation estimates are slightly correlated.  Finally, the 
rmse’s of the adjusted parameters taken from (7.21) and (7.22) are summarized in Table 
7.16.  In Figure 7.16b, the test statistic for the case of 22

D m100=σ  decreases faster than 
the other; and, in turn, is below the computed threshold 0ψ  for the specified significance 
level, 05.0=α  after 3 iterations.  The hypothesis tests for both cases at iteration 50 are 
summarized in Table 7.17.   
 
 

rmse Choice 
 
 Northing (m) Easting (m) Depth (m) Orientation (deg)

22
D m1=σ  2.016792 2.153386 0.467336 1.024601 

22
D m100=σ  2.017099 2.153715 0.423738 1.024733 

 
 
Table 7.16: CASE VIII: The root-mean-square-errors (rmse’s) of the adjusted parameters 
after 50 iterations. 
 
 

Test statistic Choice 

A B T 
22

D m1=σ  0.000271891 0.998848584 0.000272205 
22

D m100=σ  0.000913490 0.998849225 0.000914543 

B
AT =  with mA R=  and mnB −= Ω                                                     eq. (6.27) 

=−=ψ α− )mn,m(F10  2.371941509                                                             eq. (6.28)
with 05.0=α , m = 4, and n = 6x400x400 

 
 
Table 7.17: CASEVIII: Hypothesis testing after 50 iterations. 
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(a) 

 
(b) 

 
Figure 7.16: CASEVIII: (a) The absolute errors of location and orientation; (b) Test 
statistic  
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    We further evaluate the robustness of the random effects model approach in 
estimating orientation by adding either 1E2/Hz white noise alone or the full geological 
background plus 1E2/Hz white noise to the anomaly’s signal.  Unfortunately, neither case 
indicates that the parameter estimation can be done successfully.  The adjusted solutions 
of the orientation fluctuate and are unstable in the iterative procedure.  Furthermore, the 
location errors (north and east coordinates and depth) continuously grow with respect to 
the number of iterations.  If we estimate the orientation alone by assuming the location is 
known perfectly [by letting 02

N →σ , 02
E →σ , and 02

D →σ , (i.e., very large weights are 
applied)], the adjusted solutions still diverge (not shown here).  The test statistic does not 
give any reliable judgment; H0 is accepted although there is a large discrepancy between 
the adjusted estimates and the a priori values 0Θ .  As such, to estimate the location as 
well as the orientation parameters, it requires a complete reduction of the observations; 
any noisy contents should be removed as much as possible.  
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7.10 CASE IX: Estimation of density contrast  
    For the simplicity of density contrast estimation, suppose the location and the 
orientation of the 2m x 2m x 1000m anomaly are perfectly known; see the expressions 
(B.1) and (B.2) in Appendix B.  We wish to estimate the density contrast ρΔ  alone.   
    Let the true value of the density contrast be -1.500 g/cm3.  We want to evaluate the 
robustness of the random effects model approach when estimating ρΔ .  Given the a 
priori information, 0θ  = -1.400 g/cm3

 with 2
ρΔσ  = 0.01 [g/cm3]2, we determine the density 

contrast in different noise backgrounds.  All six combined gradients are employed in this 
case.  Because of the linear estimation according to (B.1) and (B.2) (i.e., assuming the 
other parameters are completely known), no iterative procedure is required.  Consider no 
correlations between sensors if white noise is used. 

