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ABSTRACT

The Inertial Navigation System and Global Positioning System (INS/GPS) sys-
tem has been extensively studied over several decades, mostly for the purpose of
navigation and kinematic position. Because the INS system is affected by gravita-
tion, the integration definitely needs gravity data in order to yield accurate results.
It is natural to reverse the problem and attempt a measurement of the gravity vector.
The gravimetric system based on INS/GPS shows good performances in the airborne
scenarios. Moving the system into a ground vehicle will help to improve the resolu-
tion of the gravity estimates, considering its lower speed and altitude. However, the
system will face much more complicated dynamics and harsh observation conditions.

In this study, a two-stage extended Kalman filter based on processing noise adap-
tation is used to fix the position gaps and provide prior information of the Inertial
Measurement Units (IMU) errors. The kinematic acceleration is computed by both
the position method and the phase method. All these procedures improve the steadi-
ness and precision of the system. The advanced wavelet de-noising technique is em-
ployed to further isolate the gravity disturbance from the observation errors in the
residuals of the novel Kalman filter, previously developed at the Ohio State University
(OSU). The final precision of the gravity disturbance estimates is further improved
by correlatively filtering the repeated estimates in the frequency domain.

An intensive survey campaign was carried out to test the validities of these tech-
niques. Based on data analysis, the results show significant consistency (as good as
0.6mGal, STD) in the vertical component on the repeated traverses, and compar-
ison to control data indicates an accuracy of 2-3mGal (STD). However, it is also
determined that the control data, being interpolated from a database, have an accu-
racy of approximately 3mGal (STD). Resolution of the estimated gravity disturbance
is about 2km, based on 180-s data smoothing and a vehicle speed averaging about
80km/hr. Large scale errors exist in the horizontal gravity estimates. Removing
these on the basis of extensive deflection of the vertical control yields repeatability in
the horizontal components in the range of 2-15mGal (STD) and agreement with the
control at the level of 5-9mGal (STD).
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CHAPTER 1

INTRODUCTION

1.1 Background

The gravity field of the Earth is directly related to the mass distribution of the

Earth. High resolution model of the Earth’s gravity field is desirable in many appli-

cations. For example, in geodesy and solid Earth geophysics, it can help to define

better the shape of the Earth, and to understand the subsurface of the Earth. In

oceanography, it can help to determine the geostrophic current by comparing the

slope of the geoid and the slope of the sea surface as profiled by altimetery. In oil

and mineral explorations, it can help to detect the local geology features. The degree

of resolution of the Earth’s gravity field model directly depends on the resolution of

the available gravity data. The gravity itself, as well as its related quantities such as

gravitational differences, may be observed by various techniques such as Satellite to

Satellite Tracking (SST), Satellite Gravity Gradiometry (SGG), airborne gravimetry,

and ground gravimetry. Satellite based systems generally provide only mid-to-long

(>100km) wavelength information of the gravity field. Although the traditional static

ground gravimetry offers the most accuracy, it is very time and labor consuming to

have adequate data coverage. Even the most advanced instruments (e.g. Hirt and

Burki 2002) still need tens of minutes to finish one station. Furthermore, it is not

very easy to establish benchmarks for the ground instruments in may regions of the

Earth’s surface, such as the ocean and mountainous areas.

The moving-base gravimetric system either based on an aircraft, a ground vehicle,

or a ship, serves as a good alternative to measure the gravity disturbance, which

is defined as the difference between the actual gravity and the normal gravity; for

a mathematical definition see Heiskanen and Moritz (1967). In general, there are

three categories of moving base gravimetric system, i.e., scalar gravimetry, vector

gravimetry, and gravity gradiometry.

1



Scalar gravimetry, either based on gravimeter and GPS or based on INS and GPS,

(Brozena 1992; Harrison et al., 1995; Olesen et al., 1997; Wei et al., 1998; Forsberg et

al., 1999; Bell et al., 1999; Childers et al., 1999; Williams et al., 2001) measures the

magnitude of the gravity disturbance. Thus it only requires measurements along one

stabilized axis, which is relatively easier than the other two. However, to obtain the

complete vector from such data requires a large amount of gravity data and involves

complicated computations such as Least Square Collation (LSC) or Vening-Meinesz

type integrals.

Vector gravimetry based on INS/GPS (Salychev et al. 1994; Jekeli and Kwon,

1999), on the other hand, measures all three components of gravity disturbances. It

has obvious advantages over the scalar one. For instance, the along track relative

geoid can be determined by the along track integration of the horizontal components

rather than from surveys of the vertical components over a large area as is required

by the Stokes solution to the geopotential boundary value problem. However, it

requires the stabilization of the sensor package about three axes and is much more

difficult to achieve. The principal difficulty with the method lies with the errors in

the gyroscopes that provide orientation of the system in inertial space. As Jekeli

and Kwon (1999) point out, a large north or east orientation error couples with the

large vertical acceleration into the east (or north) gravity component (Hannah 2001).

A leveling error of 1′′, for example, produces a 5mGal gravity error. As proved by

covariance analysis (Knickmeyer 1990), a gyro drift uncertainty of 0.0001◦/h and a

gyro random walk of 0.0001◦/
√
h are needed to achieve an accuracy of 1mGal for

the horizontal components of the gravity disturbance vector. On the other hand,

simulation studies (Wei and Schwarz 1994) showed that to obtain an accuracy of

1mGal for all components of the gravity disturbance vector, an INS with gyro drifts

of 0.0001◦/h is required.

Gravity gradiometry (Jekeli 1993) measures differences in acceleration instead of

measuring acceleration directly. A number of prototype systems were developed in

the 70s and 80s of the last century. But only one airborne field test was undertaken,

which indicated that this system could recover 5′ × 5′ mean gravity anomalies to an

accuracy of a few mGals on a grid of orthogonal tracks spaced 5km apart and at an

altitude of 700km above the terrain (Jekeli 1993). However, due to the expensive

cost, the system has been slow to move beyond the prototype mode and was only

recently commercialized (Hammond and Murphy 2003, Murphy 2004).

As a result, the INS/GPS based moving base vector gravimetric system is an

efficient choice for providing high resolution gravity data in a local area. The moving

base systems, primarily the airborne systems, have been extensively studied and

successfully used in many applications (Schwarz et al., 1992; Salychev et al., 1994;

Kwon et al., 2001 among others.). However, the system observation errors, both GPS
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error and INS error, continue to pose a major challenge to researchers attempting

to simultaneously increase the accuracy and bandwidth of the gravity disturbance

estimates. Furthermore, the ill-posed downward continuation (Jekeli and Serpas,

2003) should also be properly handled in order to obtain the gravity anomalies on

the geoid or on the terrain.

In principle, the closer the system is to the surface of the Earth, the stronger

the gravity signal. To increase the signal-to-noise ratio (SNR) and to minimize the

downward continuation effects, a terrestrial moving base vector gravimetric prototype

based on INS/GPS was developed at the Ohio State University (OSU). Considering

that the power of the gravity field (especially the short wavelength part) intensifies

steadily with a decrease in the altitude, the SNR should increase in the terrestrial

system. Moreover, the lower velocity of the road vehicle should also improve the

resolution and accuracy of the results.

1.2 Statement of the problem

The moving base vector gravimetric system is a combination of GPS and INS.

The GPS system provides precise positioning and kinematic acceleration solutions,

while the INS system offers the specific forces encountered by the vehicle. In general,

there are two mechanizations for INS, i.e., platform system and strapdown system

(Jekeli 2000). In the platform system, the IMUs are installed in a Schuler tuned

stabilized platform. Thus the accelerometer and gyros do not encounter the kinematic

observation errors directly, which may lead to better gravity estimates (Salychev

1994). But usually, the platform has relatively bigger size, and is very expensive.

Unlike the platform system, the IMUs are physically bolted down to the vehicle in

the strapdown system. The advantage of the strapdown INS (SINS) is its smaller

size, lower cost and more operational flexibility (Jekeli 1995; Kwon 2000). It is Jekeli

and Kwon (1999) who for the first time successfully recovered the complete gravity

disturbance vector in an airborne SINS/GPS system with 3mGal precision in the

down component, and 6− 8mGal precision in the horizontal components.

