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ABSTRACT

Gravity Recovery and Climate Experiment (GRACE) spaceborne gravimetry provides a
unique opportunity for quantifying geophysical signals including terrestrial water storage
change for a wide variety of climate change and geophysical studies. The contemporary
methodology to process GRACE data for temporal gravity field solutions is based on
monthly estimates of the mean geopotential field with a spatial resolution longer than 600
km (the Level-2 or L2 data products), after appropriate Gaussian smoothing to remove
high-frequency and geographically-correlated errors. Alternative methods include the
direct processing of the GRACE low-low satellite-to-satellite tracking data over a region
of interest, leading to improved or finer spatial and temporal resolutions of the resulting
local gravity signals. The GRACE Level 1B data have been analyzed and processed to
recover continental water storage in a regional solution, by first estimating in situ Line-
Of-Sight (LOS) gravity differences simultaneously with the relative position and velocity
vectors of the twin GRACE satellites. This new approach has been validated using a
simulation study over the Amazon basin (with three different regularization methods to
stabilize the downward continuation solutions), and it is demonstrated that the method
achieves an improved spatial resolution as compared to some of the other GRACE
processing techniques, including global spherical harmonic solutions, and regional
solutions using in situ geopotential differences.
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CHAPTER 1

INTRODUCTION

1.1. Time-variable gravity field and mass transport in the Earth
system

The total gravity field of the Earth can be separated into two components, one is the static
component and the other one is the time-varying component. The static component still
changes, but at such a long time interval (from thousands to millions of years or longer)
that we can assume it to be steady. Tides on Earth generated by gravitational force from
the Sun and the Moon are amongst the temporal gravity signals. The non-tide time-
varying component of the terrestrial gravity field is largely affected by contributions of
hydrological, oceanic, cryospheric and atmospheric origin, and it is well known that these
effects generate measurable signals associated with temporal scales from minutes to
secular time scales. The temporal component of the gravity field can be used to study a
wide variety of disciplinary and interdisciplinary problems, from monitoring changes in
water and snow storage on continents, to determining pressure change at the seafloor, to
measuring the redistribution of ice and snow on the polar ice sheets, to constraining
postglacial rebound deformation within the solid Earth [Wahr et al., 1998]. In essence
the knowledge of temporal component of the global gravity field can help one answer the
fundamental question how much mass is being transported and redistributed within the
Earth system.

In the past, mass distribution and transport in the Earth system were difficult to be
observed directly, which led to an incorrect or incomplete interpretation for some
processes and their dynamics in the Earth system. This situation has changed
dramatically through the dedicated satellite gravity missions, such as CHAllenging
Minisatellite Payload (CHAMP), Gravity Recovery And Climate Experiment (GRACE)
and future Gravity field and steady-state Ocean Circulation Explorer (GOCE), with a
resolution from global down to a few hundred kilometers.

Advances in the measurement of the gravity have with modern free-fall methods reached
accuracies of 107 g (~1 uGal or 10 nm/sz), allowing the measurement of the effect of
mass changes within the Earth interior or the geophysical fluids to the commensurate
accuracy, and surface height change measurements to ~3 mm relative to the Earth center
of mass [Forsberg et al., 2005]. During the decade of the Geopotential, satellite missions
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already in operation (CHAMP [Reigber et al., 1996] and GRACE [Tapley et al., 2004a]
gravimetry), or to be launched (GOCE gradiometry [ESA, 1999]), will provide an
opportunity towards quantifying geophysical signals for a wide variety of climate change
and geophysical studies.

The German satellite CHAMP, launched in July 2000 by the GFZ, provides the first data
set with high-low satellite-to-satellite tracking and accelerometer measurements for
gravity field studies. Its payload includes geodetic-quality GPS receivers (Blackjack-class,
16-channel, dual-frequency) with multiple antennas for precise orbit determination and
atmospheric limb-sounding, and a 3-axis Space Triaxial Accelerometer for Research
(STAR) accelerometer (£3x107°m/s* and £3x10°m/s” precision in the along track
or cross track, and radial directions, respectively), intended to measure non-conservative
forces including atmospheric drag. These characteristics led to a break-through in the
determination of the long-wavelength gravitational field shortly after CHAMP launch
[Reigber et al., 2002].

GRACE was launched in March 2002 for a mission span of 5 years or longer [Tapley et
al., 2004a] and is currently operational. The satellite mission consists of two identical co-
orbiting spacecrafts with a separation of 220+50 km at a mean initial orbital altitude of

500 km with a near-circular orbit and a mean inclination of 89° for near-global coverage
[Bettadpur et al., 2000]. The dual one-way K- (24.5 GHz) and Ka- (32.7 GHz) band
microwave inter-satellite ranging system with a precision of +0.] pm/sec in range-rate,
the Ultra-Stable Oscillator (USO) accurate to within 70 picosecs of time-tagging, the 3-
axis super-STAR accelerometers with a precision of +4x10™"? m/s* and the dual-
frequency 24-channel Blackjack GPS receivers comprise the instrument suite for
GRACE’s mapping of the global mean and temporal gravity field [Davis et al., 1999;
Kim et al., 2001].

The GOCE space gravity gradiometer (SGG) mission, scheduled to launch in spring 2008,
is anticipated to determine the mean Earth gravity field with an unprecedented geoid
accuracy of several cm rms error with a wavelength of 130 km or longer [ESA, 1999].
GOCE will operate for about 2 years in a sun-synchronous (98.5° inclination) near-polar
orbit and at an altitude of 250 km. The GOCE onboard SGG will measure primarily 4
components (3 diagonals and 1 off-diagonal) of the gradient tensor, and will use the
onboard GPS high-low tracking to determine the long-wavelength gravity field as well as
register the gravity tensor observables within a few cm of accuracy [Schrama, 2003].

The three satellite gravity missions, CHAMP, GRACE and GOCE, complement each
other. CHAMP, is the first low Earth orbiter contributing to a new generation of gravity
field model; GRACE is achieving high accuracy for the long and medium wavelength
and, for the first time, is able to provide temporal gravity field estimates every 30 days;
GOCE will provide higher spatial resolution for the static gravity field.



1.2. Contemporary Results from GRACE

1.2.1. Science Results

Studies have demonstrated that GRACE, so far, provided a factor of 100 improvement in
the Earth’s mean gravity field [Tapley et al., 2004a], which enabled on improved
confirmation of the Lens-Thirring effect using SLR to the Lageos-1/-2 satellites
[Ciufolini & Pavlis, 2004], and allowed the first discovery of an asteroid-induced
Permian-Triassic crater under the Antarctica ice sheets. A concise and incomplete list of
various scientific results using GRACE includes the estimation of recent rapid Greenland
ice melt, contributing significantly to sea level rise [Ramillien et al., 2006; Chen et al.,
2006b; Luthcke et al., 2006; Velicogna & Wahr, 2006b], Antarctic mass balance
[Velicogna & Wahr, 2006a; Ramillien et al., 2006; Chen et al., 2006¢], Alaskan glacier
melt [Chen et al., 2006d]; major river basin hydrologic fluxes [Wahr et al., 2004; Davis et
al., 2004; Han et al., 2005b; Rodell et al., 2007; Seo et al., 2006; Schmidt et al., 2006];
observed ocean tides underneath Antarctic ice shelve [Shum et al., 2005a; Han et al.,
2005c] and improved tidal modeling [Ray et al., 2006]; ocean bottom pressure
variabilities in the tropical Pacific [Song & Zlotnicki, 2004], Antarctic Circumpolar
Current transport variability [Zlotnicki et al., 2006], and global ocean mass variability
[Chambers et al., 2004; Chambers 2006a, 2006b]; global mass variations [Wu et al., 2006;
Kusche & Schrama, 2005; Shum et al., 2005b]; Global Isostatic Adjustment (GIA)
studies [Peltier, 2004; Ivins et al., 2005, Ivins & James, 2005; Schotman et al., 2005,
2006; Paulson, 2006]; and the first observed crustal dilatation (expansion/compression of
the crust and mantle) caused by the Sumatra-Andaman undersea earthquake [Han et al.,
2006¢c, 2006d; Shum et al., 2006a].

It anticipates that the GRACE observations, with continuous improvement in data
processing, will provide a long (>5 years) time series that makes it possible to produce
unprecedented geophysical data set to improve our understanding in global mass fluxes
related to terrestrial water storage change.

1.2.2. Improved GRACE modeling and analysis

Numerous processing methods of the GRACE data have led to substantial improvement
of the Level -0, Level -1A/B, and the Level-2 (monthly spherical harmonics geopotential
solutions to degree 120, to be extended to degree 160) data products by the GRACE
Project scientists at CSR, JPL, GFZ, GRGS, APL and by members of the GRACE
Science Team. A partial list of notable improvements include sensor (KBR, USO,
accelerometer) calibration/filtering [Kim, 2005; Biancale et al., 2005], Level-1
processing and orbit determination including GPS clock/antenna pattern accuracy
improvements [Kruizinga et al., 2005; Kang et al., 2005; Yuan and Watkins, 2005],
processing and evaluation of new releases of gravity field products [Bettadpur et al., 2005;
Schmidt et al., 2005abc; Yuan et al., 2004; Watkins et al., 2005; Luthcke et al., 2005;
Schrama & Visser, 2006], direct processing of KBR rate data as in situ disturbance
potential measurements and using the energy approach [Jekeli, 1999; Han, 2003b; Han et
al., 2006b], processing of KBR rate-rate data as in situ line-of-sight acceleration
measurements [Jekeli, 1999; Chen et al., 2004, 2006], or using Fredholm's integral for
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gravity measurements [Mayer-Giirr et al., 2006], treatment of geocenter variations
[Chambers et al., 2004], improved ocean tide modeling [Bettadpur et al., 2005; Desai &
Yuan, 2006], pole tides [Desai et al., 2006], long period tides and S; tides [Egbert & Ray,
2002; Ray & Egbert, 2004], and improved atmosphere and tide de-aliasing products with
analysis [Swenson & Wahr, 2002; Ali & Zlotnicki, 2003; Thompson et al., 2004; Han et
al., 2004; Flechtner et al., 2005ab].

1.2.3. GRACE regional solutions

Alternate solution techniques [Rowlands et al., 2005; Han et al., 2006b] have
demonstrated their initial promise to enhance temporal resolution as fine as 5 days [Han
et al., 2005b; Schmidt et al., 2006], spatial resolution up to 220 km or longer (half-

wavelength, or 4°x4° equal area blocks) for the mascon solutions [Rowlands et al., 2005;
Lemoine et al., 2005;Yuan & Watkins, 2006], as well as for the energy method [Jekeli,
1999; Han, 2003b; Han et al., 2006b] by employing stochastic regional inversion using 2-
D FFT [Han et al., 2003a]. These techniques have demonstrated their capability to
enhance temporal and spatial resolutions of geophysical signals as compared to spherical
harmonic solutions which, at present, exhibit monthly resolutions and longer than 800 km
(half-wavelength) resolutions. These studies reported the observation of enhanced
hydrologic signals [Rowlands et al., 2005; Yuan & Watkins, 2006; Han et al., 2005a],
tides [Ray et al., 2006; Han et al., 2005b], coseismic deformation signals from large
undersea subduction earthquake [Han et al., 2006¢, 2006d; Shum et al., 2006a, 2006b],
and melting of the Greenland ice sheet [Luthcke et al, 2006].

1.3. Problem statement and research methodology

In this study, the time-variable hydrological effect on the gravity field of the Earth is of
particular interest; so the main aim is to recover the terrestrial water storage (soil
moisture, ground water, snow and ice, lake and river water, as well as vegetative water)
from the temporal component of the gravity field of the Earth. Though only data from
low-low Satellite-to-Satellite Tracking (SST) such as GRACE data will be used, methods
for both the high-low and the low-low SST will be described for completeness.

In this study we first conduct a simulation for the use of in situ Line-Of-Sight (LOS)
gravity differences based on the GRACE KBR range acceleration, accelerometer, and
other data for the potentially improved recovery of terrestrial water storage change in the
Amazon basin region. Various regularization methods, which are necessary to stabilize
the downward continuation solutions, have been investigated to identify the optimal
estimate for the water storage change from the LOS gravity difference estimates over the
study region. Results from various regularization methods will be compared, and the
time-variable effects of ocean tides and atmosphere on the temporal gravity field
recovery will be analyzed. The next step is to precisely estimate in situ LOS gravity
differences from the real GRACE L1B data simultaneously with the inter-satellite state
vectors, and the estimated in situ LOS gravity differences will then be used to extract
terrestrial water storage change information on the surface of the Earth. The results will
be compared to the results from other GRACE processing techniques, including global
spherical harmonic solutions and regional solution using in Situ geopotential differences,
in both the space domain and the spatial frequency domain.
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Chapter 2 describes the methods to recover the global gravity field of the Earth, using
either geopotential differences or LOS gravity difference estimates from the GRACE
measurements. A procedure to estimate continental water storage change globally from
the spherical harmonic coefficients of a time-variable global gravity field model will be
described.

Chapter 3 describes the alternative methods to estimate continental water storage change
regionally, using either in situ geopotential differences or in situ LOS gravity differences.
Three regularization techniques will be introduced and tested to solve the ill-posed
problem inherent with the downward continuation.

Chapter 4 describes the closed-loop simulations using geopotential differences or LOS
gravity differences to recover continental water storage change globally and regionally.
Residual errors from different time-variable ocean tides and atmosphere models will be
analyzed.

Chapter.5 shows the global and regional solutions of terrestrial water storage change
from the real GRACE data processing. Different regional solutions are compared to each
other in both the space domain and the spatial frequency domain, and compared to the
global solutions from the monthly GRACE gravity models.

Chapter 6 concludes and proposes some future work.



CHAPTER 2

GLOBAL TERRESTRIAL WATER STORAGE CHANGE
AND ITS RECOVERY

2.1. Terrestrial water storage change

The exchange of water among the oceans, atmosphere, and ground surface of the Earth
constitutes the hydrological cycle. The amount of water involved in the hydrological

cycle is only about 0.1% of the total volume of the water storage in the world; but, if we
are considering mass redistribution within the Earth and on and above its surface, it is
non-negligible. The terrestrial water constitutes only about 6% of the global hydrologic
storage as shown in Table 2.1, but the exchange of water including precipitation and
evaporation on or under the surface of the continents constitutes almost 36% of the total
water cycle as shown in Table 2.2. In other words, although the continents store a far
smaller volume of water than the oceans, it is undergoing the same order of mass changes,
caused by the water cycle, as that of the oceans.

The gravitational variations observed by GRACE are primarily attributable to the
movement of water throughout the hydrological cycle. It is believed that over spatial
areas of several hundred thousand square kilometers, measurements of seasonal changes
in water mass with a resolution of 10-30 mm in thickness change should be useful for
weather forecasting, climate modeling, and soil moisture and aquifer assessments.
Measurement of mass changes at this resolution should be possible with GRACE [Dickey
et al., 1997]. It has already been shown by simulation that GRACE may be able to
recover changes in continental water storage and in seafloor bottom pressure, at
resolutions of a few hundred kilometers and larger in space, and a few weeks and longer
in time, with accuracies approaching + 2 mm in water thickness over land, and + 0.1
mbar or better in seafloor bottom pressure [Wahr et al., 1998]. Rodell and Famiglietti
[1999] state that GRACE will likely detect changes in water storage in most of the basins
on monthly or longer time steps and that instrument errors, atmospheric modeling errors,
and the magnitude of the variations themselves will be the primary controls on the
relative accuracy of the GRACE-derived estimates. Rodell and Famiglietti [2001] went
on to build upon their results by relying on observations in Illinois (where measurements
of all the water storage components are systematically collected and centrally archived)
rather than on modeled results, by analyzing groundwater and surface water variations as
well as snow and soil water variations, and by using a longer time series. Then, it was

concluded that detection is possible if given a 200,000 km* or larger area, and changes in
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soil moisture typically represent the largest component of terrestrial water storage
variations, followed by changes in groundwater plus intermediate zone storage.

Unit: 10° km® | Percentage
Oceans 268,450 94.2%
Ice&snow 12000
Ground water 4500 5.7%
Surface&soil water | 100
Atmosphere 3 ~0.001%
Biosphere 0.1 <0.001%
Total 285053.1

Table 2.1: The global hydrologic storage [Dickey et al., 1997]

Unit: 10° km* | Percentage
Ocean precipitation 113.7
Ocean evaporation 124.0 58.1%
Land precipitation 73.5
Land evaporation 48.5
Runoff 25.0 35.9%
Runout <0.2
Net inland advection 24.0 6%

Table 2.2: The global hydrologic cycle [Dickey et al., 1997]

Two years after the GRACE satellites have been launched, Tapley et al. [2004b] stated
that the GRACE mission can provide a geoid height accuracy of £ 2 to + 3 millimeters at
a spatial resolution as small as 400 kilometers. They explained that geoid variations
observed over South America, which can be largely attributed to surface water and
groundwater changes, show a clear separation between the large Amazon watershed and
the smaller watershed to the north. Such observations will help hydrologists to connect
processes at traditional spatial resolutions (tens of kilometers or less) with those of
regional and global resolutions. Han et al. [2005a,b] adopted an alternative method using
GRACE satellite-to-satellite tracking and accelerometer data to obtain the along-track
geopotential differences and directly estimate the terrestrial water storage at monthly and
sub-monthly resolution. This method was tested on the estimation of a hydrological mass
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anomaly over the Amazon and Orinoco river basins; and, by comparing it to conventional
spherical harmonic methods, the spatial extent of the estimated GRACE water thickness
change achieved finer resolution and is shown to follow more closely the boundaries of
the river basins so that significant systematic variation could be discerned at 15-days
temporal resolutions.

All the above achievements mean that, by combining measurements from GRACE with
measurements taken on the ground, scientists will be able to improve their models of
water exchange between the ocean and land surfaces - through rainfall, deep soil moisture,
and runoff. This can be done from continental size down to a regional extension of a few
hundred kilometers. Because GRACE is sensitive to the integral mass of the Earth, so it
is difficult to separate the terrestrial water storage from all the other static masses.
However, we can estimate the terrestrial water storage change by simply taking
differences of the GRACE measurements in the time domain, since it is easier to model
and correct all the other temporal geophysical effects. Also, the estimates are integral of
all the water, which means that it cannot distinguish soil moisture from snow, ice, or
ground water.

Here, I have developed a new approach to recover the terrestrial water storage change
over any part of the world, using Line-Of-Sight (LOS) gravity differences from GRACE
data, and I also include in this chapter the derivation of global recovery of the terrestrial
water storage change using geopotential differences, for comparison and completeness.
Whatever approaches to recover terrestrial water storage change can be applied to
recovery of any other mass change such as caused by earthquake or postglacial rebound,
as long as all the corresponding effects have been modeled and corrected.

2.2. Recovery of the global gravity field using the energy balance
approach

The energy balance approach is based on the law of energy conservation. In physics, the
conservation of energy states that the total amount of energy in an isolated system
remains constant, although it may change forms, e.g. friction turns kinetic energy into
thermal energy. In case of a satellite system, kinetic energy is related to the motion of the
satellite (velocity), and the potential energy is related to the mass distribution of the Earth
and the distance between the satellite and the Earth. The approach has been considered
for gravity field recovery for a long time, certainly since the beginning of the satellite era
[O’Keefe, 1957]. Its main advantage is its simplicity; i.e., the potential energy can be
linearly related to the unknowns if the gravity field of the Earth is represented by a global
spherical harmonics expansion; whereas, in the classical procedure, the recovery of the
global gravity field of the Earth is coupled with orbit determination, and iterations are
necessary. However, its main disadvantage is that it is more susceptive to orbit error; and
in case of the reference gravity field is far from the truth, the results could be off.