    The estimation results are summarized in Table 7.18.  The estimate of the density 
contrast, ρΔ ˆ , agrees within less than 0.020g/cm3 (see its rmse obtained from (7.2)) with 
the true value of density contrast for the case of 0.01E2/Hz white noise.  However, the 
estimation errors become larger as stronger noise content is added to the anomaly’s 
gradient signals.  For the extreme case, where the full geological background plus 1E2/Hz 
white noise is used, the estimate deviates from the true value by 1.009g/cm3.  As such, 
the F-test fails to accept H0 at the 0.05 level of significance.  For the density estimation, 
the rejection of H0 dose not mean that the estimate is incorrect.  Rather, it implies that the 
estimate and the a priori 0Θ  do not coincide in the statistical sense of (6.4).  Is the choice 
of 0Θ  suitable for the adjustment system? or Does the noise background greatly affect 
the estimation?  As such, the χ2 test on errors in the stochastic model and/or due to an 
incomplete reduction of the observations is applied.  As listed in Table 7.18, the χ2 test 
fails to accept H0 on the upper tail for the case of full geological background plus 1E2/Hz 
white noise.  The test statistic is large (654.531x105), relative to the two-tail criterion.  
However, when the noise background decreases, for 0.01E2/Hz white noise case, the test 
statistic Tχ  falls inside the acceptance interval.
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F-test χ2-test Noise ρΔ ˆ  (g/cm3) rmse (g/cm3) 

A B T Tχ x 10-5

0.01E2/Hz -1.507 0.023 1.219119350 0.998843524 1.220530864 9.589

1E2/Hz  -1.387 0.092 0.105302483 1.000662128 0.105302483 9.606

WOB -1.832 0.535 126.059658947 33.682196525 3.742619898 323.349

WB -2.509 0.763 839.760390702 68.180358563 12.316749404 654.531

B
AT =  with mA R=  and mnB −= Ω                                                                                                                  eq. (6.27) 

=−=ψ α− )mn,m(F10  3.841468506                                                                                                                          eq. (6.28) 

Reject H0 if =χ>
−

α
−

χ
2

mn,
2

1
T  9.627E+5 or =χ<

−
αχ
2

mn,
2

T  9.573E+5 

with 2
0

2
0

2
0)mn(T σ=σσ−=χ Ω , 05.0=α , m = 1, n = 6x400x400, and 12

0 =σ  

WB = full geological background plus 1E2/Hz white noise 

WOB = full geological background plus 1E2/Hz white noise minus a geological model 

 
 
 
Table 7.18: CASE IX: The estimates of density contrast and hypothesis testing 
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CHAPTER 8 
 
 

CONCLUSIONS AND FUTURE WORK 
 
 

    In this study, the two dimensional matched filters for six gradient components 
observed at low aircraft altitude was developed and tested in white and correlated noise 
environments for shallow small mass anomalous detection.  The airborne gradiometric 
data was simulated using the 1987 GGSS data, 30m DEM, and Hz1E  white Gaussian 
noise.  Different sizes of a rectangular box representing the true anomalies were 
simulated and these signals were added to the simulated noise.  The reciprocal psd 
models were applied to the matched filters for different types of geological backgrounds: 
(1) full geological background plus 1E2/Hz white noise, (2) geological background plus 
1E2/Hz white noise minus a geological model, and (3) the GGSS data plus 1E2/Hz white 
noise.  For comparison, the matched filters using the empirical psd’s obtained from the 
geological backgrounds were also considered. 
    Numerical analyses of the capability of the matched filters were presented.  The 
results in Chapter 5 indicate that, overall, the 33Γ  gradient component is able to detect the 
anomalies of interest using matched filters in this simulation.  Psd modeling affects the 
detectability of matched filters, where the empirical psd’s generally yield superior results.  
Although more accurate psd models are needed to enhance the capability of matched 
filters, the matched filter for all six combined gradients shows an improvement of 
detection superior to the use of matched filters for individual gradients.  The correlated 
noise environments slightly affect the detectability of the filters using the empirical psd’s.  
For the best performance, the knowledge of the signal waveform is required as well as 
accurate psd’s of the background noise. 
    By applying the matched filter to the simulation observations including the 
anomaly signal to be detected, the highest output peak indicates the likely location of the 
signal.  Statistically, if the peak exceeds the threshold for a given POM (or a significance 
level), the signal is presumed to be present at the location of the peak.  The threshold with 
a computed POF does not in any way influence the selection of the candidate location; 
though, it sets up a level above which all values of the output, maximum or not, have a 
probability of being a true location.  In this sense, the threshold does not give a good 
measure of the probability of success since it does not account for the maximum value of 
the output being special, it rather allows possible candidate(s) of the target anomaly.  
However, since a matched filter maximizes the SNR, the POF is useful when making a 
decision concerning the presence of the target signal.  The choice of POM should not be 
too high, otherwise until the corresponding value of POF may not be reliable; increasing 
POM decreases POF.  In this study, we find that POM = 0.001 is appropriate. 



