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ABSTRACT 
 

Due to the complementary error characteristics of the Global Positioning System 
(GPS) and Inertial Navigation System (INS), their integration has become a core 
positioning component, providing high-accuracy direct sensor georeferencing for 
multi-sensor mobile mapping systems. Despite significant progress over the last decade, 
there is still a room for improvements of the georeferencing performance using 
specialized algorithmic approaches. The techniques considered in this dissertation include: 
(1) improved single-epoch GPS positioning method supporting network mode, as 
compared to the traditional real-time kinematic techniques using on-the-fly ambiguity 
resolution in a single-baseline mode; (2) customized random error modeling of inertial 
sensors; (3) wavelet-based signal denoising, specially for low-accuracy high-noise 
Micro-Electro-Mechanical Systems (MEMS) inertial sensors; (4) nonlinear filters, 
namely the Unscented Kalman Filter (UKF) and the Particle Filter (PF), proposed as 
alternatives to the commonly used traditional Extended Kalman Filter (EKF). 

The network-based single-epoch positioning technique offers a better way to 
calibrate the inertial sensor, and then to achieve a fast, reliable and accurate navigation 
solution. Such an implementation provides a centimeter-level positioning accuracy 
independently on the baseline length. The advanced sensor error identification using the 
Allan Variance and Power Spectral Density (PSD) methods, combined with a 
wavelet-based signal de-noising technique, assures reliable and better description of the 
error characteristics, customized for each inertial sensor. These, in turn, lead to a more 
reliable and consistent position and orientation accuracy, even for the low-cost inertial 
sensors. With the aid of the wavelet de-noising technique and the customized error model, 
around 30 percent positioning accuracy improvement can be found, as compared to the 
solution using raw inertial measurements with the default manufacturer’s error models. 
The alternative filters, UKF and PF, provide more advanced data fusion techniques and 
allow the tolerance of larger initial alignment errors. They handle the unknown nonlinear 
dynamics better, in comparison to EKF, resulting in a more reliable and accurate 
integrated system. For the high-end inertial sensors, they provide only a slightly better 
performance in terms of the tolerance to the losses of GPS lock and orientation 
convergence speed, whereas the performance improvements are more pronounced for the 
low-cost inertial sensors. 
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CHAPTER 1 

 
 

INTRODUCTION 
 

1.1 Background and motivation 
In the last two decades, research related to the integration of both the Global 

Positioning System (GPS) and the Inertial Navigation System (INS) has received a lot of 
interest in the mobile mapping community (see, for example, Bossler et al., 1991; Bossler, 
1992; Salychev & Schaffrin, 1992; Schwarz et al., 1993; Wang et al., 1995; El-Sheimy, 
1996; Grejner-Brzezinska, 1997 & 1999; Applanix Corp., 2007). With a full GPS 
constellation, the GPS sensors can provide stable long-term high-accuracy position and 
orientation estimates for a moving platform, with the sampling rates of up to 20Hz. 
However, the system may easily experience short-term losses of signals due to the signal 
blockage, interference or jamming, especially in urban environments. The self-contained 
INS or Inertial Measurement Unit (IMU), is not subject to the geometric line-of-sight 
constraints that GPS suffers from, and can provide short-term high-accuracy position and 
orientation estimates with high sampling rates (>20Hz). The INS is a navigation system 
based on the IMU sensor assembly. Note that in this dissertation, the terms INS and IMU 
will be used as synonyms. The accuracy of the INS will degrade with time due to the 
uncompensated gyro and accelerometer errors. The resulting errors in the horizontal 
components (i.e. North and East of position; roll and pitch of orientation) are bounded by 
the Schuler period, whereas the errors in the height and heading are unbounded (see, for 
example, Grejner-Brzezinska et al., 1998).  

Due to the complementary error characteristics of GPS and INS, GPS/INS fusion has 
become a standard configuration and a core positioning component for geospatial data 
collection and mapping tasks. The GPS/INS fusion can continuously provide accurate 
position and orientation. The position and orientation determination by direct use of 
GPS/INS fusion is referred to as the direct sensor georeferencing or direct platform 
orientation (DPO), which is understood as direct measurement of the exterior orientation 
parameters (EOP, including the three position coordinates and three orientation angles) of 
the imaging sensors of a multi-sensor integrated system. GPS/INS-based direct sensor 
georeferencing supports airborne surveying, remote sensing, targeting, guidance and 
monitoring of moving vehicles, installed in airborne, marine and land-based platforms. In 
a modern multi-sensor integrated system customized for mapping tasks, land-based or 
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airborne, the GPS/INS fusion is mandatory as a core component supporting DPO of the 
image sensors, such as digital cameras, Light Detection And Ranging (LiDAR) devices, 
multi-spectral or hyper-spectral scanners, or Interferometric Synthetic Aperture Radar 
(InSAR) and Synthetic Aperture Radar (SAR) instruments. If high-end imaging sensors 
are used, the accuracy of the navigation performance of the GPS/INS component 
determines the ultimate accuracy of the mapping products (Grejner-Brzezinska et al., 
2005a & 2005b). In recent years, with the emergence of several university-developed 
prototypes of GPS/INS integrated systems, such as GPSVanTM (Bossler et al., 1991; 
Bossler, 1992), VISATTM (El-Sheimy, 1996), AIMSTM (Grejner-Brzezinska, 1997), and 
commercial products, such as Applanix POS/AV (Scherzinger, 1997), GPS aided by INS 
has been successful in providing position and orientation for precise 3-D surveying and 
navigation (Grejner-Brzezinska, 1999). 

An example application of a GPS/INS-based LiDAR terrain mapping system is 
illustrated in Figure 1.1. The fundamental georeferencing equation (1.1), shown below 
for a LiDAR sensor, is the primary tool for applying the directly determined EOP to 
transform the measured sensor coordinates to the ground coordinates of targets in the 
selected mapping frame (Grejner-Brzezinska et al., 2005a & 2005b; Yi & 
Grejner-Brzezinska, 2006b). The accuracy of the resulting coordinates depends upon a 
number of factors, such as LiDAR error specifications (e.g. the range measurement 
accuracy, the scan angle range, scan angle errors and footprint size, etc.), the spatial 
locations of the sensor within the platform (i.e., translational and rotational 
misalignments), the navigation trajectory (mainly the vertical component) and orientation 
(mainly the horizontal components: roll and pitch) as well as their solution accuracy. The 
spatial location of the sensor within the platform can be accurately determined by the 
sensor calibration procedure. If a well-calibrated LiDAR sensor is used, the target 
accuracy of the derived surface terrain model is mainly dependent on the position and 
orientation accuracy provided by GPS/INS. In order to evaluate the sensitivity of the 
sensor position and orientation accuracy to the realized ground target accuracy, a Monte 
Carlo simulation with 200 particles was performed to demonstrate the horizontal and 
vertical accuracy of a ground point for a modern LiDAR sensor commonly used in 
airborne mapping applications (as shown in Table 1.1).  
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Figure 1.1. GPS/INS-based direct sensor orientation for LiDAR terrain mapping 
application. 
 

)(,, INSL
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L
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where: kMr ,  is the vector of 3D coordinates of point k in the mapping frame; INSMr ,  

is the vector of 3D coordinates for the INS in the mapping frame obtained by GPS/INS; 
M
INSR  is the rotation matrix between the INS body frame and the mapping frame, 

measured by the INS; INS
LR  is the boresight rotation matrix between the laser sensor 

frame and the INS body frame; Lr  is the vector of 3D object coordinates in the laser 

frame; INSb  is the vector of three boresight offset biases between laser sensor frame and 

the INS body frame. 
In Table 1.1, the following simulation parameters were used: The flight height is 

1000 m above the ground; the translational and rotational sensor misalignment accuracies 
are ±1 cm and ±10 arcsec, respectively; the LiDAR range and scan angle measurement 
accuracies are ±1 cm and ±5 arcsec; the effects of the horizontal orientation components 
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(roll and pitch) and of the scan angle are not considered here (i.e., zero value for the roll, 
pitch and scan angle); the local navigation system (i.e., NEU) is selected as the target 
mapping coordinate system. 
 

Navigation accuracy (1σ)  Target position accuracy (1σ) 
σPOS [m] 

magnitude 
σORI [arcsec] 
magnitude 

σNE [m] 
magnitude 

σU [m] 
magnitude 

0.01 10.0 0.12 0.02 
0.01 30.0 0.26 0.02 
0.01 90.0 0.75 0.02 
0.01 180.0 1.48 0.02 
0.01 720.0 5.92 0.04 
0.05 10.0 0.14 0.05 
0.05 30.0 0.27 0.05 
0.05 90.0 0.75 0.05 
0.05 180.0 1.48 0.05 
0.05 720.0 5.92 0.07 
0.10 10.0 0.19 0.10 
0.10 30.0 0.30 0.10 
0.10 90.0 0.76 0.10 
0.10 180.0 1.49 0.10 
0.10 720.0 5.92 0.11 

 
Table 1.1. Simulated ground-target position accuracy for an airborne GPS/INS/LiDAR 
mapping system. 
 

Clearly, high-accuracy position and orientation for the ground-target geo-registration 
require the best navigation performance of the GPS/INS systems. The centimeter- to 
decimeter-level positioning accuracy of the ground target point requires centimeter and 
around 0.0028˚ (10 arcsec) accuracy in sensor position and orientation. These accuracies 
are currently provided under favorable GPS geometry and continuity of the 
dual-frequency GPS signals, in conjunction with the navigation-grade IMUs. It should be 
emphasized that these systems, however, are very expensive. 

Skaloud (2002) lists the achievable orientation accuracy for GPS/INS systems, as a 
function of the gyro grade, assuming GPS update rates anywhere between 1 and 15 
seconds (Table 1.2). The attitude error characteristics can be decomposed into a 
time-dependent spectrum. Namely, a one-second interval primarily corresponds to the 
noise, while at 1-3 min the short-term drifts prevail, which may not be fully observable 
by GPS, even at a 1-second update rate. The absolute orientation error over longer 
periods of time (with GPS aiding) depends on the dynamics of the trajectory; this means 
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that performing maneuvers along the trajectory would improve the gyro bias estimation. 
The error includes the unmodelled part of the long-term gyro drift, not observable by 
GPS, the unmodelled short-term gyro drift, and the noise.  
 

Navigation grade sensor 
(typically, RLG) 

Tactical grade sensor 
(typically FOG, DTG) 

Time defining the 
orientation error 
characteristics pitch and roll 

[˚] (arcsec)  
heading 

[˚] (arcsec) 
pitch and roll 
[˚] (arcsec) 

heading 
[˚] (arcsec) 

1 s 0.0008–0.0014 
(2.88−5.04) 

0.0008–0.002 
(2.88−7.2) 

0.001–0.02 
(3.6−72) 

0.001–0.05 
(3.6−180) 

1-3 minutes 0.0014–0.003 
(5.04–10.8) 

0.004–0.005 
(14.4–18) 

0.005–0.04 
(18–144) 

0.008–0.1 
(28.8–360) 

Absolute-longer time Same as for 1-3 minutes but maneuver-dependent 
 
Table 1.2. Orientation performance based on GPS/INS integration (Skaloud, 2002). 
 

In order to improve the ultimate accuracy of the final mapping products without 
increasing the cost of the sensors, the navigation algorithms and data processing routines 
will have to be improved. Currently, a substantial research effort is directed towards 
further improvement in the navigation performance (for example, Nassar, 2003; 
Grejner-Brzezinska et al., 2005a & 2005b; Yi et al., 2005; Yi et al., 2005; Yi & 
Grejner-Brzezinska, 2006a & 2006b). The majority of the existing GPS/INS 
implementations for DPO are based on the high-end navigation-grade inertial sensors, 
whose prices are still rather high, as already mentioned, while the performance of the 
consumer-grade inertial sensors still does not meet the high-accuracy requirements of the 
majority of the mapping projects. With the growing scope of applications of the scanning 
imaging systems and increasing need for automation of imaging processes, the primary 
objective of this dissertation is to further improve the accuracy and reliability of the 
GPS/INS integrated systems designed for mobile mapping applications, especially in 
confined environments causing frequent losses of GPS lock and lower positioning 
accuracy due to long GPS baselines. With the rapid emergence of the low-cost 
micro-electro-mechanical-sensor (MEMS) IMUs, the second objective, is to extend the 
applicability of the low-end MEMS IMU to DPO. The nonlinear Bayesian filters have 
been of interest to the navigation community in the last few years as an alternative 
approach to multi-sensor integration. Thus, the third objective, is to test several 
representative nonlinear filter designs, as alternatives to the Extended Kalman Filter 
(EKF) in GPS/INS integration.  

In order to meet the objectives specified here, novel algorithms and data reduction 
procedures as well as state-of-the-art approaches to sensor error modeling are 
implemented in this dissertation to improve the performance of the existing high-end 
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sensors, and to support the use of low-end sensors in mapping applications. Four 
approaches to potential improvements in  GPS/INS-based DPO performance in both 
land-based and airborne platforms are investigated in this dissertation, including (1) a 
single-epoch GPS positioning technique supporting the network mode as an alternative to 
the commonly used single-baseline solution, which dominates the position accuracy of 
GPS/INS integrated systems, and can provide better calibration to the inertial sensor 
errors; (2) extended stochastic error modeling of inertial sensors; (3) wavelet-based signal 
de-noising, which mainly applies to the low-end MEMS sensors; (4) nonlinear filters as 
alternatives to the Extended Kalman Filter. The example analysis for these approaches 
using experimental and simulated data indicates that 1) it is possible to further improve 
the navigation performance and ultimately the target accuracy using multi-sensor 
integrated systems, and 2) it is feasible to exploit the capability of the low-cost MEMS 
IMU integrated with GPS and other navigation/orientation sensors but only for 
low-accuracy mobile mapping applications. 

Except for the aforementioned techniques investigated in this dissertation, other 
techniques might also be beneficial to the objectives described here. Figure 1.2 illustrates 
the possible approaches to achieve the research objectives for an example system based 
on the tightly-coupled integration. For example, the accurate gravity compensation using 
the Deflection of Verticals (DOVs) results in better navigation performance for the 
high-end inertial sensor (see, for example, Grejner-Brzezinska & Wang, 1998; Jekeli, 
2001; Grejner-Brzezinska et al., 2003; Grejner-Brzezinska et al., 2005a & 2005b). The 
automatic trigger to request periodical stops of the vehicle can improve the performance 
of the land-base GPS/INS integrated system by performing the zero-velocity 
measurement update (ZUPT) (see, for example, Grejner-Brzezinska et al., 2001a & 
2001b). In the GPS/INS–based imaging systems, the image component feedback can also 
bound the INS error drifts when GPS is not available in the confined environments (see, 
for example, Hassan et al., 2006; Moafipoor, 2006; Veth and Raquet, 2006). Other 
sensors, for example, the altimeter, the magnetic sensors, pseudolites, and multiple GPS 
antenna systems supporting attitude estimation, can form a more reliable GPS/INS-based 
multi-sensor integrated system (see, for example, Yi et al., 2003; Grejner-Brzezinska & 
Yi, 2003; Grejner-Brzezinska et al., 2006). 
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Accelerometers Gyroscopes

Inertial Sensor Compensation

Inertial Navigation Computation

Position, Velocity and Orientation

Rover Receiver Base Receiver

Form Double Difference

Integer Ambiguity Resolution

Position, Velocity, Orientation
Sensor Error

Lever Arm Offset

Extended stochastic error model
Network-based epoch-by-epoch

RTK positioning techniqueWavelet-based signal de-noising

Nonlinear filters

Acurate gravity compensation

ZUPT Image component feedback

Altimeter, magnetic sensors

Multi-antenna system, ...
 

Figure 1.2. Possible approaches to achieve research objectives in this dissertation. 
 
1.2 Structure of the dissertation 

Chapter 1 is the introduction, which summarizes the background and motivation of 
this dissertation. Chapter 2 reviews the GPS, INS and their integration techniques, and 
describes the hardware, algorithms and software suites used in and developed for this 
dissertation. Chapter 3 reviews the conventional mathematical model for GPS, as used in 
GPS/INS integration, and introduces the single-epoch GPS positioning technique 
supporting network mode to provide distance-independent and epoch-independent 
kinematic solutions with the uniform and reliable accuracy. Chapter 4 investigates the 
extended stochastic error identification and modeling techniques for inertial sensors. 
Chapter 5 introduces the wavelet-based signal de-noising technique to improve the 
performance of inertial sensors, especially the low-cost MEMS IMUs. The nonlinear 
filters, as alternatives to EKF, are investigated in Chapter 6. The conclusions and 
recommendations are presented in Chapter 7. 
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CHAPTER 2 

 
 

GPS/INS INTEGRATION 
 

This chapter provides a brief introduction to the Global Positioning System, the 
Inertial Navigation System, and their integration principles. The mathematical models for 
the GPS-only and INS-only positioning algorithms, as well as the filtering technique for 
their integration, are summarized here. The software and hardware components designed 
for and analyzed in this dissertation are introduced and illustrated at the end of this 
chapter.  
 
2.1 Introduction to the Global Positioning System (GPS) 

Even though the Global Positioning System was originally designed by the U.S. 
Department of Defense (DoD) for military purposes, currently, civilian applications are 
expanding rapidly, thereby supporting a number of navigation and positioning services 
worldwide under all-weather, any-time conditions. GPS is a radio navigation system that 
allows the determination of the target position and velocity based on simultaneous range 
measurements to multiple known signal-transmitting stations, i.e., GPS satellites, by 
measuring the travel time of the radio-navigation signal (Hofmann-Wellenhof et al., 1997; 
Leick, 1995). The satellite navigation system using GPS-like radio signals from the 
satellites to provide the navigation services to the users with global coverage are referred 
to as Global Navigation Satellite Systems (GNSS), which currently includes, the fully 
operational USA-based GPS, the Russian GLObal NAvigation Satellite System 
(GLONASS), the future European Galileo positioning system (Galileo), the Japan Quasi 
Zenith Satellite System (QZSS), and the Chinese Compass satellite system. Only the GPS 
is considered explicitly in this dissertation.  
 
2.1.1 One-way GPS measurement model 

With the full operational capability of the GPS constellation realized in 1995 and 
advanced GPS receiver tracking techniques, the dual frequency geodetic-grade GPS 
sensor has become the primary positioning device in multi-sensor integration for direct 
sensor georeferencing. The basic, one-way raw GPS observations for one receiver and 
one satellite of the dual frequency GPS sensors include the code pseudo-ranges (derived 
using C/A1, P1(Y1), and P2 (Y2) codes) and the carrier-phase pseudo-ranges (Φ1 and Φ2) 
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measurements for position determination, and the Doppler measurements (D1 and D2) for 
velocity determination. Currently, three Block IIR-M GPS satellites also broadcast a 
second civilian code measurement C/A2 on L2 frequency (1227.60MHz) and a third 
civilian code measurement P5 will be available on the new L5 frequency (1176.45MHz) 
in the future. These GPS observations are biased by several error sources. The GPS 
observations come with a stochastic error model representing their noise characteristics, 
to be used in the least-squares adjustment process that determines the position and 
velocity. The major nuisance error sources, which affect the GPS observations, include 
satellite and receiver clock biases and drifts, satellite orbit errors, atmospheric (i.e., 
ionospheric and tropospheric) delays, environment-related multipath effects, hardware 
related inter-channel and inter-frequency biases, etc. Equations (2.1-2.6) show the 
mathematical models that relate these one-way GPS observations for receiver i and 
satellite k to the unknown parameters (position and velocity vectors) and other major 
nuisance terms. Various carrier-phase linear combinations are also widely used, together 
with the raw one-way GPS observations, and a general carrier-phase linear combination 
form is shown in equation (2.7). 
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where the subscript i stands for a GPS receiver; the superscript k stands for a GPS 

satellite; the subscripts 1 and 2 stand for the carrier frequencies on L1 and L2; m and n are 
integer coefficients for the carrier-phase linear combinations; dot above the variables 
stands for the time derivative; ()k

i represents the one-way variables relating to receiver i 
and satellite k; ()i represents the variables relating to receiver i only; ()k represent the 
variables relating to satellite k only; P1, P2 and Φ1, Φ2 represent the code and 
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carrier-phase pseudo-range measurements on L1 and L2 in meters; D1 and D2 represent the 
Doppler measurements on L1 and L2 in meters per second; ϕ1 and ϕ2 represent the 
carrier-phase pseudo-range measurements on L1 and L2 in cycles; 

222 )()()( i
k

i
k

i
k

i
kk

i ZZYYXX −+−+−=−= rrρ  is the geometric range between 

the receiver i and satellite k; r is the position vector for the receiver or satellite in a 

selected coordinate system; ( ) ( )i
k

i
k

T
i

k
k
i rr

rr
rr

&&& −
−
−

=ρ , and r&  is the velocity vector for the 

receiver and satellite; c is the velocity of light; dt and dT are the receiver and satellite 
clock errors; M1, M2 and m1, m2 are the multipath errors for code and carrier-phase 

measurements on L1 and L2, respectively; 2
1

TEC3.40
f

I ⋅
=  is the ionospheric delay on the 

L1 code measurement; TEC is Total Electron Contents along the ray of the GPS signals; 

the 2

2
1

ff
f

=β  is the coefficient for the ionospheric delay on L2 with respect to the 

ionospheric delay on L1; λ1, λ2 and f1, f 2 are the wavelengths and frequencies on L1 and 

L2, respectively; N1, N 2 and *
1N , *

2N  are the carrier-phase integer ambiguities and 

initial non-integer fractional parts on L1 and L2, respectively; *
1N  and *

2N  also include 

the inter-frequency bias terms on L1 and L2 carrier-phase measurements (ϕ1 and ϕ2) with 
respect to L1 code measurements (P1), which are inseparable from the actual initial 
non-integer fractional phase on both frequencies; the e1, e2 and ε1, ε2 are the code and 
carrier-phase pseudo-range measurement noises on L1 and L2, respectively; v1 and v2 are 
the code and Doppler measurement noises on L1 and L2, respectively; Bi and Bk are the 
differential code biases (DCBs) for receiver i and satellite k. 

These major error terms shown in equations (2.1-2.7) should be 1) compensated 
using appropriate a priori models, or 2) estimated together with the unknown parameters, 
or 3) eliminated using some specific methodologies, such as forming linear combinations, 
or 4) simply ignored (if applicable or feasible) according to the purposes of the required 
applications. For example, GPS satellite clock errors can be modeled as a second order 
polynomial function using the broadcast coefficients in the navigation message, or can be 
compensated using the ultra-rapid, rapid or final precise satellite clock products that are 
provided with various time latencies and various accuracies. The International GNSS 
Service (IGS) (http://igscb.jpl.nasa.gov/) can provide the ultra-rapid, rapid or final precise 
satellite orbit products instead of the broadcast satellite orbit product in the navigation 
message to minimize the satellite orbit errors. Most of the tropospheric delay effects can 
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be eliminated using a priori tropospheric models, for example, the Hopfield model 
(Hopfield, 1969). The Klobuchar ionospheric model, using the broadcast ionospheric 
coefficients in the navigation message, can only compensate around 50 percent of the 
ionospheric delay effects (see, for example, ICD-GPS-200). The IGS CODE (Center for 
Orbit Determination in Europe) analysis center generates the daily Global Ionospheric 
Maps (GIMs), which are much better than the broadcast Klobuchar ionospheric model. 
GIMs are produced using the measurements from about 200 globally distributed 
GPS/GLONASS sites (http://www.aiub.unibe.ch/ionosphere.html). The GIMs are 
delivered in an IONospherie map EXchange (IONEX) data format, supporting the 
exchange of 2- and 3-dimensional Total Electron Content (TEC) in a geographic grid 
(Schaer & Gurtner, 1998). The GIM products are also delivered as a Klobuchar-style 
ionospheric coefficients derived from the global ionospheric model.  

The dual-frequency GPS receivers will allow the cancellation of the first-order 
ionospheric delay using the ionospheric-free linear combinations between L1 and L2 
frequencies. As a by-product of the GIMs, the satellite instrumental biases (i.e., satellite 
differential code biases, DCBs) for all the GPS/GLONASS satellites are also provided by 
IGS to compensate for the satellite instrumental bias (Bk) term in equation (2.2). 
Multipath effects are difficult to model and are normally decreased using advanced 
antenna hardware designs. The inter-channel biases between different satellite channels 
(not shown in equations (2.1-2.7)) are only considered for very high-accuracy (for 
example, millimeter level) applications. GPS carrier-phase integer ambiguities are very 
important when dealing with the carrier-phase positioning, and numerous techniques, 
often referred to as Ambiguity Resolution (AR), have been proposed to estimate or 
eliminate them (see, for example, Euler & Schaffrin, 1990; Teunissen, 1993 & 1994; 
Hatch 1990; Hatch & Euler, 1994).  

 
2.1.2 Double-difference GPS measurement model 

Normally, in order to provide the highest accuracy for real-time kinematic (RTK) 
applications, the differential GPS (DGPS) in a double-difference (DD) mode between 
two receivers and two satellites using high-accuracy carrier-phase measurements, though 
biased by the ambiguities, is commonly applied. In the double-difference mode, the 
observations between two receivers (base and rover) and two satellites are differenced, 
which allows for canceling (or a significant reduction) the majority of common error 
sources while leaving some differential distance-dependent errors (i.e., differential GPS 
orbit and clock errors as well as differential atmospheric delays that become significant 
for long baselines). The aforementioned data reduction and/or data compensation by the a 
priori error models and differential techniques simplify the mathematical models shown 
in equations (2.1-2.7), and equations (2.8-2.13) are normally implemented in the majority 
of GPS software packages used for position and velocity determination. Both the 
one-way and double-difference models are equivalent (i.e., lead to identical least-squares 



 12

adjustment results) under the conditions presented by Schaffrin & Grafarend (1986). 
Such GPS double-difference data processing model will be used in this dissertation 
discussed in Chapter 3. 
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Where the subscripts i and j stand for receivers; the superscripts k and l stand for 

satellites; ()kl
ij = [()l

j -()l
i]-[()k

j -()k
i] represents the double-difference variable relating to 

two receivers (i and j) and two satellites (k and l); the measurements ( 1P , 2P , 1Φ , 2Φ , 

1D , 2D , 1ϕ  and 2ϕ ) represent the corresponding measurements after GPS error model 

reduction, mitigation, or simplification. 
The position accuracy for a single baseline can attain a centimeter to a sub-meter 

accuracy, depending on the base-rover separation, after resolving the double-difference 
carrier-phase integer biases (i.e., the ambiguities) based on the GPS integer ambiguity 
resolution, referred to as On-The-Fly (OTF) (see, for example, Yang et al., 1994) GPS 
technique for real-time kinematic applications. The basic principle of the OTF technique 
is as follows: firstly, the code pseudo-range measurements are incorporated with the 
carrier-phase pseudo-range measurements to estimate the double-difference float 
ambiguities using the least-squares adjustment; then, a search algorithm is applied to 
optimally determine the double-difference integer ambiguities from the float values and 
their corresponding variance-covariance matrix; the final estimates (i.e. the coordinates of 
the receiver position) are based on the high-accuracy double-difference carrier-phase 
measurements with the resolved double-difference integer ambiguity biases. The AR 
together with its validation procedure plays a key role in the high-accuracy 
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Real-Time-Kinematic (RTK) positioning. Several methods of AR and its validation exist; 
and a very comprehensive literature review for the ambiguity resolution and validation 
can be found in Kim & Langley (2000). Recent research on the subject of ambiguity 
resolution and validation can be found in, for example, Verhagen (2004 & 2005), 
Teunissen & Verhagen (2004 & 2007). Currently, OTF implemented over a single 
baseline (i.e., one reference receiver and one rover receiver) within a short distance 
(normally less than 20 kilometer (km)), using observations from multiple epochs is the 
most commonly used GPS technique; however, single-epoch methods and network-based 
kinematic positioning supporting longer baselines (normally, over 20 km) have become 
of interest recently, as will be explained in Chapter 3. 
 
2.1.3 GPS velocity and orientation determination 

The velocity determination using GPS is mainly based on Doppler (i.e., phase-rate) 
measurements, and its accuracy ranges from centimeter (cm) to millimeter (mm) per 
second depending on the satellite velocity accuracy, the level of receiver dynamics, 
atmospheric (tropospheric and ionospheric) higher-order effects, multipath effects and the 
measurement noise (see, for example, Ryan et al., 1997; Serrano et al., 2004). The basic 
principle of the GPS-based orientation determination takes the advantage of the mm-level 
positioning accuracy of the double-difference carrier-phase positioning technique, 
achievable for very short baselines (around 1-2 m); the orientation of the vehicle can be 
derived using multiple GPS antennas (at least 3 non-coplanar GPS antennas) installed in 
a vehicle. The accuracy of the orientation determination can be attained to a few 
arc-minutes in yaw (heading), pitch and roll, depending on the antenna separation, using 
carrier-phase measurements in double-difference mode (see, for example, Lu, 1994). 
 
2.2 Introduction to the Inertial Navigation System (INS) 
 
2.2.1 INS principle 

Besides GPS, the self-contained Inertial Navigation System is the most 
commonly-used navigation system. The modern origin of inertial navigation dates back 
to the 1940s and early 1950s, where Inertial Measurement Units, including three 
orthogonal accelerometers and three orthogonal gyroscopes, were used to detect and 
measure translational and rotational motions (linear accelerations sensed by 
accelerometers and angular rates sensed by gyroscopes) based on the physical laws of 
nature (see, for example, Titterton & Weston, 1997; Farrell & Barth, 1999; Jekeli, 2001).  

An example review of the recent inertial navigation history can be found in King 
(1998). Newton’s second law of motion, instrumental for inertial navigation, as defined 
in the inertial (non-rotation) frame, is shown in equation (2.15) below. The 3-dimensional 
kinematic acceleration vector (r&& ) in the inertial frame (referred to as i-frame) can be 
computed from the sensed linear acceleration vector (f) of the three orthogonal 
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accelerometers, combined with the gravity vector (g) which is normally computed from a 
pre-defined gravity model, for example the normal ellipsoidal gravity model. Given the 
initial 3-dimensional position and velocity in the i-frame, the kinematic accelerations (r&& ) 
can be directly integrated to obtain the 3-dimensional position and velocity also in the 
i-frame. However, a navigation coordinate system (referred to as n-frame), different from 
the i-frame is often adopted for the inertial navigation system. A transformation matrix 

( n
bC ), maintained by the orientation angles that are normally determined from the angular 

rates of the three orthogonal gyroscopes, is used to define the transformation from the 
IMU body frame (referred to as b-frame) to the n-frame. The determination of the initial 
position, velocity and orientation is referred to as the INS initialization and alignment 
procedure. The desired position and orientation are normally expressed through their 
geodetic coordinates (latitude, longitude and ellipsoidal height), and through three 
rotation angles (roll, pitch and yaw). The aforementioned procedure to determine the 
position, velocity and orientation, given their initial values, is referred to as the INS 
dynamic navigation equation, and can be expressed through nine nonlinear differential 
navigation equations (see, for example, Farrell & Barth, 1999; Jekeli, 2001). The three 
non-linear orientation (pitch, roll and yaw) parameter determination based on the sensed 
angular-rate measurements, will become ill-posed when the pitch angle θ approaches 
±90º. An alternative approach in terms of quaternions is widely implemented to avoid 
such a singularity in most of the inertial applications, and the transformation matrix can 
be constructed in either way using quaternions or three orientation angles (Farrell & 
Barth, 1999; Jekeli, 2001). The nonlinear differential navigation equations, using the 
quaternion algorithm, are shown in equations (2.16-2.18) and the Euler solutions of these 
nonlinear differential equations are shown in equations (2.19-2.21).  
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Where the superscripts and subscripts (b, n, i and e) refer to the coordinate frames (b: 

body-frame, n: navigation frame, i: inertial frame, e: earth-centered-earth-fixed frame); r, 
f, v and g are the position, acceleration (i.e., force), velocity, and gravity vectors; the 
variables with one dot above represent their first-order time derivatives; the variables 
with two dots above represent their second-order time derivatives; ωb

ib=[ω1, ω2, ω3]T is 
the vector of angular rates, sensed by the three gyroscopes in the b-frame and coordinated 
in the b-frame; ω=[ω0, ω1, ω2, ω3]T with ω0=0 is the 4-dimensional angular rate vector; 
q=[q0,q1,q2,q3]T is the 4-dimensional quaternion vector; A=skew4

T(ω) and B=skew4(q) 
where the definition of skew4() for a 4-dimensional vector a=[a0 a1 a2 a3]T is shown in 
(2.24); Σ=A·Δt; (×) denotes the 3-dimensional skew matrix operation defined as skew3() 
and shown in equation (2.23) on a 3-dimensional vector a=[a1 a2 a3]T; Δθ=[Δθ1, Δθ2, Δθ3] 
is a vector of incremental angles, sensed by the three gyroscopes in the body frame and 
coordinated in the body frame; qΔ is the 4×1 vector of angle quaternions for Δθ; fb

ib=[f1, 
f2, f3]T is the vector of accelerations, sensed by the three accelerometers in the body frame 
and coordinated in the body frame; ωe is the earth rotation rate; λ and φ are the geodetic 
longitude and the geodetic latitude.  

The INS principles require an accurate gravity model to compensate the local gravity 
vector g shown in equation (2.15) in order to produce an accurate kinematic acceleration; 
traditionally, a normal gravity model or a higher-order spherical-harmonics gravity model 
is used, while accurate Deflections Of the Vertical (DOVs) can also be included in the 
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navigation equations to improve the INS navigation performance (Grejner-Brzezinska & 
Wang, 1998; Jekeli, 2001). 

Several INS mechanization methods exist. The most widely used INS mechanization 
today is the strapdown system where IMUs are physically and firmly mounted to the 
platform, and the inertial measurements are mathematically transformed to the navigation 
frame. Thus, the IMUs are subjected to the entire range of the platform dynamics. The 
advantage of the strapdown inertial navigation system (SINS), compared to other existing 
mechanizations (such as the gimbaled inertial system), lies in the smaller size, less weight, 
less power consumption and lower costs. The majority of the currently implemented 
GPS/INS-integrated system for direct sensor georeferencing is based on the strapdown 
mechanization. 
 
2.2.2 INS error characteristics 

Even if the best initial conditions are provided, perfect position, velocity and 
orientation still cannot be achieved by the inertial navigation according to the non-linear 
nature of the differential dynamic navigation equations shown in equations (2.16-2.18), 
and due to the contamination of the inertial measurements by the systematic and random 
errors. The primary error sources for the INS include: 1) IMU (accelerometers and 
gyroscopes) instrumental errors, for example gyroscope and accelerometer misalignment 
errors, biases and drifts; 2) the gravity model errors, including gravity anomalies and 
Deflections of the Verticals; 3) numerical computation errors; 4) the selected inertial 
navigation model errors; for example, an EKF is widely used to obtain a sub-optimal 
solution to the non-linear differential navigation equations; 5) initial position, velocity 
and alignment errors; 6) other errors, such as analog-to-digital quantization errors, etc. As 
a result, these errors will accumulate and the final navigation errors will grow with time, 
due to the time integration involved in the solutions of the nonlinear differential dynamic 
navigation equations.  

The most significant error sources for the inertial navigation are the sensor 
instrumental errors, which dominate the navigation performance. There are inertial 
sensors of different grade that utilize various technologies suitable for different 
applications. The principle of a gyroscope sensor can vary, and the currently available 
mechanizations include 1) mechanical gyros, measuring the reactions of a spinning proof 
mass; 2) optical gyros, including Ring Laser Gyros (RLG) and Fiber Optic Gyros (FOG), 
based on a particular property of light in a rotating frame known as Sagnac effect (Jekeli, 
2001); and 3) MEMS gyros, using vibrating ceramic plates that utilize the Coriolis force 
to output angular rate independently of acceleration (Jekeli, 2001). Table 1.2 lists the 
orientation accuracy as a function of the gyroscopes. The accelerometers could be 
mechanized as 1) mechanical accelerometers using a proof mass, for example the force 
feedback pendulum; and 2) solid-state accelerometers, such as the MEMS accelerometer, 
using differential capacitance to sense the acceleration (Titterton & Weston, 1997).  
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According to the error propagation with time, an INS can be categorized as 1) 
low-accuracy, tactical grade system with an accuracy worse than ±4km/hr, 2) 
medium-accuracy, navigation-grade system with an accuracy of ±1-4km/hr, or 3) as 
high-accuracy system, typically rated at ±0.2-1km/hr or better (Jekeli, 2001). In order to 
evaluate the errors driven by the initialization, computation, instrument, gravity model, 
and other errors, the dynamic error model can be derived using the nominal state vectors 
based on the first-order Taylor approximation for the non-linear dynamic navigation 
equations. The linearized error dynamic equation (including the system description noise) 
is expressed as a state-vector-based linear differential equation in (2.25) and can be easily 
implemented using a Kalman Filter (KF), including a 9-dimensional navigation error 

state sub-vector (3 for the position, 3 for the velocity and 3 for the orientation) pvψx , an 

accelerometer error state sub-vector fx , a gyroscope error state sub-vector ωx , and a 

3-dimensional gravity disturbance state sub-vector gx  (Siouris, 1993; Farrell & Barth, 

1999; Jekeli, 2001). A detailed linear error model for the navigation state sub-vector, 
called psi-angle error model (Bar-Itzhack & Berman, 1988), is shown in equation (2.26). 
The psi-angle error model is widely implemented in GPS/INS-integrated systems for 
mobile mapping applications. The detailed forms of the F11 matrix blocks of equation 
(2.25) when using the psi-angle error model, as shown in equation (2.26), are listed in 
equations (2.27-2.32).  
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022 =F , 033 =F , 014 =F , 344 IF β=  (2.35)

 
where: the dot above the variables denotes the time derivative of the corresponding 

variables; xpvψ, xf, xω, and xg are the state sub-vectors for the navigation parameters (i.e., 
position, velocity, and orientation), accelerometer sensor errors, gyro sensor errors, and 
gravity disturbances, with F11, F12, F13, F14, F22, F33 and F44 as their corresponding 
dynamics matrices; vpvψ, vf, vω, and vg are the “driven process” noise vectors for these 

state sub-vectors, representing their stochastic error properties; δr, δv, ψ, and gδ  

represent the disturbances from the normal values for the position, velocity, orientation, 

and gravity vectors; n
inωδ  contains the higher-order effects of the position and velocity, 
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coupled with the orientation; ppF , pvF , vpF , vvF , vψF  and ψψF  are the detailed 

sub-matrix components of F11, as expressed in the psi-angle error model; the detailed 
sub-matrices of the F12, F13, F14, F22, F33 and F44 blocks are dependent on the stochastic 
error characteristics of the inertial sensor error modeling and the gravity assumptions; if 
the sensor errors of an accelerometer (or a gyro) are assumed to contain a bias term 
modeled as a random walk process and a scale-factor term modeled as a random constant 

process, the corresponding detailed sub-matrices of F12 and F13 are 
bvfF , 

sfvfF , 
bψωF  

and 
sfψωF , shown in equation (2.33, 2.34 and 2.35); I is the identity matrix; if the gravity 

disturbance is assumed to be the 1st order Gaussian-Markov process with coefficient β, 
F14 and F44 are shown in equation (2.35). 
 