According to Newton’s Second Law of Motion, in the inertial frame, the kinematic
acceleration, r', of an object with the mass m is a consequence of a combination of the



conservative force Fygpservative a1d the non-conservative force Fyon_conservative acting on

the object
F +F

=1i __  conservative

¥ non—conservative — gi + fi , (2. 1)

where g' is the gravitational acceleration vector due to Foonservative (mainly from the

i . . .
Earth), f* is the non-conservative acceleration vector due to F, o,,_conservative acting on the

satellite, such as atmospheric drag, solar radiation pressure and thermal forces, and the
superscript i indicates that the quantity refers to the inertial frame. Both the energy
integral and the acceleration approaches for the recovery of the global gravity field start
from the same formula, i.e., equation (2.1).

2.2.1. Energy integral for a high-low SST mission (CHAMP)
The gravitational potential, V, in terms of satellite velocity, ¥' = (X y ), and non-

conservative acceleration f' , can be derived directly [Han, 2003b],

i L2 i gi [oV(r' ).t
V(r (t),t):E‘r‘ —tjor f dt+tJ;Tdt—C, (2.2)
where V is a function of the position vector r' =(x y z) and time t. The first term

on the right hand side is the kinetic energy and the second term represents energy
dissipation. The third term is due to the explicit time variation of the gravitational
potential in inertial space, and C is the energy constant of the system.

Equation (2.2) is derived by first multiplying equation (2.1) with the velocity ¥,

RS L L N 2 (2.3)

Then substitute the gravitational acceleration by the gradient of the corresponding
potential,

D , AV (r' (t),t
g0 0.0 =,V 0.0 = D, 2.4
Since V is a function of the position vector r' and time t, so
dVv(r'(t),t) _ oV (r (t),t) dr'(t) N oV (r'(1),t) . 2.5)
dt or' dt ot
After substituting (2.4) and (2.5) into (2.3), and considering ¥' -i' = %(%‘1"i ‘2) , we get
dt 2 dt

The last step is to integrate (2.6) with respect to the time, t, and (2.2) will be obtained.
One further step is to assume that the rotation rate of the Earth is a constant and after
several simplifications [Jekeli, 1999], we arrive at
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t
v=%|r|2—jf~fdt—a;e(xy—y>'<)—c, 2.7)
to

where the superscript i has been dropped; @, is the mean rotation rate of the Earth.

Jekeli [1999] derived the same formula using an alternative approach which is essentially
based on Newton’s second law of motion, too. The integral equation (2.2) can also be re-
formulated in a rotating frame, such as the Earth-Centered Earth-Fixed frame (ECEF). In
this case, because an earth-orbiting satellite is moving in the ECEF frame which itself is
also rotating, two additional terms, i.e., centrifugal and Coriolis accelerations, are
necessary to be considered. Visser et. al. [2003] and Han [2003b] have both given the
derivation in detail. The integral equation in the ECEF frame is,
. 1
V(r-(t),t) 5

l-,e

t
2 . 1
—jre-fEdt—E(w;xre)z—c, (2.8)
where r® and r° are the position vector and velocity vector in the ECEF frame, f° is the
non-conservative acceleration but expressed in the rotating ECEF frame, o, is the

angular velocity of the rotating ECEF frame with respect to the inertial frame and

coordinated in the ECEF frame. If we neglect the change of the rotation of the Earth, then,
t

- Jerd Loz f + () )-c. @9)

)

V (ré (), ) =%re

For the recovery of the global gravity field, the integral equations in both the inertial
frame and the ECEF frame have been investigated, and they all achieved comparable
results in the case of CHAMP.

2.2.2. Energy integral for a low-low SST mission (GRACE)

Low-low SST constitutes the precise measurement of the range between the twin
satellites following each other in approximately the same orbit. The measured ranges,
which are biased because microwave is used, are numerically differentiated to obtain
range rate and range acceleration. To exploit these highly precise new observations such
as range rate, we shall develop an equation to connect the range rate to the potential
difference between the positions of the two satellites along the orbit. The computed
potential differences will thus be used as boundary values on their corresponding
boundaries, the orbits, to estimate the global spherical harmonic coefficients of the
gravity field.

It appears that for the satellite 1 and satellite 2, we have, respectively,
t

1. : . .
V1 :E|rl|2_J‘rl'fldt_a)e(xlyl_ylxl)_cl’ (2.10)

to

1.2 . . :
Vz :E|r2|2 _.[rz 'fzdt_we(xzyz_yzxz)_cza (2~11)

)
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where the subscripts 1 and 2 stand for the satellite number. After taking the difference
between (2.10) and (2.11), we have,

T 1. o .. . . . . ,
V, -V, = rlTrIZ +E|r12| _.[(rz A, =1 )t — @, (X, Y, = Vo X XY, = V%) =Chy .
)

(2.12)

(2.12) relates the in situ inter-satellite range rate measurements to the gravitational
potential differences between two satellites. If we divide the total gravitational potential
into a normal gravitational potential and a disturbing gravitational potential, T ,, (2.12)
can be modified to

T = [F|00y, +Vy 4V, +Vy +v, + VR, = [(F, -f, =k £t -C,,,  (2.13)
where
v, = (r20 _‘flo‘efz)' 5f12a

. . 0 . 0 .

V, =K -1, _‘rl ‘&12 ‘T,
Vv, =0or, - ory,,

2
s

VR, = o, {(rlfz — I, )|2 - (rlfz — I, ]1 - (rlol;zo -1t/ )2 + (rlofz() -r,r 11 };
the superscript 0 denotes a quantity based on a known reference field, the symbol, o,

indicates an incremental quantity between the true field and the reference field. Equation
(2.13) has corrected errors in equation (4.5) of Han [2003b].

1, ..
Vy = 5|5r12

2.2.3. Global recovery of the gravity field of the Earth by least-
squares adjustment

The geopotential can be represented in terms of spherical harmonic coefficients (solution
of Laplace’s equation) is:

o n n+1_ . .
va,e,m:%ﬂzz[?j P, (cosO)(C,, cosmA+S, sinmi),  (2.14)
n=0 m=0

where GM is the gravitational constant times the mass of the Earth, R is the mean
radius of the Earth, (r,0, ) are the spherical coordinates of the calculation point, P, are

the normalized Legendre functions, and C, and S_ are the normalized dimensionless
spherical harmonic coefficients of degree n and order m.

In geodesy it is common to split a quantity into a normal part and a disturbing part. By
introducing a (known) reference model U , like Geodetic Reference System (GRS) 80,
for instance; the disturbing potential T is

T(r,0,4)=V(r,0,1)-U(r,0,1). (2.15)
GRS80 is defined using four defining constants; the equatorial mean radius of the Earth,
the geocentric gravitational constant of the Earth, the Earth’s flattening and the angular
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velocity of the Earth. Based on the four parameters, the normal potential U is computed
as follows:

n+1
u(r,6,4) _% (?j P, (cos§)C S | (2.16)
n=0

where P, is the Legendre polynomial of degree n. The normal potential is defined to
have rotational symmetry and equatorial symmetry, so that the even zonal coefficients

suffice to calculate the normal potential; usually five coefficients (n =2, 4, 6, 8, 10) are
enough to calculate U accurately.

The coefficients for the first degree spherical harmonics, 61,0 , C,, and S_L1 , vanish after

setting the origin of the coordinate system at the center of mass of the Earth, which is not
changing. After truncation at the maximum degree N we yield a spherical harmonics

max ?

expression for the disturbing potential T,

n n+1 - . _
T(r.0.4)= ZZ( j P (cosé’)(ACnm cosmA+AS,, sin m/i), (2.17)
n=2 m=0
where
AC - Enm _(_:n((B)RSSO, m=0, n=2 4, 6, 8 10
- C.. otherwise
and

AS, =S, . AC,  and AS  are the unknown parameters, to be estimated by a least-
squares adjustment.

In the case of high-low SST, the disturbing potential T (r,6,4) can be calculated from

velocities and positions of the satellite, as well as the measurements of accelerometer and
star sensor (provides attitudes of the satellite); so, (2.17) can be used directly. In case of
the low-low SST, (2.17) needs to be modified as follows:

T,(r,60,4,5,,0,,4,) =T(1,,6,,4,) = T(1,,6,,4,)

n+1 n+l
(B] P (cos@,)cosmA, — (EJ P, (cosf)cosmi, tAC  +
r r , (2.18)

2 1

—= R n+1 . . R n+1 . ‘ B
M P (cosd,)sinmA, — v P, (cosé,)sinmA, ;AS, .
2 1

where, (1,,6,,4,) and (r,,0,,4,) are the coordinates of the first satellite and the second
satellite.

2.3. Recovery of the global gravity field using the gravity
acceleration approach

One alternative approach to recover the global gravity field is also based, but more
directly, on Newton’s equation of motion; it allows to compute the gravity accelerations
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along the orbit of the satellite which is the first gradient of the gravity potential. This has
been investigated by many researchers, and has led to a number of publications [Reubelt
et al., 2003; Ditmar et al., 2004; Mayer-Giirr et al., 2005a]. One issue of the gravity
acceleration approach is that the acceleration has to be based on the numerical differential
of the GPS-derived orbit. It is well known that numerical differentiation of noisy data is
an improperly posed problem, and a proper averaging filter has been investigated to be
incorporated into the processing procedure by Ditmar et al., [2004]. In this dissertation,
my goal is to use GRACE data for the recovery of a geophysical signal such as
continental water storage change, hence, low-low SST (GRACE) will be our focus. The
gravity acceleration approach for high-low SST (CHAMP) will just be included for
completeness.

2.3.1. Gravity acceleration approach for a high-low SST mission
(CHAMP)

In reality a certain number of additional forces act on the near—earth satellite. They can be
divided into two groups, conservative and non-conservative forces. The conservative
ones are responsible for the accelerations due to other celestial bodies (Sun, Moon, etc.)
besides the Earth, and accelerations due to solid Earth and oceanic tides. The
conservative forces cannot be sensed by the accelerometer.

The non-conservative forces, on the other hand, cause accelerations due to atmospheric
drag, direct solar radiation pressure and Earth-reflected solar radiation pressure [Seeber,
2003]. These forces can be sensed by an accelerometer, so a comprehensive model is as

follows,
mean Earth

i; — g + gN body + gtides + gothers (219)

is the gravitational acceleration due to the Sun, the Moon and other
tides

N
where g" "%

celestial bodies, g 1is the gravitational acceleration due to various tides including

others

ocean tides, solid Earth tide and pole tides, g is due to other time-variable effects

such as atmospheric effects and barotropic ocean response to atmoshpere. a is due to the

non-conservative forces and can be measured by the onboard accelerometer. (2.19) can

be rearranged as,
mean Earth _ P — gN body gtldes N gothers —a. (220)

Taking the gradient for (2.14), we find

N, n+l -
N - _GM (Bj Z(Cnm cosmA + S n Sin mﬂ)P (cos@)sinf
00 R =\r m=0

N, n+l g o

N _GM [ j > m(-C,, sinma+S,, cosmA)P,, (cosd) . (2.21)
94 R & m=0

N,
O_V GM { j _cosmA+S, sin m/i)ﬁnm (cos @)
or = 2 r

To calculate the acceleration at the direction of north-east-down (n-frame), we obtain
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v
g r oo
N
1 oV
n_ = iy 2.22
g gE rsin@ oA ( )
‘o] |V
| or

Then, by transforming the gravity vector from the n-frame to the inertial frame (i-frame,
the ideal i-frame is approximated by J2000 frame in the real GRACE data processing),

g =Cig"=C,Cg", (2.23)
C. = PNRW, (2.24)
—sinfcosA —sinA —cosf@cosi
c2=R3(—/1)R2(%+9): —sin@sinA  cosA —cos@sinA |5 (2.25)
cos @ 0 —sind

where g' is the gravity acceleration in the i-frame, and g" is the gravity acceleration in
the n-frame. P, N, Rand W are the rotation matrices caused by precession, nutation,
earth rotation and polar motion, respectively. R,(—A4) represents the rotation about the

3rd axis by the angle A in the clockwise sense as viewed along the axis toward the origin

(right-hand rule), R, (% + ) represents the rotation about the 2nd axis by the angle

By + 6 1in the counterclockwise sense as viewed along the axis toward the origin (right-

hand rule). In the real GRACE data processing, the ideal inertial frame is approximated
by the J2000 frame.

Equations (2.21) through (2.25) will be used to set up the observation model for the
gravity acceleration approach in the case of a high-low SST mission such as CHAMP.
Compared to the energy balance approach, we see that the acceleration approach is more
“natural” because it comes directly from the Newton equation of motion. An alternative
approach for the acceleration approach, which avoids numerical differentiation, was
proposed by Mayer-Giirr et al. [2005a]. In the alternative approach, the Newton equation
of motion is formulated as a boundary value problem, and its solution comes in the form
of a Fredholm type integral equation which then avoids any numerical differentiation. It
is claimed that this approach is both useful for regional and global recovery of the gravity
field [Mayer-Giirr et al., 2005a].

2.3.2. Gravity acceleration approach for a low-low SST mission
(GRACE)

In a low-low SST mission such as GRACE, the inter-satellite signal (K-Band Ranging
(KBR) measurements) between a pair of satellites orbiting the Earth in the same orbital
plane carries significant information on the medium to shorter wavelength components of
the Earth’s gravitational field and, if this relative motion can be measured with sufficient
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accuracy, this approach will provide significant improvement in the gravity field
modeling. KBR range is a biased range; range, range rate and range acceleration all come
from the same KBR measurement by the differentials. In this section, I will show how to
recover the gravity field from the KBR range acceleration.

Let r; and r, represent the position vectors of the two satellites in the inertial frame
(J2000 frame in practice), and p,, represent the range between the two satellites. We
then have,

Py =X Xy, (2.26)
where r, =r, —r,.

After taking the 2™ derivative with respect to time in the inertial frame (cf. Appendix A),
we have,

.12 )
|I']2| ~ P2
P2

Then, by rearranging items and adding superscript i to indicate the inertial frame, we
obtain

Pn=(8,—g)e,+(a,—a)e,+ (2.27)

.i 2 )
P . ol =P
81 €n =P _L_alz € - (2.28)
P2
and,
g, =8, -8
=C,,8,-C, 8/ (2.29)

=C,, 8 -C, g,
where Cin,2 is the transformation matrix from the n-frame to the i-frame for the satellite 2,
and C:L1 is the transformation matrix from the n-frame to the i-frame for the satellite 1.

g’ is the gravity vector in the n-frame at the position of satellite 2, and g! is the gravity

vector in the n-frame at the position of satellite 1.
Thus,

g, e,=C,, g €,-C, g e,
=(C;,) el g3 —(C, ) ey, g (2.30)
=(Cl,-e},) g, —(C], e,) gl
Let us defineb, :=(C{, -e,,) and b}, :=(C{, -e,,); then:
g1, €;, ==b[, g5 —b], g/ (2.31)
After expressing the three components of g" in terms of the spherical coordinates
(r,0,4), we obtain

15



_1v
r oo
S b -
& =19 17 rsino a2
gD 6V
ar
™2 (cos(mA)C, . +sin(mA)S, )P (cosd)sind
n=0 m=0
GM n+2 1
=| = ZZ( )™ m(=sin(mA)C, . +cos(mA)S, )P, (cosd)——|.
R™ =m0 sin @
"2 (cos(MA)C,,, +sin(mA)S, )P, (cos®)
n=0 m=0 A
Defining
b, ,
bl, =|b,, |,
b2,z
b«
bl =\b,, |,
b,
leads us to
1 oV 1 oV
b', -g’=b, (————)+b, (——— -——),
i 8y =D, ( rz 692) 2y ( ne, 51) 8!’2)
1 oV 1 oV oV
bl -g' =b (- +b (—————)+b, , (——),
= r ael) l’y(rlsiné’l az) e arl)
1 oV 1 oV
=b ———)+b, (—— —) -
2 ‘g5 — |1 (= rz 592) 2,( sind, 8/1) b (= arz)
1 oV 1 oV oV
-b ———)—-b, (—————)-b, , (——
S r aal) l’y(rlsiné? 6/1) e 6r1)
1oV 1 oV
b -b -g!' =b -b  (-—
2 ‘g) — 1 gl = 2x( (, 06, l,x( 59)
1 oV 1
TR T v
r,sin6, o4, ,siné, 04,
oV oV
+b,,(—)-Db,,(—).
2,2( 8rz) l,z( arl)
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(2.35)

(2.36)

(2.37)
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If we let g(6) = P, (cos@), then g (0) =—P, (cos@)sin @ . Introducing a reference

potential field U (r,8, 1) for V(r,8, 1) to calculate g]*° and g5*; so finally (cf.
Appendix B for details of the derivation):

n o _n GM
(buz g~ 1 g1) - (buz gz bi,l'gfo): RZ X
R .| =By, cOS(MA,)g (6,) ~mb,, sin(MA,)g(6;) —— +
(—)"? ’ ’ sinf, |-

Vx| | b,,(n+1)cos(mA,)g(6,)

mon0| o — b, cos(m4,)g'(6,) — mb, , sin(mA,)g(6,)—— +
Ry , : sin 6,
.
' b, (n+1)cos(mA,)g(8,)

R - bz X Sin(mﬁvz )g ' (02) + mbz y COS(m/ﬁtz )9(92) } +
(—)"? ’ ’ sinf, |-
" |b,,(n+Dsin(m4,)g(6,)

nm*

R —b, si 1 1 | 1 1) +
(—m Y sin 6,

" b, (n+Dsin(mA,)g(6)

(2.39)

Formulas (2.31) and (2.39) together give us the observation equations to estimate the
spherical harmonics coefficients.

2.4. Recovery of terrestrial water storage change globally

It is well known that the external gravity field, even if completely and exactly known,
cannot uniquely determine the density distribution of the body that produces the gravity
field. But in the case of a 2-D spherical shell without the radial dependence, the
gravitational inversion for the surface density function proves to be unique [Chao, 2005].
This conclusion encourages us to recover surface mass variability from GRACE data,
which was first shown to be successful in a simulation scenario by Wahr et al. [1998].

Equation (2.40) below relates the change in surface mass density (Ao (é,¢) ) to changes
AC,, and AS, in the geopotential coefficients when expressed in spherical surface
functions [Wabhr et al. 1998] There it is shown that

Ac(0,¢) = p ZZ 2' *l (AC cos(Mg) + AS, sin(mg)), (2.40)

1=0 m=0

where R is the mean radius of the Earth, & and ¢ are colatitude and longitude. p,, is

the average density of the Earth (=5517 kg/m?), p, is the density of water which can be
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assumed to be 1000 kg/m*. AC,, and AS,, are the changes in the geopotential

coefficients when expressed in spherical surface functions. K, is the Love number.

The following equation is used to compute for the change in geoid undulation:

AN(0, ¢) = %i ZI: P (cos 9)%@6”“ cos(Mg) + AS,_ sin(mg)), (2.41)

ave 1=0 m=0

where

AC,, 1 cos(mg)
{AS_W} RO j d¢j sin @@ - Ao (6, )P, (co ){Sm(m@}. (2.42)

So, from the knowledge of surface mass change, we can calculate the change in the geoid.