 179

    In the case of full geological background plus 1E2/Hz white noise minus the 
geological model computed using 120m resolution topography, the matched filters 
performed not better than in the case of full geological background plus 1E2/Hz white 
noise.  This lack of improvement despite reduction in background noise was traced to 
high sensitivity of the filter to the psd models used.  In this case, Psd model 2 may not 
adequately characterize the noise background.  
    In comparison with the use of psd models, we used the empirical psd’s and applied 
them for different cases of geological backgrounds.  We found that geological 
background slightly affects the detectability performance of the matched filters.  Another 
factor is the magnitudes of noise, which may be large, compared to the gradient signals of 
the target anomaly.  As a consequence, the target signal may not be detected by the 
filters.  Numerical tests in Table 5.20 show that the locations of target anomalies within 
the background field also affect the detectability of the matched filters.   
    The target anomaly located on observation grid intersections can be detected better 
than the anomaly located within a grid square.  We found that with higher resolution in 
the observations the detectability of the matched filters increases.  The detectability of the 
filters is sensitive to orientations.  When the filter is rotated by a few degrees with respect 
to the true orientation of the target anomaly, it can not detect the anomaly successfully.  
A bank of filters at different azimuthal orientations is required to detect a signal with 
unknown orientation.  The performance of the matched filters for different cases was 
summarized in the plots in Section 5.7. 
    If the matched filter output provides a good approximation of the true location of 
the anomaly, parameter estimation theory (developed in Chapter 6) may be used to refine 
the location, including its depth.  To refine the detection part, as well as determine 
additional parameters that were not included in the detection, we use the random effects 
model in a least-squares adjustment procedure, which allows a priori information of a 
stochastic nature on the parameters.  Using individual gradient components, overall, the 
component Γ33 provides an improvement of location estimates in different background 
noises.  Moreover, estimation can be improved using the six-gradient combination, not 
only in the cases of 0.01E2/Hz and 1E2/Hz white noises, but also in the case where a 
geological model was subtracted from the full geological background plus 1E2/Hz white 
noise.  However, the result of estimating the location is worst for the case of the full 
geological background plus 1E2/Hz white noise, both when using individual gradients or 
all six gradients.  
    In our study, since we deal with multiple data tracks and single or multiple sensors, 
the inversion of the corresponding large covariance matrix may be numerically difficult.  
We have applied an orthogonal transformation to the random effects model so that the 
transformed covariance matrix becomes diagonal (or block diagonal), and is easily 
inverted (assuming we have regularly gridded data). 
    The test statistic (or significance test) which follows the F-distribution has been 
developed in order to determine whether the adjusted parameters give us misleading 
results on the basis of the a priori information given by the matched filter.  However, the 
test does not appear to be useful in assessing the estimation performance in the presence 
of strong noise backgrounds.   
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    Nonetheless, the random effects models have shown to be successful in refining the 
location and orientation using all six combined gradients--the adjusted values are close to 
the true parameters with significantly reduced errors (from the matched filter result).  
However, the adjusted solutions (iterated due to the nonlinearity of the model) do not 
converge if only individual gradients are used in the adjustment (with full geological 
background plus 1E2/Hz white noise).  The introduction and implementation of an 
additional 2χ  test confirms that an incomplete reduction of observation noise and an 
inaccurate psd model were applied.   
    An additional parameter, the density contrast, was considered.  Again, both F-test 
and 2χ  test failed for the computed thresholds based on α = 0.050.  More accurate psd 
models are needed as well as a requirement of removing correlated noise contents in the 
observations as much as possible.   
    In this study, we have considered only one anomaly to be detected.  Multiple 
targets should be the focus of future work.  These problems can make the detection and 
estimation approach much more difficult.  Multiple hypothesis testing would be 
recommended to apply to the approach in order to classify the targets of interest.  
Furthermore, the anomalies may have densities, slightly different from the geological 
background.  This problem can make detecting the signal and the estimation of unknown 
parameters much more difficult.  A more accurate and informative geological model or 
additional sensors (e.g., ground penetrating radar or electro magnetics) may be needed. 
    Finally, much more work with real data would be recommended to test the 
robustness of the signal detection and parameter estimation approach proposed in this 
study to further refine its practical applications in concert with the use of a future 
gradiometer with 1E2/Hz instrumental noise sensitivity. 
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APPENDIX A 
 