2.2.3 INS initialization and initial alignment 

As mentioned earlier, the initial position and velocity must be provided in order to 
compute the position and velocity along the trajectory based on the integration of the raw 
sensed accelerations; also the initial orientation must be known to maintain the 
direction-cosine matrix to transform the sensed accelerations from the body frame to the 
designed navigation frame. These two requirements are referred to as the INS 
initialization and initial alignment. Normally, the initial position is provided from the 
external sources, such as, for example, GPS and other radio navigation systems. While 
the initial velocity can be assumed zero with respect to the earth for a stationary INS, it 
may also be precisely determined using external sources, such as the GPS Doppler 
measurements. The initial orientation can be determined based on the known directions 
of acceleration and angular-rate vectors (gravity and earth’s rotation) for a stationary INS, 
referred to as self-alignment, using the gyro-compassing technique (see, for example, 
Jekeli, 2001), and other external sources, such as, for example, GPS-based orientation 
determination using multiple antennas, etc. Besides the determination of the initial 
position, velocity, and orientation in the initialization and alignment procedure, some of 
the major INS systematic errors, including the accelerometer and gyroscope biases and 
bias drifts, must be determined. Normally, the coarse alignment is performed to 
determine the initial orientations, followed by the fine alignment. This way, the 
orientation and the INS systematic error sources are determined, based on the linear 
estimation techniques (normally a Kalman Filter) and using the zero-velocity 
measurements for the stationary INS (referred to as ZUPT); other aiding information 
from the external positioning and navigation sources can be used for the moving INS 
(also referred to as in-flight alignment) (Siouris, 1993; Titterton & Weston, 1997; Farrell 
& Barth, 1999; Jekeli, 2001).  
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2.3 Introduction to GPS/INS integration 
 
2.3.1 GPS/INS integration mode 

As stated in Chapter 1, the complementary error characteristics of GPS and INS 
result in the widespread implementation of GPS/INS integration for multi-sensor mobile 
mapping applications. Fusion of GPS and INS measurements can be accomplished by 
three approaches: 1) the loosely-coupled approach; 2) the tightly-coupled approach and 3) 
3) the ultra-tightly-coupled approach. In the loosely-coupled mode, the GPS and inertial 
sensors individually process their raw measurements (code and carrier-phase 
pseudo-ranges for the GPS sensors, sensed accelerations and angular-rates for the inertial 
sensors) to obtain the navigation solution (i.e., position, velocity, and orientation) for 
each system, respectively; the final navigation solution and the inertial sensor errors are 
determined by fusing the two individual navigation solutions together, for example with 
KF. In the tightly-coupled approach, the GPS and inertial sensors process their raw 
measurements simultaneously and optimally to estimate the position, velocity, and 
orientation of the platform together with the inertial sensor errors in a single filter. In the 
ultra-tightly-coupled mode, the integrated navigation solution is fed back to predict the 
code and carrier-phase pseudo-ranges of the GPS receiver to aid the carrier tracking loops 
in the high-dynamic or jamming environments. Since the ultra-tightly-coupled approach 
involves the access to the GPS hardware tracking loops, it is not available to the general 
user community. The loosely-coupled approach is commonly implemented in the 
GPS/INS integrated systems due to its simplicity, although it may experience difficulties, 
especially in urban environments, since it requires at least four available GPS satellites to 
compute the navigation solution directly from the GPS sensors. The tightly-coupled 
integrated system has already proven to be superior to the loosely-coupled system and 
allows for partial GPS information, although only few applications exist due to its 
complexity and difficulty to implement; see, for example, Gautier & Parkinson (2003).  

Figures 2.1 and 2.2 illustrate the workflow for both the loosely-coupled and the 
tightly-coupled GPS/INS integrations implemented in this dissertation for a mobile 
mapping application. Both loosely-coupled and tightly-coupled integrations implemented 
here include 1) the INS data processing module; 2) the GPS data processing module and 
3) the GPS/INS data fusion module. The INS data processing module is the same for both 
integration methods. It takes the outputs (i.e., accelerations (fxyz) and angular-rates (ωxyz) 
or accelerometer-integrated-velocities (ΔVxyz) and gyroscope-integrated-angles (Δθxyz)) 
from the accelerometers and gyroscopes and compensates them using inertial sensor error 
models. A sub-module “Inertial Navigation Computation” in Figures 2.1 and 2.2 outputs 
the position, velocity, and orientation according to equations (2.19, 2.20 and 2.21) given 
the navigation solution (i.e., position, velocity, and orientation) from the previous epoch. 
In the GPS data processing module of the loosely-coupled integration, the 
double-difference measurements are firstly formed from the GPS observations (P1, P2, L1, 
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L2, D1 and D2) of the rover and base receivers using the approximate rover coordinates 
and the fixed reference coordinates; then, an integer ambiguity resolution follows to fix 
the double-difference carrier-phase integers; the position vector of the rover receiver is 
directly solved from the double-difference carrier-phase measurements after the removal 
of the double-difference carrier-phase integer ambiguities; the velocity of the rover 
receiver is computed from the double-difference Doppler measurements. The GPS/INS 
data fusion module of the loosely-coupled integration combines the navigation solutions 
from both the GPS and INS data processing modules to optimally estimate a final version 
of position, velocity, orientation, acceleration and gyroscope sensor error models (biases, 
drifts, etc.) and the lever arm offset of the GPS measurement center (for example, 
antenna carrier-phase center or antenna reference point) with respect to the inertial sensor 
body center.  

In the GPS data processing module of the tightly-coupled integration, the 
double-difference measurements are formed from the GPS observations of the rover and 
base receivers using the predicted coordinates from the INS data processing module (with 
the compensation of the lever arm offset) for the rover receivers and the fixed reference 
coordinates for the base receivers. The integer ambiguity resolution procedure follows. 
The GPS/INS data fusion module of the tightly-coupled integration directly fuses the 
double-difference carrier-phase measurements after the removal of the double-difference 
carrier-phase integer ambiguities, and the double-difference Doppler measurements, with 
the navigation solution of the INS data processing to form an integrated solution (i.e., the 
position, velocity, orientation, inertial sensor errors, lever arm offset, and etc.). As 
mentioned in Section 2.1.2, several integer ambiguity resolution used in the 
loosely-coupled system and the tightly-coupled system exist, the detailed implemented 
technique in this dissertation will be discussed in Chapter 3. 
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Figure 2.1. The workflow of a loosely-coupled GPS/INS integration implemented for a 
mobile mapping application. 
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Figure 2.2. The workflow of a tightly-coupled GPS/INS integration implemented for a 
mobile mapping application. 
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2.3.2 Linear filtering – Kalman Filter 
No matter which integration scheme is used, a filtering technique must be applied to 

optimally estimate the position, velocity, and orientation together with the sensor errors 
(and other parameters, such as lever arm offset) when fusing the GPS and IMU 
measurements. After Kalman (1960) had published his famous paper, Kalman filtering 
has become the industrial standard to recursively provide an online minimum mean 
squared error (MMSE) estimate of the signals (referred to as the state vector: the minimal 
set of data to sufficiently describe the system’s dynamic behavior) from noisy 
observations for the linear dynamic system. The Kalman Filter (KF) can be derived from 
the statistical or probabilistic viewpoint; see Jazwinski (1970) for an early review of the 
Kalman Filter. The solution of the Kalman Filter is recursively based on the previous 
estimate and the input data to optimally achieve the current estimate. Due to storing only 
the previous estimate with its mean squared errors, it is computationally more efficient 
than computing the estimate directly from the entire set of past measurements at each 
filtering step. Considering a continuous linear dynamic system, expressed in a state 
vector form, it can be converted to a discrete linear dynamic system, referred to as system 
(also called: process or dynamic) model (or equation) by means of the discretization 
procedure. In order to estimate the state vector, a set of measurements, which relate the 
state vector based on the measurement model (or equation), must be observed. Equations 
(2.36 and 2.37) present the system model and the measurement model for the discrete 
linear dynamic system, which is only complete with the initial condition (2.38). 
Equations (2.39-2.45) show the optimal unbiased linear estimate of the unknown state 
vector, given the initial state vector, x0, and its mean squared error matrix, P0, (see, for 
example, Gelb, 1974 for more details on Kalman Filter). 
 

System model 111 −−− +Φ= kk,kkk vxx , { } kjk
T
kj QvvE δ= , (2.36) 

Measurement model kkkk nxHz += , { } kjk
T
kj RnnE δ= , { } 0=T

kjnvE  (2.37) 

Initial condition ( )000 ,0~)ˆ( Pxx −  (2.38) 

   
Predicted state error 
covariance matrix k

T
kkkkkk QPP +ΦΦ= −−−

−
,11,1  (2.39) 

Predicted state estimates 1,1 ˆˆ −−
− Φ= kkkk xx  (2.40) 

Predicted measurements −− = kkk xHz ˆˆ  (2.41) 

Predicted measurement error 
covariance matrix k

T
kkkz RHPHP += −  (2.42) 
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Computed Kalman gain 
matrix 
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T
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Updated state vector )ˆ(ˆˆ −− −+= kkkkk zzKxx  (2.45) 

 
Here, the subscripts j and k (and k-1) denote the epochs in the time domain; Φ is the 

transition matrix taking the state vector x from epoch k−1 to epoch k; the process noise 
vector v is assumed to be additive white noise with zero mean and covariance matrix Q; z 
is the observation vector, and H is the measurement matrix; the measurement noise vector 
n is also assumed to be additive white noise with zero mean and covariance matrix R; δjk 
is the delta operator, δjk=1 if j=k and δjk=0 if j≠k; E{} is the expectation operator; P is the 

mean squared error matrix of the estimated state vector; K is the Kalman gain matrix; −
kx̂  

and −
kP  are the predicted state and its error covariance matrix; kx̂  and kP  are the 

MMSE estimate of the state vector and its error covariance matrix. 
Due to the divergence phenomenon of the state vector’s error covariance matrix, P, 

caused by the numerical inaccuracies in Kalman filtering, the so-called square-root filter, 
where the matrix P is propagated in the square-root form by using the Cholesky 
factorization, is normally used to overcome the numerical instability; see, for example, 
Bierman (1977). In order to accommodate the uncertainties in the process description 
noise covariance matrix, Q, of the system model, and in the measurement noise 
covariance matrix R  of the measurement model, normally an adaptive Kalman filter 
(AKF) can be applied to identify the process and measurement noises (Mohamed & 
Schwarz, 1999). Two commonly used adaptive approaches are: 1) the 
multiple-model-based adaptive estimation (MMAE), and 2) the innovation-based 
adaptive estimation (IAE). In the MMAE, several KFs run parallel with different models, 
using different statistical information on Q and R to obtain several optimal estimates, and 
a weighting scheme is applied to compute the final estimates. In contrast, in the IAE, the 
error covariance matrixes Q and R are identified using the so-called “innovation” (or 
“residual”) sequences. The identification procedure for Q and R based on N continuous 
innovation sequences is shown in equations (2.46 and 2.47) in accordance with Mohamed 
& Schwarz (1999). The identified error covariance matrices are used in equations 
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(2.39-2.45) instead of the predefined error covariance matrices in the conventional 
Kalman filter.  
 

Innovation −−= kkkk xHze ˆ~ , ∑
+−=

=
k

Nki

T
iik ee

N
C

1

~~1ˆ  (2.46) 

Identification T
kkkkk HPHCR −−= ˆˆ , T

kkkk KCKQ ˆˆ ≈  (2.47) 

 

Here, ke~  is the “innovation” at epoch k; kĈ  is the “innovation” matrix obtained 

from N continuous “innovation” sequences. 
A new unconventional filter, called “wave filter”, was proposed by Salychev & 

Schaffrin (1992) in order to compensate the system disturbances (i.e., any 
quasi-systematic uncertainties) in the system model (2.36) of the traditional Kalman 
Filter, using a wave process expressed by a combination of some known basis functions. 
More details about the “wave filter” can be found in Salychev (1995 & 1998). 
 
2.3.3 Nonlinear filtering 

The problem of the GPS/INS fusion system is traditionally represented in a nonlinear 
probabilistic state-space formulation, as shown in equations (2.48, 2.49 and 2.50). It 
includes: (1) a nonlinear system model to describe the evolution of the state vector in the 
time domain, and (2) a nonlinear (or linear) measurement model to relate the noisy 
measurements to the state vector, and update the state vector when new measurements are 
available, as well as (3) some initial conditions along with further assumptions. Here, the 
system model is based on the nonlinear differential navigation equations together with 
linear (or nonlinear) stochastic error models for the sensor errors, as well as the system 
and environment parameters under some stochastic assumptions. The measurement 
model can be nonlinear or linear, depending on the measurement type; for example, GPS 
code and carrier-phase pseudo-range (and/or range-rate) measurements, or the computed 
GPS navigation solution.  
 
2.3.3.1 Extended Kalman Filter 

Due to the nonlinearities of the system model (and/or the measurement model), the 
well-known Extended Kalman Filter (EKF) (Jazwinski, 1970) has been widely used to 
provide a sub-optimal (or approximate optimal) nonlinear estimation (state estimation of 
the nonlinear dynamic system) by means of a linearization procedure using a first-order 
Taylor approximation. The linearized system and measurement models are shown in 
equations (2.51 and 2.52). EKF is currently widely implemented in a number of 
GPS/INS-integrated systems (see, for example, Grejner-Brzezinska, 1997 & 1999; Jekeli, 
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2001). As mentioned earlier, a linear error model, called psi-angle error model, for the 
GPS/INS-integrated system is listed in equation (2.26).  
 

System model ( )kkk vxfx ,1 =+ , ( )kk Qv ,0~  (2.48) 

Measurement model ( )kkk nxhz ,= , ( )kk Rn ,0~  (2.49) 

Initial conditions 
( )000 ,0~)ˆ( Pxx −  

all random errors are uncorrelated 
(2.50) 

System model 
linearization 
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+ ∂
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Measurement model 
linearization 

kkkkk vFxHz +≈ ,  

−=∂
∂

=
kxx

k x
hH

ˆ

, 
0=∂

∂
=

n
k n
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(2.52) 

 
where the subscripts denote the time epochs; x, v, z and n are the state vector, the 

process description noise vector, the measurement vector and the measurement noise 

vector, respectively; kx  indicates the state vector at epoch k; xx −ˆ , v and n are 

mutually independent; f and h denote the nonlinear system and measurement functions; 

process and measurement noises are assumed to have a zero-mean; kx̂  is the optimal 

state estimate at epoch k and −
kx̂  is the predicted state estimate at epoch k; Φ and G are 

the matrices forming the linearized system model; F and H are the matrices forming the 
linearized measurement model. 

 
2.3.3.2 Other nonlinear filters 

Even though the EKF is widely used in various nonlinear applications, it may 
experience difficulties with heavily skewed nonlinear systems and it is only reliable for 
nonlinear systems, which are almost linear in the time scale of the update intervals, due to 
the first-order linearization of the EKF. Also the EKF requires deriving a corresponding 
linear model for nonlinear systems using a linearization procedure, which makes it 
difficult to be implemented in some complicated nonlinear applications. It is also 
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impossible to use the EKF for the nonlinear discontinuous systems, whose Jacobian 
matrices shown in equations (2.51) and (2.52) cannot be derived analytically. In reality, 
various prior constraints also introduce nonlinearities, which is difficult for the EKF to 
handle. Such example can be the constraints (in the form of state equality or state 
inequality equations) to the navigation trajectories or velocities, in case of target tracking 
applications. See more discussion about the drawbacks of the EKF in, for example (Julier 
et al., 1995; Julier & Uhlmann, 1997; Wan & van der Merwe, 2001; Ristic et al., 2004). 

In the last few decades, several nonlinear filters, for example, the Sigma Point 
Kalman Filters (SPKF) (van der Merwe & Wan, 2003 & 2004) or Linear Regression 
Kalman Filters (LRKF) (Lefebvre et al., 2002), the Particle Filters (PF) (Liu & Chen, 
1998; Doucet et al., 2001), the Ensemble Kalman Filter (EnKF) (Evensen 1994, 1997 & 
2007), and etc., have been proposed as the alternatives to the EKF for the nonlinear 
applications. 

The SPKFs are a family of nonlinear filters using a so-called derivativeless statistical 
linearization, as compared to the analytical linearization of the EKF (Gelb, 1974), which 
include the Unscented Kalman Filter (UKF) based on unscented transformation (UT) 
(Julier et al., 1995; Julier & Uhlmann, 1997), the Central Difference Kalman Filter 
(CDKF) based on Sterling’s interpolation formulas (Press et al., 1992; Ito & Xiong, 
2000). The PF and EnKF both are sample-based nonlinear filters based on the sequential 
Monte Carlo (SMC) methods to represent the probability density of the state vector using 
a set of random samples associated with the corresponding weights. The PF behaves 
differently from the EnKF with a procedure called the sequential importance sampling 
and re-sampling (more details in Chapter 6). Similar to the PF and EnKF, the SPKF is 
also a sample-based nonlinear filter and also utilizes a set of samples associated with the 
corresponding weights to represent the state estimates and state error covariance matrix. 
However, the samples used in the SPKF are deterministically selected, as compared to 
the randomly generated samples in the PF and the EnKF. Similarly to the EKF, the three 
nonlinear filters (i.e., the SPKF, the PF and the EnKF) include two stages: 1) the 
prediction of the state estimates and the state error covariance matrix in the time update 
stage; and 2) the update of the state estimates and the state error covariance matrix once 
new measurements are available. The predictions of the state estimates and the state error 
covariance matrix using the SPKF, the PF and the EnKF, are directly based on the 
nonlinear system model, using the samples associated with weights, thus the 
requirements deriving the linearized model for these filters are eliminated and they are 
referred to as derivative-free filters, as compared to the EKF. The predicted 
measurements and the predicted measurement error covariance matrix can also be based 
on the directly nonlinear measurement model using the samples associated with weights.  

The SPKF and the PF have been proven superior to the EKF in some example 
nonlinear applications (see, for example, Julier et al., 1995; Julier & Uhlmann, 1997; 
Doucet et al., 2001; Wan & van der Merwe, 2001; Ristic et al., 2004; van der Merwe & 
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Wan, 2003 & 2004). The UKF of the SPKF and the PF, summarized in the probability 
framework and referred to as nonlinear Bayesian filters, are implemented in this 
dissertation and discussed in Chapter 6, to investigate their navigation performance as 
compared to that of the EKF. 
 
2.4 OSU GPS/INS AIMSTM system 

The research conducted in this dissertation is related to the continuation of the 
implementation of the Airborne Integrated Mapping System (AIMSTM) originally 
designed for the high-end navigation-grade inertial sensor, LN100, using the EKF and 
single-baseline differential GPS data processing technique, developed at the Center for 
Mapping (CFM), The Ohio State University (OSU), in 1997, see for example, 
(Grejner-Brzezinska, 1997). The current implementation of the OSU GPS/INS AIMSTM 
system includes: 

 Extended hardware suite, including multiple inertial sensors supported by multiple 
GPS and precise time synchronization (as well as data acquisition software): 

 LN100, LN200 (Northrop Grumman) 
 Two H764G and two HG1700 (Honeywell) 
 MEMS IMU400CC-100 (Crossbow) 

 Extended GPS/INS software suite developed by the author of this dissertation: 
 Extended IMU error modeling to cover different grades of the inertial sensors 

using 
 Allan-variance analysis in the time domain 
 PSD (Power Spectral Density) method in the frequency domain 

 IMU data preprocessing using wavelet-based signal de-noising 
 Initial alignment module 
 Loosely-coupled integrated module designed for 

 Low-end inertial sensor 
 Initial coarse parameter estimation (e.g., lever arm) for 

tightly-coupled original AIMSTM integration module 
 Network-based single-epoch kinematic GPS processor 
 Alternatives to EKF (i.e., nonlinear Bayesian Filters) 

 Unscented Kalman Filter 
 Particle Filter 

 Extended gravity compensation error model, suitable for rugged terrain (not 
discussed here); see, for example, Grejner-Brzezinska et al. (2005b). 

Figures 2.3 and 2.4 below illustrate the current OSU GPS/INS AIMSTM system 
hardware implementation and configuration for a land-based installation. A total of six 
different inertial sensors, including two navigation-grade H764G sensors, one 
navigation-grade LN100, one tactical-grade HG1700, one tactical-grade LN200 and one 
consumer-grade IMU400CC, are mounted on the same rigid portable platform installed in 
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a GMC suburban vehicle. This hardware setup allows cross calibration and testing of 
various inertial sensors for navigation accuracy and suitability for a specific mapping 
tasks. Two geodetic-grade antennas are mounted on the roof in front and back of the 
vehicle. Table 2.1 presents the detailed sensor manufacturer specifications. Most of the 
datasets for the example analyses provided in this dissertation are collected by using the 
OSU AIMSTM GPS/INS hardware suite and processed by using the extended OSU 
AIMSTM GPS/INS software suite.  
 

 
 
Figure 2.3. OSU GPS/INS AIMSTM hardware implementation. 
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Figure 2.4. OSU GPS/INS AIMSTM hardware configuration. 
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Sensor grade Sensor name Type Characteristics 

LN100 
Gyroscope 

Non-dithered 18cm Zero 
LockTM Laser Gyro 

bias = 0.003º/h 
rw = 0.001º/h½ 

sf < 1ppm 
Navigation 

LN100 
Accelerometer 

Miniature Accelerometer 
A4 

bias = 25μg 
sf = 40ppm 

ma = 2arcsec 
wh = 5μg/Hz½ 

H764G 
Gyroscope 

Dithered GG1320AN 
RLG 

bias = 0.0035º/h 
rw = 0.0035º/h½ 

sf = 5ppm Navigation 
H764G 

Accelerometer QA2000 
bias =25μg 

wh = 8.3μg (100Hz bw) 
sf =100ppm 

HG1700 
Gyroscope Dithered GG1308 RLG 

bias = 2.0º/h 
rw = 0.125~0.3º/h½ 

sf =150ppm 
Tactical 

HG1700 
Accelerometer RBA500 

bias = 1.0mg 
wh = 0.2mg (100Hz bw) 

sf = 300ppm 
ma = 12m-rad 

IMU400CC 
Gyroscope 

Non-dithered Silicon 
MEMS Gyro 

bias = 1º/sec 
rw = 2.25º/h½ 

sf = 1% Consumer 
IMU400CC 

Accelerometer 
Silicon MEMS 
Accelerometer 

bias = 8.5mg 
sf = 1% 

rw = 0.1m/s/h½ 
 
Table 2.1. Manufacturer’s specifications for the inertial sensors (sf ≡ scale factor; ma ≡ 
misalignment; wh ≡ white noise; rw ≡ random walk; bw = bandwidth). 
 

The post-processing of the GPS/INS data using the OSU AIMSTM GPS/INS software 
suite, can be separated into two steps: 1) The GPS and INS data pre-processing, and 2) 
the GPS/INS data fusion using the loosely-coupled integration or the tightly-coupled 
integration (the implementations in this dissertation are shown in Figures 2.1 and 2.2). 
The GPS data pre-processing includes: 1) GPS RINEX data conversion from the 
manufacturer proprietary data format using the manufacturer provided software or TEQC 
(http://facility.unavco.org/software/teqc/teqc.html) for each type of GPS receiver 
currently included in the hardware assembly; 2) the preparation of the related data and/or 
products, downloadable from either IGS (http://igscb.jpl.nasa.gov), NGS 
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(http://www.ngs.noaa.gov/), or CODE (http://www.aiub.unibe.ch/ionosphere.html), for 
example, the precise (ultra-rapid, rapid or final) GPS orbit products, global broadcast 
GPS navigation data, global ionospheric model, satellite differential code bias (can be 
used for network-based ionospheric error modeling), and CORS reference station data; 3) 
the determination of the station coordinates of the reference stations to be used; and 4) 
the determination of the kinematic rover position. Figures 2.5 and 2.6 illustrate the 
detailed procedures for the GPS and INS pre-processing and the GPS/INS integration, 
used in this dissertation. 
 

 
 
Figure 2.5. GPS data pre-processing (Note: ssss: 4-character site ID; ddd: day of year 
(1-366); i: session index number; h: single letter for hour of day (a-x = 0-23); yy: 2-digit 
year; wwww: 4-digit GPS week; d: day of week (0-6); hh: 2-digit hour of day (00-23); 
mm: 2-digit month of year (00-12); OPUS = Online Positioning User Service 
(http://www.ngs.noaa.gov/OPUS/); TGO = Trimble Geomatics Office; AmbRes is a 
kinematic GPS software developed at CFM, OSU; Kars is a kinematic GPS software 
developed by NGS). 
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Figure 2.6. The workflow of the INS data pre-processing and GPS/INS integration 
(cdats-pb.exe is a program provided by Honeywell to convert the raw binary data of 
H764G to ASCII data format; preimu.exe is a program developed for this dissertation to 
convert different data format of different inertial sensor to standard data formats (nav.bin 
and imu.bin); Initial Coarse Alignment is a module to provide initial orientation for 
HG1700 and IMU400CC using the gyro-compassing technique; If the data in imu.bin is 
collected from a stationary experiment, the sensor error identification techniques using 
Allan variance and PSD methods can be applied to derive a customized sensor error 
model on a sensor-by-sensor basis; the gravity DOV information is an optional input to 
the GPS/INS integration module). 
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CHAPTER 3 

 
 

INSTANTANEOUS POSITIONING TECHNIQUE SUPPORTING NETWORK MODE 
 

This chapter starts with the motivation and a concept design of the implemented 
instantaneous (i.e., single-epoch) real-time kinematic (RTK) relative positioning 
technique supporting multiple reference and rover receivers with the capabilities to be 
operated in either network or baseline mode. Then the mathematical model of the 
single-epoch positioning technique is presented and its performance is analyzed using 
some example analyses.  
 
3.1 Motivation 

The GPS double-difference carrier-phase positioning technique is widely used to 
achieve the highest accuracy in real-time kinematic positioning applications, using the 
high-accuracy double-difference carrier-phase measurements after the removal of the 
double-difference integer ambiguity. Clearly, the double-difference integer ambiguity 
resolution plays an important role in the real-time kinematic positioning technique. The 
traditional RTK OTF double-difference integer ambiguity resolution requires a certain 
initialization time, normally ranging from several seconds to a few minutes, depending on 
the quality of the GPS data and the double-difference residual level. Also, it does 
experience difficulties in some critical situations where losses of GPS lock frequently 
occur, especially in the urban environment. The frequent re-initialization of the 
double-difference integer ambiguity resolution may result in a lower reliability and less 
consistent accuracy. In the last few years, the GPS carrier-phase instantaneous (i.e., 
epoch-by-epoch (EBE), or single-epoch) double-difference integer ambiguity resolution 
technique has attracted a lot of interest in the GPS community; see, for example, (Bock et 
al., 2000; Han & Rizos, 1996; Han, 1997a & 1997c; Hatch, 1990; Kashani et al., 2005; 
Pratt et al., 1997; Yi & Grejner-Brzezinska, 2004). The single-epoch double-difference 
positioning technique can provide the instantaneous navigation solution, relying only on 
data from one epoch, using the single-epoch integer ambiguity resolution and, thus, 
eliminating the initialization and cycle-slip detection and repairing procedure of the 
traditional RTK OTF technique. Compared with the correlated RTK solution, it can also 
provide a faster, epoch-independent solution with fewer requirements and shorter 
computational time. However, due to the fact that it uses data from only one epoch, the 
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single-epoch position solution might be less reliable, as compared with the traditional 
RTK OTF, where the accumulated information from multiple epochs is used. Currently, 
the single-epoch positioning technique has been developed for static surveying or 
deformation monitoring as well as for RTK applications; for instance, a centimeter-level 
position accuracy and ±0.01˚ orientation accuracy from two antennas separated by 2.5 
meters have been reported by Geodetics Inc. (2005). An independently developed 
implementation of the double-difference single-epoch RTK positioning with some special 
data processing strategies to improve the ambiguity fixing rate and the quality control is 
described in this dissertation, and its performance will be discussed in the following 
section.  

In the double-difference data processing mode, the most common error sources 
between two receivers and two satellites are removed or largely reduced, leaving only 
some fractional parts of the distance-dependent error sources, as already mentioned in 
Chapter 2. The removal of the distance-dependent errors becomes less effective with the 
increasing length of the baselines. It results in poorer reliability of the double-difference 
integer ambiguity resolution and lower positioning accuracy, especially for kinematic 
medium (tens of kms) and longer (hundreds of kms) baselines. The traditional approaches 
to handle longer baselines mainly take the advantage of the carrier-phase wide-lane (Lw) 
or ionospheric-free (L3) linear combinations to expand the effective wavelength in order 
to facilitate a more reliable outcome of the double-difference integer ambiguity resolution, 
or to remove the distance-dependent double-difference ionospheric delays. Compared 
with the high-accuracy carrier-phase L1 measurements, the carrier-phase Lw or L3 
measurement will provide less positioning accuracy due to the increased measurement 
noise. 

In order to improve the reliability of the long-range solutions, the network-based 
positioning approaches (Han, 1997b; Raquet, 1998; Schaffrin & Bock, 1988; Vollath et 
al., 2000; Fotopoulos & Cannon, 2001; Yi & Grejner-Brzezinska, 2003; Wielgosz et al., 
2004; Kashani et al., 2005) have been widely investigated in recent years as alternatives 
to the traditional single-baseline RTK positioning, especially for medium and longer 
baselines. Due to the growing availability of the local, regional and global permanently 
tracking GPS networks, methods based on multiple GPS reference stations are being 
implemented to achieve almost distance-independent kinematic solutions with uniform 
reliability and positioning accuracy. Example approaches include the linear combination 
of baselines (Han, 1997b), the network adjustment approach (Raquet, 1998), and the 
Virtual Reference Station (VRS) approach (Vollath et al., 2000). Normally, the network 
approach will allow for a weighted solution with improved reliability and fault-tolerance 
level, as compared to the single-baseline solution, and will improve the double-difference 
integer ambiguity resolution by means of, for example, geometric constraints of the GPS 
integer ambiguity (Yi & Grejner-Brzezinska, 2004). The most significant improvement 
from the network approach, as compared to the single-baseline method, is that instead of 
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the traditional error reduction technique, such as the carrier-phase ionospheric-free linear 
combination, an advanced GPS bias reduction technique is developed to achieve the 
uniform high-accuracy distance-independent kinematic positioning quality by removing 
the spatially correlated GPS error sources. These spatially correlated GPS error sources 
for mobile rover receivers are predicted: 1) in the spatial domain using some spatial 
interpolation techniques, based on the GPS error models derived from multiple reference 
stations, and 2) in the time domain, to enable a fast double-difference integer ambiguity 
resolution and even support single-epoch kinematic positioning (for example, Bock et al., 
2000; Wielgosz et al., 2004; Yi & Grejner-Brzezinska, 2004; Kashani et al., 2005). 
Given the approximate coordinates of a rover receiver, its distance-dependent errors are 
predicted using a spatial interpolation method, for example, the Inverse-Distance 
Weighted Observations (IDWO), the MultiQuadric method (MQ), the Minimum 
Curvature Splines (MC), the GeoStatistics Predictor such as Kriging, etc. (Yi & 
Grejner-Brzezinska, 2004). The prediction in the temporal domain mainly uses a time 
series analysis technique; for example, the Auto-Regressive Integrated Moving Average 
(ARIMA) process, as developed by Box & Jenkins (1976), can be used according to Yi & 
Grejner-Brzezinska (2004). The combination of the kinematic single-epoch positioning 
approach and the network-based GPS error reduction technique results in a more robust 
kinematic instantaneous positioning method supporting multiple reference and rover 
receivers with the capability to provide RTK positioning using one reference receiver 
(baseline mode) or more than one reference receivers (network mode). Figure 3.1 
illustrates such a concept, designed to support RTK positioning in both real-time and 
post-processing modes.  
 

real-time data collection module

base stations rover stations

rinex data import module
for post-processing

base station data processing module
1) estimate base-base GPS ambiguities
2) establish real-time GPS error model

GPS database

rover data processing module
1) real-time GPS error prediction
2) real-time GPS single-epoch ambiguity resolution
3) real-time GPS positioning

 
 
Figure 3.1. Concept of the network-based real-time kinematic instantaneous GPS 
positioning approach implemented in this dissertation. 
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3.2 Real-time kinematic instantaneous GPS positioning approach 
 
3.2.1 Double-difference GPS positioning model with ionospheric pseudo-observations 

Dual-frequency GPS receivers have become a part of the standard configuration in 
surveying and mapping, especially for the high-accuracy mobile mapping applications. 
Equations (2.8-2.14) in Chapter 2, list the double-difference measurement model for the 

GPS double-difference code and carrier-phase pseudo-ranges ( kl
ijP 1, , kl

ijP 2, , kl
ij 1,Φ  and 

kl
ij 2,Φ ) after the GPS error model reduction, between two satellites (k and l) and two 

receivers (reference receiver i and rover receiver j) as a function of the unknowns (i.e., 

double-difference geometric term ( kl
ijρ ), double-difference tropospheric delay residual 

( kl
ijT ), double-difference ionospheric delay residual ( kl

ijI ) and double-difference 

ambiguities ( kl
ijN 1,  and kl

ijN 2, ). The double-difference tropospheric delay residual ( kl
ijT ) is 

normally ignored for short baselines, while it may be significant for the long baseline, 
which can be compensated by estimating the differential zenith tropospheric delay 
residuals (ZTD) between two receivers. In the application discussed in this dissertation, 
the double-difference tropospheric delay residual is ignored. Following the symbols used 
in Chapter 2, equation (3.1) re-parameterizes the unknowns of the double-difference 

geometric terms ( kl
ijρ ) of a reference satellite k and n satellites (l1, l2, …, ln), into three 

unknown coordinates of the rover receiver j. Actually, due to the nonlinearities shown in 
equations (2.8-2.14), the coordinate increments (δXj, δYj and δZj) of the rover receiver j 
are solved with respect to the approximate 3-dimensional coordinates (Xj0, Yj0 and Zj0) 
using a linearization procedure, instead of directly solving for the rover coordinates (X, Y 

and Z). The double-difference carrier-phase wide-lane (Lw) measurement ( kl
wij ,Φ ) of the 

carrier-phase L1 and L2 linear combination is used instead of the double-difference 

carrier-phase L2 measurement ( kl
ij 2,Φ ), due to the easily resolved wide-lane integer 

ambiguity ( kl
wijN , ). Since the measurements on L2 may not be available, for example, in 

the single-frequency receivers or in case of the losses of GPS on L2 in the dual-frequency 
receivers, equation (3.1) can be easily modified to accommodate the missing L2 

measurements by removing the related terms (i.e., 
2Py  and 

w
yΦ ). 

The double-difference ionospheric delays are negligible for short baselines up to a 
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few tens of kilometers, whereas they may be significant for the longer baselines. Thus, 
following Schaffrin & Bock (1988), additional double-difference ionospheric 

pseudo-observations ( kl
ijI 0, ), based on a priori ionospheric model, are incorporated in 

equation (3.1) together with the code and carrier-phase measurements 

( kl
ijP 1, , kl

ijP 2, , kl
ij 1,Φ and kl

wij ,Φ ) to facilitate the double-difference integer ambiguity resolution. 