Furthermore, let Ap(r,8,¢) be the density redistribution causing the geoid to change, and
suppose that Ap(r,6,¢) is concentrated in a thin layer of thickness at the Earth’s surface.

But this thin layer should be thick enough to include those portions of the atmosphere,
oceans, ice caps, below-ground water storage, and solid Earth deformation with
significant mass fluctuations. Then Ao (8,¢) denotes the radial integral of Ap(r,é,),

Ac(0,$) = j Ap(r,0,$)dr . (2.43)

thin layer

Note that Ao/ p,, is the change in surface mass expressed in equivalent water thickness,

Ah(@, ¢) — AO_(Q: ¢) Rpave z
P

w Pw 1=0 m=0

m Sin(mg)) .(2.44)

From the above formula, we can calculate terrestrial water storage change from a time
series of the global gravity field of the Earth. It should be pointed out that smoothing is
needed to mitigate high-frequency errors [Wahr et al., 2004], including geographically-
correlated errors (stripes) [Swenson & Wahr, 2006].
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CHAPTER 3

RECOVERY OF TERRESTRIAL WATER STORAGE
CHANGE REGIONALLY

3.1. Estimating terrestrial water storage change regionally from
in situ geopotential differences

In Chapter 2 it has been shown how to recover the terrestrial water storage change
globally by estimating the time-variable global gravity field. There is an alternative
method using GRACE satellite-to-satellite tracking and accelerometer data to get the
along-track potential differences and to directly estimate the temporal gravity variations
regionally [Han et al., 2005a,b]. The method has been tested on the estimation of a
hydrological mass anomaly over the Amazon and Orinoco river basins; it is claimed that
finer resolution can be achieved compared to the conventional spherical harmonic
methods.

In this alternative method it is necessary to derive the in situ (on-orbit) geopotential
difference anomalies at first. The formula is given as follows:

. 1 1. . I . . . 1
P12 =H(V12 + Ele)_mrl T _mrlz Ty T€ -1 +HE1§ +const.+e, (3.1)
I 1 I I

where p,, is the range-rate measurement between satellites 1 and 2 with the random error
e. I, and r,, are the absolute velocity vector of satellite 1 and the inter-satellite velocity
vector, respectively, using coordinates in the inertial frame. e,, is the normalized Line-
Of-Sight (LOS) position vector. V,, is the in situ geopotential difference, E] is the
dissipative energy difference, and E} is the energy due to the Earth rotation. After the in

situ geopotential difference V,, is estimated simultaneously with the inter-satellite orbit

vectors, and after the relatively well-known effects of N-Body perturbations, solid earth
tides, pole tides, ocean tides, atmosphere and barotropic ocean response to atmosphere
are forward-modeled based on the best current models, the gravitational potential
difference due to hydrology can be calculated by the following equation,

hydrol Earth N —bod tid It h th
V]zy rology =V12 _Vuar _V12 ody —V12| es _Vlgcean _VS mosphere _Vlg ers’ (32)
where V3™ denotes the gravitational potential due to other possible mass redistributions
including postglacial rebound, earthquake, etc. The next step is to infer the water mass
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change from the in situ geopotential difference using the regional inversion method based
on prior information.

The potential theory states that alternative various sources can reproduce the same
potential field. Hereby we can replace the point mass source with the regular prism mass
as follows:

m(é,, 4,,t) = p,, (RAO)(RAAsin ,)h, (t). (3.3)

Then, let Ah, (t) be the continental water mass change with respect to the estimated

continental water mass of the first month. Here we assume that the water storage doesn’t
change within one month so that we use Ah, instead of Ah,(t).

Based on Newton’s law of gravitation, the relationship between the gravitational point

mass source and the potential difference at altitude can be expressed as follows:
NxM

hydrology( 91’/11’ 62,/12,'[) G Zm(el,/ll,t)( —Iii), (34)
2
where
1! :\/RZ +17 —2Rr, cosy, ,
I} = \/R2 +1; —2Rr, cosy, ,

cosy| =cosf, cosf, +sin 6 sin @, cos(4, — 1),

cosy) =cosé, cos@, +sin b, sinb, cos(4, — 4,).

Here, r,, 6, and A, are radius, co-latitude and longitude of satellite 1, and r,, 8, and A4,
are radius, co-latitude and longitude of satellite 2, respectively. G is the gravitational
constant, p,, is the density of fresh water (1000kg/m’). R is the mean Earth radius, and
(RAO)(RAA)sin 6, represents a horizontal area of a rectangular prism at the location
6,4
N and M are the numbers of grid intervals in the latitude and longitude direction,
respectively; V is the gradient operator.

). h; is the mean water thickness per unit area at the location(6,, 4,) and time t.

277 277

The final step is to correct the estimated water storage h, considering the loading effect
[Han et al., 2005b]:

N-1M-1 27Zq
Y > h(0,. A) exp(- J_( SO+ ). (3.5)
LQLA k=0 1=0 I—A
1 N-1M-1 1 27Zq
h6,,4)= H,, - —1—6’ — 1)) 3.6
@A) = LL, ;q:o(l-l—kf) Pq eXP(\/_( L, Kt L, 1) (3.6)

where L, =NA@ and L, =MAA. H, is a 2-D Fourier coefficient at N-S (latitude)
frequency, p/L,, and E-W (longitude) frequency, q/L, . Furthermore, k, is the load

Love number at the mean (isotropic) frequency f =\/( p/L,)* +(q/L,)* . I used the

relationship of n=2zRf for the conversion between the spherical harmonics degree, n,
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and the planar frequency, f . Note that h(6, , 4,)in (3.5) and (3.6) corresponds to h, for a
particular combination of k and I.

When we are recovering terrestrial water change, it is necessary to remove the effect of
the atmosphere. It was concluded that analyzed pressure fields (atmosphere) will be
adequate to remove the atmospheric contribution from GRACE hydrological estimates to
subcentimeter level, [Velicogna and Wahr, 2001]. It should be noted, however, that any
redistribution of ocean mass will contribute to the terrestrial water change in the coastal
regions.

In the global spherical harmonics method, equivalent water heights are computed based
on monthly mean geopotential coefficients, whereas the regional approach is based on the
in situ GRACE satellite-to-satellite tracking data and statistical inversion. Both of the
global and regional approach has limited spatial resolution because of the altitude of the
satellite orbits. The global approach is further limited in spatial resolution due to a
necessary and possibly arbitrary truncation at a certain degree and order. Furthermore,
both of the approaches need to consider the signal leakage from outside the interested
region.

3.2. Estimating terrestrial water storage change regionally from
in situ LOS gravity differences

3.2.1. Observation equation

Low-low SST allows to measure differences in satellite orbit perturbations over a
distance of a few hundred kilometers. For example, GRACE provides the inter-satellite
range, inter-satellite range rate, and inter-satellite range acceleration. Both range and
range rate are the observations from which to estimate the monthly gravity model and to
infer the terrestrial water change globally. Only range rates are used to calculate in situ
geopotential differences and to estimate the terrestrial water change regionally, and only
range accelerations will be used to calculate in situ LOS gravity differences and to
estimate the terrestrial water change regionally. It is thus interesting to compare the
regional solutions from in situ geopotential differences (using range rate) to the regional
solutions from in situ LOS gravity differences (using range acceleration), in both the
spatial and spectral domain, which will be one of the focuses in chapters 4 and 5.

Let r, and r, represent the position vectors of the two GRACE satellites, so r,, is the

relative position vector between the two satellites. We can establish the following
relationship:

ol = £
/512 :(gz _gl)‘elz +(a2 _al)'elz +%, (3-7)
12

where p,,, p,,,and p,, are inter-satellite range, range rate, and range acceleration
measurements (neglecting the random errors for now) respectively. g, and g, are the
sum of the gravitational forces on satellite 1 and satellite 2, respectively. a, and a, are
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the sum of the non-gravitational forces on the satellite 1 and satellite 2, respectively. 1,
is the relative velocity vector between the two satellites. e, is the normalized LOS

r12

|r12|

difference and will be denoted as g -

vector with e, = . The quantity (g, —g,)-e,, is defined as the LOS gravity

With a-priori inter-satellite orbits and KBR range-acceleration measurements, one can
use equation (3.7) as a condition equation to estimate g, as well as the inter-satellite

orbit vectors. Figure 3.1 is the flow chart of the procedure to calculate the LOS gravity
difference measurements. Precise orbit, including position and velocity vectors, are
assumed known and the KBR range-acceleration measurements are used as condition
equations to adjust the orbit vectors at each epoch. Using the refined orbit vectors, we
then estimate or model bias parameters associated with the accelerometer, and estimate
the KBR empirical parameters, such as the bias, one cycle per revolution (1-cpr)
parameters and 2-cpr parameters. The next step is to calculate the LOS gravity difference.

The relatively well-known effects of N-Body perturbations, solid earth tides, ocean tides,
pole tides, atmospheric perturbations and ocean barotropic response to atmosphere are

forward-modeled, based on the best available models. After removing all other effects we

can calculate g5®°¥ (for this study) from the following equation:

hydrology __ __ omean earth  _N-Body _ _tides  _ocean _ _atmosphere _ _others
gLos =8Los ~8Los gLos €los “8los —8Los glos - (3-8)
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Figure 3.1: Procedure to calculate in situ LOS gravity differences

Taking the gradient of both sides of (3.4), we get

T
We now describe the right hand side of equation (3.9) in more detail now:
NXM{(sin 6, sin6,

V(Vlgymlogy (1,0,,4,,1,,60,,2,;1)) = V(Gp,,(RAO)(RAZ) Z

i=1

NXM{(sin 0, sin0, )Ah, }) .(3.9)

V(Gp,(RAGNRA) Y.

i=1

i i
1 2

A, }) = Gp, (RAO)(RAA)-

N sin 6, sin 6,
Z (v( i ) - V( i ))Ah| :
i=1 |1 Iz
(3.10)

The gradient operator is defined with respect to the spherical coordinates of satellite 1
(r,,0,,4,) and satellite 2 (r,,6,,4,). Also:

0 1 1 2r, —2Rcosy, r, —Rcosy,

S (P=p A (3.11)

or 1, I 21y I
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—-2Rr,
21|

(—cos @, sin b, +sin b, cos b, cos(4, — 4,))

r_ﬁ(l')_r_l(_ E

=—(_—21)(— cos @, sin @, +sin b, cos b, cos(4, — 4,)) (3.12)

1

=% (—cos @, sin @, +sin b, cosb, cos(4, — 4,)),

1

! _(_)— ——2 — 2R, sm9 sin @, sin(4;, — 4,)
r,sing, 04 || s1n9 1! 2l
=L Rl6ing, sind,sin(4, - 4) (3.13)
r,sin @, |I

:I%Sin 9i Sin(ﬂi - /11 ),

1

i(l_) _ (__LZ) 2r, —2R_c051//2 __h- R_c3osw2 ’ (3.13)
or 1, ! 215 I
2
——( )——(— 2Rr2( cos 6, sin @, +sin G, cos @, cos(4; — 1,))
L0017, |£2 215 2
1 Rr, . .
=—(—5)(=cos 0, sin b, +sin b, cos O, cos(4; — 4,)) (3.15)
Lol

= %(— cosd, sin @, +sin g, cos @, cos(4; — 4,)),
I I

2

1 1 1 . —2Rr,
Loy = - 2sin @, sin @, sin(4, — 1
r, sin 6, a/l(l') rsing, 117 2] =)
= _1 .sin 8, sin(4, — 4,) (3.16)
r, smH2 |I

=_53 sin @, sin(4; — 4, ).

2

After taking the gradient, all the quantities are defined in the south-east-down frame.
Since the quantity, g/y"? -e,,, is given in the inertial frame, we need to transform the

gradient vector from the south-east-down direction to the n-frame and then to the i-frame.
We thus obtain

rolo NN s1n9 s1nt9
ggd ooy e, =Gp, (RAO)(RAA) Z:{(Cn,l —)- Cn 2V(

i=1 1 2

L))Ah, }-eu,(3.17)

24



where R is the mean Earth radius, and other common variables inherit the same
definitions from equation (3.4). Cin,2 is the transformation matrix from the n-frame to the

i-frame for the satellite 2, and C}, is the transformation matrix from the n-frame to the i-

frame for the satellite 1. Note that C, | is different from C, ,. Equation (3.17) is used to
estimate Ah, from the observation g% .e,.

By replacing gy -e,, by ge’*?, the continental water storage is found from

g[{gsmlogy (n,6,,4,:1,,0,,2,;1) =Gp,,(RAO)RAA) -

NxM

Z{(CQIV(IL,) - Crllzv(ll,)) sing;h; } €

i=1

(3.18)

In the final step the estimated water storage h, is corrected by considering the loading
effect which was described in section 3.1.1.

3.2.2. Modified observation equation

The real GRACE data products have three levels: Level-0, Level-1A, Level-1B and
Level-2. The detail of each level will be described in Chapter 5, and here it is just
necessary to emphasize that Level-1B data products are the results of a possibly
destructive or irreversible processing applied to both the Level-1A and Level-0 data
[Bettadpur, 2004]. The proposed method largely depends on the quality of the range
acceleration which is obtained by using a digital filter on the raw phase data of KBR [Wu
et al, 2004]. If in some situations the quality of the derived range-acceleration
measurements is worse than the minimum requirement, it is an alternative to switch to the
use of range or range-rate data. To use range or range-rate data does not mean that the
acceleration method is totally abandoned, because the proposed acceleration method can
be modified accordingly by applying a Fredholm type integral equation.
Let us start again from Newton’s equation of motion:

r=g+a, (3.19)
where r is the kinematic acceleration, g and a are the gravitational and non-

gravitational accelerations, respectively. Since the acceleration can be obtained from the
derivative of the potential with respect to position, it is easy to link the kinematic
acceleration ¥ to the spherical harmonics coefficients of the gravity field of the Earth.
But, due to the low quality of ¥ which is usually obtained from double-differencing of
the position vector r which itself cannot guarantee sufficient accuracy either, equation
(3.19) is not so useful despite its simplicity. Mayer-Glirr et al. [2005a] introduced a
Fredholm type integral equation to avoid double-differencing of the position vector r for
the case of CHAMP. The Fredholm integral equation is actually the solution of (3.19),

and it reads:
1

r()=(-o)r, +a, =T [K(r, 7 )g+a)zsr, %, y)d7 (3.20)

T =l
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(1-7)z"), 0<L7'<t (t—-t,)
» T =

() d-17"), =<7'<1 ty —t,

By using the above equation (3.20) and a numerical quadrature method, the spherical

harmonics coefficients can be computed. The advantage of (3.20) is that it can be

adjusted to different lengths of arc, and a double-difference method which usually

increases high frequency noise could be avoided. (3.20) is suitable for the case of High-
Low SST, like CHAMP.

where K(r,z"):{ , telt,,tg].

It is easy to get the following models for the low-low SST case of GRACE (again
neglecting random errors):

. |l;12|2 _p122
Pn=(8,-g)e,+(,—-a)e,+ 5 (3.21)
P2
1 .. ' '
Pr2()=(1=7)py (t) + 7 (te) =T | K(z,7) 3, (2)d7". (322)

Thus, we can also estimate the terrestrial water storage change from equation (3.21) with
the use of (3.22); i.e., p,, needs first to be solved from (3.22) by choosing a numerical

quadrature method.

3.3 Solving the ill-posed problem

Improperly posed problems have appeared in the solution of integral equations of the first
kind, or in downward continuation problems in potential theory, and so is the recovery of
surface water change from the in situ geopotential differences or LOS gravity differences.
One way to solve this problem is based on a Tikhonov-type regularization. The classical
Tikhonov-regularization is defined as the minimization of the sum of the squared residual
norm and the squared R-norm of the unknown parameters. Consequently, it has become
common to add a positive-definite matrix multiplied by a regularization parameter to the
matrix of the normal equations to stabilize the solution. For example, in the global
recovery of the gravity field of the Earth, the inverse of the covariance matrix of the
estimated parameters from a previous adjustment is usually chosen as this positive-
definite matrix.

However, the difficulty of applying Tikhonov-regularization includes properly
determining the value of the regularization parameter. If it is too big, then the solution
will be smoothed too much; if it is too small, the instability will still exist. By using the
regularization method, we are actually trying to pick a solution which satisfies some prior
standards from a set of solutions. Many approaches to determine the regularization
parameter have been tested. In our investigation, we shall compare three of them which
were originally proposed by Koch and Kusche [2002], Schaffrin [2007], and Han [2005a].
In Koch and Kusche [2002], determining the regularization parameter is equivalent to
estimating different variance components in a Bayesian setting, based on the a-priori
information on the parameters; in contrast, the optimal choice of the regularization
parameter is done through variance-ratio estimation in a model without prior information
by Schaffrin [2007]. Han [2005a] introduces a stochastic model for the unknown
quantities, their a-priori expectation and the associated covariance matrix, ending up with
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a Random Effects Model, to solve the ill-conditioning problem. All the three approaches
will be tested in our simulations, and the following three sections will give simple
introductions to them, such as the background information, the observation equations and
some necessary prior information. For each approach, a flowchart will be used to explain
the procedure step by step.

3.3.1. Bayesian inference with variance components

Usually in Tikhonov-regularization, a positive-definite matrix times the regularization (or
scaling) parameter is added to the matrix of normal equations to stabilize the solution.
The matrix to be added to the matrix of normal equations can be the inverse of the
covariance matrix of the unknown parameters if given by prior knowledge. This approach
can be interpreted as Bayesian estimation with prior information rather than
regularization in the Tikhonov sense. The scaling parameter can be obtained as the ratio
of two variance components, as proposed by Arsenin and Krianev [1992]. Therefore,
regularization may be replaced by Bayesian inference with unknown variance
components [Koch and Kusche, 2002].

Let us start with the linear model in the formulation of Bayesian statistics

Ax = E(y|x,e), with E{e} =0, D{e|c’}=0c’P ', (3.23)
where A denotes the nx m design matrix which will be assumed of full column rank,
although ill-conditioned but not singular normal equations are expected. x is the mx1

vector of unknown random parameters for which prior information is available, o is the
unknown variance factors, and P is the known nxn positive-definite weight matrix of
the observation errors in the nx1 vector y, e denotes the vector of random errors of the

observations.

The prior information of the random parameters is given by

E{x} =pn, D{x|az} :af,P;l, (3.24)
with the mx1 vector p, the variance factor 0'/2, and the mx m weight matrix P;l of the
parameters, thereby we can obtain

E{y = Ax+e|x,e} = Ax, D(y|x,e,0°)=c’P™' +0,AP,'A". (3.25)

According to the linear model (3.23) with (3.24) and (3.25), the observation equations are
given as

Ax=y—e, with E{y = Ax+e|x,e} = Ax, D(y|x,e,c°)=c’P"' +GzAP3AT .(3.26)

Suppose that there is only one type of observations y, =y, together with the prior
information p; we obtain the normal equations

1 . 1 - 1 .. 1
_ZAIPAI +_2P,u X =—2A1Py1 +—2Pﬂll . (327)
1 O-/l 1 O-/l

By introducing the scaling parameter 4 with
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2= (3.28)

2

Oy
we obtain
(AJPA, + 4P, )K= A|Py, + AP . (3.29)
By solving (3.29), we obtain
x=(APA, +2P, ) (A;Py, + 2P p), (3.30)
D) =o(APA, + P, ) (A;PA, JAPA, + 4P, )" (3.31)

For p =0 the solution vector resembles that of the Tikhonov regularization and of ridge
regression.
The partial redundancies 1, and r,, associated with the observation y, and the prior

information p, respectively, are computed by

r,=n, —tr(ﬁA;PAIN‘l),
11 , (3.32)
r,=m-tr(—P,N"),
n
where ’
N = %A;PA1 +l2Pu (3.33)

is the normal equations matrix.