 

THE RECIPROCAL DISTANCE POWER SPECTRAL DENSITY MODELS OF 
GRVITATIONAL GRADIENTS 

 
 

    The reciprocal (auto or cross) psd models of gravitational gradients are given by 
(Jekeli, 2003): 
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J=16 PSD MODEL 1 PSD MODEL 2  PSD MODEL 3 
    

j 2σ  
(m4/s4) 

α  
(1/m) 

2σ  
(m4/s4) 

α  
(1/m) 

2σ  
(m4/s4) 

α  
(1/m) 

0 1.0E+05 3.0E-07 1.0E+05 3.0E-07 1.0E+05 3.0E-07 
1 1.0E+03 7.7E-07 1.0E+03 6.0E-07 1.0E+03 6.0E-07 
2 1.2E+02 3.0E-06 4.2E-01 5.0E-05 5.5E-01 5.0E-05 
3 1.3E+01 8.5E-06 3.0E+01 1.0E-06 1.0E-02 1.0E-06 
4 5.5E+00 2.0E-05 4.0E+01 1.0E-06 0.2E-02 1.0E-06 
5 3.5E-01 6.0E-05 1.0E-01 0.8E-06 0.2E-02 0.8E-06 
6 1.5E-02 1.2E-04 6.0E-04 9.7E-05 0.1E-02 9.7E-05 
7 1.5E-04 2.0E-04 9.0E-04 2.5E-07 1.0E-03 2.5E-07 
8 2.2E-05 5.0E-04 7.1E-08 0.8E-03 8.1E-09 0.6E-03 
9 2.1E-06 1.2E-03 6.0E-10 4.1E-02 1.0E-14 2.1E-02 
10 2.0E-07 3.0E-03 6.0E-10 0.4E-02 1.0E-14 0.4E-02 
11 3.0E-08 6.5E-02 6.0E-10 1.1E-02 1.0E-14 1.1E-02 
12 1.0E-10 1.9E-02 1.0E-10 4.8E-02 1.0E-14 1.8E-02 
13 1.4E-10 6.0E+01 1.0E-10 1.2E-01 1.0E-14 1.2E-01 
14 1.5E-10 1.7E+03 1.0E-13 2.1E-01 1.0E-14 2.1E-01 
15 1.5E-13 5.7E+03 1.0E-10 8.0E-01 1.0E-14 8.0E-01 

Altitude 
of vehicle 

35533 =′= xx m  

FN  e.g., 300 [E/(cyc/m)]2 for the speed of 10m/sec at the sampling rate of 3 
seconds) ( Hz1E  per data track) 

 
 
Table A.1: Values of model parameters for the gravitational gradients 
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APPENDIX B 
 
 

A RECTANGULAR PRISM AND ITS PARTIAL DERIVATIVES WITH 
RESPECT TO ORIGIN AND ORIENTATION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B.1:  A rectangular prism represents an anomalous mass measured at point 