The value of the double-difference ionospheric delay (i.e., z0 in equations 3.1 and 3.4) 
can be changed according to the adopted a priori ionospheric model, and its standard 
deviation (i.e., the square root of its variance) since it is a function of the accuracy of the 
a priori ionospheric model, which normally can be of the mm-level per one-kilometer 
baseline. The a priori ionospheric model can, for instance, be the broadcast Klobuchar 
ionospheric model or the GIM discussed in Chapter 2, or the spatially network-derived 
ionospheric model (see, for example, Yi & Grejner-Brzezinska, 2003 & 2004), or the 
temporally predicted ionospheric model (see, for example, Yi & Grejner-Brzezinska, 
2003 & 2004). A detailed scheme using the L1 and L2 measurements with the weighted 
constraints on the residual ionospheric effects can be found in Schaffrin & Bock (1988). 
A more detailed a priori model for the double-difference ionospheric delays can be fitted 
from the observed double-difference ionospheric delays computed from the 
double-difference carrier-phase ionospheric-only (i.e., geometry-free) linear 
combinations after the removal of the double-difference integer ambiguities. Figure 3.2 
illustrates the standard deviation of the observed vertical double-difference ionospheric 
delays as a function of the baseline length; here, the fitted linear model is y=a⋅x+b with 
a=0.166 [mm/km] and b=8.242 [mm]. The fitted double-difference ionospheric model 
will be different under various ionospheric conditions, which are functions of the solar 
and geomagnetic activities. An indicator of the level of the geomagnetic activity is, for 
example, the Kp index, which can be found at 
(http://www.gfz-potsdam.de/pb2/pb23/GeoMag/niemegk/kp_index/quicklook.html).  
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 Here, superscripts k and l (l1, l2, …, ln) denote the satellites; subscripts i and j denote 
the receivers; the receiver i is the reference receiver with known fixed coordinates; the 
receiver j is the rover receiver, whose actual coordinates are to be solved and 

approximate coordinates (Xj0, Yj0 and Zj0) are given; 
1Py , 

2Py , 
1Φy  and 

w
yΦ  are the 

vectors of the GPS double-difference observed-minus-calculated (OMC) code and 
carrier-phase observations; the calculated observations are based on the reference 
coordinates of receiver j, the approximate rover coordinates of receiver i and the known 
satellite coordinates of satellites k and l; z0 is the vector of pseudo-observations for the 
double-difference ionospheric delays; A1 is a part of the design matrices; ξ1 is the vector 
of the three unknown coordinate increments (δXj, δYj and δZj) of the rover receiver j; ξ2 

is the vector of double-difference ionospheric delays ( kl
ijI ); ξ3 and ξ4 are the vectors of 

double-difference integer ambiguities on L1 ( kl
ijN 1, ) and Lw ( kl

wijN , ), respectively; 
1Pe , 

2Pe , 

1Φe , 
w

eΦ and e0 are the error vectors of the double-difference observations 

( kl
ijP 1, , kl

ijP 2, , kl
ij 1,Φ and kl

wij ,Φ ) and the double-difference ionospheric pseudo-observations 

( kl
ijI 0, );

1PΣ ,
2PΣ ,

1ΦΣ ,
wΦΣ and Σ0 are the variance-covariance matrices of the error vectors 

(
1Pe , 

2Pe , 
1Φe , 

w
eΦ and e0); kl

ijP 1, , kl
ijP 2, , kl

ij 1,Φ  and kl
wij ,Φ  are the double-difference code 

and carrier-phase pseudo-range observations after GPS error model reduction; 
0,

kl
ijρ  is 

the computed double-difference geometric term using the coordinate of the reference 
receiver i and the approximate coordinate of the rover receiver j; 

( ) ( ) ( )[ ]Tkl
ij

kl
ij

kl
ij

kl
ij 210

uuuu =  is a 3-dimensional vector of the partial derivatives of the 
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double-difference geometric term ( kl
ijρ ) with respect to to the coordinate of the rover 

receiver j evaluated at the approximate rover coordinate; 2
2

2
1

f
f

=β  and 
2

1
1 f

f
−=β ; f1 and 

f2 are the frequencies on L1 and L2; λ1 and λw are the wavelengths on L1 and Lw; In is the 
n-dimensional identity matrix. 
 

 
 
Figure 3.2. Standard deviation (std) of the observed vertical double-difference 
ionospheric delay as a function of baseline length (from a network located in Florida, 
USA, using data collected in Jan. 2007). 
 
3.2.2 Single-epoch GPS ambiguity resolution 
 Equations (3.1-3.4) describe the GPS double-difference model for the instantaneous 
RTK positioning approach. Similarly to the traditional RTK positioning approach, which 
uses the Kalman filter or a sequential least-squares adjustment, the instantaneous RTK 
positioning approach also starts with a float GPS ambiguity resolution, and a 
double-difference integer ambiguity resolution is derived from it. In estimating the float 
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GPS N1 and wide-lane Nw ambiguities, the least-squares adjustment is implemented here 
to solve for the three unknown rover coordinates and the float ambiguities (plus the 
double-difference ionospheric delays for longer baselines), using the code and 
carrier-phase pseudorange measurements (and incorporating double-difference slant 
ionospheric pseudo-observations for longer baselines) for the satellites above the 
elevation mask angle. In the double-difference integer ambiguity resolution stage, various 
algorithms can be used; the LAMBDA method of Teunissen (1993 & 1994) was 
implemented in this dissertation. The wide-lane Nw ambiguities are recommended to be 
fixed first, which will then facilitate the N1 ambiguity resolution. For short baselines, the 
N1 and Nw ambiguities can also be easily fixed in a single step. Also, both the N1 and Nw 
ambiguities should be fixed in a single step while insufficient number of Lw 
measurements (the minimum is four) is available to fix the Nw ambiguities in a separate 
step, for example, when the rover receiver operates in kinematic mode with frequent 
losses of GPS lock on L2. After fixing the double-difference integer ambiguities, the 
high-accuracy carrier-phase measurements L1 are directly used to solve the rover position 
for short baselines, whereas the ionospheric-free (L3) linear combination is recommended 
to be used for longer baselines, even though the L1 measurements combined with the 
double-difference ionospheric pseudo-observations, can also provide an equivalent 
solution for the longer baselines. 
 A number of factors will impact the performance of the single-epoch ambiguity 
resolution; for example, the base-rover separation, the number of available 
double-difference satellite pairs above the elevation mask angle, and the code 
measurement (P1 and P2) accuracy. A minimum of four double-difference satellite pairs 
with both (L1 and L2) carrier-phase measurements are recommended to be observed in 
order to assure the success of the double-difference integer ambiguity resolution. A code 
smoothing scheme, using the high-accuracy carrier-phase measurements (L1 and L2), such 
as, the Hatch filter shown in equations (3.3 and 3.4), can be used to improve the code 
measurement accuracy by filtering the multipath and the measurement noise of the code 
pseudo-range measurements (P1 and P2). Figure 3.3 presents an example of the code 
smoothing effects using carrier-phase measurements. The code-smoothing schema can be 
done for the one-way, single-difference or double-difference measurements. 
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 Here, n1 and n2 are the numbers of continuous carrier-phase measurements, 1Φ  and 

2Φ , on L1 and L2, respectively, without cycle slips; kP ,1
~  and kP ,2

~ are the smoothed code 

measurements on L1 and L2 at epoch k; IΔ  is the change of the ionospheric delays, I, 

between two epochs; 2
2

2
1

f
f

=β ; f1 and f2 are the frequencies on L1 and L2, respectively. 

 

 
 
Figure 3.3. An example of the code smoothing effects using carrier-phase measurements. 
Note: R denotes the raw code measurement residuals (i.e., after the subtraction of the 
geometric term, receiver and satellite clocks, tropospheric and ionospheric error models), 
and S denotes the carrier-phase-smoothed code measurement residuals. 
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The quality control of the single-epoch integer ambiguity resolution provides an 
indication of the reliability of the instantaneous RTK positioning technique; see, for 
example, Han (1997c), as well as, Tiberius et al. (1997) for the performance and quality 
control of the kinematic positioning using the LAMBDA method. Another method to test 
the ambiguity using statistical testing technique was proposed by Euler & Schaffrin 
(1990). The quality control used here consists of checking the ratio of the squared norm 
of the ambiguity sets for the best and the second-best candidate from the LAMBDA 
method. The ambiguities are assumed to be fixed if the ratio is greater than a pre-defined 
value (a ratio cutoff of 3.0 is adopted in this dissertation). Figure 3.4 shows a one-hour 
example of the single-epoch Lw ambiguity ratio for a 16 km baseline with a 
double-difference ionospheric constraint for each double-difference satellite pair. The 
ionospheric constraint was selected here to be ±1 mm of the vertical double-difference 
ionospheric delay per one-kilometer baseline. As will be shown in Section 3.2.3, a scale 
factor with respect to this pre-selected constraint level is estimated to accommodate the 
variation of the actual ionospheric conditions. The carrier-phase code smoother was 
turned off in this example, and 75 percent of epochs passed the Lw ratio test. 

 

 
 
Figure 3.4. An example of the single-epoch wide-lane ratio from the LAMBDA method 
for a 16 km baseline during one hour (3600 epochs) (75 percent of epochs passed the 
ambiguity ratio test when applying 0 m ± 1 mm/km ionospheric constraints and using raw 
code measurements without carrier-phase-based smoothing. 
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3.2.3 Stochastic model based on variance component model 
 The stochastic model of the instantaneous kinematic positioning plays a significant 
role in the success of the integer ambiguity resolution. The implementations of the 
stochastic model in this dissertation include: 1) an elevation-dependent measurement 
accuracy model, and 2) a variance component model (VCM) to estimate the code and 
carrier-phase measurement reference variances, and the reference variance of the 
double-difference ionospheric pseudo-observations. The generalized VCM for n types of 
measurements with n unknown reference variance components is shown in equation (3.5). 
The recursive solution of this nonlinear estimation for the unknown parameters and the 
unknown reference variance components is shown in equations (3.6 - 3.8), starting with a 
suitable initial reference variance components (Schaffrin, 2001b).  
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( ) 1111 ˆˆˆˆˆ −−−− ΣΣΣ−Σ= TT AAAAW  (3.7) 

( ) yAAA TT 111 ˆˆˆ −−− ΣΣ=ξ  (3.8) 

 
 Here, y is the vector of the measurements including n types of measurement 
sub-vectors y1, y2,…yn; A is the design matrix; ξ is the vector of the unknown parameters; 
e is the vector of the random errors with zero-mean, Σ is the unknown 
variance-covariance matrix, and ϑ  is the vector of the unknown variance-covariance 
components; Σ with top and bottom limit values indicates the summation from the bottom 
limit value to the top limit value; the subscript i is the index staring from 1 to n (the 
dimension of the vector of the variance-covariance components); the variance-covariance 

component iϑ  has the corresponding cofactor matrix iQ ; tr represents the trace 

operator of a matrix; a variable with a hat (^) indicates that it has been estimated; W is 
called a reduced weight matrix. 
 The single-epoch RTK positioning implementation takes the three different 
measurement types: 1) double-difference code measurements, 2) double-difference 
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carrier-phase measurements, and 3) double-difference ionospheric delay 
pseudo-observations. Thus, the dimension of the variance component vector, ϑ , shown 
in equation (3.5), is three. Since predefined reference variances are used for each 
measurement type (i.e., the code measurements, the carrier-phase measurements and the 
double-difference ionospheric delay pseudo-observations), in the actual implementation 
of the variance-component model, the scale factors with respect to the predefined 
reference variances are estimated instead of the actual reference variances for each type 
of measurements. The detailed form of the variance component vector implemented in 
this dissertation is shown in equation (3.9). According to Han (1997c), estimating a scale 
factor of the nominal code measurement accuracy from the real-time GPS measurement 
residuals can improve the GPS integer ambiguity resolution. Having a better stochastic 
model will result in a better performance in the GPS integer ambiguity resolution and its 
corresponding positioning accuracy. An example of the scale factor with respect to the 
reference variance of the code measurements is shown in Figure 3.9 of the data analysis 
Section 3.3.1. The example analysis of the variance component estimation and the GPS 
ambiguity resolution can be found in (Tiberius & Kenselaar, 2003).  

It should be noted that even if the ambiguity ratio test successfully passed, another 
global statistical test, in the parameter estimation procedure (i.e., when the rover position 
is obtained using the fixed double-difference integer ambiguities) is also applied. For 
details on the test implemented here, see, Schaffrin (2000 & 2001a). 
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Where, [ ]TLILLPP sss 222 σσσϑ = ; Ps , Ls  and Is  are the scale factors with 

respect to the nominal code and carrier-phase variance model and the a priori 

double-difference ionospheric information, respectively; 
1PΣ , 

2PΣ , 
1LΣ , 

2LΣ  and IΣ  

are the nominal variance-covariance models for double-difference code measurements 
(P1 and P2), double-difference carrier-phase measurement (L1 and L2), and the virtual 

double-difference ionospheric measurements; 2
Pσ , 2

Lσ  and 2
Iσ  are the predefined 

nominal reference variances for code and carrier-phase measurements and the a priori 
double-difference ionospheric information, respectively. 
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3.2.4 Partial integer ambiguity fixing strategy 
 Another data processing strategy employed in this dissertation is the partial fixing of 
the GPS ambiguities if all the available GPS ambiguities for observations above the 
elevation mask angle cannot be fixed, for example, due to the failure of the ratio test. The 
ambiguities of the double-difference satellite pairs with the lower elevation angles are 
more difficult to fix in comparison to these of the double-difference satellite pairs with 
higher elevation angles due to more uncertainties in the code and carrier-phase 
measurements. Therefore, if the ambiguity ratio test fails for all the available ambiguities, 
the lowest double-difference satellite pair will be removed, and this removal will 
continue until only four double-difference satellite pairs are left. As mentioned earlier, 
four is the minimum number of double-difference satellite pairs for the epoch-by-epoch 
RTK positioning technique implemented in this dissertation. 
 
3.2.5 Integer ambiguity bridging between consecutive epochs 
 Even after adopting the above data processing strategies, the ambiguity ratio test of 
some epochs may still not be passed. In such cases, if the ambiguity resolution of the 
previous epoch is successful, the change of the ambiguities (i.e., the cycle slip) can easily 
be solved using the change of the measurements (∆P1, ∆P2, ∆L1 and ∆Lw) due to the 
almost identical error sources (mainly the identical double-difference ionospheric delays, 
i.e., ∆I≈0) between two nearby epochs. The LAMBDA method is also applied in this case 
to fix the cycle slips. If the cycle slips are fixed, the ambiguities of the current epoch can 
be propagated from the previous epoch. Since this technique takes advantage of the 
measurements from the two nearby epochs, it is clearly contradictory to the proposed 
single-epoch RTK positioning procedure, which only uses the measurements of the 
current epoch. However, it can bridge the GPS ambiguities in the kinematic case, instead 
of discarding the current epoch due to the failure of the ambiguity ratio test. But, if the 
ambiguities were fixed to the wrong values in the previous epoch, such technique will 
pass the wrong ambiguities to the current epoch as the classical OTF may also do. Thus 
to minimize the risk of propagating the wrong ambiguities from the previous epoch, this 
technique should only be used as a last resort of the data processing. Figure 3.5 illustrates 
the workflow implemented according to the data processing strategies described above.  
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Figure 3.5. Workflow of the epoch-by-epoch RTK positioning approach (the a priori I 
can be based on the broadcast Klobuchar ionospheric model or the IGS published GIM, 
or the spatial prediction from a network-derived ionospheric model or the temporal 
prediction from the previously derived ionospheric model; sP, sL and sI are the scale 
factors to the nominal variance component models for the code, carrier-phase, and 
virtual-ionospheric measurements). 
 
3.3 Analysis of experimental static data 
 
3.3.1 Baseline-by-baseline mode 

In order to evaluate the performance of the implemented single-epoch positioning 
approach, several baselines with various lengths (16 km, 25 km, 50 km and 70 km) were 
processed using the software developed according to the algorithms presented earlier. 
Current implementation includes: 1) double-difference ionospheric pseudo-observations 
2) carrier-phase-based code smoothing technique; 3) VCM-based stochastic model; 4) 
partial ambiguity fixing strategy, and 5) bridging the GPS ambiguities from the previous 
fixed epoch.  

The tested baselines are from a local network located in Florida, and the data were 
acquired in Jan. 2007. Table 3.1 presents the statistics of the ambiguity fixing process for 
a 25 km baseline during one hour (3600 epochs) using the selected data process strategies 
listed above. Only 43.81% of 3600 epochs is fixed by using only the double-difference 

OK 

OK 

Fail 

Fail 

P1, P2, L1, Lw, I 

VCM 

Float Ambiguity 

Integer Ambiguity 

LAMBDA 

∆P1, ∆P2, ∆L1, ∆Lw, ∆I 

Float Cycle Slip 

Integer Cycle Slip 

sP, sL, sI from previous epoch 

LAMBDA 

Next Epoch 

Integer Ambiguity 
from Previous Epoch 

Rover Positioning 



 48

ionospheric pseudo-observations (option 1). By turning on the estimation of the variance 
component (option 3), additional 11 epochs are fixed. The improvement due to the VCM 
is not significant, which indicates that the pre-defined stochastic error model already 
matches the data very well. By turning on the carrier-phase-based code measurement 
smoothing strategy (option 2), a relatively significant improvement can be found; namely, 
a total of 57.36% epochs can be fixed, as compared to 43.81% when using only option 1. 
The most significant improvement in the ambiguity fixing rate is caused by applying the 
partial ambiguity fixing strategy (option 4). Around 87.19% of epochs can be fixed by 
combining options 1 and 4. The integer fixing rate reaches 98.14% when options 1 
through 4 are combined, and all epochs can be fixed if bridging the ambiguity from the 
previous epoch is also turned on (option 5). The detail statistics of the final solution for 
this baseline is shown later.  

 
Options 1 1+3 1+2 1+4 1+3+4 1+2+3+4 1+2+3+4+5

Fixed Epochs 1577 1589 2065 3139 3156 3533 3600 
Fixed Rate (%) 43.81 44.14 57.36 87.19 87.67 98.14 100.00 

 
Table 3.1. Ambiguity fixing statistics for a 25 km baseline with one hour of data, using 
selected data process strategies. 
 

Figure 3.6 illustrates an example of the single-epoch Lw and L1 solutions for a static 
70 km baseline processed in the kinematic mode, compared to the reference coordinates 
from the NGS OPUS (http://www.ngs.noaa.gov/OPUS/) solution (i.e., Figure 3.6 and the 
following Figures 3.7-3.9 illustrate the coordinate differences between the 
epoch-by-epoch solutions and the reference static OPUS coordinates). In Figure 3.6, the 
sub-plot at the top shows the Lw solution difference, the sub-plot in the middle shows the 
L1 solution difference, and the sub-plot at the bottom shows the number of the fixed 
ambiguities on L1 and Lw, respectively. As marked in Figure 3.6, there are some cases 
where the Lw ambiguity of the lowest double-difference satellite pair is fixed, while the 
corresponding L1 ambiguity is not fixed. Figures 3.7 and 3.8 present the same information 
for baselines with lengths of 16 km and 25 km, respectively. The sub-plots at the top and 
in the middle of Figure 3.9 illustrate information comparable to these of Figures 3.6, 3.7 
and 3.8, whereas the sub-plot at the bottom of Figure 3.9 shows an example of the scale 
factor with respect to the nominal variance model for the code measurements estimated 
from the VCM, where the carrier-phase-based code smoothing effects can be clearly 
observed. The reference variance of the code measurement accuracy (sP) is 40 percent 
smaller after 500 epochs of smoothing and reaches 20 percent after 1000 epochs.  

Table 3.2 presents the detailed statistics of the results in Figures 3.6, 3.7, 3.8 and 3.9. 
Both the mean and the standard deviation (std in Table 3.2) of the Lw and L1 solutions are 
within centimeter-level, and the vertical component is a few centimeters weaker than the 
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horizontal component. The height component of the GPS RTK positioning is well-known 
to be weaker than the horizontal components. It should be noted that the tropospheric 
model uncertainties over the longer baselines also partially contribute to the weaker 
behavior of the vertical component, since the double-difference tropospheric delay 
residuals are ignored here. For example, relatively bigger height error in the 50 km 
baseline, as shown in Figure 3.9, may be caused by insufficiently modeled tropospheric 
effects. Figure 3.10 illustrates the mean and the standard deviation of the L1 solutions for 
the four example baselines. As compared to the reference, the position errors of the 50 
km baseline are a little worse than that of the other three baselines, even though all of 
them are of cm-level accuracy.  

 

 
 
Figure 3.6. An example single-epoch Lw and L1 solutions, as compared to a reference 
from NGS OPUS for a static 70 km baseline during one hour (3600 epochs) (mask 
elevation: 10˚). 
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Figure 3.7. An example single-epoch Lw and L1 solutions, as compared to a reference 
from NGS OPUS for a static 16 km baseline during one hour (3600 epochs) (mask 
elevation: 10˚). 
 

 
 
Figure 3.8. An example single-epoch Lw and L1 solutions, as compared to a reference 
from NGS OPUS for a static 25 km baseline during one hour (3600 epochs) (mask 
elevation: 10˚). 
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Figure 3.9. An example single-epoch Lw and L1 solutions, as compared to a reference 
from NGS OPUS for a static 50 km baseline during one hour (3600 epochs) (mask 
elevation: 10˚). 
 

Lw solution L1 solution Baseline 
Length 

Statistics 
Information N [cm] E [cm] U [cm] N [cm] E [cm] U [cm] 

Mean -0.8 2.8 -0.6 -0.4 0.5 -3.9 
Std ±2.0 ±1.8 ±5.0 ±0.6 ±1.1 ±1.9 
Max 3.8 7.2 16.3 1.0 3.1 2.6 16

 [k
m

] 

Min -6.3 -3.0 -19.8 -2.5 -2.8 -11.4 
Mean -1.0 -0.0 -4.3 0.2 -0.3 -1.6 
Std ±1.6 ±2.0 ±4.8 ±0.7 ±0.9 ±1.9 
Max 4.8 5.3 9.6 2.6 1.5 4.3 25

 [k
m

] 

Min -4.8 -5.3 -16.1 -1.5 -2.4 -9.9 
Mean 0.8 -2.3 6.7 3.8 -2.5 7.4 
Std ±2.5 ±2.9 ±8.6 ±2.0 ±2.6 ±4.2 
Max 6.2 5.9 23.7 9.2 1.9 16.4 50

 [k
m

] 

Min -6.6 -9.1 -17.0 -1.9 -7.6 -6.3 
Mean 0.2 1.6 -2.6 2.2 -0.6 0.4 
Std ±1.5 ±1.5 ±5.4 ±0.4 ±0.7 ±4.0 
Max 5.5 5.6 11.0 3.5 1.4 13.3 70

 [k
m

] 

Min -3.5 -3.1 -20.8 0.4 -2.9 -6.3 
 
Table 3.2. Statistics of single-epoch Lw and L1 solutions, as compared to the references 
from NGS OPUS, using one-hour example data for baselines of 16, 25, 50 and 70 km. 
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Figure 3.10. Statistics (mean and std) of single-epoch L1 solutions, as compared to the 
references from NGS OPUS, using one-hour example data for baselines of 16, 25, 50 and 
70 km. 
 
3.3.2 Network mode 

The solutions shown in Figures 3.6-3.10 and Table 3.2 were processed in a 
baseline-by-baseline mode, mainly to demonstrate the capability of the instantaneous 
RTK positioning approach with the double-difference ionospheric pseudo-observations 
from the a priori ionospheric model. The Klobuchar ionospheric model was used in the 
above tests. As explained earlier, the double-difference ionospheric pseudo-observations 
can also result from the spatial prediction of a network-derived ionospheric model. The 
details of the procedure of the double-difference ionosphere modeling with multiple 
reference stations can be found in Yi and Grejner-Brzezinska (2003). The results 
presented in Yi and Grejner-Brzezinska (2003) of the instantaneous multiple-base 
kinematic carrier-phase positioning, aided by double-difference ionosphere modeling, 
and the prediction in the spatial domain indicate that a few-centimeter accuracy can be 
achieved for the medium-length baselines (~100 km). Figure 3.11 demonstrates an 
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instantaneous L1 carrier-phase fixed solution, aided by the ionosphere prediction in the 
spatial domain and a 5 second moving average in the temporal domain for a static ~121 
km baseline, as compared to the reference coordinates published by NGS (a data set from 
OHIO CORS stations at GPS day 343, 2002). 
 

 
 
Figure 3.11. Difference with respect to the actual coordinates of the L1-fixed solution 
with ionospheric correction for the Colb-Leba baseline ~121 km; the spikes around epoch 
2600 are caused by the wrong ambiguity resolution. 
 
3.4 Analysis of experimental kinematic data 

In order to evaluate the performance of the implemented single-epoch positioning 
approach under kinematic environments, an experimental kinematic data set was 
collected on Sept. 26, 2003, in Columbus, OH, with four GPS rover receivers (two 
Trimble 5700 GPS receivers with two Trimble Zephyr geodetic antennas, referred to as 
T1 and T2; one Topcon Legacy GPS receiver with a Topcon Legant antenna, referred to 
as J2; and one NovAtel OEM4 with a Topcon Legant antenna, referred to as N2) installed 
on the top of a van. Two GPS reference receivers (one Topcon Legacy, referred to as J1 
and one NovAtel OEM4, referred to as N1) connected with a GPS600 antenna installed 
on the roof of the Center for Mapping (CFM), OSU. The GPS receivers used together 
with the antenna types according to NGS are listed in Table 3.3. The absolute antenna 
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calibration results from NGS (http://www.ngs.noaa.gov/ANTCAL/) were used in the 
following data processing. The hardware configuration installed on the vehicle is 
illustrated in Figure 3.12. The following analyses are based on the four rover receivers 
(T1, T2, J2 and N2), using the two reference receivers (J1 and N1) at CFM, together with 
another CORS reference receiver in Columbus (referred to as COLB), based on a 1 Hz 
sampling rate. The performance analysis based on the same dataset using an earlier 
version of the implemented software was reported to be better, as compared to a 
commercial GPS software package, in Yi & Grejner-Brzezinska (2004). 
 

No. Receiver 
Type 

Antenna 
Type 

Receiver 
Name 

Sampling 
Rate 

Base 
/Rover 

1 TRIMBLE 5700 TRM29659.00 UNAV COLB 1Hz Base 
2 TPS LEGACY NOV600 J1 2Hz Base 
3 NovAtel OEM4 NOV600 N1 4Hz Base 
4 TPS LEGACY TPSLEGANT3_UHF J2 2Hz Rover 
5 TRIMBLE 5700 TRM41249.00 T1 1Hz Rover 
6 NovAtel OEM4 TPSLEGANT3_UHF N2 4Hz Rover 
7 TRIMBLE 5700 TRM39105.00     T2 1Hz Rover 

 
Table 3.3. GPS hardware list. 
 

Head

Trimble 5700 GPS Receiver with Trimble Zephyr Geodetic AntennaTrimble 5700 GPS Receiver with Trimble Zephyr Antena

NovAtel OEM4 GPS Receiver with Topcon Legant Antenna Topcon Legacy GPS Receiver with Topcon Legant Antenna

 2.287m

2.223m

1.491m

T1T2

J2N2

 
 
Figure 3.12. Rover receiver hardware configuration for the experimental data set. 
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In order to validate the positioning performance of the single-epoch RTK positioning 
approach, actual reference trajectories for this experiment must be provided for the rover 
receivers. However this information is not available for the kinematic data, unless some 
image-based photogrammetric method (including control points) is used simultaneously 
with the GPS data collection. In this experiment, however, there was no imaging 
component included. Therefore, a simple assumption utilizing the multiple roving 
antennas was used: the distance between the two antennas should be invariant, assuming 
that the antennas were firmly attached to the van. Thus, the differences in the position 
solutions between the various rover receivers can be examined. With the major focus on 
the performance of the epoch-by-epoch solution, the option to bridge the ambiguities 
from the previous epoch is turned off in this data process. Also the option for the network 
error modeling is also turned off, which indicates that each baseline is processed 
independently from each other, in this way, the comparison of the relative distances 
between two antennas can better reflect the actual performance of the single-epoch 
positioning approach implemented in this dissertation under kinematic environments. 

The test started and ended at CFM and lasted about 1.5 hours with the distance to the 
reference station COLB ranging from 4 km to 20 km and from 0 km to 16 km to the 
reference stations (J1 and N1) located at CFM. As shown in Figure 3.13, the environment 
for this experimental data set included mainly urban setting, with both dense foliage and 
open areas (with the speed limit of: 15-45 miles per hour); the trajectory also includes 
some parts of a highway (speed limit of: 55-65 miles per hour). Therefore, the receivers 
experienced rather frequent losses of GPS lock during the experiment due to the 
environmental obstructions, possible high multipath, and interference (especially on the 
busy highway).  
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Figure 3.13. Test trajectory, Sept. 26, 2003. 
 
 The two static receivers, J1 and N1, were first treated as rover receivers and the 
COLB served as the reference receiver. The baselines COLB-J1 and COLB-N1 (both 
around four km in length) were processed in the epoch-by-epoch mode and the summary 
statistics for these solutions are listed in Table 3.4. For baselines COLB-J1 and 
COLB-N1, total of 8207 and 8236 epochs, respectively, have more than four 
double-differences (which is the minimum number needed for relative GPS positioning).  
For around 99.85% and 98.65% of the epochs, respectively, it was possible to achieve L1 
fixed solutions. Since they are static baselines, the outlier epochs were removed by 
checking the repeatability of the baselines; standard deviation of around 5 mm was 
achieved for both baselines. The percentages of the valid epoch with respect to the L1 
fixed epoch are around 99.93% and 99.75%, for COLB-J1 and COLB-N1, respectively. 
The final coordinates for the receiver J1 and N1 are based on the average solutions of 
baselines COLB-J1 and COLB-N1 after removing the outliers, and these coordinates 
were used as reference coordinates for the other baselines that involved receivers J1 and 
N1. Note that the two columns “Valid Epoch” and “Valid Rate” in Table 3.4 pertain to 
the static baselines 1 and 2. The values for these two columns cannot be provided for 
baselines 3-14 because they include the moving rover receivers, whose reference 
trajectories are not available. 
 
 
 



 57

BL 
No. Base Rover Epoch 

(>=4DDs)
L1 

Fixed Epoch
Fixed 

Rate (%) 
Valid 
Epoch 

Valid 
Epoch (%) 

1 COLB J1 8207 8195 99.85 8189 99.93 
2 COLB N1 8236 8125 98.65 8105 99.75 
3 COLB J2 7136 6744 94.51   
4 COLB T1 6981 6763 96.88   
5 COLB N2 6842 6528 95.41   
6 COLB T2 6858 6507 94.88   
7 J1 J2 14284 13701 95.92   
8 J1 T1 6980 6727 96.38   
9 J1 N2 13675 13053 95.45   
10 J1 T2 6857 6546 95.46   
11 N1 J2 14232 13498 94.84   
12 N1 T1 6968 6627 95.11   
13 N1 N2 27131 25635 94.49   
14 N1 T2 6812 6431 94.41   

 
Table 3.4. Baseline data processing statistics. 
 
 For the four rover receivers (marked as J2, T1, N2 and T2), a total of 12 baselines 
were processed using three reference stations COLB, J1 and N1. Table 3.4 lists the total 
epochs with at least four double-differences, the epochs with fixed L1 ambiguities and the 
fixed rates, for the 12 baselines. Around 95% of fixed L1 solution can be achieved for all 
the reference and rover combinations. It should be noted here that baselines 7, 9 and 11 
were processed in 2Hz mode and baseline 13 was processed in 4 Hz mode, while other 
baselines were processed at 1Hz sampling rate. A closer inspection of the fixed rate in 
Table 3.4 indicates that the fixed rate of the rover receivers N2 and T2 are a little better 
than these of the rover receiver J2 and T1, no matter which reference receiver is used 
(with the exception of baseline 3); the reason could be that J2 and T1 were installed on 
the right side of the van, where they were was more likely to experience loss of lock due 
to the foliage on the right side of the road, as compared to the left side of the vehicle. 

As mentioned earlier, the computed distances between two rover receivers 
determined from different baselines, as shown in Table 3.4, are used to verify the 
correctness of the position solutions. Table 3.5 provides the number of epochs used to 
estimate the distances between the pairs of different rover receivers, the number of valid 
epochs of the estimated distance (after removing the incorrect distances/epochs), the 
percentage of the valid epochs, the mean and std of the computed distances after 
removing the outliers. Around 8 mm accuracy (in terms of the standard deviation) in the 
estimation of the distance between two rover receivers from different baselines can be 
achieved, with the valid percentages of the epochs at more than 95% for most baselines, 
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except for baseline pairs (3 and 7) and (3 and 11) (91.85% and 90.74%, respectively). 
The computed distances agree with the actual distance within 1 cm accuracy. The actual 
distance between two antennas is determined from the data collected when the vehicle 
was in a stationary mode; see Yi & Grejner-Brzezinska (2004) for more details. 
 

BL 
No. 

BL 
No. 

Total 
Epoch 

Valid 
Epoch 

Valid  
Epoch (%) Mean [m] Std [m] 

3 4 6526 6354 97.36 2.287 0.007 
3 5 6393 6093 95.31 1.491 0.005 
3 6 6316 6091 96.44 2.223 0.005 
3 7 6651 6109 91.85 0.015 0.008 
3 8 6488 6342 97.75 2.287 0.009 
3 9 6341 6203 97.82 1.490 0.008 
3 10 6344 6199 97.71 2.221 0.007 
3 11 6589 5979 90.74 0.017 0.009 
3 12 6417 6285 97.94 2.288 0.009 
3 13 6264 6124 97.77 1.490 0.008 
3 14 6250 6111 97.78 2.223 0.007 

 
Table 3.5. The statistics of the computed distances between two rover receivers 
determined from different baselines. 
 
3.5 Summary and conclusions 

The single-epoch RTK positioning technique in both baseline and network modes, 
implemented to extend the capability of GPS data processing from multiple reference and 
rover receivers was discussed in this chapter. The detailed data processing strategies were 
discussed, aimed at improving the ambiguity success rate and the quality control in the 
epoch-by-epoch solution. These strategies include: 1) the double-difference ionospheric 
pseudo-observations to extend the baseline length and to enable the epoch-by-epoch 
ambiguity resolution; 2) the carrier-phase-based code smoothing technique to improve 
the code measurement accuracy by lowering the multi-path and the measurement noise; 3) 
the VCM-based stochastic model, which can better reflect the actual GPS measurement 
stochastic characteristics; 4) a partial ambiguity fixing strategy, and 5) bridging the GPS 
ambiguities from the previous fixed epoch. The experimental results, based on static 
baselines processed in kinematic mode, indicate that a cm-level positioning accuracy can 
be achieved for baselines of around 16 km, 25 km, 50 km and 75 km, processed in 
baseline-by-baseline mode, and for a baseline around 120 km processed in the network 
mode. By comparing the relative distances computed from the position solutions, the 
experimental kinematic results indicate that in most of the cases more than 95% valid 



 59

solutions of around 95% fixed L1 solutions can be achieved by using only the data 
processing strategies 1, 2, 3 and 4, as listed above. 

Even though the system design of the implemented RTK positioning technique is 
intended to provide real-time RTK network-based positioning solution if more than two 
reference receivers are provided, more steps are needed for an actual operational product. 
In the current implementation of the network mode, the predicted double-difference 
ionospheric corrections from the network-derived ionospheric error model are directly 
removed from the double-difference measurements between the rover receivers and their 
closest reference receivers. However, for example, for a VRS product, given the rover 
receiver coordinates, the virtual GPS measurements from one reference station (normally 
the closest one from the rover coordinates) can be generated from the network-derived 
ionospheric and tropospheric error models; then the generated VRS measurements are 
broadcast in a specific data format (see, for example, Vollath et al., 2000). This step has 
not been implemented here. 
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CHAPTER 4 

 
 

EXTENDED INERTIAL-SENSOR STOCHASTIC ERROR IDENTIFICATION AND 
MODELING 

 
In this chapter, an overview of the INS error sources, inertial sensor stochastic error 

identification and modeling techniques are introduced. The stochastic error is often 
referred to as the stochastic noise, thus the stochastic error identification is also referred 
to as stochastic noise identification. In the sequel, the stochastic noise and the stochastic 
error are used as synonyms. The stochastic error identification techniques, to be discussed 
here, include: 1) the Allan variance (AVAR) analysis in the time domain, and 2) the 
Power Spectral Density (PSD) method in the frequency domain. The stochastic error 
models are represented as random processes based on the identified stochastic error 
characteristics or manufacturer’s error specifications. The static and relatively long data 
observation sessions (more than several hours) are recommended to perform the two 
noise identification techniques. The two noise identification techniques can also be used 
for kinematic data if the actual dynamics can be separated from the noise, which is 
practically impossible. Other noise identification techniques designed for kinematic 
datasets exist, for example, the adaptive Kalman filter, but will not be investigated in this 
dissertation. The analyses for the two noise identification techniques based on the 
experimental static datasets for four inertial sensors of different grades are presented 
here.  
 