In order to avoid the computation of the inverse matrix, N', an alternative method to
calculate 1, and r, exists by a stochastic trace estimation, but will not be elaborated here

[Koch and Kusche, 2002]. The iteration begins by specifying initial values for o and
o, , then computing the residual vectors € and €,, and getting the estimates 6, and &, ,

eventually. Iteration is performed until both variance component estimates converge and
the final Bayesian solution, X, is achieved. Figure 3.2 shows the flowchart of the detailed
procedure.
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Figure 3.2: Bayesian inference with variance components

3.3.2. An optimal regularization factor via formulas for the repro-
BIQUUE of variance components

The Tikhonov-Phillips regularization became widely known from its application to
integral equations from the work of A.N. Tikhonov and D.L. Phillips. It is based on the
minimization of the sum of the (weighted) squared residual norm and the squared R-norm
of the unknown parameters within a Gauss-Markov Model. However, the regularization
parameter o, which is to determine the trade-off between the (weighted) Squared residual
norm and the squared R-norm of the unknown parameters, is usually unknown. Often in
practical problems, the regularization parameter o, is customized for a specific problem
and cannot be adapted to other purposes.
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The Tikhonov-Phillips regularization, also knows as “ridge regression” in statistics, is
equivalent to S(Selective)-homBLE (Best homogeneously Linear Estimation) [ Schaffrin,
2007]. Let us introduce the (possibly rank-deficient) Gauss-Markov Model

y:A§+e,rkA:;qsm<n,e~(0,a;n1:n‘1 =X,), (3.34)
in which y is the nx1 vector of observations, A is the nxm coefficient matrix, & is the
mx1 vector of unknown parameters, e is the nx1 vector of random errors, 0'; is the
unknown variance component, P is the nxn symmetric, positive-definite weight matrix,
2., isthe nxn symmetric, positive-definite dispersion matrix. With LEast-Squares

Solution, the normal equations are
NE =c¢ for [N,c]:= ATP[A,y]. (3.35)

However in inverse problem the coefficient matrix, A, is often ill-conditioned
numerically. The normal equations can still be solved but the estimates will endure
unacceptable uncertainties, since any measurement errors in 'y will be magnified by the

large eigenvalues of N (inverse eigenvalues of N ). As an alternative, let us first
introduce the homogeneously linear estimators,

&=Ly, (3.36)
where the mxn matrix L is to be determined. By applying the minimum MSE (Mean
Sqaure Error) principle we obtain

trMSE(&) =tr(D(§) + E(E &) ~8)")

= thl’[(LP—lLT )+ - LA)@&T (1— LA)T 1= nﬁ;n (3.37)

If the prior knowledge on & does not exist, we can introduce a substitute matrix, 'S , to
replace £&', where S is a given symmetric nonnegative-definite matrix and « € R is an

unknown positive constant. Note that although the rank of § is 1, S may even be chosen

as an invertible matrix. Then we arrive at the new target function,
o tr[(LP'L" )+ o' (I-LA)S(I - LA)" ] = min. (3.38)
L

Since the variance term tr(LP'L") and the bias term tr(I - LA)S(I-LA)" are

balanced by the factor &', a functions as “weight” for the two terms. Thus we shall call
the estimate &, the o -weighted S-homBLE. The normal equations (for L ) are now
obtained as,

(P +A&o 8" AT L' = Ago %", (3.39)
which leads to
(ac;P' + ASAT)L' = AS, (3.40)
and
L=SA" (ao;P"' + ASAT)". (3.41)

We then get the o -weighted S-homBLE as
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g=Ly

=SAT (o, P + ASA")y

=SA"P(ac, + ASA'P)y

=(ao,1,, +SN) "' Sc

Starting from the simplest case, namely, the matrix S is nonsingular, we obtain
E=(ac;S"+N)e=(aS" +0,°N) (8™ -0+ 0,%c), (3.43)
D(E) _ (as—l " U;zN)_l(ngN)(OCS_I n 0;2N)—1

=(@S™ +0,’N)" —(a87 +0,’N) (a8 )(eS™ +0,°N) 7,

where 0 denotes a fixed mx1 vector of zeros, in contrast to the vector of “prior”
information used by Koch and Kusche [2002, p.261]. Furthermore, we may apply the
formulas for repro-BIQUUE (reproducing Best Invariant Quadratic Uniformly Unbiased
Estimate) of two “variance components” (here ¢~ and ayz) to determine the ratio

(3.42)

(3.44)

2
O

A ::a—:: ac; . (3.45)

This ratio A is nothing but the Tikhonov-Phillips regularization factor.

Let us introduce the following vectors

e=y-Af=y-AN+AS") "¢, (3.46)
€, =0-&=—(N+18")"c. (3.47)
After applying the formulas for repro-BIQUUE we can get
62 =62(A)=¢ Pe-|n-tr(N+48™)"'N]>0, (3.48)
. n e Pe
A=( ———— D (55520, (3.49)
n—-tr(N+4AS7 )" N e, S e,

which ought to be solved iteratively. After convergence A can be entered into (3.48) to
obtain &yz , and a new solution & ought to be computed from (3.43), along with the

vectors e and e, from (3.46) and (3.47), in order to start a new cycle. This procedure is

continued until 4 converges.
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Figure 3.3: An optimal regularization factor via formulas for the repro-BIQUUE of
variance components

3.3.3. Iterative least-squares estimation with simultaneous updating of a
prior covariance

Let us first introduce the observation equations as follows:

y=A&+e, e~ (0,0,1), (3.50)
where y is the nx1 vector of observations, such as geopotential differences or LOS
gravity differences from the satellite data, & is the mx1 parameter vector to be estimated,
such as the continental water change, A is the known nxm coefficient matrix, and e is
the error vector belonging to the measurements in y . The variance component 0'5 ought

to be determined.
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A-priori information such as prior estimates, X,, and the associated covariance matrix,
C,, for & , is utilized to resolve the ill-conditioned problem existing in the downward
continuation process. The corresponding a-priori information equations can be written in
terms of pseudo-observations:

x,=1+e,, e, ~(0,C)). (3.51)
The least-squares solution including the estimated parameters é, the dispersion matrix of

the estimates, D{!’;}, and a variance component estimate, &j , are given as follows:

E=(ATA+02C) ATy +0IC'x,), (3.52)
52 YY-ETQATY)+ET(ATA) (3.53)

" n-(x,-8)C; (x,-8)
D& =(ATAc,? +C;)7, (3.54)

where n is the number of the observations. All three quantities contain the variance
component, 03 along with & . Therefore, we need to solve for & and 6'3 iteratively,

starting with an initial value of 05. After the convergence, we get D{%} by putting the

converged value 6'5 , into (3.54), and similarly into (3.52) to get é

However, in reality we may not have good information about the covariance matrix, C, .

In this case we choose to perform an iteration too for C,, starting from an initial

X b
covariance matrix. To avoid estimating all the unknown parameters inside C, , we
instead approximate C, by a covariance function model with only two parameters such

as the variance and correlation distance:

C,ii,jj=o’ exp(—r‘l—’jx (3.5%)

where o} and | are variance and correlation distance, respectively, and r;; is the

distance between the two locations of two components in the vector, x . During the
2

iterations for § and &,

we add one more step for C,. We can namely compute the

empirical values for each covariance, C A1, J}, using the intermediate estimates, % The

distance is known by two coordinates. As a result, the least-squares estimates of o, and

| can be computed after linearization of (3.55). Then, the covariance matrix, C, , is

updated with new estimates of o) and |. With this new covariance matrix, the next
iteration for é and 6‘5 is performed. The iteration is continued until the solutions
converge. It has to be pointed out that the measurements in y has been used twice, i.e.,

once in the procedure of computing the empirical values for éx{i, j} through the
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intermediate estimates, 2:;, and once more used in estimating é using (3.52). This should

be avoided in a typical Least-Squares solution, so we can only apply the procedure above
to achieve a solution when it is really difficult to get any good information about the
covariance matrix, C, .

%c—l//w/

=(AT A+O'C ) (Ay+0'C 'x,)

Cx{ia j}=0

v
5 Y'Y AT+ T AR+ (x, -9 C/(x, -)5;

y

Figure 3.4: Iterative least-squares estimation with simultaneous updating of a prior
covariance
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CHAPTER 4

A SIMULATION TO ESTIMATE TERRESTRIAL WATER
STORAGE CHANGE GLOBALLY AND REGIONALLY

4.1. Closed-loop simulation

A closed-loop simulation study was used, in order to show and prove the performance of
the different strategies to recover the terrestrial water change globally and regionally as
described in Chapter 2 and Chapter 3.

The raw data of the continental water storage for our simulations come from the NCEP
(National Centers for Environmental Prediction)/NCAR (National Center for
Atmospheric Research) reanalysis project (www.cdc.noaa.gov). Daily continental water
storage, defined as the sum of soil wetness and snow water, is computed by converting

the soil water (in volumetric fraction) and snow water (k%z ) into equivalent water

thickness (ftp://ftp.csr.utexas.edu/pub/ggfc/water/NCEP). The time span of these data is
from Jan. 1979 to Dec. 2004; they are defined as the sum of soil wetness and snow water
within two layers (0-10 and 10-200 cm). The spatial resolution is about 2 degrees.

The gridded data sets cover all continents, except Greenland and Antarctica. Missing data
in Greenland and Antarctica, as well as those over the oceans are set to zero. Figure 4.1
shows the global terrestrial water storage on Jan.1, 2003.

It must be emphasized, that what GRACE is able to observe, is the terrestrial water
storage change instead of the terrestrial water storage itself. For each grid point, by using
the daily water storage data from the NCEP/NCAR model, daily water storage change
can be calculated, using either the mean value of a whole year, or a monthly mean value
from a certain month such as the first month, as the reference.
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Figure 4.1: Global continental water storage on Jan.1, 2003 (NCEP/NCAR)

In this study, one year (2003) of daily gridded data of NCEP/NCAR are used to calculate
daily water storage change. For each grid point, we first calculate the mean value of
water storage for the first month. The next step is to subtract the monthly mean value of
the first month from the water storage of each day at every grid point, which is the so-
called daily water storage change, representing the residual water content at a certain time
with respect to the water content at a reference epoch, i.e., the first month of the year. The
whole year daily continental water storage changes are then used to fit Stokes’
coefficients, complete to degree and order 90, corresponding to a spatial resolution of

2 x 2 degree. The daily Stokes’ coefficients are then added to the static gravity field of the
Earth, EGM96, to get 365 total daily modified EGM96 models.

To generate perturbed orbits of the two GRACE satellites by numerical integration, the
daily modified EGM96 models are employed up to degree and order 90. The simulated
orbits of the two GRACE satellites have the following characteristics:

= Initial altitude: ~450 km

= Inclination: ~89°

= Eccentricity: ~0.001 for nearly circular orbits

* Time interval: 5 seconds

» Consider mean Earth rotation only (no nutation, precession, UT1 nor other variations)
= Data span of 365 days
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Figure 4.2: Flowchart of the closed-loop simulation

The synthetic observations, KBR range, range rate and range acceleration, are computed
according to the simulated GRACE orbits. Reasonable random noise, at an order of
magnitude less than the observations are added to the simulated observables.

4.2. Global and regional solutions from in situ geopotential
differences

Figure 4.3 shows the time series of the global terrestrial water storage change in 2003
according to the raw data from NCEP/NCAR. The ocean areas are augmented with zeros
and masked out to highlight the results over the continents. The pronounced features of
terrestrial water storage changes over the continents are clearly visible in the large
tropical river basins, such as Amazon in South America, Congo and Niger in Africa,
Ganges and Brahmapoutra in North India, Mississippi in North America, Ob and
Yenissei in the Russian basins, and Murray-Darling in Australia.

The global data of terrestrial water storage change (padding zeros for the ocean areas)
have been expanded into time averaged monthly sets of spherical harmonics complete to
degree and order 90. These twelve monthly sets of spherical harmonics will be
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considered as the “truth”, i.e., reality, and will be compared to both the global solutions
from in situ geopotential differences and the global solutions from in situ LOS gravity
differences. A weighted least-squares approach is used to estimate the annual component,
semi annual component, and a linear trend for the twelve sets of the monthly mean
terrestrial water storage change,

yt)=a+b-t+ C-cos(z—”(t -t,))+d -sin(2—ﬂ(t —t,))+
Tl Tl
5 5 , 4.1)
e cos(ZX (t—t,))+ f -sin(2(t—t,))
T2 T2
where, a, b, ¢, d, e, f arethe unknown parameters for the constant, linear trend,

annual amplitude for the cosine part, annual amplitude for the sine part, semi-annual
amplitude for the cosine part and semi-annual for the sine part. t denotes the time and it
can be in the unit of year, and t, is the reference time. T, and T, are the annual period

and semi-annual period respectively. The units of t and T, and T, should be the same.
y(t) is the monthly mean terrestrial water storage change at a grid point at time t.

Figure 4.4 shows the cosine part (¢ ) and the sine part of the annual signal (d ). It also
confirms where pronounced features of continental water storage changes exist. Based on
the two figures, we pick up an area which is appropriate for us to do regional inversions.
“Appropriate” means that the area cannot be either too big which will lead to a huge
normal matrix for the regional inversion, or too small which could be difficult for any
precise recovery of water change, considering the low spatial resolution from the
measurements at an altitude of 450 km. The Amazon area is chosen to be the area to test
our global and regional inversions using both in situ geopotential differences and in situ
LOS gravity differences. The other reason to choose the Amazon basin is that in the next
chapter we will compare different regional and global solutions, using the real GRACE
L1B data over the study area.
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Figure 4.3: Global terrestrial water storage changes in 2003 according to the hydrology
model from NCEP/NCAR, with reference to the mean value of the first month of 2003
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Figure 4.4: The cosine part and the sine part of the annual signal of the global terrestrial
water storage change
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Figure 4.5: Ground track of the GRACE satellites in July 2003

By adding the daily spherical harmonics of the continental water change to EGM96, the
daily modified EGM96 models are used to simulate daily orbits of the two GRACE
satellites. Only the gravity field of the Earth is considered, and a uniform rotation of the
Earth is applied for the numerical integration of the GRACE satellites. No N-body effects,
no tides and no non-conservative forces are considered. The initial positions of the two
GRACE satellites are chosen such that their initial altitudes are around 450 km, the

inclinations are about 89°, etc. The other important thing is to set the initial distance
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between the satellites to be around 250 km. The daily orbits are continuous in a month. In
order to keep the distance between the two GRACE satellites to be always close to 250
km, the positions of the two satellites are set to the initial positions at the start day of each
month. The time interval for the integration is 10 seconds, so in a month there are around
259200 observations. Figure 4.5 shows the ground track pattern for July of 2003, which
is uniform and dense globally.

Assume that there is a mass anomaly on or under the surface of the Earth, the range,
range rate and range acceleration between the two GRACE satellites will change
accordingly. Because the KBR range measurement is always biased and the bias cannot
be predicted, only range rate and range acceleration are studied in our simulation. As the
range rate is the time derivative of the range, and the range acceleration is the time
derivative of the range rate, we can see from our simulated data that, whenever the range
rate reaches the maximum value or the minimum value, the range acceleration is zero as
shown in Figure 4.6.
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Figure 4.6: Range rate (red) and range acceleration (blue). The green line represents the
average latitude of the two GRACE satellites.
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Range and range rate between the two satellites are calculated using the simulated
positions of the two GRACE satellites, so the disturbing geopotential difference can be
simulated. No friction energy is modeled or considered here in our simulation. EGM96
coefficients are used as the reference gravity field up to degree and order 90. Figure 4.7
shows the global disturbing potential differences of July 2003. Based on the same
simulated positions of the two satellites, Figure 4.8 presents the disturbing LOS gravity
differences globally of the same month. For the convenience of future comparisons with
the modeling errors of ocean tides and of the atmosphere, we set the unit of the color

scale of the plot to be 10~ m?/s even though the overall magnitude of disturbing

geopotential differences on the continents are at the order of 107> m? / s” . The unit of the

color scale of the plot of the disturbing LOS gravity differences is set to be 107 m/s?

for the same reason.

Geopotential Difference
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Figure 4.7: Simulated geopotential differences in July 2003
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Line-of-Sight Gravity Difference

180°210°240°270°300°330° 0° 30° 60° 90° 120" 150° 180°

——— T 1 T e p 1E-10
-500-400-300-200-100 0 100 200 300 400 500

Figure 4.8: Simulated LOS gravity differences in July 2003

We use both the geopotential difference and the LOS gravity difference observations to
recover the water storage change in the Amazon basin, globally and regionally. Figure
4.9 displays the time series of the raw data of water storage change in the Amazon basin.
This figure is considered as “truth” (reality) and will be compared to all global and
regional solutions. Also, from the time series of the water storage change in the Amazon
area, annual and semi-annual signals are estimated together with a linear trend, and are
shown in Figure 4.10.
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Figure 4.9: Terrestrial water storage change in the South America area (“truth”)

Annual Cos Annual Sin

Figure 4.10: The cosine part and the sine part of the annual signal of the regional
terrestrial water storage change
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4.2.1. Global solutions

For each month from Jan. 2003 to Dec. 2003, we solve for the monthly global spherical
harmonics coefficients, using the disturbing geopotential differences within each month.
Then, for each monthly solution, we evaluate the water storage change, using (2.44) in
Chapter 2. Figure 4.11 shows the results for the Amazon basin area. The obvious North-
South “stripes” are geographically-correlated high frequency errors caused by inadequate
observance (and system error) which results in ill-conditioning especially for downward
continuation [Wahr et al., 2004; Swenson and Wahr, 2006]. Jekeli [1981] developed a
Gaussian averaging function to compensate for poorly known short wave-length spherical
harmonics coefficients, and this method was used at different filtering radii from 200 km
to 600 km. Figure 4.12 shows the results after the Gaussian smoothing with a radius of
200 km; Figure 4.13 shows the results after the Gaussian smoothing with a radius of 400
km; Figure 4.14 shows the results after the Gaussian smoothing with a radius of 600 km.
It is evident from the three figures that a radius of at least 400 km is necessary for stable
results.

