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ABSTRACT

A new generation of gradiometer technology is currently under development
based on atom interferometry and applicable to ground and airborne mapping of
geologic or anthropogenic features with signal strength as low as a few E6tvos,
entirely embedded in noise and geological background. With high sensitivities of
future airborne gradiometers, it may be possible to detect such anomalous sources
with careful data processing. Both the detection and the estimation of parameters of
the feature can be solved as an inverse problem in potential theory. However, one
can also use methods developed in communications theory, provided one has some a
priori, possible uncertain knowledge of the feature in question. We constructed a
matched filter as well as a sophisticated estimation technique to detect and
characterize particular small mass anomalies within general geologic background
noise using individual gradient and six gradient combination measurements at low
aircraft/helicopter altitudes of ranges of 10-30m above terrain clearance. Since both
detection and estimation portions requires the inversion of large sizes of covariance
matrices, we applied an orthogonal transformation to the matrices, which become
diagonal and can then be easily inverted. In addition, the performance of the
detection and estimation procedures is quantified by standard test statistics. With
these tests, probabilities of false alarm and detection may be assigned to the detection
results. We present numerical results in different noise circumstances, for instance, a
simulation of airborne gradiometry over moderate terrain with the inclusion of

1E/ vHz instrumental white noise. The proposed approaches are explored and

evaluated for their effectiveness in association with location, orientation, size, and
depth of a mass anomaly, and in the use of power spectral density (psd) models
versus empirical psd’s obtained from the noise backgrounds. The numerical results
show that a small anomaly, e.g., 2m x 2m x 10m, is detectable at shallow depths by
an appropriate matched filter using, not only the empirical psd’s and the gradient
component I's3, but also the psd models and the six-gradient combination. However,
the analysis shows that a strong noise level, low spatial resolution, and unknown
depth limit the anomaly detectability. The parameter estimation performed through
an iterative least-squares process was shown to be successful in estimating locations,
orientations, and depth of the anomaly. Hypothesis testing by means of the F-test was
used to quantify the performance of the estimation process.
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CHAPTER 1
INTRODUCTION TO SMALL ANOMALY MASS DETECTION

1.1 Introduction

In the early 1980’s, the US Air Force, NGA (then Defense Mapping Agency), and
Bell Aerospace Corp. developed a new gravity gradiometer system, called the Gravity
Gradiometer Survey System (GGSS) that, in conjunction with the Global Positioning
System (GPS), was designed to survey Earth’s gravity field on a regional basis (Jekeli,
1987 and 1993). Although the GGSS was successfully tested in a limited survey of a
large area, it was unfortunately terminated due to lack of funds. The existence of the
GGSS has drawn geophysicists’ attention towards the use of airborne gravity gradient
data not only for mapping the earth’s gravity field, but also for mineral exploration and
other small anomalous mass detection.

According to Jekeli (1993), the practical accuracy of the GGSS data is on the order
of 10E (1E = 1E6tvos=10" sec™) per ten-second average (corresponding to noise

performance of 30E/ JVHz ). The data were obtained on a grid of orthogonal tracks
spaced 5 km apart, at an altitude of about 700 m in the Texas/Oklahoma area. In 1999,
BHP’s Project Falcon and Lockheed-Martin introduced the world’s first airborne gravity
gradiometer (AGG) system for mineral exploration with noise performance as small as

7E/+/Hz (van Leeuwen, 1999; Lee, 2001). The AGG system was capable of sensing
small variations in the Earth’s gravity at the level required in mineral exploration with
100m resolution at a typical altitude of 100m above ground. Lui et al. (2001)
demonstrated the detectability of Kimberlite pipes as small as 100m in diameter.

Despite the AGG’s satisfactory outcome, detecting finer and smaller underground
structures whose gradient signals have much shorter wavelengths, normally located close
to the ground surface, is difficult. Romaides et al. (2001), for instance, conducted a
ground gradiometric survey in the static mode over an underground Missile Alert Facility
(MAF-EO), located at Vandenberg Air Force Base, California, by using a vertical spin-
axis Lockheed Martin gradiometer. The gravity gradient measurements indicated a peak
gradient signal of approximately 30E over the buried facility, whose center lies at 12m
depth below the ground surface. Kastella (2003) also studied the possibilities of using a
precise airborne gradiometer to detect small objects. Nonetheless, his assessment of
flight levels is still unclear. Although, a precise gradiometer system is essential for
detecting small objects, to date, no current technology has succeeded in yielding a
specification of sensing 1E gravity gradient or less for resolutions down to 20-40m.



Meanwhile, the Stanford research group has developed the cold atom
interferometry gradiometer (Snadden et al., 1998; Peters et al., 2001; McGuirk et al.,

2002). The overall sensitivity of noise performance is 4E/~Hz in laboratory tests. Also,
the research team at the University of Western Australia (UWA) has developed the OQR*

gravity gradiometer, which has achieved its target noise performance of close to 1E//Hz
in laboratory tests (van Kann, 1992; Matthews, 2002). With hope towards the success of
those instrumental developments in the near future, it is expected that the new
generations of precise gradiometers will be capable of detecting 2m-width x 2m-height x
1000m-length through 2m-width x 2m-height x 10m-length mass anomalies at depths of
10-50m, potentially at a very close range of 30-100m.

In general, gravity gradiometry is the measurement of the spatial gradients of the
gravity vector. It is a method used to extract physical information of the Earth’s upper
crust for determination of the gravity field and also to explore mineral resources and oil
deposits. Unlike gravimetry on a moving platform, airborne gradiometry is not
dependent on linear accelerations of the vehicle and only sensitive to angular
accelerations, which can be measured by gyroscopes. The system may consist of a
number of gradient sensors permitting the determination of the five independent
components of the gravity gradient tensor. The gradiometer is capable of sensing short-
wavelengths of the Earth’s gravity field, generated by the mass density of the upper crust
and topography. It may be able to detect and estimate small anomalous masses near the
Earth’s surface. Another attraction is that each gradient component itself intrinsically
provides a different aspect of the geometric shape of the anomaly. This is because the
gradient tensors are related to spatial directions and thereby are influenced by shapes of
the mass sources. However, it is difficult to detect high-resolution density anomalies due
to the complexity of the
instrument, the angular acceleration environment of the vehicle, and the sensitivity of the
instrument to the very near field. Moreover, the varying terrain itself may obscure the
comparatively small signals produced by sub-surface mass anomalies. Even today, with
high instrumental sensitivities, processing the data with additive noise is a major
challenge among geodesists and geophysicists because it fundamentally is a geophysical
inverse problem which has inherent non-unique solutions. Robust signal processing
methods need to be developed to extract meaningful signals from the geographical
background variation.

According to Jordan (1978), over 99% of the gravity gradient signals are due to the
visible topography as well as the underlying mass anomalies within 1 km below the
geoid. This implies that the signals correspond to a contribution of terrain mass. One
basic idea of detecting mass anomalies is that, by subtracting known or theoretical
gradients from the observed gradients, the differences essentially yield the signature of
anomalies created by unknown density contrasts. The theoretical gradients can be
computed using forward modeling approaches (e.g. flat-top rectangular prism and/or
slope-top triangular prism) applied to Digital Elevation Models (DEM) with the
assumption of a constant density. Such finite element models significantly depend on the

! The Orthogonal Quadrupole Responder (OQR) is designed to measure the off-diagonal components of the
gravity tensor using two quadrupole responders that are mounted orthogonally to each other.
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type of geometrical representation and grid spacing, which can corrupt the information to
be extracted.

This research will focus on one class of methods of signal detection and parameter
estimation to deal with the inverse problem to determine horizontal location, density
contrasts, and depths of small mass anomalies. Because the gravity gradients have a
local behavior, the signals themselves can be severely corrupted by the effect of nearby
topography. Filtering techniques for the detection problem will be developed on the
basis of the matched filter. The random effects model including stochastic linear
hypotheses (Schaffrin, 1987, 1989, and 2001; Schaffrin and Bock, 1994) will be adapted
to the problem of parameter estimation. Due to the fact that real data are not available,
the appropriate surveys of airborne gradiometry will be simulated based on the
combination of the 1987 GGSS data set and finite elements of flat-top rectangular prisms
from 1”"x1” DEM (Smith et al., 2001), provided by the National Geodetic Survey (NGS).

1.2 Review of previous and current works

For over half of a century, several sophisticated techniques for geological
interpretation have been developed for magnetic and gravity data, but only a few have
been applied to gravity gradient data. After Lancaster-Jones (1932), Nettleton (1976),
Lorenzini et al. (1988), Paik and Moody (1993), van Kann et al. (1993), and the
development of the GGSS (Jekeli, 1987 and 1993), the usage of gravity gradient has
become increasingly interesting due to its possibilities for such applications ranging from
geophysical explorations to space gravity mapping. Klingele et al. (1991) showed that
the use of vertical gravity gradient is capable of extracting detailed information of the
Earth’s structures superior to that of gravity data. The investigation was done by means
of the Euler deconvolution method (Thomson, 1982). Marson and Klingele (1993)
further investigated the advantage of using the gradient signal to delineate density
discontinuities in three dimensions.

Thurston and Smith (1997) and Smith et al. (1998) introduced the improved Source
Parameter Imaging™ (iSP1™) method for depth determination, which is independent of
geometric shapes assigned to the causative bodies. Aside from the methods of depth
estimation, vertical gradient data were utilized to model the Earth’s crustal density
distribution (Forsberg, 1984). However, because, in theory, an infinity of mass
distributions solve such an inverse problem, such modeling is not robust without
constraints. Vasco (1989) proposed a sophisticated way to deal with the ill-posed
condition by introducing inequality constraints in linear and nonlinear inversion
problems over the space of finite rectangular elements. Then, he compared the capability
of airborne gradiometer data with gravity data, which were gathered from the airborne
survey, conducted by the GGSS over Texas/Oklahoma area. The result showed that the
gradiometer data improved the model parameter resolution and in turn yielded a
maximum density error of 0.1 g/cm?® above 20km depth.

Vasco and Taylor (1991) extensively tested the nonlinear problem using the same
set of gradient data to determine the basement topography with a spatial resolution of
about 1.9 km. The solution resulted in mapping the basement topography as deep as
12km. Talwani (2003) further developed a joint inverse method based on the nonlinear
problem under a constraining condition (e.g., either fixed tops or bases of rectangular
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prisms). The method used gravity data and the full gradient tensor on a 100m grid in a
small area of size 3km x 3km. The author showed a significant improvement in obtaining
positions of the top and the base of salt domes at 1km and 3km depths. The misclosures
of modeled and observed gradient and gravity values varied in the range of 2-5E and 0.5-
1mgal, respectively. A crucial suggestion was made by Tawani (ibid.) that with 5E
sensitivity of a moving-base gradiometer, a target at a depth of about 600m was
detectable if its wavelength is as small as one kilometer and the flight height is about
100m.

Another work by Zhdanov et al. (2004) supports Talwani’s suggestion. They
developed a new method for interpreting the full gradient tensor based on three-
dimensional regularized focusing inversion. The gradient data used in this research came
from Falcon™ AGG survey over the Cannington Ag-Pb-Zn orebody (size of about
400m? at depths varying from 50m to 500m below the surface) in Queensland, Australia.
The processed data corresponded to an effective sensor height of 120 m above ground
level with sampling approximately 20 m along survey lines and with 100 m tracking
spacing. The authors showed the potential of the proposed method to reconstruct a
sharper image of the geological target as deep as 500m.

One of major concerns in airborne gradiometry is the effect of topographic mass,
becoming more significant at decreasing altitude. A correction to measure gradients must
be applied in order to reduce the effect as much as possible. Nonetheless, there are two
questions that arise in the numerical process of the terrain correction. First, how can the
complexity of the terrain be modeled with sufficient accuracy? Second, how much
knowledge of the terrain mass densities is required? These concerns have not yet been
fully investigated and are outside the scope of this study.

There are studies by different authors (e.g., Chinnery, 1961; Dorman and Lewis,
1974; Hammer, 1976), which are related to the methods of terrain correction with a
constant density. However, these studies did not consider the terrain effects in areas of
complex topography. Further analyses were performed in a very rough terrain along the
Rocky Mountain Chain by Tziavos et al. (1988), who developed an algorithm using the
Fast Fourier Transform (FFT), the definition of which can be found in Brigham (1988).
Then, Tziavos et al. (1988) compared FFT gradient computation with that generated by
finite rectangular prisms. It was shown that the terrain effect significantly depended on
the ratio between flight elevation and grid spacing, the type of terrain representation, the
attenuation of the gradient field at flight level, and the order of expansion of the terrain
correction integral based on Parker’ s formula (Parker, 1972 and 1994). The authors
concluded that obtaining accuracy of 0.5E for a flight height of 0.6 km above ground
required a grid spacing of about 0.25km. However, most of these analyses did not
consider smaller scales of grid spacing (e.g. less than 100-meter levels).

Using a one-arcsecond DEM, Jekeli et al. (2003) computed the full tensor of
gravitational gradients from slope-topped triangular and flat-topped rectangular prisms at
low altitudes of 10m and 100m. The numerical differences in magnitude increase up to
9E and 37E at 100-m height and 10-m height, respectively. These studies agreed with
previous analyses, given that the gradients strongly depend on the height of computation.
Further work was done by Jekeli and Zhu (2006), who showed that the resulting
gradients from triangular prism models depends on the diagonalization of the rectangular
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grid. The authors also compared different modeling methods such as triangular prism
formulas, rectangular prism/numerical integration formulas, Forsberg FFT, and Parker
FFT. However, more studies are still needed to better understand the consequences of
terrain representation effects towards data processing.

One may also consider the downward continuation of gradient data using, for
example, least-square collocation (Moritz ,1980) or Poisson’s integral (Heiskanen and
Moritz,1979). A sophisticated technique of downward continuation ideally should
minimize noise levels inherited from various data sources in some optimal fashion.
White and Goldstein (1984) developed a continuation technique combining minimum-
variance estimation and computational efficiency by performing some data processing in
a suboptimal manner. Jekeli (1985) further studied White and Goldstein’s method by
comparing with an optimal procedure such as least squares collocation. He showed the
additional advantage of yielding error estimates by a suboptimal technique exemplified
by frequency domain collocation. Other downward continuation techniques can be found
in Jekeli (1986), Gleason (1988), and Wang (1988), who however applied them to
estimate gravity quantities from gradient data. A number of numerical investigations are
still needed to broaden the scope of techniques applicable to precise airborne
gradiometry.

Another aspect to consider in the detection and estimation problem is measurement
noise. Filtering techniques should minimize the noise and in turn combine the available
gradient components in an optimal fashion because the gradient signals are
comparatively small and could be masked by the effect of topography and the longer
wavelength signals. One of the robust filtering techniques, widely used in geophysical
signal processing, is the Wiener filter (Wiener, 1949; Gunn, 1975 and 1978), which is
based on the principle of minimum-mean-square error. Pawlowski and Hansen (1990)
introduced the technique to gravity anomaly separation and showed that the superiority of
Wiener filter’s scheme over conventional band-pass filters significantly depended on
utilizing accurate geologic information. However, the filter did not perform well in the
presence of increasing spectral overlap between the gravity signal and the spectral
contributions of other geologic sources. One possible explanation is the inability of the
filter to reconstruct meaningful frequencies where the signal-to-noise ratio is low. The
matched filter is a robust technique that should be considered because it corresponds to a
filter whose chosen filter coefficients yield maximum signal-to-noise ratio in the output
(Turin ,1960 and 1976; Poor,1983; Chen and Kassam. 1985; Cadzow, 1987). This filter
is relatively new in the field of gravimetric geodesy and will be the focus in this research.

1.3 A preliminary effort to apply detection and estimation theory for small anomaly
detection
Although a new generation of precise gradiometers is destined to in the civilian
community in the near future, the detection of small anomalous masses still has
challenges with respect to signal processing capability. Some crucial factors are
emphasized as follows:
e The six components of the gravitational gradient tensor generated by the
anomalies are small compared to the geological background,



e All wavelength filtering is limited in efficiency if there exist overlapping
spectra between the signals and geological background,

e There is rapid signal attenuation with increasing flight altitudes,

e Aliasing effects are due to data spacing related to flight speed,

e ltis difficult to identify the anomalies if measurements are corrupted by noise,

e Detection by visualization may be difficult under some circumstances,

e The spatial location of the detected anomaly may not be as close as possible to
its true location. An optimal estimator is needed to refine the spatial location.

One of the preliminary investigations by Dumrongchai and Jekeli (2004a,b) applied
the concept of the matched-filter technique to better understand the above factors that
influence the gravitational gradients. The matched filter (MF) was first introduced by
North (1943) in the field of communication systems. Since then, it has been widely used
in various applications of electrical engineering, especially, in radar detection and pattern
-recognition. The development of the MF has other applications in signal detection. For
example, Poor (1983) and Geraniotis and Poor (1987) proposed robust matched filters for
optical receivers. Although the MF has a long history of development, the filter has
rarely appeared in the field of physical geodesy. One comprehensive work was done by
White et al. (1983), who introduced MF for the detection of characteristic geoid
undulation signatures of seamounts in SEASAT radar altimeter data. Nonetheless,
applications of the matched filter related to mass anomaly detection remains untested in
geodesy and geophysics.

Dumrongchai and Jekeli (2004a) developed the matched filter for the gravitational
gradients and preliminarily tested the filters with simulated components of the gradient
tensor using DEM (Jekeli and Zhu (2004), personal communication). Figure 1.1 shows
the results of matched filtering for the case of a non-random effect s; and white

Gaussian noise. Based on the filtering results, the authors made the following
conclusions. Firstly, the ability of matched filters to locate the anomaly is significantly
impeded not only by noise but also by spatial sampling. Secondly, since matched filters
require knowledge of the signal gradients, they perform poorly when geological noise
spectra overlap the spectrum of the anomaly. Finally, the geological background should
be removed beforehand to enhance the capabilities of matched filtering.

The problem of detecting the gravity gradients due to shallow small mass
anomalies in noise can be envisaged as extracting a very small signature from that total
gravity gradient field of the Earth; see Figure 1.2. The gravitational gradients due to
small mass anomalies are relatively small and span small ranges of very short
wavelengths lying between 10m and a few kilometers, compared with much longer
wavelengths of the total gradient field of the Earth.

The total gradient field measured by a gradiometer can be differenced with a
gradient field model containing long, medium, and some short wavelengths, so that any
residual in the measurement will correspond to unmodelled anomalies, potentially the
anomalies in question. Nonetheless, the wanted signals due to the anomalies can be
distorted by measurement noise. The outcome of such combinations can be described as
the observation space.



We look for a particular signal due to one or more target anomaly and attempt to
decide if the target is in observation space. Hypotheses testing based on a decision rule is
applied to the problem where H, corresponds to no target and H, (with i =1,2,3,...)

corresponds to the presence of the i " target; i equals one if there is only one target of
interest. The essential idea is to model the gradient signal due to the target anomaly if we
have complete knowledge of its signal waveform, i.e., we are able to construct its
corresponding matched filter. To decide which hypothesis is true, the designed matched
filter is applied to aid the decision. For several anomalies in question, a bank of matched
filters should be used. In practice, it is common that several interfering sources, e.g.,
masses of local topography and near surface density anomalies contribute to the filter
output.
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Figure 1.1: (a) One-arc second DEM and detection of a small anomaly (10m x 10m x
2000m) in Montana/Wyoming area, (b) six gravitational gradient components of the
topography and the small anomaly generated using Fast Fourier Transform approach, and
(c) matched filter outputs of the gradients--circle indicates the successful location of the
small anomaly (no successful location for ', I'13, and I'z3.).
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Figure 1.2: Signal detection and parameter estimation for small anomaly detection.

Moreover, we may not have much knowledge about the signal’s waveform. These
factors significantly degrade the performance of matched filtering. Therefore, the idea of
parameter estimation becomes important to aid in the decision of choosing the most
probable candidate of the target anomaly.

1.4 The proposed research

Gravity gradiometry with its achievable measurement sensitivities provides an
enormous contribution to the problem of detecting small shallow anomalous mass.
Overall, the study herein will directly aims at (1) the simulation of gradiometric airborne
surveys based on the combination of the 1987 GGSS data set and finite elements of flat-
top rectangular prisms, (2) the development of multiple sets of the gradient matched
filters for the optimal hybrid matched filter of six gradient components, (3) signal
detection and parameter estimation methodology, and (4) comparative assessments of
capabilities of the combination techniques and data requirements to achieve the ultimate
goal of small mass anomaly detection and estimation.

8



Since a precise gradiometer that measures all components of the gravitational
gradient tensor is under development, with overall noise performance of about 1 E/\/ Hz,

actual gradiometric data with such high precision are not yet available. For this work, six
components of the gravitational gradient tensor will be simulated by using the 1987
GGSS data set and DEM.

The matched filter is developed for the six gravitational gradient components
individually, as well as for combinations of gradients. Each component of the
gravitational gradient tensor describes the local structure of the gradient field and
represents particular characteristics at the same location where measurements are
obtained by the gradiometer. To enhance the capabilities of matched filtering, the idea of
a vector random process is considered. The hybrid-matched filter optimally combines six
gradient components in terms of the noise covariances between different types of
components. Furthermore, multiple sets of matched filters are also developed. The idead
of it is to select the filter for each gradient component, which gives the highest signal-to-
noise-ratio output exceeding a given threshold.

Throughout the processes stated above, in order for the matched filter to be
optimal, complete knowledge (except location) is required about the mass anomaly to be
detected. In practice, we vaguely know about the anomaly. However, theoretically at
least, the structures of the gravitational gradients follow the Newtonian law of
gravitational potential and can be described as deterministic functions associated with
unknown parameters such as density contrast, location, orientation, and so on. These
attributes are closely related to the problem of parameter estimation which is expanded to
include signal detection. A detection and parameter estimation approach is proposed and
all six components of the gradient tensor will be considered, as shown in Figure 1.3. The
performance of detection and estimation will be assessed through the test statistic in view
of the probability of miss (POM) and the probability of false alarm (POF). The test
statistic will measure the quality of the proposed system. In other words, it will indicate
the capabilities of that system to discriminate the gradient signals due to an anomalous
mass from the geological noise background.

A posteriori Estimates
statistical of the
\Y - information - - parameters
Detection Estimation
—» » —»

A priori statistical information

Figure 1.3: Detection and parameter estimation.
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In conclusion, the ultimate goal of this study is to develop and analyze signal
detection and parameter estimation techniques using all components of the gravitational
gradient data (from a simulated survey of airborne gradiometry) to determine the
horizontal location, depth, orientation, and also density contrast of small mass anomalies.

Each gradient component as well as combinations of components will be assessed to
determine their usefulness.

1.5 Organization

This dissertation is organized in the following manner. In Chapter 2, we study the
potential theory of gravitational gradients and detectability is studied. Then, in Chapter
3, we move to the fundamental theory of signal detection from the perspective of
communications theory and apply its concept to the problem of small mass anomaly
detection.

The optimal combinations of six components of the gravitational gradient tensor
are developed in Chapter 4. In Chapter 5, a prospective airborne gradiometric survey is
simulated. Then, using the simulation, developments in of Chapters 3 through 4 are
tested and assessed in order to determine their mass anomaly signal-detection
capabilities, in association with various combinations of observed gradient components.

Chapter 6 is dedicated to parameter estimation. The random effects model and
hypothesis testing are discussed and are developed to support the problem of small mass
detection. In Chapter 7, numerical examples are discussed to show the robustness of the
method. Finally, in Chapter 8, we conclude our results and suggest further work that can
be focused to enhance the capability of detection by matched filters and parameter
estimation.
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CHAPTER 2

THE POTENTIAL THEORY OF GRAVITATIONAL GRADIENTS
AND DETECTABILITY

2.1 Introduction

According to Nettleton (1976), gravity gradiometry was one of the earliest methods used
to explore for oil deposits. The first gradiometer used for this purpose was the torsion
balance, invented by Lorand von E6tvds in Hungary around the turn of the last century.
Although exquisitely sensitive (for its time) to local crustal density variations, it was
cumbersome to operate and was soon replaced by the scalar gravimeter that measures the
(relative) magnitude of gravity acceleration. Static gravity as a whole, whether with
gravimeters or gradiometers, is labor intensive and difficult to carry out in remote areas
of limited accessibility. Thus, airborne gravimetry is viewed as the most efficient method
to map the near-Earth gravity field. However, the main difficulty with a moving platform
is the inseparability of specific forces coupled with gravitational accelerations to produce
the total (kinematic) accelerations of the vehicle. On the other hand, airborne
gradiometry using a gravity gradiometer on a platform with a gyroscope is believed to
yield gravity maps of the near-Earth geopotential field without the need to determine the
kinematic linear acceleration of the vehicle.

In general, modern gradiometers are sufficiently sensitive to the point that the
integration time to produce an accurate measurement is relatively short, meaning that the
resolution on a moving vehicle is high (on the order of hundreds of meters) and maybe
higher (on the order of tens of meters). The resolution (by gradiometer) usually is much
higher than that of a gravimeter (normally on the order of several, even tens of
kilometers). Combined with the high spatial resolution, the high accuracy of a
gradiometer implies that it is able to sense the fine structure of the gradient field due to
small shallow mass anomalies. In the intelligence community, gradiometers are
considered as a means to identify the small anomalies that inherently have sharp density
contrasts relative to the surrounding environment. The detection of these anomalies is
enhanced considerably by the ability to measure the gradient (or directional derivative) of
the corresponding gravitational signal. And, since gradiometers can be combined to
sense all six gradients, the ability to characterize such anomalies is further maximized.

Finding shallow mass anomalies stands out as one of the toughest technical
challenges in the intelligence community’s efforts to locate and assess targets of interest
anywhere inside the Earth (Streland, 2003). To find and target the anomalies effectively,
it is necessary to understand how they are built. Understanding the nature of the
anomalies provides valuable information of what to look for in the problem of detection.

11



This chapter, focuses on the fundamental theory of gravitational gradients. Detectability
of the anomalies with respect to spatial resolution (half-wavelength) and flight altitudes at
which the measurement are obtained are discussed. The technical details concerning
instrumental developments will not be discussed any further in this work, and can be
found in Jekeli (1987), Peters et al. (2001), Matthew (2002), and McGuirk et al. (2002).

2.2 The potential theory of gravitational gradients
Starting from Newtonian potential theory®, the gravitational (not gravity)
potential® (a scalar, zero-order-tensor function), U , at a point in a Cartesian coordinate

system, X = (x,,x,,x;)", due to an (attracting) anomalous mass distribution having
density function, p(x;,x,,x;), and volume, v, is defined by:

U(x) =k PO X2 X3) s g g (2.1)

r

with the slant distance

r= 0 =X+ (v —x3)? + (x; —x5)° (2.2)

where k is the Newtonian gravitational constant and x' = (x],x},x;)" is the integration
point. The vector of gravitational acceleration, g, is defined as the gradient of the
potential (the first-order tensor):

9(x) =V, U(x) =k[[[V, %xédx;dx{
v (2.3)
where V  denotes a vector of partial derivative operators, e.g.,
0/ ox,
V, =|9/ox, (2.4)
d/ox,

where the subscript identifies the variables with respect to which the differentiation is
performed. The gradient of the gravitational acceleration is a tensor of second order,
consisting of the partial derivatives of the gravitational vector components and arranged
in matrix form:

! Understanding the concept of Newtonian potential theory is essentially needed for those who are
unfamiliar with the field of physical geodesy. Readers are encouraged to read through some excellent
textbooks such as Heiskanen and Moritz (1979), Torge (1989 and 2001), and Hofmann-Wellenhof and
Moritz (2005).

2 The gravity potential equals the gravitational potential plus the potential of centrifugal force.
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S(x) =V, 9" (x) =V, ViU(X) =k[[[V.V] PO X5 X3) s o e (2.5)

r
or
s=[s,] (2.6)

where the elements of the matrix are

2
5;(X) =?3L6(X) with i and j =1, 2, and 3. (2.7)

X; x].

Clearly, the matrix of second partial derivatives is symmetric and Poisson’s equation
yields the constraint:

VZU(X) =V, oV, U(X) = trace(V VU (X)) = —4kp() (2.8)

If the points (i.e. X ’s) are outside the attracting mass, the constraint satisfies the Laplace’s
condition

ViU(X) =8, + 8y +855, =0 (2.9)

Only five gradient components are independent, because of (2.8) and the symmetry
property (i.e., s; =s,). Asaconsequence of how gradients were measured, for example,

with the torsion balance, exploration geophysicists have defined combinations of the
gradients as indicated below (Nettleton, 1976; Torge, (1989); Dransfield (1994)).
Adopting a coordinate system in which the coordinates, x,and x, , are in the horizontal
plane, the horizontal gravitational gradient vector determines the horizontal variation of
the vertical component of gravitation, with amplitude and direction in the horizontal
plane given by

Sy =S +55 and a, = tanl(sij (2.10)

So3

Another quantity is defined to describe the variation of curvature of the equipotential
surfaces, U = constant, of the gravitational field. The curvature of a surface is the rate of
change of the tangent to the surface and thus, for equipotential surfaces, it is related to the
second derivatives of the potential. In particular, it can be shown that the difference
between maximum and minimum curvature at a point is given by the scalar, s ., called the

differential curvature, where the minimum corresponds to the tangent in the (horizontal)
direction, «., given by (Dransfield, 1994):
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Se =+/4s5, +52 with a, =%tan‘{2si] (2.11)

Sa
and
Sa =811 7S (2.12)

where s, is called the inline gradient.

So far, the coordinate system being used for the entire study of small mass
anomaly detection has not been specified. It is evident that the second derivatives of the
kernel 1/ of (2.1) rapidly diminish the value of the integrand, when the integration
points are a great distances from x. As a consequence, airborne gradiometry is suitable
for survey areas at local scales, whereas gravimetry is for regional scales. One may
extend the integration over an equivalent plane, corresponding to planar approximation
for the area of integration (i.e., the area of interest is considered using a flat Earth model).
The local coordinate system (or frame®) can be legitimately defined to be associated with
the North (N), East (E), and Down (D) directions. The subscripts (1,2,3) of point x

indicate (N,E,D) respectively.

2.3 Gravitational gradients of geometric forms

In general, the gravitational potential of (2.1) refers to the outcome of integration
over the volume of an arbitrary shape of the attracting mass, whose density may vary at
any point (i.e., it is an inhomogeneous body). It is impossible to determine a closed
formula of an arbitrary body-type unless some assumptions are made. For simplicity, we
assume that a simple geometric and homogenous body (or a finite sum of such bodies)
can represent any anomalous mass. Simple geometric shapes delineating constant-
density distributions, in fact, have dominated the modeling of crustal density anomalies,
including the rectangular prism, the point mass (monopole) and the vertical cylinder and
line segment, among others. The motivation for using these is always the mathematical
simplicity with which the corresponding gradients can be formulated.

In this chapter, we are interested in the gravitational gradient (effect) due to the
point mass and the rectangular prism with a constant density, whose closed formulas can
be readily derived and also can be found in Forsberg (1984) and Jekeli et al. (2003).
Other geometric bodies can be found in Dransfield (1994). According to Newton’s law
of gravitation®, the particular construction of the rectangular prism can be used to
approximate, by compact aggregation, any given mass density distribution with a finite
number of constant-density blocks (prisms) (Jekeli, 2002). The resolution and accuracy
of the corresponding gradient are limited only by the number of such blocks. Some other
geometric bodies can also be included. Numerical examples can be seen in Chapter 5.
The analytic formulas of the gradient effects due to a point mass and a rectangular prism
with a constant density, p, e.g., p = 1.170 g/cm? for an anomaly (also can be a density

® In geodesy, a coordinate system and a coordinate frame are different in terms of the definitions used (see
McCarthy (1996) in Section 3.3). However, in this work, the terms are equally defined and used
interchangeably.