In the SINS/GPS vector gravimetry system, the specific force is measured by

the accelerometers and the kinematic acceleration is measured by GPS. By Newton’s

second law of motion in a non-rotating coordinate frame, the gravitational force is

the difference between the inertial kinematic acceleration and the specific force. As

a result, the gravity vector is estimated by subtracting the specific force from the

kinematic acceleration. However, in practice, the largest problem in determining the

gravity signal is the extremely low SNR. Typically, the gravity disturbance vector

does not exceed 100mGal in each component over distances of about 100km (Kwon

2001). But the non-gravitational accelerations measured by INS/GPS can be larger
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than the gravity disturbance by factors of 100 to 1000, as reported by Schwarz and

Wei. (1994) and Hannah (2001), among others. Only decreasing the altitude of the

system can make the gravity disturbance signal stand out more from the observation

errors. In any case, it is a challenge to remove the sensor and dynamics induced noise,

while leaving the relatively small-amplitude gravity signals intact.

The innovative method developed by Kwon et al. (2001) uses the following three

steps to solve this problem. First, the differential GPS (DGPS) technique is used to

obtain the GPS kinematic acceleration. Second, a low-pass filter is applied to the

GPS and INS accelerations to reduce the high frequency noise and thus increase the

SNR. Finally, using the smoothed GPS accelerations as the only system observation

updates, the INS errors are estimated by a standard Kalman filter. The gravity dis-

turbance signal is then contained in the observation residuals of the Kalman system.

However, this novel approach suffers from the following limitations. First, the DGPS

positioning solution usually has gaps due to various reasons, such as GPS satellite

signal blocking or strong ionosphere effects, especially in the ground-vehicle based

system. These gaps will dramatically damage the precision of the gravity estimation

since GPS acceleration calculation depends on a uniform data sequence. Second,

the low-pass filter, by definition, does not remove or reduce the long-wavelength INS

errors such as the scale error and bias of the IMU. Third, the particularly simple

design of the Kalman filter only uses the accelerations as updates while excluding the

position and velocity information, which may prevent an optimal estimation of the

INS systematic instrument errors.

The ultimate purpose of this study is to explore a general method for the moving

base vector gravimetry system, which provides optimal estimation in theory and is

easy to implement in practice. The fundamental idea is to remove or reduce the sys-

tematic and random errors in both GPS and INS observables, so that all components

of the gravity disturbance vector are identified without using too specific and com-

plicated prior models. The following procedures are employed to accomplish these

objectives. First, the GPS data and INS data are integrated by a loosely coupled Two-

stage Adaptive Extended Kalman Filter (TAEKF) to fix the DGPS positioning gaps.

Thus the precise and continuous positioning solutions are available for the following

process. Second, in the TAEKF, the INS errors are controlled by the DGPS position

and velocity solutions. By applying suitable adaptive schemes in the two-stage filter,

the long-wavelength INS errors such as the accelerometer and gyro scale errors and

biases are also optimally estimated by the TAEKF. Third, the long-wavelength IMU

errors are corrected by using the estimated scale error and bias. The resulting INS

measured dynamic acceleration is now better conditioned than before for further pro-

cessing. Then, the GPS position-derived kinematic acceleration is compared to the

accelerations determined directly from the GPS phase (thus skipping the GPS phase
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to GPS position determination). The former is called the position acceleration, and

the latter is referred as the phase acceleration. They are computed by the so called

position method and phase method (Kleusberg et al., 1990; Jekeli 1994; Jekeli and

Garcia, 1997; Kennedy 2002; Serrano et al., 2004), respectively. The main advantage

of the so-called phase method is that it relaxes the stringent requirement of the po-

sition accuracy from cm level to meter level; less than 10 meters (Jekeli and Garcia

1997). As a result, in cases when the position method does not work well due to

various reasons, the phase method serves as a backup. To yield the most accurate

result, the final GPS kinematic accelerations are determined by correlating the posi-

tion derived acceleration and the phase derived acceleration in the frequency domain.

Then a B-spline smoother is used to reduce the high frequency observation errors

both in the kinematic acceleration and in the dynamic acceleration. Finally, these

smoothed accelerations are used in the Kalman filter developed by Kwon (2000) to

obtain a first estimate of the gravity disturbance from the observation residuals. Fur-

thermore, end-point matching (Serpas 2003), wave-number correlation (Kwon 2000),

and wavelet de-noising methods (Li and Jekeli 2004, 2006) are used to further isolate

the gravity signals from the observation errors in the Kalman residuals. Moreover,

several interpolation methods are studied in order to compare the gravity disturbance

estimates with the available ground control data at the same points.

1.3 Chapter description

The fundamental principle of the inertial navigation system, especially the strap-

down inertial navigation system (SINS), is briefly overviewed in Chapter 2. The basic

observables and the free inertial navigation equation of the SINS are described for

the processes treated explicitly in the following chapters.

In Chapter 3, the necessities and methodologies of GPS and INS integration are

discussed thoroughly. Out of a number of methods, the TAEKF in a loosely coupled

frame is selected to combine the GPS position and velocity data with the free inertial

navigation solution for the purpose of fixing the GPS positioning gaps and estimating

the IMU long wavelength errors.

Chapter 4 explores methodologies to optimally determine the kinematic accelera-

tion by use of GPS observables. Both the position method and the phase method are

applied to yield better kinematic accelerations. Furthermore, a novel Kalman filter is

investigated to handle the challenging cycle slip problems in the kinematic scenarios.

Chapter 5 describes the data processing procedures for determining the gravity

disturbance in the moving base SINS/GPS vector gravimetry system. Various cutting

edge techniques are applied to the Kalman residuals to further isolate the gravity
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disturbance from the observation errors. Several interpolation methods are compared

to yield the most accurate validation results.

All of these techniques and methods are applied in the SINS/GPS based terrestrial

moving base gravimetry campaign conducted by the National Geospatial-Intelligence

Agency (NGA) and OSU in southwestern Montana in 2005. The data processing

procedure and results are described in chapter 6.

Finally, chapter 7 gives some conclusions and summaries of the moving-base

SINS/GPS vector gravimetric system.
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CHAPTER 2

INERTIAL NAVIGATION SYSTEM

In general, an inertial navigation system (INS) comprises two sets of inertial mea-

surement units, i.e., accelerometers and gyroscopes. The former one senses the in-

ertial accelerations, while the latter one measures the rotation rate with respect to

the inertial frame. The main idea of inertial navigation is based on the acceleration

integration. The first integration provides the velocity increment. The second inte-

gration yields the vehicle position increments relative to the initial point. In order

to match the sensitive axes of accelerometers with a certain navigation coordinate

frame, different types of mechanism are used. There are two different concepts for

the navigation frame simulation: the stabilized platform and the strapdown configu-

ration. Stabilized platforms provide angular motion isolation from the vehicle; while

strapdown system is just what the name implies: the platform holding the IMUs is

attached firmly to the vehicle.

The stabilized platform isolates the vehicle’s rotation from the IMUs and hence

provides more accurate measurements. In the strapdown mode, the accelerations

and gyros are physically bolted to the vehicle, where all instruments are contained

within a single box. Consequently, these sensors are subjected to the entire range

of dynamics of the vehicle, which degrades their performance. In addition, certain

modeling errors in the computed navigation solution are caused by numerically in-

tegrating the accelerations and angular rates in the body fixed reference frame of

the rotating vehicle. At each discrete step of the numerical integration, the frame is

assumed to be non-rotating, when in fact it is rotating, resulting in coning errors for

the gyroscope and sculling errors for the accelerometers, which need to be properly

handled in the computation. However, the strapdown system is small in size, weight,

and power consumption, and lower in cost. Furthermore, the recent developments in

optimal gyroscopes have brought the strapdown system close to par in accuracy with

its gimbaled cousin. So, here, only the strapdown INS (SINS) is studied.
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2.1 Introduction

In the strapdown configuration, the accelerometer output, indicating the inertial

acceleration of the vehicle, is referenced in the coordinate frame of the vehicle (body

frame, or b-frame). Though they are important in actual operations, we will ignore

the lever-arm effects and any transformation between the reference frame of each

accelerometer and the platform or instrument frames at this moment. It is convenient

for an understanding of the strapdown mechanization to think of the accelerations

and angular rates as being sensed in the b-frame. The sensed accelerations, ab, cannot

be integrated directly to obtain velocity and position as in the case of the stabilized

system that mechanically defines the navigation frame for the accelerometers. Instead,

the inertial accelerations for a particular frame must be computed by applying a

transformation to the acceleration data according to equation (2.1.1):

aa = Ca
b a

b, (2.1.1)

where Ca
b is the orthogonal transformation from the b-frame to some arbitrary

frame , a-frame. Here, we select a non-rotating inertial frame, i-frame, as the navi-

gation frame.