Jan., 2003 Feb. 2003 Mar., 2002 Apr., 2002 May, 2003 Jung, 2003

g"r‘j v*‘ iﬂ il |l

280 200 300 310 320 280 200 300 310 320
July, 2003 Aug.. 2003 Sept.. 2003 Oct., 2002 Mo, 2003 Dec., 2002

280 260 300 210 220 ﬁ cm 280 200 300 310 320

40 -20 0O 20 40

Figure 4.11: Global solutions (South America shown) from in situ geopotential
differences (no smoothing)

45



Jan., Z003 Feb., 2003 Mar., 2002 Apr., 2002 May, 2003 June, 2003

280 280 2300 210 220 280 280 300 210 220
July, 2003 Aug., 2002 Sept.. 2002 Oet., 2002 Mew., 2003 Dec., 2003

'II|

280 280 300 310 320 L ——— 280 200 300 210 220
40 20 0 20 40

Figure 4.12: Global solutions (South America shown) from in situ geopotential
differences (Gaussian smoothing with radius 200 km)
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Figure 4.13: Global solutions (South America shown) from in situ geopotential
differences (Gaussian smoothing with radius 400 km)
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Figure 4.14: Global solutions (South America shown) from in situ geopotential
differences (Gaussian smoothing with radius 600 km)

In the global inversion, we solve for spherical harmonics coefficients up to degree and
order 90. The normal equations matrix to be inverted will be a very large matrix.
However, to solve the large linear system of equations efficiently, we apply the conjugate
gradient method which is among the most popular iterative methods. This method surely
converges if the normal equations matrix is symmetric and positive-definite. The detailed
procedure of the conjugate gradient method can be found in Ditmar and Klees, [2002],
and Han [2003b]. Figure 4.15 (a) shows the degree variances (in cm for equivalent water
thickness) after each iteration. The red line represents the degree variances after the first
iteration, the green line denotes the degree variances after the second iteration and the
black line represents the results after the 15" iteration. In order to illustrate the tiny
differences between each consecutive iteration more clearly, we take the differences
between them and, as shown in Figure 4.15 (b), the differences between the 14™ and 15

iteration are at the order of 107" cm.
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Figure 4.15: Degree variances (in the unit of equivalent water thickness, cm) for the
coefficients estimated from disturbing geopotential differences, May, 2003. (a), left
figure: red line represents the results after the first iteration, green line represents the
results after the 2™ iteration, black line represents the results after the 15™ iteration; (b),
right figure: red line represents the differences between the results of the second iteration
and the first iteration; black line represents the differences between the results of the 15"
and the 14" iteration; blue line represents the differences for all the other consecutive
iterations

4.2.2. Regional solutions

Based on equation (3.4) and the other corresponding formulas of Chapter 3.3 for solving
the ill-conditioning problem, the regional water storage change using the simulated in situ
geopotential differences is estimated over our study area, the Amazon basin area. Figures
4.16 through 4.18 show the three regional solutions from the three regularization methods
described in Chapter 3.3. By comparing the solutions from the three different approaches,
it is obvious that the solutions from iterative least-squares estimation with simultaneous
updating of the a-priori covariance (Chapter 3.3.3) are stable and reliable. The solutions
from an optimal regularization factor via formulas for the repro-BIQUUE of variance
components (Chapter 3.3.2) agree well with the reality (Figure 4.9), too, except for
March and April. The solutions from Bayesian inference with variance components have
similar patterns as the “truth” (Figure 4.9); but there are noticeable high-frequency errors
in each monthly solution. The power spectral density (PSD) values of all the twelve
monthly regional solutions for each regularization method, except Bayesian inference
with variance components, are computed and averaged to achieve a mean PSD for each
method. The mean PSD values of the two regularizations corresponding to Figure 4.16
and Figure 4.18, respectively, are compared to each other and to the global solutions
using the geopotential differences. As shown in Figure 4.19, the regularization method,
based on an optimal regularization factor via formulas for the repro-BIQUUE of variance
components, can achieve a solution with much higher frequency information than the
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other method, iterative least-squares estimation with simultaneous updating of the a-
priori covariance. Although the differences between the two regional solutions are small,
both of the regional solutions perform much better than the global solutions when judged
in terms of degree variances.

Jan. 2002 Feb. 2003 Mar. 2003 Apr. 2003 May 2003 June 2002

280 280 300 210 220 [ 280 280 300 210 220
=0 20 0 20 40

Figure 4.16: Regional solutions from in situ geopotential differences and iterative least-
squares estimation with simultaneous updating of the a-priori covariance
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Figure 4.17: Regional solutions from in situ geopotential differences and Bayesian
inference with variance components
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Figure 4.18: Regional solutions from in situ geopotential differences and an optimal
regularization factor via formulas for the repro-BIQUUE of variance components
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Figure 4.19: Square root of PSD of estimated water height change. The blue
dashed line represents the results of an optimal regularization factor via formulas for the
repro-BIQUUE of variance components corresponding to Figure 4.18; the green dashed

line represents the results of iterative least-squares estimation with simultaneous updating
of the a-priori covariance corresponding to Figure 4.16; the black solid line represents the
global solutions using geopotential differences corresponding to Figure 4.14.

4.3. Global and regional solutions from in situ LOS gravity
differences

4.3.1. Global solutions

Using the in situ LOS gravity differences within each month, we also solve for the
monthly global spherical harmonics coefficients for each month in 2003. Then, for each
monthly solution, we evaluate the water storage change using (2.44) in Chapter 2. The
obvious North-South “stripes” exist, too, (see Figure 4.20) and we have to apply the
Gaussian averaging function to smooth the global solutions. Figures 4.21 through 4.23
show the improved/smoothed solutions with different radii of 200 km, 400 km and 600
km. It may also be claimed that a stable solution can only be achieved by a Gaussian
averaging function with a radius of at least 400 km.
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Figure 4.20: Global solutions (South America shown) from in situ LOS gravity
differences (no smoothing)
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Figure 4.21: Global solutions (South America shown) from in situ LOS gravity
differences (Gaussian smoothing with radius 200 km)
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Figure 4.22: Global solutions (South America shown) from in situ LOS gravity
differences (Gaussian smoothing with radius 400 km)
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Figure 4.23: Global solutions (South America shown) from in situ LOS gravity
differences (Gaussian smoothing with radius 600 km)
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To compare the global solutions from using in situ LOS gravity differences with the
global solutions from using in situ geopotential differences, we calculate their degree
variances (in cm in equivalent water thickness), respectively. The red line in Figure 4.24
shows the degree RMS of the raw data from NECP/NCAR, the green line represents the
degree variances of the global solutions using in situ geopotential differences and the
blue line represents the degree variances of the global solutions using in situ LOS gravity
differences. Both the green line and the blue line agree well with the red line at those low
degrees, but above the degree 30 and the degree 40, the green line and the blue line jump
away from the red line, respectively. This means that, while the global solutions using in
situ geopotential differences are only reliable below degree 30 (corresponding to a spatial
resolution of 6° x 6" at the equator), the global solutions using in situ LOS gravity
differences can achieve a resolution of degree 40 (corresponding to a spatial resolution of
4.5" x4.5° at the equator).

cm

N M M M M M M N
0 10 20 30 40 50 60 70 80 90
degree

Figure 4.24: Degree variances of water storage changes in July 2003 (red); degree
variances of estimated water storage changes in July 2003 from in situ geopotential
differences (green); degree variances of estimated water storage changes in July 2003
from in situ LOS gravity differences (blue)

4.3.2. Regional solutions

Following the same procedure in Section 4.2.2, I also estimate regional solutions but
using in situ LOS gravity differences. The results are different from the results of Section
4.3.1 above. First, the solutions from iterative least-squares estimation with simultaneous
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updating of the a-priori covariance, are still the most stable and reliable solutions. Second,
the approach, based on an optimal regulization factor via formulas for the repro-BIQUUE
of variance components, achieves stable and reliable solutions, too. The solutions from
Bayesian inference with variance components are still not smoothed enough for most of
the months. Also, from Figure 4.28, the regularization method, based on an optimal
regulization factor via formulas for the repro-BIQUUE of variance components, can
achieve the highest frequency information, and both of the regional solutions perform
much better than the global solutions.

Jan. 2002 Feb. 2002 Mar. 2003 Apr. 2003 May 2003 Juns 2003
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Figure 4.25: Regional solutions from in situ LOS gravity differences and iterative least-
squares estimation with simultaneous updating of the a-priori covariance
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Figure 4.26: Regional solutions from in situ LOS gravity differences and Bayesian
inference with variance components
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Figure 4.27: Regional solutions from in situ LOS gravity differences and an optimal
regularization factor via formulas for the repro-BIQUUE of variance components
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Figure 4.28: Square root of PSD of estimated water height change. The blue
dashed line represents the results of an optimal regularization factor via formulas for the
repro-BIQUUE of variance components corresponding to Figure 4.27. the green dashed

line represents the results of iterative least-squares estimation with simultaneous updating
of the a-priori covariance corresponding to Figure 4.25. the black solid line represents the
global solutions using LOS gravity difference corresponding to Figure 4.22.

4.4. Effects of the modeling errors of the time-variable ocean
tides and the atmosphere

In the real GRACE data processing, we must consider the short term mass variations in
the atmosphere, because these time-varying effects cannot be eliminated by the repeated
observations of the GRACE measurements [Han 2003b; Han et al., 2004]. Either the
model from the European Center for Medium-range Weather Forecast (ECMWF) or the
one from the National Centers for Environmental Prediction (NCEP) can be used to
correct the short term mass variations of the atmosphere. To analyze the effects of the
modeling error of the short term mass variations of the atmosphere on the recovery of
continental water storage change, I simply take the difference between these two models
as an indicator for any modeling error. The other large systematic effect comes from the
ocean tides, which can be either corrected by the model CSR4.0 [Eanes and Bettadpur,
1995] or by the model NAO99 [Matsumoto et al., 2000]. I also take the difference
between these two models, and analyze the effects of the modeling error of the ocean
tides on the recovery of the continental water storage change, but shall consider just four
components, namely, K,, O, , M, and S, .
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The global atmospheric pressure data are available from both ECMWF and NCEP, and
the pressure data, p,, can be converted into equivalent water thickness or height by the

following relationship,
P (4,6,1)

9Pw
where h(A4,0,t) is the equivalent water height, i.e., the expression of the atmosphere

h(4,0,t) = (4.1)

pressure in terms of water height. g is the nominal gravity value, p,, is the density of

water. A, @ are the longitude and latitude of the surface pressure data point, and t is the
time.

We choose to use spherical surface functions to represent a global grid of h(4,60,t) ata

certain time epoch t, by using a quadrature to calculate the corresponding spherical
surface coefficients,

A O] _ 34K, eyt o o[eosm)
{Aﬁm(t)}_MRpE(zlﬂ)jo dg], sincdo h(w,t)ﬂm(cose){ . } (4.2)

sin(mA)
where AC, (t) and AS, (t) are the spherical surface coefficients of the time-varying

surface mass change, kK, is the Love number, p; is the mean density of the Earth.

Both ECMWF and NCEP provide gridded surface pressure data every 6 hours, so that we
use (4.2) to calculate the corresponding spherical surface coefficients using the
differences of the equivalent water height between the two models every 6 hours in a day.
These calculated coefficients will be used to calculate increments for the geopotential
differences and the LOS gravity differences between the two satellites, considered as the
system errors coming from the non-perfect modeling of the atmosphere; then, they are
added to the previously simulated in situ geopotential differences and the simulated in
situ LOS gravity differences, respectively. Figure 4.29 shows the time-varying
atmospheric model errors along the GRACE orbit for July 2003 in terms of in situ
geopotential differences. By comparing Figure 4.29 with Figure 4.7, it is clear that
overall the effects of the modeling error of the atmosphere are one order smaller than the
signals of terrestrial water storage change, and especially smaller on the continents.
However, for the Antarctic area, the effects of the modeling error are very big, which can
be contributed to the poor observations in the Antarctica area. The conclusions hold true
when we are comparing the effects of the modeling error of the atmosphere with the
original signals of the terrestrial water storage in terms of the in situ LOS gravity
differences, as shown in Figure 4.30.
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Figure 4.29: Time-varying atmospheric model error along the GRACE orbits for July
2003 in terms of in situ geopotential differences
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Figure 4.30: Time-varying atmospheric model error along the GRACE orbits for July
2003 in terms of in situ LOS gravity differences

The effects of the ocean tidal error in terms of both the geopotential differences and the
LOS gravity differences are computed, and then added to the simulated in situ
geopotential differences and the simulated in situ LOS gravity differences, respectively.
First, the time-variable ocean tide is decomposed into temporal sine and cosine
components, and each component is expanded into spherical surface coefficients so that

each tidal constituent consists of four sets of coefficients, CS and SS for the cosine

component, C* and S° for the sine components. The gravitional potential at satellite

altitude generated by a particular ocean tidal constituent with frequency, @, and initial

phase, ¢°, is given by [Han, 2003b]:
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vu,e,z;o:%"ii[?j P, (cosd)(C,, (t)-cosmi+S, (t)-sinmi), (4.3)

n=0 m=0
where, C_(t)=C°S cos(at +¢°)+C > sin(at +¢°), and
S, (1)=SC cos(awt+¢°)+S> sin(at+¢").

Similarly, we can also calculate the LOS gravity differences generated by a particular
ocean tidal constituent, after C_(t) andS__(t) have been calculated, with a little
modifications to the formulas (2.21) through (2.23).

Figure 4.31 shows the geopotential differences generated by the constituents K,, O, ,
M, and S, . In general, the effects of the ocean tidal modeling error are one order smaller

than the signals from the terrestrial water storage change. One point to mention is that the
effects of the modeling error of S, can hardly be eliminated in a monthly solution

because the aliasing period of S, is 182.5 solar days, while the other constituents K, O,
and M, have their aliasing periods as 23.94 hours, 25.82 hours and 13.7 days [Han,

2003b]. Figure 4.32 shows the LOS gravity differences generated by the same
constituents, and the order of the effects of ocean tidal error are one order smaller than
the signals from the continental water storage change, too.

We consider their effects on the in situ geopotential differences and the in situ LOS
gravity differences, and solve for regional solutions again. Only the results after applying
the iterative least-squares estimation with simultaneous updating of the a-priori
covariance are presented and shown in Figure 4.33 and Figure 4.34. By comparing these
two figures with Figures 4.16 and 4.25, it can be concluded that the recovery of terrestrial
water storage change is not affected significantly by the modeling errors of the
atmosphere and the ocean tides. Of course, this is based on the assumption that the
differences of the two different models reflect the modeling errors properly, for either the
atmosphere pressure or ocean tides.
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Figure 4.31: Time-varying tidal model errors computed along the GRACE orbits for July
2003 in terms of in situ geopotential differences. (a) K|, top left; (b), O, , top right; (c),

M, bottom left; (d) S,, bottom right
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Figure 4.32: Time-varying tidal model errors computed along the GRACE orbits for July
2003 in terms of in situ LOS gravity differences. (a) K, top left; (b), O, , top right; (c),
M, bottom left; (d) S,, bottom right
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Figure 4.33: Regional solutions from in situ geopotential differences and iterative least-
squares estimation with simultaneous updating of the a-priori covariance
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Figure 4.34: Regional solutions from in situ LOS gravity differences and iterative least-
squares estimation with simultaneous updating of the a-priori covariance
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CHAPTER 5

RECOVERY OF TERRESTRIAL WATER STORAGE
CHANGE GLOBALLY AND REGIONALLY

5.1. Introduction to GRACE data

The data from the GRACE mission include the inter-satellite range change measurements,
as well as the accelerometer, GPS and attitude measurements from each satellite.

The GRACE products are developed, processed and archived in a joint Science Data
System (SDS) between the Jet Propulsion Laboratory (JPL), the University of Texas
Center for Space Research (UTCSR), and the GeoForschungsZentrum Potsdam (GFZ).
Figure 5.1 shows the GRACE mission data flow.

The GRACE data are divided into four different levels: the Level-0 (L0O), the Level-1A
(L1A), the Level-1B (L1B), and the Level-2 (L2). The LO data are the raw data,
consisting of raw, unprocessed telemetry data that have been decommutated by
Deutsches Zentrum fiir Luft- und Raumfahrt (DLR) and the German Remote Sensing
Data Center (DFD). The L0 data are calibrated and time-tagged in a non-destructive
sense, and then labeled Level-1A (L1A). L1A data products are not distributed to the
public. These data undergo extensive and irreversible processing, and are converted to
edited data products at 5 second sampling [Wu et al., 2004]. The products labeled L1B
include, among others, the inter-satellite range, range-rate, range-acceleration, the non-
gravitational accelerations on each satellite, the orientation estimates, the orbits, etc. The
L1B products are processed to produce the monthly gravity field estimates in form of
spherical harmonics coefficients. Occasionally, several months of data are combined to
produce an estimate of the mean or static gravity field. These estimates are labeled L2.
After validation, all L2 and accompanying L1B products are released to the public
through two portals. One data center is the Physical Oceanography Distributed Active
Archive Center (PO.DAAC) at the Jet Propulsion Laboratory, Pasadena, USA. The other
is the Information System & Data Center (ISDC) at the GeoForschungsZentrum Potsdam
in Germany. The monthly estimates are only distributed through the PO.DAAC or ISDC
websites. Table 5.1, Table 5.2 and Table 5.3 show the components of the L1A products,
L1B products and L2 products.
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Figure 5.1: GRACE mission data flow (http://www.csr.utexas.edu/grace/asdp.html)

Measurements Product Sample rate

K-Band Ranging K and Ka frequency integrated carrier | 10 Hz
phase

GPS RO-Measurements SNR & phase 50 Hz

GPS Orbit Data SNR & phase 1-10Hz

Acceleration Linear & angular accelerations 10 Hz

SCA Quaternions Orientation of SCA axes relative to 0.2-2Hz
inertial frame

Table 5.1: Level-1A products
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Measurements Product Sample rate
K-Band Ranging Biased range & derivatives 0.2 Hz
Laser Ranges to Satellite | Ground site-GRACE distance 0.2 Hz
Satellite Position & Cartesian 0.2 Hz
Velocity

Acceleration Non-gravitational linear accelerations | 0.2 Hz
Spacecraft Attitude S/C and ACC attitude 0.2 Hz

Table 5.2: Level-1B products

Measurement Product Sample
interval
Geopotential Field Spherical harmonic coefficients 30 days or
longer
Satellite Position & Cartesian 5s
Velocity

Table 5.3: Level-2 products

By using the GRACE L2 products, it is possible to globally detect the continental water
storage change at a certain resolution from the GRACE mission. Wahr et al. [1998], first
connected changes in the coefficients of the gravity field to changes in surface mass
density, by expressing changes in surface mass in equivalent water thickness. Rodell and

Famiglietti [1999] tested 20 drainage basins, ranging in size from 130,000 km* to

5782,000 km”, and used estimates of uncertainty in the GRACE technique to determine
in which basins water storage changes may be detectible by GRACE and how that
detectibility may vary in space and time. Rodell and Famiglietti [2001] enhanced their
study based on observations of groundwater and surface water variations as well as snow
and soil water variations, rather than on models. Tapley et al. [2004b] showed the month-
to-month geoid variability for South America during 2003, claiming that for the Amazon
basin, which is worldwide the largest drainage basin (>5 million km?), a local maximum
of 14.0 mm relative to the mean was observed in April 2003, and a local minimum of -7.7
mm was observed in October 2003.

KBR range-rate and range-acceleration measurements, the GRACE L1B data, can be
used to regionally recover the continental water storage changes. Han et al. [2005b]
studied the estimation of continental water storage regionally, instead of globally, and
claimed that higher frequency information of the continental water storage has been
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acquired by fully exploiting the high accuracy of the KBR range rate (£ 0.1zm/sec).

Mayer-Giirr et al. [2005a,b] used a combination of range, range rate, and range
acceleration after decorrelation and achieved a new spherical harmonics model, ITG-
GRACEOIs, which is comparable to the solutions of both GFZ and CSR, with the
advantage of no accumulated force effects and of low computational costs.

In this chapter, both the in situ geopotential observations and the in situ LOS gravity
difference observations are used to estimate continental water storage change regionally
by applying the different regularization approaches described in Chapter 3.3; the results
will be compared to each other, and to the global solutions.