* If we have a system of several point masses or solid bodies, the gravitational potential of the system is the
sum of the individual contributions (Heiskanen and Moritz, 1979, pp. 1-2).
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contrast = an anomaly’s density minus a reference density of 2.670 g/cm?®), are given as
follows:
(@) The point (homogeneous) mass

22
5, (X) = k_/?M
r r (2.13)
and
kp 3x,x
s;(X) = _Ils) 2 ’ i e
r— r— with cyclic indices (i, j,k) (2.14)

(b) The rectangular (homogeneous) prism with edges parallel to the local coordinate axes

(x; —x7)(x, —x;)}

X, —X,)r

5. (X) = kptan ‘1{
el (2.15)
and

Sy (X) = _kpln[(xk - xl’c) + r]xi‘xy

(2.16)

,
X3

Since we are interested in the rectangular prism, Figure 2.1a shows only six
components of the gravitational gradients due to a rectangular block having a size of 2m
X 2m x 50m with density contrast 1.5 g/cm®, computed at 30m above the center of the
block at every 2m space interval; the monopole has similar characteristics (not shown
here). Itis evident that, of all the defined gradients, the s,, component has the highest

strength of gradient signal; max|s;,| = 0.91E, max|s,;| = 0.45E, max|s,,| = 0.39E,
max|s;,| = 0.14E, max|s,;| = 0.13E, and max]s,,| = 0.11E. It should be observed that

each component has its own unique characteristics and in turn reflects the shape of the
body. In this way, we may recognize what the target anomaly in question looks like. For
example, s,, has a symmetric and positive envelope. The gradient signals of thes,; and

s,, components have the locations of local maxima appearing at N-S and E-W edges of
the prism aligned with the local frame of measurements, respectively. The s;; and s,
components have two (positive and negative) side lobes along E-W and N-S directions,
respectively. On the other hand, s,, delineates the corner of the rectangular body - two

diagonal pairs of positive spikes and the other two of negative spikes (quadrupole).

It is interesting to look at the individual gradient components due to the rectangular
prism in the frequency domain to better understand the signal structure of the body.
Figure 2.1b displays the (normalized) absolute amplitudes of the gradients in the
frequency domain. The response of s,, dominates over a wide range of wavelengths

lying between 25m and 1000m along the N-S direction and between 50m and 500m in
the E-W direction.
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Figure 2.1: (a) Six components of gradient tensor due to the 2m x 2m x 50m rectangular
box with density contrast 1.5 g/cm®, calculated at 30m above the center of the box at
every 2m space interval along east direction; (b) their (normalized) absolute amplitudes.
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For s,, ands,;, two main lobes appear along N-S direction. The wavelengths of both
span almost the same range ass,;. The (magnitude) response of s,, has four side lobes

(call this a quadrupole). We shall see in Chapter 5 that these particular characteristics of
each gradient component will affect the signal detection by using matched filters.

2.4 Transformation

In fact, the feature of the mass anomaly to be detected can exist at any location
relative to a local coordinate system, call this the « -frame. For example, consider a main
water pipe which runs in a N-E direction (45 degrees with respect to North direction).
The gravitational gradients generated by the pipe are equivalent to the gradients due to
the pipe parallel to North direction but it is rotated by 45 degrees with respect to the
north. The orthogonal transformation of a 3-by-3 matrix representing the gradient tensor
is given by (Jekeli, 2000, p. 10-13):

s* =R's*(R") =R’s“R! (2.17)

where s“and s” are the gradient tensors in the a -frame and b -frame respectively. R’

represents the rotation (orthogonal) matrix from « -frame to 5 -frame. The rotation
matrix is described by a sequence of rotation for each of the triad axes. The oriented
angles about the axes are called Euler angles, consisting of  about the 1-axis, £ about

the 2-axis, and « about the 3-axis (or the vertical axis). Positive rotations are considered
counter-clockwise by convention and are viewed from the end point of the coordinate
frame to the origin.

Rotating the measured gradients at various orientations relative to the survey area
yields a preliminary means of getting insight into the target mass anomalies. The rotation
matrix works as a filtering tool that directionally separates anomalies and in turn,
indicates the anomalies’ features (Dransfield, 1994)). For instance, the line feature of the
water pipe is clearly identified, among other features, by the rotation. It can be
graphically explained in the frequency domain that the rotation separates the particular
frequency trend associated with the direction of the pipe, see Figure 5.30 in Chapter 5,
where the 2m x 2m x 1000m anomaly is considered in a noise environment.

Before closing this chapter, we want to emphasize that our objectives are to use
matched filers to detect a small anomalous mass in strong noise backgrounds. Consider
the gravitational gradient signals due to small mass anomalies, e.g., man-made structures
and voids, which are very small, compared with the Earth’s gradient field. The desired
signals can be overwhelmed by unknown mass distributions if the anomalies (i) are not
shallow enough and/or (ii) do not have gradient signatures of significant magnitude and
uniqueness. What ranges and sizes of such causative sources, sampling intervals (relative
to speeds of airplane or helicopter and sampling rate), and flight altitudes (or depths of
the sources) impact upon the gradiometer’s ability to sense their corresponding signals?
These factors are important to conduct an airborne gradiometric survey.

Because the gradient signals of small anomalies are rapidly attenuated with respect
to flight altitudes due to the inverse term of high order of range, see eq. (2.13), a
gradiometer may not be able to sense the gravitational signals at great depth. The
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remainder of dissertation will speculate how these factors can affect the signal detection
using matched filers. Characterizing small anomalies relies on the sampling interval; we
may lose meaningful signals if the interval is too large, i.e., we introduce aliasing effects.
We can envisage that the detection of small anomalous whose gradient signals are a few
EOtvos requires not only a very precise gradiometer but also tremendous efforts in
statistical signal processing, which will be discussed in the following chapters.
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CHAPTER 3

THE THEORY OF SIGNAL DETECTION BY USING MATCHED FILTERS

3.1 Introduction

In this chapter, we shall leave the theories of physical geodesy and geophysics for a
moment. Because the detection theory in the field of communication theory may not be
familiar for geodesists and geophysicists, we confine our discussion to the concepts of
detection theory but applied to our problem at hand. We consider one anomaly
embedded in strong geological noise. We discuss only simple hypotheses which describe
either the presence or the absence of the signal due to the anomaly.

In this chapter, the ideas of signal detection and matched filters in white and non-
white Gaussian noise environments are discussed. Probability related to a likelihood
ratio test is discussed as well as hypothesis testing under the Neyman-Pearson criteria.
All necessary notations are appropriately defined and used in the entire study unless
otherwise specified. For simplicity of derivations, we assume an infinite sequence of
measurements unless otherwise specified. In this chapter, an introduction to detection
theory relies heavily on some excellent publications on the subject such as by Turin
(1960 and 1976), Middleton (1960 and 1965), DiFranco (1968), Van Trees (1968),
Whalen (1971), Cadzow (1987), Poor (1983), Helstrom (1960 and 1995), and, Kay (1993
and 1998).

3.2 Signal detection

The concept of signal detection using matched filters for small mass anomaly
detection is that it ideally aims to aid in the decision if there exists a wanted gradient
signal, s, due to a small anomalous mass at a location x (which is unknown). We
assume that s is entirely embedded in identically-distributed (i.d.) (or wide sense
stationary) zero-mean noise »n (not necessarily Gaussian). The two hypotheses are
defined as:

(1) Case 0: there is a specific gradient signal in measurements v(x) :
H,: v(x)=s(x—X)+n(x) 3.1)

(i1) Case 1: there is no gradient signal in measurements v(x) :
H, :v(x)=n(x) (3.2)
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3.3 Definition of a matched filter

Here, the matched filter (MF) function 4 of a gradient component is designed such
that it locates the signal by determining the maximum in the signal-to-noise ratio (SNR).
The value of SNR plays an important role as indicator of the potential location of the
signal. For instance, if the SNR is high, it implies the possible existence of the signal. In
other words, the MF attempts to enhance s while suppressing n. The optimal weighting
coefficients of the MF can be determined using Parseval’s theorem and Schwarz’s
inequality (Papoulis, 1984) as shown below.

In this chapter, we demonstrate a simple type of matched filter when white noise

. . 2 . . . .
with variance o~ is considered. Suppose we have discrete observation v, =v(x,),

—o0 < j <+oo. Then the discrete filter is formulated as

y(0)= S b=y,

(3.3)

ih(x - X, )s(xj -X)+ ih(x— xj)nj

The output, y, , of the filter therefore has a signal part and a noise part. We determine /
such that SNR is maximized at x . Using (3.3), we define the ouput SNR as

ih()_c—xj)s(xj —f)}

J=—©

g{[lih(x —x,)n, H

where s is a known signal and & denotes (ensemble) expectation. We further assume
that s is square integrable, which implies a finite energy. We make use of the following
Fourier Transform pair for infinite discrete signals:

SNR(¥) = {

(3.4)

S(f)=Ax Y s, with - f < f <+f,, (3.5)
=
and
v A i
s;= [S(he*=rdrf (3.6)
—fn

[
~

where tilde indicates the periodicity of spectrum, the Nyquist frequency f, =1/2Ax,

and “ Ax ” denotes data spacing. By Parseval’s theorem, the numerator of (3.4) can be
expressed as
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. 2
+/n

{fh(f—x, )s(x, —a‘c)} = [i JH (NS (fre™ df (3.7)

~fn

For the denominator with, for instance, white noise (i.e., &{n n,} = o26(i — j), where the
delta function 6(j—i)=11if j=i and 6(j—i)=0 for j#1i),

g{ih(ij)n/} }: i ih(}?—x})h(f—xk)g{njnk}

:azi[h(f—xj)]z (3.8)

2 +in

o ~ 2
- EL (|
Therefore, with (3.4), (3.7) and (3.8), we apply Schwarz’s inequality,

T 2
Lx_i {i (f)S (f)df}
SNR(X) = &

2 +fy

le H[ dr

(3.9)

2
AT - __L&
= 2 2

le E[ dr

1 +fn - 2 +/y - 2
[la[ar [ s ar
fJV

where the signal energy

§(f)‘2df (3.10)

+fn
E = |

JN

Clearly, E, / Axc? is an upper bound for SNR(x) for any /4. If we want to maximize
SNR(x) with respect to %, we find that by choosing

Fl(f)zﬁﬁ*m 3.11)
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we obtain the maximum SNR(X) = E| / Axo’ . The transfer (or response) function of the

matched filter (i.e., eq. (3.11)) is the complex conjugate of the spectrum of the signal to
which it is matched. For this reason, a matched filter is often called a “conjugate” filter
(Turin, 1960). Thus, the filter function 4 that maximizes SNR(X) is given by the

inverse Fourier transform of (3.11),

h(x,) = s(-x)) 3.12)
(02
or

h(x—xj):%s(x/—x) (3.13)
P .
Substituting (3.12) into (3.3), the filter output becomes
1 +00
y(0) =~ Ystx, ), (3.14)
Jj=—00

We want to emphasize at this point that the matched filter does not preserve the original
shape of the input signal (i.e., s). Since our object is to detect the presence of signal s,
we consider the task of extracting the signal at a given point in the background noise.
The decision that the prescribed signal may be present can be made wherever the filter
output is maximum.

3.4 The matched filter for correlated noise

In this section, we approach a more general form of matched filter. We consider
the matched filter for correlated noise, which is derived by a straightforward modification
of the derivation of (3.7) and (3.8) noting that eq. (3.4) is also valid for correlated noise.
By Wiener-Kinchine theorem, for a wide-sense stationary process, the Fourier transform
of the autocorrelation function, ¢(.), is the power spectral density, @, (.), of the process.

Thus, we begin with (3.8) by replacing &{n;n,} with ¢, (|x, —x, [),
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8{|:ih()_6xj)nj} }_ i Jioh()_C—xj)h(f—xk)ﬁmq X; =X )

+00  +00 +/fn
=2 2 hE=xh(x-x,) [@,, ()0 df
J=o0 k=0 s
— (Ax ih(fc —x,)e T ] x (3.15)
Sl 2 PN
S (Ax Zh(x_xj)e i27 (= f)Ax(x xk)J
+fy 72
WOV df
7f1\
Substituting (3.15) into (3.4) and applying Schwarz’s inequality,
+fy 2
{ [a° (S (f)df}
SNR(X) = =—— ;j
nn “df
(3.16)
j \ﬁ(f>\2df j_ Bofar
- +fA
IQAﬁWUﬂ#
Clearly, by choosing
=YL (3.17)

@, ()

the left-hand side of the inequality above equals the upper bound on the right-hand side.
Thus, we obtain the maximum SNR as follows

+fy

e lsof
" —fy (Dnn (f)

SNR df (3.18)

In addition, the expression (3.17) is easily extended to two dimensions in the frequency
domain, which will be used for our study, see eq. (5.6) in Chapter 5.
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At this point, hypothesis testing is required to evaluate the performance of the
matched filter in a statistical sense. This brings us to the concept of classical hypothesis
testing which is based on a likelihood ratio test, which requires a priori knowledge of
probability density function about the observation (or noise).

3.5 Hypothesis testing under Neyman and Pearson criterion

The Neyman and Pearson theory of hypothesis testing antedates the development of
statistical decision theory (DiFranco, 1968, p. 272). It does not require knowledge of a
priori signal statistics, nor does it requires an explicit assignment of cost functions like
Bayes’ criterion. Neyman and Pearson define an optimum test as one that minimizes the
probability of certain errors. For instance, in a test of hypothesis H , two types of errors
can be made: H may be rejected where it is true (i.e., the error is called a type I error), or
it may be accepted when it is false (i.e., the error is called a type II error). An optimal
test should minimize the probability of both types of errors--the test should have a small
probability of rejecting H when it is true and a large probability of rejecting H when it
is false. Theoretically, the Neyman and Pearson criterion  states that the best test is one
that has either the greatest probability of rejecting H when it is false or the greatest
probability of accepting H when it is true.

The Neyman and Pearson test is a test between two alternatives hypotheses. For
our study, the two hypotheses are (3.1) and (3.2). To further discuss the concept of
Neyman and Pearson criteria, let us assume the observations are in some finite interval,
—J < j<+J. We start with a likelihood ratio test (LRT) as follows:

if p(V/Ho) >

choose H > (3.19)
’ p (V/ H,)
VErsus
. V/H,
choose H, if POHy) n (3.20)
p(V/H))
" The Neyman and Pearson criterion
To minimize POF for a given POM = '
I[/H
choose H, if M >n' (a)
p(/H))
or
I/H
choose M, if M <n' (b)
p(/H,)
where 77" is obtained from a given @' under the constraint
o
POM = [ p(i/H,)dl = o' ©

—0

The proof can be found in Kay (1998, pp. 89) and Van Trees (1967, pp. 33-34).
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where Vv is a vector of measurement. If noise is assumed to be independent and
identically distributed, the joint probability density function (pdf) of observations (or the
likelihood functions) is just the product of individual probability density functions. Thus,
p(v/H,) and p(v/H,) are called the (joint) conditional pdf’s of v, given H, and H
respectively. The threshold 7 is found from a given probability of type I error (see next
section).

For simplicity, let #n be a white Gaussian random variable with variance o, then
sois V. Thus, we simply write p(v/H,) as the (joint) probability density function of
(i.i.d.) noise, given by

p(V/H)=p,(M)=p,(n)p,(n,.)p,(n,,)...p,(n)...p,(n,) (3.21)

where the probability density function of the noise is

1 1(1@]2
expy——| — (3.22)
270’ { 2\ o }

With (3.21) and (3.22), then we have

p.(n;)=

p(v/Hl):%exp{— L +z(nj)z} (3.23)

207 =
270 2 =

Similarly, under hypothesis H,, where we define v=s+n and then n=v-s, with
(3.22), we may write

p(V/Hy)=p,(n)=p,(V-5) =;2Me><p{— 12 +Z(v, —s,.)z} (3.24)

P 26 i ’
2nc’ ) 2 =

Using (3.1), (3.2), (3.23) and (3.24), the corresponding likelihood ratio is

PR { 27 2l st o (v(xn)zl} (3.25)

Since the exponential function in (3.25) is monotonic, taking the natural logarithm does
not change the inequalities of (3.19) and (3.20):

pV/H)| 1 & I _
1{ = o7 VS0 =R = sl =) (3.26)

p (V/ H ) J=—J
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The second term on the right hand side of (3.26) is just the energy of the signal. Only the
first term significantly describes the probabilistic nature of the observations. This term is
called a sufficient statistic, say [, (Van Trees, 1968, p. 29). The hypothesis testing
criteria of (3.19) and (3.20) become:

choose H, if I(x) > 7' (3.27)
versus
choose H, if I(x) <7n' (3.28)
where
_ 1 & _
I(X) =—5 D v(x;)s(x; —X) (3.29)
o=
and
' 1 < —\2
n :1n77+2 - Y s(x; —X) (3.30)
j=J

By comparing (3.14) with (3.29), we immediately see that the sufficient statistic, for the
case of white Gaussian noise, corresponds to the output of the matched filter at the
location of the signal. According to the Neyman-Pearson criterion, either 7 or 7’ can be
assigned or is dependent on the predetermined value of a significant level, say « , that
will be elaborated in the next section.

3.6 Performance of detection

As mentioned in the previous section, signal detection using the matched filter
can be assessed statistically using hypothesis testing through the sufficient statistic of
(3.29). Figure 3.1 describes error probability densities, which lead to very important
terms in detection theory as follows. We define the probability of miss, POM, or the
probability of a Type I error in this case, as corresponding to rejecting H, when it is true.

We also define the probability of false alarm, POF, or the probability of a Type II error in
this case, which refers to choosing /, when there is no signal. The probability of

detection, POD, corresponds to the correct decision and relates to POM as
POD =1-POM (3.31)

The implicit forms of the error probabilities are given by (see next sections for more
details):

POF = [ p(I/H,)dv, (3.32)
POD = j p(I/H,)dv, (3.33)
and 0

26



POM = [ p(I/ H,)dv. (3.34)

Ry

where p denotes a probability density and R, and R, denote the decision regions of
choosing H, and H,, respectively, and the integral notations are valid for either discrete

or continuous points. We can connect POF, POD, and POM with a sufficient statistic as
in the following sections.

3.6.1 White noise case
For a large amount of data, we may assume —oo < j < 4+00. Thus, the equations of

(3.29) and (3.30) for an arbitrary point x, can be rewritten as follows:

1 +00
z(x)zF D v(x;)s(x; - x) (3.35)
Jj=—©
and
, 1 +00
n' =Inn+ . j;os(xj —x)* (3.36)

where 7' is obtained from a given POM (see (3.43)). Because /(x) is a linear operation
on v(x), it is still a (white) Gaussian random variable. Following Parseval’s theorem, it
is straightforward to show that, the conditional expectation of / on H, corresponds to
SNR__ in(3.9):

X

gll/H,}= 5{12 is(x/ —x)v(xj)/HO}
o’ =
=% is(xj —x)g{v(xj)/Ho}

:Lz is(xj —x)s(x; = x) (3.37)
O j=

and, ¢{//H,} = 0. The conditional covariance (variance) of / under either hypothesis is
the same. We have
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Var{l/Hojl} Var{ s(x —0)v(x;, )/ 01}

400 400

=— z Zs(x -x)s(x, —X)C{V(x )V(xk)/Hol}

J=—0 k=—00

+00 +00

Z 2_s(x; = 2)s(x, = x)0"8(j ~k) (3.38)

=0 k=

= ? zos(xj —x)s(x; —x)

Finally, as shown in Figure 3.1, we select Type I error (i.e., & = POM ) to compute a
threshold. We have

POD = [ p(//H,)d!

Ry

+o0 i _J2 2
- [ _exp 1l d ) }dl (3.39)
w27 2 d
+00 B 2
:j ! = eXp —l[i—dj ]dl
v\ 27md | 2\d
Then,
POM—I—_[ exp —l[i—djz dl (3.40)
vN2nd?
Equation (3.40) can be rewritten in terms of the complement to the error function, erfc,
POM=1-0 SeMC{L[”—’—dﬂ (3.41)
) NV , .
where
+00 2
erfe(Z) = | —=exp|-x* [dx (3.42)
[ o)

By selecting POM, the threshold can be computed as
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n' =d* +~2d*erfc”'[2-2POM], (3.43)

Then, we can compute Type Il error ( f = POF) from (3.43)

N2d?

P0F=o.5erfc[ n } (3.44)

«— 47 —»

p (l/ H,)
p (l/ H,))
i POD
POM
L POE
0 e
—— The region, Ry, —>E<— The region, Ry, —
of accepting H; + of accepting Hy
n' :

Figure 3.1: Error probabilities in Gaussian distribution: POF, POD, and POM.

3.6.2 Correlated noise case

The derivation of detection performance in stationary-non-white Gaussian noise is
more complicated. Let v be a N x1 vector of the measurement consisting of the N x1
signal vector s and the N x1 (additive) noise vector n. To simplify the derivation, we
assume that the covariance matrix X of the noise is positive definite. Then, the
loglikelihood ratio is given by

}[lexp[— ;(v —s)'x(v- s)}

o). o

p(V/Hl) i 1 CXP{—IVTZIV}
(2m)2lgz L 2

(3.45)

Simplifying:
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l{l;?\;ézﬂ 1[ '(v—s)- v):v]

=v'xls —%STZ_IS

Therefore, the first term of (3.46) is the sufficient statistic /. Then, decide H if

[=v'E's>7n =Inp +%STZ_IS

The conditional expectations of the sufficient statistic / are

efl/H}=¢n"X7's}=s""g{nt=0
and
efl/H)} =e{(s+n)'L7's}=s"E7's

The conditional variances are

Var{l/H,} =e{(n"X7's)’} =s'E'¢{nn"}='s =s"='s
and

Var{l/H,} =e{vTE"s - S{VTZ"S})Z}
=¢ VTZ‘ls-a{vT}Z‘ls)z}
—¢ (v-e{v})TE‘ls)z}
=g (v-s)TZ‘ls)z}
=g{n"z's)
=Var{l/H,}

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

As in the white noise case, we can easily find POF from a given POM. In practice,
it should be noted that it is not possible to invert the covariance matrix X in (3.47) and
also (3.49) if the data vector is large. In fact, Fourier transforms of v and » are formed

by linear operations on the Gaussian random variables v and »n respectively. The

Fourier transforms themselves are also Gaussian (complex) variables. By applying the
orthogonal transformation matrix, F, to (3.47) and (3.49) (see section 6.3.1 for further

details), the corresponding covariance matrix becomes diagonal--only the diagonal

elements of the matrix are inverted:
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=" (FF'ZFF")'s
—s"(FF"ZFF" )'v
= s"FF" L FF"v (3.52)

A g ) o)

NAXZS IATE SIS

and also
s"x s = (F"s) (F'2F) " (F"s)

1 & g 1 N
eSS A S 5

(3.53)

where § and V' are Fourier transforms of s and v after applying the orthogonal
transformation matrix F, and N is the number of measurement points along track. For a

large data vector, we may approximate f( f)=Ax"'®, (f). Assuch, we have

N j V(S (f)

~ d 3.54
o L0 4 3%
and
s’y ~f 5(” ———df =SNR__ =d’ (3.55)
5, @) '

Thus, POF can be computed using (3.41) to (3.44) with (3.55). The expressions above
can be extended to two dimensions in the frequency domain. Let M and N be the
number of data tracks and the number of points of measurements along track,
respectively. For this case, the symbols v and s are the MN x1 vectors of observation
and signal respectively. The MN x MN cross-covariance matrix of the MN x1 noise
vector N is X'. Similar to the derivations of (3.52) through (3.55) but applying the
orthogonal transformation matrix F', described in section 6.3.3 to (3.47) and (3.49)
instead, we finally arrive at

I -
= [ S D@L SV £ (3.56)
v —fn

and
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+fn v

S
T Zl-l ~
SR I vy

dfdf'=SNR,_ =d’ (3.57)

where S and V' are Fourier transforms of s and v after applying the orthogonal
transformation matrix F'. Then, POF can be easily obtained from (3.41) to (3.44) with
(3.57).
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CHAPTER 4

THE OPTIMAL COMBINATION OF SIX COMPONENTS OF
GRAVITATIONAL GRADIENTS

4.1 Introduction

Thus far, we have learned how the six components of the gravitational gradient
tensor describe the local structure of gradient field. Each component represents particular
characteristics at the same location where measurements are obtained by the gradiometer.
With multiple sensors, one would expect improved detection of gradient signals in a
noisy background. However, independent filters in each gradient seem to be impractical
for the case of detecting small anomalies in a complex gradient field (numerical analyses
are discussed in Chapter 5). Therefore, the idea of a vector random process is considered
to enhance the capabilities of matched filtering. We consider the matched filter for a
combination of six gradient components, with full specification covariances between the
individual gradients. The approach processes the combination data in the frequency
domain using Fourier transforms. With the property of uncorrelated coefficients at
different frequencies, the block diagonal matrices to be inverted have the size of 6x6 at
most, corresponding to the 6 gradient tensor elements. For simplicity in the derivations,
we assume an infinite sequence of measurements. In practice, however, the analysis is
performed on a finite amount of data, which are further assumed to be periodic.
Therefore, the matched filter solution may not be optimal (i.e., it is an approximation to
the solution).

4.2 The combination of matched filter

We can generalize the matched filters, discussed in Chapter 3, to the multi-sensor
case. From (3.1), we extend the measurement v, for sensor p, with p ={12,..., P},

containing the infinite sequence signal s, and noise n,. The observation becomes
V(%) =s,(X; =X)+n,(X;) with —oo< j <400 (4.1)
or in a vector format
v(x;) = s(x; —X) +n(x;) (4.2)
where each vector has the size of P x1 at point x;.
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Here, we desire to construct a filter that in its output indicates potential locations X
for the signal. The filter has the form

Y0 = 3 hix—x,)v(x,) (4.3)

where now h isa P x P matrix function and y isa P x1 vector function. As before, we
define signal and noise components of the output

y(x) = _ih(x—xj)s(xj -X)+ _ih(x—xj)n(xj) (4.4)

and we need to define a SNR which at a particular x = X is maximized, thus determining
h. We define the SNR as follows

[ih(f—x»s(xj —%)} {Z (< x,)s(x, —n}

SNR(X) = == - (4.5)
g{ D h(x- xj)n(xj)} {Zh()‘(— xj)n(xj)}}
j=o =
Note that numerator and denominator are vector dot-products, i.e., scalars. In the
numerator, the components of each vector are
Zh;(i_xj)n(xj) (4.6)
J=—
where h; isthe p™ vector of h. By Parseval’s theorem, we then have
+00 P 4o
D hp(X=x;)s(x; —X ZZh (X —X;)8,(x; = X)
j=o =1 j=—
P 1 +1y -
—  (F)S, (f)df (4.7)
2 [0S
1 ~
T *
- [ “(F)7S"(f)df
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where F° () =A% (F)......Hz (D] and §°(f)=[8; (f)......8:()] . Thisis the

p™ component of the vector appearing in the numerator of the SNR. Therefore, the
numerator is given by

2 2
1 +fy ~. ~. 1 +fn ~. ~.
FUHl (f)''S (f)de +---+F[_Jf‘HP(f)T S (f)df} (4.8)
For the denominator of the SNR, we proceed similarly. Again, it is the expectation of a
dot-product of vectors, whose components are

ih;()_(_xj)n(xj)=i§hpq(i_xj)nq(xj) (4.9)

Therefore, the expectation of the dot-product is given by

zz z zhlq (X =Xy (X=X )ng (% )ng (%) ++--

P 40 4
g=1 q'=l j=—o0 j'=—w0

(4.10)

P +o 4w

et ZZ Z thq (X - Xi)th’ (X - Xj')nq (Xj)nq’(xj’)

gq=1 q'=1 j=—oo j':—m

Taking the expectation inside the sums, according to the assumption of stationary process
in Chapter 3, we can write

&0y (6 Ny (X3 )} = . (1% =X ) (4.11)
with the P x P covariance matrix

¢nln1 ¢n1np
o= b e (4.12)

nn
¢npnl T ¢PP

We allow correlated noise, i.e., this could be a combination of geologic background plus
observation error (white or correlated). For one of the quadruple sums (4.10), we have

e (f—x,-)[i M (X =Xy M, (1%, =X, |)]

g=1 g'=l j=—0 =
e S - 1 e = —i27AXfj 51 27%F

=33 > h,(x-x,) ™ ijq,(f)cpnqnq,(f)e e'2% df (4.13)
q=1q'=lj=—0 ~fy
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>y L [AL(D®,, ()A . (ff

nn

With (4.13), the denominator of (4.10) is given by
2 2
l +fN~* .~ - 1 +fN~* .~ -
| [HIO @ (OH()f | +r o [HA() @ (DH () | (4.14)
—fy —fy

where &)nn is the P x P cross power spectral density matrix.
We revisit the numerator of the SNR and write each sum as

i[]‘h;(f)Tg*(f)de ~ [IH (f) q> - (f)D,2 (f)§*(f)df} (4.15)

Again, by Schwarz’s inequality, this is

+fy

! (IH (f)" cp (f)q> (f)H (f)df}[] S (f)T @, (f)cigni(f)§(f)df}(4.16)

_fN

Hence, with (4.14), the SNR is bounded by

)

p=1

WH () @, (f)H (f)df]ﬁs () @; (f)S(f)de

- —fy

SNR <

Alz P(TH ()7 @, ()H (f)de (4.17)

+fN~ _ -
S*(f) d2(f)S(f)df

_fN

As before, if we choose
H (f) <I> (f)S (f) forall p (4.18)

then the numerator of the SNR becomes
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[i+jN§*(f)T&>n§(f)§(f)de (4.19)
AX “h

and the denominator of the SNR becomes

[i+jN§*(f)T&>;§(f)§(f)df} (4.20)
Ax_fN
Therefore,

SNR :+jN§*(f)Tc'f>;i(f)§(f)df (4.21)

_fN

which is the maximum value. Thus, for SNR to be the maximum at X we choose the
transfer function of the combined filter according to (4.18). The filter is the same for all
outputs of the vector y, which means the filter transforms all inputs from multiple
sensors into one-dimensional output. We can simply define the combination of matched
filters (vector) as

y(x) = iﬁT (X— %, )V(x,) (4.22)
where
h(x) = ch'f);ﬁ(f)§ “(f)e'2™ df (4.23)

_fN

The derivations discussed above are for the case of a single data track and multiple
sensors (SM) (see also Section 6.3.2 in Chapter 6). For multiple data track and multiple
sensors (MS), we simply extend (4.22) and the transfer function of (4.23) such that

400 +00

y(x,x") = Z ZHT (X=X, X" = X; (X, X (4.24)
|=—00 |=—0
with
. +fn +f,\’,~ _ . B
A(ux) = [ [E(F, £S5 (f, £ f (4.25)

—fy -

where X' is a point across track and ®p, has the size of PxP.
Following the same procedure as for the single sensor in Chapter 3, the next section
will show the connection between the combination of matched filter and hypothesis
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testing under the Neyman and Pearson criterion. The derivations in turn indicate that y

corresponds to a sufficient statistic in a log-likelihood ratio test. Although it is rather
tedious to do so, still, the derivations reveal a significant contribution concerning the
inversion of the covariance matrix in the frequency domain (intuitive details, also, can be
found in Chapter 6).

4.3 Hypothesis testing and performance of detection
Similar to section 3.7, with (4.2) and (4.12) we assume some finite amount of data
for the convenience of derivations, e.g., N data points. Then, the sufficient statistic g,

for a single track and multiple sensors can be given by
lgy =V XS (4.26)

where X, isthe PN x PN covariance matrix of the PN x1 noise vector n. Then, the
conditional expectations and variances of I, under H, and H, can be obtained (see
also (3.48) to (3.52) for comparison). Using the orthogonal transformation Fg,, as (C.11)
in Appendix C the transformed covariance matrix Fg, X, F,, becomes diagonal,

ISM =v' (FSM Fsl-liw ZsuFsum FS'-I:/I )71 S
_ % (Ft,s) (FH,z2,Foy ) (FE,v) (4.27)

1 N—l~* =4 -
:mg (F)AXTEg (f)V ()

For a large amount of data, we may approximate F&, X, Fq, ~ AX'®_ (see also
(6.65)). Then,

+fN~ _ -
oy ~ js*(f)cp;ﬁ(f)V(f)df (4.28)
—fu
and
+fN~ - -
sTEd s~ js*(f)Tcp;i(f)S(f)df =SNR, =d? (4.29)

—fy
Similar to the derivations of (4.26) through (4.29), for the case of multiple data tracks,

say N’ tracks with track spacing Ax’, and multiple sensors, we have (see also Section
6.3.4 in Chapter 6)
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-1
IMM :VT(FMMFI\';:MEMMFMMFI\';:M) S

- (F'C:M )T (FSMZ;\;MFMM )71(FGMV) (4.30)
N-1N'-1
= e 2 28 (T DAY (£, TV (1, )
i=0 j

For a large amount of data,

+f +fy

sz j§*(f,f’)é;ﬁ(f,f')V(f,f')dfdf’ (4.31)
~fi —fy
and
+f,§+fN~ _ -
st;MSzj IS*(f,f’)d);ﬁ(f,f’)S(f,f’)dfdf'zSNRmax:dz (4.32)

-l -fn
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CHAPTER 5

NUMERICAL DISCUSSIONS ON
SHALLOW SMALL ANOMALOUS MASS DETECTION

5.1 The simulated survey of airborne gradiometry
Since a precise gradiometer that measures all components of the gravitational

gradient tensor, with overall noise performance of about 1 E/ ~vHz is still under

development; actual gradiometric data with such high precision do not exist in an
operational setting. For this work, six components of the gravitational gradient tensor are
simulated by using the 1987 GGSS data set and the gradients computed from a digital
elevation model (DEM). Although the GGSS system was corrupted by vehicle vibrations
and data outages along several survey tracks, the test data demonstrated an extraordinary
accomplishment of technology and associated signal processing (Jekeli, 1986). Vasco
(1989) and Vasco and Taylor (1991) showed that the GGSS gradient data reflect
subsurface structures as deep as 12km over the Texas/Oklahoma area. The survey area
for the simulation is chosen for its moderate terrain surface; see Table 5.1. The area has
the size of 36km x 36km and lies above the Meunster uplift. The densities of the region,
where the survey was planned, vary in range from 2.500 to 2.960 g/cm’. For simplicity,
we use the average density of 2.670 g/cm’. The DEM data sets used in this work are the 1
arcsec National Elevation Dataset (NED), which are producted by the U.S. geological
survey' (USGS).