4.1 Primary INS error sources 

As stated in Chapter 2, due to the time integration of inertial measurements which are 
contaminated by the deterministic (also referred to as systematic) and stochastic (also 
referred to as random) errors, the inertial navigation errors in position, velocity and 
orientation will accumulate with time, especially in the vertical components (i.e., height 
for position and heading for orientation), even if accurate initial position, velocity and 
orientation are available. Therefore, it is particularly important to understand the INS 
primary error sources and adopt the appropriate INS error models to control the drifts in 
the position, velocity and orientation. The most significant error sources of an inertial 
sensor are its instrumental errors, which dominate the inertial navigation performance in 
a major way. No matter what technologies are used in the inertial sensors, according to 
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IEEE Std 952, (1997), a general form of the inertial sensor measurement model should 
consist of the four components: 1) a mathematical statement of the physical model; 2) an 
error model consisting of a perturbation model and environmental sensitivities; 3) a 
stochastic model describing any stochastic error drift behavior; and 4) a measurement 
model consisting of a linear combination of the output and additive measurement noise. 
The physical model is normally described by the differential or algebraic equations that 
define the physics of the system’s operation. This is the deterministic part of the model, 
normally determined by its dynamic description. The dynamic modeling of an optical 
gyro, for example, involves a scale factor, a constant bias, a misalignment, and other 
environment biases (IEEE Std 952, 1997). The part of the general model that is of interest 
here is the stochastic model, which should be optimized to allow the evaluation and the 
improvement of the system’s performance through optimal filtering. Therefore, a careful 
identification of the INS stochastic error models is crucial, and should be performed to 
achieve the highest navigation accuracy. Equation (4.1) below describes the error model 
of an inertial sensor. 
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Here, the subscripts and the superscripts i, b and s denote the inertial frame (i-frame), 

the IMU body frame (b-frame), and the sensor instrumental frame (s-frame), respectively; 
ss

ib represents a vector of inertial measurements in the b-frame, coordinated in the s-frame; 
δs represents a vector of the inertial sensor (i.e., accelerometer or gyroscope) errors in the 
b-frame for the vector of inertial measurements ss

ib in the b-frame, coordinated in the 
s-frame; δC represents the transformation error matrix from the respective sensor’s own 
instrumental frame to the body-frame; the components of δC include three scale factor 
errors (δsf) and six misalignment effects (δma); δtemp is a vector of errors caused by the 
temperature variation; δnl contains the nonlinearity effects; δgs contains the G-sensitivity 
effects for the gyros only; δdF is a vector of fixed biases; δdRN is a vector of the rate 
white noise (also called angle/velocity random walk) term; δdRB is a vector of the “flicker 
noise” (alse called bias instability) term; δdRK is a vector of the “rate random walk” terms; 
δdRR is a vector of the trend (ramp) effects; δdRM is a vector of the exponentially 
correlated (Markov) noise terms; δdRS is a vector of the sinusoidal noise terms; δdQ is a 
vector of the quantization noise terms. 

The error sources in the aforementioned inertial measurement model, shown in 
equation (4.1), can be grouped into the deterministic errors (D) and the stochastic errors 
(S). The deterministic errors include: 1) the scale factor and misalignment effects; 2) 
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temperature-related variations due to the temperature changes, temperature ramps and 
gradients; 3) non-linearity errors; 4) G-sensitivity (for gyros only) effects, and 5) other 
minor environmental sensitivity errors, for example, the error caused by the magnetic 
effects. These errors are normally reduced using the regression techniques (some linear 
and/or non-linear function approximations), according to the a priori coefficients 
determined in the laboratory conditions. Normally, the outputs from most of the inertial 
sensors (i.e. the accelerometers and gyroscopes) are already compensated for such 
deterministic errors at the hardware level using the calibrated a priori coefficients. The 
inaccuracies of the deterministic errors can be further estimated, using the Kalman Filter 
technique, by augmenting these error terms via some random processes into the state 
vector of the position, velocity, and orientation, as shown in equation (2.22).  

The stochastic errors (S) include: (1) the long-time correlated random ‘bias’, which is 
also called ‘turn-on bias’ which is different in each experiment; (2) random drifts 
containing, for example, the rate white noise, the ‘flicker noise’, the rate random walk 
and the rate ramp (trend), the exponentially correlated (Markov) noise, and the sinusoidal 
noise; and (3) the quantization noise. The stochastic errors of an inertial sensor are also 
normally modeled as some random processes in accordance with the manufacturers’ error 
specifications, or through the stochastic error identification procedures discussed here. 
Table 4.1 summarizes the descriptions and definitions of the stochastic errors according 
to IEEE Std 528, (2001), and Figure 4.1 demonstrates how these stochastic errors 
propagate into the direct accelerations and angular-rates (fxyz and ωxyz) from the three 
accelerometers and gyroscopes, and into the accelerometer-integrated velocities and 
gyroscope-integrated angles (ΔVxyz and Δθxyz).  

Due to the complexity and diversity of the inertial sensor instrumental errors, Table 
2.1, shown in Chapter 2, presents only some examples describing the deterministic and 
stochastic errors of the inertial sensors used by the author of this dissertation throughout 
his doctoral studies, in accordance with the manufacturer’s error specifications.  
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Errors Definition or description 

Random ‘bias’ 
The average over a specified time of accelerometer and gyroscope 
outputs, measured at specified operating conditions that have no 
correlation with input acceleration or rotation. 

Rate white noise 

Also called angle/velocity random walk for 
∆θ and ∆V, due to the white noise in angular 
rates and accelerations of the gyroscopes and 
accelerometers. 

Flicker noise 

Also named ‘bias instability’, defined as the 
‘random’ variations in the biases as computed 
over a specified finite sample time and 
averaging time interval; it is a non-stationary 
(evolutionary) process characterized by a f–1 
PSD (power spectral density). 

Random walk 

Defined as the drift rate error buildup with 
time that is due to the white noise in the jerks 
and angular accelerations of the 
accelerometers and gyroscopes. 

Rate ramp 
Defined as a behavior characterized by the 
quadratic growth with the average time of the 
rate Allan variance. 

Exponentially 
correlated 

(Markov) noise 

Characterized by an exponential decaying 
function with a finite correlation time. 

Random drifts 

Sinusoidal noise The PSD of this noise is characterized by one 
or more distinct frequencies. 

Quantization 
noise 

Defined as the random variations in the digitized output signal, 
due to sampling and quantizing a continuous signal with a finite 
word length conversion, and the resulting incremental error 
sequence is a uniformly distributed random variable over the 
interval ±½ least significant bit (LSB). 

 
Table 4.1. Inertial sensor random errors. 
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Figure 4.1. Random error contributions to the measurements of the inertial sensors. 
 
4.2 INS dynamic modeling 

The INS error model of the inaccuracies of the deterministic errors is referred to as 
the INS dynamic model. The three scale factor errors and the misalignment errors form 
the error of the transformation matrix from the instrument’s own coordinate frame 
(s-frame) to the body frame (b-frame). The temperature-related variations can be 
compensated by using a polynomial fitting function. As an example, a 2nd order 
polynomial fitting function with six (3×2) coefficients for three accelerometers and three 
gyroscopes can be used.  If considering the 2nd order non-linearity effects, a total of 18 
(3×6) coefficients is needed to model the non-linearity effects for three accelerometers 
and three gyroscopes, respectively. For some gyroscopes, other cross-coupling effects 
with accelerometer measurements, called G-sensitivity effects, need to be modeled; a 
total of 27 (3×9) coefficients must be included if the 1st and 2nd order G-sensitivity effects 
of gyros to accelerations are considered. Traditionally, these errors together with their 
coefficients are normally augmented into the state vector as xf and xω sub-vectors and are 
modeled as some random processes to be estimated together with the other state 
sub-vectors by using the Kalman filter technique (Jekeli 2001; Farrell and Barth 1999; 
Titterton and Weston 1997; Siouris 1993). Table 4.2 summarizes the typical number of 
coefficients to model the possible inaccuracies of the deterministic errors. Due to the 
different technologies used in inertial sensors, not all the inertial deterministic errors 
listed in Table 4.2, will be evidenced in all types of accelerometers and gyroscopes.  
 
 
 
 
 
 
 

rate random walk 
integration integration 

flicker noise 

exponentially correlated (Markov) noise 

rate white noise ramp noise 

ΔVxyz 
Δθxyz 

fxyz 
ωxyz 

quantization noise 
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Inertial sensor errors Acceleration Gyroscope 
Scale factor 3 3 
Misalignment 6 6 
1st order temperature variation 3 3 
2nd order temperature variation 3 3 
2nd order nonlinearity 18 (=3×6) 18 (=3×6) 
G−sensitivity − 27 (=3×9) 
Total coefficients 33 60 
 
Table 4.2. Components of the state vector for the deterministic errors of the inertial 
sensors (Note: the number of the misalignment components of the state vector will be 
three instead of six in case of a symmetric system.). 
 
4.3 INS stochastic error identification and modeling 

The INS error modeling of the stochastic components is referred to as the INS 
stochastic error modeling. It includes two steps: (1) the stochastic error identification, and 
(2) the stochastic error model. Several methods in the frequency and time domains have 
been devised for the stochastic error identification. Two most commonly used techniques 
are: (1) the Allan variance approach in the time domain, see, for example, Annex C (pp. 
65-76) of IEEE Std 647, (1995), and (2) the PSD (power spectral density) approach in the 
frequency domain, see, for example, Annex I (pp. 166-182) of IEEE Std 1293, (1998). 
Other frequently used approaches are the adaptive Kalman filtering, and the correlation 
method. The correlation approach analyzes the auto-covariance sequence, computed from 
the output data to derive stochastic error model parameters. In this case, the 
auto-covariance can be (1) modeled as a sum of the exponentials and damped sinusoids, 
or (2) expressed by the coefficients of a differential equation, or (3) expressed as an 
autoregressive moving average (ARMA) process. According to IEEE Std 952, (1997), the 
correlation approach is considered to be very model-sensitive, and is not suited to 
handling odd power processes, higher-order processes, or wide dynamic ranges.  
According to IEEE, Std 952, (1997), the Allan variance analysis and the PSD method are 
the preferred ones for the INS stochastic error identification. 

The stochastic errors are normally modeled as some stochastic random processes, 
according to their stochastic error characteristics from the error identification techniques, 
or directly from the manufacturer’s error specifications. And they are augmented with 
other state sub-vectors into the Kalman Filter to approximate their spectrum of inertial 
measurements. Having correct stochastic error models in the inertial navigation system 
will result in a better performance of the calibration, alignment and navigation Kalman 
Filters. 
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4.3.1 INS random error identification 
Two approaches, Allan variance analysis and the PSD method, are used here, as 

already mentioned, to identify the stochastic error characteristics of four inertial sensors: 
two navigation grade sensors LN100 and H764G, a tactial HG1700, and a 
consumer-grade IMU400CC that are all owned by The Ohio State University Satellite 
Positioning and Inertial Navigation (SPIN) Laboratory. 
 
4.3.1.1 Allan variance analysis 

The two-sided (1st difference) Allan variance (Allan, 1966) was developed in the 
mid-1960s and adopted by the time and frequency standard community for the 
characterization of the phase and frequency instability of precision oscillators. It was also 
adapted as a standard approach to characterize the random drift of the inertial sensors. 
According to the IEEE Std 528, (2001), the Allan variance is defined as a 
characterization of the noise (and other processes) in a time series of data as a function of 
averaging time. It is one half of the mean value of the squared difference of two adjacent 
time averages from the time series as a function of average time, and therefore, not really 
a variance in a statistical sense. Equation (4.3) is used to compute the Allan variance of a 
time series with n sample points and a sample interval, τ0, using the sample average of 
the squared-differences from the average data, which is formed using k consecutive 
original data points.  
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Percentage error of Allan variance estimation )1(2
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Here, σ(τ) denotes the Allan variance; n is the total number of original sample data y; 

τ0 is the sample interval of the original sample data; τ = kτ0, k (maximum: 
2
n ) is the 
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sample interval of the averaged grouped data y , formed using k consecutive original 

data points; )(
k
nroundN =  is the maximum number of group data for a selected k; E is 

called the percentage accuracy of the Allan variance estimation. 
In general, any combination of these stochastic errors, as listed in Table 4.1 

regardless of other types of errors that are not shown, but may exist, can be present in the 
experimental inertial data. In most cases, different noise contributions appear in different 
regions of averaging time, τ. Thus, this allows an easy identification of various stochastic 
errors that exist in the data, using the regression technique. Figure 4.2 from the IEEE Std 
647, (1995) illustrates a sample noise characteristic for a gyroscope using Allan variance 
analysis. The quantization noise has the slope −1 in the log-log Allan variance plot. The 
rate white noise, flicker noise, rate random walk, and rate ramp will have the slopes −½, 
0, +½, and +1, respectively, in the log-log Allan variance plot. The Markov noise and the 
sinusoidal noise have varying slopes in the log-log Allan variance plot. If not considering 
the Markov and sinuous noises, the random drift coefficients R, K, B, N and Q for the rate 
ramp, rate random walk, flicker noise, rate white noise and quantization noise, as listed in 
the Table 4.3, can be estimated directly from the rigorous equation (4.5), or from the 
approximate equation (4.6) using the regression technique. The regression technique is 
normally implemented using the least-squares adjustment with the percentage error 
determining the weights. The coefficients can also be separately estimated by using the 
simple linear fitting in the log-log plots (R, K, B, N, and Q) shown in the third column of 
Table 4.3. According to Figure 4.1, the quantization noise will not be evidenced in the 
direct accelerations and angular rates (fxyz and ωxyz) of the accelerometers and gyroscopes, 
since the quantization noise is only introduced during the integration from accelerations 
and angular rates to accelerometer-integrated velocities and gyroscope-integrated angles 
(Δvxyz and Δθxyz). After the coefficients R, K, B, N and Q were estimated using the 
aforementioned regression method, they can be used to compensate the stochastic error 
sources, which will be discussed later. 
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Figure 4.2. Sample noise characterizations in log-log plot using the Allan variance 
analysis (from IEEE 647, (1995)). 
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Here: σ(τ) denotes the Allan variance; R unit⋅s−1, K unit⋅s−½, B unit, N unit⋅s½ and Q 

unit⋅s are the coefficients for the rate ramp, the rate random walk, the flicker noise, the 
rate white noise, and the quantization noise, respectively; unit≡m/s2 for the accelerations 
and unit≡rad/s for the angular rates. 
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Noise name Allan variance Log-log model Coefficients 
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Table 4.3. Stochastic noise contributions for the estimation of the Allan variance analysis. 
 
4.3.1.2 Power spectral density (PSD) method 

The PSD method in the frequency domain, which takes the advantage of the Fast 
Fourier Transform (FFT) technique for the numerical evaluation, is the most commonly 
used data analysis technique for the discrete inertial measurements. Two kinds of inertial 
measurements exist for various inertial sensors, the accelerations and angular rates 
directly from the accelerometers and gyroscopes, and the accelerometer-integrated 
velocities and gyroscope-integrated angles. The PSD transformation between the two 
types of measurements can be expresses as PSD(derivative of data) = [(2⋅π)2f2]⋅PSD(data), 
where f is the spectral frequency in Hz. Since the PSD function of a process is an even 
function, the PSD is normally referred to as the two-sided PSD, which is two times of the 
one-sided PSD. The two-sided PSD is often used in the mathematical proof relating to the 
PSD, while the one-sided PSD is often used in the actual data analysis since it requires 
working only with positive frequency. According to the definition, the rate white noise 
has a constant power at all frequencies, and is represented by a zero slope line parallel to 
the frequency axis; the integration of white noise results in a random walk process, whose 
PSD is represented by a slope of –2 in the log-log plot. The so-called flicker noise will 
often be seen in the experimental data with a slope of –1 in the log-log plot. If the outputs 
of the sensors are the accelerometer-integrated velocities and gyroscope-integrated angles, 
the quantization noise will be evident with a log-log PSD slope of +2. Figure 4.3 shows 
the typical noise characteristics of the accelerometer and gyroscope PSD in the rate 
domain (accelerations or angular rates). The gradient transitions in the slopes will replace 



 70

the sharp transitions in the log-log plot for the real experimental data, also the slopes will 
be slightly different from the theoretical slopes (–2, –1, 0, and 2) due to the uncertainty of 
the measured PSD. Similarly to the Allan variance analysis, the noise coefficients can 
also be fitted using a log-log model or a least-squares adjustment based on equation (4.7). 
The log-log fitting can also be done according to the 2nd column shown in Table 4.4. The 
PSD method cannot distinguish between the rate random walk and the rate ramp whose 
log-log models are both y =−2x+b. Thus, the rate ramp must be removed before applying 
the PSD method. However, the Allan variance analysis in the time domain can 
distinguish between the rate random walk and the rate ramp.  
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Table 4.4. Random noise contributions for the PSD method. 
 

Here, Δt is the sampling interval; Φ is the PSD; f is the spectral frequency in Hz; Q, 
N, B, K and R are the stochastic error coefficients for the stochastic errors in form of: (1) 
the quantization noise, (2) the rate white noise, (3) the flicker noise, (4) the rate random 
walk, where y is expressed as a linear log-log fitting function of x, with a const term b 
used to estimate the coefficients Q, N, B and K.    
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Figure 4.3. Typical slopes in log-log plot of one-sided PSD vs. frequency for 
accelerations or angular rates. 
 
4.3.1.3 Numerical examples 

In order to demonstrate the aforementioned noise identification techniques and to 
investigate the stochastic noise characteristics of inertial sensors in comparison to the 
manufacturer’s specifications, several static datasets were collected using various grade 
inertial sensors. These inertial sensors include: (1) two navigation grade H764G; (2) one 
navigation-grade LN100; (3) one tactical grade HG1700; and (4) one consumer grade 
Crossbow MEMS IMU400CC. The two noise identification techniques discussed were 
applied to these static datasets. Two experiments were conducted on June 26, 2004 (Day 
of Year: DOY 178, referred to as DOY 178, 2004) and Oct. 20, 2004 (DOY: 294, 2004), 
respectively. The first experiment on DOY 178, 2004 collected ~8 hours of static data for 
three inertial sensors H764G, HG1700, and IMU400CC. The experiment on DOY, 294, 
2004 collected two static segments (referred to as 2941 and 2942). All four types of the 
inertial sensors were included in the second experiment. The raw inertial output from 
HG1700 and IMU400CC include the temperature, which may indicate the absence of the 
temperature compensation in the raw inertial measurements. Thus, a 2nd-order polynomial 
fitting function f(T)=a0+a1T+a2T2, where T is the measured temperature, was used to fit 
the raw inertial measurements, and then to remove the temperature-related trends. Table 
4.5 shows two examples of the fitted coefficients (a0, a1 and a2) for temperature 
compensation to remove the deterministic error sources from inertial measurements for 
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the HG1700 and IMU400CC test datasets. Coefficient a0 is a constant term of the inertial 
measurements, and a1 and a2 indicate the relationship between the inertial measurement 
and temperature. Both a1 and a2 of the IMU400CC x and y accelerometers and 
gyroscopes are of comparable magnitudes, while these coefficients for the IMU400CC z 
accelerometer and gyroscope are much bigger. The a1 and a2 coefficients of the HG1700 
x and z accelerometers are very similar, and both are smaller than these of the HG1700 y 
accelerometer. Similarly to the temperature relationship of the IMU400CC gyroscopes, 
the a1 and a2 coefficients of the HG1700 x and y gyroscopes are similar, and much 
smaller than these of the HG1700 z gyroscope. Overall, the temperature dependency of 
the IMU400CC inertial measurements is much stronger than that of the HG1700, except 
for the y accelerometer.  
 

 a0 
unit 

a1 
unit⋅C−1 

a2 

unit⋅C−2 
 a0 

unit 
a1 

unit⋅C−1 
a2 

unit⋅C−2 
fx -0.1205590 0.0031942 -0.0000488 Δvx 0.1812791 0.0011339 -0.0000123
fy -0.3494839 -0.0041194 0.0000662 Δvy -1.0330649 -0.0204334 0.0002917
fz -9.6776737 0.0093617 -0.0001517 Δvz -9.7609339 -0.0016558 0.0000217
ωx -0.0350548 0.0026017 -0.0000475 Δθx -0.0003935 0.0000201 -0.0000003
ωy -0.0552294 0.0038179 -0.0000641 Δθy -0.0004730 0.0000235 -0.0000003
ωz 0.0192663 -0.0019009 0.0000341 Δθz -0.0012132 0.0000634 -0.0000008
 IMU400CC on DOY 178  HG1700 on DOY 178 

 
Table 4.5. Temperature de-trending coefficients, using a 2nd-order polynomial fitting 
function f(T)=a0+a1T+a2T2 (unit≡m⋅s−2 for the accelerometer measurement and 
unit≡rad⋅s−1 for the gyroscope measurement). 
 

Figure 4.4 shows an example of the Allan variance estimation for one of the H764G 
instruments, using three datasets (one from the experiment on DOY 178, 2004, and two 
static segments from the experiment on DOY 294, 2004) with different lengths. It clearly 
indicates that the longer static dataset will result in a more stable and reliable Allan 
variance estimation. Thus, the final Allan variance coefficients are estimated from the 
longest dataset on DOY 178, 2004, which is around 8 hours. According to Figure 4.4, the 
quantization noise dominates the gyroscope measurements up to around ten seconds and 
accelerometer measurements around a few seconds. The gyroscope measurements exhibit 
a rate white noise in the time domain from 20-100 seconds. The accelerometer 
measurements experience a short-time rate white noise around tens of seconds, 
continuing with a flicker noise up to a few hundreds of seconds. Then, they end with the 
rate random walk in the x and z directions, and with a combination of the rate random 
walk and rate ramp in the y direction. The rate ramp effects shown in Figure 4.4 
obviously indicate that some deterministic error sources exist in the accelerometer 
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measurements; this is because no deterministic error sources were removed from the 
H764G datasets. Table 4.6 shows the Allan variance error characteristics and coefficients, 
estimated from the Allan variance log-log models for H764G sensor. As can be seen in 
Table 4.6 (after appropriate unit conversion), the quantization noise for the gyroscope 
measurements, is around 0.8 arcsec, and 0.00015 m⋅s−1. The angle random walk is 0.008 
º⋅h−½, and the velocity random walk is 0.3 μg⋅h½. Figure 4.5 shows the Allan variance 
estimations for LN100, HG1700 and IMU400CC. The detailed noise characteristics for 
H764G, LN100, HG1700 and IMU400CC using the Allan variance analysis and the PSD 
are provided in Appendix B. 
 

 
 
Figure 4.4. Allan variance estimation for H764G using three different datasets: 1st dataset 
collected on DOY 178, 2004, marked as 178 (8h35m50s at 256Hz sampling rate); 2nd 
dataset collected on DOY 294, 2004, marked as 2941 (0h49m10s at 256Hz sampling rate); 
3rd dataset collected on DOY 294, 2004, marked as 2942 (2h35m30s at 256Hz sampling 
rate). 
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  Q N B K R 
fX <1 s 1~10 s 20~200 s 200~10000 s  
fY <1 s 4~20 s 50~200 s 200~500 s 500~10000 s 
fZ <1 s 10~80 s 200~700 s 500~5000 s  
ωX <5 s 20~100 s    
ωY <5 s 20~100 s    

Er
ro

r 
ch

ar
ac

te
ris

tic
s 

ωZ <5 s 20~100 s    
  Q unit⋅s N unit⋅s½ B unit K unit⋅s−½ R unit⋅s−1 

fX 0.0001611 0.0002786 0.0000714 0.0000037  
fY 0.0001846 0.0001609 0.0000277 0.0000022 0.0000000703 
fZ 0.0001153 0.0000961 0.0000096 0.0000005  
ωX 0.0000033 0.0000023    
ωY 0.0000036 0.0000023    

Er
ro

r 
co

ef
fic

ie
nt

s 

ωZ 0.0000045 0.0000026    
 
Table 4.6. Allan variance error characteristics, and estimated coefficients for H764G 
using static dataset of DOY 178, 2004 (unit≡m⋅s−2 for the accelerometer measurement 
and unit≡rad⋅s−1 for the gyroscope measurement). 
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Figure 4.5. Allan variance estimations for LN100, using 1st static dataset of DOY 294, 
2004 (marked as LN100 2941), and for HG1700 and IMU400CC, using static datasets of 
DOY 178, 2004 (marked as HG1700 178 and IMU400CC 178). 
 

One example of the PSD estimation for H764G using the static dataset of DOY 178, 
2004, is shown in Figure 4.6. The PSD estimates shown in Figure 4.6 represent the 
combinations of the environmental noise and intrinsic noise in the inertial sensors. For 
example, in the accelerometer measurements, the seismic environmental noise might 
cause discrete spikes, typically above 1 Hz, due to resonances in the local geology and 
the test platform. The H764G is a navigation-grade inertial sensor, which is very sensitive 
to environmental noise; thus, several spikes are present in the high frequency areas of the 
PSD spectrum of all three accelerometers and three gyroscopes, as shown in Figure 4.6. 
A quantization noise appears in the high frequencies (higher than around 2 Hz) of all 
accelerometers and gyroscopes. The rate white noise shows in the low frequencies (up to 
around 2 Hz) for the three gyroscopes. However, the three accelerometers have a flicker 
noise in the frequencies lower than 0.003 Hz, and a rate white noise in the frequencies 
between 0.003 Hz and ~2 Hz. Detailed PSD stochastic error characteristics and the 
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respective coefficients are listed in Table 4.7. The rate white noise present in the y 
accelerometer has more variations than the other two directions. Also the spikes shown in 
the high frequencies of different axes of different inertial measurement units are different, 
which indicates that each axis of the inertial sensor experience different environmental 
noise. Differently from the results obtained with the Allan variance analysis, no obvious 
effect of the rate random walk is evident in the accelerometers. 
 

 
 
Figure 4.6. PSD estimations for H764G, using the dataset of DOY 178, 2004. 
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  Q N B K R 
fX >3 Hz 0.003~3 Hz <0.003 Hz   
fY >2 Hz 0.003~2 Hz <0.003 Hz   
fZ >2 Hz 0.003~2 Hz <0.003 Hz   
ωX >2 Hz <2 Hz    
ωY >2 Hz <2 Hz    

Er
ro

r 
ch

ar
ac

te
ris

tic
s 

ωZ >2 Hz <2 Hz    
  Q unit⋅s N unit⋅s½ B unit K unit⋅s−½ R unit⋅s−1 

fX 0.0000801 0.0001940 0.0000544   
fY 0.0000993 0.0001292 0.0000213   
fZ 0.0000676 0.0000843 0.0000097   
ωX 0.0000017 0.0000020    
ωY 0.0000022 0.0000021    

Er
ro

r 
co

ef
fic

ie
nt

s 

ωZ 0.0000018 0.0000024    
 
Table 4.7. Example PSD stochastic error characteristics, and coefficients for H764G 
using the static dataset of DOY 178, 2004 (unit≡m⋅s−2 for the accelerometer measurement 
and unit≡rad⋅s−1 for the gyroscope measurement). 
 
4.3.1.4 Summary of the INS stochastic error identification using the Allan variance 

analysis and the PSD method 
Table 4.8 summarizes the stochastic error coefficients for H764G, LN100, HG1700 

and IMU400CC identified by using the Allan variance analysis and the PSD method 
described above. The estimated coefficients for the three orthogonal accelerometers and 
the three gyroscopes for the same inertial sensor using the same noise identification 
technique are averaged. The cross-comparison of these stochastic error coefficients using 
the Allan variance analysis and the PSD method indicates that both results match very 
well except for some coefficients marked in red in Table 4.8. The differences between the 
two methods (marked in red) are found in: (1) the quantization noise and the rate random 
walk of the accelerometers of H764G, and (2) the flicker noise and rate random walk of 
the accelerometers of HG1700. Based on the common sensor stochastic error 
characteristics identified using the Allan variance analysis and using the PSD method, the 
following conclusions are drawn: 

 Rate white noise is found in all accelerometers and gyroscopes of H764G, LN100, 
HG1700 and IMU400CC.  

 Quantization noise is found in the accelerometers of H764G, LN100 and HG1700, 
and in the gyroscopes of H764G and LN100. 

 Flicker noise is found in the accelerometers of H764G, LN100, HG1700 and 
IMU400CC, and in the gyroscopes of IMU400CC. 
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Se
ns

or
 

Data Method Q 
unit⋅s 

N 
unit⋅s½ 

B 
unit 

K 
unit⋅s−½ 

R 
unit⋅s−1 

AVAR 0.0001537 0.0001785 0.0000359 0.0000017  
fXYZ PSD 0.0000823 0.0001358 0.0000285   

AVAR 0.0000038 0.0000024    H
76

4G
 

ωXYZ PSD 0.0000019 0.0000022    
AVAR 0.0002781 0.0006137 0.0001370   

fXYZ PSD 0.0001959 0.0006053 0.0001276   
AVAR 0.0000016 0.0000031    L

N
10

0 

ωXYZ PSD 0.0000011 0.0000032    
AVAR 0.0005020 0.0004426 0.0001360 0.0000252  

fXYZ PSD 0.0005221 0.0002271 0.0000170   
AVAR  0.0000691    

H
G

17
00

 

ωXYZ PSD 0.0000038 0.0000635    
AVAR  0.0007656 0.0002501   

fXYZ PSD  0.0007279 0.0002782   
AVAR  0.0004388 0.0000707   

IM
U

40
0

C
C

 

ωXYZ PSD  0.0004371 0.0000630   
 
Table 4.8. The stochastic error coefficients identified by using the Allan variance (AVAR) 
analysis and the PSD method (unit≡m⋅s−2 for the accelerometer measurement and 
unit≡rad⋅s−1 for the gyroscope measurement). Significant noise differences between the 
Allan variance analysis and the PSD method are marked in red. 
 

The stochastic error coefficients, combining both the Allan variance analysis and the 
PSD method, are listed in Table 4.9. The rate random walk shown in the accelerometers 
of H764G and HG1700 are ignored and the final adopted coefficient B for the 
accelerometers of HG1700 is from the Allan variance analysis. All other coefficients are 
averaged to obtain the final coefficients listed in this table. In this table, the quantization 
noise in the accelerometers of H764G is smaller than that of LN100, while the 
quantization noise in the gyroscope of H764G is bigger than that of LN100. The 
quantization noise in the accelerometers of both navigation-grade INS (i.e. H764 and 
LN100) is smaller than that of the tactical-grade HG1700. The magnitude of the rate 
white noise in all accelerometers and gyroscopes is increasing from H764G, to LN100, to 
HG1700 and to IMU400CC, with the exceptions in the accelerometers of LN100, whose 
accelerometer rate white noise coefficient is bigger than that of HG1700. The flicker 
noise in the accelerometers of these sensors also follows the order: H764G (smallest), 
LN100, HG1700 and IMU400CC (largest).        
 



 79

Sensor Data Q unit⋅s N unit⋅s½ B unit 
fXYZ 0.0001180 0.0001572 0.0000322 H764G 
ωXYZ 0.0000028 0.0000023  
fXYZ 0.0002370 0.0006095 0.0001323 LN100 
ωXYZ 0.0000014 0.0000031  
fXYZ 0.0005121 0.0003349 0.0001360 HG1700 
ωXYZ  0.0000663  
fXYZ  0.0007468 0.0002642 IMU400CC 
ωXYZ  0.0004379 0.0000668 

 
Table 4.9. The final estimated coefficients of the stochastic error models combining both 
the Allan variance analysis and the PSD method (unit≡m⋅s−2 for the accelerometer 
measurement and unit≡rad⋅s−1 for the gyroscope measurement). 
 
4.3.2 INS random error modeling 

Among the noise contributors shown in Figure 4.1, the random bias, δdF, can be 
modeled as a random constant, and the rate white noise, δdRN, can be treated as a 
measurement noise for the raw measurements of accelerations and angular rates (fxyz and 
ωxyz), while it will be modeled as angle and velocity random walk for the integrated 
measurements of the accelerometer-integrated velocities and gyroscope-integrated angles 
(ΔVxyz and Δθxyz). The flicker noise, δdRB, is very complex, and a very comprehensive 
review of this 1/f noise can be found in Edoardo (2002) while, according to Keshner 
(1982), the flicker noise over a given bandwidth can be modeled as the combination of a 
sum of the exponentially correlated Markov noise states. Also, according to Stockwell 
(2005), the flicker noise can as well represent the best achievable bias stability with the 
fully modeled inertial sensors. The rate random walk, δdRK, is modeled as a random walk 
process in the rate (acceleration and angular rate) domain (Ford & Evans, 2000). The rate 
ramp can be modeled as a 2nd order differential equation driven by the ramp noise. 
Equation (4.8) presents a possible stochastic noise model of the inertial sensors, assuming 
that if the inertial measurements are the accelerations and angular rates (fxyz and ωxyz), the 
corresponding noise component of the measurement equation is (4.9), while if given are 
the inertial integrated observables (ΔVxyz and Δθxyz), the corresponding noise component 
of measurement equation is shown in equation (4.10), with an additional quantization 
noise serving as the white measurement noise according to IEEE Std 1293, (1998).  
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Here, dF is the random ‘bias’ error; dRN is the rate white noise; dRB is the flicker 

noise; dRK is the rate random walk; dRR is the rate ramp; dRM is the exponentially 
correlated Markov noise; zk is the measurement; β is the correlation time; Δt is the sample 
interval; and v and n is the independent white Gaussian noise with zero mean and unit 
variance; ek are the measurement noise component for the inertial measurements. 

In contrast to the stochastic noise model shown in equation (4.8), modeled as random 
processes using the differential equations, an equivalent ARMA model representation has 
been reported in Seong et al. (2000). The equivalent ARMA models for the mixed 
combination of the rate white noise, the rate random walk, the quantization noise, and the 
1st order Gaussian-Markov correlated noise are shown in Table 4.10. Then a state-space 
vector representation of the noise contributions can be easily implemented based on the 
ARMA representation with difference Auto-Regressive order and the Moving Average 
order. AMRA model order (i, j) shown in Table 4.10 represents the i-order 
Auto-Regressive processes and j-order Moving Average processes. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 81

Noise contributions AMRA model order 
rate white noise + quantization noise (0,1) 
rate white noise + rate random walk (0,1) 

rate white noise + first-order Markov noise (1,1) 
rate random walk + quantization noise (0,2) 

quantization noise + first-order Markov noise (1,2) 
rate white noise + rate random walk + quantization noise (0,2) 

rate white noise + quantization noise 
+ first-order Markov noise (1,2) 

rate random walk + first-order Markov noise (1,1) 
rate white noise + rate random walk 

+ first-order Markov noise (1,2) 
rate random walk + quantization noise 

+ first-order Markov noise (1,3) 
rate white noise + rate random walk + quantization noise 

+ first-order Markov noise (1,3) 
 
Table 4.10. Equivalent ARMA models for the noise contributions identified using the 
Allan variance analysis or the PSD method. 
 
4.3.3 Performance comparisons of the customized error model as compared to the 

default error model from manufacturer’s error specifications 
In Grejner-Brzezinska et al. (2005b), a tactical-grade inertial sensor HG1700 

integrated with the GPS was used as an example to validate the navigation performance 
of the customized inertial sensor error model, shown in Table 4.9, as compared to the 
default inertial sensor error model from the manufacturer’s error specification, shown in 
Table 2.1. Figure 4.7 illustrates the free inertial navigation horizontal position drifts of 
HG1700, using the aforementioned inertial sensor error models (i.e., the customized error 
model v.s. default error model), as compared to the GPS/INS reference solution from a 
high-end inertial sensor LN100. Around 30 percent navigation improvement in the 
horizontal position component based on the example shown in Figure 4.7 can be 
evidenced for the tactical-grade inertial sensor HG1700, after a 600-second free inertial 
navigation using the customized error model. Another example based on a low-cost 
customer-grade MEMS inertial senor is shown in Chapter 5.  
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Figure 4.7. The free inertial navigation error drifts of a tactical-grade inertial sensor 
HG1700, as compared to the GPS/INS reference solution from a navigation-grade inertial 
sensor LN100, using the customized inertial sensor error model derived using Allan 
variance analysis and the default error model from the manufacturer’s error 
specifications. 
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CHAPTER 5 

 
 

WAVELET-BASED SIGNAL DE-NOISING TECHNIQUE 
 

5.1 Wavelet-based signal de-noising technique for a low cost MEMS IMU 
With the emergence of the low-cost MEMS IMUs, assessing their applicability to 

land-based and/or airborne direct sensor orientation is attracting a lot of interest in the 
mobile mapping and remote sensing communities. However, the relatively high 
measurement noise of these sensors degrades the overall navigation performance of the 
integrated system, especially during the losses of GPS lock. In general, the inertial 
measurements consist of the motion dynamics, vehicle vibration disturbances, sensor 
dither disturbances (for example, the Ring Laser Gyro), and inertial sensor errors. As 
explained in Chapter 4, the inertial sensor errors include the deterministic and the 
stochastic components. The stochastic errors can be further classified as colored (or time 
correlated) noise and the measurement noise. The deterministic errors and the colored 
noise can be accounted for by using INS dynamic and stochastic error modeling, as 
explained in Chapter 4. Thus, the goal of signal de-noising is to reduce the measurement 
noise as well as the dithering effects and vibrations, while preserving the spectrum of the 
true motion dynamics, the sensor’s deterministic error and the colored noise. The 
commonly used signal de-noising techniques include the moving average technique and 
low-pass filtering.  