5.2. Transformations and perturbations in GRACE data
processing

The primary GRACE L1B data I used are the KBR inter-satellite range rates and range
accelerations with a sampling rate of 5 s, and a precision of £0.1 zm/s for range rate
and a precision of +0.1 zgal (Kim [2000]) for range acceleration. Precise absolute orbits

for the GRACE satellites [S. Bettadpur, Center for Space Research (CSR), personal
communication, D. Yuan, Jet Propulsion Laboratory (JPL), personal communication, and
S. Zhu, GFZ, personal communication] are provided with a sampling rate of 5 s and an
estimated accuracy of =2 cm for the position error. The background models for the
precise orbit determination (POD) are described in the GRACE L2 Handbook [Bettadpur,
2006]. For example, the GGMO1C [Tapley et al., 2004a] geopotential model was used for
the background gravitational force model. The accelerometer data have a sampling rate of

1 s and a claimed precision of £10° ggal , and the star sensor data have a sampling
rate of 5 s and a precision of about £100 urad .

5.2.1. Transformation of time systems
In this section I just simply introduce the transformation between the GPS time (used in
GRACE data processing) and the Terrestrial Dynamic Time (TDT). For other time

systems such as the Universal Time or the Sidereal Time, please refer to Seeber [2003].
The primary time system used in the GRACE data processing is the GPS time t . It is

connected to the International Atomic Time (TAI) by a constant offset:

TAI =tgpg +19s. (5.1)

The difference between TDT and TAI is
TDT =TAIl +32.184s. (5.2)

So, the difference between TDT and tg is

TDT =ty +51.184s . (5.3)
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The time tags of all GRACE observations, tSe ", are seconds in GPS time past 12:00:00,

Jan. 01, 2000 [Bettadpur 2003]; so, whenever we are transforming ts " to TDT, we

must consider the constant difference between the origin of GPS time (0:00:00, Jan.06,
1980) and the origin of GRACE GPS time (12:00:00, Jan. 01, 2000), which, in the unit of
Julian days equals 2451545.0.

5.2.2. Transformation between inertial and Earth-Centered-Earth-
Fixed frames

The Earth-Centered-Earth-Fixed (ECEF) reference frame is necessary for associating
observations and models to the geodetic locations; the inertial reference frame is

necessary for dynamics, integration and ephemerides. The transformation matrix C! at
epoch t between the inertial and the ECEF reference frame is implemented as:

C! =PM®N®RDW (1), (5.4)
where P, N, R and W are the rotation matrices arising from the precession, nutation,
earth rotation and the polar motion, respectively. In Chapter 5 of IERS Conventions
(2003) [McCarthy and Petit, 2004], a procedure in detail is dedicated to describe the

transformation between the inertial frame and the ECEF frame, and all necessary codes in
Fortran are provided on the IERS Conventions web page.

W accounts for the polar motion and is implemented as
W =R, (¥,)R, (X,). (5.5)
where (X, Y,) are the pole motion as tabulated by the International Earth Rotation and

Reference Systems Service (IERS). R is the sidereal rotation and is implemented as
R = R,(-GMST + corrections), (5.6)

where the Greenwich Mean Sidereal Time (GMST) and the corrections are calculated
according to IERS Conventions, 2003. P and N are precession and nutation,
respectively, and are estimated and provided by IERS as well.

5.2.3. Satellite attitude

The inertial orientation of the GRACE satellite is modeled using tabular input data
quaternions. The same data are used for rotating the accelerometer data to the inertial
frame. At epochs when the GRACE quaternion product is not available, linear
interpolation between adjacent values is used.

The attitude measurements obtained by the star sensor are given in the form of

. .0 .0 .0 )
quaternions as follows: ¢, =€, -s1n5, 4, =€, -smz, 4; =€, -smE, q, = COSE’

where e,, e, and e, are the direction cosines of the rotation axis and ¢ is the rotation

angle. Since (,, ,, 0, and (, are given in the i-frame, the matrix
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(90 -d 2(60, +6d,)  2(6,0, —60)
C.=| 2(q,0,-0:9,) QG+ —0a’ —0d; 2(q,0; +07,0;) (5.7)
20,05 +9,9,)  2(0,0;—0,0,) d;+05 -0’ —0;

transforms a vector from the spacecraft frame to the inertial frame.

5.2.4. N-body perturbations

Assuming that the Sun and the Moon can be considered to be point-masses, as is the
satellite, the perturbing acceleration, caused by the gravitational influence of the
perturbing body |, is
i—om (- N, (5.8)
j j 3 3/ :
(ri| =ID* )|

where G is the gravitational constant and m; the mass of the respective disturbing body.

The geocentric vectors r; and r point to the disturbing body j and the satellite,

respectively.

To calculate the perturbing potential V; arising from the disturbing body j, we use the

harmonic development of the tide generating potential and neglect the items higher than

order 2,
2
V; =Gm |r| [[%(30052 Qj)—lj+ﬂ(%(5cos3 Qj)—30059j U, (5.9

i 3 ‘r ‘
‘ri‘ j

where 6, is the geocentric zenith distance of the body j from the satellite.

Cartesian coordinates for all the perturbing planetary bodies are available at JPL, and the
planetary ephemerides DE405 are chosen for this study.

5.2.5. Ocean tides

The ocean tides are modeled as variations to the spherical harmonic coefficients as
specified in Chapter 6 of IERS Conventions (2003),

AC,, —iAS, =F. 3 S (ca, Fist, B, (5.10)
s(n,m) +
where
' ,
- 4.Gp,, (n+m)! 1+k, . 5.11)
g, (n-—m!2n+1)2-5,,)\ 2n+1

Here, g, and G are the mean equatorial gravity and the constant of gravitation , p,, is
the density of seawater (1025kgm™), k; are the load deformation coefficients
(k, =-0.3075, k, =—0.195,k, =—0.132,k, =-0.1032,k, =-0.0892), C. and S__

are the ocean tide coefficients (m ) for the tide constituent s, 6, is the argument of the
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tide constituent S. The summation over + and — denotes the respective addition of the
retrograde waves using the top sign and the prograde waves using the bottom sign. CSR
4.0 1s used for our GRACE data processing, where only eight major (semi-diurnal and
diurnal) tides are used and no minor tides are used.

5.2.6. Solid Earth tide

The Earth is not a perfectly rigid body as the tides from other planetary bodies deform the
Earth and can produce variation in gravitational acceleration as large as 0.2 mgals on the
surface of the Earth; this can be approximated by [Seeber, 2003]:
k Gm. R’ r.
=2 2R3 y5c0s70) s
2 | Irl I,

where K, is the Love number describing the elasticity of the Earth body, m; and r; are

r

+6c0s0, , (5.12)

I

the mass and position vector of the disturbing body j. R is the mean Earth radius, r is
the position vector of the satellite, &; is the geocentric zenith distance of the body ]

from the satellite.

The changes induced by the solid Earth tides in the free space potential are most
conveniently modeled as variations in the standard geopotential coefficients C_ and S, .

The contributions AC_ and AS__ from the tides are expressible in terms of the Love

number. The computation of the tidal contributions to the geopotential coefficients is
most efficiently done by a two-step procedure. The first step is to compute the time
independent terms including the permanent contribution to the geopotential coefficient

C,,, according to:

n+1

AC_ —iAS, = Ko iGmi [&] P, (sin® e, (5.13)
2n+14 GM \rj\

where, K is the nominal Love number for degree n and order m, R, the equatorial

radius of the Earth, G the gravitational constant, m; the mass of body j (j=2 for the

Moon and j =3 for the Sun), M the mass of the Earth, r; the position vector of the

body j from the geocenter, ®@; and A, the body-fixed geocentric latitude and longitude

of the body j. P, is the normalized associated Legendre function.

m

Equation (5.13) yields AEnm and A§nm for both n=2 and n=3 forall m, apart from
the corrections for frequency dependence that needs to be evaluated in the step 2. The
computation of changes in the coefficients of degree 4 produced by the tides of degree 2
is given by:

_iAS, - hlll}
mos 2 GM

j=2

AC.

4m

3
k(+) 3. Gm. R o i
2m J[WJ P (sin® )e™™, (m=0,1,2), (5.14)
r.
J
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which has the same form as equation (5.13) for n =2, except for the replacement of K,

by k{:). The parameters k,,, and k{?) for the computation of step 1 are given in Table
6.1 of Chapter 6 of IERS 2003.

The frequency dependence corrections to the AC,  and AS__ values, obtained from step

1, are computed in step 2 as the sum of contributions from a number of tidal constituents
belonging to the respective bands such as long period, diurnal and semi-diurnal periods.
More details can be found in the IERS Conventions [McCarthy and Petit, 2004].

5.2.7. Atmospheric and Oceanic variability

The short term mass variations in the atmosphere and in the oceans need to be removed in
the GRACE data processing. These time varying effects have to be considered since they
cannot be eliminated by the repeated observations of the GRACE measurements. The
non-tidal variability can be removed by using the GRACE AODI1B products (Flechtner,
2005b). It is a combination of the ECMWF operational atmospheric fields (0.5° of spatial
and 6 hours of temporal resolutions) and a barotropic ocean model driven by this
atmospheric fields. The AOD1B products provide spherical surface coefficients up to
degree and order 100 at an interval of 6 hours, and the value of the surface functions at
intermediate epochs is obtained by linear interpolation between the bracketing data points.

5.2.8. Pole tide

The pole tide is generated by the centrifugal effect of polar motion and affects the
geopotential coefficients C,, and S,, . It can be calculated according to

AC,, =-1.333x107"(m, —0.0115m,), (5.15)

AS,, =-1.333x107°(m, +0.0115m,), (5.16)
where (M, m,)denote the wobble variables in seconds of arc; their relation to the polar
motion variables (X,,Y,) can be found in Chapter 7 of the IERS Conventions [McCarthy
and Petit, 2004].

5.3. Data processing strategy

In this section we describe the approach to estimate the in situ geopotential differences
and LOS gravity differences precisely, using the KBR data, accelerometer data and star
sensor data (attitude data) with consideration of systematic errors in the KBR and
accelerometer data.

5.3.1. Generating in situ LOS gravity difference observations

The KBR instrument of the GRACE satellites provides precise range measurements
between the two satellites, one following the other in approximately the same plane. Let

r, = [X1 Y, Zl]T and r, = [X2 Y, 22]T represent the position vectors of the two
satellites in the inertial frame, and p,,, p,, and p,, represent the observed range, range
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rate and range acceleration between the two satellites. From Appendix A, in case of
absent random errors, we know:
.12 )
.. . |r12| ~ P
P =Ty €+ —, (5.17)
P2
where e, denotes the LOS unit vector from the first satellite to the second satellite.

Introducing the KBR measurement error € into (5.17), leads to:

2
LOS |r12| — P

,012 = +——"+e, (5.18)
P2

where the symbol tilde indicates that the quantity was measured with the error e, and

i>% is defined to be equal to I, -e,,. For the convenience of future formula derivations,

-2
r P
r,,f,) = rllz_os | 12||I' | =
12
/012 = f (1%, 1, 1,) +e. (5.19)
Since the KBR range measurements are biased and the biases are changing irregularly
even over a day, in the real GRACE data processing we replace p,, by |r12| in (5.18).

LOS

we introduce a new function f (i), so that

The non-linear observation equations are linearized with respect to the inter-satellite state
vectors and the parameter i"l'z'os as follows:

y= plZ - f(rlLOS

T T
of
. OF, |, ’

LOS T . T . T _ T T T _ T T -
and &' [12 Ar,, Arlz] with Ar,, =1, —rlz‘o and Ar, =1, —rlz‘o . The a-priori

il )=a'E+e, (5.20)

o2 112
where

aT — 1 (i
or,,

information for the inter-satellite state vectors can be obtained from the precise orbit

determination, namely:

T, r

{42}{”}%, e, ~N(,C,), (5.21)
U I

where C, is the covariance matrix of a-priori information on the inter-satellite state

vectors. The other a-priori information on the LOS gravity differences can be obtained
from available geopotential and other force models,

¥ LOS - LOS

r‘12 - r12

(5.19) through (5.22) are primarily used to improve the inter-satellite state vector by

using the KBR measurements; this means that the parameters 5%, r,, and ¥,, are
estimated simultaneously to get %, F,, and r12 The estimated parameter i5*° is
denoted by 5% and its covariance matrix is denoted by N_'.
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The parameter I5°° includes the gravitational acceleration, non-gravitational acceleration,
and also the system errors in the accelerometer and KBR measurements.

We model the systematic errors Ap in the KBR measurements as fOIIOWS'
Ap=B,+B, cos(—t) + B, s1n( t) + B, cos( t) + B; sm( ), (5.23)

where B,, B,, B,, B, and 85 are the emplrlcal parameters to be estlmated, T 1is the
orbital period and t is the time. The systematic errors Ap consist of bias and periodic

components with frequencies such as 1-cpr (cycle-per-revolution) and 2-cpr.
We use the following error model for the accelerometer measurements:

M) =a’ M)+’ +[aOF +(t-t)®m +e (1), (5.24)
where a° is the observed non-conservative force in the sensor frame denoted by the
superscript S; da’, s° and d° are the bias, scale factor and the drift vectors; [ﬁs(t)] isa

3 by 3 diagonal matrix, and e°(t) is the random error of the measurement.

When considering the systematic errors in the KBR and accelerometer measurements, we

define

= LOS

i, =8,-e,+a, e, +Ap+Al,. e, +e,, (5.25)

where g, is the difference of gravitational acceleration between the two satellites in the
inertial frame, a,, is the difference of the measured non-gravitational acceleration vector

between the two satellites transformed to the inertial frame,
Af,o. =C! [5215 [Ns(t)]s +(t—t )5as] and e, is the random error of £;*°,

e, ~ (0,0, *N_"). The LOS unit vector e,, in (5.25) should be denoted as estimate, ¢€,,,

since it is actually calculated from the estimated vector of r,,, but for simplicity we still
denote itas e, .
Let B B B3 B4 B5 ] 5
. 27 4r . A
1 cos —t sin(—t) cos(—t) sin(—t)|,
{ (F70 sin(==t) cos(—1) sin(— )}
el s,

T=lcim-e,t) CrM)-[A®]-e,® (t—t,)-Cit)-e, ()], then arrive at
5% —g,-e,—a,-e,=bp+I"y+e.. (5.26)

(5.26) is used to estimate the empirical parameters of the KBR measurements and to
calibrate the accelerometer by a weighted least-squares adjustment. A global gravity
model of the Earth such as EGM96 ought to be used to calculate the value of g, -e,, in

(5.25). The systematic accelerometer error vector is solved for everyday, and the
systematic KBR error vector is solved for every full and every half orbital revolution.

After correcting for the KBR system error |§ and for the accelerometer system error 7y,
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and after substituting g,, -e,, and a,, -e,, by g.3° and a;>°, respectively, we have

finally obtained the in situ LOS gravity differences as follows,
5> =15 —a® -b'p-1'7. (5.27)

5.3.2. Generating in situ geopotential differences observations

Estimating in situ geopotential difference precisely follows a similar procedure as to the
estimation of LOS gravity differences the details of which can be found in Han et al.,
[2006b]. Here for completeness we simply introduce the models used.

Let p,, represent the observed range between the two satellites. Then we have,
P =T, €, (5.28)

and after introducing the KBR measurement error e into (5.28), it follows:

P =T, €, +e, (5.29)
where the symbol tilde again indicates that the quantity was measured with the random
error €.

By considering the energy conservation principle along the orbit and from (2.12), we
obtain

) T L. 2
g(rIZ’rlz avlz) =V12 _rlTrIZ _E|r12| + EIF; + E1F2 +C12 > (5.30)
t

where, E/, = j(i‘z -f, — ¥, -f, )dt and

to

R . . . . . .
E12 = W, (Xlz Yio tXn Y = YXn = YiXn + X Y = Yo Xl)'

By introducing a new parameter, P, , which combines the gravitational potential,
dissipating potential energy and the energy constant, it follows:

P,=V,+E;+C,. (5.31)
The non-linear observation and constraint equations are now linearized with respect to
the inter-satellite state vectors and the parameter P, as follows:

y=p,—F,-e,=a&+e, (5.32)
K=0-g(r,,I,,V,) =k'E, (5.33)

where

t 1Y (e ] )
a =0 [N [
or,, o or,, o
T T
k' = 9 9 o9
0P, |, or, |, or, |,
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T _ T T - T _ T T T _ T T S
and § = [P12 Ar,, Arlz] with Ar,, =1, —rlz‘o and Ar, =1, —rlz‘o. The a-priori

information for the inter-satellite state vectors can be obtained from the precise orbit
determination, namely,

T, | T

~|=|.7 [+ey, e, ~N(0,C,), (5.34)
Iy P!

where C, is the covariance matrix of a-priori values for the inter-satellite state vectors.

The other a-priori information of the gravitational potential differences can be obtained
from available geopotential and other force models,

P,=P,+e. e ~N(0.07). (5.35)
(5.31) through (5.35) are used to estimate the inter-satellite state vector and the parameter
P, simultaneously.

The parameter P, includes the gravitational potential, dissipating potential energy and

the energy constant, and also the systematic errors in the accelerometer and KBR

measurements. So, we need to model the systematic errors and estimate them from P, .

After correcting the systematic KBR error |§ (with the same definition as in Section 5.3.1)

and the systematic accelerometer error ¥ (with the same definition as in Section 5.3.1),

we have finally obtained the in situ gravitational potential difference obtained as follows:
Vi, =P, -b'B-EL(1)-B,. (5.36)

5.3.3. Two-step least-squares adjustment

In both Sections 5.3.1 and 5.3.2, since the systematic errors of the KBR measurements
are related to different orbit arcs in a day, I actually applied a two-step adjustment; this
entails that, first in the data preprocessing, we estimate the ©s°® or P, simultaneously
with the inter-satellite vectors (r,, and r,, ), by exploiting the high precision KBR range
rate p and the range acceleration p ; then we estimate the KBR system error ﬁ and the

A . L 2 .
accelerometer system error ¥ from either ,;°° or P, . However, it needs to be proved

that the two-step method provides the same solution as the one-step method, namely
when estimating all the systematic errors in one step.

Let us introduce the Gauss-Markov Model,
y=A(RE)+e,tk(AR)=m<n, e~ (0,0, P ' =X ), (5.37)
nxn
in which y is the nx1 vector of observations, A is the nx p coefficient matrix (n> p),
R isa pxm matrix ( p > m) and will be explained in more detail later, & is the mx1
vector of unknown parameters, e is the nx1 vector of random errors, 0; is the

unknown variance component, P is the nxn symmetric, positive-definite weight matrix,
2., is the nxn symmetric, positive-definite dispersion matrix.
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For the LEast-Squares Solution (LESS), the normal equations are

RTNRE =R¢ for [N,c]:= ATP[A,y], (5.38)
and the final solution for the parameter vector § is
E=(R"NR)'R"c. (5.39)

Now suppose ¢ = RE in which case we obtain the LEast-Squares Solution for { as

{=N"c, for [N,c]:= ATP[A,y]. (5.40)
After having estimated { first, we can set up another Gauss-Markov Model,
{=R¢+e, e ~(0,0N"), (5.41)

Thus the LEast-Squares Solution for & is
£=(R'NR)'R"N{=(R"NR)"R"NN"¢c=(R"NR)'Rc, (5.42)
which equals & in (5.39).