Having selected the area site, the gradiometric survey can be designed. The survey
data should be sufficiently dense so as to allow the detection of meaningful gradient
signals due to small mass anomalies and in turn to avoid aliasing effects. However, the
sampling spaces and track spacing should be large enough to represent reasonably cost-
effective and timely surveys. We choose the helicopter velocity, v, of 10m/s with the 3-
second sampling interval, 7, (in other words, the sampling frequency, A , = /7 ,is 1/3

Hz), which is equivalent to the spatial interval, Ax, ,of 30m. The track spacing, Ax,, is

30m and the flying (constant) altitude, /, is at 10m above maximum ground elevation.
All these parameters are summarized in Table 5.1.

According to the work done by Vasco and Taylor (1991), the gravitational
gradients are simulated by assuming that the GGSS data contain the long and medium
wavelength information corresponding to subsurface structures below the geoid (the

"' NED is designed to provide National elevation data in a seamless form with a consistent datum, elevation
unit, and projection (one can visit the USGS’s website at http://www.usgs.gov/ for more information and
data availability).
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The statistical description of terrain

mean (m) max.(m) min.(m) std.(m) rms. (m)
302.2 346.2 263.3 13.2 302.7
NOTE:

e The area size of about 36x36 km? covering the latitudes of 33.7-34.1°N and the
longitudes of 261.3-261.6°E

e The average density of 2.670 g/cm’

e Velocity of helicopter, v = 10m/s

e Altitude of helicopter = 355m altitude (10m above the maximum ground)

e Sampling interval, 7 =3 seconds (sampling frequency = A , = 1/7 Hz)

e Track spacing, Ax, =30m

Table 5.1: The survey area of airborne gradiometry and a prospective survey plan.

nominal gravitational gradients are excluded: I';; ~3080E, I',, = 1540E, and

I, ®1540E ). The simulated observation data of six gradients are obtained as follows.

Since the GGSS data set is adversely affected by noisy platform accelerations and
gradiometer outputs, and by poor navigation, we interpolate all data tracks onto a
30mx30m grid. Then, we perform downward continuation from the GGSS altitude of
1000m to 355m by, first, taking the Fourier transform of the data and then multiplying all

data by the attenuation factor exp{-2= i}, where & = altitude and 4 = wavelength.

A
Because the high frequency noises in the GGSS data set are amplified in downward
continuation, only the gradient signals with longer than Skm wavelengths are used. The
shorter wavelength signals are removed before downward continuation by applying the
low-pass filter?, L, with the cut-off frequency, ., of 1/5000 [cyc/m] to the GGSS data

C

in the frequency domain.

? The low-pass filter with the cut-off frequency, fc , of 1/5000 [cyc/m]:

1 df, <
B A
0 otherwise
fi = i s f, = J ;—&Siﬁﬂ—l;—ﬂﬁjﬁﬂ—l (@)
N, Ax, N,Ax, 2 2 2 2




For the remaining part of the data simulation, the gradient signals having
wavelengths shorter than Skm, which are assumed to reflect the topographic masses, are
generated from finite elements of flat-top rectangular prisms using the 30m DEM® (the
number of prisms for an integration area is limited to 20 on either side of the central
computation point; and the density is a constant of 2.670 g/cm’). They are added to the

corresponding GGSS data in the frequency domain®. Finally, we include 1E/ JVHz zero-
mean white Gaussian noise along the track or 300 E*/(cyc/m)” at a grid point”.

Figure 5.1 shows an example of data simulation in the survey area using the 1987
GGSS data set at an altitude of 1000m above the geoid, then downward continued to
355m and supplemented by the gravitational gradients computed at 355m altitude using

30m rectangular topographic prisms. Also added is 1 E/ vHz white noise (see

where N, and N, are the number of tracks and the number of points along track, and Ax, and Ax, are
the track spacing and the spatial sampling interval, respectively; N, = 1200 tracks, NV, = 1200 data points
along track, Ax, =30mand Ax, =30m.

3 The gradient signal using the 30m DEM, where the number of prisms for an integration area is limited to
20 on either side of the central computation point (m2,7),
+10  +10

TP = PP (mAx,nAx,) = > D T2 for m=0...N, ~1 and n=0...N, —1 (b)

m+p,n+q
p=-10 g=-10

where the 30mx30m rectangular prism I'”™” is computed at 355 m altitude using the equation of (2.15)
and (2.16) in Chapter 2.

* The data simulation, I'; (f}, f, ), at the spatial frequency (f}, f,) with (i, ) =(1,2,3) is

GGSS DEM

L, ) =07 (L L)+ HS 5 (s ) ©
where

FU(.; Gss ( fl , f 2) = the Fourier transform of GGSS data of component (7, j) multiplied by the

h

downward continuation factor exXp{—27 m} with 2 =1000-355=645mand A = 1/ NS+

Fijl.) "M (f1, f,) = the Fourier transform of the (i, j) gradient component using the 30m DEM

H(f,.f,) =1-=L(f,,f,)(ie., the high-pass frequency with the cut-off frequency f,)

> We assume the helicopter is moving with the constant velocity, v, of 10m/s. Thus, the along-track

gradient (white noise) variance is computed at a point along the track using the sampling frequency A =

1/3Hz s O'i, = 1E*/Hz x 1/3 Hz = 1/3 E*. Furthermore, we simply convert the along-track 1E/+/Hz
noise at points along the track to the noise at grid points by multiplying the product of (1E*/Hz)x(10m/s)
with the track spacing Ax; =30m; we obtain the 300 E?/(cyc/m)” noise at grid points. In addition, the

lE/ v Hz zero mean white Gaussian noise is generated using the MATLAB function

“normrnd(mean, o, ,m,n) with mean=0E, o, = 1/ \/g E, m (the number of tracks) = 1200 and n (the

number of points along track) = 1200”.
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Footnotes); we call this the full geological background plus 1E*/Hz white noise. The
observation, finally, are obtained by adding the gradient signals due to the 2m x 2m x
1000m target anomaly to the simulated background. Observe that the gradient signals
due to the 2m x 2m x 1000m anomalies are not visible in the observations. Table 5.2 lists
the root-mean-square (rms) values of the anomaly at 30m below the constant flight
altitude, compared with the values of full geological background plus 1E*/Hz white noise.

Figure 5.2 shows the (azimuth-averaged) empirical power spectral densities (psd’s)
of the simulated I';; gradient component at 355m altitude and its corresponding psd

models. The psd of the observation (red-dot line) has large amplitudes at the long
wavelengths; its trend quickly decreases and then becomes flat at short wavelength (about
300m and shorter) (high frequencies). The magenta-dot line indicates the empirical psd

of the residual gradients, 8T, , after the removal of the gradient field model®, I';2°*',(or

trend surface) (i.e., 8y, = [ —13**"). The blue-dot line is the empirical psd of

the GGSS gradient plus 1E*/Hz white noise; as indicated, wavelengths of 5km and
shorter are essentially removed but noise at all frequencies still remains.

The psd models (smooth curves in Figure 5.2) of all types of gradient observations
(except the 1E*/Hz white noise) at 355m altitude are constructed using the reciprocal
distance function models of the disturbing potential (eqs. (B-49) and (B-52) in Jekeli
(2003)), based on the 30m DEM over Texas/Oklahoma area. Appendix A lists the
corresponding values of the parameters. In this study, we shall assess the limitation of
the matched filters that use the psd models, compared with the matched filters that use the
empirical psd’s’ obtained from the simulated observations (that exclude the gradient
signals due to the anomaly). One may consider these types of filters (with empirical
psd’s) as ideal filters. Furthermore, the combination of individual matched filters are
assessed. We shall consider no correlation between gradient sensor errors under the
white noise assumption. The correlated background field “noise” is accounted for in the
filter (unless other specified) using equation (A.1).

® The gradient field model, I i;n"dd for (i, j) = (1,2,3), is generated from 120m rectangular topographic

prisms at the altitude of 355m using the 120m x 120m DEM (the number of prisms over an integration area
is limited to 20 on either side of the central computation point, and the density is a constant 2.670 g/cm”).
Then, the gradients at 120m x 120m grids are interpolated onto 30mx30m grids (we use a bicubic spline
interpolation function in MATLAB tools for the computation).

7 The characteristics of such ideal psd’s are similar to the empirical psd’s of the observations (wiggly
curves) in Figure 5.2.
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Figure 5.1: (a) The survey area of GGSS airborne gradiometry (b) an example of data
simulation by combination of the 1987 GGSS data set and 30m DEM, compared with six
gradient components due to the 2m x 2m x 1000m anomaly (see orange circles).
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Full geological background plus 1E*/Hz white noise

Statistics | S r, I, I, I, I,
mean -4.1710 |  2.4256 1.7451 | 3.4673 | -0.5019 1.7312
med -5.3099 | 2.2716 1.4840 | 3.8059| -0.6960 1.4717
min -39.0344 | -22.3920 | -20.4062 | -5.0273 | -13.8893 | -11.5058
max 37.5898 | 26.5314 | 18.8898 | 11.3453 | 13.9873 | 18.8403

std 13.2361 9.0212 | 6.6315] 2.9447| 3.7420| 4.0559

rms 13.8777| 9.3416| 6.8573 | 4.5490| 3.7755| 4.4099

The 2mx2mx1000m anomaly (azimuthal orientation = 90°)

mean 0.000 0.000 0.000 0.000 0.000 0.000
med 0.000 0.000 0.000 0.000 0.000 0.000

min -0.92751 -0.1277| -0.1170| -0.1450 | -0.4449 | -0.3799
max 0.1052| 0.1714] 0.8881| 0.1450| 0.4449| 0.3799

std 0.0262 | 0.0028 | 0.0257] 0.0027 | 0.0188] 0.0040

rms 0.0262 | 0.0028 | 0.0257] 0.0027 | 0.0188]| 0.0040
Signal energy | 27.7275| 0.3274] 26.6476 | 0.2892 | 14.2964 | 0.6333

N-1
ms=_|>s; /N
i=0

density contrast of anomaly = -1.500 g/cm’

N-1
; Signal energy = »_s; with N = 1200x1200

i=0

Table 5.2: The statistical description of full geological background plus 1E*/Hz white

noise and the 2m x 2m x 1000m anomaly at 30m depth from a flight line; the unit of all

values is Eotvos.
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are used, and the corresponding psd’s agree with the empirical psd’s of those components

(not shown here)).
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5.2 CASE I: White noise environment
In an example of detectability using the matched filter for the case of 1IE/+VHz
white noise (o2 =1/3 E* for v = 10m/s and A , = 1/3 Hz), we consider the gravitational

gradients due to the target anomaly of 2m-width x 2m-height x 1000m-long, at the depth
(D) of 30m below a flight line, shown in Figure 5.3a.

DE)

(X, %,)

v

EQ2)

(b)

Figure 5.3: (a) The gradiometry survey; (b) The 10m x 5m x 1000m anomaly at the
azimuthal orientation of B’.

The center of anomaly is at X, = 18000.0m and X, = 18000.0m of the survey grid. The

anomaly is rotated by 90 degrees about the vertical axis (i.e., B’ = 90°), positive in
clockwise direction, with respect to the N-direction, shown in Figure 5.3b. Figure 5.4
shows the observations of all six gradient components in 1E*/Hz white noise. It should
be noted that the gradient signals due to the anomaly are not detectable visually.
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Figure 5.4: Six gradient components due to the 2m x 2m x 1000m anomaly in 1E*/Hz
white noise.

Suppose we know the parameters of the target anomaly except its location, i.e., we
know its size, depth, and orientation. Based on (3.12), we design the two-dimensional
matched filter function 4, for the (i, j) gradient component, with (i, j) = (1,2,3), as a

reversed replica of the actual signal such that

1
h,'j(xlsxz): 2 Sij(_x1:_x2) (5.1)
(e)

w

where (x,,x,) is an arbitrary location. The unit of 4 is defined as 1/E so that the filter
output is unitless for convenience. The transfer function of 4, is:

Hg<ﬁ,f2>:0i2§;<ﬁ,fz> (5.2)

w
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2
the unit of which is {%}{ﬂ} . Figure 5.5 shows the pairs of the matched filter
cyc

functions and their transfer functions for individual gradient components.
If the filter matches the gradient signal, it yields the maximum signal-to-noise ratio

E
SNR,, =——— (5.3)
Axle2o-w

where, using Parseval’s theorem as (3.10) in Chapter 3, the signal energy E_ is

i oo 400
~ 2
Eo= [ [ 8,0 1) dfidfy = Axn, 3 3 s, (xiova,)’ (5.4)
Sy~ m=—0 n=—0

The symbol “ §l.j ” 1s the (periodic) Fourier transform of s, and Nyquist frequencies f,
and f, are 1/2Ax, and 1/2Ax, respectively. It should be noted in (5.3) with (5.4) that a

matched filter performs best for detecting a signal in the presence of noise only if the
gradient waveform is known completely. The location of the maximum (highest peak)
output of the matched filter corresponds to the maximum SNR.

As regards (3.14) but applied to two dimensions, the matched filter yields the
highest peak y,(x,,X,) at the point (x,,x,) which is the center location of the anomaly

to be detected such that

+00

_ 1 < _ _
yh(xl,x2)=62 Z ngj(‘xl,m_xl’XZ,n_XZ)z
wmme (5.5)

+00 +00

1 — —
+? Z Zsy (xl,m _xl’x2,n X )n(xl,m’x2,n)

W M=—00 n=—00

Clearly, the first term on the right-hand side of (5.5) equals SNR.x. Practically, it
should be noted that the highest peak may be larger or smaller than SNR,.x since the
second term of (5.5) can be either positive or negative.

The noise in the second term of (5.5) may cause the highest output peak to be not at
the true location, i.e., the point (x,,Xx,), if the gradient signal is embedded in a strong

noise background (see the examples in Table 5.2 where the filters of the components I,, ,
I',,, and I',; have small rms values compared with those of full geological background

plus 1E*/Hz. The consequence of small signals relative to strong noise background will
be discussed later).

In Figure 5.6, the matched filters for gradient components maximize the SNR at the
true location of the anomaly, see Table 5.3. The locations of the output peaks
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Figure 5.5: The matched filter functions and the transfer functions (using Psd model 4)
for the individual gradients due to the 2m x 2m x 1000m anomaly at the azimuthal

orientation of 90° and 30m depth in 1E*/Hz white noise.
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Gradient component

1—133 FZZ 1—‘1 1 1—‘1 2 1—11 3 1—123
AN (m) 0.0 [ 5400.0 0.0 | 4830.0 0.0 [ -6030.0
AE(m) [ -90.0 -6030.0  30.0( -7230.0 0.0 | 4440.0

Table 5.3: Signal detection in 1E*/Hz white noise environment; AN and AE are the
difference of the location of the highest peak minus the true location of the 2m x 2m x
1000m anomaly.

(symbol “x”) for the I';; and I';, components are shifted from the true location (symbol
“+) by 90m westward and 30m eastward, respectively. These errors are due to the
gradient signals corrupted by the white noise. This noise has a much greater effect on the
filters for components I',,, I';,, and I',;, which cannot locate the anomaly at all.
According to (3.29), the matched filter output is indeed the test statistic (or
sufficient statistic) (which contributes towards a means of making a decision about the
acceptance of H (i.e., if H is true, the gradient signal due to the anomaly is present)).

The performance of signal detection can be statistically described by defining an a priori
POM such that it is a useful confidence level related to the decision to accept H, in
(3.1). The corresponding threshold can be computed from (3.43) for a given POM. If
the highest peak after matched filtering exceeds the threshold, then the signal is presumed
to be presented.

Table 5.4 shows the detectability performance of the matched filters for given
POM = 0.001, 0.050, and 0.010. The I',, I'},, and I';; matched filters yield the highest

output peaks at or close to the true location. These outputs imply high performance of
the filters. For instance, POF = 0.000 for the given POM’s, for these components. H
although, in fact, the highest peak output occurs at a point different from the true location
(see also Figure 5.6) by 4830m northward and 7230m westward (taken from Table 5.3).
In this study, although the threshold seems to be useless because the highest peak is
selected regardless of it, it is a preliminary step that statistically describes the possible
candidate(s).

The POF obtained from (3.44) is a useful probability when making a decision to
accept H . It should be noted, however, that POF increases if we decrease POM. Thus,

the POM should be carefully chosen so that the corresponding POF is useful at most to
aid the decision. In Table 5.4, the POF’s of the component I',, indicate that a chance of
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no signal present is high; POF = 0.983, 0.911, and 0.762 for the given POM’s 0.001,
0.010, and 0.050, respectively.

For the case of 1E*/Hz white noise environment, the shape of the gradient signal
does not affect the performance of the matched filter if Psd model 4, which is flat and
constant (shown in Figure 5.2), is used. Therefore, the gradient signals render the same
detection performance if their energies are similar, see (5.3) with (5.4). The next
example will show how correlated noises affect signal detection by the matched filters to
which Psd model 1 and empirical psd’s are applied.

Figure 5.6: The matched filter outputs (for 1E*/Hz white noise): “+” = the true location of

the 2m x 2m x 1000m anomaly to be detected; “x” = the location where the highest peak
occurs.
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Grad.| ¢° Y, a =0.001 a =0.010 a =0.050

n' B n' B n' B
r,, |76.231(84.516(49.250 | 0.000 | 55.920 | 0.000 [ 61.870 [ 0.000
r,, | 0963] 4577] -2.070]0.983 | -1.320 [ 0.911 | -0.651 [ 0.746
r, |[73.008]81.431]46.603]0.000 | 53.130 | 0.000 | 58.953 | 0.000
r, | 0867 4331 -2.011]0.985]-1.299]0.918 [ -0.665 | 0.762
r, [39.19750.090 [ 19.850 | 0.001 | 24.632 | 0.000 [ 28.899 [ 0.000
r,, | 1.881| 6210 -2.357[0.957| -1.310]0.830 [ -0.375 | 0.608

Table 5.4: Performance of matched filter in white noise environment; d> = SNRpax.
Yo = the highest peak output, f=POF, n' = the computed threshold with a given POM

= aand d’ (unitless).
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5.3 CASE II: Correlated noise environment

In practical gradiometry, geological background and instrumental noises are the
primary noise sources that corrupt the gradient signal due to an anomalous source. As
described in Section 5.1, Figure 5.2 shows the power spectrum obtained by the simulated
gradient field. The red-dot line presents the empirical psd of the observation, which does
not flat. We use Psd model 1 (red-solid line) to show the result of detection by the
matched filtering technique. As stated in Section 5.1, we shall assess the limitation of the
matched filters with the use of the psd models (see also the smooth curves in Figure 5.2),
compared to the ideal filters for which the empirical psd’s are obtained from the
simulated gradient field (without the gradient signal due to the anomaly).

This example shows the anomaly detection by matched filters in a correlated noise
environment. The corresponding filters can be expressed and numerically computed
using the equations in Section 3.5 in Chapter 3 but extended to the two-dimensional case:

+fn, +/7 I~
Ny TN Si' (f’f)
hij(xlaxz):Axlez j j L

P2n( fix,+15%,)
—en e rdfdf (5.7)
g @) e

with a = psd model and b = empirical psd, and its transfer function is

S, (fi-12)
Hy(fy, /) = Ax Ax, —2o2 (5.8)
q)n (f‘l’fZ)
1 2
which has units of [—}{ﬂ} . The SNR_ is
E | cyc
et S fo)
Iny N i (15 12
SNRmax = J. J. : ﬁde (59)

i @)

What follow are the results of detecting the 2m x 2m x 1000m anomaly by the
matched filters using Psd model 1 versus the empirical psd for full geological background
plus 1E*/Hz white noise. The cases of the anomaly at the azimuthal orientation, p’, of
90°, 45°, and 0° are included. Although we perform matched filtering through the entire
area of data simulation (i.e., 36km x 36km), only the filtering output covering the 20km x
20km innermost area of the simulation is used to avoid edge effects and also cyclic
convolution errors".

Figures 5.7 and 5.9 show the pairs of the matched filters and their transfer functions
using Psd model 1 and the corresponding empirical psd, respectively, where ' = 90° is

¥ Since Fortran 90 codes for this study have a limitation of array memory, we are not able to apply zero-
padding to the original signal array (having 1200x1200 arrays); efficient algorithms should be considered
for future work. However, cyclic convolution errors can be reduced by considering only a subset of the
domain of the computation of the convolution.
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considered. The matched filter outputs are shown in Figures 5.8 and 5.10 in sequence.
Table 5.5 summarizes the filter outputs and their detection performance. Only the
matched filters for the I';;, I, and I';; components, either using the psd model or the

empirical psd, provide the highest peak at or close to the true location. However, there
are no significant differences between the performance of the filters using the psd model
and the empirical model although, for instance, the corresponding SNR values are d* =
71.503 and 249.512 for the I';; component, respectively. That is POF = 0.000 for the

given POM = 0.001, 0.010, and 0.050 in both cases. The filters using either the psd
model or the empirical psd yield large values of POF when the highest peaks do not
locate or are close to the true location. Note that the I',,, I'},, and T',; filters using either

the smooth psd or the empirical psd can not locate the anomaly for B’ = 90° and B’ = 0°,
see also Tables 5.7. This is because the gradient signals are relatively small, compared
with the noise background; the capability of the filters has its limitation in a strong noise
background.

For B’ = 45° and the component I, the signal is not detectable by the I';, matched

filter using Psd model 1 whereas the filter using the empirical psd is; see Table 5.6. The
capabilities of the filters between using Psd model 1 and the empirical psd are
significantly different. The latter shows larger magnitudes of the transfer functions (eq.
(5.8)) of the matched filters than those using the psd model. For instance, shown in
Figure 5.11 versus 5.13, the maximum magnitude of the I'|; transfer function using the
psd model is about 5x10* [1/E] / [cyc/m]* which is smaller than the maximum magnitude
using the empirical psd (= 5x10° [1/E] / [cyc/m]*). This is because noise (empirical)
spectrum can contain many larger “spikes”. The matched filter using the smooth psd can
not sufficiently represent all these spikes while the filter using the empirical psd can.

By comparing the detection results, shown in Figure 5.12 versus 5.14, the matched
filters using the empirical psd outperform the filters using the psd model. Detecting the
anomaly by the former is done successfully. In Table 5.6, although POF = 0.171 for the
given POM = 0.001, the I';, matched filter using the psd model mislocates the target
anomaly. By using the empirical psd’s, the filters provide improved noise suppressing
capabilities and can better locate the true location of the anomaly. It is clear that the more
accurate the psd modeling, the better is the performance of matched filter.

Figures 5.15 — 5.18 show the case B’ = 0°. Table 5.7 summarizes signal
detectability and performance of matched filters. Although the performance of the I';,

matched filter using Psd model 1 is relatively high, compared to other filters, the filter
can not locate the target, which can be detected by the filter using the empirical psd.
Therefore, this result confirms that a more accurate psd model than Psd model 1 is needed
to improve the detectability. In this section, we have not discussed how orientations will
affect the detectability of matched filters. More details will be discussed in Section 5.6.
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Figure 5.7: The matched filter functions and the transfer functions (using Psd model 1)
for the individual gradients due to the 2m x 2m x 1000m anomaly at the azimuthal
orientation of 90° and 30m depth in the full geological background plus 1E*/Hz white

noise.
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Figure 5.8: The matched filter outputs (using Psd model 1 for the full geological background plus 1E*/Hz white noise); “x” indicates

the location of highest peak; “+” indicates the true location of the 2m x 2m x 1000m anomaly at the azimuthal orientation of 90° and
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Figure 5.9: The matched filter functions and the transfer functions (using the empirical
psd) for the individual gradients due to the 2m x 2m x 1000m anomaly at the azimuthal
orientation of 90° and 30m depth in the full geological background plus 1E*/Hz white

noise.
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09

Type | Grad. | AN AE d? Voux | POM =0.001 POM =0.010 | POM =0.050

n' POF n' POF n' POF

a I, 0.0 -90.0 | 71.503 | 68.124 | 45.372]0.000 | 51.832]0.000 57.595] 0.000
r,, | -720.0|-3150.0 0.941 ] 40.628 | -2.057]10.983 | -1.316]0912] -0.655]0.750

I, 0.0 30.0| 68.884| 67.895| 43.236|0.000 | 49.576 | 0.000 | 55.232 ] 0.000

r,| -810.0(-3090.0 0.807 8.049 | -1.96910.986| -1.28310.923| -0.671]0.772

I, 0.0 0.0 35.893| 32385 17.379]10.002 | 21.956]0.000 | 26.039 | 0.000

I, | -690.0-3180.0 1.766 | 32.331 -2.341 1 0.961 -1.3251 0.841 -0.420 | 0.624

b I, 0.0 0.0 | 249.512 | 254.065 | 200.699 | 0.000 | 212.765 | 0.000 | 223.530 | 0.000
r,, | 4740.0 [ 5070.0 5.102 9.059| -1.87810.797| -0.153]0.527 1.387 | 0.267

I, 0.0 0.0 | 334.154 | 353.945 | 277.665 | 0.000 | 291.629 | 0.000 | 304.086 | 0.000

I, | 7410.0 [ 2670.0 5.034 9.067 | -1.899] 0.801 -0.186 | 0.533 1.343 | 0.275

I, 0.0 0.0 1178.949 | 185.643 | 137.611 | 0.000 | 147.829 | 0.000 | 156.946 | 0.000

I,, | -4530.0 | -7950.0 9.824 | 13.829 0.138 ] 0.482 2.53210.209 4.668 | 0.068

Table 5.5: Detectability and performance of the matched filter using (a) Psd model 1 and (b) the empirical psd for the full geological
background plus 1E*/Hz white noise; AN and AE are the difference of the location of the highest peak minus the true location; the
2m x 2m x 1000m anomaly at the azimuthal orientation of 90° and 30m depth.
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Figure 5.11: The matched filter functions and the transfer functions (using Psd model 1)
for the individual gradients due to the 2m x 2m x 1000m anomaly at the azimuthal
orientation of 45° and 30m depth in full geological background plus 1E*/Hz white noise.
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Figure 5.13: The matched filter functions and the transfer functions (using the empirical
psd) for the individual gradients due to the 2m x 2m x 1000m anomaly at the azimuthal
orientation of 45° and 30m depth in the full geological background plus 1E*/Hz white

noise.
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45° and 30m depth.
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Type | Grad. | AN AE d? Y POM = 0.001 POM =0.010 | POM =0.050

n' POF n' POF n' POF

a I, -30.0 -30.0 | 62.852| 50.517 | 38.353 | 0.000 | 44.409 | 0.000 | 49.812] 0.000
I, -240.0| -300.0 | 17.347| 71.246 4.47610.141 7.658 1 0.033 | 10.496 | 0.006

I, 6870.0 | 1800.0 | 16.320| 18.657 3.836 | 0.171 6.922 | 0.043 9.675 ] 0.008

I, -90.0 -90.0 | 15.573 | 27.688 3.378 1 0.196 6.392 | 0.053 9.082]0.011

I, -60.0 -60.0 | 27.562 | 31.288 | 11.339]0.015]15.349 |0.002| 18.927] 0.000

I, -300.0| -300.0 | 28.987| 74.179| 12.34910.011 | 16.462 ] 0.001 | 20.131 | 0.000

b I, 0.000 0.000 | 424.216 | 413.879 | 360.568 | 0.000 | 376.301 | 0.000 | 390.338 | 0.000
I, 0.000 0.000 | 112.838 | 96.789 | 80.012 ] 0.000 | 88.127 ] 0.000 | 95.366 | 0.000

I, 0.000 0.000 | 114.111 | 113.064 | 81.101 | 0.000 | 89.261 | 0.000 | 96.541 | 0.000

I, 0.000 0.000 | 106.288 | 116.318 | 74.42910.000 | 82.305] 0.000 | 89.331 | 0.000

I, |-30.000]-30.000 [ 189.514 | 189.830 | 146.972 | 0.000 | 157.488 | 0.000 | 166.870 | 0.000

I,, |-30.000 | -30.000 [ 190.639 | 192.157 | 147.972 1 0.000 | 158.519 | 0.000 | 167.929 | 0.000

Table 5.6: Detectability and performance of the matched filter using (a) Psd model 1 and (b) the empirical psd for the full geological
background plus 1E*/Hz white noise; AN and AE are the difference of the location of the highest peak minus the true location; the
2m x 2m x 1000m anomaly at the azimuthal orientation of 45° and 30m depth
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Figure 5.15: The matched filter functions and the response transfer functions (using Psd

model 1) for the individual gradients due to the 2m x 2m x 1000m anomaly at the

azimuthal orientation of 0° and 30m depth in the full geological background plus 1E*/Hz

white noise.
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Figure 5.16: The matched filter outputs (using Psd model 1 for the full geological background plus 1E*/Hz white noise); “x” indicates
the location of highest peak; “+” indicates the true location of the 2m x 2m x 1000m anomaly at the azimuthal orientation of 0° and
30m depth.
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Figure 5.17: The matched filter functions and the transfer functions (using the empirical
psd) for the individual gradients due to the 2m x 2m x 1000m anomaly at the azimuthal
orientation of 0° and 30 m depth in the full geological background plus 1E*/Hz white

noise.
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Type | Grad. AN AE d? Y inax POM =0.001 POM =0.010 POM =0.050

n' POF n' POF n' POF

a T, 540.0 | 1560.0 | 74.966| 71.006| 48.210|0.000 | 54.824]0.000| 60.724 | 0.000
T, -870.0 | -1920.0 | 72.923 ] 120.288 | 46.53410.000 [ 53.057 | 0.000 | 58.876 | 0.000

r,, |-6870.0 | 6930.0 0.767| 3.719| -1.939]10.987] -1.270]0.926| -0.674]0.779

T, -840.0 | -1770.0 | 0.824 | 10.262]-1.981 |0.985| -1.288]0.922| -0.669 | 0.769

[, | 5190.0] 8250.0 1.562| 6.407 | -2.3000.967| -1.345]0.859| -0.49410.653

T, 570.0 | 1680.0 | 39.006| 88.642| 19.706 | 0.001 | 24.477|0.000 | 28.733 | 0.000

b T, 0.000 | 0.000 | 209.710 | 208.713 | 164.959 | 0.000 | 176.021 | 0.000 | 185.890 | 0.000
T, 0.000 | 0.000 | 291.702 | 291.370 | 238.923 | 0.000 | 251.969 | 0.000 | 263.609 | 0.000

I, | 3420.0-7560.0| 5.080| 9.561 | -1.885[0.799| -0.163]0.529 1.373 1 0.271

T, -690.0 | 180.0 | 4.819] 10459 | -1.965]0.815| -0.288] 0.552 1.208 | 0.291

L, 210.0 | 5280.0| 9.843| 13.591 0.148 | 0.481 2.54410.209 | 4.68210.068

T, 0.000 | 0.000 | 162.902 | 169.744 | 123.461 | 0.000 | 133.210 | 0.000 | 141.908 | 0.000

Table 5.7: Detectability and performance of the matched filter using (a) Psd model 1 and (b) the empirical psd in the full geological
background plus 1E*/Hz white noise; AN and AE are the difference of the location of the highest peak minus the true location; the
2m x 2m x 1000m anomaly at the azimuthal orientation of 0° and 30m depth.



5.4 CASE I11: Anomaly detection in correlated noise using the combination of six
gradient components

Rather than attempt to seek an accurate psd model for individual matched filters, as
described in the previous case, this section shows how the matched filter using the
combination of six gradient components with Psd model 1 performs in terms of signal
detectability. The (vector) transfer function of the filter, H (f;».f>), 1s obtained from the

equation (4.18) and is extended to the two dimensional case

H(f. f) = A A, @, (L £)S (0 1) (5.10)

where the MxM cross psd matrix, CT)MM , between M sensors for M € {1,2,3,4,5,6} , 18
constructed according to (6.97) in Chapter 6 using (A.1) with the parameters of Psd
model 1 plus the instrumental noise N, in Table A.1: ®,,,, = Ax,Ax,X,,, (physical

correlations between sensor outputs are considered) + N,.. The vectors H (f,,f,) and

S( f.»f>) have size Mx1. We also assume the matrix &)MM is invertible.