)x,x,x( 321  
 
 
 
B.1 A rectangular prism 
    In Figure B.1, suppose a rectangular prism is held fix with x ′′ -triad frame parallel 
to a local coordinate system: (1,2,3) = (N,E,D), called x -triad frame.  The prism has the 
dimension of 321 x2x2x2 ′′Δ×′′Δ×′′Δ  and its center is at )x,x,x( o

3
o
2

o
1 (see also Figure B.2).  
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Under a plane assumption, analytic formulae of gravitational gradient components with 
cyclic index )3,2,1()j,i( = due to a rectangular prism are given by [Forsberg (1984), 
Jekeli et al. (2003), and Zhdanov et al. (2004)]: 
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where  
 
 )x,x,x( 321 ′′′ = a point on the prism with respect to x -triad frame 

k   =  Newtonian gravitational constant 
ρΔ  = density contrast of the prism 

r   = 2
kk

2
jj

2
ii )xx()xx()xx( ′−+′−+′−   

 
B.2 Origin and orientation 
    Suppose the rectangular prism have an orientation, α , about 3x ′′ -axis, positive in 
counter-clockwise direction with respect to x ′′ -triad frame, at view of end (see Figure 
B.2).  The transformation of six gradients of tensor from x ′′ -frame to x -frame can be 
viewed such that x ′′ -frame is oriented, parallel to x -frame by α  at origin )x,x,x( o

3
o
2

o
1 .  

The transformation of the gravitational gradient tensor from Γ ′′  to Γ  is 
 
  T)()( α′′α= RΓRΓ                                             (B.3) 
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Figure B.2: A rectangular prism is held fixed with respect to x ′′ -triad frame 
 
 
 

For this work, origin )x,x,x( o
3

o
2

o
1  and orientation of the prism are treated as unknown 

parameters.  The partial derivatives of gradient components with respect to the 
parameters can be derived as follows.  We can write (B.4) as a linear form associated 
with the unknown parameters, i.e., To

3
o
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o
1 ],x,x,x[ α=θ , as follows:  
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where  
  )cos(c α=α  and )sin(s α=α .                                    (B.6) 

 
Let the unknown parameters δθθθ += 0 , where 0θ  are approximation parameters and 
δθ  are perturbing terms.  The gravitational gradient of component ij  can be expanded to 
a Taylor’s series with respect to θ  and given by 
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For a convenience of derivations for each θ∂∂ ijΓ , we define the following relations 
(alternatively, the derivatives can be considered in frequency domain, see Forsberg 
(1984) for more details): 
 
(i) Diagonal element iiΓ ′′  of gradient tensor in x ′′ -frame 
Let,  
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where 
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(ii) Off-diagonal element ijΓ′  of gradient tensor in x ′′ -frame 
Let,  
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Then, each element θ∂∂ ijΓ  of (B.8) can be expressed as the following. 
(1) For 33Γ , 
  3333 ΓΓ ′′=                                                 (B.24) 

  o
i

33
o
i

33

x
Γ

x
Γ

∂
′′∂

=
∂
∂   with 3,2,1=i                                    (B.25) 

  0
α
Γ33 =
∂
∂                                                 (B.26) 

 



 195

(2) For 22Γ , 
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(4) For 12Γ , 
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(5) For 13Γ , 
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(6) For 23Γ , 
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B.3 The partial derivatives of a rectangular prism in the frequency domain 
    As can be seen already, the partial derivatives of a rectangular prism are very 
complicated in the space domain.  Surprisingly, they are simple in the frequency domain.  
We simply take the Fourier transform, ℑ , of the gradient tensors due to a rectangular 
with respect to )x,x( 21 .  We have the Fourier transform pair: 
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Thus, the partial derivatives with respect to mx , for )2,1(m = , can be readily obtained 
and given by 
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where 1−ℑ  is the inverse of Fourier transform operator 
 