In the strapdown mode, the transformation is accomplished computationally,

where the rates sensed by the gyros are used to obtain the transformation matrix

Ci
b that connects the sensed accelerations to the navigation frame.

ai = Ci
ba
b, (2.1.2)

where Ci
b is the transformation matrix from b-frame to i-frame, which can be expressed

in terms of quaternions (a, b, c, d) as :

Ci
b =

 a2 + b2 − c2 − d2 2(bc+ ad) 2(bd− ac)
2(bc− ad) a2 − b2 + c2 − d2 2(cd+ ab)
2(bd+ ac) 2(cd− ab) a2 − b2 − c2 + d2

 , (2.1.3)

where the unity constraint that must be satisfied is a2 + b2 + c2 + d2 = 1.

2.2 Accelerometers

There are many different types of accelerometers and each has unique character-

istics, advantages and disadvantages. The different types are shown in Table 2.1.

Regardless of the various types, it is necessary to know that the accelerometer only

senses specific force, that is, accelerations resulting from real (i.e., applied, action, or

8



Piezo-electric accelerometers
Techniques Piezo-resistive accelerometers

Strain gage based accelerometers
Force rebalanced accelerometers
Charge output
IEPE output

Output Voltage output
4-20mA output
Velocity output
Shear type design

Design Isolate compression design
Inverted compression design
Flexural design
Courtesy of Honeywell Inc [Honeywell Sensotec 2007]

Table 2.1: Different Types of Accelerometer.

contact) forces; see Jekeli (2000) for a detailed yet concise proof. As for the H764G

IMU (used in the Montana survey, in section 6.1, the accelerometers output the ve-

locity increments. As a result, the specific force in the b-frame is given by

~ab = δ~v/δt, (2.2.1)

where δ~v is the incremental velocity over time interval δt.

2.3 Gyroscopes

The term “gyroscope” originates with J.B.L. Foucault, who in 1850, using a spin-

ning disc, demonstrated that the Earth rotates (Jekeli 2000). With the development

of the technology, todate, there are many kinds of gyroscopes to measure the rotation

of a vehicle with respect to the inertial space. In general, these gyros can be classified

into three types, i.e., mechanical gyro, optical gyro, and vibrating gyro, which may

be argued as a subset of the first category.

The mechanical gyro is the classical gyro that has a mass spinning steadily with

free movable axis (so called gimbal). It functions on the basis of a rapidly spinning

mass whose angular momentum provides a well defined direction in inertial space.

When the gyro is tilted, gyroscopic effect causes precession (motion orthogonal to the

direction of tilt) on the rotating mass axis, hence letting you know the angle moved.
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The optical gyro is based on totally different principles. The rotational sensitivity

of the optical gyro is based on the Sagnac effect (Jekeli 2000; Post 1967) which

occurs when a light beam propagates around a closed path in a frame that rotates

with respect to the inertial frame. If the enclosure rotates, the duration between the

moment of laser emittance to eventual reception at the same point will be different.

In a Ring Laser Gyro (RLG), the laser go-around is achieved by mirrors inside the

enclosure. In a Fiber Optic Gyro (FOG), it is done by a coil of optical fiber.

The vibrating gyro is based on the fact that a vibrating element, when rotated,

is subjected to the Coriolis effect that causes secondary vibration orthogonal to the

original vibrating direction. By sensing the secondary vibration, the rate of turn can

be detected.

Because the gyros only sense the rotation rates relative to the inertial space, it is

not that straightforward to obtain Ci
b from the gyro outputs as it is to compute the

accelerations from the raw accelerometer outputs. The following section introduces a

third-order algorithm for computing Ci
b based on the raw gyro outputs.

2.4 Numerical determination of the transform matrix

Due to movement, in general, the b-frame and i-frame are rotating with respect

to each other, that is, their relative orientation changes with time. To describe

this in terms of rotational transformations, it is necessary to find an expression for

the derivative of the transformation with respect to time. In the i-frame, the time

derivative of the rotational transformation, Ci
b, is given by:

Ċi
b = lim

δt→0

Ci
b(τ + δτ)− Ci

b(τ)

δτ
. (2.4.1)

The transformation at time τ + δτ is the result of the transformation up to time

τ followed by a small change of the i-frame with respect to the b-frame during the

interval, δτ . This is expressed as

Ci
b(τ + δτ) = δCiCi

b(τ), (2.4.2)

where the small-angle transformation can be written as δC i ≈ I −Ψi, and Ψi is a

skew symmetric matrix of the small rotation angles. As a result, equation (2.4.1) is

written by:

Ċi
b = lim

δt→0

(I −Ψi)Ci
b(τ)− Ci

b(τ)

δτ
= lim

δt→0

Ψi

δτ
Ci
b(τ) = −Ωi

biC
i
b, (2.4.3)
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where Ωi
bi represents the angular velocity of the i-frame with respect to the b-frame

as coordinatized in the i-frame. Considering the following relationship:

Ωi
bi = −Ωi

ib = −Ci
bΩ

b
ibC

b
i . (2.4.4)

the time derivative of the transformation matrix is given by:

Ċi
b = Ci

bΩ
b
ib. (2.4.5)

Most inertial navigation algorithms employ quaternions to solve the equation.

After substituting equation (2.1.3) into equation (2.4.5), we have the equivalent dif-

ferential equation in terms of quaternions as shown in equation (2.4.6):

q̇ =
1

2
Aq, (2.4.6)

where A is a 4× 4 skew-symmetric matrix of time-dependent angular rates

A =


0 ω1 ω2 ω3

−ω1 0 ω3 −ω2

−ω2 −ω3 0 ω1

−ω3 ω2 −ω1 0

 (2.4.7)

where ω1, ω2, ω3 are coming from the angular velocity of b-frame with respect to the

i-frame, which is give by:

ωbib =

 ω1

ω2

ω3

 . (2.4.8)

The integration of q according to equation (2.4.6) is done incrementally over a

time interval, such as δt, or a multiple of δt; and, this gives the elements of Ci
b for

each step. We note that the digital readout of gyros consists of pulses representing

angular increments per unit time. Combining the pulses from all three gyros into

a single vector, we define δθl as the vector of body-frame angle increments, for the

lth time increment, l = 1, 2, . . ., with corresponding time increments, δt = tl − tl−1,

assumed constant. The data from the gyros are given exactly by:

δθl =

∫
δt

ωbib(t)dt (2.4.9)

To reduce the coning error in the strapdown systems, a third-order algorithm is

used here. Jekeli (2001) proved that the third-order Runge-Kutta algorithm requires

that the function being integrated is evaluated at either end of the integration interval

11



and half-way in between. Therefore, in this case the integration interval is twice the

data sampling interval, ∆t = 2δt. To simplify the notation, the index notation for

the frames is dropped here since there is only one objective, and that is to determine

the quaternions for the transformation matrix, Ci
b. Therefore, let

ωbib(t) = ω(t), (2.4.10)

and assume that over the integration interval, ∆t, we may write:

ω(t) = ωl−2 + ω̇l−2(t− tl−2) +O(∆t2), |t− tl−2| ≤ ∆t, (2.4.11)

where the subscript, l, as before, denotes the evaluation of the true quantity at

the corresponding epochs spanning the sampling intervals δt. Substituting equation

(2.4.11) into equation (2.4.9) yields for two consecutive sampling epochs:

δβl−1 =

∫ tl−1

tl−2

ω(t′)dt′ = ωl−2δt+
1

2
ω̇l−2δt

2 +O(∆t3), (2.4.12)

δβl =

∫ tl

tl−1

ω(t′)dt′ = ωl−2δt+
3

2
ω̇l−2δt

2 +O(∆t3). (2.4.13)

For each of these sampling epochs, the incremental angle, δβl, strictly given by

equation (2.4.9) is approximated by:

δβl−1 = δθl−1 − Cb
i (tl−1)ωiii(tl−1)

∆t

2
= δθl−1, (2.4.14)

δβl = δθl − Cb
i (tl−1)ωiii(tl−1)

∆t

2
= δθl, (2.4.15)

where δθl is the vector of output values indicated by the gyros. Note, however, that

the evaluation of this term in both cases is at the center of the integration interval,

and requires that the quaternions be solved for every epoch, tl, associated with the

sampling interval. The last equalities in equation (2.4.14) and (2.4.15) follow from

the fact that the i-frame does not rotate, i.e., ωiii = 0.