5.4. Results and analysis

A year of continuous GRACE L1B data (from Aug. 2003 to July 2004) has been chosen
to test our different regularization approaches to recover terrestrial water storage
regionally. To evaluate the approaches, we choose an area covering the Amazon and
Orinoco basins since the mass changes there are mainly due to tropical precipitation and
floods. Monthly GRACE derived gravity models are used to recover the water storage
changes globally and to evaluate them for the Amazon area. GRACE L1B data including
the inter-satellite range measurements from the KBR system, non-conservative data from
the onboard accelerometers, as well as orientation data of the satellites from the star
cameras, are processed daily. Precise absolute orbits for the two satellites for this study
are provided by CSR [S. Bettadpur, Center for Space Research (CSR), personal
communication, D. Yuan, Jet Propulsion Laboratory (JPL), personal communication, and
S. Zhu, GFZ, personal communication]. The orbits provided by CSR are from Aug. 2002
to May 2006, and the orbits provided by JPL are from June 2006 to Dec. 2006.

5.4.1 The in situ LOS gravity differences and in situ geopotential
differences

Figure 5.2 shows the different perturbations, in terms of LOS gravity differences, arising
from N-body, Solid Earth tides, Ocean tides, Pole tide, and the non-tidal variability in the
atmosphere and oceans. For each perturbation, its variations in both ascending and
descending arcs are plotted. The perturbations from N-body and Solid Earth tides are
periodic, depending on the relative positions of the two GRACE satellites and the
planetary bodies with respect to the center of the Earth. The dominant frequencies of both
perturbations are 2 cycles per revolution. The effect of the non-tidal variability in the
atmosphere and the oceans has a magnitude at the order of 0.1 ugal

(1zgal =10 msec™ ), much smaller than the other perturbations which are at the order
of 1 ugal . Figure 5.3 indicates the perturbations from the same sources, but computed in

terms of geopotential differences, with the unit of potential, m* sec . The effects of the
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non-tidal variability in the atmosphere and the oceans are about +0.003 m* sec™, while

the biggest perturbation from N-body can reach 0.3 m” sec ™.
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Figure 5.2: Perturbations in terms of LOS gravity differences. (a) Top: from N-body
(solid), from Solid Earth tides (dashed); (b) Bottom: from Ocean tides (solid) and the
non-tidal variability in the Atmosphere and Ocean (dashed). The x-axis is in latitude.
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Figure 5.3: Perturbations in geopotential differences from N-body (Top panel, solid),
Solid Earth tides (Top panel, dashed), Ocean tides (Bottom panel, solid ), and the non-
tidal variability in the Atmosphere and Ocean (Bottom panel, dashed). The x-axis is in

latitude.

After all of the corrections have been based on the same geophysical models as used in
the real GRACE L2 processing, both the in situ LOS gravity differences and the in situ
geopotential differences are estimated following the calibration of the accelerometers and
the KBR instruments, as has been developed and explained in Section 5.3. The
geopotential model, GGMO1C [Tapley et al., 2004a], truncated at degree and order 120,

is used as a-priori approximation and subtracted from the estimates. Therefore, the

estimates, 85> or dV,,, represent the anomaly with respect to the GGMO1C field, and

should be called in situ incremental LOS gravity differences or incremental in situ
geopotential differences. Instead, we will continue to call them in situ LOS gravity

difference and in situ geopotential difference, and will only add the term “incremental”

explicitly when it is really necessary. &g,;° and &V,, will be predicted, too, from the

monthly GRACE L2 coefficients corresponding to the same month when the GRACE
L1B data are being used. Two profiles for both estimates of the in situ LOS gravity
differences and in situ geopotential differences are shown in Figure 5.4. In the top part of
Figure 5.4, the red line presents the in situ LOS gravity difference estimates, and the
green line shows the same quantity, but predicted from a monthly GRACE L2 model.
The x-axis of the plot is in latitude, and the profile is over the Amazon basin. The red line
(the in situ LOS gravity differences) and green line (the predicted LOS gravity
differences, but shifted by 3 ugal ) agree well in phase; for instance, both of them have a

jump at the region from —20° to 0° in latitude. The predicted 69" is slightly smoother
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than the in situ &9,;° , which is to be expected since the later one is computed from a

monthly GRACE gravity model, and this monthly GRACE gravity model is based on the
GRACE L1B data of the whole month. The bottom part of Figure 5.4 shows the in situ
geopotential differences and the predicted values from the same GRACE L2 model. The
red line (the in situ geopotential differences) and the green line (the predicted

geopotential differences, but shifted by 0.01 m* sec ) also agree well in phase generally.

The two quantities, 83> and &V,, are closely correlated if we compare the top figure

with the bottom figure. Figure 5.4 indicates that &y,;° provides more of the higher

0]

frequency information than &V,,, but &y;° does not have as much information as &V,

in the lower frequencies, since it is easier to see the low frequency variations of 6V,, than
L . . . L . . .
that of 895>° . This can be explained in so far as &g, can be seen as time derivative of

oV,, so that it is filtered for high frequencies, and some of the low frequency information
has been lost.

Figure 5.5 shows the square root of PSD of both the in situ LOS gravity differences

2% and the in situ geopotential differences 6V,, , and the square root of PSD of their

predicted values from the corresponding monthly GRACE gravity field. The two figures
on the left and right confirm that the estimates of both LOS gravity differences and
geopotential differences contain more higher frequency information than their values
predicted from the corresponding GRACE gravity model.
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Figure 5.4: The in situ LOS gravity difference (top) and geopotential difference (down)
estimates across the Amazon basin.
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Figure 5.5: Left: Square root of PSD of in situ LOS gravity differences (red) and
predicted values from the corresponding GRACE gravity model (green). Right: Square
root of PSD of in situ geopotential differences (red) and predicted values from the
corresponding GRACE gravity model (green).
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Figure 5.6: The differences of estimated in situ LOS gravity differences using two
different initial orbits, one from CSR and the other one from GFZ. The abscissa is in day
numbers of July 2003. The ordinate is in daily mean differences of the estimated in situ
LOS gravity differences, and its unit is zgal

For this dissertation, I use the precise absolute orbits for the GRACE satellites [S.
Bettadpur, Center for Space Research (CSR), personal communication], provided with a
sampling rate of 5 s and an estimated accuracy of +£2 cm. We also have orbit data from
the GFZ, but only for July 2003. The GFZ orbit is used to estimate the in situ LOS
gravity differences for the month of July 2003, and Figure 5.6 shows the estimated in situ
LOS gravity differences using two different orbits. The differences are small and
~0.01zgal , indicating that the use of either orbit is sufficiently accurate for the

computation.

5.4.2. Estimation of terrestrial water storage change of the Amazon
basin

After obtaining the in situ LOS gravity differences or the in situ geopotential differences,
the next step is to estimate the water storage change regionally. According to (3.4) or (3.9)
of Chapter 3, we want to estimate continental water storage change on a set of grid points
with dimentions of 2 degrees in longitude and 2 degrees in latitude. These grid points are
shown as the black crosses in Figure 5.7. A month of ground tracks of the GRACE
satellites, shown in the figure as blue dotted lines, guarantees that the whole Amazon
basin area has been covered, even though not strictly uniformly. The green curve includes
the Orinoco basin (the small upper one) and the Amazon basin (the large lower one).
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Figure 5.7: GRACE ground tracks in Aug. 2003, the 2° x2° grid points, and the
boundaries of the Amazon and the Orinoco basins

Figures 5.8 through 5.11 are the regional solutions for which different approaches have
been applied using the in situ LOS gravity differences. All the results cover the time
period from Aug. 2003 to July 2004. Figure 5.8 shows the regional solution after
applying iterative least-squares estimation with simultaneous updating of a prior
covariance (Chapter 3.3.3). From the figure, we can see that the water is first
accumulating at the south of the Amazon basin and then moves northward and eastward.
Figure 5.9 shows the regional solution after applying Bayesian inference with variance
components, which is not stable and, moreover, quite difficult to analyze as far as the
pattern of the water change is concerned. This means that its final regularization
parameter is too small and does not really improve or smooth the solutions enough. On
the other hand, Figure 5.10 shows the regional solution after applying an optimal
regularization factor via formulas for the repro-BIQUUE of variance components, with
solutions that appear to be smoothed too much for the months of Aug., Sept., Oct., Nov.
of the year 2003, as well as in Jan. and July of 2004. Furthermore, for Dec. 2003 and
March 2004, the solutions have not been smoothed enough.

Since the approach of iterative least-squares estimation with simultaneous updating of a
prior covariance achieves the best results, we tried the same approach again, but now
using a new Matérn class covariance function for the a-priori covariance model
[Rasmussen and Williams, 2006]. The covariance function for Figure 5.8 is the

. . r . . . .
exponential function, K(r) = exp(— T) , where r is the distance of the two points and | is

the correlation distance. However, for Figure 5.11 we use a new covariance function,
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matrices are positive-definite. By comparing Figure 5.8 with Figure 5.11, it can be
claimed that the new covariance function also works well for this approach.

\/ng J3r

k(r)= (1 +—— |exp(— T) . Both functions guarantee that the generated covariance
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Figure 5.8: Estimates of terrestrial water storage after applying iterative least-squares
estimation with simultaneous updating of a prior covariance, based on the in situ LOS
gravity differences
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Figure 5.9: Estimates of terrestrial water storage after applying Bayesian inference with
variance components, based on the in situ LOS gravity differences
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Figure 5.10: Estimates of terrestrial water storage after applying an optimal regularization
factor via formulas for the repro-BIQUUE of variance components, based on the in situ
LOS gravity differences
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Figure 5.11: Estimates of terrestrial water storage after applying iterative least-squares
estimation with simultaneous updating of a prior covariance (using a different Matérn
class covariance model), based on the in situ LOS gravity differences

Figures 5.12 through 5.15 reflect the estimated water height changes from the in situ
geopotential differences. Figure 5.12 represents the solutions after applying iterative
least-squares estimation with simultaneous updating of a prior covariance. Figure 5.13
represents the solutions after applying Bayesian inference with variance components,
resulting in unstable solutions as shown in Figure 5.9 before. Figure 5.14 shows the
solutions after applying an optimal regularization factor via formulas for the repro-
BIQUUE of variance components. Except for Aug. and Sept. of 2003, all other solutions
agree well with the solutions shown in Figure 5.12. This means that this approach works
better when using in Situ geopotential differences instead of in situ LOS gravity
differences, if we compare Figure 5.14 with Figure 5.12 and compare Figure 5.10 with
Figure 5.8. The reason that this approach fails for Aug. and Sept. of 2003 may be that the
ratio of the variance components (A ) converges to an unreasonable value, since an
arbitrary initial value (zero) has been set for each parameter. Figure 5.15 is using the
same approach as Figure 5.12, but a different covariance function, namely,
V3 r] J3r

I

k(r)= (1 +— exp(—T) , has been used.
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Figure 5.12: Estimates of terrestrial water storage after applying iterative least-squares
estimation with simultaneous updating of a prior covariance, based on the in situ
geopotential differences
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Figure 5.13: Estimates of terrestrial water storage after applying Bayesian inference with
variance components, based on the in situ geopotential differences
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Figure 5.14: Estimates of terrestrial water storage after applying an optimal regularization
factor via formulas for the repro-BIQUUE of variance components, based on the in situ

geopotential difference
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Figure 5.15: Estimates of terrestrial water storage after applying iterative least-squares
estimation with simultaneous updating of a prior covariance (using a different Matérn
class covariance model), based on the in situ geopotential differences
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Figure 5.16: Terrestrial water storage changes using a monthly GRACE L2 gravity model
after Gaussian smoothing (600km smoothing radius)

Figure 5.16 shows the global solution from the corresponding monthly GRACE gravity
field models, after applying Gaussian smoothing with radius of 600 km. The regional
solutions from Figures 5.8 through 5.15 are all qualified to be compared to the global
solutions in Figure 5.16. First, the regional solutions using in situ geopotential difference
show more higher frequency information than the global solutions; for instance, more of
the water change estimates from Figure 5.12 than those from Figure 5.16 sit inside the
boundaries of the Orinoco and the Amazon. Second, by comparing Figure 5.12 and
Figure 5.8 to Figure 5.16, it can be claimed that higher frequency information can be
achieved from in situ LOS gravity differences.

To have a clearer idea of how different approaches (except the Bayesian inference with
variance components) perform for different observations in the frequency domain, I
computed the averaged monthly Power Spectral Density (PSD) over the study region, and
the results are shown in Figure 5.17. For the regional solutions, I used n =2zRf to

convert the planar frequency f to the spherical harmonics degree n [Jekeli, 1981]. In
Figure 5.17 we can see that the approach based on iterative least-squares estimation with

simultaneous updating of a prior covariance (using the covariance function

ﬁrJ V3r

k(r)= [1 + e exp(— T) ) achieves the highest resolution, if the observation are the
in situ LOS gravity differences. If the observations, however, are the in situ geopotential
differences, the approach of an optimal regularization factor via formulas for the repro-
BIQUUE of variance components achieves the highest resolution. The approach based on
Bayesian inference with variance components is not included in the comparison since its
solutions are not stable for either observation type.
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Figure 5.17: Square root of PSD of estimated water height changes. (a) The top panel is
for the use of the in situ LOS gravity differences, red dashed line corresponds to Figure
5.11, green dashed line corresponds to Figure 5.8, blue dashed line corresponds to Figure
5.10; (b) The bottom panel is for the use of the in situ geopotential differences, red
dashed line corresponds to Figure 5.15, green dashed line corresponds to Figure 5.12,
blue dashed line corresponds to Figure 5.14. In both panels, the black solid line
represents the estimated water height changes from a monthly GRACE geopotential
model (GRACE L2 data product).

5.4.3. Estimation of the terrestrial water storage change of the Congo
river area

To further investigate the recovery of the continental water storage change, we choose
another place, the Congo River area, to test the two approaches using either the in situ
geopotential differences or the in situ LOS gravity differences. The Congo River area is
the largest river in the western part of central Africa. Its overall length of 4,700 km makes
it the second longest in Africa (after the Nile). The river has the second-largest watershed
of any river, trailing the Amazon. From the global hydrologic model of NCEP as shown
in Figure 4.4, the Congo river area is also experiencing huge water changes with a period
of about one year. Here, based on the results of section 5.4.2, we only show the results
after applying iterative least-squares estimation with simultaneous updating of a prior
covariance, either using in situ geopotential differences or in situ LOS gravity differences.
It has to be pointed out that, in Jan. 2004, there have much less L1B data been available
than for the other months (about % of the other months). Figure 5.20 shows the results
from the GRACE L2 data after Gaussian smoothing with a radius of 600 km. Figure 5.18
and Figure 5.19 show the results from using in situ LOS gravity differences and in situ
geopotential differences, respectively. Figure 5.19 is closer to Figure 5.20 than Figure
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5.18, which means that the regional solutions from using in situ geopotential differences
perform better in the low frequency domain, while the regional solutions from using in
situ LOS gravity differences achieve better results in the relatively high frequency
domain. Figure 5.21 confirms the conclusions above.

Mov., 2002 Dec., 2003 Jan., 2004

May, 2004 June, 2004 July, 2004

-40-20-20-10 O 10 20 30 40

Figure 5.18: Estimates of terrestrial water storage after applying iterative least-squares
estimation with simultaneous updating of a prior covariance, based on the in situ LOS
gravity differences
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Figure 5.19: Estimates of terrestrial water storage after applying iterative least-squares
estimation with simultaneous updating of a prior covariance, based on the in situ
geopotential differences

Feb., 2004 Mar., 2004 Apr., 2004 May, 2004 June, 2004 July, 2004

-40-20-20-10 O 10 20 30 40

Figure 5.20: Terrestrial water storage changes using monthly GRACE L2 gravity model
after Gaussian smoothing (600km smoothing radius)
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Figure 5.21: Square root of PSD of estimated water height changes (averaged monthly
PSDs over one year). The blue line represents the square root of PSD (in the unit if
equivalent water thickness, cm) of the results from using in situ LOS gravity differences.
The green line represents the square root of PSD of the results from using in situ
geopotential differences. The black line represents the degree variances from GRACE L2
data after Gaussian smoothing with the radius 600 km.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

For hydrologists it is critical to quantify the global water cycle, e.g., where and in what
quantities the Earth stores water and how it moves with time and locations, which today
is still insufficiently known due to the difficulty of direct measurements. Some space-
based technologies measure various components in the global water cycle, including
precipitation [Simpson et al., 1988], terrestrial surface water [Alsdorf and Lettenmaier,
2003], soil moisture [Entekhabi et al., 2004], glaciers [Schutz et al., 2005], and snow
[Cline, 2005]. GRACE senses the integration of all the components since its orbit is
disturbed by whatever mass anomalies on or under the surface of the Earth. In other
words, GRACE measurements cannot separate one component from another one in the
global water cycle. However, in some regions, it has been clarified which geophysical
process contributes most to the mass changes there, such as post-glacial rebound for the
Hudson bay area, and the hydrological fluxes for the Amazon basin and the Congo river
area.

I have done both a closed-loop simulation study as well as real GRACE data processing
to recover terrestrial water storage change globally and regionally. The LOS gravity
differences as well as the geopotential differences, are the two primary observation types
in this dissertation. Three different regularization approaches have been tested for both
the simulation study and the real case.

In the simulation study, the global grid data of the terrestrial water storage from
NCEP/NCAR (of year 2003) are first converted into global spherical harmonic
coefficients, and then adopted to simulate the perturbed orbits of the two GRACE
satellites. The initial Keplerian elements of the two GRACE satellites are set so that the
generated orbits are as close as possible to the real GRACE situation. From the simulated
orbits, we produce the two primary GRACE observations, i.e., the LOS gravity
differences and geopotential differences. Each of them is used to estimate the water
storage change globally, and regionally for the Amazon basin area, applying the three
different regularization approaches described in Chapter 3.3. First, it is confirmed that the
regional solutions from either in situ LOS gravity differences or in situ geopotential
differences can achieve higher resolution than the global resolutions (after Gaussian
smoothing), as shown in Figure 4.19 and 4.28. Second, as indicated in Figure 4.24, the
global solutions from using LOS gravity differences obtain a better resolution than the
global solutions from using geopotential differences. Third, the regularization approaches,
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iterative least-squares estimation with simultaneous updating of the a-priori covariance
(Chapter 3.3.3) and the use of an optimal regularization factor via formulas for the repro-
BIQUUE of variance components (Chapter 3.3.2), always perform better than the third
approach, namely Bayesian inference with variance components. Finally, I have analyzed
the effects of the potential modeling errors of the atmosphere pressure and the ocean tides
(only considering the four components, K,, O, , M, and S, ), and it is concluded that

the recovery of the continental water storage change is not affected by the modeling
errors. The reason is that the perturbations produced by the modeling errors of the
atmosphere pressure and the ocean tides are one order of magnitude smaller than the
signals from the water storage change on the continents (except Antarctica or Greenland
where were excluded in the simulation study). However, this is based upon the
assumption that the modeling differences can represent the modeling errors of the
atmosphere pressure and the ocean tides, which is of course not entirely true.