In recent years, the wavelet signal de-noising technique has been proposed to smooth 
the raw inertial measurements, and efforts to improve the navigation performance of 
inertial navigation have been reported; see, for example (Nassar, 2003; 
Grejner-Brzezinska et al., 2005; Yi et al., 2005). The wavelet signal de-noising technique 
is also found in other applications; see for example (Schaffrin & Pan, 1999; Sardy et al., 
2001; Chi et al., 1999). The fundamental principle of the wavelet-based signal de-noising 
technique, as shown in equation (5.1) is to decompose the signal (here, the inertial 
measurements that are contaminated with the noise) into: 1) approximations, i.e, the 
high-resolution, low-frequency components of the original signal, and 2) the so-called 
details that correspond to the low-resolution, high-frequency components, using several 
levels of two complementary filters (i.e., high and low pass filters), referred to as the 
multiple level wavelet decomposition; see, for example, Daubechies (1992). Figure 5.1 
illustrates an example of the wavelet-based signal decomposition into a five-level wavelet 
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decomposition (also referred to as level of wavelet de-noising or level of de-noising) of 
the output of a MEMS accelerometer (here, Crossbow MEMS IMU400CC) in the 
kinematic mode. It clearly indicates that the decomposed component, labeled as a5, after 
the five-level wavelet decomposition, contains an approximation of the raw signal, 
labeled as s. The removed components at different levels of the wavelet decomposition, 
labeled as d1, d2, d3, d4 and d5, are the details of this MEMS accelerometer output. The 
wavelet de-noising algorithm used in this dissertation to analyze the Crossbow MEMS 
IMU400CC was derived from the Matlab wavelet toolbox, based on the Symlet wavelets, 
which are considered near-symmetrical, linear phase filters (Matlab, 2007). 
 

∑
=

=

+=
ki

i
ik ttt

1

)()()( das               (5.1) 

 
Here, s(t) represents the original signal. After an optimal k level of decomposition, 

s(t) can be decomposed into the approximation ak(t), representing the majority of the 
deterministic errors and stochastic colored noise, and the summation of the k-level di(t), 
containing the details for each level of the wavelet decomposition.  
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Figure 5.1. An example of the wavelet signal decomposition for an accelerometer output 
of MEMS IMU400CC in the kinematic mode. 
 

As mentioned earlier, the details from the wavelet decomposition of the inertial 
measurements should only contain the high-frequency measurement noise and some 
vehicle vibration disturbance. Some of the vehicle dynamics as well as sensor systematic 
and temporally correlated error sources may also be included in the details, which 
indicates that an over-smoothing might have occurred. The main concern of the 
over-smoothing is the possible partial removal of some motion dynamic of the vehicle. 
The over-smoothing effects could be reduced by a careful selection of the allowable level 
of de-noising, which is a function of the motion dynamics, the data sampling rate, the 
type of inertial sensor, etc. (Grejner-Brzezinska et al., 2005b; Yi et al., 2005). To prevent 
the possibility of the actual motion dynamics removal from the signal, the bandwidth of 
the actual motion dynamics must be carefully analyzed together with the spectrum 
characteristics of the wavelet de-nosing algorithm. The maximum allowable level of 
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de-noising is normally determined by examining the statistics (mean, standard deviation, 
autocorrelation sequence, power spectrum, etc.) of the removed noise 
(Grejner-Brzezinska et al., 2005a & 2005b; Yi et al., 2005).  

Figure 5.2 illustrates an example of how to determine the allowable level of 
de-noising by examining the statistics of the removed noise for a static MEMS IMU 
dataset. The allowable level of de-noising is ~11 for both the gyroscope and 
accelerometer signals. The allowable level of de-noising is smaller for the kinematic 
dataset to prevent the partial removal of the dynamic signals. Different motion dynamics 
will have a corresponding allowable level of de-noising. Shown in Figure 5.3, a signal 
with medium dynamics will allow a four-level de-noising for the raw acceleration and 
gyroscope measurements. Figure 5.4 shows the auto-correlation sequence (ACS) and the 
power spectral density (PSD) of the removed details, using the four-level de-noising for 
the same kinematic MEMS IMU dataset as in Figure 5.3. Compared to the original signal, 
the approximation at level four is smoother, while the ACS and PSD of the removed 
details both indicate a white noise property. However, since the level of de-noising is a 
function of motion dynamics, the actual allowable level of de-noising should be verified 
by the true kinematic dataset.  
 

 
 
Figure 5.2. Statistics of the removed details for different levels of de-noising for a static 
dataset of MEMS IMU400CC. 
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Figure 5.3. Statistics of the removed details for different levels of de-noising for a 
kinematic land-based trajectory (mild dynamics, i.e, velocity of around 60 km/hour 
including several large, mild-turn loops around the OSU west campus; refer to Yi et al. 
(2005) for details on the trajectory of this data set) of MEMS IMU400CC. 
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Figure 5.4. The Power spectral density (PSD) and the auto-correlation sequence of the 
removed details using a four-level de-noising for a kinematic dataset of MEMS 
IMU400CC. 
 

The outputs of a stationary IMU (theoretically) contain only the sensor systematic 
and stochastic errors; thus the Allan variance analysis technique, described in Chapter 4, 
can be applied to the outputs of a stationary IMU to illustrate how different levels of 
de-noising affect the Allan variance characteristics of the systematic and stochastic errors. 
Figure 5.5 illustrates the Allan variance characteristics of the output of a stationary 
accelerometer in x-direction of MEMS IMU400CC as a function of different levels of 
de-noising. As discussed in Chapter 4, in the original signal, referred to as ‘Level 0’ in 
Figure 5.5, the rate white noise dominates in the time scale up to 100 seconds. After the 
fourth-level of de-noising (referred to as ‘Level 4’), the rate ramp (i.e., the trend of the 
original signal) replaces the rate white noise in the time resolution up to 0.3 seconds, and 
the rate white noise dominates in the time scale from 0.3 to 100 seconds. If the level of 
de-noising increases to 13, the rate white noise is almost smoothed out, leaving the 
clearly identified trends. With the level of de-noising changing, the characteristics of the 
corresponding smoothed signals also change; Table 5.1 lists the rate ramp (R) 
characteristics of the accelerometer and gyroscope outputs of MEMS IMU400CC as a 
function of different levels of de-noising. A consistent stochastic error characteristics and 
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level of de-noising should be used. Figure 5.6 presents the actual smoothed effects of the 
x-acceleration of MEMS IMU400CC as a function of different levels of de-noising; the 
same data were used in Figure 5.2. 
 

 
 
Figure 5.5. The Allan variance characteristics of the x-acceleration of MEMS IMU400CC 
in stationary mode as a function of different levels of de-noising. 
 

 
 
Figure 5.6. The x-acceleration of MEMS IMU400CC in stationary mode as a function of 
different levels of de-noising. 
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Level No. fX [unit/s] fY [unit/s] fZ [unit/s] ωX [unit/s] ωY [unit/s] ωZ [unit/s] 
Level 1 0.2737191 0.3270140 0.5194367 0.2006140 0.2398238 0.2638552
Level 2 0.1723866 0.1988566 0.3151786 0.1195368 0.1385335 0.1506296
Level 3 0.0780233 0.0845559 0.1182690 0.0500663 0.0559692 0.0597116
Level 4 0.0245568 0.0296756 0.0415258 0.0177413 0.0197430 0.0201920
Level 5 0.0087875 0.0107016 0.0150089 0.0063592 0.0070526 0.0069316
Level 6 0.0032082 0.0039337 0.0056081 0.0023030 0.0025631 0.0024707
Level 7 0.0011560 0.0014081 0.0019711 0.0008174 0.0009087 0.0008642
Level 8 0.0004191 0.0005073 0.0007086 0.0002884 0.0003238 0.0003082
Level 9 0.0001498 0.0001830 0.0002666 0.0001057 0.0001139 0.0001085
Level 10 0.0000560 0.0000686 0.0000991 0.0000392 0.0000402 0.0000381
Level 11 0.0000223 0.0000276 0.0000394 0.0000158 0.0000147 0.0000137
Level 12 0.0000097 0.0000114 0.0000160 0.0000073 0.0000053 0.0000053
Level 13 0.0000050 0.0000049 0.0000069 0.0000032 0.0000021 0.0000019
Level 14 0.0000032 0.0000025 0.0000033 0.0000019 0.0000010 0.0000010
Level 15 0.0000015 0.0000013 0.0000021 0.0000011 0.0000005 0.0000006

 
Table 5.1. The rate ramp (R) characteristics of the accelerometer and gyroscope outputs 
of MEMS IMU400CC as a function of different levels of de-noising. 
 
5.2 The effects of the wavelet-based de-noising on the initial static coarse alignment 

The low-cost and low-accuracy MEMS gyro suffers from a relatively high 
measurement noise, and the earth rotation signal is buried in the high measurement noise, 
which indicates that it is almost impossible to recover the initial heading (yaw) from the 
raw inertial measurements using the gyro-compassing technique (Jekeli, 2001). However, 
with the aid of the signal de-noising technique, based on the wavelet method discussed 
earlier, and combined with a moving average technique applied to the epoch-by-epoch 
gyro data, about ±10° heading accuracy of MEMS IMU400CC can be achieved, as 
compared to the reference orientation of the collocated high-end IMU sensor 
(Grejner-Brzezinska et al., 2005a & 2005b). Figure 5.7 shows the example statistics of 
the initial orientation, determined from 1600 seconds of experimental static MEMS 
IMU400CC data, as a function of the level of wavelet de-noising combined with the 
one-second moving average technique applied to the raw gyro data. In fact, the raw 
inertial measurements were first de-noised using different levels (up to 15 levels, see 
Figure 5.7); then the de-noised inertial measurements, collected at a 134 Hz rate, were 
averaged over 1-second intervals and passed to the coarse self-alignment algorithm. It 
can be observed in Figure 5.7 that an accuracy of better than ±1° (in terms of the standard 
deviation) can be achieved for the horizontal components (roll and pitch) regardless of 
the level of de-noising, while the orientation accuracy for the vertical component reaches 
the accuracy of ±10° after 12 levels of de-noising of the vertical gyro measurements. 
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These orientation accuracies were validated by comparing the solution from the gyros of 
the MEMS IMU400CC with the solution from another high-end INS (LN100 used here), 
mounted in the same platform and collocated with MEMS IMU400CC axes. Three 
mis-alignment orientation angles between three gyro axes of MEMS IMU400CC and 
those of LN100 can be modeled as random “constants” and estimated in the Kalman 
filtering combining the inertial measurements of MEMS IMU400CC and the 
high-accuracy GPS/INS solution of position, velocity and orientation from LN100.  
 

 
 
Figure 5.7. Initial orientation determination from the coarse self-alignment for MEMS 
IMU400CC, using wavelet-based de-noised gyro-measurements combined with the 
one-second moving average technique. 
 
5.3 The effects of the wavelet-based de-noising on the kinematic navigation solutions 

In order to investigate the effect of the wavelet de-noising technique and to 
determine the allowable level of de-noising for the real kinematic experiments of the 
land-based mobile mapping system, a total of five free inertial navigation solutions, using 
a kinematic MEMS IMU400CC dataset after zero, one, two, three and four levels of 
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wavelet de-noising were performed, by simulating the GPS gaps after sufficient initial 
calibration of the inertial errors using GPS signals (Yi et al., 2005). Table 5.2 lists the 
horizontal and vertical position deviations of these free inertial navigation solutions with 
different durations of the free inertial navigation periods, comparing the results to a 
high-end reference GPS/INS integrated solution without GPS gaps. The solution after one 
level of de-noising was obviously improved, compared to the solution without wavelet 
de-noising (i.e., zero level of de-noising), and the solution after two levels of wavelet 
de-noising was worse than that after one level of de-noising, while still being better than 
that for the raw data. No obvious performance improvements of the solutions after three 
and four levels of de-noising were found, as compared to the solution using raw data. 
Thus, the optimal level of de-noising for this experiment is one. 
 

10sec [m] 30sec [m] 60sec [m] Level  
mean std mean std mean std 

N 5.42 5.03 47.70 44.75 168.89 142.52 
E 2.96 2.75 32.20 33.17 201.44 218.67 0 
U 0.34 0.40 2.08 1.43 2.30 1.47 
N 0.45 0.29 0.66 0.46 32.31 48.15 
E 0.13 0.16 4.00 4.14 16.92 18.81 1 
U 0.29 0.36 1.22 0.91 14.85 18.35 
N 3.29 2.99 34.59 36.09 225.36 243.78 
E 1.22 1.10 6.67 4.84 59.66 93.48 2 
U 0.30 0.36 1.44 1.02 2.30 2.20 
N 5.77 5.17 43.71 39.12 113.84 78.69 
E 1.68 1.75 32.16 37.43 276.40 322.15 3 
U 0.17 0.22 1.03 0.76 3.65 6.35 
N 5.99 5.53 52.66 49.55 193.90 167.42 
E 1.93 1.71 19.90 20.67 136.17 151.53 4 
U 0.18 0.23 0.95 0.76 5.16 5.19 

 
Table 5.2. Position deviation of the free inertial navigation solutions with different 
durations of the free inertial navigation periods with respect to the reference GPS/INS 
trajectory without GPS gaps, for different levels of de-noising applied to MEMS 
IMU400CC data. 
 
5.4 The effects of the wavelet de-noising, combined with the customized stochastic 

error model on kinematic navigation solution 
As already mentioned, the free inertial navigation performance of the low-cost 

MEMS IMU can be improved by means of: 1) the customized stochastic error model, 
derived by using the Allan-variance analysis and/or PSD method, as described in Chapter 
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4, and 2) the wavelet signal de-noising technique discussed here. In order to assess the 
effects of the two proposed approaches on the kinematic navigation solutions, a total of 
five 60-second GPS gaps were intentionally introduced to a kinematic land-based dataset 
at five different locations, and five free inertial navigation solutions were computed. 
These five free inertial navigation solutions in four scenarios (referred to as R1, R2, S1_2, 
and S2_2, and shown in Table 5.3) were analyzed as gaps of different durations and 
shown in Table 5.4 and 5.5) (Yi et al., 2005). They are compared to the corresponding 
reference GPS/INS solution obtained under the same conditions, that is, the same inertial 
measurements, identical error model parameters, and the same Kalman filter initial states 
as well as the corresponding error covariance matrix.  
 

Scenario name Description 
R1 Raw measurements + manufacturer’s error model 
R2 Raw measurements + customized error model 

S1_2 Smoothed measurements based on one level of de-noising + 
customized error model 

S2_2 Smoothed measurements based on two level of de-noising + 
customized error model 

 
Table 5.3. Four scenarios of the free inertial navigation solutions. 
 

Tables 5.4 and 5.5 present the position and orientation deviations from the reference 
GPS/INS position and orientations as a function of GPS gap duration. The comparison of 
the R1 and R2 solutions indicates that when the customized error model is used instead of 
the manufacturer’s error specification, significant navigation improvements can be 
achieved. Namely, a reduction of around 60% and 15% in the 3D position and orientation 
deviations from the reference position and orientation solutions, respectively, can be 
achieved for 10-second GPS gaps in the R2 solution, as compared to the R1 solution; 
50% and 17% reduction, respectively, of these deviations is achieved for the 30-second 
GPS gaps. Around 50% and 12% reduction, respectively, in these deviations is achieved 
for the 60-second GPS gaps. This implies the importance of the customized error model 
on a sensor-by-sensor basis.  

Further improvements in both position and orientation were achieved by combining 
the wavelet-based de-noising technique with the customized error model, as can be 
observed by a comparison of S1_2 and S2_2 with the R1 solution. This comparison 
indicates that more improvements with one level of de-noising can be achieved, in 
contrast to the higher levels of de-noising that may over-smooth the actual dynamics or 
time-correlated errors (i.e., invalidate the stochastic error model). It should be pointed out 
that not all components/sensors are equally affected, as shown in Tables 5.4 and 5.5, 
which indicate that the performance improvements of wavelet de-noising is also a 
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function of the trajectory dynamics. The real-time implementation of the wavelet-based 
de-noising may need to adaptively adjust the level of de-noising, according to the 
trajectory dynamics to achieve better navigation performance. 
 

10sec [m] 30sec [m] 60sec [m] Level  
mean std mean std mean std 

N 0.22 0.15 9.15 11.20 106.34 96.77 
E 2.28 3.82 48.05 81.51 342.90 577.82 R1 
U 0.18 0.10 4.11 6.31 54.86 102.70 
N 0.59 0.72 16.68 16.42 123.96 110.23 
E 0.80 0.85 17.48 20.38 130.23 149.59 R2 
U 0.15 0.13 1.34 1.10 9.82 11.00 
N 0.58 0.77 16.07 16.44 120.66 108.54 
E 0.73 0.78 15.93 18.95 118.87 138.85 S1_2 
U 0.14 0.11 1.27 1.05 9.20 10.50 
N 0.51 0.58 15.07 14.36 112.29 97.57 
E 0.94 1.11 20.17 25.85 148.51 185.41 S2_2 
U 0.14 0.14 1.42 1.21 11.22 14.02 

 
Table 5.4. Free inertial navigation position error (with respect to the reference GPS/INS 
trajectory) as a function of the GPS gap duration. 
 
 

10sec [˚] 30sec [˚] 60sec [˚] Level  
mean std mean std mean std 

R 0.18 0.05 1.78 2.18 4.41 5.74 
P 1.17 1.79 3.31 4.87 5.99 8.76 R1 
H 2.90 2.75 9.55 8.29 19.58 18.87 
R 0.21 0.07 1.32 1.20 2.08 1.54 
P 0.39 0.34 1.14 1.07 2.48 2.37 R2 
H 2.70 2.59 8.29 7.10 18.21 18.41 
R 0.21 0.08 1.29 1.17 1.99 1.47 
P 0.35 0.31 1.04 0.95 2.31 2.20 S1_2 
H 2.60 2.50 8.11 6.92 17.81 18.01 
R 0.20 0.07 1.36 1.28 2.18 1.71 
P 0.44 0.43 1.28 1.22 2.70 2.77 S2_2 
H 2.77 2.64 8.57 7.32 18.72 18.67 

 
Table 5.5. Free navigation orientation error (with respect to the reference GPS/INS 
trajectory) as a function of the GPS gap duration. 
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Figure 5.8 illustrates an example comparison of a 90-second free inertial navigation 
for case R1 (with zero level of de-noising and the manufacturer’s error model) and case 
S1_2 (with one level of de-noising and the customized error model) with the GPS/INS 
reference. The R1 solution drifted around 696 m in horizontal position from the reference 
after the 90-second period of free inertial navigation; around 29 percent of this drift is 
reduced by using one level of de-noising and the customized error model, as can be seen 
in Figure 5.8. The statistics of the free navigation performance, shown in Tables 5.4 and 
5.5, indicate that short GPS losses of lock may still meet the position and horizontal 
orientation accuracy for some mobile mapping applications using the tested MEMS 
IMU400CC. More demanding applications cannot use a sensor of this grade/performance, 
as position and orientation errors grow rather fast with time. Namely, around 1 m, 22 m, 
and 169 m of the 3D position drift after 10 s, 30 s, and 60 s, respectively, of the free 
inertial navigation can be observed; around 0.5°, 1.6°, and 3.0°, respectively, of the 2D 
orientation (roll and pitch) error drift after 10 s, 30 s, and 60 s, respectively, of the free 
inertial navigation is observed. The worst accuracy is in the heading component, which 
suffers from more than 2° drift after 10 s of free inertial navigation. Therefore, additional 
sensors, for example multiple GPS antenna systems, a magnetometer, or a digital 
compass, should be investigated to aid the vertical orientation component (i.e., heading or 
yaw) while using this low-cost MEMS IMU. 
 

 
 
Figure 5.8. The free inertial navigation solutions, R1 and S1_2 compared to the reference 
GPS/INS solution. 
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CHAPTER 6 

 
 

ALTERNATIVES TO THE EXTENDED KALMAN FILTER 
 

Due to the nonlinearity of the state-space model (i.e., system and measurement 
models) involved in the GPS/INS-based multi-sensor integrated systems, the well-known 
Extended Kalman Filter (EKF) is predominantly used in a number of GPS/INS 
implementations, under the assumption that the states behave as Gaussian Random 
Variables (GRV). The EKF also works for nonlinear systems with a non-Gaussian 
distribution, although it may experience difficulties with heavily skewed nonlinear 
systems. In addition, due to first-order linearization, the EKF is only reliable for these 
nonlinear systems that are almost linear in the time scale of the update intervals; 
otherwise, if the assumption of local linearity is violated, it may introduce significant 
errors in the predicted estimates and the error covariance of the state vector transformed 
through nonlinear systems, resulting in a suboptimal performance or even filter 
divergence (see, for example, Julier and Uhlmann, 1997).  

In the last few decades, several algorithms have been developed to improve the 
performance of the EKF. For example, the predicted state estimates using the EKF in the 
prediction stage can be evaluated from the direct nonlinear system model, instead of the 
linearized system model. It provides a better approximation to the actual predicted state 
estimates; however, the state error covariance matrix may still not reflect the actual error 
characteristics of the predicted state estimates. The higher-order EKF and iterated EKF 
(IEKF) can also improve the performance. While the higher-order EKF is more 
complicated, as it requires deriving the higher-order linearized state-space model, the 
IEKF is less flexible for real-time implementations since it requires iterative refining of 
the state estimates by re-evaluating the filter around the updated state estimates in one 
filer cycle. One unconventional alternative approach, called wave filter, was proposed by 
Salychev & Schaffrin (1992). It can provide some compensation to the linearization 
errors by using wave functions. The common feature of the aforementioned KF variants 
is that they are best described as trying to transform the nonlinear filtering to a sequence 
of optimal linear Kalman Filters, and the major difference in the filters lies in the 
methods on how the linearization errors are handled.  

Two alternative nonlinear filters will be investigated in the next section. They are 
theoretically different from the aforementioned filters, and summarized in a probabilistic 
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framework; thus, they are referred to as nonlinear Bayesian filtering techniques. The KF 
variants can also be treated as special cases of the nonlinear Bayesian filtering, even 
though they had not originally been derived from the probabilistic framework.  

 
6.1 Nonlinear Bayesian filtering 

The primary objective of a multi-sensor integrated system is to infer the unknown 
quantities (i.e., the position, velocity and orientation of the platform, together with the 
sensor errors, system and environmental parameters), based on the system model, using 
noisy measurements. Given a priori probability density function (density for short), 
inferring the state of a dynamic model from the noisy measurements is called Bayesian 
inference; see, for example, Ristic et al. (2004). The input includes the system model 
with a prior density and a measurement sequence, while the output is the state posterior 
density based on all available information. The state posterior density is usually 
non-Gaussian, if either the system model or the measurement model is nonlinear. The 
real-time Bayesian inference of the most recent state is called Bayesian filtering. It 
recursively provides sequential updates of the previous estimates, and allows for faster 
real-time data processing with lower storage requirements. Such a recursive Bayesian 
filter consists of two steps, namely, prediction and update. In the prediction step, the state 
posterior density is predicted forward from the previous epoch to the current epoch 
according to the system model. Due to the involvement of random errors, the state 
posterior density is actually translated, deformed and widened after the prediction 
procedure. The update step is to modify (usually to tighten) the predicted state posterior 
density incorporating the latest noisy measurements according to the measurement model. 
The basic principle of Bayesian filtering is the Bayes theorem (see, for example, Ristic et 
al., 2004). Given the state posterior density, a number of state estimates (for example, the 
mean, mode, median, confidence level, kurtosis, etc.) can be calculated.  
 
6.1.1 Conceptual solution 

Following the notation of Ristic et al. (2004), the probability state-space model 
includes a state transition density (or probability) shown in equation (6.1) and a marginal 
density shown in equation (6.2). The transition density (also referred to as transition 

prior), ( )1−kk xxp , is equivalent to the well-known system model shown in equation (2.36) 

of Chapter 2, and the marginal density, ( )kk xzp , is equivalent to the well-known 

measurement model shown in equation (2.37) of Chapter 2. Let { } kj
jjk xX =

=
≡

0
 denote the 

state sequence up to epoch k, and 0X  is the set of state initial estimates. Let 

{ } kj
jjk zZ =

=
≡

0
 denote the measurement sequence available up to time k, and 0Z  is the set 
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of zero or no measurements. The joint state posterior density is represented as ( )kk ZXp , 

and the marginal state posterior density is called filtering density, ( )kk Zxp . The objective 

of the nonlinear Bayesian filtering is to filter the state estimates, kx , from the 

measurement sequence, kZ , and a given state initial density, ( ) ( )000 zxpxp = . From the 

Bayesian perspective, it can be transformed into a recursive process by obtaining the 
filtering density using the aforementioned two steps: prediction and update, with the 
given initial state density. In the prediction step, the state predicted density (also referred 

to as prior density), ( )1−kk Zxp , at epoch k can be obtained, as shown in equation (6.4), 

from the state posterior density, ( )11 −− kk Zxp , at epoch 1−k , and the state transition 

density, ( )1−kk xxp . Following the Bayes’ rule, as shown in equations (6.4) and (6.5), the 

update procedure is to modify the state predicted density to obtain the state posterior 

density, ( )kk Zxp , at current epoch k , once a measurement, kz , is available. After the 

state posterior density, ( )kk Zxp , has been obtained, using the recursive equations (6.4) 

and (6.5), the state estimates can be computed from the filtering density, ( )kk Zxp . For 

example, the minimum mean square error (MMSE) estimate, as shown in equation (6.7), 

is the conditional mean of kx , given kZ . In the aforementioned prediction and update 

steps, two basic assumptions are made for the state-space model, shown in equations (6.1) 
and (6.2): 1) the state is the following first-order Markov process, 

i.e., ( ) ( )101 ,, −− = kkkk xxpxxxp L ; and 2) the measurements are independent of the given 

state, implying ( ) ( )kkkkk xzpZxzp =−1, .  

 

Transition density ),( 11 kkkk vxfx −−= ( )1−kk xxp  (6.1) 

Marginal density ),( kkkk nxhz = ( )kk xzp  (6.2) 

State initial density ( ) ( )000 Zxpxp = ( )000 ,0~)ˆ( Pxx −  (6.3) 
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State predicted density ( ) ( ) ( )∫ −−−−− ⋅⋅= 11111 kkkkkkk dxZxpxxpZxp  (6.4) 

State updated density 

( )
( )
( ) ( )

( )
( ) ( )

( )1

1

1

11

1

,

,

−

−

−

−−

−

⋅
=

⋅
=

=

kk

kkkk

kk

kkkkk

kkk

kk

Zzp
Zxpxzp

Zzp
ZxpZxzp

Zzxp

Zxp

 (6.5) 

Evidence ( ) ( ) ( )∫ ⋅⋅= −− kkkkkkk dxZxpxzpZzp 11  (6.6) 

MMSE state estimate ( )∫ ⋅⋅=≡ kkkkkkkk dxZxpxZxEx }{ˆ MMSE  (6.7) 

MMSE state error covariance ( )∫ ⋅⋅−−≡ kkk
T

kkkkkkkk dxZxpxxxxP )ˆ)(ˆ( MMSEMMSEMMSE  (6.8) 

Structure of update equation 
evidence

priorlikelihoodposterior ×
=  (6.9) 

 
Here, the subscripts 0, k−1, k, and k+1 denote the discrete time epochs; x, v, z and n 

are the state vector, the process noise vector, the measurement vector and the 
measurement noise vector, respectively; p represents the probability density function 
(density); the process noise, v , and the measurement noise, n , are assumed to be white, 
with known densities. v and n are independent, and both v and n are independent of the 

state density of x; ( )kk Qv ,0~  and ( )kk Rn ,0~ ; 1−kf  is the nonlinear system function 

to describe the probabilistic model of the state evolution, leading to the transitional 

density, i.e., ( )1−kk xxp ; kh  is the nonlinear measurement function, necessary to 

describe the likelihood (or marginal) density, i.e., ( )kk xzp .     

In general, the state posterior density of the Bayesian filtering is a non-Gaussian 
density, thus the described conceptual solution, i.e., the recursive formation shown in 
equations (6.4) and (6.5), cannot be solved analytically except for some specific cases, 
such as, for example, the KF for linear systems. For the nonlinear state-space model, 
shown in equations (6.1) and (6.2), there exist several practical approximate approaches 
to the conceptual solution of the Bayesian filtering. One suboptimal approach is to 
approximate both the nonlinear system model and the measurement model by linear 
models. An optimal solution can then be provided to the linearized model. The EKF 
family (including the EKF, the higher-order EKF, and the IEKF) is formed by following 
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this kind of a sub-optimal approach; see, for example, (Kalman, 1960; Jazwinski, 1970). 
Another suboptimal approach is based on direct approximation of the non-Gaussian 
density. The Unscented Kalman Filter (UKF) and the Particle Filter (PF), discussed later, 
belong to this type of suboptimal approach; see, for example, Doucet et al. (2001).  

 If both the system and the measurement models are linear, as well as the process 
and the measurement noises are drawn from Gaussian densities with known parameters 
(mean and covariance), the state posterior density at each epoch is also Gaussian and can 
be completely represented by the mean and the covariance of the state posterior density. 
In this case, the nonlinear Bayesian filtering changes to an optimal Kalman filtering. For 
the nonlinear system, the linearization procedure converts the nonlinear Bayesian 
filtering into Linear Kalman filtering, resulting in a suboptimal EKF family. As 
mentioned earlier, the EKF family also works for non-Gaussian systems, even though 
they may experience difficulties for heavily skewed nonlinear systems. 

Except for the conventional EKF, two other approximate algorithms of the nonlinear 
Bayesian filtering have been investigated widely in the last few years, and are explored 
here as alternatives that can eliminate the drawbacks of the EKF, namely the UKF (see, 
for example, Julier and Uhlmann, 1997; Wan and van der Merwe, 2001) and the PF (see, 
for example, Doucet et al., 2001; Arulampalam et al., 2002; Ristic et al., 2004).  

 
6.1.2 Unscented Kalman Filter 

Unlike the EKF, the UKF does not approximate the nonlinear functions f and h in 
equations (6.1) and (6.2) using the first-order linearization approximation. Instead, it 
approximates the state posterior density p(xk⎜Zk) by a Gaussian density using a minimal 
set of deterministically selected samples (referred to as sigma points). These samples can 
better capture the mean and the covariance of a density than the EKF. A set of 
transformed samples is generated from the selected samples directly through the 
nonlinear systems using a so-called Unscented Transformation (UT). The transformed 
samples can capture the mean and the covariance of the transformed density accurately 
up to third-order for a Gaussian density (or second-order for a non-Gaussian density) in 
terms of the Taylor series expansion for any nonlinear systems; see the prove by (Wan & 
van der Merwe, 2001). The idea of representing the density by using a set of samples is 
referred to as statistical linearization (Gelb, 1974), as compared to the analytical 
linearization of the EKF. The whole class of nonlinear filtering using the statistical 
linearization is referred to as the family of the Linear Regression Kalman Filters (LRKF) 
(see, for example, Lefebvre et al., 2002), with the major difference in the selection of the 
samples. Also, the fact that no derivative is involved in the state-space model results in a 
high tolerance to substantial initial state errors. For example, it is possible for the UKF to 
eliminate the initial coarse and fine alignments for the inertial sensors, translating to a 
rapid deployment and operational readiness of the multi-sensor integrated systems.  
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6.1.2.1 The implementation using the UKF 
Given the nonlinear state-space model shown in equations (6.1-6.3), the 

implementation using the UKF approach is as follows: 

1. To generate samples from the state estimate, 1ˆ −kx , and the state error covariance 

matrix, 1−kP , from the previous epoch (the initial state estimate, 0x̂ , and the initial 

state error covariance, 0P , will be used for the first epoch, where 1=k ):  

To represent the state posterior density, ( )11 −− kk Zxp , using N samples i
k 1−χ  

and their weights, { } 1
01
−

=−

N
i

i
kW ,  where χ  denotes the sample of the state vector. 

2. To predict the state estimates, 1ˆ −kkx , and the state error covariance, 1−kkP , from the 

previous epoch to the current epoch: 

( )∑
−

=
−−−− ⋅=

1

0
1111ˆ

N

i

i
kk

i
kkk fWx χ , (6.10) 

( )( ) ( )( )Tkk
i
kk

N

i
kk

i
kk

i
kkkk xfxfWQP 111

1

0
111111 ˆˆ −−−

−

=
−−−−−− −−⋅+= ∑ χχ . (6.11) 

3. To generate samples from the state predicted estimate, 1ˆ −kkx , and the state predicted 

error covariance matrix, 1−kkP , from the current epoch:  

To represent the state predicted density ( )1−kk Zxp  using N samples i
kk 1−χ  

and their weights, { } 1

01
−

=−

N

i

i
kkW . 

4. To generate the updated state estimate, kkx̂ , and the updated state error covariance 

matrix, kkP , from the current epoch based on the available measurements: 

( )∑
−

=
−−− ⋅=

1

0
111ˆ

N

i

i
kkk

i
kkkk hWz χ  (6.12) 

( )11 ˆˆˆ −− −+= kkkkkkkk zzKxx  (6.13) 



 102

( ) T
kzzkkkkkk KPRKPP +−= −1  (6.14) 

( ) 1−+= zzkxzk PRPK  (6.15) 

( ) ( )( )Tkk
i

kkk

N

i
kk

i
kk

i
kxz zhxWP 11

1

0
111 ˆˆ −−

−

=
−−− −−⋅= ∑ χχ  (6.16) 

( )( ) ( )( )Tkk
i

kkk

N

i
kk

i
kkk

i
kzz zhzhWP 11

1

0
111 ˆˆ −−

−

=
−−− −−⋅= ∑ χχ  (6.17) 

 
The key step in the UKF is to construct the samples from the current state estimates, 

x̂ , and the state error covariance matrix, P . A common approach to construct the 
samples is the following: 

 

xi ˆ=χ  ( )( )κ
κ

+
=

x
W i

dim
 0=i  (6.18) 

i
i Lx += ˆχ  ( )( )κ

κ
+

=
x

W i

dim2
( )xi dim,,1L=  (6.19) 

i
i Lx −= ˆχ  ( )( )κ

κ
+

=
x

W i

dim2
( ) ( ) ( )xxxi dimdim,,1dim ++= L  (6.20) 

( )( )PxLLT κ+=⋅ dim  (6.21) 

 

Here, κ is the sigma point selection scaling parameter, such that ( ) 0dim ≠+ κx ; 

according to (Julier and Uhlmann, 1997), κ is used to provide an extra degree-of-freedom 
to “fine-tune” the higher-order moments of the approximation, thus to reduce the overall 
predicted errors. If the state density of x is assumed Gaussian, the recommended choice 

of κ is ( ) 3dim =+κx ; a different choice of κ may be more appropriate for a different 

state density of x; the index i represents the index of the deterministically chosen sigma 

points; L is the square root matrix of the error covariance matrix, P; iL  is the i-th 

column of matrix L. 
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6.1.3 Particle Filter  
Another alternative to EKF, the Particle Filter, is a technique to implement the 

recursive nonlinear Bayesian filter, described in equations (6.4) and (6.5), by performing 
Sequential Monte Carlo (SMC) estimation according to the sample-based representation 
of the state posterior density (Doucet et al., 2001; Arulampalam et al., 2002; Ristic et al., 
2004). The advantage of the PF, as compared to the UKF and the EKF, is that with 
sufficient samples to represent the state posterior density, the PF will approach the 
optimal estimate of the nonlinear Bayesian filter. Thus, theoretically, the PF is more 
accurate than the UKF and the EKF, even though the UKF, the PF and the EKF are all 
suboptimal filters. 
 
6.1.3.1 Monte Carlo approximation 

As mentioned earlier, the PF is a sample-based approach. If it is possible to draw N  

independent samples, { }N
i

ix 1= , from a density ( )xp , then, as shown in equation (6.23), the 

expectation of a nonlinear function, ( )xf , can be approximated by the sample average, 

which should be an unbiased estimate of ( )xf . With the increasing number of the 

samples, the sample average will converge to ( )xf  according to the law of large 

numbers (see, for example, Ristic et al., 2004).  
 

( ) ( )∑
=

−≈
N

i

ixx
N

xp
1

1 δ  (6.22) 

( ){ } ( ) ( ) ( ) ( ) ( )∑∫ ∑∫
==

=⋅⎥
⎦

⎤
⎢
⎣

⎡
−⋅≈⋅⋅=

N

i

i
N

i

i xf
N

dxxx
N

xfdxxpxfxfE
11

11 δ  (6.23) 

 

Here, ( )δ  denotes the Dirac delta function. 

 
6.1.3.2 Importance sampling 

Ideally, if samples can be generated directly from ( )xp , then, as shown earlier, the 

sample average, computed from equation (6.23), using samples { }N
i

ix 1= , is an unbiased 

estimate of the nonlinear function, ( )xf . Unfortunately, it is never possible to sample 
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from the actual density. However, if samples can be drawn from another known density, 

( )xq , which is similar to ( )xp , then an unbiased estimate can be provided from the 

corrected weighted sample average by using the samples associated with weights, as 

shown in equation (6.24). The density ( )xq  is referred to as the importance or proposal 

density, the procedure to sample from the importance density is referred to as importance 
sampling, and the weight for each sample is called the importance weight. The 

normalized importance weights, ( )ixw , shown in equation (6.25) are normally used for 

the samples:  
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 (6.24) 

( ) 1
1

=∑
=

N

i

ixw  (6.25) 

 
6.1.3.3 Sequential importance sampling 

If the importance sampling is used in the Bayesian framework to approximate the 
integration shown in equations (6.4-6.8) using discrete sums of the weighted samples, as 

shown in equation (6.24), then the state posterior density, ( )kk Zxp , is the density 

mentioned in Section 6.1.3.2. Equation (6.26) shows the detailed corresponding form of 

equation (6.24) for the state posterior density, ( )kk Zxp , with a known and 

easy-to-sample importance density, ( )kk Zxq  . The Bayes rule is used in equation (6.26). 