As shown in Figures 5.19 - 5.21 where the 2m x 2m x 1000m anomaly is oriented
at B’ =90°, 45°, and 0°, respectively, the filter outputs clearly indicate an improvement
of signal detection and performance. The results are shown in Tables 5.8 — 5.10, where
other combinations of gradients are also considered. For example, for ' = 90°, the
combination of I',, and I'}, can not locate the true location where AN = -5940.0m and
AE =7770.0m (Table 5.8), which shows the low performance: POF = 0.970 for given
POM = 0.001 and &* = 1.461. However, the highest peak occurs at the true location
using all six components. The performance by the six combination is high: POF = 0.000
for given POM = 0.001 and d°=175.213.

Another example is addressed to show how well the matched filter performs for
combinations of gradients. Refer to CASE II in section 5.3 where Table 5.7a shows that
no matched filter for individual gradients can detect the target anomaly for B’ = 0°, (e.g.,
the I';; matched filter mislocates the true location, i.e., AN =540.0m and AE = 1560.0m

whereas POF = 0.000 for given POM = 0.001 and d° = 74.966). In comparison, shown
in Table 5.10, when all six combined gradients are used, the highest peak output occurs at
the true location with a high performance. However, it should be noted that if POM is
defined too high, the highest peak y, .. = 142.656 does not exceed the computed

thresholds, i.e., ' = 153.379 and 144.360, for given POM = 0.010 and 0.050,
respectively. As such, we falsely reject H,. (Making a decision to either accept H, or

H, is controlled by choosing POM) The POM = 0.001, where 7" = 134.250 and POF =
0.000, 1s an appropriate level of significance for this case.

We further test the capability of the matched filter using the combination. But
here, consider the anomaly for B’ = 90° at the deeper depth = 60m where the gradient
signals are much smaller. As expected, the matched filter using all six combined
gradients yields the most reliable detection, shown in Figure 5.22. The highest peak
output exists at the true location with POF = 0.254 for POM = 0.001 and 4> = 14.068,
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shown in Table 5.11. However, the performance of the combination filter is downgraded
as compared to the case where B’ = 90° and depth = 30m: POF = 0.000 for POM = 0.001
and d* = 175.213 (Table 5.8). Overall, the matched filters using all six gradients with Psd
model 1 are successful in locating the true anomaly and have an increased performance.
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Figure 5.19: The matched filter output of the combination of six gradients in the full geological background plus 1E*/Hz white noise
using Psd model 1; “x” indicates the location of highest peak; “+” indicates the true location of the 2m x 2m x 1000m anomaly at the
azimuthal orientation of 90° and 30m depth.



YL

Orient. Grad. AN (m) | AE (m) d? Vi POM = 0.001 POM =0.010 | POM =0.050
n' POF n' POF n' POF
90° |24 -5940.0 | 7770.0 1.461 6.052 | -2.27410970| -1.351]10.868| -0.527]0.669
2,4,6 6120.0 [ 1530.0 2.893 9.019| -2.363]10.918| -1.064]0.734 0.095 1 0.478
2,4,6,5 0.0 0.0 38.474] 48312 19.306]0.001 | 24.044 | 0.000 | 28.271 | 0.000
2,4,6,3 0.0 0.0 71.403 ] 79.042| 45.291]0.000| 51.745]0.000| 57.504 | 0.000
2,4,6,1 0.0 0.0 73.694| 76.954| 47.166]0.000| 53.7240.000| 59.574 | 0.000
2,4,6,5,3 0.0 0.0 |106.049 | 121.491 | 74.225]0.000 | 82.092 1 0.000 | &9.110 | 0.000
2,4,6,5,1 0.0 0.0 |108.142 1 115.451 | 76.006 | 0.000 | 83.950 | 0.000| 91.037 | 0.000
2,4,6,3,1 0.0 0.0 | 141.005 | 155.654 | 104.310 | 0.000 | 113.381 | 0.000 | 121.473 | 0.000
2,4,6,5,3,1 0.0 0.0 ]175.213 1 192.861 | 134.308 | 0.000 | 144.420 | 0.000 | 153.440 | 0.000
NOTE:
1=Ty,2=1,,3=1,,4=1,,,5=1;,6 =T}

Table 5.8: Detectability and performance of the combination of matched filter using Psd model 1 in the full geological background
plus 1E*/Hz white noise; AN and AE are the difference of the location of the highest peak minus the true location of the 2m x 2m x
1000m anomaly at the azimuthal orientation of 90° and 30m depth.
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Orient. Grad. AN (m) | AE (m) d? Vi POM = 0.001 POM =0.010 | POM =0.050
n' POF n' POF n' POF
45° |24 30.0 30.0 | 30.994 | 28.545] 13.790]0.007 | 18.042]0.001 | 21.836 | 0.000
2,4,6 -60.0 -60.0 | 57.614| 52.813| 34.15810.000 | 39.95610.000 | 45.129 | 0.000
2,4,6,5 -60.0 -60.0 | 84.070 | 82.164 | 55.73610.000 | 62.740 | 0.000 | 68.988 | 0.000
2,4,6,3 0.0 0.0 73372 68.446| 46.901]0.000| 53.445]0.000| 59.282| 0.000
2,4,6,1 0.0 0.0 117.581]103.604 | 84.072]0.000 | 92.356 | 0.000 | 99.745 | 0.000
2,4,6,5,3 -60.0 -60.0 | 99.720 96.342| 68.86110.000 | 76.490|0.000 | 83.295 | 0.000
2,4,6,5,1 0.0 0.0 | 143.700 | 130.771 | 106.656 | 0.000 | 115.813 | 0.000 | 123.982 | 0.000
2,4,6,3,1 0.0 0.0 | 133.139 | 119.166 | 97.482 | 0.000 | 106.296 | 0.000 | 114.159 | 0.000
2,4,6,5,3,1 0.0 0.0 | 159.194 | 146.547 | 120.204 | 0.000 | 129.842 | 0.000 | 138.441 | 0.000
NOTE:
1=Ty,2=1,,3=1,,4=1,,,5=1;,6 =T}

Table 5.9: Detectability and performance of the combination of matched filter using Psd model 1 in the full geological background
plus 1E*/Hz white noise; AN and AE are the difference of the location of the highest peak minus the true location of the 2m x 2m x
1000m anomaly at the azimuthal orientation of 45° and 30m depth.
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Orient. Grad. AN (m) | AE (m) d? Vo POM = 0.001 POM =0.010 | POM =0.050

n' POF n' POF n' POF

0° 3,4 2490.0 | 7290.0 1.461 6.296 | -2.27410.970| -1.351]0.868 | -0.527]0.669
3,4,5 -3030.0 | 9000.0 2.893 8.045| -2.36310.918| -1.064]0.734 0.09510.478
3,4,5,6 0.0 0.0 38471 34.559| 19.304]0.001 | 24.042]0.000 | 28.269 | 0.000
3,4,5,2 7560.0 | 1110.0| 71.403| 60.961 | 45.29010.000| 51.745]0.000 | 57.504 | 0.000
3,4,5,1 -3960.0 | 1800.0 | 73.690 | 59.023 | 47.16310.000| 53.720] 0.000 | 59.570 | 0.000
3,4,5,6,2 0.0 0.0 1106.014 | 85.513 | 74.196]0.000 | 82.062]0.000 | 89.079 | 0.000
3,4,5,6,1 0.0 0.0 1108.251 | 91.010| 76.099]0.000 | 84.047]0.000| 91.137 | 0.000
3,45,2,1 0.0 0.01141.007 1 110.614 |1 104.312 ] 0.000 | 113.383 | 0.000 | 121.475 | 0.000
3,4,5,6,2,1 0.0 0.0 | 175.148 | 142.656 | 134.250 | 0.000 | 144.360 | 0.000 | 153.379 | 0.000

NOTE:1=T,,2=T,,,3=1,,4=T,,5=T,,6=T,,

Table 5.10: Detection and performance of the combination of matched filter using Psd model 1 in the full geological background plus
1E*/Hz white noise; AN and AE are the difference of the location of the highest peak minus the true location of the 2m x 2m x
1000m anomaly at the azimuthal orientation of 0° and 30m depth.
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Figure 5.22: The matched filter output of the combination of six gradients in the full geological background plus 1E*/Hz white noise
using Psd model 1; “x” indicates the location of highest peak; “+” indicates the true location of the 2m x 2m x 1000m anomaly at the
azimuthal orientation of 90° and 60m depth.



08

Orient. Grad. AN(m) | AE(m) | g4? Vo | POM=0.001 | POM =0.010 | POM = 0.050
n' POF n' POF n' POF

90° 2,4 -5760.0 | 6030.0 | 0.237 ] 3.852|-1.267 | 0.995 ] -0.895]0.967 | -0.564 | 0.877
2,4,6 -6600.0 | 4710.0 0.442 | 4.1831-1.61210.992 | -1.105]0.952 | -0.652 | 0.836
2,4,6,5 480.0 | -1230.0 | 5.220]10.540 | -1.840 ] 0.790 | -0.095 ] 0.517 | 1.462 | 0.261
2,4,6,3 -120.0 1 -2130.0 | 5.190 | 10.606 | -1.850 1 0.792 | -0.110 | 0.519 | 1.442 | 0.263
2,4,6,1 -5250.0 | 5700.0 | 5.457 ] 12.298 | -1.762 | 0.775 | 0.022]0.496 | 1.614]0.245

2,4,6,5,3 0.000| 0.000] 9.600 | 13.674| 0.025]0.497 | 2.39210.220 | 4.504 | 0.073
2,4,6,5,1 -5250.0 | 5700.0 | 9.855] 14.957| 0.154 | 0.480 | 2.552]0.208 | 4.692 ] 0.067
2,4,6,3,1 -90.0 | -240.0 | 9.831 | 15.568 | 0.142]0.482 | 2.537]0.209 | 4.674 ] 0.068
2,4,6,5,3,1 0.000 0.000 | 14.068 | 19.750 | 2.478 1 0.254 15.343 | 0.077 | 7.899 | 0.018

NOTE:1=T,,2=T,,3=1,,4=T,,5=T,,6="T,,

Table 5.11: Detection and performance of the combination of matched filter using Psd model 1 in the full geological background plus
1E*/Hz white noise; AN and AE are the difference of the location of the highest peak minus the true location of the 2m x 2m x

1000m anomaly at the azimuthal orientation of 90° and 60m depth.



5.5 CASE 1V: Anomaly detectability versus sizes and depths

Thus far, we have discussed the anomaly detection by matched filtering techniques
in 1E*/Hz white noise and full geological background plus 1E*/Hz white noise. The 2m x
2m x 1000m anomaly was considered. The numerical results indicate that, overall, the
I';; matched filter is able to detect the anomaly best among other components. Psd

modeling affects the filter detectability, as compared to the case where the empirical
psd’s were applied. Although more accurate psd models are needed to enhance the
capability of matched filters, the matched filter using all six gradients with Psd model 1
shows an improvement of signal detection and performance superior to the individual
matched filters with Psd model 1.

This section examines the detectability associated with sizes and depths of
anomalies at the azimuthal orientations of 90°, 45°, and 0°. More types of noise
backgrounds are included to see how they affect the detectability associated with
these sizes and depths using both psd models and empirical psd’s. The noise
backgrounds are as follows (i) full geological background plus 1E*/Hz white noise (or
instrumental white noise), (ii) full geological background plus 1E*/Hz white noise minus
a geological model obtained as described in section 5.1 (see Footnote 6), (ii1) the longer
than 5km wavelength GGSS data plus 1E*/Hz white noise, and (iv) only 1E*/Hz white
noise (considered as the best-case detection situation).

The parameters of anomalies for the investigation are defined in Table 5.12. Figure
5.23 shows the test strategy to determine anomaly detectability with respect to sizes and
depths. To determine the maximum depth, D at which different anomalies can be

detected using individual gradients and all six combined gradients, the detectability
criterion is defined by three steps as follows:

L. Atdepthiforie {1 Om,20m,30m,...,.D__ }, select the location, (N,,E.) ,of the
matched filter output where the highest peak y, .. occurs.
II. If |Ni - N0| < 6x, and |Ei - E0| < 8x,, then the target signal is detected at

depth i.
I1I. Return to step I if the anomaly is located at depth i; otherwise declare depth i-1
as the maximum depth D .

Type Width (m) Height (m) Length (m)
I 5 5 5,10, and 100
I 2 2 10,100, and 1000

Table 5.12: The various types of target anomalies.
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The symbol (N, E, ) is the true location of target anomalies of types I and II (which is
given). Based on a number of numerical experiments, the tolerances of 6x, = 90m and
dx, =90m are an appropriate choice for the criterion of step II. The values in Tables

5.13 to 5.22 provide a detailed analysis, which we briefly discuss in terms of how the
factors stated above affect the anomaly detectability.

Change to depth;;;
Yes
\4 A
. Highest
Signal at
iigelllih? Matched peak IN, =N, | < 8%,
L filtering »| selecting at and
: at depth; the location
noise (NLE) |E - E0| < 0X,
A
No
v
Matched Depth;_; is the
filter at depth; deepest detectable
depth

Figure 5.23: Block diagram of anomaly detectability criteria.

The maximum detectable depths obtained from the matched filters for individual
gradients using the psd models are summarized in Tables 5.13 — 5.15 at ' = 90°, 45°, and
0°, respectively. These values of the detectable depths are compared to the results for the
case at which the empirical psd’s are applied for the detection, summarized in Tables
5.16 — 5.18. The results show that the anomalies are detectable at deeper depths using the
filters with the empirical psd’s. We also see that the size of anomaly affects the
detectability, e.g., in Table 5.13, the matched filters can detect the Sm x 5m x10m as deep
as 20m, as compared to the deepest depth of 50m for the Sm x 5m x 100m anomaly in
full geological background plus 1E*/Hz white noise. However, the background noise
only slightly affects the detectability by using the matched filters with the psd models,
e.g., see the detectable depths of the 2m x 2m x 1000m anomaly in Tables 5.13.- 5.15
hardly changes with different background noises. (However, when wrong psd models are
applied to the matched filters, the anomaly can not be detected at all; not shown here) By
comparing the detection results, the orientation also affects the detectability, particularly
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I';, whose magnitude increases at 3’ = 45°. (More details related to orientations will be
discussed in the next section).

As discussed in CASE II, the psd modeling affects the detectability. The numerical
details of model versus empirical psd are summarized in Tables 5.16 — 5.18. For
example, the anomaly having the cross section area of 2m x 2m can not be detected at all
using the I'), matched filters using the psd models in Table 5.13 whereas it is detectable

at depth of 10m using the empirical psd (Table 5.16). Overall, the I';; matched filters are

able to detect the target anomalies best among other component filters. Also we found
from our numerical results that the detectability of the I';, matched filter does not depend

on the orientations 3’ = 90°, 45°, and 0° since I; is independent of orientation according
to eq. (B.5).

The matched filters using all six combined gradients improve the anomaly
detectability. (For simplicity, assume no correlation between sensors in the white noise
environment) For instance, consider the 2m x 2m x 1000m anomaly at ' = 90° in
1E*/Hz white noise. The deepest depth of 80m can be detected using the combination
(Table 5.19), compared with the deepest depth = 60m in Table 5.13 where the I,
matched filter performs best to detect the same anomaly (Psd model 4 is used in both
cases).

Table 5.20 shows that the location of the target affects the detectability. This is due
to random noise effects (from 1E*/Hz white noise) and geological interferences (from full
geological background) at that location. Here, we only show the cases of the target
anomalies at B’ = 90°. Note that using the same noise contents, e.g., |E*/Hz white noise,
the detectable depths, D, , may not be equal at different true locations, e.g. D _, = 80m

at the true location of (N24000m, E24000m) versus D = 100m at the true location of

(N24000m, E12000m).

We also consider when the true location of the target anomaly is inside a grid
square. Table 5.21 shows the detectability results. They show that the detectability is
slightly downgraded when the true location is not on a grid intersection. For instance,
consider the 2m x 2m x 100m anomaly having the true location at N18013m and
E18018m. In the case of full geological background plus 1E*/Hz white noise, the I,

filter using the empirical psd gives D = 30m, whereas the I',; filter in Table 5.16,
where the true location is at (N18000m, E18000m), yields D, = 40m.

Finally, the detectability also depends on the resolution of a gradiometric survey.
The numerical analyses in Table 5.22 indicate the effects of the spatial interval on the
detectability. For instance, compare the cross-track spacing Ax, = 30m and the along

track spacing Ax, = 15m with Ax, =15 and Ax, = 5m for detecting the 2m x 2m x
100m anomaly. The latter case yields D, = 60m whereas D _, =40m for the former.
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Anomaly Maximum depth (m)

Width x Height (m”) | Length(m) I, | T, |, | T, || Dy

Psd model 1 for geological background + 1E*/Hz white noise
5 20| 10| 10 - - -
5x5 10 20| 10] 20 - - -
100 50] 10] 50] 30| 50| 20
10 10 -1 10 - - -
2x2 100 20 -1 20 - - -
1000 30 -| 40 -1 50 -
Psd model 2 for geological background +1E*/Hz white noise - geological model
5 20 10] 10 - - -
5x5 10 20| 10| 20 - - -
100 70 20] 60| 30| 40| 20
10 10 -1 10 - - -
2x2 100 20 -1 20 - - -
1000 30 -| 40 - | 40 -

Psd model 3 for the longer-5km-wavelenth GGSS data + 1E*/Hz white noise
5 20| 10| 10 - - -
5x5 10 20 10] 20 - - -
100 70 30| 60 40| 50| 40
10 10 -1 10 - - -
2x2 100 20 -1 20 - - -
1000 40 -| 40 -1 60 -
Psd model 4 for 1E*/Hz white noise

5 20 10] 10 - - -
5x5 10 20| 10| 20 - - -
100 70 30] 60| 40| 50| 40
10 10 -1 10 - - -
2x2 100 20 -1 20 - - -
1000 40 -| 40 -] 60 -

Table 5.13: Anomaly detectability versus sizes and depths at the azimuthal orientation of

90° by the matched filters using the psd models for various noise environments; the
center of anomaly is at N18000m and E18000m.
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Anomaly

Maximum depth (m)

Width x Height (m”) |  Length(m) Iy, [T, |0, | Ty | Ty | Do
Psd model 1 for geological background + 1E*/Hz white noise
5 20 10| 10 - - -
5x5 10 20 10| 20 - - -
100 50| 20| 60| 40| 70| 30
10 10 -1 10 - - -
2x2 100 20( 10| 10| 10| 10 -
1000 30 10| 20| 30| 30| 10
Psd model 2 for geological background +1E*/Hz white noise - geological model
5 20 10| 10 - - -
5x5 10 20 10| 20| 10 - -
100 60| 30| 50| 30| 40| 30
10 10 -1 10 - - -
2x2 100 20( 10) 10| 10 - -
1000 40 20 20| 30| 30| 20
Psd model 3 for the longer-5km-wavelength GGSS data + 1E*/Hz white noise
5 20 10| 10 - - -
5x5 10 20 10| 20 - - -
100 701 30| 60| 30| 50| 40
10 10 -1 10 - - -
2x2 100 20( 10| 10| 10| 10 -
1000 30 20| 30| 40| 30| 20
Psd model 4 for 1E*/Hz white noise
5 20 10| 10 - - -
5x5 10 20 10| 20 - - -
100 701 30| 60| 30| 50| 40
10 10 -1 10 - - -
2x2 100 20 10| 10| 10| 10 -
1000 30 20| 30| 40| 30| 20

Table 5.14: Anomaly detectability versus sizes and depths at the azimuthal orientation of

45° by the matched filters using the psd models for various noise environments; the
center of anomaly is at N18000m and E18000m.
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Anomaly Maximum depth (m)

Width x Height (m”) | Length(m) | T, | T, | I, | T, | Ty | T

Psd model 1 for geological background + 1E*/Hz white noise
51 20 10| 10 - - -

5x5 10] 20 10| 20 - - -
100 40| 30| 40| 30| 40| 30

10| 10 10 - - - -

2x2 100 ] 20 10 - - - -

1000 20| 20 - - - -
Psd model 2 for geological background + 1E*/Hz white noise - geological model
51 20 10 10 - - -

5x5 10| 20 10 [ 20 - - -
100] 60| 40| 40( 30| 40 30

10] 10 10 - - - -

2x2 100 ] 20 10 - - - -
1000 30| 30 - - -1 10

Psd model 3 for the longer-5km-wavelength GGSS data + 1E*/Hz white noise
51 20 10| 10 - - -

5x5 10] 20 10 20 - - -
100 70| 40| 50{ 40| 40( 50

101 10 10 - - - -

2x2 100 ] 20 10 - - - -
1000 30| 40 - - -1 30

Psd model 4 for 1E“/Hz white noise
5 20 10 10 - - -

5x5 10| 20 10| 20 - - -
100 70| 40| 50| 40| 40| 50

10] 10 10 - - - -

2x2 100 [ 20 10 - - - -
1000 | 30| 40 - - -1 30

Table 5.15: Anomaly detectability versus sizes and depths at the azimuthal orientation of

0° by the matched filters using the psd models for various noise environments; the center
of anomaly is at N18000m and E18000m.
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Anomaly Maximum depth (m)

Width x Height (m®) Length(m) I, T, [T, | Ty | Ts | Ty

The empirical psd for geological background + 1E*/Hz white noise
5 301 20| 20 - - -
5x5 10 301 20| 30| 10| 20| 30
100 100 60| 70| 50| 80| 70
10 201 10| 10 - - -
2x2 100 40 10f 30| 10| 30| 20
1000 50] 10| 60 -1 60| 20
The empirical psd for geological background + 1E*/Hz white noise - geological model
5 301 20| 20 - - -
5x5 10 40 20| 30| 10| 20| 30
100 110 50| 90| 50| 80| 80
10 20 10| 10 - - -
2x2 100 40| 10| 30| 10| 20| 20
1000 60| 20| 90 -1 70 20

The empirical psd for the longer-5km-wavelength GGSS data + 1E*/Hz white noise
5 301 20| 20 - - -
5x5 10 40 20 30| 10] 20| 30
100 110 50| 80| 60| 90| 70
10 201 10 10 - - -
2x2 100 40 10f 30| 10| 20| 20
1000 60| 20| 70 -1 90| 20
The empirical psd for 1E*/Hz white noise

5 301 20| 20 - - -
5x5 10 40 20| 30| 10| 20| 30
100 120 50| 80| 50| 80| 70
10 20 10| 10 - - -
2x2 100 40 10| 30| 10| 30| 20
1000 70 20| 70 -1 80| 20

Table 5.16: Anomaly detectability versus sizes and depths at the azimuthal orientation of
90° by the matched filters using the empirical psd’s for various noise environments; the
center of anomaly is at N18000m and E18000m.
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Anomaly Maximum depth (m)
Width x Height (m®) Length(m) | I', | T, | T, | I, | Ty | T
The empirical psd for geological background + 1E*/Hz white noise
5 30 20 20 - - -
5x5 10 30 20 30 10 20 30
100 80 60| 80 70 70 | 100
10 20 10| 10 - - -
2x2 100 30 20 20| 20 30 30
1000 80 40| 40 60 50 60
The empirical psd for geological background + 1E*/Hz white noise - geological model
5 30 20 20 - - -
5x5 10 40 20 30 10] 20 30
100 ] 110 60| 80 60 70 90
10 20 10 10 - - -
2x2 100 40 201 20| 20 30 30
1000 | 110 40 50 60 50 80
The empirical psd for the longer-5km-wavelength GGSS data + 1E*/Hz white noise
5 30 20 20 - - -
5x5 10 40 20 30 10 20 30
100 | 100 60| 80 60 70 80
10 20 10| 10 - - -
2x2 100 40 20 20| 20 30 20
1000 | 100 40| 50 60 50 70
The empirical psd for 1E*/Hz white noise
5 30 20 20 - - -
5x5 10 40 20 30 10| 20 30
100 | 100 60| 80 60 70 80
10 20 10 10 - - -
2x2 100 40 20 20 20 30 20
1000 | 100 40| 50 60 50 70

Table 5.17: Anomaly detectability versus sizes and depths at the azimuthal orientation of

45° filters using the empirical psd’s for various noise environments; the center of
anomaly is at N18000m and E18000m.
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Anomaly Maximum depth (m)
Width x Height (m®) Length(m) | I, | I, | I, | T, | Ts | T
The empirical psd for geological background + 1E*/Hz white noise

5 30 201 20| - - -
5x5 10 30 20 30 10 20 30
100 | 100 60| 70 50 80 80
10 20 10 10 - - -
2x2 100 20 10 10 - - -
1000 50 120 10 -] 20 60
The empirical psd for geological background + 1E*/Hz white noise - geological model
5 30 20 20 - - -
5x5 10 40 20 30 10] 20 30
100 | 100 60| 80 50 80 80
10 20 10 10 - - -
2x2 100 40 20 10 -1 20| 40
1000 70 60| 10 - 50 80

The empirical psd for the longer-5km-wavelength GGSS data + 1E*/Hz white noise
5 30 20 20 - - -
5x5 10 40 20 30 10 20 30
100 ] 110 60| 80 60 90 70
10 20 10 10 - - -
2x2 100 40 20 10 -1 20 30
1000 60 70 10 -1 40 70

The empirical psd for 1E*/Hz white noise

5 30 20 20 - - -
5x5 10 40 20 30 10] 20 30
100 110 60| 70 50 80 80
10 20 10 10 - - -
2x2 100 40 20 10 -1 20| 40
1000 70 70| 10 - 90 80

Table 5.18: Anomaly detectability versus sizes and depths at the azimuthal orientation of
0 ° by the matched filters using the empirical psd’s for various noise environments; the
center of anomaly is at N18000m and E18000m.
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Anomaly Geo.Back. | Geo.Back. | The longer-5km- 1E*/Hz
+ + wavelength white noise
1E*/Hz 1E*/Hz GGSS data +
white noise white noise | 1E*/Hz white noise
— Geo.
model

Orient. | Width x Height x Depth Depth Depth Depth
Length (m’) (m) (m) (m) (m)
90° 5x5x5 20 20 20 20
5x5x10 20 20 30 30
5x5x100 70 70 90 80
2x2x10 10 10 10 10
2x2x100 30 40 30 30
2x2x1000 60 70 80 80
45° 5x5x5 20 20 20 20
5x5x10 20 20 30 30
5x5x100 80 60 80 80
2x2x10 10 10 10 10
2x2x100 20 20 20 20
2x2x1000 50 50 60 60
0° 5x5x5 20 20 20 20
5x5x10 20 20 30 30
5x5x100 60 60 80 80
2x2x10 10 10 10 10
2x2x100 20 20 20 20
2x2x1000 40 40 50 50

Table 5.19: Anomaly detectability versus sizes, depths, and orientations by the matched
filters for all six combined gradients using psd models; for 1E*/Hz white noise, assume
no correlation between sensors; the center of anomaly is at N18000m and E18000m.
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Anomaly Maximum depth (m)

Noise background. | The center’ location | T, | T, | I, | T, | Ts | T
Geo. Back. + | (N18000m, E18000m) | 50| 10] 60| -] 60] 20
1E’/Hz white noise | (N24000m, E24000m) | 70| 10] 60| -] 50| 20
(N24000m, E12000m) | 60| 10| 90| 20| 60| 10

(N12000m, E12000m) | 50| 10| 50| -| 60| 20

(N12000m, E24000m) | 50| 10| 60| -| 50| 10

Geo. Back. + | (N18000m, E18000m) | 60| 20| 90| -] 70] 20
1E’/Hz white noise | (N24000m, E24000m) | 90| 10| 60| -] 50| 20
~ Geo. model (N24000m, E12000m) | 70| 10| 100| -] 30| 10
(N12000m, E12000m) | 70| 10| 60| -| 60| 20

(N12000m, E24000m) | 60| 10| 90| -| 60| 10

1E*/Hz white noise | (N18000m, E18000m) | 70| 20] 70| -] 80| 20
(N24000m, E24000m) | 80| 10| 50| -| 50| 20

(N24000m, E12000m) [ 100 | 10| 110 10] 50| 10

(N12000m, E12000m) | 100 | 10| 90| -| 70| 30

(N12000m, E24000m) | 100 | 20| 80| -| 60| 10

Table 5.20: Anomaly detectability of the matched filters using the empirical psd’s versus
locations and depths in various noise environments; the 2m x 2m x 1000m anomaly at the
azimuthal orientation of 90°.
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Anomaly Geo. Back. + Geo. Back. + The longer-Skm-wavelength 1E*/Hz white noise

1E*/Hz white noise 1E*/Hz white noise GGSS data +
— Geo. model 1E?*/Hz white noise

Width x Height x | Depth [ AN | AE | Depth | AN | AE Depth AN AE Depth | AN | AE
Length (m®) m |m)|@m]| (m |@m|@m (m) (m) | m | (m) |(m)| (m
10 -13 | +12 10 -13 | +12 10 -13 +12 10 -13 | +12
2x2x10 10 -13 | +12 10 -13 | +12 10 -13 +12 10 -13 | +12
10 13| +12 10 13| +12 10 -13 +12 10 13| +12
10 -13 | +12 10 -13 | +12 10 -13 +12 10 -13 | +12
2x2x100 30 -13 | +12 30 -13 | +12 40 -13 -18 40 -13 | -18
10 13| +12 20 -13 ] -18 20 -13 -18 20 -13 | -18
20 -13 | -18 20 -13 | -18 20 -13 -18 20 -13 | -18
2x2x1000 40 -13 | +12 60 -13 | -18 70 -13 -18 70 -13 | -18
50 -13 | -18 60 -13 | -18 70 -13 -78 70 -13 | -78

NOTE:
Normal fonts indicate the detection results by the I';; matched filter with the “smooth” psd models.

Bold fonts indicate the detection results by the I';; matched filter with the empirical psd’s.

Italic fonts indicate the detection results by the combination of the matched filters for all six combined gradients
using the psd models (assume no correlation between sensors).

Table 5.21: The anomaly detectability of the I';; matched filter using the psd models versus the empirical psd’s for various noise

backgrounds. The matched filter for all six combined gradients are used in comparisons. The center of the anomaly at the azimuthal
orientation of 90° is located at N=18013m and E=18018m.
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Anomaly Ax, =30m Ax, =30m Ax, =15m Ax, =15m
Ax, =15m Ax, =5m Ax, =15m Ax, =5m
Width x Height x | Depth | AN | AE | Depth [ AN | AE | Depth | AN | AE | Depth | AN | AE
Length (m’) m | [@| m |@mm]| m |@m|m[ m |@m|m
10| -13| -3 10] -13 -3 10| 2 -3 10| 2| +2
2x2x10 10| -13| -3 20| -13 -3 10| +2| -3 20 2| +2
10 +17| -3 10 -13| +2 10 +2| -3 20| +2 -3
20 -13| -3 30 -13 -8 301 +2| -3 40 2 -8
2x2x100 40| -13| -3 50| -13| -18 50| +2| -3 60 2] -13
30 -13| -18 50 -13] +2 40| +2| -3 60| +2| +7
50| -13| -18 70| -13| +87 70 +2| -18 80| +2| +7
2x2x1000 80| -13| -18 110 | +17 -7 1200 +2| -3 130 | +17 | -88
9| +17| -3 70| -13| +52 90| +2| -3 100 +2| +17
NOTE:

Normal fonts indicate the detection results by the I';; matched filter with the psd model = 6 Ax,Ax, [E*/(cyc/m)*]
Bold fonts indicate the detection results by the I';; matched filter with the empirical psd’s for 1E*/Hz white noise

Italic fonts indicate the detection results by the combination of the matched filters for all six gradient components
using the psd models (assume no correlation between sensors).

Table 5.22: The anomaly detectability of the I';; matched filter using the psd model versus the empirical psd for 1E*/Hz white noise
(or 62, =1/3 E? for the sampling frequency of 1/3 Hz) with respect to the cross-track spacing Ax, and the along-track data spacing

Ax,. The matched filter for all six combined gradients are used in comparisons. The center of the anomaly at the azimuthal
orientation of 90° is located at N=18013m and E=18018m.