  ∫ ∫
+∞

∞−

+∞

∞−

+π− =ℑ 21
)fxfx(i21 dfdfe(.)(.) 2211                                  (B.47) 

 
The partial derivatives with respect to 3x  is given by 
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APPENDIX C 
 
 

REARRANGMENT OF DATA TRACKS BY APPLYING ORTHOGONAL 
TRANSFORMATION 

 
 

    In this section, we show comprehensive details of rearrangement of gradient data 
on the basis of orthogonal transformations and permutations for various cases of data 
tracks and sensors. 
 
C.1 Single data track and single sensor (SS) 
For a convenience, we write the orthogonal matrix F  containing the N orthonormal basis 
vectors 1-N10 ,,, vvv K , defined in (6.22) through (6.24) in chapter 6:  
 
  [ ]1-N10 vvvF L=                                        (C.1) 
with  

  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

−Δπ

Δπ

p

p

f)1N(x2i

xf2i

p

e

e
1

N
1

M
v                                         (C.2) 
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pfp Δ
=  for 1N,,2,1,0p −= K , xΔ  is sampling interval, and the asterisk 

denotes complex conjugate.  Then, 
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or in a compact form  
 
  ijSS )]ji(r[ −=Σ                                              (C.6) 
 
where )ji(r −  is a correlation function for 1N,,1,0j,i −= K .  For zero-mean and wide-
sense stationary process, it can be shown that the product of FΣF SS

H  is a diagonal 
matrix: 
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C.2 Single data track and multiple sensors (SM) 
If we have K multiple sensors, the case of single track can be easily extended as the 
following.  Given a large data vector 
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with MN x MN cross-covariance matrix   
 
  ][ ijSM ΣΣ =  with 1K,,1,0)j,i( −= K                                (C.9) 
 
where the [i,j] block is the cross-covariance matrix between sensors i and j.  Each block 
matrix has dimension N x N and its elements are a cross-covariance (or cross-correlation) 
function ijr of sensors i and j 

 

  [ ]
n,mijij )nm(r −=Σ  for 1N,,1,0)n,m( −= K                          (C.10) 

 
Let the KNKN×  transformation matrix be defined as 

 
  ),,,,,(diag 1Ki10SM −= FFFFF KK                                 (C.11) 
 
where FF =i  (defined in (C.1)) for 1N,,1,0i −= K , and the KNKN×  permutation 
matrix Z (Z also is an orthogonal matrix) is constructed from the following algorithm (in 
MATLAB format) 
 
 



 200

 M′ = K 
 N′ = N 
 k = 1 
  for i = 0:N′-1 
           for j =0:M′-1 
              Z(:,k) = I(:,i+(j-1)*N′);                                  (C.12) 
              k = 1+k; 
           end 
       end 
 
Since the columns of Z form an orthonormal set (with respect to the usual inner product), 
Z is a nonsingular and orthonormal matrix (Harville, 1997).  The following expressions, 
from (C.13) to (C.17), give an example of permuting a data vector together with its 
covariance matrix.  Let K = 3 and N = 2 and a data vector be given by 
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with the covariance matrix 
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The permutation matrix constructed using the algorithm of (C.12) is  
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Then,   
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Since 
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the following steps show that the product of ZFΣFZ SMSM
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H  is a block diagonal matrix  
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where the [i,j] block FΣF ij

H  renders a NN×  diagonal matrix 
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Step II: 
 
After rearrangement, the transformed covariance matrix SM

~Σ  of SMΣ  is a block diagonal 
matrix.  It can be done by applying the KNKN×  permutation matrix Z, constructed by 
using (C.12) with KM =′  and NN =′ : 