For the real GRACE data processing, one year of the GRACE LI1B data from Aug. 2003
to July 2004 is used to recover the continental water storage changes globally and
regionally. I did consider all the perturbations, such as those caused by N-body, ocean
tides, solid Earth tide, atmosphere and ocean variability, as well as solid Earth pole tide.
The corrections are based on the same models as in the GRACE L2 processing according
to the GRACE L2 document [Bettadpur, 2006]. The non-conservative effects are
corrected by the measurements of the accelerometers on board the twin GRACE satellites.
After calibration of the KBR and the accelerometer measurements, we estimate precisely
the in situ LOS gravity differences and the in situ geopotential differences by exploiting
the high precision KBR measurements such as range rates and range accelerations.
Precise orbits have been provided by S. Bettadpur [CSR, personal communication, D.
Yuan, Jet Propulsion Laboratory (JPL), personal communication], and by GFZ (for July
2003), it is concluded that different approximations of the initial precise orbits only cause
an average difference of ~ 0.01zgal in terms of the in situ LOS gravity differences. In

the present procedure to estimate precisely the in situ LOS gravity differences or the in
situ geopotential differences, I first estimate the in situ LOS acceleration differences

(£5°°) or the in situ potential differences (P, ), and then calibrate both the KBR and the

accelerometer measurements to finally calculate the in situ LOS gravity differences and
the in situ geopotential differences. The two-step estimation procedure has been
confirmed to yield the same solution as the standard least-squares adjustment in Chapter
5.3.3. For the regional solutions using the in situ LOS gravity differences, the solutions
applying Bayesian inference with variance components are not stable as shown in Figure
5.9, while the solutions using an optimal regularization factor via formulas for the repro-
BIQUUE of variance components, appeared to be smoothed too much for some months
as shown in Figure 5.10. For the regional solutions using the in situ geopotential
differences, the solutions applying Bayesian inference with variance components are still
not stable; but the solutions from applying an optimal regularization factor via formulas
for the repro-BIQUUE of variance components perform better than in the case of using
the in situ LOS gravity differences, with the exceptions of the solutions of Aug. and Sept.
of 2003. It is obvious that overall the regularization approach, based on iterative least-
squares estimation with simultaneous updating of a prior covariance, has always achieved
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stable and reliable solutions. There are actually three variance components involved in
iterative least-squares estimation with simultaneous updating of a prior covariance,

;, axz and |, from which two ratios of the variance components can be

combined. With the two ratios, this approach is more flexible and more likely to
approximate the reality. I have tried the same approach again, but using a different
Matérn class covariance function, and the approach still works perfectly. If the
observation is the in situ LOS gravity difference, iterative least-squares estimation with
simultaneous updating of a prior covariance (using the covariance function

\/EFJ J3r

k(r)= [1+|— exp(———) ) even achieves the highest resolution as shown in Figure
5.17. If the observation is the in situ geopotential difference, however, the approach of an
optimal regularization factor via formulas for the repro-BIQUUE of variance components
achieves the highest resolution. All the regional solutions perform better than the global
solutions based on the smoothed global solutions from GRACE L2 models. When we
only pick up the two regional solutions from applying iterative least-squares estimation
with simultaneous updating of a prior covariance, we can conclude that the solutions
from using the in situ LOS gravity differences achieve a better resolution than the
solutions from using the in Situ geopotential differences as shown in Figure 5.8 and
Figure 5.12. This has been confirmed based on Figure 5.21 when we moved to the Congo
river area.

namely, o

Other methods that can be used to study the temporal gravity field of the Earth include
the mascon approach [Rowlands et al., 2005; Lemoine et al., 2005;Yuan & Watkins,
2006] and downward continuation based on some suitable integral equations [Mayer-
Girr et al., 2006]. It will be interesting to compare the results from this approach, the use
of in situ LOS gravity differences, to the methods mentioned above. Also, hydrologists
are achieving a fine scale (20 km full-wavelength) hydrologic model of the Amazon
basin [Beighley et al., 2006], which accounts for the modeling of surface, subsurface,
channel and floodplain stores and fluxes. The fine scale model will help us to validate
what GRACE exactly measures, and to explain the controversy of the allegedly observed
1-2 month lags between the GRACE data and a number of global hydrologic models.

The techniques of recovery of the global gravity field of the Earth are being continuously
improved, from tracking some satellites at high altitude over decades to the dedicated
gravity satellite missions, from high-low SST (CHAMP) to low-low SST (GRACE) and
to satellite gravity gradiometry (GOCE). In other words, we are always aiming on
improving the estimates of the short-wavelength signals. A combination of GRACE
Satellite-To-Satellite tracking and GOCE gradiometry could potentially improve short-
wavelength accuracy of terrestrial water storage change.
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RANGE, RANGE RATE AND RANGE ACCELERATION
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Let r, and r, represent the position vectors of the two satellites, and p,, represents the

range between the two satellites. We then have,
2
Pra =X Ty,
where 1, =1, —1,.

Taking the time-derivative, we have,
20,p;, =T, T+, )y =21, T,
I,

P =Ty =TI, €,
12

r
where e, = 2.

P2

Taking derivative again,

P =T € T, €,

d (r12 )= r, — Pne), .

where €, = —
t pp Pr2
Thus,
Y, — p,e Iy |2 - p
. e . 12 - 12%02 _ . 12 12
P =X €, T, =I, €, + .
P2 P2
In the inertial frame we have,
=g +ta,,

r,=g,+ta,,
So by taking the difference, we have,

f, =g, +a,.
Finally, we have,

.2 .2
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From Appendix A, we have,

.2 )
.. .. Il —p
Fp € =Py _|12|—12- (B.1)
P2
In the inertial frame, the following holds,
=g +a'. (B.2)
So in the inertial frame,
g, €, =1, e, -a, e,, (B.3)
i i i i i i r,
where, g, =g, —g,, 2, =a;, —a;, and e, :%
i
Thus,
| - i
i i . 12 12 i i
o Cp=Pp -~ ~a, €. (B.4)
P2

A commonly used procedure to represent the Earth’s gravitational potential V (r,8, 1) is
the expansion into a series of spherical harmonics:

V(r,0,1)=—— Zzn:( Y™(C, cos(mMA)+ S, sin(mA))P,_(cosd), (B.5)

n=0 m=0

where, 1,0, A are the spherlcal coordlnates (@ is co-latitude ); G 1is the universal
gravitational constant; M is the mass of the Earth; R is the mean radius of the Earth;
C,.»S,, are the spherical harmonic coefficients; and P, (cos®) are the fully normalized

nm? nm

Legendre functions.

Assume that we have a reference geopotential, V,, and

V=V,+T. (B.6)
We define the disturbing potential or the residual potential as
T(r,6,2) _G?M Z > (= )"+1 (AC,cos(mA)+ AS__sin(mA))P._(cosd), (B.7)
nmom=o I

where (AC AS,. ) are what we want to estimate.

nm

The derivatives of the residual potential with respect to spherical coordinates are:

ﬂ GM X z Z (— )n+1 (cos(MA)AC, = +sin(mA)AS )P, (cos@)sin &
00 R S r
a _GMX Z 2( )r1+1 m(—sin(MA)AC =+ cos(MA)AS, P (cosd) . (B.3)
8/1 R n=0 m=0 r
Ny N B
aT GRI\Z/I Z (n+ 1)(5)n+2 (cos(mMA)AC,,, +sin(MA)AS, )P, (cos9)
n=0 m=0 r
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If we express g in cartesian coordinates, i.e., g = (g « 9, 0, )T . And now let’s use the

navigation frame, namely North-East-Down (NED) frame,
10T

r oo
1 o7
"= — . B.9
& rsin@ oA (B9
_ar
or
In (B.9) g" is actually the residual acceleration vector after introducing the reference

geopotential, V,, but for the purpose of simplicity it will still be denoted by g" .

Since we have,

g, =8, —gh
=C, 285~ C, & (B.10)
_CI 2 ‘g5 — CI 1 -g)
then,
gl 'elz _CI 2 ‘g5 elz CI 1 -g) el12
=(C' . Cn
=(C,,)" ey, ngz (m D e, gl B.11)
=(C' ‘elz)‘gz _(Ci,l 'elz)'gl
_bnz g — bnl g

Where b}, :=(C{, -e,,) and b}, :=(C], -e,,).
Let’s express the three components of g" using the spherical harmonic coefficients,
1oT 1 M s &
_Lar 16 z Z( —)"'(cos(MA)AC, ., +sin(MA)AS, )P, (cosd)sin b
roéd r R =0

GM :

b

= ZZ( )”+2(cos(m/1)AC +sin(MA)AS, )P (cos&)sin @
n=0 m=0
(B.12)
1 T GM s s — 1
m mA)AC, mA)AS )P o
rsind o4 R? ;mzo(r) (=SIn(MA)AC , + COS(MAIAS 1 ) P (cOS )siné’
(B.13)
_aT GM n -
=R ZZ(n (— ) (cos(MA)AC, . +sin(MA)AS, )P, (cosd). (B.14)
n=0 m=0

Define
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b, «
b, =|b,, |, (B.15)
b2,z
b, ,
biri1 = bl,y (B.16)
b,,
So,
1 oT 1 oT oT
b =b, (———)+b +b, (——), B.17
2 g5 ,x( ‘) 892) Z’V(I‘zsinﬁ o, 22 ( 8!’2) ( )
1 0T 1 oT
b’ -¢"=b (———)+b, (——— -—), B.18
i 8 =D, ( ” 891) l,y(r sing 81) L (= arl) (B.18)
1 OT 1 oT oT
b! -b! -g' =b +b +b, (-——)-
2 gz 1 gl 2x( r 86’2) 2,y(rzsin0 o, 2,2( al’z)
1 oT 1 oT
———)—b, (—— — , (B.19
-b,, (- 1661) 1,y(r sind 6/1) L (= 6r1) (B.19)
1 oT 1 0T
b! -b!, - b, (———)-b  (——
2 gz 1 gl 2,x( " 8(92) l,x( r 8(9)
1 1
+b, (———— _ B.20
2’y(r sin 6, 6/1) by € I, sin 6, a/z) (B20)
oT
b, (——)-b, (——
2,2( arz) l,z( arl)
First
1 oT 4
b,y (—— ™2 (cos(MA,)AC, = +
2,x( r2 a02) 2,X R2 ;r;)( 2) ( ( 2) ’ (le)
+sin(mA,)AS, )P, (cosé,)sinb,
Niax N
Dy () =By, Do 3 Y ()" (cos(MA Ay, +

00, R &H&r , (B.22)
+sin(mA,)AS, )P, (cos@,)sin 6,
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1 or 1 or

b, (-———)-b  (-———)=
2,x( r2 692) l,x( 8H)

b GM Z Z( )n+2 (cos(MA,)AC, +sin(mA,)AS )P (cosé,)sin8, —

2,X 2
R om0 I,

Npax N _
CM Z( —)"*(cos(MA,)AC, . +sin(mA,)AS, P, (cosé,)siné,

1X 2
R n=0 m=0

( )mz cos(MA,)P. (cos®,)sin @, —

n=0 m=0

b, X(-)”” cos(MA, )P, (cosd,)sin§,)AC,  +
Ton

Npge 0
Sl ( 2x(_)n+2 sin(mA, )P, (cos#,)sin @, —

2
R n=0 m=0 2

by, ()" sin(m2, )Py, (0 6,)sin 6,)AS,,
.

1 (B.23)
Second,
1 aT n n+2
Y1,sin 6, 04, b,., R2 ZZ( )" m(=sin(mA,)AC,, +
2 2 nmom=0 I o
cos(MA,)AS, )P, (cosb,)—
siné,
LT OMRS$ R
Ly r.sin @ 8,1 b,, R2 Z(r—) ’m(-sin(mA,)AC  +
! 1 n=0 m=0 1
, (B.25)
cos(MA,)AS,, )P, (cos 6, ) —
sin 6,
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1 oT 1 oT

b Z)-b ~)=
”( in @, 6/1) Ly € r,sin 6, 64,

Zzn:( )" m(=sin(mA,)AC,  +cos(mA,)AS, )P, (cosé,)— !
si

2y 52
R om0 I 2

b ZZ( )“+2m( sin(mA,)AC, +cos(mA,)AS_ )P, (cos@l)%
S1

Ly 52
R* im0 Iy I

Npg N _
Sl ZZ(—mbz,y(rB)”+2 sin(MA4, )P, (cos 8,) — 1

2
R n=0 m=0 2 Sin 02

mbly(B)”” sin(mA, )P, (cos6,) _1 JAC, . +
o sin @

1

GM by ()" cos(MA,)P,. (cosb,)— !
n=0 m=0 smdo,
mb, y(—>"*2 cos(M2, )Py (c056,)——)AS
o, sin 6, (B.26)
Third,

oT GM Niax N R
b. (=2 y=p. =2 n+1)(—)""*(cos(mA,)AC _ +
2205 ) =0 T 2 2 (D eosMiAC + -

sin(mA,)AS )Py, (cos 6,)

C R n+2
2 m;( 1)(r_1) (cos(m4)AC,, + , (B.28)

Sin(MA, )AS 1, )Py (€05 6,)

5T G N
bl,z(_ 1,z R

)
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bZz( aT) blz(_ﬁ):

or, Tooor,
M R n+2 : D
,z 2 z 1)(r_) (cos(m/12 )AC am T Sln(mﬂ’z )AS nm )an (COS 92 ) -
0 m= 2
&= | R n+2 : D
b2 Z +1)(—) """ (cos(mA,)AC,,, +sin(mA,)AS . )P, (cosb,)
n=0 m=0 r]

"2 cos(MA, )P, (cosd,) —

2,2

n=0 m=0

bl z (n + 1)(_) e COS(mﬂl )ﬁnm (COS 01 ))ACnm +
’ I

1
[\
GM may O

2
R n=0 m=0

(b,., (0 +1))™ sin(mA,)P,, (cos6,) -
HU

R _
b, , (n+1)(—)""* sin(mA, )P, (cos §,))AS, .
Lz )(rl) (M4,)P,, (cos 6,)) (B.29)

Then we put (B.23), (B.26) and (B.29) them together,
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bnz gz bnl g =

( )”+2 cos(MA,)P. (cosé,)sin8, —

n=0 m=0

b, (r_) "2 cos(mA, )P, (cos,)sin6,)AC, .

GMN :

n=0 m=0

(— )"* sin(mA, )P, (cosé,)sin @, —

by, ()" Sin(mA, )Py (605 6,)sin 6)AS,,
T

1

GM 13y (- bzy<—)”*2sm<mﬂz) (cos,)—

n=0 m=0 Sin o,

mb, y(—)”” Sin(mA, )Py (c0s6,)——)AC,,
’ sin 6,

n

1
2y ()" cos(MA, )P, (cosb,)—
n=0 m=0 s o,

mb , (—)n+2 cos(mA,)P,,

n

" cos(mA,)P, (cosd,)—

2,2
n=0 m=0

bl,z (n + 1)(_) 2 COS(mﬂl )F_)nm (COS 01 ))Acnm
1

n

"2 sin(mA,)P, (coséb,)—

2,2

n=0 m=0

b, (n+ 1)(r—)"+2 sin(mA, )P, (cos6,))AS,
1

(B.30)
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i i
81 "€ =

n n n n
b;,-g, —b;, g

Ny N _,
GI\Z/I z Z ((bZ,X (rB) " COS(m/12 )an (COS 02 ) Sin 92 -
2

R n=0 m=0

b, , (E) "2 cos(MA, )P, (cos,)sinb,) +
Tr

1

(-mb,, (rﬂ) "2 sin(mA, )P, (cosd,)

R )+
2 sin o,

+mb,, (5) "2 sin(mA, )P, (cosé,)
v

sin 6,

(b, , (N + D)™ cos(MA, )Py, (cos B,) — by , (0 + D)™ cos(MA, )Py, (€056, ))AC, 1, +
, r2 , rl

'

(B ()" Sin(M2 )Py (€050, ) 0, — by, (59" Sin(mA, )Py (c056,)sin ) +
2

1

m

1

sin 6,

(mszy(ﬂ)”” cos(MA, )P, (cosé,) !

. ) +
r, sin 0,

-mb,, (5) "2 cos(MA, )P, (cos b))
ar

(b,, (N + D)™ sin(MA, )Py (cos8,) — by, (N + ()™ sin(MA, )Py (€08 6, ))AS
, r2 ’ rl

(B.31)

Equation (B.31) connects the observable g!, -e|, to the coefficients, AC, and AS,_ .
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bnz gz bnl gl =

™2 cos(MA, )P, (cosf,)sinf, —

2,X
n=0 m=0

( )n+2 cos(MA, )P, (cosé,)sinb,)AC,

, GM™ N & o 1
o D (- bzy(— ?sin(mA, )P, (cos8,)—

n=0 m=0 smndo,

mb, (—)”*2 sin(mA4, )P, (cos @)%)Acnm
Sim 1

n

"2 cos(mA, )P, (cos8,) —

2,2
n=0 m=0

b1 z (n + 1)(_)n+2 COS(m/fil )ﬁnm (COS 01 ))Acnm
’ r

1

GM 't

2

> (b, (rﬂ)”+2 sin(mA, )P, (cos®,)sin 6, —

n=0 m=0 2

b, (B) "2 sin(mA, )P (cosé,)sinb,)AS
Tr

1

Npgx N _
+ C;'\z" Z(mbzvy(rﬂ)“” cos(MA, )P, (cosb,)— !

n=0 m=0 2 sin o,

mb, , (E)“+2 cos(MA, )P, (cos 6, )%)AS
RN ¢

1 sSin 0,

Npax 0 o
GM Z (bz’Z (n+ 1)(?)n+2 sin(mA4, )P, (cos8,) —
2

R ? n=0 m=0
R n+2 - D
bl’Z (n+ l)(r_) sin(mA, )P, (cos 6,))AS

1

(B.32)
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GM
RZ

bin,z 'g; _bin,l 'g? =

_bz,X cos(MA, )P, (cosd,)sin 6, — |
(5)”+2 mb, , sin(mA,)P,, (cos@,) ——+ |-
r, ’ sin 6,
Npge b, , (n+1)cos(mA,)P,, (cosb,)
- _ 7 AC,, +
n=0 m=0 b, , cos(mA,)P, (cos @, )sin b, —
By mb, , sin(mA,)P,,, (cos 6,)— L,
r, ’ sin 6,
b, (n+1)cos(m4, )P, (coséb,)
_bz,X sin(mA,)P. (cos@,)sin@, + |
R 5
—)" I mb A,)P 7 -
(rz) m 2y COS(m 2) nm (COS 2) sin 02 + . (B33)
b, ,(n+1)sin(mA,)P, (cosé,)
+ - , - . ASnm
b, sin(mA, )P, (cos &,)sin &, +
(E)“+2 mb, , cos(mxll)ﬁnm (cosb,)— ! +
r : sin 6,
b, (n+1)sin(m7,)P,, (cos b))

If we let g(@) =P, (cosé), then, g (§)=—P, (cos@)sind, so,
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n n n n GM
bi, g, —b;, g :?X

—b,, cos(mi,)g (6,) -

Rine - 1
(_) ? mbz,y Sln(mﬂ“z)g(‘gz) ; |-
r, sin 8,
N D b, ,(n+1)cos(mA,)g(b,)
n=0 m=0 - bl,x cos(MA4, )g'(el) -

R n+ .
(E) ’ mbl,y Sln(mﬂ’l)g(el) sin 91

by, (n+1)cos(m4,)g(6,)

- bz,x Sin(mﬂ“z )g y (92) +
5 sin
b, ,(n+1)sin(m4,)g(b,)

- bl,x Sin(mil )g ' (01) +

: sin 6,

bl,z (n+1sin(m4,)g(b,)
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1
+

R n+ 1
(r_) ’ mbz,y cos(m/”tz)g(ﬁz) P +-

2

R ne 1
(r_) ’ mbl,y cos(Mm4,)9(6,) +

AC

nm

nm

+

(B.34)