5.6 CASE V: Anomaly detectability versus orientation

In the previous sections, we only consider the matched filters fixed at the azimuthal
orientations ' = 90°, 45°, and 0° (in X -triad frame in Figure B.1) to detect the 2m x 2m
x 1000m anomaly having the same orientations, respectively, in noise environments.
Since the component I';; due to the anomaly is invariant with respect to the orientations

according to eq. (B.1), the I';; matched filter yields the best detection among other

components. For this example, we investigate how sensitive the matched filters using a
psd model are if they are rotated with respect to an anomaly in X -triad frame. We test
the gradient signals due to the 2m x 2m x 1000m anomaly added to 1E*/Hz white noise
(i.e., best-case detection scenario). The center of the anomaly is at N = 18000m and
E=18000m. The anomaly has the azimuthal orientations, ', of 5°, 47°, and 86° at 30m
depth. Figure 5.24 shows the results of matched filtering in the noise. The matched filter
using Psd model 4 is azimuthally oriented by 3° increments from 0° to 90°. For the
anomaly at ' = 5°, only the filters for the I';;, I',, and I',; components yield their the
highest peaks close to the true orientation; the difference of the location at the highest
peak minus the true location AN and AE approaching to zero in these components as
shown in Figure 5.25.

For the anomaly at ' = 47°, only the I';; and I'|, matched filters give the highest

peaks at 48° (Figure 5.24b) close to the true orientation where AN = 0m and AE = 0m
(in Figure 5.26). For the anomaly at B’ = 86°, in Figure 5.24c, the plot shows that the
anomaly is detectable using the I;, I'},, and I';; components; see also Figure 5.27.

Overall, the I';; matched filter gives the best anomaly detectability with respect to all

orientations (i.e., B’ = 5°, 47°, and 86°) of the anomaly.

As seen in Figure 5.28 the detection results are improved when the combination of
all six combined gradients is used. The plot in Figure 5.28a shows that the highest peaks
occur at 6° and are located at or near the true location of the anomaly at ' = 5°, where
AN and AE at 6° equal zero as can be seen in Figure 5.28d. The matched filters yield the
best result for the multiple of 3° closest to the true orientation.

However, the results may deteriorate if the orientation increment increases. For
example, if the increment is 6°, the highest peaks occurs at false locations offset by
several kilometers with respect to the true location, see Figure 5.28a-f. For example, at
the orientation of 12° in Figure 5.28a where the highest peak is 62.175, the differences
are AN =-630m and AE =4710m (Figure 5.28d). It can be explained that only when
the filter is rotated close to the true orientation, the transfer function passes the
frequencies of interest. For instance, figures 5.30b and 5.30e show the matched filter
outputs in the frequency domain using the I';; matched filters at the false orientation (i.e.,

B’ =0°) versus the correct orientation (i.e., f’ =86°), respectively (figure 5.29 shows the
characteristics of the gradient signals having ' = 86° and the observations in the space
domain and the frequency domain). As such, the rotation can act as a band pass filter
whose transfer function for different orientations scans through the frequencies of
interest.
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Figure 5.24: Anomaly detectability versus orientations in 1E*/Hz white noise; the 2m x
2m x 1000m anomaly has the azimuthal orientations of (a) 05° (b) 47° and (c) 86° at 30m
depth.
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Figure 5.25: Anomaly detectability versus orientations in 1E*/Hz white noise; the 2m x
2m x 1000m anomaly has the azimuthal orientation of 5° at 30m depth; AN and AE are
the difference of the location of the highest peak minus the true location.
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Figure 5.26: Anomaly detectability versus orientations in 1E*/Hz white noise; the 2m x
2m x 1000m anomaly is has the azimuthal orientation of 47° at 30m depth; AN and AE
are the difference of the location of the highest peak minus the true location.
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Figure 5.27: Anomaly detectability versus orientations in 1E*/Hz white noise; the 2m x
2m x 1000m anomaly has the azimuthal orientation of 86° at 30m depth; AN and AE are
the difference of the location of the highest peak minus the true location.
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Figure 5.28: Anomaly detectability versus orientations in 1E*/Hz white noise using all six
combined gradients to detect the 2m x 2m x 1000m anomaly having the azimuthal
orientations of (a) 5° (b) 47° and (c) 86° at 30m depth; (d), (e), and (f) show AN and AE
with respect to (a), (b), and (c), respectively.
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Figure 5.29: (a) 1E*/Hz white noise; (b) The I',, gradient signal due to the 2m x 2m

x1000m anomaly having the azimuthal orientation of 86°; (c) The observation: 1E*/Hz
white noise plus the I';; gradient signal; (d) The (magnitude) spectrum of (a); (¢) The

(magnitude) spectrum of (b); (f) The (magnitude) spectrum of (c).
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Figure 5.30: The upper row shows the case of using the false azimuthal orientation of 0°
for the I';; matched filter to detect the 2m x 2m x 1000m anomaly having the azimuthal

orientation, ', of 86°; (a) The transfer function of the matched filter (b) The (magnitude)
spectrum of the matched filter output; (c) The highest peak output. The lower row shows
the case of using the correct azimuthal orientation (i.e., B’ = 86°) for the I';; matched
filter to detect the anomaly; (d) the transfer function of the matched filter; (e) The
(magnitude) spectrum of the matched filter output; (f) The highest peak output. The
symbol “x” indicates the location of the highest peak and “+” indicates the true location
of the target anomaly.
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5.7 Performance of matched filters

This section describes the detection performance of matched filters in various noise
environments. We show the plots of the probability of false alarm versus depths for a
given POM and different sizes and orientations of the target anomaly of interest. Based
on the numerical results in CASE’s I and II, we have chosen POM = 0.001 considered as
a marginal probability level of the signal detection, since it effectively describes false
locations by matched filtering, e.g., the detection results by using all six combined
gradients in Table 5.10 (y . exceeds 7' if POM is set too high).

Figures 5.31 — 5.33 show POF’s versus depths for the matched filters using,
respectively, the psd model versus the empirical psd for 1E*/Hz white noise, with respect
to 30m grid resolution and B’ = 0°, 45°, and 90°. As described in CASE VI, the deepest
detectable depths correspond to the detection performances portrayed by the plots in this
section. The use of the empirical psd’s indicates the increased detection performance,
compared to the use of the psd model. For example, consider the 2m x 2m x 10m
anomaly at and B’ = 90° in 1E*/Hz white noise, summarized in Table 5.16. The anomaly
is detectable as deep as 20m by applying the I';; matched filter using the empirical psd,

whereas only 10m if the psd model is used, see Table 5.13.

In Figure 5.31b, the detectable depth =20m shows POF = 0.264. The failure of
detection at 30m depth corresponds to POF = 0.973 which indicates a high chance of no
signal at the location where the highest peak exists. It should be noted in Figure 5.32 that
the orientation does not affect the performance of the I';; matched filter to detect, for

example, the 2m x 2m x100m anomaly. For all curves, POF rapidly increases at short
ranges (10-30m) as depth increases, particularly for smaller sizes of the target anomaly.
Figure 5.34 provides the detection performance with respect to depths and sizes
using the combination of all six gradients and the psd models for different types of noise
backgrounds. The plots indicate the improvement of detection performance with the
combination as compared to the case of the individual gradients shown in Figures 5.31(a)
- 5.33(a). For example, the performance of the I';; matched filter using Psd model 4 for

1E*/Hz white noise to detect the 2m x 2m x 100m anomaly at p’ = 0° and 30m depth
corresponds to POF = 0.614 (see Figure 5.32) while POF decreases to 0.097 using the
combination (see Figure 5.34).

As can be seen in Figure 5.31, the detection performance for the target size of 2m x
2m x 10m (in 1E*/Hz white noise), whose dimension is smaller than the spatial resolution
of 30m, slightly increases when all six combined gradients are used (see the line “--+--*
in Figure 5.35). Note that the higher the spatial resolution is, the more the SNR
increases. Thus, the performance of matched filter also increases. For example, at a
depth of 30m, POF decreases, roughly, 20% in association with the increase of the
resolution from (Ax, =30m and Ax, =30m; POF =0.982) to (Ax, = 15m and Ax, =
5m; POF = 0.797).

In summary, according to a number of numerical results from the previous cases,
the detectability varies as the gradient signal due to the target anomaly attenuates with
respect to the depth. The use of psd models slightly affects the matched filter detection.
However, more accurate psd modeling is needed in order to enhance the capability of
matched filter. Rather than doing so, the combination of all six combined gradients is an
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alternative way to improve the detectability. The matched filters using empirical psd’s
show an advantage of signal detection because the characteristics of the psd’s correspond
to the noise signature. Furthermore, the location of the target anomaly affects the
matched filter detectability.

In this study, although the performance of the matched filter can be improved by
using the empirical psd’s, the signal detectability still is limited if the signal signature
strength (magnitude) is small, relative to strong noise backgrounds, e.g., the I';, gradient
due to the 2m x 2m x 10m anomaly, shown in Figure 5.31. The spatial resolution is also
a factor that affects the detectability which can be improved by considering higher
resolution in an airborne gradiometric survey.
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GGSS data plus 1E*/Hz white noise; “x” = 1E*/Hz white noise; solid line indicates the
2m x 2m x 10m anomaly; dashed line indicates the 2m x 2m x 100m anomaly; dotted line
indicates the 2m x 2m x 1000m anomaly.
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CHAPTER 6

THE THEORY OF PARAMETER ESTIMATION

6.1 Introduction

In previous chapters, we consider the gravitational gradients s, , with

1] >
(1,7) = (1,2,3), due to a mass anomaly, are exactly known except that the location of the
anomaly is unknown. The matched filter is a function of every point of the observations,
i.e., we wish to maximize the signal-to-noise ratio at the location, x , of the anomaly.
The most probable candidate(s) of the anomaly is chosen with a given probability of a
miss at the point, where the highest filter output peak occurs. Throughout the filtering
process, the matched filter requires a complete knowledge of the anomaly’s signal so that
the filter can accurately determine the location of the anomaly. In practice, we vaguely
know about the anomalous source to be detected. Such a consequence greatly limits the
performance of matched filters. The gradient signal sy, in turn, can be characterized by

unknown parameters such as density contrast, 3D-location, shape, and orientation. The
idea is to determine the parameters as accurately as possible and to use the corresponding
estimates to reconstruct the matched filter. Therefore, when s is not exactly known, the

measured gradients becomes
v (%) = 5;(0; ) + ny (x) (6.1)

where 0 =(6,,0,,...,0_) is generally a mx1 vector of unknown parameters, including
X , to be determined.

In communications theory, the theory of parameter estimation mostly relies on
certain assumptions of a-priori probability densities for the measurements (e.g., Gaussian
type). They imply various types of parameter estimations, for instance, Bayes estimation,
maximum a-posteriori estimation (equivalent to Bayes estimation after a quadratic cost
function and a unimodal probability density function are applied, or known as minimum-
mean-square-error estimation), and maximum likelihood estimation. More details can be
found in Van Trees (1968), Whalen (1971), Poor (1983), and Kay (1993). For simplicity,
we shall work on robust alternatives, which directly depend on a signal model, i.e.,

5;(8) . The estimation method of interest is based on the fundamental concept of least

squares (Koch, 1999; Schaffrin, 1987, 1989, and 2001; Schaffrin and Bock, 1994):
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[v = 5,(0)]' Z;'[v ~ 5,(6)] > min (6.2)

where X is a nxn positive definite covariance matrix of n. The nx1 signal vector s;; is

n

linearized and can be expressed as
5;(0)=s5,(0,+0)=s,(0,)+AO (6.3)

where A is the nxm coefficient matrix associated with @, @, are a-priori (known) values

of the parameters and ® are the “m” unknown (increment or perturbed) parameters; A
has the rank of m. In this study, we adopt this concept to the problem of spatial
refinement of the anomaly location based on the random effects model (Schaffrin and
Bock, 1994). The justification for using this approach is that the matched filter output
has a statistical nature in the sense of random errors in the observations. Thus, the
refinement of the anomaly location regarding to the perturbed parameters @ should be
treated as “random effects” whose expectations are taken from a priori knowledge.

6.1 The random effects model and hypothesis testing
The approach treats 6, as random approximation of (non-random) parameters 6

and, therefore, the @ unknown parameters as “random effects (or random parameters)”
whose first and second moments are given and considered as prior information. It should
be kept in mind that the sum of @, and ® is “non-random” so that 6 are “non-random”

(see eq. (6.5)). The linearized model, which integrates stochastic prior information and
actual observational information, is given by

Y :AG)+nij
0,=0+n,

oo (o4 )
with | " |~ ,O, (6.4)
n, 0 0 C,

where y; =v; —5;(0,). Our a-priori information is the vector of expected (bias)

parameters, ®,, such that
O,=¢{0-0,}=0-¢{0,} (6.5)

For instance, @, can be initially given as a zero vector and 6, can be the location x of

the anomaly obtained as a consequence of signal detection by matched filters. (It should
be noted that the non-random s, (6), generated by a small anomalous mass, is entirely

embedded in geological background noise; generally speaking, we may not know where
the anomaly is in practice. Several matched filters may be needed for an appropriate
choice of 6,, e.g., good approximate values of X . Thus, signal detection by matched

filtering is useful, as a pre-processing stage contributing a priori information).
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Generally, A is a stochastic coefficient matrix due to the randomness of 8, i.e.,
A =[0s;(0) / 00],-y, » and also ely} # Ae{@®} due to the second and higher order terms of

® (Schaffrin, 1985, pp. 285-300). The latter property leads to the requirement of higher-
order terms in the Taylor series for the model. However, for simplicity in this study, we
consider that e{y} = Ag{®} throughout.

The positive-definite covariance (or dispersion) matrix, o,C, (or X, ), of zero-

mean gradient noise (geophysical noise) vector n is obtained from a reciprocal distance
model of gravitational gradient (Jekeli, 2003), where C, is a cofactor matrix and o is

the a-priori variance component. The vector of random errors n, has zero mean, with
the positive-definite covariance matrix, £, = 6.C,, given from signal detection

processing. We also have ® ~ (®,,6.C,). Since the prior information and the

observation may be taken from different sources, we further assume the uncorrelated-ness
of the respective random error vectors such that

C{n,ng} = s{nng} =[0] (6.6)

The predicted parameters of @, which is called the Best inhomogeneously Llnear
Prediction (inhomBLIP), is given by

0=0,+( +A'ZA) (ATE]y-A"E]A0,)

L (6.7)
-0, +(cl +N)'N(N'C-0,)
together with the matrix of mean square prediction errors
= 1 Ty -1 4 }! 2 (~-1 -1
MSPE{®} = (£} +A"2'A)" =c2(C] +N) (6.8)
with N=A"C.,'A and C=A"C]'y.
Let the predicted residuals be
i=y-A® (6.9)
and
i, =0,-0=-(C] +N)'N(N"'C-0,) (6.10)
The estimate 6; of o, is
Q
6. = R (6.11)
", /ol
where
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Q. =n'C'n+n,Cgn,
~(y-46)c;'(y-26)+(®-0,) ci(6-0,)
—y'C](y-A0)+0!C:(0,-6)+0"(N0-C+CI0-C;0,)
—y'C]y-A0)+0!C; (0, -6)+0"(N(®, - i, )-C—Ci,)
—y'C](y-A0)+0!C (0, -6)+0"(NO, -C-(N+CZ )i, ) (6.12)
—y'C]y-A0)+0!C;(0,-06)
+(?)T(N(~)0 -c+(N+cy)ci +N) (C-N(E)O))

;

—y'C]ly-C'N'C+C'N'C-C'0+0!C; (0, -0)

Q
—Q+C'N'C-C'0+0!C; (0, -0)

R

and S{QR / Gé}z n, (see (6.20)). The quadratic form € (unconstrained case) in (6.12) is
given by

Q=(y-A0) C;y-A0)
—y'c;ly-A6)-6"(C-NO) (6.13)

0

:yTC;ly_CTN_IC
with
NO=C and ®=N"'C (6.14)

Using the definition of s{aTBa} = tr[Bs{aaT }], where the “tr” is the trace operator and “a”
and “B” are an arbitrary vector and an arbitrary square matrix, the expectation of (6.13) is

s{ﬂ/cé } =0, tr[C;ls{ny }— N'IATst{ny }C;IA] =tr[I, -1, ]=n-m (6.15)
with s{ny }: c;C,. Consequently, from (6.10), the relative increase R to the sum of
squares  of the residual n after the inclusion of the stochastic constraint @, =@ +n
in the linearized model (see also (6.4)) is obtained by
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%_ 57 (Q, -Q)=0;"y'C](AN"C- 40)+5;20!C; (0, - O)
0

=, (AN"C-A0) C;'(AN"C-A0)+;*(6-0,) Ccl(®-0,)
+0;2(40) C;'(AN"C- A0)+0'C](6-0,)

—6;!(N"C-0)' N(N'C-0)+5,2(0-0,) cZ(0-0,)

—o(N'c-0,)-(c +N)'N(N'c-0,) N[N 'c-0,)-(c2 +N)'NNc-®,)
+o,2(N"'c-0,) N(c +N)'cl(ct +N)'N(N"Cc-0,)

~5;(0-0,) ci(c, +N')ci(0-0,)

N-2N(C+N)'N

+N(c? +N)' (¢ +N-cl)cd +N)'N|(NCc-0,)

+N(c? +N)"ci(ci NN

N-N(C] + N)_lNkN_IC -0,) (6.16)
=5 (N"Cc-0,)(c, +N')'(N"'C-0,)

or
~6;(0-0,) (2 +NN(c, +N')'N"(c} +N)o -0,
—5;(0-0,) ci(c, +N')ci(0-0,)

It can be shown that the term in* ” of (6.16) is zero:
H_/

(a0) c;(AN"C-A6)+0"C.(0-0,)=

- (a8) c;'(aN"C- a0, ~Alc +N)'(C-N®,))+ 67C(6-0,)
6" (NN "c-Ne, -N(c: + N’ (C—N@)O))+(T)Tc;;((7)—®o)
6'(1, -N(c +N)"Jc-Ne )+0'c;(0-0,)

-ng

/—\
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~8'(aTc; —ATCrA(CE +ATCIA) ' ATC] [y - A0,
—07Cy(Cl+ATCA) ATC (- A@,)

- [ATC]' —ATCA(C] +ATC'A) ' ATC]

-0 . (y-A0,) (6.17)
—cl(ci+ATCA)'AC)
-0" (Ach —(ci+ATC]A)C] +ATCA)" ATc;}y ~A@,)
0

=0
Clearly,

R>0 (6.18)

The expectation of R/ o, is
8{52} - cgzg{((?)—@o)Tcg(C@ +N")cg((7)—®0)}
Oy
= t]Cl(Co + N e il ]
- Gg_ztr[Cé(CQ NI (€L e N)TATC ey - A, My - 40, )T ICT AlCH + N
cl(c, +N* )cg((cg +N)J'ATC(C, + AC,AT)CA(C] +N)” )]

:Cg(cg +N'1)c;;((c;; +NJ' (N+NC,N)CZ +NJ' )]
ca(c, +N'1)cg(c@(1m +NC, ) (I, + NC, N(CZ + N )]
=ulc, +N"cd +N-c )y +N)’1C;},]

(. +nfes-cileg +n) el

= tr[(Cy + N )JCo + N

=t

—

=t

=

=t

—

=t

=

= tr[Im]
=m
(6.19)
Thus, with (6.15) and (6.19),
£lQ, /ol |=e{@+R)/c2}=n (6.20)

For the situation that a gradient signal generated by an anomaly to be detected is in
strong geological noise, we may consider whether or not the prior information, which is
the output of detection by matched filtering, is consistent with the actual data (i.e., y).

Thus, we proceed with hypothesis testing:
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H,:¢{0}-0,=¢0-0,}=0 (6.21)
versus
H, :el0}-0,=¢{@0-0,}=w, 20 (6.22)

Note that the parameters ® and o, are unknown and the expectation of O in (6.7) 1s

e@)=:c0, +(C +N) 'N(N'C-0, )|
=0, +(C) +N)'N(N'ATC'ely =A@ +n}-0,)

—0,+(C; +N)'N:0}-0,) (023
(+0}-8,)

0

=¢c{0)
Equivalently, we may test (based on Schaffrin (2001))

H,::0}-0, =:0-0,/=0 (6.24)
VvEersus
H,:2{0}-0, =e{0-0,}=w, #0 (6.25)
with
pp-0,|-:{6-0,(6-0,) |
_ 26(2@ +(ATEA) )_IZ@ (6.26)
=52C,(Cc, +N')'C,

The test statistic relating to this set of hypotheses can be expressed as (Koch, 1999,
p.271-280):

_ (R/o})elR ot}
(@/o})/sle/or}

(@ —(~)0)T lo,2cllc, + N )Céké —90)/““ (6.27)
5,2/(n-m) |

- ob-e)cile. N6 -0,)

where G; = Q/(n-m) is the estimate of o¢ without the stochastic constraint of (6.4). We

immediately see the test contains the inverted term of (6.26). That is, T is significantly
greater than zero if H, is true. The distribution of the test statistic follows a central F-
distribution
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T ~ F(m,n —m) (6.28)

if the null hypothesis H, is true--it means the prior information is consistent with the
actual data. Otherwise,

T~ F(m,n—m;\) (6.29)
with the non-centrality parameter defined as (see also Koch, 1999, p. 126-131):
=0y wlCl(Co +NT)Cw, (6.30)

if the alternative hypothesis with specified values of w, and o; is correct—it means the

prior information is not consistent with the actual data.

0.8

f(m,n-m,A=0)

T 3 f(mon'm:k:3 O)

5 10 15 20 25
Rejection region

Acceptance region

Figure 6.1: Acceptance and rejection region.
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As shown in Figure 6.1, the test statistic basically follows the traditional F-test
(centrality versus non-centrality). With a significance level a defined as the probability
of a Type I error (i.e., we accept H, but H, is true (Jekeli, 2006)), we accept H,, (i.e., T

is below the threshold v ) rather than H,. Consequently, the probability of a Type II
error, f3, (i.e., we accept H, but H, is true) can be determined based on y, and the non-
central parameter, A ,0f (6.30). The error probabilities are defined as

Vo
a:l—jf(m,n—m;xzmdw (6.31)
0
and
Yo
B= j f(m,n —m;A)dy (6.32)

0

where f is the probability density function of F-distribution and vy, is computed based on

(6.31) with a chosen value of a.

6.3 Implementation

In this section, we apply the random effects model for the case of single and
multiple data tracks with single and multiple sensors. A main concern of using the
approach is the problem of matrix inversion, especially, the inverse of the large
covariance matrix. In order to deal with the problem, we introduce a transformation
matrix, which is orthogonal, and apply it to the first observation equation in (6.4) and its
covariance matrix. As a consequence, the corresponding covariance matrix becomes
diagonal and can be inverted simply—only diagonal elements or blocks are inverted. The
following is a brief discussion of the derivations and implementation for the prediction of

parameters, 0, together with their covariance matrix. More details of derivations can be
found in Appendix C.

6.3.1 Single data track and single sensor (SS)

The N x1 observation vector y can be transformed by using an orthogonal matrix,
F,such that F'F =1 and F" =F"' where the “H” is complex conjugate transpose. The
orthogonal matrix containing the N orthonormal basis vectors v, v,..., vy, 1is defined

as (Kay, 1998, p.38-35):

F=[v, v, - vg] (6.33)
with
1
1 eiZnAxfp
v.e—0l . (6.34)

i2nAx(N-1)f
e P
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and
Vi, =V, (6.35)

p
NAx

is a sampling interval. It can be shown that the normalized exponential vectors are
orthogonal as follows

where f = for p=0,1,2,...,N—1, the asterisk denotes complex conjugate, and Ax

1
1 12mAXf,
VII;IVq _ E [1 e—iZﬂAxfp . e—iZR(N—l)Axfp

i2m(N-1)Axf,
e q

_1 (1 b ) 2RO, )

1 N-1 .
_ - Z e—lanAx(fp —f)
N k=0

:{1 if f =f

(6.36)

0 if f #f
By multiplying the orthogonal matrix F" on both sides of y in (6.4), we have
¥ss :Kss®+ﬁss (6.37)

where ¥ = F'y, A =F"A, and fig, = F"n and the subscript “SS” stands for
“Single data track and Single sensor”. For a convenience, let X =X, the
corresponding psd becomes diagonal and is given by

T = F'EGF = diag(Sq (F)).Ss (£ S (£ or S (£ 1)) with (6.38)

z

1

Eo(f) = Y (ke (6.39)

0

~
Il

According to the definition of F, the predicted parameters of ® in (6.7) can be expressed
as
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0]

0,+(Z, +A"ELA) (ATEly -ATELAG,)

_ —1
_o, (Zo + (FF"A)" (FF"LFF")" (FF"A))

+ (Z@) + Z]s{si";sgss )_l (E - K]s{si"glsgss(')o)

with the matrix of mean square prediction errors (see also eq. (6.8))

MSPE (@} = (T} + ALT LA )"

where L = KIS{S)NZ@;?SS. If @ is an element of A such that

50 (fo ) 51 (fo ) o am—1 (fo )
Kss _ 5o (:fl) a1 (:f1) ’ am—1:(f1)
50 (fN—l) a1 (fN—l) o am—1 (fN—l)

or a more compact form is
A =[a], =[a,(f)] for p=0,1,....m-1 and i=0,1,...,N-1,

hence, we can write

o No )
A?SZ;éAss = {Za (f; )Zss l(f )a (f; )}
i=0 pq
and
N-

Ags 5sVss = {z (f, )Zss_1 )y, )} for (p,q) =0.1L,. -1

=0 p

In addition, with (6.44), the test statistic of (6.27) can be easily transformed using

:2 —6;2(0-0,) c;;(ce +(K§SCS;XSS)’1)C;;((T)—®O)

0

(FF"A)" (FF" L FF")" (FF"y) - (FF"A)" (FF"EFF") " (FF"A)0, )

0, + (2® +ARFUFELF"FALL )‘1 (K?SFHFE;;FHWSS - K?SFHFf};FHFK?SG)O)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

where Ly = 62Cy =62F"C_F. It should be noted that if we assume sufficiently large

number of data, N, or as N — oo, then the summation term in (6.39) becomes
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N-1 )
Ax lim > r(ke M = P(f)) (6.47)
k=0

where P(f}) is the psd of gradient noise at frequency f, and P(f,) = P(f_,), according
to vy, =V, (see eq. (6.35)). If the value of N is much greater than the interval over

which r(k) is significant, the expression of (6.38) can be approximated by

P, (f,)
P, (f)) O
oz — P (f)) (6.48)
0 E

Pn (fN—l )_

6.3.2 Single data track and multiple sensors (SM)

In many applications of interest, the received data samples are vectors from
multiple sensors. The extension of the single sensor to multiple sensors is discussed in
this section. We assume that the N data record is large and represents a zero-mean-wide-
sense-stationary multi-sensor random process. Suppose we have K sensors. We define
all the data samples at points x,X,,...,Xy_, 1n a large vector as

i ¥o(Xy) ] i n,(x,) 1
yo(Xx,) sensor 0 n,(x,)
YoXn) | ny(Xy)
¥ (Xg) n,(x,)
v, y,(X,) sensor 1 A, n,(x,)
Yy . A, .
Y= . |= ..Y.l..(.).(.N:l..) ______________________ , A= _ |,and n= nl(fol) (6.49)
nyl AK—I
Ve | n(x,)
Yk (x;) [sensor K —1 n(x,)
| Yk (Xno )_ RS (X )_
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where vectors y and n have dimension KN x 1. The KN x m coefficient matrix A
consists of N x m sub-matrices A, for 1=0,1,...,K—-1. The KNxKN cross-covariance
matrix of the data is given by

Loy =[E,] with (,))=0,1,...,K~1 (6.50)

where the [i,j] block X is the cross-covariance matrix between sensors i and j. Each

block matrix has dimension N x N and its elements are cross-covariance (Or cross-
correlation) functions r;;of sensors i and j

i =[r,(m-m)] for (mn)=0,1,...,N~1I (6.51)
Since X,, to be inverted is large, we transform it to a block diagonal matrix using a

transformation matrix defined in (6.33) through (6.36); then only diagonal blocks are
inverted. The transformation matrix is defined by
F,,, =diag(F,.F,,....F,,....,F. ) with F, =F forall i=0,1,...,N-1 (6.52)

Then, applying (6.52) to the observation y

¥ =Fouy (6.53)
and
I, X, Fou = [F'E,F] (6.54)

The [i,j] block FHEUF becomes a K xK diagonal matrix (see Appendix C), given by

N-1 ) N-1 ) N-1 )
FHEijF — dlag(z rlJ (k)eflznkAXfo , Z rlj (k)e—lznkAXfl - Z rlj (k)efﬂnkAfo,l J (6.55)
k=0 k=0 k=0

Next, rearranging rows and columns of (6.53) and (6.54) [by applying the KN x KN
permutation matrix, Zg,, , constructed by the algorithm of (C.12) with M' =K and

N’ =N, (see Appendix C)], we have
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You =Zgyy =" S = Y (f) (6.56)

?0 (fol )
¥i(fx)

REE(]

with its covariance matrix

X = ZIS_IMFSHMZSMFSMZSM

. (= ~ ~ ~ (6.57)
= diag(E gy, (£ ), gy (F)svrs gy (B )oves Egy (B1)
where the i block Zy, (f,) is
[ N1 ) N-1 ) N-1 ) ]
roo (k)e—1275kAxfl rm (k)e—1275kAxfl . rO(K_l) (k)e—12ﬂ:kAxfi
k=0 k=0 k=0
<« —i2nkAxf, < —i2mkAXT, < —i2nkAxf,
iSM (f) = 1, (k) ' 1, (k)e ' ST (k)e '
k=0 ) k=0 _ k=0
- ' DrAx, N . 12 Tk AXE o . 2 Tk AXE
Lk_1y0 (k)™ ™ Tx-10 (ke ™ .- Z‘,r(1<—1)(1<—1)(k)671 .
| k=0 k=0 k=0 i
(6.58)
Therefore, the predicted parameters of @ are
0=0,+(T,+ AT Ay ) (AL ETo - ALESALO,) 6.59
O=0;+\Xg +AgyXoyAgy sM=sMYsm ~ Ams=smAsmPo (6.59)

where
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o = |2 (6.60)

>
I

_KSM (fN—l )_

The matrix KSM has dimension KNxm. The K xm block KSM (f.) with its elements

a is
500 (fi ) a01 (fi ) o 5O(m—l) (fi )
~ a,, (f a, (f. —ea f.
ASM(fi): 10:( 1) 11:( 1) N l(m—:)( 1) (661)
a(1471)0 (fi) 5(1<71)1 (fi) a(K—l)(m—l) (fi)
or in a compact form
Ag(f)=[a, ()] for j=0,1,....K~1 and k=0,1,...,m~1 (6.62)
We have
TH $1 % < T S <
AguXgnAgy = ZASM () Zen (F) Ay () (6.63)
i=0
and
TH $-1 o~ & T S ~
AsuXsmYsm = ZASM (f)Zey (F)¥su () (6.64)
i=0

We easily have a test statistic (not shown here) based on (6.63); the relative increase is
analogous to (6.46) with subscript “SM” instead of “SS”. Note that, for a large data
vector, the psd of (6.58) can be approximated by

Poo (fi ) P01 (fi ) t PO(K—]) (fi )
~ P.(f P, (f. --- P f.
ZSM(fi)EL 10:( 1) 11:( 1) ) 1(K—1)(1) (6.65)
AX : . :
P(K—I)O (fi ) P(K—l)l (fi ) T P(K—l)(K—l) (fi )

Thus, each block has dimension M x M. At frequency f;, element P (f,) is the auto- and
cross- spectrum density of sensors m and n for n = m and n # m, respectively.
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6.3.3 Multiple data tracks and single sensor (MS)
For the case of multiple data tracks, we assume we have a large number of tracks,
say M, and N data samples per track and track spacing is Ay. The MN x 1 data vector

1S

y(0,0)
y(1,0) track 0

Y= y(N-11) (6.66)

In Appendix C, the MN x MN cross-covariance matrix is given and has the following
structure

i Zoo 201 on ZO(M—I) ]
Z10 Z11 le Z1(1\/1—1)
> _ . : . . : 6.67
M 2"10 Zil Zij Ei(M—l) ( )
_E(M—I)O Z(M—l)l T E(M—l)j T z"(1\/171)(1\/171) |

where X; is the N x N block cross-covariance matrix between tracks i and j.