Solving (2.4.12) and (2.4.13) for ωl−2, and ω̇l−2, it is readily verified that

ωl−2 =
1

2δt
(3δβl−1 − δβl) +O(∆t2) (2.4.16)

and

ω̇l−2 =
1

δt2
(δβl − δβl−1) +O(∆t) (2.4.17)
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Using these expressions in (2.4.11) yields for three consecutive sampling epochs:

ωl−2∆t = 3δβl−1 − δβl +O(∆t3)
ωl−1∆t = δβl−1 + δβl +O(∆t3)
ωl∆t = 3δβl − δβl−1 +O(∆t3)

(2.4.18)

After neglecting the high order terms, we have the following observed quantities:

ω̂l−2∆t = 3δβl−1 − δβl
ω̂l−1∆t = δβl−1 + δβl
ω̂l∆t = 3δβl − δβl−1

(2.4.19)

The recursive algorithm for the quaternions is given by:

q̂l =

[
I +

1

12
(B̂l + 4B̂l−1 + B̂l−2) +

1

12
(I +

1

4
B̂l)B̂l−1B̂l−2 +

1

12
B̂l(B̂l−1 −

1

2
B̂l−2)

]
q̂l−2

(2.4.20)

where the elements of B̂l−2, B̂l−1, B̂l now are, respectively, the components of the

vectors defined by equation (2.4.19), i.e.,

B̂l−2 =
0 3(δβ1)l−1 − (δβ1)l 3(δβ2)l−1 − (δβ2)l 3(δβ3)l−1 − (δβ3)l

−3(δβ1)l−1 + (δβ1)l 0 3(δβ3)l−1 − (δβ3)l −3(δβ2)l−1 + (δβ2)l
−3(δβ2)l−1 + (δβ2)l −3(δβ3)l−1 + (δβ3)l 0 3(δβ1)l−1 − (δβ1)l
−3(δβ3)l−1 + (δβ3)l 3(δβ2)l−1 − (δβ2)l −3(δβ1)l−1 + (δβ1)l 0


(2.4.21)

B̂l−1 =
0 (δβ1)l−1 + (δβ1)l (δβ2)l−1 + (δβ2)l (δβ3)l−1 + (δβ3)l

−(δβ1)l−1 − (δβ1)l 0 (δβ3)l−1 + (δβ3)l −(δβ2)l−1 − (δβ2)l
−(δβ2)l−1 − (δβ2)l −(δβ3)l−1 − (δβ3)l 0 (δβ1)l−1 + (δβ1)l
−(δβ3)l−1 − (δβ3)l (δβ2)l−1 + (δβ2)l −(δβ1)l−1 − (δβ1)l 0


(2.4.22)

B̂l =
0 3(δβ1)l − (δβ1)l−1 3(δβ2)l − (δβ2)l−1 3(δβ3)l − (δβ3)l−1

−3(δβ1)l + (δβ1)l−1 0 3(δβ3)l − (δβ3)l−1 −3(δβ2)l + (δβ2)l−1

−3(δβ2)l + (δβ2)l−1 −3(δβ3)l + (δβ3)l−1 0 3(δβ1)l − (δβ1)l−1

−3(δβ3)l + (δβ3)l−1 3(δβ2)l − (δβ2)l−1 −3(δβ1)l + (δβ1)l−1 0


(2.4.23)
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The initial quaternions (a0, b0, c0, d0) are needed to solve equation (2.4.20). One

way to obtain the initial quaternions is to use the initial attitude angles, roll (η0),

pitch (χ0), and yaw (α0), which may be obtained from the initial alignment. The

initial transformation matrix from b-frame to n-frame, Cn
b , is computed by:

Cn
b = R3(−α0)R2(−χ0)R1(−η0)

=

 cosα0 cosχ0 cosα0 sinχ0 sin η0 − sinα0 cos η0 cosα0 sinχ0 cos η0 + sinα0 sin η0

sinα0 cosχ0 sinα0 sinχ0 sin η0 + cosα0 cos η0 sinα0 sinχ0 cos η0 − cosα0 sin η0

− sinχ0 cosχ0 sin η0 cosχ0 cos η0


(2.4.24)

Then the initial transformation matrix Ci
b is given by:

Ci
b = Ci

nC
n
b (2.4.25)

where Ci
n = Ci

eC
e
n,

Ci
e =

 cos(ωEt) − sin(ωEt) 0
sin(ωEt) cos(ωEt) 0

0 0 1

 , (2.4.26)

where ωE is the mean Earth rotation rate, and

Ce
n =

 − sinφ cosλ − sinλ − cosφ cosλ
− sinφ sinλ cosλ − cosφ sinλ

cosφ 0 − sinφ

 . (2.4.27)

Finally, the initial quaternions are given by:

a0 = 1
2

(1 + (Ci
b)1,1 + (Ci

b)2,2 + (Ci
b)3,3)

1
2 ;

b0 = 1
4a0

((Ci
b)2,3 − (Ci

b)3,2) ;

c0 = 1
4a0

((Ci
b)3,1 − (Ci

b)1,3) ;

d0 = 1
4a0

((Ci
b)1,2 − (Ci

b)2,1) .

(2.4.28)

Furthermore, in each step, the quaternions are normalized to ensure the unity

constraint. Then the transformation matrix Ci
b at any epoch is obtained by use of

the quaternions through equation (2.1.3). The position and velocity are computed by

integrating the accelerations as shown in the following section.
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2.5 Numerical integration of navigation equations

The navigation equation in the i-frame is given by:

d

dt
ẋi = Ci

ba
b + f(xi, gi) (2.5.1)

where

f(xi, gi) = Ci
ng

n = Ci
nδg

n + Ci
n(γn + Cn

i Ωi
ieΩ

i
iex

i)
≈ Ci

nγ
n + Ωi

ieΩ
i
iex

i (2.5.2)

γn is the normal gravity in the local north, east, and down frame (n-frame), Ωi
ie is

the rotation matrix of the Earth with respect to the inertial frame in the i-frame, xi

is the position vector in the i-frame, δgn is the gravity disturbances in the n-frame;

at this stage, usually it is not available to the users. So it is neglected in the free

inertial navigation equation. Then the velocity increment in the i-frame is given by:

∆ẋi =

∫
∆t

Ci
b(t
′)ab(t′)dt′ + f(xi, ẋi, Cn

i ,Ω
i
ie, g

i)∆t. (2.5.3)

The accelerometer output data arrive in the form of velocity increments, or pulses,

that capture the time history of the acceleration over the sampling interval. Thus,

these increments are expressed exactly in terms of the body-frame acceleration as:

δvbl =

∫ tl

tl−1

ab(t′)dt′. (2.5.4)

Following the same procedure of deriving the angular increments, the integration of

the linear velocity is given by:

v̂il = v̂il−2 + 1
6

(
Ĉi
b(l − 2)(3δvbl−1 − δvbl ) + 4Ĉi

b(l − 1)(δvbl−1 + δvbl )Ĉ
i
b(l)(3δv

b
l − δvbl−1)

)
+f̂(xi, Cn

i ,Ω
i
ie, g

i)t=tl−2
∆t.