 
  ( ))f(~,),f(~,),f(~),f(~diag~

1NSMiSM1SM0SMSMSM
F
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SM −== ΣΣΣΣZFΣFZΣ KK     (C.21) 
 
where the ith block )f(~

iSMΣ  is  
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Thus, we also have 
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C.3 Multiple data tracks and single sensor (MS) 
For a convenience, we write the data vector of (6.58): 
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and the NM×  covariance matrix, MSΣ , of (6.59), where M is the number of data tracks 
and N is the number of data samples per track, 

 

  [ ]pqMS ΣΣ =  for 1M,,1,0q,p −= K                                (C.25a) 
 
The pqΣ  is a NN×  block cross-covariance matrix of tracks i and j 
 

  [ ]
ijpqpq )qp,ji(r −−=Σ  for 1N,,1,0j,i −= K                        (C.25b) 

 
where )qp,ji(r −−  is a correlation function.  We also assume sampling interval is xΔ  
and track spacing is yΔ .   
 
Given MNMN×  orthogonal matrices,  

 
  ( )1Mi10MS ,,,,,diag −= FFFFF KK                                 (C.26) 
and 
  ( )1Ni10MS ,,,,,diag −′′′′=′ FFFFF KK                                  (C.27) 
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where the  ith block matrix, iF  is defined as (C.1) and has dimension NN× .  The ith 
block matrix iF′  also is the same as (C.1) with the replacement of yΔ  and M  and has 
dimension MM× .  Rearranging rows and columns of the product of MSMS

H
MS FΣF  using 

the MNMN×  permutation matrix Z , whose columns are obtained by permuting 
(rearranging) the columns of the MNMN×  identity matrix MNI  based on (C.12) with 

MM =′  and NN =′ .   
 
Since  
  ( )( ) ( ) ( ) MNMSMS

H
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H
MSMSMSMS IFZFFZFFZFFZF =′′=′′                   (C.28) 

and  
  ( ) ( ) 1
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H
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−′=′ FZFFZF                                    (C.29) 

 
it can be shown that the product of MSMSMS

H
MS

HH
MS FZFΣFZF ′′  is a block diagonal matrix as 

follows:    
 
Step I 

 

  [ ]
pqpq

H
MSMS

H
MS FΣFFΣF =  for 1M,,1,0q,p −= K                     (C.30) 

where 

  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−−
=

∑

∑∑
−

=

Δπ−

−

=

Δπ−
−

=

Δπ−

−

1N

0k

xfk2i
pq

1N

0k

xfk2i
pq

1N

0k

xfk2i
pq

pq
H

1N

10

e)qp,k(r

,,e)qp,k(r,e)qp,k(r
diag

L

FΣF          (C.31) 

 
Step II 
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Step III 
 

))f(~,,)f(~,,)f(~,)f(~(diag

~

1NMS
H

iMS
H

1MS
H

0MS
H

MSMSMS
H
MS

HH
MSMS

FΣFFΣFFΣFFΣF

FZFΣFZFΣ
′′′′′′′′=

′′=

−KK
   (C.34) 

where 

[ ]

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

′

′′
=

′′′

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′⎟
⎠

⎞
⎜
⎝

⎛ ′

′⎟
⎠

⎞
⎜
⎝

⎛ ′

′⎟
⎠

⎞
⎜
⎝

⎛ ′

=′′

∑∑

∑∑∑∑

∑∑

∑∑

∑∑

−

=′

−

=

′Δ′+Δπ−

−

=′

−

=

′Δ′+Δπ−
−

=′

−

=

′Δ′+Δπ−

−

−

−

=′

−

=

′Δ′+Δπ−

−

=′

−

=

′Δ′+Δπ−

−

=′

−

=

′Δ′+Δπ−

−

−

1M

0k

1N

0k

)kyfxkf(2i

1M

0k

1N

0k

)kyfxkf(2i
1M

0k

1N

0k

)kyfxkf(2i

1M10

H
1M

1M

0k

1N

0k

)kyfxkf(2i

H
1

1M

0k

1N

0k

)kyfxkf(2i

H
0

1M

0k

1N

0k

)kyfxkf(2i

iMS
H

1Mi

1i0i

1Mi

1i

0i

e)k,k(r

,,e)k,k(r,e)k,k(r
diag

e)k,k(r

e)k,k(r

e)k,k(r

)f(~

K

L

M

vvv

v

v

v

FΣF

 