Rearranging (6.66) and (6.67), based on orthogonal transformations and permutations
(see Appendix C), we finally have
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Yus(fo)
Fus) 3, £7)
: J(f, £ ,
Vs =[5y | With S (h) = L I S (6.68)
Yus (L .
V(. h)
_S;MS (fN—l )_
and
= diag(iMS (), s () s s () s B (fN_l)) (6.69)
where the i" block, = (f,), is
M-1N-1 M-1N-1
r(k, kl)e—iZTCk(kAxfiJrk'Ayfé) , z r(k, k!)efiZn(fiAkarf{Ayk') s
s (f) = diag| £ Kok (6.70)
r(k kr)e—i2n(kAxfi+k’Ayf{v1,1)
k'=0 k=0

Note that only blocks EMS (f) are inverted. As such, the predicted parameters of @ are

~ ~ o~ L~ 1~ o~ ~ o~ o~
0=0,+ (Z@) + Aaszl\/}SAMS) (Aﬁs):w}s)'Ms _A;\-[/ISEN}SAMSQO) (6.71)
where
Ays(fo)
Aws(f)
A = -:——:——-- 6.72
R ) o
Ays(fyy)

The matrix KMS has dimension MN xm . The M xm block KMS (f,) with elements a
is
a00 (fiaf(;) am(ﬂaf(;) aO(rn—l)(fiaf(;)

a10 (fi > fl’) 511 (fi > fl') t a1(m—1) (fi > f1’)

Agy(f) = (6.73)

~ ’ ~ ’ g !
A0 (fi,fy) k-1 (fi,fy) - A (K1) (m-1) (fi,fy)
or in a compact form
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Ays(f) =[a, (f,£)] for j=0,,...,M~1and k=0,1,...,m~1 (6.74)

Similar to (6.63) and (6.64) but considering two dimensions, we have

Al Zus (A = ZA s(F)Znis (F)A s (£)) (6.75)
and
AlsZs Z AL (E)Z s () s (F) (6.76)

i=0

Then, test statistic is easily obtained. For a large number of data, we may approximate

M-1IN-1

er(k k ) —i2n(f;Axk+f; Ayk )

—0k=0 AXAY

P(fi’fj’) (6.77)

where P is the psd of gradient noise. Thus, we can approximate (6.75) and (6.76) in
terms of (6.77) as

~ ~ ~ N-1 M_1~ B
I:AII;I/ISZ;/}SAMS Ibq ;|:AXAy aj 1’ J)P l(fH J)a_]q(fl’ J)j| (678)
i=0 j=0
and
- NAM 1
AT b = | AxayY S a0 (£, £)P7 (£, £, (£, £) (6.79)
i=0 j=0

for (p,q)=0,1,...,m—1.
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6.3.4 Multiple data tracks and multiple sensors (MM)
For this case, we assume K sensors. The KMN x1 data vector is

Yi (0’0)
Yi (150)

Yi (071)

Yo
Yi (1’1)

\A

y=| = |withy, = (N —
Yo | T

Yk |

_Yi (N - I,M - 1)_

From Appendix C, the KMN x KMN cross-covariance matrix is given and has the

following structure

2"00 }:'01 0j
ZIO z"11 le
> _ . . .
M Zio Zil Zij
_2(1@1)0 Z(1471)1 o Z(K—l)j

The [i,j] block, X

ij ?

track 0

track M —1

z“0(1<—1)
ZI(K—I)

Zi(K—l)

Z (ke |

having dimension MN x MN , is

$(0,0) (0 £(0,n) T(0,M 1)
£(1,0) (1) x(1,n) T(,M-1)
%2 smo) ) ¥(m,n) T(m,M-1)
T(M-10) E(M-L]I) (M —1,n) EM-1,M-1)]
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The [n,m] block, X(m,n), is the N x N cross-covariance matrix between tracks m and n
given by

X(m,n) =[r,, (i-jm-n)]; for (1,j)=0,L...,N-1 (6.83)

where r_ is a cross-correlation (covariance) function between tracks m and n.

Applying orthogonal transformations and permutations in Appendix C throughout (6.80)
and (6.81), we finally have

R ) 09

_iMM (fN—l )_

with the KM x1 vector

(£, £5) |
y(£i, 1)
Y (£) = ?(f:,fj') fori=0,,...,N-1 (6.85)
YL f) ]
and the K x1 vector
Yo(fi 1))
Y(£,.f) = y‘(fj’fj') for j=0,1,...,M—1 (6.86)
Vi (£ 1]
The corresponding psd is
E e = diag(E s (F)s v (F)ov s Enat (F)ov o2 Enes (Fr ) (6.87)

The i" block 2, ,, (f,) having dimension KM x KM is
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()= diag(i(fi,f(;),i(fi,fl'),. ..,f‘.(fi,fj'),. ..,f‘.(fi,fh'd_l)) (6.88)

with the K x K block

N M-1N-1 ) -
X(f,,f]) = {ZZTM (k, Kk )e fﬂ} for (m,n)=0,1,...,K~1 (6.89)

k'=0k=0

where r__ is the cross-correlation function between sensors m and n (also see (6.83)).
Therefore, the predicted parameters of @ are

~ ~ ~ .~ 1 [~ ~ ~ ~ o~
0=0, +(2® +AII:I/IMZI\/}MAMM) (AII:I/IMZI\/}MyMM _AII;I/IMZ lMAMMGO) (6.90)
where
A (f)
A ()
Ay =| -5~ (6.91)
T A
AMM (fol)

Ay (f)=|-z-—--— for j=0]1,....M~1 (6.92)

AL ]

where the K xm sub-block matrix K(fi,f ;) with elements @ is

500 (fiafj) 501 (fiafj) ao(m_l)(fiafj)
Z(f alo(f;i’fj) all(t:i’fj) 51(111—1):(fiafj) (6.93)

1

9fj’) =

5(1(—1)0 (fi > fj) 5(1(—1)1 (fi > fj ) T 5(K—l)(m—l) (fi > fj)
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From (6.91) to (6.93), we have

z

AﬁMii/}MAMM = AEM (fi)i;/iM (fi)AMM (fi)

(=]

NSIET - _ (6.94)
= A (fi7fj)2‘ (fiafj)A(fi’fj)
i=0 j=0
and
TH O $- ~ O T H -1 ~
A E Y wu = ' A (F) X0 (FD)Y e (F1)
o (6.95)

£

-1

A" (L EDET (ELEDY(ELE)

i=

(=]

.
Il

[}

In addition, the test statistic can be easily obtained. For a large number of data, we may
approximate

M-1N-1 1

—i2n(f;Axk+fIAyk")
r(k k') PRI o

P (f,.f)) (6.96)

where P is the cross psd of gradient noise between sensors p and q. Thus, the psd
i(fi ,f}) can be approximated:

Poo(f‘ f") P01(f' f") PO(K—l)(f' f")

127] 127 127

1 Py (fi > fj’) P, (f;, fj' o PI(K—I) (f, fj'

1 1

I(f,.f]) = (6.97)

AxAy : . :
P(K—I)O(fi’fj’) P(K—l)l(fi’fj,) P(K—l)(K—l)(fi’fj’)
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CHAPTER 7
NUMERICAL DISCUSSIONS ON PARAMETER ESTIMATION

7.1 Introduction

In this section, numerical investigations for cases of multiple tracks with single and
multiple sensors are conducted. Provided that matched filters give the grid location of a
detected anomaly, that is the location of the highest peak in the output, and the
approximated depth and orientation are acquired during the detection attempts, the
estimation approach can perform as a tool of refinement of the location, orientation, and
density contrast. For our study, we only show the robustness of the random effects model
and its hypothesis testing with respect to the a priori information achieved by matched
filtering. We thus consider the 2m x 2m x 1000m anomaly at 50m depth with the
azimuthal orientations, B’, of 90°, 47°, 45°, and 0°. We evaluate the capability of
estimating parameters as well as hypothesis testing in various noise environments. All
least-squares adjustment examples discussed here are based on the set of simulated
observations described in Chapter 5. To provide intuitive discussions of (1) the
numerical results of parameter estimation and (2) the influence of noise levels affecting
the estimation and hypothesis testing, we demonstrate the estimation with respect to
several types of observations obtained from the gradient signals due to the anomaly in
different noise backgrounds such as 0.01E*/Hz and 1E*/Hz white noise alone, and the full
geological background plus 1E*/Hz white noise before and after the subtraction of the
geological model defined in Chapter 5. Table 7.1 lists the root-mean-squares (rms’s) of
the noises and the gradient signals due to the anomaly at ' = 0°, 45°, 47°, and 90°.

For simplicity, we assume we have many data with 30m sampling interval (i.e., 3s
temporal spacing with the helicopter’s speed of 10m/s) and 30m track spacing. The psd
of the geological noise backgrounds is computed according to (6.97) using Psd models 1
or 2. To avoid the confusion of terminology used in this study, the terms “estimate”,
“predict”, and “adjust” are used interchangeably unless otherwise specified.

Since we linearize the observation model, iterations are required. The equation of
(6.4) refers to the uncorrelated-ness between the observations and the a priori

information, where X, = c,C, is guessed from the stage of signal detection attempts as

a covariance matrix of @. We consider updates to the predicted parameters while
keeping C, unchanged as follows (e.g., the case of multiple data tracks and multiple

sensors, MM):
~ ~ B ~ ~ . ~ 1 [~ ~ i ~ ~_ ~ ~
®i = ®i-1 + (2@1) + Ail:lMMZN}MAi,MM) (Ai},IMMZN}MyMM - Ail:lMle\l/lMAi,MM@i-l)
with
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Grad. rms (E6tvos)

I, I, I, I, I, Iy
90° 5.347E-3 | 0.844E-3 | 5.147E-3 | 0.831E-3 | 5.100E-3 | 1.184E-3
—= | 47° 5.289E-3 | 2.614E-3 | 2.930E-3 | 2.506E-3 | 3.856E-3 | 3.621E-3
ED 45° 5.291E-3 | 2.773E-3 | 2.773E-3 | 2.512E-3 | 3.739E-3 | 3.739E-3
0° 5.347E-3 | 5.147E-3 | 0.844E-3 | 0.831E-3 | 1.184E-3 | 5.100E-3

0.01E*/Hz | 5.769E-2 | 5.773E-2 | 5.771E-2 | 5.771E-2 | 5.766E-2 | 5.770E-2

o | IEY/Hz 5.785E-1 | S5.775E-1| 5.777E-1 | 5.775E-1| 5.769E-1 | 5.770E-1

2]

2 WOB 5.720E+0 | 5.420E+0 | 3.715E+0 | 3.990E+0 | 3.476E+0 | 2.636E+0
WB 1.218E+1 | 6.889E+0 | 7.186E+0 | 4.005E+0 | 4.119E+0 | 3.049E+0

n-1
rms = /Zsf /n where s, = signal or noise and n = 400x400"
i=0

WB = full geological background plus 1E*/Hz white noise
WOB = full geological background plus 1E*/Hz white noise minus a geological model®

Table 7.1: CASE I: The root-mean-square (rms) of the gradient signals due to the 2m x
2m x 1000m anomaly at the azimuthal orientations of 90°, 47°, 45° and 0° at 50m depth
versus noise backgrounds.

~ —1 ~ —1

MSPE{Qi }= (}:‘é + K?MMEK/}MKLMM) = 63,1 (C_G; + X?MMGK/}MALMM) (7.2)

[13%4]
1

where the subscript “i” is the number of the iteration and the approximated 6, is obtained

from the matched filter detection output. The 51-1 are updated by the computed 0 i

(1343
1

then 51 can be achieved. The 63,1 is computed using eq. (6.11). Theoretically, for

iterations, if the adjustment properly converges, (:)i should converge to zero according to

the linearized equation of (6.3). The (:)Ji should be close or equal to®,, (with uncertainty

implied by the a priori variance) in the statistical sense according to (6.24). Therefore,
the null hypothesis Hy is accepted if the test statistic of (6.27) is below the threshold vy,

for a given .

' Due to the memory limitation of the Fortran 90 program used, we consider only a 12km x 12km study
area (or 400 x 400 grid points with 30m spacing along track and 30m track spacing).

A geological model is constructed using the 120m x 120m DEM (refer to Section 5.1 on page 42).
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Suppose the true location of the center of the anomaly is at N21013m and
E18018m, and 50m depth, and the anomaly is rotated by the different azimuthal

orientations B’ ={0°, 45°,47°,and 90°}. The location where the output of the matched
filter is highest, is given by

North 21030m
East 18000m
0, = _ (7.3)
Depth 60m

Orient B’

where the depth of 60m is chosen in the detection process and B’ also is obtained from
the banked-filter process. For a strict constraint, we set X, — 0, which implies @, = @
and that the parameters @ are assumed known perfectly. In general, we consider ® as
“random effects” and choose the suitable values for X . It should be kept in mind that
the smaller the covariance X is, the closer we gain perfect satisfaction of our strict

constraint. We want to choose the a priori variances applicable to our objective of not
only improved localization but also hypothesis testing. For the first example (i.e., CASE
I), three possible a priori depth variances are selected to show how the adjusted solutions
and their respective test statistics behave and then we shall select the most reliable one
for further analyses:

oy, 0 0 0
s 6y =130.00m
, 0 oz 0 O .
X, =0, R with 6 =+30.00m
0 0 o O ;
=13
0 0 0 o o
(a) 6, =20.10m, (b) 6, =£1.00m , and (¢) 6, =£10.00m (7.4)

The o, and o are given on the basis of 30m grid points which are used for the multiple

sets of matched filtering detection attempts. The standard deviation of the orientation,
Gy, Is given as a reasonable guess, but could also be based on results from applying a

bank of matched filters. What follow are several possible cases to test the method of
parameter estimation with respect to various noise environments.
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7.2 CASE I: The impact of the a priori depth variance on localization and test
statistic

Prior to showing the numerical solutions of parameter estimation with respect to
orientations and several types of noise backgrounds, let the impact of the a priori
covariance matrix on the (depth) parameter estimates and their respective test statistics be
discussed first. In this example, consider the problem of estimating the location of the
2m x 2m x 1000m anomaly, where the azimuthal orientation B’ = 90° is assumed known
perfectly (i.e., 5 = 0°) and no orientation estimation is taken into account. We consider

the case of multiple data tracks and the single sensor (MS) for the gradient component
I, only. The gradient signals due to the anomaly are corrupted by 0.01E*/Hz white

Gaussian noise (equivalently, the variance, o}, is 1/300 E?); the flat psd of (6.77) is
3E*/(cyc/m)” for all frequencies. We initially set ®, equal to zero (refer to eq. (7.1)).
For the different values of 6, in (7.4), we assess the adjusted solutions using five
iterations. These solutions are summarized in Table 7.2.

Note that selecting o, = +£0.10m yields the estimates of the depth with slower
convergence compared to the other cases. As the o increases, the errors get smaller

with further iterations, particularly, in the depth estimation. The fifth iterated solutions
for cases (b) and (c) yield estimates of north and east position with sub-meter and 10-m
errors, respectively. Both cases yield similar results in the estimates. However, the test
statistic differs significantly. As such, it indicates that the choices of o affect the test

statistic (6.27).

All cases of o}, show reasonable convergence of the iterative solutions; the errors
generally decrease with respect to the number of iterations. Note that the larger values of
the assigned variance o7, affect the test statistic obtained from (6.27). For instance, the
test statistic in case (c) is smallest as compared to the other cases. (It should be kept in
mind also that, based on (7.1), the algorithm updates the initial approximate 6, and in
turn @, for each iteration, while C,, is unchanged.) A suitable choice of o}, should be
carefully defined. As regards to the numerical experiments in Table 7.2, we have
selected o} =1m?as the a priori variance of depth for our study because it yields

reasonable convergence of the iterative solutions (particularly in the depth estimation)
associated with the test statistic (6.27). However, we shall see later in CASE III that

selecting o7 =100m’ yields more stable solutions (although the test statistic seems to be
suspect with this choice).
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Iteration AN (m) AE (m) AD (m) Test statistic, T (eq. 6.27)
@ | ® | © | @ (b) © | @ | b | (© (a) (b) (©)

0]4.795 | 4.795 | 4.795 [ 2.546 | 2.546 | 2.546 |9.983 | 8.954 | 7.418 | 1.7832| 1.1854 | 0.2927

113.171 | 2.859 | 2.420 | 12.298 | 12.251 | 11.787 | 9.898 | 4.593 | 0.468 | 24.3461 | 9.4588 | 0.6142

211.041]0.262 | 0.230 [ 8.039 | 8.802 | 8.955 ]9.742 | 0.138 | 0.204 | 26.8938 | 0.1159 | 0.2388

311.290 | 0.553 | 0.511 | 10.258 | 8.872 | 8.805 | 9.514 | 1.640 | 0.155 | 26.7164 | 4.0497 | 0.0052

410.017 | 0.493 | 0.481 | 9.149 | 8.831|8.986 |[9.216 | 1.274 | 0.137 | 25.6626 | 2.4410 | 0.0001

Z 510.699 | 0.493 | 0.479 | 9.418 | 8.894 | 8.840 |8.849 | 0.321 | 0.140 | 24.0367 | 0.1854 | 0.0000

AD = the absolute error of depth

AE = the absolute error of east coordinate

AN = the absolute error of north coordinate

(a) o, =10.10m; (b) 6, =£1.00m; (¢) 6, =£10.00m

Table 7.2: The impact of the a priori depth variance on the parameter estimation and test statistic using I';; only.




7.3 CASE II: Predicted location and fixed orientation using individual gradient
components in 0.01E*/Hz (or 3E2/(cyc/m)2) white noise environment

We consider the case of multiple data tracks and single sensors. The gradient
signals of the anomaly are corrupted by 0.01E*/Hz white Gaussian noise; the flat psd of
(6.77) is ?,Ez/(cyc/m)2 for all frequencies. The initial value of @ is equal to zero and the

a priori covariance matrix of @ is taken from (7.4b). The azimuthal orientation is
assumed to be known completely (i.e., no orientation estimation). The parameter
estimation is independently conducted for each gradient component at ' = 90°, 45°, and
0-0
coordinates and depth) using individual gradients are plotted in Figures 7.1 to 7.3 as well
as their respective test statistics.

Figure 7.1a shows the case where the anomaly is at B’ = 90°. The location errors
vary in the range of 1 to 20 meters through the iteration process. The components I,;,

0°. Through 50 iterations, the absolute errors, , of the location (north and east

I',,, and I';; yield smaller errors (a few meter level) in the north direction than the other

components whose errors fall between 5 and 15 meters. The depth errors for the
components I, I}, and I';; are about 1 meter, while they vary in the range of 2 — 10m

after 50 iterations for the other components.
Figure 7.2a, for ' = 45°, shows an improvement in estimating the east coordinate
using I';;, relative to the case of B’ = 90°. The east error is about 4m. The different

orientation also affects the estimation of the north coordinate. For instance, the
estimation using I';, shows an increase to Sm in the north error from 1m in the B’ = 90°
case, see also Figure 7.1a. The depth error varies in the range of 1 to 3m for all
components.

Consider B’ = 0°, where the 1000m length-side of the anomaly is parallel to the
north direction. This case is opposite to the case where the orientation is 90°. The error
in the estimate of the north coordinate is 2m larger than that of the east coordinates using
I';,, shown in Figure 7.3a. The depth errors by using I',,, I',;, and I';; oscillate like they

do when using I',,, I',,, and I',; for B’ = 90°, shown in Figure 7.1a. These results are
due to a high weight (the inverse of 63 =1m?”) for the depth estimate. We shall see later

in CASE III that taking a lower weight (i.e., the inverse of 67, =100m?) yields more
stable solutions.

The MSPE’ (7.2) given in the equations (7.5) and (7.7) show very small correlation
among the estimates using I';; where the anomaly is at ' = 90° and 0° respectively. At

B’ =45°, the MSPE in equation (7.6) indicates a high correlation between north and east
coordinates. (For the other gradient components, the results are similar (not shown

? In the view point of “pseudo-observation” constraints, these results turn out to be the standard deviations
of the estimates of the “non-random” parameters, whereas the standard deviations of the “random effects”
parameters for our case are known a priori (refer to eq. (7.4)). For further details, see Leick (1995, pp. 126)
and Mikhail and Ackerman (1976, pp. 343-352).
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here).) However, the adjusted horizontal coordinates are independent of the depth
estimation. Examples of MSPE {(T)SO} at iteration 50 for I';; obtained from eq. (7.2) are:

I: The azimulthal orientation is 90° and &, = 0.998316
0.710125  0.000016  0.000000
MSPE{@SO }: 0.998316| 0.000016 24.957517 0.000000 | [m] (7.5)
0.000000  0.000000 0.408823

1I: The azimulthal orientation is 45° and &, = 0.998331
12.271421 11.622540 0.000000
MSPE{@50}=O.998331 11.622539 12.270313  0.000000 | [m]? (7.6)
0.000000  0.000000 0.387288

111: The azimulthal orientation is 0° and &; =0.998314
22.390881 -0.000010 0.000000
MSPE{@SO }: 0.998314| -0.000010  0.618668  0.000000 | [m]* (7.7)
0.000000  0.000000 0.376107

Finally, Table 7.3 lists the root-mean-square-error (rmse) of the estimates for each
gradient component, obtained from the square root of the diagonal elements of eqgs. (7.2);

for instance, for B’ =90° and I';; in eq. (7.5), rmse = 70.998316%0.710125 = 0.824m .

It should be noted that the rmse’s of the estimates reflect the actual estimate errors. For
instance, in the case of B’ = 0°, the rmse of the east coodinate using I';, is 0.786m which

reflect the actual east error in the magnitude of about 0.700m, illustrated in Figure 7.3a.
To asses the estimation performance by the random effects model, the test statistic

of (6.27) is computed. The estimated locations (i.e., @) and the a priori information (i.e.,
®,) do not have to be numerically equal but under the null hypothesis they should be

statistically equal in the sense of (6.24) with (6.26). In Figures 7.1b -7.3b, with the
significant level a = 0.05, using I';; for instance, the values of test statistic exceed the

threshold ,, for the first five iterations. Such a failure indicates a (significantly) large

value of @ relative to ©,. For instance, Figure 7.1a shows the errors using I',, are

about 10m at most and become stable after 5 iterations. Correspondingly, the values of
the test statistic (red solid line) are significantly large, but then quickly diminish after 5
iterations.

Although there are large variations in location errors using I',,, I'},, and I',; at B’ =

90° (see also I'},, I'},, and I';; at B’ = 0°), the test statistic is not sensitive to these errors,
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The root-mean-square-error (m)

F33 1—‘22 I_‘1 1 1—112 1—‘l 3 F23

The azimuthal orientation fixed to 90°
Northing | 0.842 | 14.862 | 0.881 | 5.431 | 0.716 | 6.399
Easting | 4.991 | 9.398 | 8.251 | 8.909 | 6.271 | 6.421
Depth 0.639 | 0.931 | 0.659 | 0.978 | 0.580 | 0.977
The azimuthal orientation fixed to 45°
Northing | 3.500 | 5.688 | 5.504 | 9.435 | 4.882 | 5.043
Easting | 3.499 | 5.184 | 6.055 | 9.435 |5.135|4.797
Depth 0.622 | 0.826 | 0.846 | 0.867 | 0.756 | 0.748
The azimuthal orientation fixed to 0°
Northing | 4.728 | 8.236 | 7.913 | 15.215| 7.047 | 7.064
Easting | 0.786 | 0.876 | 12.819 | 10.624 | 7.056 | 0.838
Depth 0.613 | 0.657 | 0.990 | 0.994 | 0.980 | 0.640

Table 7.3: CASE II: The root-mean-square-error (rmse) of the adjusted parameters after
50 iterations

i.e., the test statistic is below the threshold. The null hypothesis H is accepted for all

iterated solutions. It thus interprets that O and ®, are not statistically different; there is

a consistency between the a priori information and the observations. The following
discussions concern the test statistic when the signal is small in a strong noise
background.

Consider I'y; at iteration 50 for the case of B’ = 90°, where the location errors,
shown in Figure 7.1a, are relatively large, compared with the errors using the other
components. However, the plot in Figure 7.1b shows the values of the test statistic are
smaller than the threshold (red solid line). Table 7.4 shows A =0.2322, B =0.9993, and
the test statistic T = 0.23 is below yo = 2.60 after 50 iterations. Since the '}, signal is
small relative to the noise background (i.e., 0.01E*/Hz), the test statistic may not provide
useful information for the test.

Table 7.5 shows the ratio of the rms of the signal and the rms of the noise (SNR),
taken from Table 7.1. For instance, for B’ = 90°, the SNR of I'}; (=0.014) is about 17%
of the SNR of '35 (=0.093). The test statistic for I'33 is able to indicate large location
errors, i.e., T >y for the first 5 iterations whereas the test for I';; is not affected by large
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location errors, i.e., T < o, shown in Figure 7.1b. Interestingly, the increase of I'j, at 3/
=45°, where SNR = 0.044, yields larger values of the test statistic which is consistent
with large location errors. Figure 7.2b shows that the values of test statistic exceed the
threshold for the first 4 iterations where the location errors significantly change. For
these iterations, the hypothesis test would indicates the rejection of Hy for the given a =
0.05.

The values of SNR imply that the robustness of the estimation method is
downgraded if the anomaly’s signal is small and almost entirely corrupted by strong
noise, thus making the test statistic unreliable; I',, at B =90° or 0° is such a case.
Therefore, the unwanted part of the observations (i.e., noise backgrounds) should be
removed as much as possible. Alternatively, the signals should be significantly larger
than the noise background. To improve the capability of the test statistic (i.e. eq. (6.27)
in Table 7.4), we require a reduction of the noise background in the observation y in eq.
(6.13) so as to get B smaller and/or an increase of signal gradient so as to get A larger.

Table 7.6 shows the example of the test statistic operations for I';, associated with
B’ =90° versus 45° (where SNR = 0.014 and 0.044, respectively, in Table 7.5). It should
be noted that the values of R/m of the test statistic for B’ = 90° are smaller than those for
the case of f’ = 45°. The numerical analyses indicate that not only the strong noise
background but also the magnitude and orientation (i.e., the signal strength) of the target
anomaly greatly affect the test statistic.

Referring to these numerical results, overall, the parameter estimation and
hypothesis testing using the component I';; is superior to other components with respect

to ' =90°, 45° and 0°. The next section will show how a stronger noise background will
affect the parameter estimation and test statistic.
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Figure 7.1: CASE II: (a) The absolute errors of north (red solid line), east (black dotted
line), and depth (blue dashed line) at the azimuthal orientation of 90°; (b) Test statistic
(red solid line) and vy, = 2.60 (black dotted line) with m = 3 and n = 400x400.
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Figure 7.2: CASE II: (a) The absolute errors of north (red solid line), east (black dotted
line), and depth (blue dashed line) at the azimuthal orientation of 45°; (b) Test statistic
(red solid line) and y, = 2.60 (black dotted line) with m = 3 and n = 400x400.

141



33

Iteration

(a)

33
15

22

20

Iteration

22
15

10 10
5 A 5
Vn
AW J
0 10 20 30 40 50 0 10 20 30 40 50
11 12
3 3
2 2
1/\/\/_\ 1
. ‘ ‘ AN A~ AN AN
0 10 20 30 40 50 0 10 20 30 40 50
13 23
3 10
8
2
6
4
L A
A
0 0
0 10 20 30 40 50 0 10 20 30 40 50

Iteration

(b)

Iteration

Figure 7.3: CASE II: (a) The absolute errors of north (red solid line), east (black dotted
line), and depth (blue dashed line) at the azimuthal orientation of 0°; (b) Test statistic (red
solid line) and y, = 2.60 (black dotted line) with m = 3 and n = 400x400.
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evl

Test statistic

with o =0.05, m =3, and n = 400x400

Grad. 90° 45° 0°
A B T A B T A B T
T, 0.000038614 | 0.998335258 | 0.000038678 | 0.000018235 | 0.998349319 | 0.000018265 | 0.000022515 | 0.998333284 | 0.000022552
1"22 0.106384272 | 0.999775010 | 0.106408213 | 0.025982421 | 0.999770320 | 0.025988390 | 0.000000122 | 0.999761903 | 0.000000122
1"11 0.000000807 | 0.999139475 | 0.000000807 | 0.232206423 | 0.999308548 | 0.232367093 | 0.000014251 | 0.999308051 | 0.000014261
1"12 0.232206423 | 0.999308548 | 0.232367093 | 0.000014251 | 0.999308051 | 0.000014261 | 0.120432754 | 0.999308234 | 0.120516123
1"13 0.002614437 | 0.997571500 | 0.002620802 | 0.000317048 | 0.997580698 | 0.000317817 | 0.018275475 | 0.997622775 | 0.018319023
1"23 0.097842498 | 0.998931656 | 0.097947139 | 0.003639826 | 0.998934764 | 0.003643707 | 0.003657164 | 0.998926845 | 0.003661092
T=% with A=R/m and B=Q/n-m eq. (6.27)
y, =F_, (m,n—-m) =2.604964777 eq. (6.28)

Table 7.4: CASE II: Hypothesis testing after 50 iterations in cases of the 2m x 2m x 1000m anomaly at the azimuthal orientations of

90°, 45°, and 0° in 0.01E*/Hz white noise.




Orient SNR

I, r, I, I, I, I,
90° 0.093 | 0.015| 0.089 | 0.014| 0.088 | 0.021
45° 0.092 | 0.048 | 0.048 | 0.044 | 0.065| 0.065
0° 0.093 | 0.089| 0.015| 0.014| 0.021| 0.088

SNR = (the rms of gradient signal)/(the rms of noise background)

Table 7.5: CASE II: The ratio of the gradient signals due to the 2m x 2m x 1000m
anomaly at 50m depth and 0.01E*/Hz white noise.
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94!

] 3 ~ -1 -1 -1

Orient. | Iteration | @. - @, N, C.[C, +N'IC, . R/m
Q/n—-m
9()° 1 14.445 8.301E-003 1.429E -006 0 [1.259E-003 -6.274E-008 0 | 1.228533782
-10.388 1.429E-006 3.388E-003 0 -6.274E-008 1.475E-003 0 0.999319425

~0.194 0 0 1.169E - 002 i 0 0 86.542 |
2 3.168 8.438E-003 1.700E - 006 0 [1.257E-003 -7.254E-008 0O | 1.040186388
-3.744 1.700E - 006 3.428E -003 0 -7.254E-008 1.471E-003 0 0.999315835

-1.902 0 0 2.369E -2 i 0 0 85.266 |
45° 1 31.084 [ 7.202E-002 -6.970E - 002 0 ’ 1.381E-003 2.608E-004 0 | 5.515943597
-17.178 -6.970E-002 7.202E - 002 0 2.608E-004 1.381E-003 0 0.999398311

-1.378 | 0 0 1.440E - 001 | 0 0 7.942 |
2 -7.232 [ 7.665E-002 -7.420E - 002 0 i 1.366E -003 2.475E-004 0 | 3.876353895
4.164 -7.420E-002 7.665E -002 0 2.475E-004 1.367E-003 0 0.999359939

-1.238 | 0 0 1.533E-001 | 0 0 7.522 |

Table 7.6: CASE II: The example of the test statistic operations for I',, with respect to the azimuthal orientations of 90° and 45°.




7.4 CASE III: Predicted location and fixed orientation using individual gradient
components in 1E*/Hz (or 300E2/(cyc/m)2) white noise environment

This example investigates the capability of the parameter estimation when the noise
background increases. Consider the gradient signals due to the 2m x 2m x1000m
anomaly in 1E*/Hz (or 300E*/(cyc/m)”) white noise environment. Here, the flat psd is
300E*/(cyc/m)” for all frequencies. The initial value of 0®, is set to zero. The a priori

covariance matrix of @ is taken from (7.4). The depth variances 2 = Im” and c2, =
100m? are considered for the estimation.
We begin with the choice of 7, = 1m®. Figures 7.4 — 7.6 plot the horizontal

location and depth errors as well as the corresponding test statistics associated with ' =
90°, 45°, and 0°, respectively. For B’ =90°, the east coordinate errors for all components
vary from 1m to 560m through the iterative procedure. The component I',, yields the
largest error of about 560m at iteration 50. The north coordinate is accurately estimated

within 10m using I';;, I'},, and I, after 15 iterations. For the depth estimation, the
components I';; and I, yield the errors that are about 5m smaller than using the other

components.