(2.5.5)

Note: two separate iterations (with two sets of initial values) are required to obtain

estimates at even and odd multiples of δt. With deliberate interlacing of estimates the

term, f̂(xi, Cn
i ,Ω

i
ie, g

i) could also be evaluated at t = tl−1, with potential improvement

in the integration accuracy. Finally, the positions can be obtained from the velocities:

x̂i = x̂il−2 + ˆ̇xil−1∆t Set ˆ̇xil−1 = (v̂il + v̂il−2)/2. (2.5.6)

15



To test the above free INS navigation algorithm, sets of INS data collected by

a ground vehicle are processed. The IMU are mounted firmly in a ground vehicle,

which also has independently working GPS units. The data sets were collected in

southwestern Montana (see Chapter 6, and Jekeli and Li 2006 for more details of

the system setup and data collection). One set of the free INS navigation solution

collected along State Route 43(SR43) on June 15 2005 is shown by the solid(red) lines

in Figures 2.1 to 2.6.

Figure 2.1: The relative X-axis coordinates of the free INS navigation solution
in the i-frame

The dashed(green) lines in Figures 2.1 to 2.6 are the GPS navigation solutions,

which are presumably more accurate than the free INS navigation solutions. The large

discrepancies between these two solutions are mainly due to the IMU errors. And from

these figures, it is clear that these IMU errors are accumulative (the differences of the

navigation solutions are getting larger with time). Therefore, these IMU errors have to

be properly handled and well determined in order to obtain the gravity disturbance

estimates from the INS/GPS system. In Chapter 3, the relative long wave-length

component of the IMU errors will be estimated by the Two-stage Adaptive Extended

Kalman Filter. The high frequency component of the IMU errors will be reduced by

the B-spline smoother in Chapter 5.
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Figure 2.2: The relative Y-axis coordinates of the free INS navigation solution
in the i-frame

Figure 2.3: The relative Z-axis coordinates of the free INS navigation solution
in the i-frame
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Figure 2.4: The relative X-axis velocities of the free INS navigation solution
in the i-frame.

Figure 2.5: The relative Y-axis velocities of the free INS navigation solution
in the i-frame.
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Figure 2.6: The relative Z-axis velocities of the free INS navigation solution
in the i-frame.
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CHAPTER 3

SINS/DGPS INTEGRATION

As shown in the previous chapter, the differences between INS and GPS navigation

systematically increase with time. This is due to the accumulation of errors of the

free inertial navigation system, since GPS errors are generally bounded. The long

wavelength IMU errors such as bias and scale errors cannot be averaged out and are

integrated with respect to time. These errors should be reduced in order to obtain

accurate dynamic accelerations and to yield better navigation solutions.

On the other hand, the GPS errors such as ionospheric delay, tropospheric de-

lay, and multipath effects, etc. have high frequency characteristics in the kinematic

scenario. Moreover, as is well known, the GPS solution relies on the availability of

continuous GPS satellite signals. There may be data gaps in the positioning results

due to various reasons in practical operations. However, the INS system does not rely

on any external signals. It can always deliver a position solution regardless where the

system is.

Considering the complimentary properties of the GPS and INS, an integration

algorithm should be applied to yield continuous and accurate position solutions, and

to provide the estimates of the INS errors.

3.1 Introduction

Combining the short-term stability of INS and the long-term accuracy of GPS

offers many practical advantages. For instance, the positioning gaps in the GPS

solution can be fixed, and the INS systematic errors may be well estimated. An

appropriate and efficient integration scheme should be used in order to achieve these

objectives. In general, the integration can be classified into two types. One is known

as tightly-coupled system where all the INS and GPS raw observables are processed

simultaneously and optimally to enhance the performances of each individual sensor

component, hence avoiding the loss of information and cross correlations among the

position estimates. The main advantage relies on the fact that the measurements are
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uncorrelated. The other is called the loosely-coupled system where GPS solutions

are fed back in an aiding capacity to improve the utility of the performances of INS,

but both GPS and INS still have their own individual data processing algorithm

(Jekeli 2001). This is by far a simpler approach because it is easier to manipulate and

requires minimum modification for customized applications. Wei and Schwarz (1990)

showed that, in practice, there is very little difference in the accuracy of the results

between these two integration methods. Considering the computational efficiency,

the following work is done in the loosely-coupled mode.

Over the decades, many algorithms have been applied to blend the GPS and

INS solutions, such as the well known Kalman Filter, Neural Network (Wang et al.

2006; Kaygisiz et al. 2003), Artificial Intelligence/Fuzzy Logic (EI-Gizawy et al.

2004; Jwo and Huang, 2005; Sasiadek et al. 2000), and Particle Filters (Gustafsson

et al.). Among them, the Kalman Filter is the mostly common used technique in

practice. As pointed out by Wang et al. (2006), it still remains at the forefront

of INS/GPS integration, because other techniques either are not ideal or demand

artificial experience and complicated training procedures. Of course, the Kalman

Filter also has limitations. The main drawback is that it only works well under the

predefined models. For instance, the system dynamics of the driving and measurement

processes need to be completely known. To overcome these limitations, the Adaptive

Kalman Filter (AKF, Myers and Tapley 1976; Mohammed and Schwarz 1999; Hide

et. al., 2003), Unscented Kalman Filter (UKF, Julier and Uhlmann 2004; Wan and

Merwe 2000), and Two-stage Adaptive Extended Kalman Filter (TAEKF, Ignagni

1981, 1990; Kim et al. 2006) have been investigated. From the computational point

of view, the TAEKF is selected, because this filter gives explicit expressions of the

IMU errors by decoupling the conventional system into a bias free estimator and

a bias estimator. We will see that this configuration offers much flexibility for the

adaptive schemes later on.

3.2 Error Dynamics Equations

As is well known, the Kalman Filter is a model based system. It works only

well under certain predefined models. So it is very important to correctly describe

the INS/GPS system via precise mathematical models. The INS/GPS integration

system is a rather complex system, especially the INS, which is an assemblage of

mechanical and/or optical inertial sensors. Each component responds to physical and

systematic effects extraneous to the actual desired navigation function, as well as to

internal random errors of various characters and consequences. The error dynamics

equations describe how the sensor errors affect the position and velocity of the system.

From Chapter 2, we know the position and velocity of the INS solution are based on
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the integration of the accelerations. So it will be easier to describe the error effects

in the acceleration equation. From Newton’s second law of motion in the inertial (i-)

frame, we have the following equation:

~̈xi = ~ai + ~gi, (3.2.1)

where ~̈xi is the kinematic acceleration, ~ai is the specific force measured by the ac-

celerometer, and ~gi is the gravitational acceleration due to the attraction of the Earth.

All quantities are expressed in the i-frame. By applying the perturbation technique,

we have the following equation (Jekeli 2000):

d

dt
δẋi = Γiδxi + δai + δgi, (3.2.2)

where

δai = Ci
bδa

b + ai ×Ψi, (3.2.3)

δab is the accelerometer error,

Ψi is the orientation error and is given by equation (3.2.4).

Ψi = −Ci
bδω

b
ib, (3.2.4)

δωbib is the gyro error.