(C.35) 
 
We have (see also (6.60) in chapter 6)  
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C.4 Multiple data tracks and multiple sensors (MM) 
For the case of multiple tracks, we assume we have a large number of tracks, say M , and 
N  data samples per track and track spacing is yΔ .  For a convenience of derivations, the  
KMN  x 1 data vector of (6.72) in chapter 6 is written   
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and the KMNKMN×  cross-covariance matrix of (6.73) is   
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The [i,j] block, ijΣ , of (6.74), having dimension MNMN×  is      
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The [n,m] block, )n,m(Σ , is the NN×  cross-covariance matrix between tracks  
m and n is  

 
  ijmn )]nm,ji(r[)n,m( −−=Σ  for 1N,,1,0)j,i( −= K                     (C.40) 
 
where mnr  is a cross-correlation (covariance) function between tracks m and n.   
Let us define MMF -transformation matrix, having dimension KMNKMN×  and block 
diagonal structure, 
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where the block xF  has dimension MNMN×  and contains the NN×  orthonormal 
matrix, F , of (C.1) as  
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And the KMNKMN×  transformation matrix MMF  is defined as 
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where the block yF  has dimension MNMN×  and contains the MM×  orthonormal 
matrix, F′ , of (C.1) as  
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where F′  is defined as (C.1) with the replacement of yΔ  and M. 
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To rearrange rows and columns of (C.37) and (C.38), the KMNKMN×  permutation 
matrices MMZ  is defined as: 

 
  ( )1Mi10MM ,,,,,diag −= ZZZZZ KK                                (C.45) 
 
where the MNMN×  permutation matrix ZZ =i , based on (C.12) with MM =′  and 

NN =′  for 1M,,1,0i −= K .  The KMNKMN×  permutation matrix MMZ′  is constructed 
by using (C.12) with KM =′  and MNN =′ .   
 
Since  
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it can be shown that the product of MMMMMMMMMM
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block diagonal matrix, say MM
~Σ , as the following: 

 
Step I 

 

  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−−−

−

−

−

x)1K)(1K(
H
xxj)1K(

H
xx1)1K(

H
xx0)1K(

H
x

x)1K(i
H
xxij

H
xx1i

H
xx0i

H
x

x)1K(1
H
xxj1

H
xx11

H
xx10

H
x

x)1K(0
H
xxj0

H
xx01

H
xx00

H
x

MMMM
H
MM

FΣFFΣFFΣFFΣF

FΣFFΣFFΣFFΣF

FΣFFΣFFΣFFΣF
FΣFFΣFFΣFFΣF

FΣF

LL

MOMMM

LL

MMOMM

LL

LL

        (C.48) 

 
where the [i,j] block  
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With orthogonal property of F , therefore, the block FΣF )n,m(H  is a diagonal matrix.   
 
Step II 
 
Next, we rearrange the transformed observation vector, yFH

MM ,  and its corresponding 
covariance using the KMNKMN×  block-diagonal matrix MMZ   We have 
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(C.50) 
 
As a result, the product of ZFΣFZ xij

H
x

H  yields a MNMN×  block-diagonal matrix.   
 
Step III 
 
We now apply the MNMN×  transformation matrix MMF′  of (C.43) to the transformed 
observation vector, i.e. yFZF H
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MM′ , and its respective covariance matrix 
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where the [i,j] block yxij
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y ZFFΣFZF  is a MNMN×  diagonal matrix.   
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where the ith block )f(~
iMMΣ  having dimension KMKM×  is 
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with the KK ×  block  
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We also have   
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with the 1KM×  vector  
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and the 1K×  vector  
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