For B’ =45°, the values of the north errors are about 15-70m after 50 iterations,
shown in Figure 7.5. The east and north errors vary in the range of 10-300m and oscillate
towards convergence (except in the I',, case). At the end of this section, we shall show

that the choice of a priori variance 7, = 100m” provides more stable results.
Examples of MSPE {@50} at iteration 50 for I';; obtained from eq. (7.2) are
summarized as follows:

I: The azimulthal orientation is 90° and &, = 1.004195
98.252285 -0.000347  0.000000
MSPE{@SO }: 1.004195| -0.000347  726.542725 0.000000 | [m]* (7.8)
0.000000  0.000000  0.990754

II: The azimulthal orientation is 45° and &, = 1.004178
419.723839 315.857464 0.000000
MSPE{@SO}z 1.004178| 315.857464 419.664694 0.000000 | [m]’ (7.9)
0.000000 0.000000  0.991308

I11: The azimulthal orientation is 0° and & = 1.004202
59.206306 -0.000009 0.000000
MSPE®,, |=1.004202| -0.000009 1827906  0.000000 | [m]’ (7.10)
0.000000  0.000000 1.749041
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The MSPE’s indicate that the north and east estimates, especially where the anomaly is at
B’ =45°, are mutually correlated and independent of the depth. Finally, the rmse’s of the
adjusted estimates obtained from the diagonal elements of eq. (7.2) are summarized in
Table 7.7.

As stated in the previous case, since the signals are small compared to the strong
noise, Figures 7.4b — 7.6b show that the values of test statistic do not provide useful
information in the hypothesis testing after 50 iterations.

rmse (m)
1—‘33 1—‘22 1—‘l 1 1—‘1 2 1—‘l 3 1—‘23

o

The azimuthal orientation fixed to 90
Northing | 9.933 |29.694 | 3.984 | 29.171 | 9.394 | 14.873
Easting | 27.011 | 29.097 | 24.840 | 29.640 | 28.065 | 13.849
Depth 0.997 | 1.000 | 0.971 | 1.000 | 0.994 | 0.995

o

The azimuthal orientation fixed to 45
Northing | 20.530 | 25.997 | 17.166 | 19.208 | 20.757 | 19.914
Easting | 20.528 | 24.923 | 18.317 | 19.211 | 21.584 | 19.160
Depth 0.998 | 0.997 | 0.989 | 0.989 | 0.995 | 0.992
The azimuthal orientation fixed to 0°
Northing | 27.003 | 28.631 | 28.981 | 27.727 | 26.743 | 28.083
Easting | 9.990 | 9.405 | 29.661 | 24.355 | 26.748 | 9.235
Depth 0.997 | 0.995 | 1.001 | 0.999 | 0.999 | 0.994

Table 7.7: CASE III: The root-mean-square-error (rmse) of the adjusted parameters after
50 iterations

The values of the test statistic after iterations 50 are summarized in Table 7.8. These
values for all gradient components are below the threshold vy, foro = 0.05 ; the null
hypothesis, H,, is accepted. Thus, O and 0, are statistically equal according to (6.24).
Since the gradient signals are embedded in strong noise (i.e., |E*/Hz white noise), the test
statistic is not able to identify the inconsistency between O and ©®, unless a complete

reduction of noise backgrounds has been done. Table 7.9 shows, for instance, the SNR
for T';; at B’ = 90° (whose signal magnitude is largest) is only 9.243E-3 (even smaller, for

I',,;1t1s 15% of I';;). The numerical analyses of CASE II provide a good comparison.

147



One can compare the results discussed above with those in CASE II where the white
noise level is only 0.01E*/Hz.
The adjusted estimates stabilize with respect to the iterative procedure,

‘(:)i - 61-1‘ — 0 with the updated ®, = @, , (as the a priori information for the next

iteration, i.e., the i iteration), and in turn yield the relative increase R of (6.16) and
subsequent smaller test statistics.

Refering to the choice of &}, = 1m*, we have seen that the depth errors oscillate
with the iterations (Figures 7.4a-7.6a). These results occur due to overweighting of the
depth parameter whereas its initial approximation is assigned to 60m (the true depth =
50m). In comparison, Figure 7.7 provides an example of the estimation for the case of 3’
= 90° with the choice of 67, = 100m>. The plots show that selecting 7, = 100m” affects
the adjusted solutions. However, the north error using I';, continually grows with respect

to the number of iterations. The next sections show how the adjusted solutions can be
improved using all six combined gradient components.
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Figure 7.4: CASE III: (a) The absolute errors of north (red solid line), east (black dotted
line), and depth (blue dashed line) at the azimuthal orientation of 90°; (b) Test statistic
(red solid line) and vy, = 2.60 (black dotted line) with m = 3 and n = 400x400.
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(49!

Test statistic

Grad. 90° 45° 0°
A B T A B T A B T
| 0.064350953 | 1.004212279 | 0.064081026 | 0.010591046 | 1.004196414 | 0.010546787 | 0.047610305 | 1.004220127 | 0.047410228
T, 0.738065812 | 1.000573658 | 0.737642657 | 0.540727323 | 1.000562533 | 0.540423317 | 0.010036160 | 1.000591197 | 0.010030230
I, 0.031714186 | 1.001325206 | 0.031672214 | 0.089353678 | 1.001338422 | 0.089234245 | 0.058996333 | 1.001360611 | 0.058916171
T, 0.536019127 | 1.000548146 | 0.535725471 | 0.260545184 | 1.000566849 | 0.260397578 | 1.733903010 | 1.000537582 | 1.732971395
L, 0.027702024 | 0.998572817 | 0.027741616 | 0.366835329 | 0.998555888 | 0.367365847 | 1.192317190 | 0.998559085 | 1.194037696
T, 0.220645007 | 0.998676353 | 0.220937450 | 0.028394839 | 0.998681319 | 0.028432332 | 0.100707828 | 0.998712830 | 0.100837623

Vo

T=% with A=R/m and B=Q/n-m

=F_,(m,n—m) = 2.604964777

with o =0.05, m =3, and n = 400x400

eq. (6.27)

eq. (6.28)

Table 7.8: CASE III: Hypothesis testing after 50 iterations in cases of the 2m x 2m x 1000m anomaly at the azimuthal orientations of

90°, 45°, and 0° in 1E%/Hz white noise environment.




Orient SNR
I, r, I, I, I, I,
90° | 9.243E-3 | 1.461E-3 | 8.909E-3 | 1.439E-3 | 8.840E-3 | 2.052E-3
45° | 9.146E-3 | 4.802E-3 | 4.800E-3 | 4.350E-3 | 6.481E-3 | 6.480E-3
0° | 9.243E-3 | 8.913E-3 | 1.461E-3 | 1.439E-3 | 2.052E-3 | 8.828E-3

SNR = (the rms of the gradient signal)/(the rms of the noise background)

Table 7.9: CASE III: The ratio of the gradient signals due to the 2m x 2m x 1000m
anomaly at 50m depth and 1E*/Hz white noise.
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Figure 7.7: CASE III: (a) The absolute errors of north (red solid line), east (black dotted
line), and depth (blue dashed line) at the azimuthal orientation of 90° with o}, = 100m?;
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7.5 CASE 1V: Predicted location and fixed orientation using the combination of all
six gradient components in 0.01E*/Hz (or 3E2/(cyc/m)2) white noise environment
Consider only the case where the azimuthal orientation, 90°, of the 2m x 2m x
1000m anomaly is assumed known perfectly (i.e., no orientation estimation). We test the
robustness of the random effects model using all six combined gradients in 0.01E*/Hz
white noise environment. The initial value of @, is zero and we choose o7, = Im”. The

parameter estimation pertains to the case of multiple data tracks and multiple sensors
(MM) in Section 6.3.4. We consider no correlation between sensors in the white noise
environment.

Figure 7.8 shows the numerical results for all combined gradients versus the results
of using individual components obtained from CASE II. Overall, the combination
provides an improvement in the estimation. The north errors decrease to 0.17m after 50
iterations. Although the combination does not give the smallest error in the east
coordinate, about 0.5m, it is superior to the estimation using the other components except
the component I';; for which the error is about 0.11m. The depth errors become

stabilized after 5 iterations; these results imply that the iterated solutions, (ET)i , converge
faster than those from using the individual gradients.
The MPSE of @, , obtained from (7.2) and 62 = 0.998846, is:

0.216992 -0.000017 0

MSPE®,, |=0.998846 -0.000017 8354125 0 | [m] (7.11)
0 0 0.174644
rmse(m)
Northing Easting Depth
0.465 2.889 0418

Table 7.10: CASE 1V: The root-mean-square-error (rmse) of the adjusted parameters
after 50 iterations

Taken from (7.11), the rmse of the east coordinate in Table 7.10 significantly
decreases, compared to the rmse using the individual gradients in Table 7.3.
Table 7.11 describes the acceptance of the null hypothesis statistically indicating

the equivalency of 0 and 0, after 50 iterations at o = 0.05 level of significance. In
Figure 7.9, after only four iterations, the test statistic is below the threshold. Therefore,

the numerical analyses show that the use of the six gradient combination leads to an
improvement of parameter estimation by the random effects model.
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Figure 7.8: CASE IV: The absolute errors at the azimuthal orientation of 90° in
0.01E*/Hz white noise.

Test statistic
A B T
All gradients 0.001219191 0.998849044 0.001220598
T:% with A=R/m and B=Q/n-m eq. (6.27)
v, =F_, (m,n—-m)=2.604918546 eq. (6.28)
with o = 0.05 m = 3 and n = 6x400x400

Table 7.11: CASE IV: Hypothesis testing after 50 iterations for the case of the 2m x 2m x
1000m anomaly at the azimuthal orientation of 90° in 0.01E*/Hz white noise
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7.6 CASE V: Predicted location and fixed orientation using the combination of all
six gradient components in 1E*/Hz (or 300E2/(cyc/m)2) white noise environment
Suppose the output of matched filtering for ' = 90°is given as in CASE IV
together with an a priori covariance matrix corresponding to 1E*/Hz white noise. We
consider no correlation between sensors in the white noise environment. Figure 7.10
shows the results of all six combined gradients versus the adjusted results of using
individual components obtained from CASE III. Note that although the combination
does not provide the best estimates among the other components, its solutions are much
more stable for the north and east estimates. The estimates of depth, though, either using
the combination or individual components, yield small fluctuation during the iterative
process. It means that the choice of the a priori variance c;, = 1m’ may not be applicable

when the noise is high in association with the initial approximation of depth = 60m.
Furthermore, a larger number of iterations may be needed due to a slow convergence of
the solution.

We thus use 6, =100m” instead to relax the constraint of (6.4). The results are
drawn in Figure 7.11. The plot also includes the results of individual gradients where
o;, =100m’ is employed, taken from Figure 7.7. Note that the depth estimation is more

stable, as compared to the case o}, = 1m” in Figure 7.10. The rapid stability of the
solution renders the values of the test statistic significantly smaller after the first 2
iterations which then quickly approach zero; whereas, for 63, = Im?, the test statistic

oscillates and only gradually diminishes with the iterations, see Figures 7.10b versus
7.11b. (Note that the depth solution in Figure 7.10a causes the oscillation of the test
statistic in Figure 7.10b.) The rmse’s of the adjusted parameters, obtained from (7.2),
and the test statistic computation are summarized in Tables 7.12 and 7.13, respectively.

Choice rmse(m) &,
Northing Easting Depth
ol =Im’ 4.106 19.821 0.972 1.000656
ol =100m’ 4.270 20.181 3.919 1.000656
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Table 7.12: CASE V: The root-mean-square-error (rmse) of the adjusted parameters
using all six combined gradients and the a posteriori variances after 50 iterations.




Choice Test statistic
A B T
512) =1m? 0.000254465 1.000659663 0.000254297
GZD =100m? 0.004578409 1.000659439 0.004575392
T=%withA:R/m and B=Q/n-m eq. (6.27)
v, =F_, (m,n—-m)=2.604918546 eq. (6.28)
with o = 0.05 m =3 and n = 6x400x400

Table 7.13: CASE V: Hypothesis testing after 50 iterations for the case of the 2m x 2m x
1000m anomaly at the azimuthal orientation of 90° in 1E*/Hz white noise using all six
combined gradients.

159



3 North 3 East 2 Depth
10 ¢ T 10 ] 10 ¢

Foooy, All gradients Iy Ty Fos )

2
10 ¢ )
il 10" ™

10!
£ 10° 1
: .
10 ¢ ! ]
107} \ |
1 [ i ]
10 ¢ ]
: I |
All gradients 1
10'2 | | 100 | | 10'2 | |
0 20 40 60 0 20 40 60 0 20 40 60
lteration
(a)
3 T T
251 B
oL J
k)
B
g
"
B 151 8
°
1h J
051 B
O Il ] Il Il Il ) Il Il
0 5 10 15 20 25 30 35 40 45 50
Iteration

Figure 7.10: CASE V: (a) The absolute errors at the azimuthal orientation of 90° using all
six combined gradients in 1E*/Hz white noise with o;, =1m’; (b) The test statistic (red

solid line) and threshold y, = 2.60 (black dashed line) for a given o = 0.050.
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7.7 CASE VI: Predicted location and fixed orientation using individual gradients in
geological background
For this case, we add the full geological background plus 1E*/Hz white noise to

the gradient signals due to the 2m x 2m x 1000m anomaly at ' = 90°. We use the same a
priori information as in the previous cases except that only the a priori variance of depth
o, =100m” is used. The parameter estimation is conducted independently by using
different gradient components. The physical correlations between observations are taken
into account and eq. (A.1) in Appendix A is applied (the instrumental noise N in Table
A.1 is also included). Figures 7.12 through 7.14 show the iterated solutions of north and
east coordinates and depth, respectively, using the different psd models shown in
Appendix A. We compare the iterative solutions before and after the subtraction of a
geological model described in Chapter 5 (called WB and WOB respectively) using Psd
models 1 (black dotted line) and 2 (red solid line). We also show that the small change of
Psd model 1 (i.e., we slightly change the parameters of Psd model 1) affects the
parameter estimation.

Overall, the numerical results of I'y;, I'},, I';;, and I',; for WB and WOB stabilize

except the east coordinate error of I'; after 15 iterations. For other components, the

north, east, and depth errors steadily increase with respect to the number of iterations.
The numerical results shown in Figures 7.12 — 7.14 indicate that the parameter

estimation using one gradient component, for the WOB case using Psd model 2, does not
give a better result of estimating coordinates than that for the WB using Psd model 1. For
instance, after 50 iterations in Figure 7.12, the north error with I';; and the WB case is
42.501m (black-dotted line) whereas the error is 199.460m for WOB (red-solid line).
However, using I';; in the WB case, the north error is 4.750m; while using I';; in the
WOB case, the error is only 1.061m. One possible reason is that the psd’s may not be
accurately modeled. To support this statement, we slightly change the parameters of Psd
model 1 to see how it affects the results by replacing o}, = 2.0x10"° m*s* and o7, =
3.0x107° m*/s*. After 50 iterations, the numerical results show that, for instance, the
north error by using I, largely increases to several thousand meters (see blue dashed
line in Figure 7.12).

The I',,, I',,, and I, signals are small with respect to the 90° orientation of the
anomaly and can be entirely corrupted by noise. For example, the rms of the signal I,

(0.831E-3 Eotvos, taken from Table 7.1) is only about 0.02% of the full geological
background plus 1E*/Hz white noise (4.005 E6tvés). As a consequence, the location
errors of I, , I',, and I, are large, about 10-100m.

Examples of MSPE {(7)50} for I';, at iteration 50 obtained from (7.2) are:

(a) The geological model was not removed (and Psd model 1 was used) and &; =
16.843036:
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75.745876  0.000052 0
MSPE{@SO}: 16.843036/ 0.000052  698.254406 0 [m’] (7.12)
0 0 44.619035

(b) The geological model was not removed (and Psd model 1 was changed) and &; =
17.901517:

86.585646 -0.001380 0
MSPE{@50}= 17.901517| - 0.001380 714.178836 0 [m?] (7.13)
0 0 48.245677

(c) The geological background was removed (and Psd model 2 was used) and &, =
13.087721:

77.354893  -0.000513 0
MSPE{@SO}: 13.087721/ -0.000513  693.579463 0 [m’] (7.14)
0 0 45.152834

We assess the success of the parameter estimation. At iteration 50, the values of
the test statistic in Table 7.14 are below the threshold y, at o = 0.05 level of
significance; the null hypotheses are accepted. Although the estimated locations do not
coincide with the true locations, especially the results of using I',,, I'},, and I',;, they
equal @, statically. As stated in the previous cases, since the anomaly signals are small,
compared to the noise background, the test statistic is not able to identify for large
location errors. It should be noted also that the values of ©/(n—m) are large, compared
to R/m, especially, for component T',,. These results are due to an incomplete reduction
of noise backgrounds.

Of interest is, assuming the a priori variance component to be unity, i.e., o, =1,
whether or not the a posteriori variance component without constraint, i.e.,

G, =Q/n—m, in the adjustment is significantly different from its a priori value.
(0~ mys;

2
Gy

can be set up as follows (Leick, 1997, pp. 142-143, and Kock, 1999, pp. 286-287):

With the ¥’ -distribution, where ~>_ holds, the two-tailed hypothesis test

Ho: 6, =G, versus H;: 6, #G, (7.15)

It will be rejected with a significance level of a if the test statistic, T, ,

163



—2
. - Q
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For our case, the rejection of Hy is taken as an indicator that the reduction of the noise
background in the observation y in eq. (6.13) is not significant. The results of the ¥

test are given in Table 7.14. For a = 0.05, the hypothesis Hy has been rejected for all
gradients in either WB (using Psd model 1) or WOB (using Psd model 2) case. For

instance, for I';; in WOB, T, = 26.949x10° > y2,.s = 1.611x10°. The specific test

indicates that the full geological background plus 1E*/Hz white noise needs to be reduced
as much as possible so as to be accept the null hypothesis. To support this statement, we
estimate the same parameters due to the same anomaly but in 0.01E*/Hz white noise (as

an ideal case). We only show the y° test (see CASE II for the F-test). As shown in
Table 7.14, the test statistics T, for all components fall inside the acceptance interval.

(More details using y test for various noise cases are discussed in CASE 1X.)
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Figure 7.12: CASE VI: The absolute errors of north coordinates using individual gradient
components in geological noise; black-dotted line indicates a geological model was not
removed and Psd model 1 was used; blue-dashed line indicates a geological model was
not removed and Psd model 1 was used but its parameters were slightly changed (see
text); red-solid line indicates a geological model was removed and Psd model 2 was used.
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Figure 7.13: CASE VI: The absolute errors of east coordinate using individual gradient
components in geological noise; black-dotted line indicates a geological model was not

removed and Psd model 1 was used; blue-dashed line indicates a geological model was
sed.

not removed and Psd model 1 was used but its parameters were slightly changed (see
text); red-solid line indicates a geological model was removed and Psd model 2 was u
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Figure 7.14: CASE VI: The absolute errors of depth using individual gradient
components in geological noise; black-dotted line indicates a geological model was not
removed and Psd model 1 was used; blue-dashed line indicates a geological model was
not removed and Psd model 1 was used but its parameters were slightly changed (see
text); red-solid line indicates a geological model was removed and Psd model 2 was used.
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891

Test statistic

Grad WB WOB WN
A B T T,x 107 A B T T,x 10 | T,x 107
T, 0.000005106 | 16.843352731 | 0.000000303 26.949 | 0.000027626 | 13.087966819 | 0.000002110 20.940 1.597
T, 12.329603691 | 90.663134823 | 0.135993573 145.058 | 17.249267597 | 84.536278081 | 0.204045742 135.256 1.599
T, 0.000000494 | 1.073199580 | 0.000000460 1.717 | 0.000009433 | 1.201789677 | 0.000007849 1.922 1.598
T, 3.279046755 | 10.836256313 | 0.302599593 17.338 | 0.088554138 | 10.869512897 | 0.008147019 17.390 1.600
L, 2.471165296 | 14.977656919 | 0.164990112 23.964 | 0.001416550 | 14.927722893 | 0.000094893 23.884 1.597
L, 0.088554138 | 17.696517774 | 0.000001760 28.313 | 0.000088649 | 17.263880658 | 0.000005134 27.622 1.597
T=A/B with A=R/m and B=Q/n—-m eq. (6.27)
v, =F_, (m,n—-m)=2.604964777 eq. (6.28)
Reject Ho if T, > v, = L6l1E+5o0r T, < v, = 1.589E+5

l-—,n—m
2

—,n—m

2

with T, = (n-m)5; /o; =Q/c;, o =0.05, m= 3, n=400x400, and o, =1

WB = full geological background plus 1E*/Hz white noise

WOB = full geological background plus 1E*/Hz white noise minus a geological model

WN = 0.01E%/Hz white noise

Table 7.14: CASE VI: Hypothesis testing via F test and y test after 50 iterations




7.8 CASE VII: Predicted location and fixed orientation using six combination of
gradient components in geological background

The case where the parameter estimation using all six gradient components is
performed simultaneously in the full geological background plus 1E*/Hz white noise is
tested. The a priori information of (7.3) and (7.4) with 67, =100m is used. The physical
correlations between observations are taken into account; the equation of (A.1) and the
instrumental noise N in Table A.1 is used.

North East Depth
22 140 T 8 ‘
20% 1 AR PN
120 ¢ . B Tk 1
18 1
100 | 6], |
: 7 \N\/J\/\fv\/
141 1 80 1 5/ ]
m
m m :
125 e i | 60 | 4'£ |
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8 |- -
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6 | -
4 Ny 0 : : 1 : ‘
0 20 40 60 0 20 40 60 0 20 40 60
Iteration Iteration Iteration

Figure 7.15: CASE VII: The absolute errors of location; black-dotted line indicates a
geological model was not removed; red-solid line indicates a geological model was
removed.

Figure 7.15 shows the results of all combined gradients. When six gradient
components are simultaneously observed, the absolute errors of north and east
coordinates for the case of WOB (Psd model 2 was used) (red-solid line) are smaller than
those for the case of WB (Psd model 1 was used) (black-dotted line). For instance, the
north coordinate error of the latter case is about 12m while it is 3m for the former case at
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iteration 50. The mean square prediction errors, MSPE {@50 }, obtained from (7.2) for
both cases at iteration 50 are:

(a) The geological model was not removed (Psd model 1 was used) and &, =
68.181258:

11921697  0.000437 0
MSPE®,, }= 68.181258 0.000437 339275122 0 [m’] (7.17)
0 0 10570163

(b) The geological model was removed (Psd model 2 was used) and &; = 33.682292:

12637481 0.000855 0
MSPE{®,, |=33.682292 0.000855 341884744 0 | [m]] (7.18)
0 0 11131837

Note that the diagonal elements of (7.17) are slightly smaller than those of (7.18). This is
due to the influence of psd modeling as discussed in CASE VI. Finally, the root-mean-
square-error’s of the adjusted parameters taken from the diagonal elements of (7.17) and
(7.18) with & are given in Table 7.15a. Table 7.15b shows the hypothesis testing at the

significance level a = 0.05 after 50 iterations. Using F-test, the null hypotheses for both
cases are accepted.

For the y” test, the rejection of the null hypothesis (two-tailed test) indicates an
incomplete reduction of the noise background in the observation y in eq. (6.13).
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rmse(m)
Northing Easting Depth
WB 28.510 152.092 26.845
WOB 20.631 107.310 19.363
(a)
Test statistic
WB WOB
A 0.007862339 0.004185320
B 68.181471318 33.682397807
T 0.000115314 0.000124258
T,x 107 654.540 323.350
T:%with A=R/m and B=Q/n-m eq. (6.27)
y, =F_,(m,n—-m)= 2.604918546 eq. (6.28)

= 9.572E+5

m

Reject Hoif T, >y ° ,

1-—,n—-m

= 9.627E+50r T, <.,

2 2
with T, = (n-m)5; /o; =Q/c;, 0. =0.05, m =3, n = 6x400x400, and o} =1

WB = full geological background plus 1E*/Hz white noise
WOB = full geological background plus 1E*/Hz white noise minus a geological model

(b)

Table 7.15: CASE VII: (a) The root-mean-square-error (rmse) of the adjusted parameters
after 50 iterations; (b) Hypothesis testing via F-test and y test after 50 iterations.
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7.9 CASE VIII: Predicted location and orientation in 0.01E*/Hz white noise
environment using six gradient components

For this case, we want to evaluate how well the parameter estimation using the
random effects model approach is able to refine the azimuthal orientation of the 2m x 2m
x 1000m anomaly. Suppose the anomaly is rotated by 47 degrees with respect to north
direction in the 0.01E*/Hz white noise environment. Let the output of the matched
filtering be given as in the previous cases except that the azimuthal orientation will be
determined using six gradient components. We shall also determine how the hypothesis
testing in association with the choices of &}, behaves when estimation of the orientation
is included. Here, we consider no correlation between sensors under white noise
circumstances. Provided that the approximate orientation is obtained from the detection
process, we rewrite (7.3) and (7.4):

North 21030.00m
East 18000.00m
0, = _ (7.19)
Depth 60.00

B 50°

together with the a priori covariance matrix

i 0 0 0
) oy =+30.00m
JO o 0 o
Xy =0, 5 with o, ==£30.00m
0 0 o) 0
= +3°
0 0 0 o Op =5
() o, ==1.00m, and (b) o, = +10.00m (7.20)

Figure 7.16a shows that the absolute errors of parameter estimates using
6, =*1.00mand o, =+10.00m are slightly different. The estimation method can

refine the orientation to better than 0.172° after 50 iterations. The mean square prediction
errors, MSPE {(:)50 }, after 50 iterations obtained from (7.2) are as follows:

(i) For the case of 67, =1m”* and &, = 0.998844,

MSPE®,, =

4.073396m> 4.124023m”> -2.664E-7m>  -0.000034m - deg
g 4.124023m’ 4.643856m’ -3.267E-7m*> -0.000041m -deg |(7-21)
- Mo

-2.664E - Tm’ -3.267E-7m’ 0.179762m* 0.008235m - deg
-0.000034m-deg -0.000041m-deg 0.008235m-deg  1.051294deg’
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(i) For the case of o}, =100m” and &, = 0.998845,

MSPE®,, =
4.072151m? 4.122719m* 4516E-7m*>  -0.000046m - deg
g 4.122719m? 4.642434m’ -3.390E-7m*> -0.000035m -deg |(7-22)
°l 4.516E-07m> -3.390E - 7m° 0.218655m’ 0.010155m - deg

1.051021deg’

-0.000046m-deg -0.000035m-deg 0.010155m-deg

As seen above, the depth and orientation estimates are slightly correlated. Finally, the
rmse’s of the adjusted parameters taken from (7.21) and (7.22) are summarized in Table

7.16. In Figure 7.16b, the test statistic for the case of o} =100m” decreases faster than
the other; and, in turn, is below the computed threshold v, for the specified significance

level, a = 0.05 after 3 iterations. The hypothesis tests for both cases at iteration 50 are
summarized in Table 7.17.

Choice rmse
Northing (m) | Easting (m) | Depth (m) | Orientation (deg)
c; =1m’ 2.016792 2.153386 | 0.467336 1.024601
c; =100m’ 2.017099 2.153715 | 0.423738 1.024733

Table 7.16: CASE VIII: The root-mean-square-errors (rmse’s) of the adjusted parameters
after 50 iterations.

with o =0.05, m =4, and n = 6x400x400

Choice Test statistic
A B T
o} =1m’ 0.000271891 0.998848584 0.000272205
o3 =100m’ 0.000913490 0.998849225 0.000914543
ng with A=R/m and B=Q/n-m eq. (6.27)
v, =F_,(m,n-m)= 2371941509 eq. (6.28)

Table 7.17: CASEVIII: Hypothesis testing after 50 iterations.
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Figure 7.16: CASEVIII: (a) The absolute errors of location and orientation; (b) Test
statistic

174



We further evaluate the robustness of the random effects model approach in
estimating orientation by adding either 1E*/Hz white noise alone or the full geological
background plus 1E*/Hz white noise to the anomaly’s signal. Unfortunately, neither case
indicates that the parameter estimation can be done successfully. The adjusted solutions
of the orientation fluctuate and are unstable in the iterative procedure. Furthermore, the
location errors (north and east coordinates and depth) continuously grow with respect to
the number of iterations. If we estimate the orientation alone by assuming the location is

known perfectly [by letting 63 — 0, 6; — 0, and 65 — 0, (i.e., very large weights are
applied)], the adjusted solutions still diverge (not shown here). The test statistic does not
give any reliable judgment; Hy is accepted although there is a large discrepancy between
the adjusted estimates and the a priori values @,. As such, to estimate the location as

well as the orientation parameters, it requires a complete reduction of the observations;
any noisy contents should be removed as much as possible.
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7.10 CASE IX: Estimation of density contrast

For the simplicity of density contrast estimation, suppose the location and the
orientation of the 2m x 2m x 1000m anomaly are perfectly known; see the expressions
(B.1) and (B.2) in Appendix B. We wish to estimate the density contrast Ap alone.

Let the true value of the density contrast be -1.500 g/cm’®. We want to evaluate the
robustness of the random effects model approach when estimating Ap . Given the a

priori information, 6, =-1.400 g/cm’ with cip =0.01 [g/em’], we determine the density

contrast in different noise backgrounds. All six combined gradients are employed in this
case. Because of the linear estimation according to (B.1) and (B.2) (i.e., assuming the
other parameters are completely known), no iterative procedure is required. Consider no
correlations between sensors if white noise is used.

The estimation results are summarized in Table 7.18. The estimate of the density
contrast, Ap, agrees within less than 0.020g/cm3 (see its rmse obtained from (7.2)) with
the true value of density contrast for the case of 0.01E*/Hz white noise. However, the
estimation errors become larger as stronger noise content is added to the anomaly’s
gradient signals. For the extreme case, where the full geological background plus 1E*/Hz
white noise is used, the estimate deviates from the true value by 1.009g/cm’. As such,
the F-test fails to accept Hy at the 0.05 level of significance. For the density estimation,
the rejection of Hy dose not mean that the estimate is incorrect. Rather, it implies that the
estimate and the a priori @, do not coincide in the statistical sense of (6.4). Is the choice

of ®, suitable for the adjustment system? or Does the noise background greatly affect

the estimation? As such, the % test on errors in the stochastic model and/or due to an
incomplete reduction of the observations is applied. As listed in Table 7.18, the Xz test
fails to accept Hy on the upper tail for the case of full geological background plus 1E*/Hz
white noise. The test statistic is large (654.531x10°), relative to the two-tail criterion.
However, when the noise background decreases, for 0.01E*/Hz white noise case, the test
statistic T, falls inside the acceptance interval.
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LLT

Noise Ap (g/cm’) rmse (g/cm’) F-test >-test
A B T T,x 107
0.01E*/Hz -1.507 0.023 1.219119350 | 0.998843524 | 1.220530864 9.589
1E*/Hz -1.387 0.092 0.105302483 | 1.000662128 | 0.105302483 9.606
WOB -1.832 0.535 126.059658947 | 33.682196525 | 3.742619898 323.349
WB -2.509 0.763 839.760390702 | 68.180358563 | 12.316749404 654.531
T:% with A=R/m and B=Q/n-m eq. (6.27)
v, =F_, (m,n—m) = 3.841468506 eq. (6.28)
Reject Ho if T, > xf_g = 9.627Et5or T, < x;n_m = 9.573E+5
27 27
with T, = (n-m)5; /o; =Q/c;, 0. =0.05, m= 1, n = 6x400x400, and o} =1
WB = full geological background plus 1E*/Hz white noise
WOB = full geological background plus 1E*/Hz white noise minus a geological model

Table 7.18: CASE IX: The estimates of density contrast and hypothesis testing




CHAPTER 8
CONCLUSIONS AND FUTURE WORK

In this study, the two dimensional matched filters for six gradient components
observed at low aircraft altitude was developed and tested in white and correlated noise
environments for shallow small mass anomalous detection. The airborne gradiometric

data was simulated using the 1987 GGSS data, 30m DEM, and 1E/«/Hz white Gaussian

noise. Different sizes of a rectangular box representing the true anomalies were
simulated and these signals were added to the simulated noise. The reciprocal psd
models were applied to the matched filters for different types of geological backgrounds:
(1) full geological background plus 1E%/Hz white noise, (2) geological background plus
1E?/Hz white noise minus a geological model, and (3) the GGSS data plus 1E%/Hz white
noise. For comparison, the matched filters using the empirical psd’s obtained from the
geological backgrounds were also considered.

Numerical analyses of the capability of the matched filters were presented. The
results in Chapter 5 indicate that, overall, the I",, gradient component is able to detect the

anomalies of interest using matched filters in this simulation. Psd modeling affects the
detectability of matched filters, where the empirical psd’s generally yield superior results.
Although more accurate psd models are needed to enhance the capability of matched
filters, the matched filter for all six combined gradients shows an improvement of
detection superior to the use of matched filters for individual gradients. The correlated
noise environments slightly affect the detectability of the filters using the empirical psd’s.
For the best performance, the knowledge of the signal waveform is required as well as
accurate psd’s of the background noise.