As a result, equation (3.2.2) can be written as:

d

dt
δẋi = Γiδxi + Ci

bδa
b − ai × Ci

bδω
b
ib + δgi (3.2.5)

d

dt
δxi = δẋi (3.2.6)

If we combine equations (3.2.4)-(3.2.6), then the error dynamics may be cast in

matrix form as:

d

dt

 δxi

δẋi

Ψi

 =

 0 I 0
Γi 0 [ai×]
0 0 0

 δxi

δẋi

Ψi

+

 0 0 0
I Ci

b 0
0 0 −Ci

b

 δgi

δab

δwbib

 (3.2.7)

where

[ai×] =

 0 −ai3 ai2
ai3 0 −ai1
−ai2 ai1 0

 (3.2.8)
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Γi =
∂~gi

∂~xi
(3.2.9)

~gi = −gi
 x

r
y
r
z
r

 ≈ −KM
r2

 x
r
y
r
z
r

 (3.2.10)

KM = 3.986× 1014m3/s2 r =
√
x2 + y2 + z2 (3.2.11)

∂~gi

∂~xi
= KM

 ∂
∂x

(
x
r3

)
∂
∂y

(
x
r3

)
∂
∂z

(
x
r3

)
∂
∂x

(
y
r3

)
∂
∂y

(
y
r3

)
∂
∂z

(
y
r3

)
∂
∂x

(
z
r3

)
∂
∂y

(
z
r3

)
∂
∂z

(
z
r3

)
 (3.2.12)

∂
∂x

(
x
r3

)
= 1

r3
− 3x

2

r5
∂
∂y

(
x
r3

)
= −3xy

r5
∂
∂z

(
x
r3

)
= −3xz

r5

∂
∂x

(
y
r3

)
= −3xy

r5
∂
∂y

(
y
r3

)
= 1

r3
− 3y

2

r5
∂
∂z

(
y
r3

)
= −3yz

r5

∂
∂x

(
z
r3

)
= −3xz

r5
∂
∂y

(
z
r3

)
= −3yz

r5
∂
∂z

(
z
r3

)
= − 2

r3
+ 3x

2+y2

r5

and

δab = ba + diag{ab}ka + εa, (3.2.13)

δwbib = bg + diag{wbib}kg + εg, (3.2.14)

diag{wbib} = [wbib]

In equations (3.2.13) and (3.2.14),
ba is the accelerometer bias,
ka is the accelerometer scale error,
bg is the gyro bias,
kg is the gyro scale error.

The evolution of the above sensor errors can be expressed as follows:

ḃa = diag{Cab}ka + ηab, (3.2.15)

ḃg = diag{Cgb}kg + ηgb, (3.2.16)

k̇a = diag{Cak}ka + ηak, (3.2.17)

k̇g = diag{Cgk}kg + ηgk, (3.2.18)

which can be represented as a random constant, a first-order Gauss-Markov, or a

random walk processes according to the choice of the parameters, Cab, ηab, Cgb . . . ηgk
(Shin 2005). In general, the noise affecting inertial sensors contains two parts: a

low frequency component and a high frequency component, where the high frequency

part plays a dominate role, which makes the SNR very poor. For instance, it can

be in the range of -20db (El-Sheimy et. al. 2004). Both noise components are

combined together and affect the inertial sensor measurement accuracy. As pointed
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out by Nassar (2003), directly modeling of these noises is not possible in practice.

As a result, the effect of IMU measurement noises is usually decreased by employing

cascade algorithms. First, the high frequency noise is reduced by de-noising and/or

smoothing techniques such as wavelet de-noising and B-spline smoothing. Second,

the constant part is estimated through a Kalman filter by deterministic models.

It is noted that the relatively short wavelength gravity data are not available at this

stage. Therefore, it induces errors in the observed quantities in the loosely-coupled

system. If the IMU error models are defined by higher-order differential equations,

the short wavelength gravity induced observation errors tend to be absorbed by the

IMU error models. Consequently, the filter generates inaccurate IMU error estimates.

To avoid this phenomenon, a low-order differential model, a random constant model,

is used for equations (3.2.15) to (3.2.18). As a result, the error dynamics equation

becomes:

d
dt



δxi

δẋi

Ψi

ba
bg
ka
kg


=



0 I 0 0 0 0 0
Γi 0 [ai×] Ci

b 0 Ci
b[ã

b] 0
0 0 0 0 −Ci

b 0 −Ci
b[ω

b
ib]

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





δxi

δẋi

Ψi

ba
bg
ka
kg



+



I 0 0 0 0 0 0
0 Ci

b 0 0 0 0 0
0 0 −Ci

b 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I





ε1

ε2

ε3

ε4

ε5

ε6

ε7



(3.2.19)

Or, it can be written in short notation for convenience of the following derivations:

Ẋ(t) = F (t)X(t) +G(t)Ω(t) (3.2.20)

where X = ( δxi δẋi Ψi ba bg ka kg )T

E
{

Ω(t)Ω(t)T
}

= QΩ(t)δ(t− τ)
.

Considering the high sampling rate of the SINS system, the above continuous time

system is to be transformed into the following discrete time form:

Xk = Φk,k−1Xk + wk (3.2.21)

where Φk,k−1 = I + F∆t is the transformation matrix and wk ∼ (0, Qk). By taking

the navigation differences between INS and GPS, we can also establish an observation
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equation, which is directly related to the error state vector as in equation (3.2.22).

zk = HkXk + vk (3.2.22)

where

zk :=

[
δxi

δẋi

]
k

=

[
xiINS − xiGPS

ẋiINS − ẋiGPS

]
k

H :=

[
I 0 0 0 0 0 0
0 I 0 0 0 0 0

]
n×m

vk ∼ (0, Rk).

3.3 Kalman Filters

The Minimum Mean Squared Error (MMSE) estimator of Xk from equation

(3.2.21) and equation (3.2.22) can be obtained by the Kalman Filter (Kalman 1960),

which can also be derived as in the following. Suppose the initial condition is given

by:

X̂0 = X0 + e0 (3.3.1)

At the first epoch, the state space transition equation (3.2.21) reads as:

X1 = Φ1,0X0 + w1 (3.3.2)

And the observation equation at the first epoch is given by:

z1 = H1X1 + v1 (3.3.3)

where v1

w1

e0

 ∼
  0

0
0

 ,
 R1 0 0

0 Q1 0
0 0 P0

  (3.3.4)

i.e., the errors are zero mean and uncorrelated noises.

Without using the observation information, equation (3.3.1) and (3.3.2) offer a

priori estimation of X1:

X̂−1 := Φ1,0X̂0 = Φ1,0X0 + Φ1,0e0 = X1−w1 + Φ1,0e0 = X1− (w1−Φ1,0e0) (3.3.5)

=⇒ X1 = X̂−1 + (w1 − Φ1,0e0) (3.3.6)
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Substituting equation (3.3.6) into equation (3.3.3), we have:

z1 −H1X̂
−
1 = v1 +H1(w1 − Φ1,0e0) (3.3.7)

This is the well known condition equation in the geodetic literature, the LEast Sum

of Squares, LESS, solution is given by: ṽ1

w̃1

ẽ0

 =

 R1 0 0
0 Q1 0
0 0 P0

 I
HT

1

−ΦT
1,0H

T
1


×
[
R1 +H1(Q1 + Φ1,0P0ΦT

1,0)HT
1

]−1
(z1 −H1X̂

−
1 )

(3.3.8)

=⇒

X̂1 = X̂−1 + (w̃1 − Φ1,0ẽ0)

= X̂−1 + (Q1 + Φ1,0P0ΦT
1,0)HT

1

[
R1 +H1(Q1 + Φ1,0P0ΦT

1,0)HT
1

]−1
(z1 −H1X̂

−
1 )

(3.3.9)

where (Q1 +Φ1,0P0ΦT
1,0)HT

1

[
R1 +H1(Q1 + Φ1,0P0ΦT

1,0)HT
1

]−1
is the Kalman gain ma-

trix K1. (z1−H1X̂
−
1 ) is usually referred to as the innovation matrix. The expectation

of the MMSE estimate X̂1 is given by:

E
{
X̂1

}
= E

{
X̂−1

}
+K1E

{
z1 −H1X̂

−
1

}
= E {X1}+K1 (H1E {X1} −H1E {X1})
= E {X1}

(3.3.10)

So we can see that X̂1 is also weakly unbiased, in the sense that E
{
X̂1 −X1

}
is a

null vector. The dispersion matrix of X̂1 is given by:

P1 := D
{
X̂1 −X1

}
= D

{
(X̂1 − X̂−1 )− (X1 − X̂−1 )

}
= D

{
X̂1 − X̂−1

}
− C

{
(X̂1 − X̂−1 ), (X1 − X̂−1 )

}
−C

{
(X1 − X̂−1 ), (X̂1 − X̂−1 )

}
+D

{
X1 − X̂−1

} (3.3.11)

where

D
{
X1 − X̂−1

}
= K1D

{
z1 −H1X̂

−
1

}
KT

1

= K1

[
R1 +H1(Q1 + Φ1,0P0ΦT

1,0)HT
1

]
KT

1

= K1H1(Q1 + Φ1,0P0ΦT
1,0)