By drawing samples from the importance density, ( )kk Zxq , the expectation of a 
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nonlinear function can be approximated by samples with weights, { }N
i

i
k

i
k wx 1, = , according 

to equation (6.28). Given the assumptions of the state-space model shown in Section 

6.1.1 (i.e., ( ) ( )101 ,, −− = kkkk xxpxxxp L  and ( ) ( )kkkkk xzpZxzp =−1, ), the importance 

weights can be recursively estimated, as shown in equation (6.30); for the proof see De 
Freitas et al. (1998). The sequential importance sampling (SIS) forms the basis of the 
sequential Monte Carlo estimation, which is also known as bootstrap filtering, the 
condensation algorithm, particle filtering, interacting particle approximations, and the 
“survival of the fittest”; see, for example, Ristic et al. (2004). The key idea to implement 
the nonlinear Bayesian filter via the SIS is to represent the state posterior density by a set 
of random samples with associated weights and to compute the estimates based on direct 
sums of the weighted random samples. Given a set of random samples with weights 

{ }N
i

i
k

i
k wx 111, =−−  at epoch 1−k , a programming pseudo-code, using the filter via the SIS to 

obtain the samples with weights { }N
i

i
k

i
k wx 1, =  at epoch k, is given in Table 6.1.  
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 For i=1,…,N 

 Draw ( )k
i
kk

i
k zxxqx ,~ 1−  

 Evaluate the importance weights 
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 End For 

 Compute the total weight ∑
=

=
N

i

i
kwt

1

  

 For i=1,…,N 

 Normalize 
t

w
w

i
ki

k ←  

 End For  
 
Table 6.1. A programming pseudo-code using filtering via the SIS. 
 
6.1.3.4 Sequential importance resampling 

The SIS Particle Filter has a problem, referred to as degeneracy problem, which 
means that, after a certain number of recursive filter steps, all but one samples will have 
negligible normalized weights. One strategy to overcome the degeneracy of samples in 
SIS is resampling, which will eliminate samples with low importance weights and 
multiply samples with high importance weights. The SIS filter combined with a 
resampling scheme is referred to as sampling importance resampling (SIR) filter, 
proposed by Gordon et al. (1993). The SIR filter is a very commonly used Particle Filter; 

it maps the N unequally weighted samples, { }N
i

i
k

i
k wx 1, = , into a new set of N equally 

weighted samples, { }N
j

j
k Nx 1

1, =
− .  

The procedure of a SIR filter is the following: 
 

1 Initiation: { }N
i

ii wx 100 , =  
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A set of initial random samples { }N

i
ii wx 100 , = is drawn from the initial assumed density, 

( )0xp . 

2 Sequential importance sampling (SIS) procedure: { }[ ] { }N
i

i
k

i
kk

N
i

i
k

i
k wxzwx 1111 ,,, ==−− →  

 These samples are propagated through the existing nonlinear system model (also 
including the process noise). The weights of the samples are re-evaluated (or updated) 
according to the nonlinear measurement model (also including the measurement 
noise) once a measurement is available (shown in equation 6.30); then, the weights 
are normalized. 

3 State estimation procedure 
 The state estimates can be computed using the samples associated with weights, as 

shown in equation (6.28) 
4 Re-sampling (also called particle depletion) 
 The samples with small weights, as compared to the threshold, are eliminated. The 

remaining samples are re-sampled with weights to generate N independent and 
identically distributed (i.i.d.) random particles to approximate the state posterior 
density, p(xk⎜Zk). 

 
6.1.3.5 Choice of importance density 

The performance of the SIR algorithm is dependent on the adopted importance 
density, and the choice of the importance density plays a significant role in the design of 
a Particle Filter, since the samples are directly drawn from the importance density and the 
importance weights are evaluated from the importance density. Different choices of the 
importance density exist, and the most popular one is the transition prior, 

( )i
k

i
kk

i
k

i
k xxpzxxq 11 ),( −− = , since it is easier to draw samples, and easier to perform the 

subsequent importance weight computations, as shown in equation (6.31).  
 

)(1
i
kk

i
k

i
k xzpww ⋅= −  (6.31) 

 
However, since the Particle Filter with transition prior as the importance density does 

not incorporate the most recent observations, its performance is not comparable with 
other Particle Filters incorporating the newest observations. For example, the SIR Particle 
Filters with the importance density generated from the EKF (see, for example, De Freitas 
et al., 1998) and the UKF (see, for example, van der Merwe et al., 2000) are shown to be 
better than the generic SIR Particle Filter with the importance density using the transition 
prior. In this dissertation, the PF with the EKF importance proposal distribution 
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(EKF+PF for short) was implemented. In the EKF+PF, the EKF allows the PF to 
incorporate the latest measurements into the a priori updating routine, and to generate the 
proposal distributions that match the actual posterior distribution more closely; it has the 
capability of generating heavier-tailed distributions, as compared to the generic PF (see, 
for example, van der Merwe et al., 2000) 

 
6.1.4 Computational aspects of the UKF, the PF and the EKF 

Due to the underlying model differences and, consequently, the related significant 
implementation differences when using the UKF, the EKF+PF and the EKF, the 
computational loads of these approaches also vary significantly. The analytical solution 
(i.e., the corresponding linear error model) of the state-space model is required, using the 
first-order linearization approximation, for the implementation using the EKF. Currently, 
the psi-angle error model (Bar-Itzhack and Berman, 1988), shown in Chapter 2, is the 
most commonly used GPS/INS linear error model adopted for the implementation using 
the EKF. Once the linear error model is derived, it is only evaluated once to predict 1) the 
state estimates and the corresponding error covariance matrix in the time update step, and 
2) the measurements and the corresponding error covariance in the measurement update 
step. 

There is no need to derive such a linear error model for the implementation using the 
UKF. Instead, in the time update step, the predicted state estimates and the error 
covariance matrix of the state vector are computed from the transformed samples through 
the direct nonlinear system model. As a result of the introduction of the sigma points, 
there is a more accurate approximation of the prediction of the estimate and error 
covariance of the transformed states after the nonlinear function propagation. However, a 
heavier computation load is introduced due to multiple evaluations (equal to the number 
of sigma points) of the nonlinear function. The number of sigma points used to describe a 
nonlinear function in the UKF is a function of the number of unknown variables. For 
example, the number of sigma points in the time update procedure is 2⋅dim(x)+1, where x 
is the state vector.  

The computational load using a generic Particle Filter is significantly heavier than 
that using the UKF and the EKF, due to the involvement of a large number of particles. 
But the PF offers a better representation to the state posterior density. The hybrid Particle 
Filters, such as EKF+PF implemented here, require a relatively small number of particles, 
which may vary as a function of the IMU sensor quality. In comparison with the EKF, the 
ratio of the computational loads using the PF and the EKF is approximately equal to the 
number of the particles used. This ratio does not change too much with the variation of 
the dimension of the state vector, unlike using the UKF, where the computational load is 
almost a linear function of the state vector dimension.  

Figure 6.1 shows an example of the computational loads using the UKF, the 
EKF+PF and the EKF as a function of the state dimension in the GPS/INS integration. 
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The computational time using the EKF with 9 states (i.e., three position components, 
three velocity components and three orientation angles) is scaled to 1.0 (i.e., treated as a 
reference), and the processing times using the EKF (with more than 9 states), the UKF 
and the EKF+PF are then compared to this reference time. In the UKF implementation 
used here for the testing of the computational loads, we assume an additive process and 
measurement noise, and the measurement model is adopted as linear (i.e., using GPS 
position components). Thus, the required computational time will be, in this case, less 
than the UKF implemented with non-additive process and measurement noises as well as 
a nonlinear measurement model. In the EKF+PF implementation, its computational load 
is a function of the number of particles, and the number of particles, N = 25, is used here 
as an example for the comparison of the computational loads. As shown in Figure 6.1, 
with the increase of the state dimension, the larger computational load of the UKF (in 
comparison to the EKF) is obvious, while the ratio of the required computational time of 
the EKF+PF vs. the EKF is relatively constant, namely approximately equal to the 
number of particles (N). However, the computational load in the UKF, the EKF and the 
EKF+PF may be reduced with a careful inspection of the nonlinear function in the filter 
implementation, as addressed in the next section.  
 

 
 
Figure 6.1. The comparison of the computational loads using the UKF, the EKF+PF and 
the PF, as a function of the state vector dimension; the computational time for reference 
EKF with 9 states is assumed a unity; the vertical axis shows the ratio of the processing 
time with respect to the reference EKF processing time. 
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6.1.5 Computational optimization for the UKF, the PF and the EKF 
As discussed in the previous section, the computational loads of the UKF and the 

EKF+PF will be more significant than that of the EKF. Thus, the practical applications of 
the alternative nonlinear filters have been limited due to the extra computational load, as 
compared to that of the EKF. Now when the computers become more and more powerful, 
the argument about the extra computational loads becomes less significant. Nevertheless, 
any possible computational optimization will still be helpful. In order to reduce the extra 
computational loads introduced by the multiple evaluations of samples (i.e., 
deterministically selected sigma points for the UKF and the random selected particles for 
the PF) of the state vector through the nonlinear system and measurement models, a close 
examination of the system and measurement models of the GPS/INS integration should 
be performed.  

The system model includes nine navigation differential equations and the error 
modeling for the inertial sensor errors (such as the accelerometer and gyroscope biases 
and drifts, etc.) and the environmental parameters (such as the lever arm offsets, 
tropospheric and ionospheric delay residuals). The error models for the state vector other 
than the nine navigation parameters (i.e., position, velocity and orientation) are normally 
linear, leaving the nine nonlinear differential equations, whose nonlinearities are 
functions of system dynamics (for example, the velocity, shape and direction of the 
trajectory, etc.). Thus, an implementation can be carried out to reduce the computational 
load of the adopted nonlinear filtering techniques (i.e., EKF, UKF and PF) in the 
GPS/INS integration. The basic idea is to group the whole state vector into several state 
sub-vectors according to the nonlinearities of each sub-vector. Then, the UKF or the PF 
are applied only to the sub-vector with strongest nonlinearity, while the linearized EKF is 
adopted for the other state sub-vectors with weak nonlinearities. According to the above 
analysis, the strongest nonlinearity in the GPS/INS integration lies in the system model of 
the navigation parameters, as show in equations (2.25 and 2.26).  

In the loosely-coupled GPS/INS integration, the measurements are the direct 
positions and velocities from GPS (and the orientation, if multiple GPS antenna are used), 
thus, the measurement model is linear. In the tightly-coupled GPS/INS integration, the 
measurements are the code and carrier-phase pseudo-ranges, which indicates that the 
measurement model is nonlinear; however, the nonlinearity of such a measurement model 
is not very strong. Therefore, there is no significant advantage in the measurement 
models of both loosely-coupled and tightly-coupled GPS/INS integrations for the UKF 
and the PF, as compared to the EKF approach. Thus, the evaluation of the measurement 
model in both the UKF and the PF implementations can be based on the same linearized 
measurement model as that of the EKF, which reduces the extra computational load.  

The state vector, x, can be grouped into two state sub-vectors, x1 and x2 (i.e., 

[ ]TTT xxx 21= ), and the corresponding process noise vector, v, is also grouped into two 



 112

process noise sub-vectors, v1 and v2 (see, equation (6.33)).  The two process noise 
sub-vectors, v1 and v2, are assumed to be un-correlated. For the linear dynamic model, 
shown in equation (6.32), the transition matrix Φ (equation (6.34)) is an upper-triangular 
matrix, and the propagation of the components of the error covariance matrix, P 
(equation (6.35)), from k–1 to k is shown in equations (6.36-6.42). In such 
implementation, the UKF or the PF will only apply to the state sub-vector, x1, which 

means that only T
kP 1,11,1,11,1 ΦΦ −  in equation (6.38) and 1,kx  are computed from the 

samples of the state sub-vector, 1x , and the other error covariance matrix components 

and state sub-vector, 2,kx , are computed from a linearized error model. As shown in 

Chapter 2, in the GPS/INS integration, the possible state sub-vectors of the state vector x 
can be the navigation parameters (xnav), the accelerometer errors (xacc), the gyroscope 
errors (xgyro), the gravity disturbance (xgrav), the antenna offset between GPS antenna with 
respect to the IMU body center (xant) and the environmental parameters (for example, 
tropospheric and/or ionospheric errors) (xgps). The state vector, x, can be the augmented 
form of the above state sub-vectors (i.e., x=[x1 x2 x3 x4 x5 x6]T=[xnav xacc xgyro xgrav xant 
xgps]T). The transition matrix follows the pattern shown in equation (6.43); then the 
propagation of the error covariance matrix components is shown in equations (6.44-6.47), 

except for the component T
kP 1,11,1,11,1 ΦΦ −  of the navigation parameters (position, velocity 

and orientation), which is evaluated based on samples of the sub-vector 1x , as explained 

earlier. In such a way, the maximum number of evaluations of the nonlinear system 
function using the UKF is 19 (=2×9+1) and will not change as the state dimension 
changes. Due to taking into consideration the special pattern of the transition matrix in 
equation (6.43), the computational load of the EKF is also reduced; and thus, for the 
EKF+PF it is also reduced, while the UKF and the EKF+PF still require more 
computational load than the EKF. 
 

kkkkkk vxx Γ+Φ= −− 11, , ( )111 ,0~ˆ −−− − kkk Pxx , ( )kk Qv ,0~  (6.32)

[ ]TTT xxx 21= , [ ]TTT vvv 21=  (6.33)
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6.2 Navigation performance analysis 
 
6.2.1 Previously reported performance analysis 

The preliminary navigation performance analysis of the UKF and PF, in comparison 
to that of the EKF, was reported in (Yi and Grejner-Brzezinska, 2005; Yi and 
Grejner-Brzezinska, 2006a & 2006b) based on three different kinematic datasets, under 
various dynamics using both the loosely-coupled and the tightly-coupled integrated 
modes for a high-end inertial sensor, H764G, and a low-cost MEMS inertial sensor, 
IMU400CC. These preliminary results indicate that small differences can be found 
between the free navigation mode solutions using the UKF and EKF for H764G, and the 
solution using the UKF is slightly better than the EKF solution; the improvements in the 
position components are more obvious with the increase of the GPS gap duration. The 
high consistency of the solutions using the UKF and the EKF for H764G, when GPS is 
available, or during short GPS gaps may be contributed to the high sampling rate of 
H764G, which indicates weak nonlinearity of the system model in the time scale of the 
update intervals, and to slow drifts of H764G. In contrast to the high-end H764G, more 
significant differences were found in the low-cost MEMS IMU400CC. When GPS is 
available, the differences between the solutions using the UKF and the EKF can reach 
dm-level in position, 1-2˚ in pitch and roll and around 10˚ in heading. Even more 
significant differences between the solutions using the UKF and the EKF were found 
during GPS gaps. This is mainly caused by the large inertial sensor noise level. Due to 
the high-tolerance to large initial errors using the UKF, the orientation converges faster 
by 10-15% when using the UKF instead of the EKF.  

With a small number of particles is used (N=25 in the previous publications), the 
position differences of the GPS/INS solutions using the EKF+PF and the EKF are at the 
cm-level for both H764G and IMU400CC. The free inertial navigation performance using 
the EKF+PF is slightly better than using the UKF and the EKF for H764G. Around 6-cm 
(corresponding to 3%) improvement in the 3-dimensional position drifts of the solution 
using the EKF+PF was identified for the high-end sensor after a simulated 60-second 
GPS gap, in comparison with the drifts of the solutions using the UKF or the EKF. 
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During the GPS blockage, after the filter convergence was reached, an 8-arcsec 
(corresponding to 80%) orientation drift improvement in heading component could be 
found in the solutions using the EKF+PF vs. the EKF after a 120-second GPS gap, while 
no significant orientation drift differences can be found between the solutions using the 
UKF and the EKF for H764G. However, the solution using the EKF+PF behaves worse 
than the solutions using the UKF and the EKF for IMU400CC, which may indicate that 
the number of particles used in the EKF+PF was insufficient for IMU400CC.  

Overall, no significant differences were found in the position and orientation 
solutions obtained on the EKF, the UKF and the EKF+PF for the high-end inertial sensor, 
H764G, even though some differences do exist amongst the solutions. Therefore, the 
following analysis is focused on the performance comparison using different filters for 
the low-cost MEMS inertial sensor, IMU400CC.  
 
6.2.2 Performance analysis for the low-cost MEMS IMU400CC 

In the following navigation performance analysis of the UKF and the EKF+PF 
(referred to as the EPF), as compared to the EKF, the same dataset, as used in Yi and 
Grejner-Brzezinska (2006b) is used. The loosely-coupled integrated mode of the EKF, 
the UKF, the EPF implementations is used here, with nine navigation states (three 
positions, three velocities and three orientations) and up to 15 sensor errors and system 
parameters (three accelerometer biases, three gyro biases, three accelerometer scale factor 
errors, three gyro scale factor errors and three lever arm offsets). Two inertial sensors, 
H764G and IMU400CC, are used, where GPS/H764G provides the orientation reference 
for IMU400CC performance. The initial error covariance of the inertial sensor errors is 
based on the corresponding customized error model derived in Chapter 4 and listed in 
Table 6.2 together with other information for the state and noise vectors. The GPS 
position solution, derived by the single-epoch GPS RTK (here, post-processed) 
positioning technique described in Chapter 3, was used as the measurement update to the 
loosely-coupled GPS/INS integration implemented using the EKF, the UKF and the EPF. 
The lever arm offsets between the IMU body center of H764G and IMU400CC with 
respect to the GPS antenna phase center were estimated iteratively using the EKF-based 
GPS/INS integration until the convergence was reached; they were treated as fixed and 
removed from the navigation estimation procedure in the tested filters. The focus of the 
analysis presented here is on the navigation performance of the low-cost MEMS 
IMU400CC as a function of trajectory dynamics and filter type (i.e., the EKF, the UKF 
and the EPF). The previous results indicated that 25 particles may not be enough to 
properly handle this low-cost MEMS inertial sensor; thus, the following results are based 
on a 50-particle PF. The resulting position components are compared to the actual GPS 
positions, and the resulting orientation components (mainly the vertical component, i.e., 
heading or yaw) are compared to the EKF-based GPS/INS orientation solutions from 
H764G that was collocated with the MEMS sensor. In the data processing for 
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IMU400CC, all the initial conditions, GPS and inertial measurements are identical for all 
three filters.  
 

 Sigma (δ) Noise (q) 
 

No.
H764G IMU400CC H764G IMU400CC 

Position (XYZ) 3 ±1.0 m ±1.0 m −  
Velocity (NED) 3 ±0.01 m/s ±0.01 m/s −  
Orientation (RP) 3 ±0.015˚ 2.0˚ −  
Orientation (Y)  ±0.045˚ 6.0˚   

Accelerometer biases 3 3.28μg 8.5mg 16.0μg/Hz½  
Gyroscope biases 3 0.0035˚/h 1º/sec 0.008º/h½  

Accelerometer scale 
factor 3 100ppm 0.01 −  

Gyroscope scale factor 3 5ppm 0.01 −  
Accelerometer 

measurement noise 3 −  − 0.0007468 
m/s/s½ 

Gyroscope 
measurement noise 3 −  − 0.0004379 

rad/s½ 
Lever arm 3 0.1 m 0.1 m   

 
Table 6.2. State, noise and system parameter vector information for H764G and 
IMU400CC. 
 

Figure 6.2 shows the trajectories of the EKF-based GPS/INS integrated position 
solutions from H764G and IMU400CC. The number with an arrow in Figure 6.2 denotes 
the epoch index at the corresponding location of the ground trajectory. There is a 
49-second GPS gap after 144-second calibration (75-second static alignment and 
69-second kinematic alignment). After the 49-second GPS gap, about 414 m and 0.5 m 
3-dimensional position errors can be found for IMU400CC and H764G, respectively, as 
compared to the reference GPS solution available at epoch 194 after the GPS signal was 
reacquired. The segments marked with red in Figure 6.2 indicate that no actual GPS 
solutions exist at these periods due to the loss of GPS lock or a failure of the 
carrier-phase double-difference ambiguity resolution. 
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Figure 6.2. Trajectory of the kinematic experiment on July 20, 2005 (the number with an 
arrow indicate the epoch index at the corresponding location). 
 
6.2.2.1 Orientation performance using the EKF, the UKF and the EPF 

Figure 6.3 illustrates the heading variations of this experiment from the EKF-based 
GPS/INS solutions of H764G and IMU400CC. The average error in the heading 
component from IMU400CC is 8.0˚ and the corresponding standard deviation is ±13˚, as 
compared to that from H764G. As can be seen in Figure 6.3, as compared to the reference, 
the IMU400CC heading error is a function of vehicle dynamics, shape and direction of 
the trajectory. According to these components, the entire experiment can be separated 
into eight segments. Segments 1, 3, 6, and 8 were the stationary periods, and the heading 
component in all these periods drifts visibly, where, as shown next, the drift rate of the 
heading error during stationary periods is better controlled with longer prior kinematic 
calibration prior to the stationary period. Segment 2 starts in the south direction, then 
turns west, then north, and ends going east according to Figures 6.2 and 6.3; large 
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heading errors can be found in this segment. Segment 4 was a maneuvering stage 
including several (around 10) small loops at the parking lot of the OSU west campus. For 
this segment, the heading component from the low-cost MEMS IMU matched the 
high-end H764G heading reference at degree-level accuracy.  

The trajectory of segment 5 was a loop around the OSU west campus, starting in the 
north direction, then going east, south, and finally west, and ended at the OSU CFM 
parking lot. Due to the kinematic calibration of segment 4, the heading component still 
matched the reference heading during segment 5 with the accuracy of around 1.0˚. 
Segment 7 was also a maneuvering period with irregular trajectory (the trajectory is 
shown in Figure 6.6, insert). Staring with already drifted heading from the static segment 
6, the heading error during segment 7 gradually becomes smaller due to more epochs of 
kinematic calibration using precise GPS positions; still, these errors are relatively 
significant.  
 Overall, the performance in the heading component of the MEMS inertial sensor is 
of very low quality, especially in the stationary mode when heading drifts rapidly. 
Despite the limited heading performance of IMU400CC, the following analysis will 
demonstrate how the implemented filter types affect the heading accuracy during various 
trajectory dynamics shown in Figure 6.3. 
 

 
 
Figure 6.3. Heading variation of the kinematic experiment on July 20, 2005, EKF 
solution. 
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 In this experiment, the first 75 seconds (segment 1) are stationary (see Figure 6.4) 
and the next 69 seconds are in motion, followed by a 49-second GPS gap. During the first 
two periods, the IMU400CC is calibrated continuously using the carrier-phase fixed GPS 
position (cm-level position accuracy). Figure 6.4 shows the GPS/INS integrated heading 
solution (up to 194 epochs) from IMU400CC using the EKF, the UKF and the EPF, and 
the reference heading solution from H764G. The heading component of MEMS inertial 
sensor drifts very fast for all three filters in the stationary period even with accurate GPS 
position measurement update; around 0.2-0.4˚/s heading drift rate for the stationary 
period can be found for all tested filters, according to Figure 6.4, as compared to 1.0˚/s 
according to the manufacturer’s specification, shown in Chapter 2. The poor heading 
performance of IMU400CC should be the results of the high measurement noise of the 
gyroscopic measurements. Even though heading drifts very fast for all three filters in the 
stationary period, the heading drift rate using the EPF is the slowest one (around 0.23˚/s) 
and that of the UKF is the fastest one (around 0.36˚/s). The heading drift rate during a 
static period will be better controlled after longer calibration, which will be shown next. 
 

 
 
Figure 6.4. The heading solutions from IMU400CC using the EKF, the UKF and the EPF, 
and from H764G using the EKF during the first 194 seconds, including a 75-second static 
alignment, a 69-second kinematic alignment and a 49-second free inertial navigation 
mode due to the loss of GPS lock. 
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Table 6.3 lists the detailed statistics of the orientation errors from IMU400CC using 
the EKF, the UKF and the EPF, as compared to the reference from H764G during the 
analyzed 194-second period. In the first 75 seconds of this period, the heading solution 
using the EPF outperforms these from the EKF and the UKF in terms of the mean, the 
standard deviation and the maximum of the differences with respect to the reference 
solution, and the EKF heading solution is better than the UKF heading solution. In the 
kinematic alignment period (next 69 seconds), the EPF is still the best in terms of the 
mean and the standard deviation of the heading errors, while the maximum of the 
absolute heading errors using the UKF is the smallest (around -15.76˚). In the static and 
kinematic alignment periods (from epoch 1 to 145), no significant differences can be 
found in the roll and pitch solutions, as compared to the reference from H764G. However, 
after the 145-second static and kinematic alignment, the orientation components in roll, 
pitch and heading using the UKF is better than these using the EKF and the EPF in the 
free navigation mode (from epoch 146 to 194). The heading component from the EPF is 
still better than that using the EKF in terms of the mean, the standard derivation and the 
maximum of the heading errors, as compared to the reference. The absolute heading error, 
defined as the absolute value of the difference between each solution obtained from 
alternative filter and the reference solution, is similar for all filters tested. For example, 
the relative improvement of the EPF, as compared to the EKF in the actual heading errors 
during the kinematic alignment of the second period, shown in Figure 6.4, is only around 
8%. The relative improvement of the UKF, as compared to the EKF, in the actual heading 
errors during the free inertial navigation period is only around 6%. During the first static 
period, the relative improvement of the EPF, as compared to the EKF, in the actual 
heading errors is better, reaching around 33%.  

The actual heading errors shown in Figure 6.4 and in Table 6.3, indicate that none of 
the three filters is able to provide sufficient calibration to bound the heading (the weakest 
orientation component) errors for the 75-second static calibration and the 69-second 
kinematic calibration. The kinematic alignment under longer maneuvering conditions can 
provide better calibration to control the orientation errors, as shown next. In Table 6.3 
(and the following tables), a special attention should be paid to the values marked in red, 
which indicate the improvements found.  
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  EKF UKF EPF EKF UKF EPF EKF UKF EPF 
R [˚] -0.64 -0.62 -0.64 -0.54 -0.55 -0.55 -1.56 -1.53 -1.61 
P [˚] 1.13 1.10 1.09 0.88 0.86 0.86 0.73 0.64 0.72 

M
ea

n 
H [˚] -14.50 -17.57 -9.61 -17.19 -16.91 -15.76 -43.17 -40.67 -42.33
R [˚] 0.24 0.23 0.23 0.79 0.78 0.80 1.00 0.98 1.02 
P [˚] 0.16 0.18 0.21 0.71 0.74 0.71 0.78 0.76 0.80 St

d 

H [˚] 6.13 6.52 4.75 17.78 18.22 17.24 9.04 8.92 8.88 
R [˚] 1.45 1.51 1.19 1.96 2.01 1.98 3.19 3.12 3.27 
P [˚] 1.51 1.50 1.50 2.79 2.86 2.77 2.35 2.23 2.36 M

ax
 

H [˚] 31.72 32.05 17.45 43.03 42.09 43.03 64.94 62.06 63.72 

  static alignment 
(epochs: 1−75) 

kinematic alignment  
(epochs: 76−145) 

free inertial navigation 
(epochs: 146−193) 

 
Table 6.3. The statistics of the orientation errors from IMU400CC using the EKF, the 
UKF and the EPF, as compared to the reference EKF-based GPS/INS solution from 
H764G during periods of the first static alignment (epoch from 1 to 75), kinematic 
alignment (epoch from 76 to 145) and a free inertial navigation mode due to the loss of 
GPS lock. 
 
 Two maneuvering periods were included in this experimental dataset. Maneuver 1 
starts at epoch 435 and ends at epoch 900, and includes a total of 10 loops at the OSU 
west campus parking lot. The second maneuvering period ranges from epoch 1415 to 
epoch 1920. Figure 6.5 shows the heading solutions using different filtering techniques, 
as compared to the reference solution for the first maneuvering period. Table 6.4 presents 
the detailed orientation errors, as compared to the reference for both maneuvering periods. 
A closer inspection of Figure 6.5 and Table 6.4 indicates that the heading solution using 
the UKF is much better than these from the EKF and the EPF in terms of the mean 
heading errors (-1.0˚ for the UKF and around -4.1˚ for the EKF and the EPF). The 
average roll and pitch errors using the UKF are also smaller than these using the EKF and 
the EPF. The relative improvement of the UKF, as compared to the EKF, in the actual 
heading errors during the first maneuvering period can reach around 75%. The relative 
improvement of the UKF, as compared to the EKF, in the actual roll and pitch errors 
during the first maneuvering period is around 52% and 14%, respectively. No obvious 
orientation differences can be found between the EKF and the EPF during the first 
maneuvering period.  
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Figure 6.5. The heading solutions from IMU400CC using the EKF, the UKF and the EPF, 
and the reference heading from H764G using the EKF during the maneuver 1. 
 

 
 

 
Maneuver No.1  

(epochs: 435−900) 
Re: Figure 6.5 

 
Maneuver No.2  

(epochs: 1415−1920) 
Re: Figure 6.6 

   EKF UKF EPF  EKF UKF EPF 
R [˚]  -0.73 -0.35 -0.73  0.72 0.82 0.72 
P [˚]  0.56 0.48 0.56  0.60 0.73 0.59 

M
ea

n 

H [˚]  4.12 -1.01 4.16  -18.64 -8.73 -18.95
R [˚]  0.30 0.42 0.30  0.41 0.36 0.41 
P [˚]  0.43 0.43 0.43  0.43 0.39 0.43 St

d 

H [˚]  1.81 1.39 1.83  4.72 2.91 4.77 
R [˚]  2.03 2.16 2.02  1.50 1.57 1.49 
P [˚]  1.85 1.73 1.85  1.63 1.71 1.62 M

ax
 

H [˚]  11.20 6.25 11.28  27.19 15.11 27.61 
 
Table 6.4. The statistics of the orientation errors from IMU400CC using the EKF, the 
UKF and the EPF, as compared to the reference EKF-based GPS/INS solution from 
H764G during two maneuvering periods from epochs 435 to 900 and from epochs 1415 
to 1920. 
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 Figure 6.6 (insert) illustrates the trajectory of the second maneuvering period and the 
heading solutions using the EKF, the UKF and the EPF together with the reference 
heading during this period. Figure 6.6 also shows the comparison of the heading solutions 
for a stationary segment. A drift rate of 0.10˚/s, 0.06˚/s and 0.10˚/s for heading solutions 
for the EKF, the UKF and the EPF, respectively, can be found, even after 1136 epochs of 
static and kinematic alignments with high accuracy GPS position measurement update. 
Such drift rate during the static period is better controlled if longer prior kinematic 
calibration is used, as compared to the 0.3˚/s drift rate at the beginning of the 
experimental trajectory with short calibration time, shown earlier. In the second 
maneuvering period, the heading solution using the UKF is still better than these using 
the EKF and the EPF in terms of the mean and standard deviation of the errors, as 
compared to the reference, while the EKF and the EPF behave a little better than the UKF 
in the roll and the pitch components. The EKF and the EPF behave very similarly in all 
three orientation components.  
 

 
 
Figure 6.6. The heading solutions for IMU400CC using the EKF, the UKF and the EPF, 
as compared to the reference heading solution from H764G during a stationary period 
(epochs 1136 to 1414) and the second maneuvering period (epoch 1415 to 1920); the 
upper-left subplot illustartes the corresponding ground trajectory of the second 
maneuvering period. 
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After the first maneuvering period (Segment 4, in Fugure 6.3) and before the second 
maneuvering period (Segment 7), there is a 190-second trajectory (refer to Figure 6.2 and 
Figure 6.3) segment 5, where the vehicle first went north (from epoch 900 to 955), then 
went east (from epoch 955 to 995), then went south (from epoch 995 to 1055), then went 
west (from 1055 to 1090). Table 6.5 lists the statistics of the orientation errors using the 
EKF, the UKF and the EPF, as compared to the reference during the aforementioned 
portions of the trajectory. The orientation solution in the roll, pitch and heading 
components from the UKF behaves better than these from the EKF and the EPF, and the 
EPF behaves very similarly to the EKF. Around 87%, 22% and 90% of relative 
improvement can be found in the actual errors of the roll, pitch and heading components, 
respectively, using the UKF, as compared to these of the EKF during the period of going 
north, and better than 0.5˚ orientation errors (in absolute term) for all three components 
can be achieved in such scenario (the actual errors are -0.07˚, 0.39˚ and -0.28˚ in the roll, 
pitch and heading components for the UKF, as compared to the reference orientation 
solutions from H764G). This good orientation accuracy for the low-cost MEMS IMU can 
be attributed to the 465-second maneuvering period (i.e., Segment 4) with loops just 
before the straight portion going north. Similar relative improvements in the roll, pitch 
and heading components can be found in the other parts of the trajectory (i.e., going east, 
south and west); refer to Table 6.5 for the actual errors and relative improvements for the 
UKF, as compared to the EKF. It should be noted that the kinematic calibration along 
these straight trajectories cannot bound the heading error drifts, even with the precise 
cm-level GPS position measurement updates. The actual average heading error drifted 
from -0.28˚ during the “going north” trajectory, to 0.97˚ during the “going east” 
trajectory, to 1.51˚ during the “going south” segment, and ended with 1.65˚ during the 
“going west” segment. But these drifts are obviously smaller when the vehicle is moving 
as compared to those when the vehicle is stationary, as shown earlier.  
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   Going North  
(epochs: 900−955)  Going East  

(epochs: 955−995) 

   EKF UKF EPF  EKF UKF EPF 
R [˚]  -0.53 -0.07 -0.54  -0.46 -0.08 -0.47 
P [˚]  0.50 0.39 0.50  0.53 0.37 0.53 

M
ea

n 

H [˚]  -2.92 -0.28 -3.02  -5.92 0.97 -6.09 
R [˚]  0.33 0.21 0.34  0.37 0.19 0.38 
P [˚]  0.46 0.40 0.46  0.32 0.19 0.32 St

d 

H [˚]  1.28 0.58 1.31  0.36 0.47 0.37 
R [˚]  1.09 0.51 1.11  1.04 0.58 1.06 
P [˚]  1.22 1.18 1.23  1.28 0.70 1.30 M

ax
 

H [˚]  6.25 1.08 6.42  6.77 1.89 6.97 
 

   Going South  
(epochs: 995−1055)  Going West  

(epochs: 1055−1090) 
   EKF UKF EPF  EKF UKF EPF 

R [˚]  -0.42 -0.18 -0.42  -0.54 -0.30 -0.54 
P [˚]  0.42 0.31 0.42  0.61 0.35 0.62 

M
ea

n 

H [˚]  -7.64 1.51 -7.86  -6.83 1.65 -7.04 
R [˚]  0.24 0.17 0.24  0.53 0.24 0.54 
P [˚]  0.41 0.24 0.42  0.62 0.35 0.63 St

d 

H [˚]  1.19 0.27 1.22  1.37 0.45 1.39 
R [˚]  0.95 0.57 0.96  1.72 0.94 1.75 
P [˚]  1.34 0.71 1.36  2.15 0.76 2.18 M

ax
 

H [˚]  9.39 2.22 9.65  9.84 2.76 10.08 
 
Table 6.5. The statistics of the orientation errors from IMU400CC using the EKF, the 
UKF and the EPF, as compared to the reference EKF-based GPS/INS solution from 
H764G during four straight motion periods. 
 
 The UKF demonstrated a faster convergence in the heading component in kinematic 
alignment than the EKF, based on the simulated example for the navigation-grade H764G 
(Yi and Grejner-Brzezinska, 2005). Figure 6.7 shows a heading convergence example as 
a function of the tested filter type for the low-cost MEMS IMU400CC during the static 
alignment. Even when starting with the actual heading from the reference and using 
1-second measurement updates of the high accuracy (cm level) GPS position solution, the 
correct heading solution still cannot be maintained due to the low quality of the inertial 
measurements and less coupling between the position components and the heading 
component no matter which filter is used. The EPF behaves the best, and the UKF is the 
weakest in maintaining the correct heading in such scenario. Around 23˚, 26˚ and 17˚ 
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drifts from the actual heading for the solutions using the EKF, the UKF and the EPF, 
respectively, were found. Figure 6.8 illustrates another example of the heading 
convergence errors, as compared to the reference heading during the first maneuvering 
period (Segment 4, in Figure 6.3), and the corresponding trajectory is shown in the 
upper-right subplot. The UKF starts with a heading biased by 60˚, while the EKF and the 
EPF begin with the heading biased by around 12˚. After a 24-second kinematic 
calibration, starting at epoch 437, the UKF began to converge closer to the reference 
heading, as compared to the EKF and the EPF. It is noted that the biased heading for each 
filter is caused by the heading drift during the static period (i.e., Segment 3 shown in 
Figure 6.3) before the tested maneuvering period shown in Figure 6.8. 
 

 
 
Figure 6.7. The heading convergence errors during the static alignment period for 
IMU400CC using the EKF, the UKF and the EPF, as compared to the reference heading 
from H764G. 
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Figure 6.8. The heading convergence errors during the first maneuvering period 
(Segment 4 in Figure 6.3, starting at epoch 413) for IMU400CC using the EKF, the UKF 
and the EPF, as compared to the reference heading from H764G. 
 