By applying the matched filter to the simulation observations including the
anomaly signal to be detected, the highest output peak indicates the likely location of the
signal. Statistically, if the peak exceeds the threshold for a given POM (or a significance
level), the signal is presumed to be present at the location of the peak. The threshold with
a computed POF does not in any way influence the selection of the candidate location;
though, it sets up a level above which all values of the output, maximum or not, have a
probability of being a true location. In this sense, the threshold does not give a good
measure of the probability of success since it does not account for the maximum value of
the output being special, it rather allows possible candidate(s) of the target anomaly.
However, since a matched filter maximizes the SNR, the POF is useful when making a
decision concerning the presence of the target signal. The choice of POM should not be
too high, otherwise until the corresponding value of POF may not be reliable; increasing
POM decreases POF. In this study, we find that POM = 0.001 is appropriate.
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In the case of full geological background plus 1E%/Hz white noise minus the
geological model computed using 120m resolution topography, the matched filters
performed not better than in the case of full geological background plus 1E%/Hz white
noise. This lack of improvement despite reduction in background noise was traced to
high sensitivity of the filter to the psd models used. In this case, Psd model 2 may not
adequately characterize the noise background.

In comparison with the use of psd models, we used the empirical psd’s and applied
them for different cases of geological backgrounds. We found that geological
background slightly affects the detectability performance of the matched filters. Another
factor is the magnitudes of noise, which may be large, compared to the gradient signals of
the target anomaly. As a consequence, the target signal may not be detected by the
filters. Numerical tests in Table 5.20 show that the locations of target anomalies within
the background field also affect the detectability of the matched filters.

The target anomaly located on observation grid intersections can be detected better
than the anomaly located within a grid square. We found that with higher resolution in
the observations the detectability of the matched filters increases. The detectability of the
filters is sensitive to orientations. When the filter is rotated by a few degrees with respect
to the true orientation of the target anomaly, it can not detect the anomaly successfully.
A bank of filters at different azimuthal orientations is required to detect a signal with
unknown orientation. The performance of the matched filters for different cases was
summarized in the plots in Section 5.7.

If the matched filter output provides a good approximation of the true location of
the anomaly, parameter estimation theory (developed in Chapter 6) may be used to refine
the location, including its depth. To refine the detection part, as well as determine
additional parameters that were not included in the detection, we use the random effects
model in a least-squares adjustment procedure, which allows a priori information of a
stochastic nature on the parameters. Using individual gradient components, overall, the
component I's3 provides an improvement of location estimates in different background
noises. Moreover, estimation can be improved using the six-gradient combination, not
only in the cases of 0.01E%/Hz and 1E%/Hz white noises, but also in the case where a
geological model was subtracted from the full geological background plus 1E%/Hz white
noise. However, the result of estimating the location is worst for the case of the full
geological background plus 1E%/Hz white noise, both when using individual gradients or
all six gradients.

In our study, since we deal with multiple data tracks and single or multiple sensors,
the inversion of the corresponding large covariance matrix may be numerically difficult.
We have applied an orthogonal transformation to the random effects model so that the
transformed covariance matrix becomes diagonal (or block diagonal), and is easily
inverted (assuming we have regularly gridded data).

The test statistic (or significance test) which follows the F-distribution has been
developed in order to determine whether the adjusted parameters give us misleading
results on the basis of the a priori information given by the matched filter. However, the
test does not appear to be useful in assessing the estimation performance in the presence
of strong noise backgrounds.
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Nonetheless, the random effects models have shown to be successful in refining the
location and orientation using all six combined gradients--the adjusted values are close to
the true parameters with significantly reduced errors (from the matched filter result).
However, the adjusted solutions (iterated due to the nonlinearity of the model) do not
converge if only individual gradients are used in the adjustment (with full geological
background plus 1E%/Hz white noise). The introduction and implementation of an

additional y? test confirms that an incomplete reduction of observation noise and an

inaccurate psd model were applied.
An additional parameter, the density contrast, was considered. Again, both F-test

and y? test failed for the computed thresholds based on o. = 0.050. More accurate psd

models are needed as well as a requirement of removing correlated noise contents in the
observations as much as possible.

In this study, we have considered only one anomaly to be detected. Multiple
targets should be the focus of future work. These problems can make the detection and
estimation approach much more difficult. Multiple hypothesis testing would be
recommended to apply to the approach in order to classify the targets of interest.
Furthermore, the anomalies may have densities, slightly different from the geological
background. This problem can make detecting the signal and the estimation of unknown
parameters much more difficult. A more accurate and informative geological model or
additional sensors (e.g., ground penetrating radar or electro magnetics) may be needed.

Finally, much more work with real data would be recommended to test the
robustness of the signal detection and parameter estimation approach proposed in this
study to further refine its practical applications in concert with the use of a future
gradiometer with 1E%/Hz instrumental noise sensitivity.
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APPENDIX A

THE RECIPROCAL DISTANCE POWER SPECTRAL DENSITY MODELS OF
GRVITATIONAL GRADIENTS

The reciprocal (auto or cross) psd models of gravitational gradients are given by
(Jekeli, 2003):

= ()00, ()" (g, ) @y With o, ]y Ky K, 4123} (A1)

Phiz ik,

where A =i2nf_for m=12 and A, = 2nf with f =,/fZ+f> . The psd of disturbing
potential @ is given by:

) g2 ,
@, (f), f,, %5, X3) (Z—‘e . Jez“”“*“) (A.2)

oo, f
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J=16 PSD MODEL 1 PSD MODEL 2 PSD MODEL 3
] o’ a o’ a o’ a
(m*/s" (1/m) (m*/s") (1/m) (m*/s") (1/m)
0 1.0E+05 3.0E-07 1.0E+05 3.0E-07 1.0E+05 3.0E-07
1 1.0E+03 7.7E-07 1.0E+03 6.0E-07 1.0E+03 6.0E-07
2 1.2E+02 3.0E-06 4.2E-01 5.0E-05 5.5E-01 5.0E-05
3 1.3E+01 8.5E-06 3.0E+01 1.0E-06 1.0E-02 1.0E-06
4 5.5E+00 2.0E-05 4.0E+01 1.0E-06 0.2E-02 1.0E-06
5 3.5E-01 6.0E-05 1.0E-01 0.8E-06 0.2E-02 0.8E-06
6 1.5E-02 1.2E-04 6.0E-04 9.7E-05 0.1E-02 9.7E-05
7 1.5E-04 2.0E-04 9.0E-04 2.5E-07 1.0E-03 2.5E-07
8 2.2E-05 5.0E-04 7.1E-08 0.8E-03 8.1E-09 0.6E-03
9 2.1E-06 1.2E-03 6.0E-10 4.1E-02 1.0E-14 2.1E-02
10 2.0E-07 3.0E-03 6.0E-10 0.4E-02 1.0E-14 0.4E-02
11 3.0E-08 6.5E-02 6.0E-10 1.1E-02 1.0E-14 1.1E-02
12 1.0E-10 1.9E-02 1.0E-10 4.8E-02 1.0E-14 1.8E-02
13 1.4E-10 6.0E+01 1.0E-10 1.2E-01 1.0E-14 1.2E-01
14 1.5E-10 1.7E+03 1.0E-13 2.1E-01 1.0E-14 2.1E-01
15 1.5E-13 5.7E+03 1.0E-10 8.0E-01 1.0E-14 8.0E-01
Altitude | x, = x; =355m
of vehicle
" e.g., 300 [E/(cyc/m)]* for the speed of 10m/sec at the sampling rate of 3

seconds) (1E/ vHz per data track)

Table A.1: Values of model parameters for the gravitational gradients
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APPENDIX B

A RECTANGULAR PRISM AND ITS PARTIAL DERIVATIVES WITH
RESPECT TO ORIGIN AND ORIENTATION

(X19X23X3)

—+

(X}, X3,X5)

Xy

Figure B.1: A rectangular prism represents an anomalous mass measured at point
(X),X,,X3)

B.1 A rectangular prism
In Figure B.1, suppose a rectangular prism is held fix with x"-triad frame parallel
to a local coordinate system: (1,2,3) = (N,E,D), called x -triad frame. The prism has the

dimension of 2Ax} x 2Ax} x 2Ax’ and its center is at (x;,X,X; ) (see also Figure B.2).
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Under a plane assumption, analytic formulae of gravitational gradient components with
cyclic index (i, j) = (1,2,3) due to a rectangular prism are given by [Forsberg (1984),

Jekeli et al. (2003), and Zhdanov et al. (2004)]:

,
Xk,2

x —x)x, —x) ™ e
I'.(x)=kAptan™ () X)), =%, (B.1)
(x; =x{)r 5
and
Ty(0) = —kapnf(x, —x)+r]| 7| with (,j.k) = (1,23) (B.2)

where

(x],x5,X};)=apoint on the prism with respect to x -triad frame

k = Newtonian gravitational constant
Ap =density contrast of the prism

roo=y 0 —x)T H(x —x) +(x - x))]

B.2 Origin and orientation
Suppose the rectangular prism have an orientation, o, about x3 -axis, positive in

counter-clockwise direction with respect to x" -triad frame, at view of end (see Figure
B.2). The transformation of six gradients of tensor from x"-frame to x -frame can be

viewed such that x"-frame is oriented, parallel to x -frame by o at origin (x;,Xx3,X3).
The transformation of the gravitational gradient tensor from I'" to T is

I'=R(a)["R(a)" (B.3)
with rotation matrix

cos(ar) sin(a) O
R(a) =|—sin(a) cos(a) 0 (B.4)
0 0 1
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v
KaR

"
AX;

»ld

"
AX;

14

Figure B.2: A rectangular prism is held fixed with respect to x" -triad frame

For this work, origin (x7,x7,x) and orientation of the prism are treated as unknown
9 12253

parameters. The partial derivatives of gradient components with respect to the
parameters can be derived as follows. We can write (B.4) as a linear form associated

with the unknown parameters, i.e., @ =[x}, x3,x5,a]", as follows:

T,x0] [1 0 0 0 0 0 r%,xx®x3,x3)]

r,x;0)| |0 ¢ s —2¢,8, 0 0TI (x;x,x5,x2)
Ty(x0)|_|0 s> ¢ 428, 0 0 |TI7(x;x,x5,x2) B.5)
r,(x0) | [0 +c,s, —c,s, (€2-s2) 0 0 [I"(xx°,x2,x2) '
I';(x;0) 0 0 0 0 Co  So || TTH(Xx7,X5,X3)
IFnx0)) [0 0 0 0 =Sy o | T5 (X7, X5,X5)




where
¢, =cos(a) and s, =sin(a). (B.6)

Let the unknown parameters 6 = 0, + 60 , where 6, are approximation parameters and
00 are perturbing terms. The gravitational gradient of component ij can be expanded to
a Taylor’s series with respect to # and given by

ol'.(x;0) !
[(x;0)=T(x;0,)+ — o0 (B.7)
00 00,
where
or (x:0) ] or. (x;0 or. (x;0 or. (x;0
[ e )} PG N 1T NI G0
a0 |, 0X| o-0, 0X; o-0, 0X; o-0, (B.8)
+Gl"ij(x;ﬂ)
oo -0

For a convenience of derivations for each oI’ / 00, we define the following relations

(alternatively, the derivatives can be considered in frequency domain, see Forsberg
(1984) for more details):

(i) Diagonal element I'}, of gradient tensor in x"-frame

Let,

u™ = tan” [i;™"] (B.9)
where

x. —x" )x, —x!
K:i,m,n — ( j _|,m)$ k k,n) and (BIO)
(Xi - Xi,l)rl,m,n

I'l,m,n = \/(Xi - X;,l )2 + (XJ - X;’,m )2 + (Xk - X;(,n )2 (B 1 1)

x{, =(=1)'Ax!+x] (similar for x, and x| ) (B.12)
Then,

O} (x;X} X3, %5) b {au}

ii . — kAp Q »m,n 1 . (B 1 3)

where

Q'™ = (=)' (=)™ (-1)" (B.14)
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ot |1 X —x;,nq{ G —x;J)}
ox{ |1+ (K};m’“ )2 L (X = X{ )0 (x ) Lmn
oui™ |1 { (X = Xp) | _1+M}
Ox |1+ (K};m’“ )2 | (X; = X{ )0 1 rlin,n
and
ou |1 e [ —XL,n)z}
X, |1+ (Kl!;m’n )2 L (X =X M | i rl?m,n

(ii) Off-diagonal element I of gradient tensor in x"-frame
Let,

—l,m,n
u;"" =Infx

where

_1’ s
Kijm =[x, - X;(,n )+ 1]

lmn]

Then, we write

8F"(x X\, X5,X3) 2 &G ou, Lm,n
=—kA Q"
. ST

1=1 n

where
a [ e-x)
ox? __Eij’m’“__ .
aui™ |G =xn)
X __E;rm’“__ .
and
at | v & —xL,g}
oxy &™) T

Then, each element oI'; / 00 of (B.8) can be expressed as the following.
(1) For I'y;,
Iy =I5
Iy :% with 1 =1,2,3
or,,
oo

=0
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(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)



(2)For I',,,
ry= Cirlzlz + Sil—‘;'l —2¢,s,I7, (B.27)

Ty _ c b +s) oy -2¢,8, Ly (see the equations of (B.13) and (B.20)) (B.28)
ox’ ox’ ox’ ox;

1 1 1 1

r
68—0122 =-2¢,s,I, +2c,8, 1, +2(s2 —c2)I7, (B.29)
(3) For I'},,
Ty =s.I%, +coTf +2¢,58,T7, (B.30)

F l—w rﬂ
0 11=82a 224_02a 11

+2c,5, 5;_102 (see the equations of (B.13) and (B.20)) (B.31)
X .

ox; Y oxy T ox! * ;
o, =2sc, (I, —T!)+2(c: —s>)I'" (B.32)
aa - avao 22 11 o o 12 .
(4) For I'},,
1—‘12 = Casarg2 _Casarfl +(C(21 _Si)F;’2 (B33)
F 1—*” r” r” .
oy _ c,S, M _ S h+ (c2 —si)h (see the equations of (B.13) and (B.20))
ox° ox° ox° ox°
(B.34)
T
Tz (@2 =62 —(€2 ~sY, +deys, T, (B.35)
oa
(5) For I';;,
r,=cJIf;+s, % (B.36)
r F" F!{ .
s _ c, oy +s, s (see the equations of (B.13) and (B.20)) (B.37)
ox; ox; ox;
T
a@—(xl3:—sml“;'3 +c I, (B.338)
(6) For I',;,
Iy, =-sJI7,+c, I (B.39)
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T I | 4 .
% =-s, % +c, % (see the equations of (B.12) and (B.20)) (B.40)
i X i
or
T:j:—cafg -s I, (B.41)

B.3 The partial derivatives of a rectangular prism in the frequency domain

As can be seen already, the partial derivatives of a rectangular prism are very
complicated in the space domain. Surprisingly, they are simple in the frequency domain.
We simply take the Fourier transform, 3, of the gradient tensors due to a rectangular
with respect to (x,,x,). We have the Fourier transform pair:

Fij(XI:sz;X3) g S(Fij(xl’xz;x3)) = fij(flafz) > (B.42)

(x),x,) < (f},f,) (B.43)
with

3() = j j (Je 2ty dx, (B.44)

—00—00

Thus, the partial derivatives with respect to x_, for m =(1,2), can be readily obtained

m 2

and given by
ol B L~
— = S [(27[1Xm )ri'(flafZ)] (B45)
OX . !
or
8rij ~-1 s r NET
S L@mixg ) Ty 1)] (B.46)

m

where 3" is the inverse of Fourier transform operator

370 = j j (e et gf df (B.47)

—00—00

The partial derivatives with respect to x, is given by

ol

or;, ~
- L - L= 37 [(=2n0)I (f,1,)] with £ =/f7 +1; (B.48)
X3 X3
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APPENDIX C

REARRANGMENT OF DATA TRACKS BY APPLYING ORTHOGONAL
TRANSFORMATION

In this section, we show comprehensive details of rearrangement of gradient data
on the basis of orthogonal transformations and permutations for various cases of data
tracks and sensors.

C.1 Single data track and single sensor (SS)
For a convenience, we write the orthogonal matrix F containing the N orthonormal basis
Vectors v,,v,,..., v, , defined in (6.22) through (6.24) in chapter 6:

F=[v, v, - vy,] (C.1)
with
1
i2nAXf
1 e
e (C2)
N .
eiZnAx(N—l)fp
and
Vi =V, (C.3)
where f, :& for p=0.12,...,N—-1, Ax is sampling interval, and the asterisk
X

denotes complex conjugate. Then,
F'F=FF" =1 and F" =F' (C.4)
For a given Nx N covariance matrix of gradient noise

r@ r1) - r(=(N-1)

g O @ N

, (C5)
r(N=1) r(N) --- r(0)
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or in a compact form

T =[r(i- J)]u

where r(i—j) is a correlation function for i,j=0.1,...,
sense stationary process, it can be shown that the product of F" X F is a diagonal

matrix:

X, =F EssF = [Vo Vgl ZssF
X lr(k)e i2nfyAx (k+0) N lr(k)e—IanoAX(k+l) -
k=0 k=0 k=0
1 ~ r(k)e—iznfle(km) ~ r(k)e—iZRfle(kﬂ) ~
- \/N k=0 k=0 k=0
N-1 ’ N-1 ) N-1
Z r(k)e—IanN _1Ax(k+0) r(k)e—iZTrfN,lAX(k-f—l)
| k=0 k=0 k=0
- —i2nfoAxk | H
r(k)e \
k=0
3 1r(k)e—l2nf1AXk VH
= s ! [Vo Vi VN—l]
= k —i2nfy_3Axk H
r(k)e VN
k=0 ]
ES —i2nkAxf,
Zr(k)e 0
k=0
i 1r(k)e—|2nkAxfl
= k=0
N-1
0 r(k)e—iZTtkAfo,l
k=0

r(k)e—IanoAX(k+(N -1))

r(k)e—ianle(kJr( N-1))

r(k)e—ianN,lAX(k-*—(N—l))
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N —-1. For zero-mean and wide-

(C.7)



C.2 Single data track and multiple sensors (SM)
If we have K multiple sensors, the case of single track can be easily extended as the
following. Given a large data vector

i Yo(Xo) 1
Yo(X,) sensor 0

G A .
Y. (X;) sensor 1
Yo
y :
Y= :1 =Y ) | (C.8)
Yk
YealXo) |

Y 1(X;) |sensor K-1

_yK—l (X N—1)_
with MN x MN cross-covariance matrix
Lsu :[Eij] with (i,J)=01,...,.K-1 (C.9)

where the [i,j] block is the cross-covariance matrix between sensors i and j. Each block
matrix has dimension N x N and its elements are a cross-covariance (or cross-correlation)
function r;of sensors i and j

i =[r,(m-m] for (mn)=04...,N-1 (C.10)
Let the KN x KN transformation matrix be defined as
F,,, =diag(F,.F,,....F,,....F ;) (C.11)

where F, =F (defined in (C.1)) for i=01,...,N—-1, and the KN x KN permutation

matrix Z (Z also is an orthogonal matrix) is constructed from the following algorithm (in
MATLAB format)
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M’ =K
N'=N
k=1
fori=0:N'-1
for j =0:M’-1
Z(:,K) = 1(,i+(-1)*N"); (C.12)
k = 1+k;
end
end

Since the columns of Z form an orthonormal set (with respect to the usual inner product),
Z. is a nonsingular and orthonormal matrix (Harville, 1997). The following expressions,
from (C.13) to (C.17), give an example of permuting a data vector together with its
covariance matrix. Let K =3 and N =2 and a data vector be given by

Yy, |sensor1
Y

sensor 2
y= z (C.13)
22

Y4 |Sensor 3
y32 i

with the covariance matrix

r, O irlz 0 ir13 0
0 r.11 : O r.12 : 0 r.13
______ R
Co r, O irzz 0 irzs 0 | (C.14)
0 My | 0 r, ! 0 r,
r, O ':_rsz 0 :Tr33 0
L O r'31 : 0 r32 : O r33
The permutation matrix constructed using the algorithm of (C.12) is
1 0 0 0 0 O]
0 001O0O
01000O
7 = (C.15)
0 00O01O0
0 01 00O
0 0000 1]
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Then,

ZTyz[yll Ya Yau :ylZ Yo Y32]T (C.16)
with
PR EPI T i
PR PV P i O
T T T T |
7 CL=|-=-—-""--=- e ———————- (C.17)
Py Ty I
|
O | ly Ty Ty
|
L 1My Ty Ty
Since
(ZFSM )(ZFSM )H = (ZFSM )H (ZFSM):IKN and (ZFSM )H = (ZFSM )_1 (C-18)

the following steps show that the product of Z"Fg, X,,F,,Z is a block diagonal matrix
Step I:
Fll,Eq, Fou =[F"E,F| for (i,))=01...,N-1 (C.19)

where the [i,j] block FHZ”F rendersa N x N diagonal matrix

N-1 _ N-1 _ N-1 _
F'E,F = diag(z ry (K)e ™25 3 (K)e 2 LD T (K)e N j (C.20)
k=0 k=0 k=0

Step I1:

After rearrangement, the transformed covariance matrix ESM of X, isablock diagonal

matrix. It can be done by applying the KN x KN permutation matrix Z, constructed by
using (C.12) with M'=K and N'=N:

T = Z'Fly o FauZ = diag(e, (o), Ea (F1)s.o Zgu (F)r. o Zy (Fua))  (C.21)

where the i block X, (f.) is
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Z
N

o (k)e—|2nkAxf

=~

b
ko

ESM (fl) _ 10 (k)e—ianAxfi

=~
Il
o

N-1

Thus, we also have

Ysm _ZSHMFSMy_ """ e =

_i2 tkAXF:
Z 10 (K)E e
| k=0

Z
H:::

(k)e —127kAXF;
ll

=

=0

~ : 2 kA

—i xf;
Z Fk-10 (ke ™"
k=0

_yK—l (fN—l)_
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1 (k)e—i 2nkAXf;

2z
=

ro(K_l) (k)e—iZRkAxfi

=
o

P4
-

rl( KD (k)e —i2kAXf;

X
O

N-1

—i2nkAXF,
Zr(K _1)(K-1) (k)e e

(C.22)

(C.23)



C.3 Multiple data tracks and single sensor (MS)
For a convenience, we write the data vector of (6.58):

y(0,0)
y(1,0) track O

y=| y(N-1)) (C.24)

y@,M-1) [track M-1

y(N —i,M ~1)

and the Mx N covariance matrix, X,,s, of (6.59), where M is the number of data tracks
and N is the number of data samples per track,

Tys = [):pq] for p,g=01...,M-1 (C.253a)

The X, isa Nx N block cross-covariance matrix of tracks i and

0 =[r (- i.p-a)], for i,j=01...,N-1 (C.25b)

where r(i—j,p—q) is a correlation function. We also assume sampling interval is AX
and track spacing is Ay.

Given MN x MN orthogonal matrices,

F, =diag(F,,F,,...,F,,...,F,,_,) (C.26)
and
F|, = diag(F},F,...,F/,....F}_) (C.27)
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where the i" block matrix, F, is defined as (C.1) and has dimension NxN. The i"

block matrix F/ also is the same as (C.1) with the replacement of Ay and M and has

dimension M xM . Rearranging rows and columns of the product of F,,.X,,.F,,s using

the MN x MN permutation matrix Z , whose columns are obtained by permuting
(rearranging) the columns of the MN x MN identity matrix I, based on (C.12) with

M'=M and N'=N.

Since

(FMSZFI(/IS )(FMSZFI(/IS )H = (FMSZFI(/IS )H (FMSZFI(/IS ) =Tyn (C-28)
and

(FMSZFI(/IS )H = (FMSZFI(/IS )_l (C . 29)

it can be shown that the product of F\;{Z"F, X, F,sZF; is a block diagonal matrix as
follows:

Step 1

Fljs Eys Fys = [F"E,F]  for p,g=01,..,M-1 (C.30)
where
N-1 . N-1 )
Z rpq (k, p _ q)e—IZﬂ:kAXfo ’Z rpq (k, p _ q)e—IZﬂKAXfl e
F"L F =diag| k=0 (C.31)
Z rpq (k, p _ q)e—iZTckAfo,1
k=0

Step 11
i f ’i f 1---1i f yeoey .
ZHFIGSEMSFMSZ:diag[~MS( o) MS( 1) MS( |) ] for i=01,...,N-1 (C.32)
s (Froa)
where
ZMs (fi) =
U i N-t . N-1 _ -
Z rOO (k,O)e_lznkAXfi r01 (k,—l)e_lznkAXfi - rO,M—l (k,—M + 1))e—l27'(kAxfi
e k=0 k=0
N-t . N-1 _ N1 |
rlo (k,l)e_lznkAXfi Z r11 (k,O)e_lznkAXfi e Z rl V1 (k,_M))e—IZTCkAXfi
k0 : k=0 ) ) ko .
N . i =t . ) ' N-1 . )
Z rM—l,O (k, M _1)e—|2nkAxfi Z rM—l,l(kv M — Z)e—IanAxfi . Z rM—l,M—l(kvo)e_lznkAXfi
-0 k=0 k=0

(C.33)
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Step 111

Yy = FI(AZZHFJSZMSFMSZFI(AS

= diag(F""E s (F) )F', F'"E  (F)F',...,F'"E, o (f)F'

(C.34)
where

o FRE(F)F)

YENE]
[er(k k )e |2n(fAXk+f0Ayk)j

k'=0 k=0

F'Hi (f )F' 3 (Z I‘(k, kr)e—iZn(fiAkarfl’Ayk') jV:(LH
Ms \ i -

M-1N-1
(zzl’(k k )e—IZTE(f iAXK+Tyy lAyk)J i
| \k'=0k=0

<

-1

P4

-1 M-1N-1

r(k k' )e—|2rr(f iAXk+TgAYK') er(k k' )e_lzﬂ(fAXk+flAyk)

yeooy
k'=0 k=0

r(k kr)e —i2n(f;Axk+f},_,AyK")
0

i gk

= diag| ©

LN

DME £

=

0k

(C.35)
We have (see also (6.60) in chapter 6)

________ y(f ;)

N L~ | V(L) -
Vs = with §,s(F)=| 7" for i=01...,N-1 (C.36)

________ y(fi. fua)
yMS (fN 1)

C.4 Multiple data tracks and multiple sensors (MM)

For the case of multiple tracks, we assume we have a large number of tracks, say M, and

N data samples per track and track spacing is Ay. For a convenience of derivations, the
KMN x 1 data vector of (6.72) in chapter 6 is written
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y;(00) ]
Yy, (10) track 0
CJYiN=L0)
" ] Yi (0,1)
Yo
y, (L1 track 1
Y.
y=| = |withy, =| y(N-11) for i=04,...,K—-1
yi ....... [ S S AU PO
REEN
y.ooM-1y |
y,,LM-1) [|track M-1
_yi (N _1! M _1)_

and the KMN x KMN cross-covariance matrix of (6.73) is

0j U ZO(K—l)
1j Z'1(K—1)

Zio Zil X Zi(K—l)

_Z(K—l)o Z(K—l)l Z(K—l)j Z(K—l)(K—l)_

The [i,j] block, X, of (6.74), having dimension MN x MN is

ij?

£(0,0) £0) - XOn) - XOM-1)
£(10) *L) - T@Ln) - ELM-1)

_Z(M.—l,O) Z(M.—l,l) Z(M;l,n) . z(M—i,M—l)_
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The [n,m] block, X(m,n), isthe Nx N cross-covariance matrix between tracks
mand n is

X(m,n) =[r,, (i-jm-n)]; for (i,j)=01..,N-1 (C.40)

where r_,, is a cross-correlation (covariance) function between tracks m and n.
Let us define F,,,, -transformation matrix, having dimension KMN x KMN and block
diagonal structure,

Fum = ’ . (C.41)

where the block F, has dimension MN x MN and contains the N x N orthonormal
matrix, F, of (C.1) as

F, = . (C.42)

And the KMN x KMN transformation matrix F,,,, is defined as

F O

y

' Fy
Fyw = . (C.43)

o F

y

where the block F, has dimension MN x MN and contains the M xM orthonormal
matrix, F', of (C.1) as

F' O

F, = F . (C.44)
O | F’

where F' is defined as (C.1) with the replacement of Ay and M.
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To rearrange rows and columns of (C.37) and (C.38), the KMN x KMN permutation

matrices Z,,,, is defined as:

Zy =diag(Z,.2,,....2,,....Z,, )

(C.45)

where the MN x MN permutation matrix Z, = Z, based on (C.12) with M'=M and
N'=N for i=01,...,M-1. The KMNxKMN permutation matrix Z,,,, is constructed
by using (C.12) with M' =K and N'=MN.

Since

(FMMZMMFI(AMZ;\AM )(FMMZMMFI(/IMZ’MM )H = (FMMZMMFI:/IMZ,MM )H (FMMZMMFl(/IMZ,MM ) = IKMN

and

(FMMZMMFI(/IMZ;VIM )H = (FMMZMMFI:/IMZ;\/IM )71

(C.46)

(C.47)

it can be shown that the product of Z\5 F/ Z 0 Fo Z v Fana Zoama Fon Z v Yields a
block diagonal matrix, say iMM , as the following:

Step 1
Fl\';:M ZumFum =
FE E00 Fx FXH EOlFx
FxH Z10 Fx FxH leFx
FxHEiOFx F:‘EilFx
_FxH E (K—l)OFx F:‘ z“(K—l)lFx

where the [i,j] block

F/'X,F, =
F"X(0,0)F F"L(0)F

F"Z(L0)F F L()F

F"X(m,0)F F"L(m)F

F'S(M-10)F F"X(M-11F

F/' X F,
F'Y

1) x

F/'Z.F,

X

H
F, X y)F

F"2(0,n)F
F'Z(1,n)F

F"Z(m,n)F
F'E(M-1,n)F
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FE EO(K—l)Fx
FxH Zl(K—l) Fx

: (C.48)
FXH Ei(K—l) Fx

H
Fx E(K—l)(K—l) Fx i

F"L(0,M-1F
F'S(LM-1F

F'ES(m,M-DF

F'T(M —'1, M —1)F |
(C.49)



With orthogonal property of F, therefore, the block F"X(m,n)F is a diagonal matrix.

Step 1I

Next, we rearrange the transformed observation vector, F,,,y, and its corresponding
covariance using the KMN x KMN block-diagonal matrix Z,,, We have

ZnMFMHMZ‘MMFMMZMM =

Z"F'LF,Z  Z"F'LFZ - Z"F'L FZ - Z"FL,,FZ

Z"F'r F Z Z"FL, F,Z - Z"F/L FZ - Z"F'%L,,FZ

Z"F'L, F.Z Z"F'L, Kz - Z'FL,FZ - Z"FL  FZ
ZFE o FZ ZVFE WK Z o ZFRE G FZ - ZUFE gy FRZ
(C.50)

As a result, the product of Z"F;'X,F,Z yieldsa MNxMN block-diagonal matrix.

Step 111

We now apply the MN x MN transformation matrix F,,,, of (C.43) to the transformed
observation vector, i.e. F,;\, Z1 F,\y,and its respective covariance matrix

F,(A'T\AZQMF,\'IMEMMFMMZMMFB'AM={F;*ZHFXHZ”FXZF),} for (i,j)=0....,.K-1 (C.51)

i
where the [i,j] block F;' Z"F,'X,F,ZF, isa MNxMN diagonal matrix.

Step IV

Next, rearranging rows and columns of vector F;,}, Z" F. y and
F oz Fo i FunZou Fane USING Z1,,, in order that, after arrangement, the

transformed covariance matrix becomes a block diagonal matrix, say EMM , in which
each block has Kx K dimension. That is

~

Z o = Ziana Fim Z aw Faana Znana Faams Ziw Faana Z i
= diag(EMM (Fo)s Zma (F) B (61, Zag (fN—l))
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where the i" block )EMM (f,) having dimension KM x KM is
2o ()= diag(i(fi,f(;),i(fi,fl') ..... D3I ( 1 3 i(fi,fh'ﬂ_l)) (C.53)

with the K x K block

- M-1N-1 ) .
(1)) { r. (k,k')e"Z”(Aka”Aykf")} for (m,n)=04,...,.K-1 (C.54)
k'=0 k=0 mn
We also have
Y (fo).
Yum(f2)
§MM = Z!l\;l-'MFI(AFI:AZaMFGMy =|-z-—--<- (C.55)
Y (f)
Y um (Fac) |
with the KM x1 vector
L y(f o) ]
y(f..f)
Vo (f)= : fori=01.. N-1 C.56
yMM( I) y(fl,f;) ( )
Kunimi
and the K x1 vector
Yo(fu 1))
vy, (f. f!
y(f,.f) = yl(; /) for j=01,...,M-1 (C.57)
yK—l(fi’fj’
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