(3.3.12)
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C
{

(X̂1 − X̂−1 ), (X1 − X̂−1 )
}

= K1C {R1 +H1(w1 − Φ1,0e1), (w1 − Φ1,0e0)}
= K1H1(Q1 + Φ1,0P0ΦT

1,0)

= C
{

(X1 − X̂−1 ), (X̂1 − X̂−1 )
}

(3.3.13)

P0 := D
{
X1 − X̂−1

}
= D {w1 − Φ1,0e1} = Q1 + Φ1,0P0ΦT

1,0 (3.3.14)

Substituting equations (3.3.12)-(3.3.14) into equation (3.3.11), we have:

P1 := (Im −K1H1)P−1 (Im −K1H1)T +K1R1K
T
1 if n ≤ m (3.3.15)

So in the next epoch, X̂1 and P1 can be used as the initial information to obtain

the MMSE estimate of X̂2 as well as its dispersion matrix P2. This establishes the

following iteration procedure for solutions at subsequent epochs. That is, we have

the following algorithm:

Prediction:

X̂−k = Φk,k−1X̂k−1 (3.3.16)

P̂−k = Φk,k−1P̂k−1ΦT
k,k−1 +Qk−1 (3.3.17)

where X̂k denotes the KF estimated state vector;

X̂−k is the predicted state vector for the next epoch;

P̂k is the estimated state covariance matrix;

P̂−k is the predicted state covariance matrix.
Update:

Kk = P̂−k H
T
k (HkP̂

−
k H

T
k +Rk)

−1 (3.3.18)

X̂k = X̂−k +Kk(zk −HkX̂
−
k ) (3.3.19)

P̂k = (I −KkHk)P̂
−
k (3.3.20)

where Kk is the Kalman gain, which defines the updating weight between measure-

ments and predictions from the system dynamics model.

The innovation sequence is defined as:

dk = zk −HkX̂
−
k (3.3.21)
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And the residual sequence is:

εk = zk −HkX̂k (3.3.22)

Equations (3.3.16) to (3.3.20) represent the well known Kalman algorithm. From

equation (3.2.19), we can see that the INS sensor errors and the navigation errors

are both included in the system state vector, which requires relatively large ma-

trix inversions. Through transformation of the variance equation, Friedland (1969)

decoupled the Kalman Filter into two stages i.e., a bias-free estimator and a bias

estimator. This rearrangement avoids dealing with large matrix manipulations. And

more importantly it offers explicit expressions of the bias estimation. The decoupling

of the bias estimation from the state estimation makes the effect of the bias on the

estimation of the navigation errors more readily apparent (Friedland 1969).

Ignagni (1990) showed that the decomposition inherent in Friedland’s two-stage

estimator follows naturally and directly from the original estimation problem state-

ment by using the familiar notions from the conventional Kalman estimation theory.

A relatively simple and straightforward inductive proof is then employed to demon-

strate equivalency with a partitioned form of the generalized Kalman estimator. This

alternate simplified approach preserves a great deal of insight into the fundamental

nature of the solution, and allows certain extensions of the basic idea to be easily rec-

ognized. Specifically, by considering that the bias states will undergo some random

variation with time, Ignagni (1990) developed the decoupled Kalman estimator for

the following system as shown in equations (3.3.23) and (3.3.24).

xk = Ak−1xk−1 +Bk−1bk−1 + ξk (3.3.23)

bk = bk−1 + βk (3.3.24)

The observation equation is given by:

yk = Hkxk + Ckbk + ηk (3.3.25)

where

E {ξjξ′k} = Qxδj,k (3.3.26)

E {βjβ′k} = Qbδj,k (3.3.27)

E {ηjη′k} = Rδj,k (3.3.28)

E {ξjβ′k} = E {ηjξk} = E {ηjβ′k} = 0 (3.3.29)
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The decoupled algorithm is given by equations (3.3.30)-(3.3.43).

I Initial condition:

X̃0, P̃x(0) = P ∗x0 for the bias free estimator

Ux(0) = 0, M(0) = Pb(0), b̂(0) = 0 for the bias estimator

I Bias free estimator:

X̃−k = Ak−1X̃k−1 (3.3.30)

P̃−x (k) = AkP̃x(k − 1)A′k +BkQb(k − 1)B′k +QX(k) (3.3.31)

K̃x(k) = P̃−x (k)H ′k

[
HkP̃

−
x (k)H ′k +Rk

]−1

(3.3.32)

P̃x(k) =
[
I − K̃x(k)Hk

]
P̃−x (k) (3.3.33)

X̃k = X̃−k + K̃x(k)
(
yk −HkX̃

−
k

)
(3.3.34)

I Bias estimator:

b̂−k = b̂k−1 (3.3.35)

P−b (k) = Pb(k − 1) +Qb(k) (3.3.36)

Kb(k) = P−b (k)S ′k

[
SkP

−
b (k)S ′k +HkP̃

−
x (k)H ′k +Rk

]−1

(3.3.37)

Pb(k) = [I −Kb(k)Sk]P
−
b (k) (3.3.38)

b̂k = b̂−k +Kb(k)
[
yk −Hk(k)X̃−k (k)− Skb̃−k

]
(3.3.39)

where Sk is defined by the recursive sequence

Uk = AkVk−1 +Bk (3.3.40)

Sk = HkUk + Ck (3.3.41)

Vk = Uk − K̃x(k)Sk (3.3.42)

I Compute State estimates:

X̂k = X̃k + Vkb̂k (3.3.43)

To apply the two-stage algorithm into the loosely-coupled INS/GPS integration sys-

tem, we just need to properly decompose equation (3.2.19) and equation (3.2.20) into

equations (3.3.23)-(3.3.25), and let xk include the position, velocity and orientation

error and bk include the accelerometer and gyro bias and scale error.
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3.4 Adaptive methods

Whether it is a one-stage or two-stage algorithm, the implementation of the

Kalman filter requires precise a priori knowledge of both the dynamic processing

noise and the observation noise. Furthermore, these statistics are usually assumed

to remain constant in a particular run. However, in kinematic applications, neither

the trajectory geometry nor the trajectory dynamics remain constant (Mohamed and

Schwarz 1999). Therefore, the stochastic properties of the system vary depending

on the vehicle dynamics as well as the observation conditions. Assuming constant

covariances of the a priori observation noise and the processing noise may cause the

accuracy of the estimation to degrade or even cause divergence of the filter.

Considering that the innovation and residual sequences of the Kalman filter are

reliable indicators of the filter performance, many adaptive methods have been inves-

tigated by online monitoring of the innovation and residual covariance to overcome

these limitations. An ideal adaptive Kalman filter would be able to identify the cor-

rect stochastic properties without the need for any a priori statistics (Hide et. al.,

2003). An increment of the elements of Q will increase the Kalman gain, resulting

in greater filter dynamics, i.e., a relatively large oscillation of the state estimates;

while increasing the values of the elements of R will mean that the measurements

are affected more by noise and thus imply less confidence. Since the 1970s, many

adaptive approaches have been investigated. For the convenience of implementation,

three typical adaptive schemes are considered here.

3.4.1 Maximum Likelihood estimator of Q and R based on
innovations.

Under the normal distribution assumption of the filter innovation sequence, Mo-

hamed and Schwarz (1999) derived the Maximum Likelihood estimator of the filter’s

statistical information matrices as follows:

R̂k = Ĉdk
−HkP

−
k H

T
k (3.4.1)

Ĉdk
=

1

N

k∑
j=j0

dkd
T
k , j0 = k −N + 1 (3.4.2)

and

Q̂k =
1

N

k∑
j=j0

∆Xj∆X
T
j + Pk − Φk,k−1Pk−1ΦT

k,k−1 (3.4.3)
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where ∆Xk = X̂k − X̂−k In practice, to guarantee positive definiteness of

the variance matrices the following approximations as shown in equations (3.3.4) and

(3.4.5) may be used:

R̂k ≈ Ĉdk
(3.4.4)

and

Q̂k ≈
1

N

k∑
j=j0

∆Xj∆X
T
j (3.4.5)

3.4.2 Processing noise scaling method

The covariance scaling filter is a very simple and efficient extension to the EKF

algorithm which applies a scale factor, Sk ≥ 1 , to the predicted covariance, P−k .