6.2.2.2 Position performance using the EKF, the UKF and the EPF 

As marked in Figure 6.2 with red color, several actual GPS gaps exist in this 
experimental dataset either due to the loss of GPS lock or a failure of the 
double-difference ambiguity resolution. Table 6.6 presents the 3-dimensional position 
error drifts for the EKF, the UKF and the EPF solutions, during these gaps, as compared 
to the reference GPS solutions at the end of each gap. A total of 10 gaps with various 
lengths appear in the entire trajectory. The UKF is better than the EKF for four of the 10 
gaps, and the EPF is better than the EKF for five of the 10 gaps. However, as can be 
observed in Table 6.6, the three filters behave, generally, similarly in the 3-dimensional 
position error drifts. In order to get more reliable statistical information for these filters in 
terms of the tolerance to GPS gaps, a total of 1919 samples of the 3-dimensional position 
error drifts for 1-second GPS gaps, as compared to the GPS reference, were collected, 
and the statistics are listed in Table 6.7. The UKF has the smallest mean (0.969 m) and 
the smallest standard deviation (1.447 m), as compared to the EKF and the EPF. Around 
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11% of relative improvement can be found in the average 3-dimensional position error 
for 1-second GPS gaps using the UKF, as compared to this using the EKF. The EPF has 
the comparable mean (1.092 m) and standard deviation (1.483 m) to these of the EKF, 
while it has the smallest maximum (16.940 m) and the smallest minimum (0.050 m), in 
comparison to these of the EKF and the UKF.  
 

No. Start epoch index Gap length [sec] EKF [m] UKF [m] EPF [m] 
1 94 3 1.738 1.747 1.722 
2 145 49 414.289 419.629 417.639 
3 900 13 4.122 4.974 4.103 
4 953 5 3.955 2.872 4.039 
5 1002 3 0.819 1.489 0.834 
6 1005 3 0.924 1.551 0.909 
7 1037 10 7.083 6.672 7.074 
8 1053 4 1.764 1.131 1.802 
9 1078 10 4.569 3.996 4.546 
10 1948 3 1.457 2.091 1.457 

 
Table 6.6. Free inertial navigation 3-D position error drifts of the actual GPS gaps for 
IMU400CC using the EKF, the UKF and the EPF, as compared to the actual GPS 
reference positions at the end of the GPS gaps. 
 

 EKF UKF EPF 
Mean 1.092 0.969 1.092 
Std 1.483 1.447 1.483 
Max 16.942 16.966 16.940 
Min 0.060 0.060 0.050 

 
Table 6.7. Statistics of the 1-second free inertial navigation 3-dimensional position error 
drifts for IMU400CC using the EKF, the UKF and the EPF, as compared to the GPS 
reference positions. 
 

Another eight 16-second GPS gaps were simulated; the horizontal position error 
drifts using the three filters are illustrated in Figure 6.9, together with the actual vehicle 
trajectory. The comparison of the position error drifts is shown in Table 6.8. The UKF is 
better than the EKF for six of the eight 16-second gaps, and the EPF is better than the 
EKF for one of the 10 gaps. The EKF is better than the UKF for two of the eight 
16-second gaps, and better than the EPF for seven of the eight 16-second gaps. 
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Figure 6.9. Horizontal position error drifts using the EKF, the UKF and the EPF during 
the simulated 16-second GPS gaps, as listed in Table 6.8. 
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Gap No. Start epoch index  EKF UKF EPF 
N [m] 4.296 -7.079 13.468 
E [m] 0.100 -0.575 2.523 
D [m] -2.077 -2.717 -1.363 

1 900 

3-D [m] 4.773 7.604 13.770 
N [m] -19.687 -16.826 -25.056 
E [m] 15.646 6.138 22.313 
D [m] -2.461 -2.217 -3.055 

2 925 

3-D [m] 25.267 18.047 33.690 
N [m] -12.644 -0.317 -18.075 
E [m] 0.540 -7.436 14.151 
D [m] 0.246 -2.712 0.797 

3 950 

3-D [m] 12.658 7.922 22.969 
N [m] 2.948 -0.835 -0.925 
E [m] -22.886 -17.385 -29.762 
D [m] -1.668 -2.359 -0.736 

4 975 

3-D [m] 23.135 17.564 29.786 
N [m] 1.206 27.242 -9.931 
E [m] -14.049 -7.804 2.638 
D [m] 1.143 -2.481 -0.106 

5 1000 

3-D [m] 14.147 28.446 10.276 
N [m] 19.814 18.490 23.172 
E [m] -6.965 -5.453 -4.703 
D [m] -2.367 -2.005 -1.828 

6 1037 

3-D [m] 21.135 19.381 23.715 
N [m] 49.756 23.012 53.660 
E [m] 9.913 11.658 1.416 
D [m] -0.259 -2.559 -0.084 

7 1053 

3-D [m] 50.734 25.923 53.679 
N [m] -4.955 4.476 -8.447 
E [m] 12.853 12.034 15.290 
D [m] 0.773 -0.667 0.532 

8 1078 

3-D [m] 13.796 12.857 17.476 
 
Table 6.8. Free inertial navigation 3-dimensional position error drifts of the simulated 
16-second GPS gaps for IMU400CC using the EKF, the UKF and the EPF, as compared 
to the actual GPS reference positions at the end of the GPS gaps. 
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6.2.3 Summary of alternative nonlinear filters 
 The concept of the nonlinear Bayesian filters was introduced and reviewed. 
 Two alternative nonlinear Bayesian filters, namely UKF and PF, were discussed in 

detail. 
 The example analyses, with the focus on the orientation and position performance of 

a low-cost MEMS IMU as a function of different filter implementation were 
provided. 

 A computational optimization scheme for the UKF, the PF and the EKF was 
presented. 

 During the stationary period (Segment 1 in Figure 6.3), without sufficient prior 
kinematic calibration using the precise cm-level GPS position measurement update, 
the heading component drifts very fast, reaching 0.31˚/s, 0.35˚/s and 0.23˚/s for the 
EKF, the UKF and the EPF, respectively. These drifts are better than the 
manufacturer’s error specification (1.0˚/s). Under such scenario, around 26% 
improvement in the drift rate of the heading component was found for the EPF, as 
compared to the standard EKF, while the UKF is worse than the EKF in terms of the 
heading drift rate by around 13%. 

 During the stationary period (Segment 6 in Figure 6.3), with static and kinematic 
calibration for around 1139 epochs using the precise cm-level GPS position 
measurement update, the heading drift rate was better controlled than in the above 
scenario without prior kinematic calibration, reaching around 0.10˚/s, 0.06˚/s and 
0.10˚/s for the EKF, the UKF and the EPF, respectively. Under such scenario, around 
40% improvement in the heading drift rate was found for the UKF, as compared to 
the standard EKF and the EPF. 

 The high heading drift rate, even with precise cm-level GPS positioning 
measurement update, is the result of the high gyro measurement noise and less 
coupling between the position and the heading components. 

 With a short prior kinematic calibration (around 69 second), the actual heading errors 
increased to more than 40˚ for a 49-second GPS gap for the EKF, the UKF and the 
EPF; still, during this gap, around 6% and 2% of relative improvement was found for 
the UKF and the EPF, respectively, as compared to the EKF, in terms of the actual 
heading errors.  

 In the maneuvering period (Segment 4 in Figure 6.3) with loops, around 1˚ accuracy 
in the heading component can be achieved using the UKF, and around 75% of 
relative improvement was found in the UKF solution, as compared to that for the 
EKF. Around 53% of relative improvement in the heading component for the UKF 
was found, in another maneuvering period (Segment 7 in Figure 6.3) with irregular 
trajectory, as compared to that of the EKF. 

 With long-period kinematic calibration, the UKF is significantly better than the EKF 
in terms of the actual heading error. Around 90%, 116%, 120% and 124%, 
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respectively, of relative improvement in the actual UKF heading errors can be found, 
as compared to these of the EKF during the four straight portions of the trajectory 
after a 465-second maneuvering period (Segment 4 in Figure 6.3) with loops. 

 As compared to the reference from H764G, the actual roll and pitch errors of the 
EKF, the UKF and the EPF are a little better than 0.5˚. During the kinematic 
calibration periods, the UKF is always better than the EKF, and the EPF is at the 
same accuracy level as the EKF. 

 As for the heading convergence error, the EPF is the best if only static alignment is 
applied; if the kinematic calibration is involved, the UKF can provide better 
convergence performance than the EKF, and the EPF behaves similarly to the EKF. 

 Similarly to the orientation performance of the three filters, in most cases, the UKF is 
better than the EKF and the EPF in terms of the position error drifts. The EPF 
behaves very similarly to the EKF, while in some cases, the EPF is better than the 
EKF, for example, in static cases with insufficient kinematic alignment. 

 Based on the total of 1919 1-second free inertial navigation samples, around 11% of 
relative improvement can be found in the average 3-dimensional position error for 
1-second GPS gap using the UKF, as compared to that of the EKF, and the EPF 
behavior is very comparable to that of the EKF. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 133

 
CHAPTER 7 

 
 

CONCLUSIONS, CONTRIBUTIONS AND RECOMMENDATIONS  
 

7.1 Conclusions 
As discussed in Chapter 1, the three primary objectives of this dissertation were 1) to 

further improve the accuracy and reliability of the GPS/INS integrated systems designed 
for mobile mapping applications, especially in confined environments causing frequent 
losses of GPS lock and lower positioning accuracy due to long GPS baselines; 2) to 
extend the applicability of the low-end MEMS inertial sensor to direct sensor 
georeferencing and 3) to test selected nonlinear filter designs, as alternatives to the 
Extended Kalman Filter in GPS/INS integration. The following conclusions recapitulate 
the findings supporting the three objectives listed above; the detailed conclusions were 
provided in the end of each chapter. 

 The epoch-by-epoch positioning approach supporting baseline and network modes 
with several special data processing techniques to improve the success rate of the 
ambiguity resolution and the quality control of the RTK systems demonstrated. 

 Cm-level positioning accuracy for the tested static baselines up to 70 km in 
baseline-by-baseline mode, and 120 km in the network mode with 100% L1 
ambiguity fixed rate. 

 Cm-level positioning accuracy for the tested kinematic baselines varying from 4 
km to 20 km with more than 95% valid solutions of around 95% fixed L1 
solutions using only selected special data processing techniques. 

 Significant improvements (around 30%) in position and orientation of free inertial 
navigation can be achieved by the “customized” sensor-by-sensor error model 
derived from the Allan variance analysis and/or PSD method, as compared to the 
manufacturer’s default error model. 

 This indicates some possible inaccuracies of the manufacturer’s error model and 
different behavior of the IMU sensor in x, y, z directions.  

 Wavelet-based signal de-noising improves the position and orientation accuracy and 
the initial coarse alignment accuracy of the low-cost MEMS inertial sensor. 

 The alternative filter, UKF, for low-cost MEMS IMU400CC 
 Can speed up the heading convergence and improve the heading accuracy. 
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 Around 75% of relative improvement in the UKF heading component was 
found, as compared to that for the EKF in a maneuvering period with loops. 

 Slightly improves the tolerance to GPS gaps. 
 Around 11% of relative improvement was found in the average 

3-dimensional position error for 1-second GPS gaps using the UKF, as 
compared that using the EKF, based on 1919 samples. 

 The alternative filter, EPF (EKF+PF), for low-cost MEMS IMU400CC 
 During the stationary period, without sufficient prior kinematic calibration using 

the precise cm-level GPS position measurement update, provides around 26% 
improvement in the drift rate of the heading component, as compared to the 
standard EKF. In other cases, both filters provide comparable heading accuracy. 

 Behaves similarly to the EKF in terms of tolerance to GPS gaps. 
 The low-cost MEMS inertial sensor investigated in this dissertation provides limited 

position and orientation accuracy for mobile mapping applications. 
 Careful IMU error modeling, signal de-noising technique, and alternative 

nonlinear filter can improve the performance. Still only low-accuracy mobile 
mapping applications may consider this sensor. 

 
7.2 Contributions 

The contributions of this dissertation can be summarized as follows: 
 The AIMSTM (Airborne Integrated Mapping System) capability was extended from 

the EKF-only solution, based on high-end inertial sensor and single baseline GPS 
solution. 

 to support both baseline and network GPS RTK modes 
 to support various grade inertial sensors 
 to use alternative nonlinear filters 

 An effective and reliable epoch-by-epoch GPS positioning technique supporting 
multiple reference and rover receivers with several special data processing strategies 
to improve the ambiguity success rate and the quality control was implemented. 

 A comprehensive analysis of the stochastic error characteristics for four inertial 
sensors and a “customized” sensor-by-sensor error model for each sensor using two 
techniques, the Allan variance analysis and the Power Spectral Density method, in 
time and spectral domains, respectively, was provided. 

 The performance comparison of two nonlinear Bayesian filters and the traditional 
Extended Kalman Filter using a high-end inertial sensor, H764G, and a low-cost 
MEMS inertial sensor, IMU400CC, was provided and discussed. 

 A computational optimization scheme for nonlinear filtering according to the special 
structure of GPS/INS integration was provided and implemented. 
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7.3 Recommendations 
As mentioned in Chapter 3, numerous global and local GPS ionospheric error models 

have been developed. For example, the global ionospheric model can be 1) the broadcast 
Klobuchar ionospheric model included in the GPS navigation message, or 2) the Global 
Ionospheric Maps from CODE (http://www.aiub.unibe.ch/ionosphere.html) or JPL 
(http://iono.jpl.nasa.gov/latest_rti_global.html). The local and/or regional ionospheric 
models are provided by, for example, Real-Time US-Total Electron Content (US-TEC, 
http://www.sec.noaa.gov/ustec/index.html), Wide Area Augmentation System (WASS, 
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navs
ervices/gnss/waas/), the European Geostationary Navigation Overlay Service (EGNOS, 
http://www.esa.int/esaNA/egnos.html), and numerous local continuously tracking GPS 
networks. Some of the existing models do not provide any accuracy assessment for their 
ionospheric corrections. Therefore, it is necessary to develop a uniform validation 
technique for the quality control of the GPS ionospheric error models, coming from 
various sources. Such validation technique can be based, for example, on statistical 
testing procedures, especially for the local network-derived GPS ionospheric error 
models with few GPS stations, as compared to global or regional ionospheric models 
from relatively large GPS networks. 

The sensor noise identification techniques discussed in Chapter 4 of this dissertation, 
i.e., the Allan-variance analysis and the PSD method can provide complete understanding 
of the sensor error characteristics. While the relatively long (normally several hours) 
static experiments are required, for short static or kinematic experiments, the adaptive 
Kalman filter can be used for online identification of the inertial sensor noise model by 
assuming some random processes for the sensor noise model (for example, an ARMA 
model can be used). The adaptive Kalman filter approach can also be used to provide a 
cross-comparison for the sensor noise models identified by the Allan-variance analysis 
and the PSD method.  

The current implementation of the wavelet-based signal de-noising technique 
discussed in Chapter 5, is based on the Matlab implementation, and the level of 
de-noising is selected by an experimental basis and remains unchanged for the entire 
trajectory. As pointed out in Chapter 5, the level of de-noising is a function of the sensor 
type, system dynamics and the geometry of the vehicle trajectory. Therefore, the adaptive 
wavelet-based signal de-noising technique should be considered in the real scenarios for 
better navigation performance.  

As shown in Chapters 5 and 6, the low-cost MEMS inertial sensor, IMU400CC, has 
very limited navigation performance, due primarily to the low accuracy of the heading 
component. The heading component can drift very quickly, even if supported by 1) the 
advanced “customized” inertial sensor error modeling, 2) wavelet-based signal de-noising 
technique, and 3) advanced nonlinear Bayesian filter, such as, UKF. In order to further 
extend the applicability of low-cost MEMS inertial sensors for mobile mapping 
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applications, it is necessary to fuse additional sensors such as, for example, 
magnetometer, to aid the heading components. 

As shown in Chapter 6, the Particle Filter demonstrated a better than the EKF 
navigation performance and was also in some cases, better than the UKF.  To further 
investigate this characteristics, the PF may still need fine tuning, for example, in terms of, 
the number of particles, the choice of the importance density function, etc. In the current 
implementation, the proposed density is based on the EKF-generated posterior density. It 
is believed that the proposed density generated by the UKF-based posterior density can 
provide better performance with fewer particles than the EKF-based posterior density. 
The UKF-based PF could be tested against the EKF-based PF implemented in this 
dissertation. 

Currently, the so-called, knowledge systems, based on the adaptive learning 
techniques, for example, the artificial neural networks, fuzz logic control, etc., are being 
introduced to support multi-sensor integration, especially in GPS-denied environments 
where navigation in dead reckoning (DR) mode is needed. The impact of such systems in 
accuracy and continuity of DR navigation should be investigated for possible navigation 
improvements of the integrated systems, such as that, presented here.  
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APPENDIX A 

 
 

INERTIAL DATA PREPROCESSING 
 

A total of six inertial systems are available at The Ohio State University (OSU) 
Satellite Positioning and Inertial Navigation (SPIN) Laboratory. They are (1) two 
navigation-grade H764G; (2) one navigation-grade LN100; (3) one tactical-grade 
HG1700; (4) one tactical-grade LN200; and (5) one consumer-grade MEMS IMU400CC. 
The 2005 hardware configuration is illustrated in Figure 2.4, and the manufacturer 
specifications of these systems are listed in Table 2.1. This chapter provides a brief 
introduction to the raw data conversion procedure, inertial sensors orientation alignment 
and time calibration. 
 
A.1 Raw inertial measurement conversion and inertial data formats 

The raw inertial measurements are stored in the binary formats. Each inertial sensor 
has different internal binary data format. These formats should be converted to a uniform 
data format, which is easily accessible by the post-processing software. Also, the inertial 
measurements, except for the two H76G, need to be synchronized with the external 
accurate GPS time. H764G has a built-in GPS receiver to synchronize the inertial 
measurements with the accurate GPS time. The raw data conversion and the time 
synchronization can be done using a software module called “preimu”. Figure A.1 shows 
the interface of this data conversion program. The inertial sensors orientation alignment 
and the time correction between different inertial sensors with respect to one of the 
H764G used as a reference, as described in the next section, can also be done by this 
software. The final data formats of the raw inertial measurements and INS navigation 
solutions for the INS data post-processing are listed in Table A.1 and Table A.2. In Table 
A.1, the ΔV and Δω represent the three accelerometer-integrated velocities and three 
gyroscope-integrated angles, and the f and ω represent the direct accelerations from three 
orthogonal accelerometers and angular rates from the three orthogonal gyroscopes. The 
H764G outputs a navigation solution from an internal GPS/INS Kalman filter using GPS 
code measurements, and LN100 outputs a free inertial navigation solution. These INS 
navigation solutions, whose formats are listed in Table A.2, serve as the initial conditions 
for our highly accurate GPS/INS data post-processing. HG1700 and MEMS IMU400CC 
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do not provide their own INS solutions, thus an initial coarse alignment procedure must 
be done for further data post-processing. 
 

 
 
Figure A.1. Interface of the data conversion program. 
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No. H764G LN100 HG1700 IMU400CC Name Precision Units 
1 √ √ √ √ Time Tag Double [s] 
2 √ √ √ × ΔVx Double [m⋅s−1] 
3 √ √ √ × ΔVy Double [m⋅s−1] 
4 √ √ √ × ΔVz Double [m⋅s−1] 
5 √ √ √ × Δωx Double [rad] 
6 √ √ √ × Δωy Double [rad] 
7 √ √ √ × Δωz Double [rad] 
8 × × × √ fX Double [m⋅s−2] 
9 × × × √ fY Double [m⋅s−2] 
10 × × × √ fZ Double [m⋅s−2] 
11 × × × √ ωx Double [rad⋅s−1] 
12 × × × √ ωy Double [rad⋅s−1] 
13 × × × √ ωz Double [rad⋅s−1] 
14 × × √ √ Temp Double [°C] 
 
Table A.1. The binary data format of inertial measurements (√ represents that the 
corresponding data listed in the “Name” column is available for the sensor listed from 
column two to four; × indicates that the data listed in the “Name” column is not available 
for the sensor listed from two to four); f and ω represent the acceleration and angular rate 
from an accelerometer and a gyroscope, while ΔV and Δω are the 
accelerometer-integrated velocity and gyroscope-integrated angle. 
 

No. Name Precision Units 
1 GPS Time Double [s] 
2 Latitude Double [rad] 
3 Longitude Double [rad] 
4 Height Double [m] 
5 Vn Double [m⋅s−1] 
6 Ve Double [m⋅s−1] 
7 Vd Double [m⋅s−1] 
8 Heading (Yaw) Double [rad] 
9 Roll Double [rad] 
10 Pitch Double [rad] 

 
Table A.2. The binary INS navigation data format for H764G and LN100. 
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A.2 Inertial sensors orientation alignment and time calibration 
The sensor orientations of the three orthogonal accelerometers and the three 

orthogonal gyroscopes are different for each inertial sensor. In order to be able to provide 
a platform for performance cross-comparison amongst these inertial sensors, their inertial 
measurements should be rotated to the same orientation after identifying the relationship 
of the axis orientation of these sensors. Amongst these inertial sensors, each of the two 
H764G is equipped with its own built-in GPS sensor. Thus, the GPS time of the 
measurements from the two H764G can be assumed to be known; in other words, the 
IMU measurements are properly time-tagged by the GPS time. The time tags of the 
measurements from the other inertial sensors are maintained by using the CPU time in 
combination with an OEM timer board that maintains the GPS time  (synchronized with 
the 1PPS event output from an external GPS sensor). Note that the time-tags are assigned 
to the inertial measurement records upon receiving them at the PC interface and therefore 
depending on the communication channel speed could represent a time that is later by a 
significant amount time; this offset or lag should be measured and a correction should be 
applied to obtain the correct (or optimal) GPS time-tags. Figure A.2 presents an example 
illustration of the time synchronization of the hardware components, including one 
MEMS IMU, one barometric altimeter and one compass, with the accurate 1 PPS output 
from a GPS sensor. Sine the H764G measurements are properly time-tagged, they can  
be used for calibrating of the time delay or lag of other IMU sensors simply by 
comparing the measurements from two rigidly connected sensors and identifying the 
correlation of the various acceleration data (details are discussed later).. In summary, 
besides rotating these inertial measurements to the same orientations, the time of the 
measurements should be corrected to the same reference time system (here, the H764G 
GPS time). The time of the built-in GPS sensor in H764G will also contain errors due to 
the GPS receiver clock bias, which is less than 0.5 millisecond. 
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Figure A.2. Example illustration of the time synchronization of the hardware components 
(a MEMS IMU, a barometric altimeter and a compass) with the accurate 1 PPS output 
from GPS sensor (Note: [1] the time scales for the sensors are for demonstration only, not 
representing the actual sampling rate for the sensors; [2] The Barometric altimeter and 
compass sensors are not discussed here, even though they were implemented in the OSU 
hardware configuration). 
 

The sensors orientation alignment and time lag calibration can be determined using 
the cross-correlation technique. If two inertial sensors are physically and closely fixed in 
the same platform, they will experience similar vehicle dynamics. This fact makes it 
possible to calibrate the time lag of inertial measurements from different inertial sensors, 
and identify the relationships of the sensor orientation using the cross-correlation 
technique. The discrete cross-correlation can be computed according to equation (A.1) 
for two discrete time series, x and y. Two datasets are re-sampled to 512Hz (i.e. twice of 
256Hz, sampling rate of H764G), then the cross-correlation between each accelerometer 
axis and gyroscope axis is computed, and the maximum cross-correlation and its 
corresponding lag are located. Figure A.3 illustrates an example the cross-correlation of 
the IMU400CC accelerometer outputs in x, y and z directions (fX, fY and fZ) with respect 
to H764G1 x accelerometer output (fX), using the datasets collected on July 22, 2005. The 
maximum cross-correlation can be easily found between IMU400CC fX and H764G1 fX 
with around 9/512≈17.6 millisecond delay in the negative direction. The complete sensor 
orientation alignment and time lag calibration using the above dataset, is listed in Table 
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A.3 and a summary of sensor orientation alignment and time calibration of different 
sensors is listed in Table A.4.  
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Where: x and y are two discrete time series; φxy(τ) is the cross-correlation at the time 

lag τ; subscript i is the epoch index; x  and y  are the means of x and y. 

 

 
 
Figure A.3. Example cross-correlation of with respect to IMU400CC three accelerometer 
outputs in x, y, z directions (fX, fY and fZ) with respect to H764G1 outputs from x 
accelerometer (fX). 
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  H764G1 
  fX fY fZ 

fX 0.99(   0) 0.02(   1) -0.11( -26) 
fY -0.03(  14) 0.99(   0) -0.17(  -1) H764G2 
fZ -0.10(  28) -0.08(   3) 0.90(   0) 
fX 0.94(   4) -0.34(-284) -0.08( -26) 
fY -0.35( 289) 0.95(   3) -0.15(  91) LN100 
fZ -0.13(   8) -0.18( -84) 0.89(   3) 
fX 0.06(  26) 0.13(-495) 0.93(   2) 
fY 0.10(   1) 0.94(   2) 0.14( 493) HG1700 
fZ -0.89(   3) -0.21(   3) -0.12(  28) 
fX -0.97(   9) 0.13( 496) 0.06( -17) 
fY 0.13(-500) -0.97(   9) 0.10(   8) IMU400CC 
fZ 0.13(  35) 0.19(   9) -0.96(   9) 

  ωX ωY ωZ 
ωX 1.00(   0) -0.13( -47) -0.04( 448) 
ωY -0.13(  47) 1.00(   0) 0.07( 270) H764G2 
ωZ -0.04(-447) 0.07(-270) 1.00(   0) 
ωX 1.00(   2) 0.28( 322) -0.11( 378) 
ωY -0.28(-500) 0.99(   2) 0.16(-500) LN100 
ωZ -0.14(-373) 0.10( 500) 1.00(   0) 
ωX 0.07( 500) 0.06( 396) 1.00(   1) 
ωY -0.06( 165) 0.99(   2) 0.06(-392) HG1700 
ωZ -1.00(   1) 0.06(-164) -0.07(-500) 
ωX 0.92(  11) -0.11(  10) -0.08( 500) 
ωY -0.11(  58) 0.94(  11) 0.09( 247) IMU400CC 
ωZ -0.10(-500) 0.10(-223) 1.00(  11) 

 
Table A.3. Example of sensor orientation and time lag calibration using cross-correlation 
technique based on datasets of July 22, 2005 (Note: a Matlab macro function 
‘imutimeoffset.m’ was developed to process the data using the cross-correlation technique 
described above; the numbers shown in parentheses indicate the time lags in the unit of 
1/512[Hz]; the number marked in red color indicates the location of the maximum 
cross-correlation; the first part of the table lists the cross-correlations of IMU400CC x, y, 
and z accelerometers (labeled as fX, fY and fZ) comparing to H764G1 accelerometers in x, 
y and z directions (fX, fY and fZ) and the second shaded part presents the 
cross-correlations of IMU400CC gyroscopes in x, y and z directions (ωX, ωY and ωZ) 
comparing to H764G1 gyroscopes in x, y and z directions (ωX, ωY andωZ). 
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Sensor Accelerometers Gyroscopes Lag [ms] 
H764G1 +fx +fy +fz +ωx +ωy +ωz Reference 
H764G2 +fx +fy +fz +ωx +ωy +ωz 0.0 
LN100 - - - - - - - 

HG1700 +fy −fz −fx +ωy −ωz −ωx 3.9 
IMU400CC +fx +fy −fz −ωx −ωy +ωz 18.8 

Valid for the data collected before Nov. 2004 using data of July 4, 2004 
H764G2 +fx +fy +fz +ωx +ωy +ωz 0.0 
LN100 +fx +fy +fz +ωx +ωy +ωz 6.6 

HG1700 +fy −fz −fx +ωy −ωz −ωx 3.2 
IMU400CC +fx +fy −fz −ωx −ωy +ωz 18.3 

Valid data collected from Nov. 2004 to Fe2. 2005 using data of Nov. 19, 2004 
H764G2 +fx +fy +fz +ωx +ωy +ωz 0.0 
LN100 +fx +fy +fz +ωx +ωy +ωz 4.5 

HG1700 +fz +fy −fx +ωz +ωy −ωx 3.9 
IMU400CC −fx −fy −fz +ωx +ωy +ωz 19.2 

Valid data collected after Feb 2005 using data of July 22, 2005 
 
Table A.4. Hardware assembly orientation alignment and time lag calibration of different 
sensors with respect to H764G1. 
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APPENDIX B 

 
 

INS STOCHASTIC ERROR IDENTIFICATION AND MODELING 
 

This chapter provides the complete example analysis of the INS stochastic error 
identification using the Allan-variance (AVAR) analysis and the Power Spectral Density 
(PSD) method for all the six inertial systems as explained in Appendix A. The detailed 
Allan-variance and PSD analysis techniques, together with a brief version of the example 
analysis, are presented in Chapter 4.  

Two static experiments conducted on June 26, 2004 (Day of Year: DOY 178, 2004) 
and Oct. 20, 2004 (DOY 294, 2004) respectively, were used here.  The ~8-hour datasets 
on DOY 178, 2004 are available for three types of inertial sensors: H764G, HG1700 and 
IMU400CC. Two static segments (referred to as DOY 2941, 2004 and DOY 2942, 2004) 
in the experiment on DOY 294, 2004 are separated by one dynamic dataset. All four 
types of inertial sensors (i.e. H764G, LN100, HG1700 and IMU400CC) were included in 
the second experiment on DOY 294, 2004. The stochastic error analyses for H764G, 
HG1700 and IMU400CC are from the first experiment on DOY 178, 2004. The analysis 
for LN100 is from the first segment of the second experiment on DOY 294, 2004. The 
temperature-correlated trends of the raw inertial measurements from HG1700 and 
IMU400CC in both experiments are compensated using a second-order polynomial fitting 
function f(T)=a0+a1T+a2T2 of the sensed temperature, T, with coefficients a0, a1 and a2.  

The output of an inertial sensor can be expressed in the rate domain (i.e., the rate 
output) or in the integrated domain (i.e., the integrated output). For example, the rate 
output of an accelerometer is the acceleration and the integrated output is the 
accelerometer-integrated velocity; the rate output of a gyroscope is the angular rate and 
the integrated output is the gyroscope-integrated angle. Five basic noise terms present in 
the output of an inertial sensor are (1) quantization noise, (2) rate white noise, (3) flicker 
noise, (4) rate random walk and (5) rate ramp (Annex C of IEEE Std 647, 1995; Annex C 
of IEEE Std 952, 1997; Annex I of IEEE Std 1293, 1998). Table B.1 lists the Allan 
variance and Power Spectral Density (PSD) representations together with the log-log 
fitted models to estimate corresponding coefficients of the five basic noise terms of the 
rate output of an inertial sensor (refer to Annex C of IEEE Std 647, 1995 or Annex C of 
IEEE Std 952, 1997 for more information). The Allan variance and PSD representations 
of the integrated output of an inertial sensor will be different from Table B.1. The rate 
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white noise is also called angle random walk (ARW) for the gyroscope measurements, 
and the velocity random walk (VRW) for the accelerometer measurements. The flicker 
noise is also referred to as the bias instability, which indicates the bias fluctuations in the 
data. The rate ramp is actually a systematic (or deterministic) trend and it is caused by the 
imperfection of the INS dynamic error modeling. The PSD method in the frequency 
domain, cannot distinguish between the rate random walk and the rate ramp whose slopes 
of the PSD log-log plots both are −2. Thus, the rate ramp must be removed before 
applying the PSD method. However, the Allan variance analysis in the time domain can 
distinguish between the rate random walk and the rate ramp, the slope of the Allan 
variance log-log plot of the rate ramp is +1 while that of the rate random walk is +½.  
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Table B.1. Inertial sensor stochastic noise representations of the Allan variance analysis 
and the PSD method. 
 

Where: σ is the Allan variance; τ is the time lag for the Allan variance analysis; Δt is 
the sampling interval; Φ is the PSD; f is the frequency; Q, N, B, K and R are the 
stochastic error coefficients for the stochastic errors (1) Quantization noise, (2) Rate 
white noise, (3) Flicker noise, (4) Rate random walk and (5) Rate ramp; y is expressed as 
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a linear log-log fitting function of x with a const term b used to estimate the coefficients 
Q, N, B, K and R. 

Except for the five basic noise terms, other noise terms, for example, the 
exponentially correlated (Markov) noise and the sinusoidal noise, may also exhibit in the 
data of an inertial sensor (Annex C of IEEE Std 647, 1995; Annex C of IEEE Std 952, 
1997). The exponentially correlated noise is characterized by a noise amplitude parameter 
and a finite correlated time parameter to form an exponentially decaying function. The 
slope of the Allan variance log-log plot of the exponentially correlated noise transits from 
+½ to −½; and it will converge to +½ (−½) if the time lag τ for the Allan variance 
analysis is much smaller (longer) than the correlated time parameter. The exponentially 
correlated (Markov) noise can be easily identified using the Allan variance and PSD 
methods, while its parameters (the noise amplitude and the correlated time) are not easily 
estimated using the Allan variance and PSD log-log fitted models, other approaches can 
be used to recover its relating coefficients, for example, Maximum likelihood estimation 
(Ash and Skeen, 1995) and ARX models (see, for example, Ljung, 1999). The PSD of the 
sinusoidal noise is characterized by several distinct frequencies (Annex C of IEEE Std 
647, 1995; Annex C of IEEE Std 952, 1997).  

Typically, all the aforementioned noise terms may be present in the real data of an 
actual inertial sensor. The Allan variance and PSD log-log plots for the real output of an 
inertial sensor include the combined effects of these noise terms (and Figure B.1 
illustrates an example Allan variance and PSD log-log plots (from IEEE Std 647, 1995 
and IEEE Std 1293, 1998). Experiments indicate that in most of the case these noise 
terms are statistically independent and appear in different regions of time lag τ and 
frequency f, thus it is possible to recover the noise characteristics of different noise terms 
using the Allan variance and PSD methods (IEEE Std 647, 1995).  
 

 
 
Figure B.1. The sample Allan variance (left) and PSD (right) log-log plots for the noise 
terms of an inertial sensor (Note: The PSD log-log plot (right) does not list the rate ramp, 
correlated and sinusoidal noises). 
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B.1 Static data analysis using the Allan variance analysis 
The Allan variance estimation, according to equation 4.3 in Chapter 4, requires a 

relatively heavy computation burden if all lags τ up to half size of the dataset are 
computed. Thus, a set of lags τ is pre-selected by choosing the logarithmically equally 
spaced points between decades 10−3 and 104. The number of spaced points, 100, 150, 200, 
250, 500, 1000, 2000, 3000, 4000 and 5000, were tested, and 150 spaced points could 
balance the computational load, and the visualized effects of the calculated Allan 
variance σ(τ). The following Allan variance computations are based on 150 pre-selected 
points, and done by a C++ program called “Allanvarest”. The Allan variance stochastic 
error coefficients are estimated using the log-log models shown in the third column of 
Table B.1, which could be (not necessarily) done with the aid of some visualized tools. 
Thus, several MatlabTM script functions are implemented to interactively estimate the 
error coefficients of the noise terms using their log-log fitted models in the MatlabTM 
environment.  
 
B.1.1 Allan variance analysis of H764G static data  

The long dataset (~ 8 hours) of H764G collected on DOY 178, 2004 is used here as 
an example analysis to investigate the Allan variance analysis for H764G. Figure B.2 
presents the Allan variance estimation for the three orthogonal accelerometers and the 
three orthogonal gyroscopes. The Allan variance estimations for the three gyroscopes are 
very similar, and each starts with a quantization noise up to 5 [sec] and ends with a rate 
white noise (angular random walk). The three accelerometers behave very similarly in the 
short time range, while they differ in the tail time areas. Each accelerometer starts with 
the short-time quantization noise up to 1 [sec], then switches to the rate white noise 
(velocity random walk), followed by a period of flicker noise. The tails of the three 
accelerometers differ significantly. The accelerometer in the x direction has a slope less 
than +½ around the tail time region, the best log-log fitting function for the accelerometer 
x direction at the tail (200-10000 [sec]) is f(x) = +0.2567x−11.3, shown in Figure B.3. 
The accelerometers in the y and z directions both have +½ slopes in the tail of the time 
scale, but the accelerometer in y direction ends with a +1 slope. Figures 2.3-2.8 show the 
Allan variance log-log plots of the fitted error models for the three accelerometers and the 
three gyroscopes, and the Allan variance error characteristics and estimated error 
coefficients are listed in Table B.2. 
 



 150

 
 
Figure B.2. The Allan variance log-log plot for H764G using dataset of DOY 178, 2004. 
 

 
 
Figure B.3. The Allan variance log-log plot of the fitted error models for H764G x 
accelerometer using dataset of DOY 178, 2004. 
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Figure B.4. The Allan variance log-log plot of the fitted error models for H764G y 
accelerometer using dataset of DOY 178, 2004. 
 

 
 
Figure B.5. The Allan variance log-log plot of the fitted error models for H764G z 
accelerometer using dataset of DOY 178, 2004. 
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Figure B.6. The Allan variance log-log plot of the fitted error model for H764G x 
gyroscope using dataset of DOY 178, 2004. 
 

 
 
Figure B.7. The Allan variance log-log plot of the fitted error model for H764G y 
gyroscope using dataset of DOY 178, 2004. 
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Figure B.8. The Allan variance log-log plot of the fitted error models for H764G z 
gyroscope using dataset of DOY 178, 2004. 
 

  Q [−1] N [−½] B [0] K [½] R [1] 
fX <1 [s] 1~10 [s] 20~200 [s] 200~10000 [s] − 
fY <1 [s] 4~20 [s] 50~200 [s] 200~500 [s] 500~10000 [s] 
fZ <1 [s] 10~80 [s] 200~700 [s] 500~5000 [s] − 
ωX <5 [s] 20~100 [s] − − − 
ωY <5 [s] 20~100 [s] − − − 
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ωZ <5 [s] 20~100 [s] − − − 
  Q [unit•s] N [unit•s½] B [unit] K [unit/s½] R [unit/s] 

fX 0.0001611 0.0002786 0.0000714 0.0000037  
fY 0.0001846 0.0001609 0.0000277 0.0000022 0.0000000703 
fZ 0.0001153 0.0000961 0.0000096 0.0000005  
ωX 0.0000033 0.0000023    
ωY 0.0000036 0.0000023    

Er
ro

r 
co

ef
fic

ie
nt
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ωZ 0.0000045 0.0000026    
 
Table B.2. The Allan variance error characteristics and estimated error coefficients for 
H764G using dataset of DOY 178, 2004 (Note: unit = m⋅s−2 for the accelerometer 
measurement and unit = rad⋅s−1 for the gyroscope measurements). 
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Table B.2 and Figure B.3 indicate that a trend (rate ramp) is evident in the y 
accelerometer. This effect can be clearly identified in the de-noised raw inertial 
measurements using, for example, the wavelet de-noising technique described in chapter 
5. Such trends may be caused by the environmental variations, for example, temperature. 
the wavelet de-noising technique was applied to this dataset, and a first-order polynomial 
function f(t)=a0+a1t with respect to the time index t was fitted to remove the 
time-correlated trends in H764G dataset of DOY 178, 2004. The fitted polynomial 
coefficients (a0 and a1) are listed in Table B.3 and illustrated in Figure B.9. The log-log 
fitting procedure for the error coefficients was applied to the decorrelated H764G dataset 
in the time domain, and the results are listed in Table B.4. Comparing to Table B.2, the 
trend in the y accelerometer disappeared, and also some of other estimated coefficients 
have slightly changed.  
 

 
 
Figure B.9. The de-noised H764G dataset on DOY 178, 2004 using the wavelet 
de-noising technique. 
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 a1[unit•s-1] a0[unit] 
fX 1.500e-013 8.008e-004 
fY 1.076e-012 -1.639e-003 
fZ -2.175e-014 -3.824e-002 
ωX -2.572e-016 -4.312e-009 
ωY -2.268e-016 -2.251e-007 
ωZ -5.497e-017 -1.736e-007 

 
Table B.3. Estimated first-order polynomial coefficients to detrend the H764G dataset on 
DOY 178, 2004 with time. 
 

 Q [−1] 
[unit•s] 

N [−½] 
[unit•s½] 

B [0] 
[unit] 

K [½] 
[unit/s½] 

R [1] 
[unit/s] 

fX 0.0001611 0.0002786 0.0000714 0.0000033  
fY 0.0001846 0.0001608 0.0000267 0.0000012  
fZ 0.0001153 0.0000961 0.0000095 0.0000005  
ωX 0.0000033 0.0000023    
ωY 0.0000036 0.0000023    
ωZ 0.0000045 0.0000026    
 
Table B.4. The estimated Allan variance error coefficients for H764G using dataset of 
DOY 178, 2004 after removing the trend using a first-order polynomial function with 
time (Note: unit = m⋅s−2 for the accelerometer measurement and unit = rad⋅s−1 for the 
gyroscope measurements). 
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Figure B.10. The Allan variance percentage estimation error. 
 

Following the explanation in chapter 4 of Yi (2007) and equation (4.4), the Allan 
variance percentage estimation errors are plotted in Figure B.10 to illustrate the Allan 
variance estimation accuracy. This kind of accuracy assessment is a function of the size 
of the available static dataset and its sampling rate. From Figure B.10, one can determine 
that the estimation accuracy is ~ 10 percent at the time τ = 600 [sec]. With the increasing 
time (i.e., at the tail in the time domain), the coefficients at that time scales will not be 
reliable. Therefore, the identified stochastic error characteristics at the tail in the time 
domain will not be used, since they are not reliable, and they are less significant for the 
applications with frequent external measurement updates (normally a few seconds).   
 
B.2.1 Allan variance analysis of LN100 static data  

The long datasets of DOY 178, 2004 does not include the LN100 inertial sensor. The 
dataset used here to investigate the stochastic error characteristics for LN100 is collected 
on DOY 294, 2004 (Oct. 20, 2004). This dataset is relatively shorter than the H764G 
dataset. According to the aforementioned Allan variance estimation percentage error, the 
Allan variance estimation is only reliable for a short time (up to 100 [sec], with ~ 10 
percent error, as shown in Figure B.11). The Allan variance log-log plot for this dataset is 
shown in Figure B.12, and its percentage error is illustrated in Figure B.11. All three 
accelerometers behave very similarly, except for the x accelerometer, which has an 
obvious offset comparing to the y and z accelerometers. The three accelerometers start 
with the quantization noise (up to 1 [sec]), and follow with the rate white noises, ending 
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with flicker noises with some variations. All three gyroscopes start with the quantization 
noise and end with the rate white noise. The y gyroscope behaves worse than the x and z 
gyroscopes, which may indicate malfunctioning of the y gyroscope. Figures 2.13-2.18 
show the detailed log-log fitted error models for the three accelerometers and gyroscopes, 
and Allan variance stochastic error characteristics in the time domain together with their 
coefficients are listed in Table B.5.    
 

 
 
Figure B.11. The Allan variance percentage estimation error for LN100 using dataset of 
DOY 294, 2004. 
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Figure B.12. The Allan variance log-log plot for LN100 using dataset of DOY 294, 2004. 
 

  Q [−1] N [−½] B [0] K [½] R [1] 
fX <0.4 [s] 1~10 [s] 20~200 [s]   
fY <0.4 [s] 1~10 [s] 20~200 [s]   
fZ <0.4 [s] 1~10 [s] 20~200 [s]   
ωX <0.4 [s] 1~100 [s]    
ωY <0.4 [s] 1~100 [s]    
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ωZ <0.4 [s] 1~100 [s]    
  Q [unit•s] N [unit•s½] B [unit] K [unit/s½] R [unit/s] 

fX 0.0008288 0.0017987 0.0004672   
fY 0.0002684 0.0005969 0.0001085   
fZ 0.0002878 0.0006305 0.0001655   
ωX 0.0000015 0.0000031    
ωY 0.0000075 0.0000097    
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ωZ 0.0000016 0.0000032    
 
Table B.5. The Allan variance stochastic error characteristics and the estimated error 
coefficients for LN100 using dataset of DOY 294, 2004. 
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Figure B.13. The Allan variance log-log fitted plot of the x acceleration for LN100 using 
dataset of DOY 294, 2004. 
 

 
 
Figure B.14. The Allan variance log-log fitted plot of the y acceleration for LN100 using 
dataset of DOY 294, 2004. 
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Figure B.15. The Allan variance log-log fitted plot of the z acceleration for LN100 using 
dataset of DOY 294, 2004. 
 

 
 
Figure B.16. The Allan variance log-log fitted plot of the x angular rate for LN100 using 
dataset of DOY 294, 2004. 
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Figure B.17. The Allan variance log-log fitted plot of the y angular rate for LN100 using 
dataset of DOY 294, 2004. 
 

 
 
Figure B.18. The Allan variance log-log fitted plot of the z angular rate for LN100 using 
dataset of DOY 294, 2004. 
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B.3.1 Allan variance analysis of HG1700 static data  
The data of HG1700 include two kinds of inertial measurements (i.e. the 

accelerometer-integrated velocities, ΔVXYZ, and the gyroscope-integrated angles, ΔθXYZ; 
and raw accelerations, fXYZ, and angular rates, ωXYZ) as well as the temperature, T. The 
dataset ~ 8-hour long on DOY 178, 2004 is used here to investigate the stochastic error 
characteristics of HG1700. The temperature-correlated trends existing in the data were 
first removed using a second-order polynomial function f(T) = a0+a1T+a2T2 with respect 
to the sensed temperature, T; the fitted coefficients (a0, a1 and a2) are listed in Table B.6. 
The accelerometer-integrated velocities ΔVXYZ and the gyroscope-integrated angles, 
ΔθXYZ, were used in the following analysis. 
 

 a0[unit] a1[unit•C-1] a2[unit•C-2] a0[unit] a1[unit•C-1] a2[unit•C-2] 
fX 0.1874908 0.0008166 -0.0000083 0.2061036 -0.0001150 0.0000032 
fY -0.3108470 -0.0063897 0.0000904 -0.3034674 -0.0066903 0.0000935 
fZ -9.7935810 0.0000730 -0.0000011 -9.9221986 0.0070796 -0.0000963 
ωX -0.0000947 0.0000048 -0.0000001 -0.0007429 0.0000414 -0.0000006 
ωY -0.0002328 0.0000096 -0.0000001 -0.0003806 0.0000187 -0.0000003 
ωZ -0.0002798 0.0000124 -0.0000002 -0.0018777 0.0001004 -0.0000014 

 ΔVXYZ and ΔθXYZ fXYZ and ωXYZ 
 
Table B.6. The temperature-correlated bias compensation using a second order 
polynomial fitting f(T) = a0+a1T+a2T2 for HG1700 using dataset of DOY 178, 2004 
(Note: unit=m•s–2 for the accelerometer measurements and unit=rad•s–1). 
 

The Allan variance log-log plot for this dataset is shown in Figure B.19, and its 
percentage error is illustrated in Figure B.20. The Allan variance estimation percentage 
error reaches up to 10 [%] around τ of 600 [sec]. All three accelerometers and the three 
gyroscopes behave very similarly. The three gyroscopes have some slight differences in 
different directions. The three accelerometers start with the quantization noise (up to 
around 2 [sec]), and follow with the rate white noise (from around 2 [sec] to 20 [sec]). 
The flicker noise is from 20 to 40 [sec] and the rate random walk noise is longer than 40 
[sec]. The quantization noise in the gyroscopes is not obvious and the rate white noise 
almost dominates all the time ranges of the gyroscopic measurements. Figures 2.21-2.26 
show the detailed log-log fitting for the three accelerometers and gyroscopes, and the 
Allan variance stochastic error characteristics in the time domain together with their 
coefficients are listed in Table B.7. 
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Figure B.19. Allan variance log-log plot for HG1700 using dataset of DOY 178, 2004. 
 

 
 
Figure B.20. Allan variance percentage estimation error for HG1700 using dataset of 
DOY 178, 2004. 
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  Q [+2] N [0] B [−1] K [−2] R [−2] 
fX <2 [s] 2~20 [s] 20~40 [s] 40~200 [s] [2] 
fY <2 [s] 2~20 [s] 20~40 [s] 40~200 [s] [2] 
fZ <3 [s] 3~20 [s] 20~40 [s] 40~200 [s] [2] 
ωX − All time range − − − 
ωY − All time range − − − 
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ωZ − All time range − − − 

  
Q [+2] 
[unit•s] 

N [0] 
[unit•s½] 

B [−1] 
[unit] 

K [−2] 
[unit/s½] 

R [−2] 
[unit/s] 

fX 0.0004881 0.0004202 0.0001320 0.0000239  
fY 0.0005061 0.0004781 0.0001462 0.0000278  
fZ 0.0005119 0.0004295 0.0001299 0.0000240  
ωX  0.0000693    
ωY  0.0000517    
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ωZ  0.0000864    
 
Table B.7. Allan variance stochastic error characteristics and coefficients for HG1700 
using dataset of DOY 178, 2004. 
 

HG1700 accelerometers in these time ranges slightly behave as the 
temporal-correlation errors (i.e. Gaussian-Markov errors). But Allan variance estimation 
percentage errors in those time ranges are around 10 [%], as shown in Figure B.20, thus 
they may also be caused by the Allan variance estimation errors. 
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Figure B.21. Allan variance log-log plot fitting of the x acceleration for HG1700 using 
dataset of DOY 178, 2004. 
 

 
 
Figure B.22. Allan variance log-log plot fitting of the y acceleration for HG1700 using 
dataset of DOY 178, 2004. 
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Figure B.23. Allan variance log-log plot fitting of the z acceleration for HG1700 using 
dataset of DOY 178, 2004. 
 

 
 
Figure B.24. Allan variance log-log plot fitting of the x angular rate for HG1700 using 
dataset of DOY 178, 2004. 
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Figure B.25. Allan variance log-log plot fitting of the y angular rate for HG1700 using 
dataset of DOY 178, 2004. 
 

 
 
Figure B.26. Allan variance log-log plot fitting of z angular rate for HG1700 using 
dataset of DOY 178, 2004. 
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B.4.1 Allan variance analysis of MEMS IMU400CC static data  
Different from the three inertial sensors analyzed above (i.e. H764G, LN100 and 

HG1700), whose Allan variance analysis are based on the accelerometer-integrated 
velocities, ΔVXYZ, and gyroscope-integrated angles, ΔθXYZ, the inertial measurements 
from the MEMS IMU400CC are the direct raw accelerations, fXYZ, and angular rates, 
ωXYZ, as well as the temperature, T. The dataset ~8-hour in length of DOY 178, 2004 is 
used here to investigate the stochastic error characteristics of MEMS IMU400CC. A 
stronger temperature correlation can be found in this low-cost inertial sensor, comparing 
to HG1700; thus the temperature-correlated trend must be removed using, for example, a 
second-order polynomial function f(T) = a0+a1T+a2T2 with respect to the sensed 
temperature, T. The fitted coefficients are listed in Table B.8. The z accelerometer has a 
much stronger temperature correlation than the other two sensors. Due to the stronger 
temperature correlation in the data of MEMS IMU400CC, the data before and after the 
temperature compensation are analyzed to compare the trend effects in the raw data using 
the Allan variance analysis. Similarly to the example shown in Figure B.8, such 
polynomial function fitting will remove the rate trends shown at the tail of the Allan 
variance plots.     
 

 a0[unit] a1[unit•C-1] a2[unit•C-2] 
fX -0.1147975 0.0028128 -0.0000425 
fY -0.3547928 -0.0037804 0.0000608 
fZ -9.7049829 0.0112242 -0.0001836 
ωX -0.0384758 0.0028094 -0.0000507 
ωY -0.0542311 0.0037562 -0.0000631 
ωZ 0.0145822 -0.0015856 0.0000288 

 
Table B.8. The temperature-correlated bias compensation using second order polynomial 
fitting f(T) = a0+a1T+a2T2 for MEMS IMU400CC using dataset of DOY 178, 2004. 
 

Figures 2.27 and 2.28 present the Allan variance estimations for the inertial 
measurements (i.e. accelerations and angular rates) before and after removing the 
temperature correlated trends. Their cross-comparisons indicate that their short time (up 
to 100 [sec]) stochastic error characteristics are not affected by the removal of the trends, 
and the tails (starting from 100 [sec] to 104 [sec]) behave differently, especially in the z 
accelerometer, which has large variations at the tail of the Allan variance estimations. 
The rate white noise dominates all the inertial measurements of this sensor in the short 
time periods (up to 100 [sec]) and then the flick noise is followed. Even the Allan 
variance estimations of the accelerometer in z direction are significantly different from 
these of the accelerometers in the x and y directions, a flicker noise with larger variations 
can still be approximated for it. The Allan variance estimation percentage error is very 
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similar to that of HG1700 shown in Figure B.20 due to the similar data size (both 
~8-hour length) and sampling rate (134 [Hz] for MEMS IMU400CC and 100 [Hz] for 
HG1700); thus it is not shown here. The log-log model fitting plots for the stochastic 
error coefficients are shown in Figure B.29-2.34 and are listed in Table B.9.  
 

 
 
Figure B.27. Allan variance log-log plot for IMU400CC using dataset of DOY 178, 2004 
before removing the temperature correlated trends. 
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Figure B.28. The Allan variance log-log plot for IMU400CC using dataset of DOY 178, 
2004 after removing the temperature correlated trends. 
 

 
 
Figure B.29. Allan variance log-log plot fitting of the x acceleration for IMU400CC using 
dataset of DOY 178, 2004. 
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Figure B.30. Allan variance log-log plot fitting of the y acceleration for IMU400CC using 
dataset of DOY 178, 2004. 
 

 
 
Figure B.31. Allan variance log-log plot fitting of the z acceleration for IMU400CC using 
dataset of DOY 178, 2004. 
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Figure B.32. Allan variance log-log plot fitting of the x angular rate for IMU400CC using 
dataset of DOY 178, 2004. 
 

 
 
Figure B.33. Allan variance log-log plot fitting of the y angular rate for IMU400CC using 
dataset of DOY 178, 2004. 
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Figure B.34. Allan variance log-log plot fitting of the z angular rate for IMU400CC using 
dataset of DOY 178, 2004. 
 

  Q [+2] N [0] B [−1] K [−2] R [−2] 
fX  <40 [s] >40 [s]   
fY  <40 [s] >40 [s]   
fZ  <10 [s] >10 [s]   
ωX  <100 [s] >100 [s]   
ωY  <100 [s] >100 [s]   
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ωZ  <100 [s] >100 [s]   

  
Q [+2] 
[unit•s] 

N [0] 
[unit•s½] 

B [−1] 
[unit] 

K [−2] 
[unit/s½] 

R [−2] 
[unit/s] 

fX  0.0007786 0.0002571   
fY  0.0007527 0.0002430   
fZ  0.0032906 0.0019150   
ωX  0.0004144 0.0000609   
ωY  0.0004521 0.0000659   
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ωZ  0.0004499 0.0000852   
 
Table B.9. Allan variance stochastic error characteristics and coefficients for IMU400CC 
using dataset of DOY 178, 2004. 
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B.2 Static data analysis using the Power Spectral Density (PSD) method 
Differently from the Allan variance analysis in the time domain, the PSD method 

identifies the INS stochastic error characteristics in the frequency domain. With the 
aiding of advanced computational techniques, for example, the Fast Fourier Transform 
(FFT), the spectrum of the signals (here, inertial measurements) can be easily estimated. 
Several spectral estimation methods exist, for example, (1) Nonparametric methods; (2) 
Parametric methods and (3) Subspace methods (Djuric & Kay, 1998). The nonparametric 
methods directly estimate the PSD from the signal itself, for example, (1) the simplest 
periodogram method, (2) the improved version of periodogram method called Welch’s 
method; and (3) the modern multi-taper method (MTM). In the parametric methods, the 
signal is treated as a random process, whose coefficients are directly estimated first from 
the signal, and the PSD of the signal is obtained from the PSD of the random process. 
Example techniques include the Yule-Walker autoregressive (AR) method and Burg 
method. The parametric methods work better than the nonparametric methods for a 
relatively small data size. The subspace methods are also known as high-resolution 
methods or super-resolution methods. Such methods estimate the PSD of a signal using 
eigenanalysis or eigendecomposition of the correlation matrix. The example methods of 
this category are the multiple signal classification (MUSIC) method or the eigenvector 
(EV) method. All the aforementioned PSD methods are implemented in the Matlab 
software package. Here the Matlab function “pwelch”, which implements a Welch’s 
method, is used to estimate the PSD of the inertial measurements. The Matlab function 
“pwelch”, can estimate both the “one-sided” and “two-sided” PSDs, and the log-log 
models shown in Table B.1 are based on the “two-sided” PSD estimation.  
 
B.1.2 PSD analysis of H764G static data  

The data used here are the same as that used in the Allan variance analysis, which is 
based on the long H764 dataset of DOY 178, 2004. Figures 2.35-2.40 show the PSD 
estimations and their log-log error fitted models. The PSD estimations shown in Figure 
B.35-2.40 (also the figures shown later for H764G, HG1700 and IMU400CC) represent 
the combinations of the environmental noise to the inertial sensors and the intrinsic noise 
in the inertial sensors. For example, in the inertial measurements from the accelerometers, 
the seismic environmental noise might cause discrete spikes, typically above 1 [Hz], due 
to the resonances in the local geology and test vehicle. H764G is a navigation-grade 
inertial sensor, which is very sensitive to the environmental noise, thus several spikes are 
present in the high frequency areas of PSD estimations of all the three accelerometers and 
three gyroscopes, shown in Figure B.35-2.40. A quantization noise exhibits itself in the 
high frequencies (higher than around 2 [Hz]) of all the accelerometers and gyroscopes. 
The rate white noise shows in the low frequencies (up to around 2 [Hz]) for the three 
gyroscopes. However, the three accelerometers have a flicker noise in the frequencies 
lower than 0.003 [Hz] and a rate white noise in the frequencies between 0.003 [Hz] with 
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around 2 [Hz]. The detailed PSD stochastic error characteristics and the coefficients are 
listed in Table B.10. The rate white noise present in the y accelerometer has more 
variations than the other two directions. Also, the spikes shown in the high frequencies of 
different axis of different inertial measurement units are different, which indicate that 
each axis of the inertial sensors experience various environmental noise. Different from 
the technique shown in the Allan variance analysis in section 1.1, no obvious effects of 
the rate random walk is evident in the accelerometers. 
 

 
 
Figure B.35. PSD log-log plot fitting of the x acceleration for H764G using dataset of 
DOY 178, 2004. 
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Figure B.36. PSD log-log plot fitting of the y acceleration for H764G using dataset of 
DOY 178, 2004. 
 

 
 
Figure B.37. PSD log-log plot fitting of the z acceleration for H764G using dataset of 
DOY 178, 2004. 
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Figure B.38. PSD log-log plot fitting of the x angular rate for H764G using dataset of 
DOY 178, 2004. 
 

 
 
Figure B.39. PSD log-log plot fitting of the y angular rate for H764G using dataset of 
DOY 178, 2004. 
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Figure B.40. PSD log-log plot fitting of the z angular rate for H764G using dataset of 
DOY 178, 2004. 
 

  Q [+2] N [0] B [−1] K [−2] R [−2] 
fX >3 [Hz] 0.003~3 [Hz] <0.003 [Hz]   
fY >2 [Hz] 0.003~2 [Hz] <0.003 [Hz]   
fZ >2 [Hz] 0.003~2 [Hz] <0.003 [Hz]   
ωX >2 [Hz] <2 [Hz]    
ωY >2 [Hz] <2 [Hz]    
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ωZ >2 [Hz] <2 [Hz]    

  
Q [+2] 
[unit•s] 

N [0] 
[unit•s½] 

B [−1] 
[unit] 

K [−2] 
[unit/s½] 

R [−2] 
[unit/s] 

fX 0.0000801 0.0001940 0.0000544   
fY 0.0000993 0.0001292 0.0000213   
fZ 0.0000676 0.0000843 0.0000097   
ωX 0.0000017 0.0000020    
ωY 0.0000022 0.0000021    

Er
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r c
oe

ff
ic
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nt
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ωZ 0.0000018 0.0000024    
 
Table B.10. PSD stochastic error characteristics and coefficients for H764G using dataset 
of DOY 178, 2004. 
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B.2.2 PSD analysis of LN100 static data  
The data used here is the first static segment of the LN100 dataset of DOY 294, 2004. 

Figures 2.41-2.46 and Table B.11 present the stochastic error PSD characteristics and 
their log-log model fitting coefficients. These figures indicate that there exist less spikes 
in high frequencies (above 1 [Hz]) of the PSD spectrum of this sensor, comparing to that 
of H764G. However, the overall PSD characteristics are very similar to those of H764G. 
The quantization noise, rate white noise and flicker noise are all present in the 
measurements from the three accelerometers, and only the quantization noise and rate 
white noise are shown in the measurements from the three gyroscopes. The PSD 
estimation of measurements from the y gyroscope is abnormal, comparing to those from 
the measurements of x and z gyroscopes, which indicates that it has some problems. 
Therefore, the PSD-estimated coefficients of the y gyroscope will not contribute to the 
final coefficient estimation (to be shown in Section B.3). 
 

 
 
Figure B.41. PSD log-log plot fitting of the x acceleration for LN100 using dataset of 
DOY 294, 2004. 
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Figure B.42. PSD log-log plot fitting of the y acceleration for LN100 using dataset of 
DOY 294, 2004. 
 

 
 
Figure B.43. PSD log-log plot fitting of the z acceleration for LN100 using dataset of 
DOY 294, 2004. 
 



 181

 
 
Figure B.44. PSD log-log plot fitting of the x angular rate for LN100 using dataset of 
DOY 294, 2004. 
 

 
 
Figure B.45. PSD log-log plot fitting of the y angular rate for LN100 using dataset of 
DOY 294, 2004. 
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Figure B.46. PSD log-log plot fitting of the z angular rate for LN100 using dataset of 
DOY 294, 2004. 
 

  Q [+2] N [0] B [−1] K [−2] R [−2] 
fX >4 [Hz] 0.01~4 [Hz] <0.01 [Hz]   
fY >4 [Hz] 0.01~4 [Hz] <0.01 [Hz]   
fZ >4 [Hz] 0.01~4 [Hz] <0.01 [Hz]   
ωX >4 [Hz] <4 [Hz]    
ωY >4 [Hz] <4 [Hz]    

Er
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ωZ >4 [Hz] <4 [Hz]    

  
Q [+2] 
[unit•s] 

N [0] 
[unit•s½] 

B [−1] 
[unit] 

K [−2] 
[unit/s½] 

R [−2] 
[unit/s] 

fX 0.0006044 0.0017673 0.0004684   
fY 0.0001894 0.0006072 0.0001095   
fZ 0.0002024 0.0006034 0.0001458   
ωX 0.0000011 0.0000033    
ωY 0.0000025 0.0000085    

Er
ro

r c
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ff
ic
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nt
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ωZ 0.0000011 0.0000030    
 
Table B.11. PSD stochastic error characteristics and coefficients for LN100 using dataset 
of DOY 294, 2004. 
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B.3.2 PSD analysis of HG1700 static data  
The data used here is the long dataset of HG1700 collected on DOY 178, 2004. 

Figures 2.47-2.52 and Table B.12 present the stochastic error PSD characteristics and 
their log-log model fitted coefficients. There are few spikes in the high frequencies 
(above 1 [Hz]) of the PSD estimations of this sensor. This indicates that this 
tactical-grade INS senses well small environmental noise, comparing to the high-end 
navigation-grade H764G. The PSD characteristics of the three accelerometers are very 
similar to those of H764G. The quantization noise, rate white noise and flicker noise are 
all present in the measurements from the three accelerometers (shown in Figures 
2.47-2.49). However, the quantization noise is not very obvious in the measurements of 
the gyroscopes, and the rate white noise almost dominates all the frequency areas of these 
measurements (shown in Figures 2.50-2.52 and Table B.10.   
 

 
 
Figure B.47. PSD log-log plot fitting of the x acceleration for HG1700 using dataset of 
DOY 178, 2004. 
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Figure B.48. PSD log-log plot fitting of the y acceleration for HG1700 using dataset of 
DOY 178, 2004. 
 

 
 
Figure B.49. PSD log-log plot fitting of the z acceleration for HG1700 using dataset of 
DOY 178, 2004. 
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Figure B.50. PSD log-log plot fitting of the x angular rate for HG1700 using dataset of 
DOY 178, 2004. 
 

 
 
Figure B.51. PSD log-log plot fitting of the y angular rate for HG1700 using dataset of 
DOY 178, 2004. 
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Figure B.52. PSD log-log plot fitting of the z angular rate for HG1700 using dataset of 
DOY 178, 2004. 
 

  Q [+2] N [0] B [−1] K [−2] R [−2] 
fX >0.6 [Hz] 0.01~0.6 [Hz] <0.01 [Hz]   
fY >0.7 [Hz] 0.02~0.7 [Hz] <0.02 [Hz]   
fZ >0.7 [Hz] 0.01~0.7 [Hz] <0.01 [Hz]   
ωX >25 [Hz] <25 [Hz]    
ωY >25 [Hz] <25 [Hz]    
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ωZ >25 [Hz] <25 [Hz]    

  Q [+2] 
[unit•s] 

N [0] 
[unit•s½] 

B [−1] 
[unit] 

K [−2] 
[unit/s½] 

R [−2] 
[unit/s] 

fX 0.0005210 0.0002096 0.0000165   
fY 0.0005223 0.0002291 0.0000194   
fZ 0.0005229 0.0002425 0.0000150   
ωX 0.0000031 0.0000665    
ωY 0.0000029 0.0000465    

Er
ro

r 
co

ef
fic

ie
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ωZ 0.0000054 0.0000775    
 
Table B.12. PSD stochastic error characteristics and coefficients for HG1700 using 
dataset of DOY 178, 2004. 
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B.4.2 PSD analysis of MEMS IMU400CC static data  
The data used here is the long dataset of IMU400CC collected on DOY 178, 2004. 

Figures 2.53-2.58 and Table B.13 present the stochastic error PSD characteristics and 
their log-log model fitting coefficients. The inertial measurements of IMU400CC are 
accelerations and angular rates, different from the accelerometer-integrated velocities and 
gyroscope-integrated angles of H764G, LN100 and HG1700. Thus, the quantization 
noise is not shown in these inertial measurements. The rate white noise and flicker noise 
are all present in the measurements from the three accelerometers and gyroscopes. 
 

 
 
Figure B.53. PSD log-log plot fitting of the x acceleration for IMU400CC using dataset 
of DOY 178, 2004. 
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Figure B.54. PSD log-log plot fitting of the y acceleration for IMU400CC using dataset 
of DOY 178, 2004. 
 

 
 
Figure B.55. PSD log-log plot fitting of the z acceleration for IMU400CC using dataset of 
DOY 178, 2004. 
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Figure B.56. PSD log-log plot fitting of the x angular rate for IMU400CC using dataset of 
DOY 178, 2004. 
 

 
 
Figure B.57. PSD log-log plot fitting of the y angular rate for IMU400CC using dataset of 
DOY 178, 2004. 
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Figure B.58. PSD log-log plot fitting of the z angular rate for IMU400CC using dataset of 
DOY 178, 2004. 
 

  Q [+2] N [0] B [−1] K [−2] R [−2] 
fX  >0.02 [Hz] <0.02 [Hz]   
fY  >0.02 [Hz] <0.02 [Hz]   
fZ  >0.02 [Hz] <0.02 [Hz]   
ωX  >0.003 [Hz] <0.003 [Hz]   
ωY  >0.003 [Hz] <0.003 [Hz]   
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ωZ  >0.004 [Hz] <0.004 [Hz]   

  Q [+2] 
[unit•s] 

N [0] 
[unit•s½] 

B [−1] 
[unit] 

K [−2] 
[unit/s½] 

R [−2] 
[unit/s] 

fX  0.0007424 0.0002697   
fY  0.0007134 0.0002867   
fZ  0.0029605 0.0013737   
ωX  0.0004078 0.0000518   
ωY  0.0004424 0.0000613   
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r 
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ωZ  0.0004610 0.0000760   
 
Table B.13. PSD stochastic error characteristics and coefficients for IMU400CC using 
dataset of DOY 178, 2004. 
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B.3 Summary of the INS stochastic error identification using the Allan variance 
analysis and the PSD method 

This section summarizes the stochastic error identification for H764G, LN100, 
HG1700 and IMU400CC using the Allan variance analysis and the PSD method 
described in the preceding sections. Table B.14 summarizes the results from Tables 2.4, 
2.5, 2.7, 2.9, 2.10, 2.11, 2.12 and 2.13. The estimated coefficients for the three orthogonal 
accelerometers and the three gyroscopes for the same inertial sensor using the same noise 
identification technique are averaged and listed in Table B.14, except for the abnormal 
coefficients marked in red. The cross-comparison of these stochastic error characteristics 
using the Allan variance analysis and the PSD method indicates that both results match 
very well except for some coefficients marked in red in Table B.14. The differences 
between the two methods (marked in red) are found in (1) the quantization noise and the 
rate random walk of the accelerometers of H764G, and (2) the flicker noise and rate 
random walk of the accelerometers of HG1700. 
 

Se
ns

or
 

Data Method Q 
[unit•s] 

N 
[unit•s½] 

B 
[unit] 

K 
[unit/s½] 

R 
[unit/s] 

AVAR 0.0001537 0.0001785 0.0000359 0.0000017  
fXYZ PSD 0.0000823 0.0001358 0.0000285   

AVAR 0.0000038 0.0000024    H
76

4G
 

ωXYZ PSD 0.0000019 0.0000022    
AVAR 0.0002781 0.0006137 0.0001370   

fXYZ PSD 0.0001959 0.0006053 0.0001276   
AVAR 0.0000016 0.0000031    L

N
10

0 

ωXYZ PSD 0.0000011 0.0000032    
AVAR 0.0005020 0.0004426 0.0001360 0.0000252  

fXYZ PSD 0.0005221 0.0002271 0.0000170   
AVAR  0.0000691    

H
G

17
00

 

ωXYZ PSD 0.0000038 0.0000635    
AVAR  0.0007656 0.0002501   

fXYZ PSD  0.0007279 0.0002782   
AVAR  0.0004388 0.0000707   

IM
U

40
0

C
C

 

ωXYZ PSD  0.0004371 0.0000630   
 
Table B.14. INS estimated stochastic error coefficients using the Allan variance (AVAR) 
analysis and the PSD method. 
 

Based on the common sensor stochastic error characteristics using the Allan variance 
analysis and the PSD method, the following conclusions are drawn: 
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 Rate white noise is found in all accelerometers and gyroscopes of H764G, LN100, 
HG1700 and IMU400CC.  

 Quantization noise is found in the accelerometers of H764G, LN100 and HG1700, 
and in the gyroscopes of H764G and LN100. 

 Flicker noise is found in the accelerometers of H764G, LN100, HG1700 and 
IMU400CC, and in the gyroscopes of IMU400CC. 

 
Sensor Data Q [unit•s] N [unit•s½] B [unit] 

fXYZ 0.0001180 0.0001572 0.0000322 H764G 
ωXYZ 0.0000028 0.0000023  
fXYZ 0.0002370 0.0006095 0.0001323 LN100 
ωXYZ 0.0000014 0.0000031  
fXYZ 0.0005121 0.0003349 0.0001360 HG1700 
ωXYZ  0.0000663  
fXYZ  0.0007468 0.0002642 IMU400CC 
ωXYZ  0.0004379 0.0000668 

 
Table B.15. The final estimated coefficients of the INS stochastic error models. 
 

The stochastic error coefficients, combining both the Allan variance analysis and the 
PSD method are listed in Table B.15. The rate random walk shown in the accelerometers 
of H764G and HG1700 are ignored and the final adopted coefficient B for the 
accelerometers of HG1700 is from the Allan variance analysis in this table. All other 
coefficients are averaged to obtain the final coefficients listed in Table B.15. In this table, 
the quantization noise in the accelerometers of H764G is smaller than that of LN100, 
while the quantization noise in the gyroscope of H764G is bigger than that of LN100. 
The quantization noise in the accelerometers of both navigation-grade INS (i.e. H764 and 
LN100) is smaller than that of the tactical-grade HG1700. The magnitude of the rate 
white noise in all accelerometers and gyroscopes is increasing from H764G, to LN100, to 
HG1700 and to IMU400CC, with the exceptions in the accelerometers of LN100, whose 
accelerometer rate white noise coefficient is bigger than that of HG1700. The flicker 
noise in the accelerometers of these sensors also follows the order: H764G smallest, 
LN100, HG1700 and IMU400CC largest.        
 
B.4 INS stochastic error modeling 

After the INS stochastic error characteristics have been identified using the 
aforementioned Allan variance analysis and (or) the PSD method, some random 
processes are normally used to approximate the noise spectrums of these stochastic errors. 
Amongst three types of stochastic errors shown in Table B.15, the flicker noise is very 
complex and currently no sound error models are found to approximate its noise 
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spectrum. The flicker noise of these inertial sensors shows itself in the lower frequencies 
(i.e. longer time than hundreds of seconds), thus it may only have some effects on free 
inertial navigation over a relatively long time. For the GPS/INS integration with 
relatively frequent GPS measurement update, the flicker noise will be less significant, 
comparing to other INS stochastic errors. Therefore, the flicker noise coefficients (B) 
shown in Table B.15 will only serve as the best achievable bias stability for a fully 
modeled inertial sensor. The other two INS stochastic errors (i.e. quantization noise and 
rate white noise) can be modeled depending on the different type of inertial 
measurements. As stated earlier, two different types of inertial measurements are 
obtained from the four inertial sensors; they are (1) accelerometer-integrated velocities 
and gyroscope-integrated angles; and (2) direct accelerations from accelerometers and 
angular rates from gyroscopes. The rate white noise is a white noise sequence in the rate 
domain corresponding to the second type of the measurements, and it is actually the 
measurement noise in such a case. In the integrated domain, corresponding to the first 
type of measurements, the rate white noise is a random walk process, while the 
quantization noise serves as the measurement noise. Such error models for the 
quantization noise and rate white noise are used in Chapter 4. The error models for the 
stochastic errors other than the quantization noise and rate white noise are briefly 
discussed in Chapter 4. 
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