When Sk is greater than 1, this has the effect of giving more weight to the new

measurement. The modified covariance prediction equation in the Kalman filter is

given by:

P−k = Sk
[
ΦPk−1ΦT +Qk−1

]
(3.4.6)

where Φ is the state transition matrix. This algorithm was used by Hu et al. (2001)

where it was used to improve the stochastic modeling for differential pseudo-range

GPS positioning (Hide et. al., 2003), where equation (3.4.7) was used to compute the

scaling factor.

Sk =
dTk dk

1
N

∑N−1
j=0 dTk−N+jdk−N+j

(3.4.7)

To improve the stability of the INS/GPS integration by use of the above adaptive

method, Hide et. al., (2003) proposed the following:

P−k = ΦPk−1ΦT + SkQk−1 (3.4.8)

3.4.3 State covariance scaling method

Instead of using equation (3.4.7) to obtain the scaling factor, Kim et al. (2006)

proposed a “forgetting factor” λk to rescale the predicted state covariance matrix as

shown in equations (3.4.9) and (3.4.10).

P−k = λk
[
ΦPk−1ΦT +Qk−1

]
(3.4.9)
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The forgetting factor is generated from the ratio between the calculated and the

estimated innovation covariance.

λk = max

{
1,

trace(Ck)

trace(Ck)

}
(3.4.10)

where

Ck = E
{
dkd

T
k

}
= HkP

−
k H

T
k +Rk (3.4.11)

Ck =
1

M − 1

k∑
i=k−M+1

did
T
i (3.4.12)

Ck is the calculated innovation covariance, and Ck is the estimated innovation covari-

ance, and M is a window size. The relation between the two innovation covariances

is defined as Ck = λkCk. Kim et al. (2006) stated that if Rk remains unchanged, the

effects of incomplete information in the dynamics equation can be compensated by

an increase in the magnitude of P−k .

3.5 Comparison tests and conclusions

All these three adaptive methods can be applied both in the EKF and TEKF

systems. For instance, the state covariance scaling method (Kim et al. 2006) is

implemented in EKF by equations (3.5.1)-(3.5.8).

Time Update

(1) Project the state ahead

x̂−k = Φkx̂k−1 (3.5.1)

(2) Compute the innovation

dk = zk − hk(x̂−k ) (3.5.2)

(3) Estimate the innovation covariance

Ck =
1

M − 1

k∑
i=k−M+1

did
T
i (3.5.3)

(4) Compute λk

λk = max

{
1,

trace(Ck)

trace(Ck)

}
(3.5.4)
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where Ck = HkP
−
k H

T
k +Rk

(5) Project the error covariance ahead

P−k = λk
[
Φk−1Pk−1ΦT

k−1 +Qk−1

]
(3.5.5)

Measurement Update

(1) Compute the Kalman gain

Kk = P−k H
T
k

[
HkP

−
k H

T
k +Rk

]−1
(3.5.6)

(2) Update estimate with measurement

x̂k = x̂−k +Kk

[
zk − hk(x̂−k )

]
(3.5.7)

(3) Update the error covariance

Pk = (I −KkHk)P
−
k (3.5.8)

Correspondingly, this scaling method can also be implemented in TEKF through

equations (3.5.9)-(3.5.30).

Bias free estimator:

x̂−k = Φk−1x̂k−1 (3.5.9)

P x−

k = λxk
[
Φk−1P

x
k−1ΦT

k−1 +Qx
k−1

]
(3.5.10)

Kx
k = P x−

k HT
k

[
HkP

x−

k HT
k +Rk

]−1

(3.5.11)

P x
k = (I −Kx

k )HkP
x−

k (3.5.12)

dxk = zk − hk(x̂−k ) (3.5.13)

x̂k = x̂−k +Kx
kd

x
k (3.5.14)

Cx
k = HkP

x−

k HT
k +Rk (3.5.15)

C
x

k =
1

M − 1

k∑
i=k−M+1

dxi (d
x
i )
T (3.5.16)

λxk = max

{
1,

trace(C
x

k)

trace(Cx
k )

}
(3.5.17)

The bias filter is:

b̂−k = b̂k−1 (3.5.18)
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Xi Yi Zi
Position Error 0.1m2 0.1m2 0.1m2

Velocity Error 0.1(m/s)2 0.1(m/s)2 0.1(m/s)2

Table 3.1: Initial Observation Dispersion Matrix

P−b (k) = λbk (Pb(k − 1) +Qb(k)) (3.5.19)

Kb(k) = P−b (k)S ′k
[
SkP

−
b (k)S ′k +HkP

x−
k H ′k +Rk

]−1
(3.5.20)

Pb(k) = [I −Kb(k)Sk]P
−
b (k) (3.5.21)

dbk = zk −Hk(k)x̃−k (k)− Skb̂−k = dxk − Skb̂−k (3.5.22)

b̂k = b̂−k +Kb(k)dbk (3.5.23)

Cb
k = HkP

x−

k HT
k +Rk + SkP

−
b (k)STk (3.5.24)

C
b

k =
1

M − 1

k∑
i=k−M+1

dbi(d
b
i)
T (3.5.25)

λbk = max

{
1,

trace(C
b

k)

trace(Cb
k)

}
(3.5.26)

where Sk is defined by the recursive sequence

Uk = AkVk−1 +Bk (3.5.27)

Sk = HkUk + Ck (3.5.28)

Vk = Uk − K̃x(k)Sk (3.5.29)

And finally, the navigation errors are given by

X̂k = x̂k + Vkb̂k (3.5.30)

To select the most effective adaptive methods, which not only can successfully fix

the GPS data gaps, but also estimate the long wavelength IMU errors, all the above

algorithms are tested in the southwestern Montana data sets (see Chapter 6 for more

details) under the same initial conditions, which are described by Tables 3.1 to 3.4:

In particular, the integration results of the data collected along SR43 on June

15 2005 are shown here. For instance, the estimated navigation errors and the IMU
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Xi Yi Zi
Position Error (m) 0 0 0
Velocity Error (m/s) 0 0 0
Orientation Error (rad) 0 0 0
Accelerometer Bias (m/s2) 0 0 0
Gyro Bias (rad) 0 0 0
Accelerometer Scale Error 0 0 0
Gyro Scale Error 0 0 0

Table 3.2: Initial State Vector

Xi Yi Zi
Position Error 25m2 25m2 25m2

Velocity Error 25(m/s)2 25(m/s)2 25(m/s)2

Orientation Error 3.0−10 3.0−10 3.0−10

Accelerometer Bias 1.0−4(m/s2)2 1.0−4(m/s2)2 1.0−4(m/s2)2

Gyro Bias 1.0−8(rad)2 1.0−8(rad)2 1.0−8(rad)2

Accelerometer Scale Error 1.0−10 1.0−10 1.0−10

Gyro Scale Error 1.0−12 1.0−12 1.0−12

Table 3.3: Initial State Dispersion Matrix

Xi Yi Zi
Position Error 0.01m2 0.01m2 0.01m2

Velocity Error 0.01(m/s)2 0.01(m/s)2 0.01(m/s)2

Orientation Error 1.0−8 1.0−8 1.0−8

Accelerometer Bias 1.0−7(m/s2)2 1.0−7(m/s2)2 1.0−10(m/s2)2

Gyro Bias 1.0−16(rad)2 1.0−16(rad)2 1.0−16(rad)2

Accelerometer Scale Error 1.0−16 1.0−16 1.0−16

Gyro Scale Error 1.0−16 1.0−16 1.0−16

Table 3.4: Initial Processing noise Dispersion Matrix
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system errors by using the Maximum Likelihood estimator (section 3.4.1) are shown

in Figures 3.1 to 3.7:

Figure 3.1: Estimated Position Errors by the Maximum Likelihood estimator

Figure 3.2: Estimated Velocity Errors by the Maximum Likelihood estimator

In Figures 3.1 to 3.7, the thick solid(red) lines are the adaptive Kalman filter

estimates, where the navigation errors and the IMU errors are included in one state

vector. The others are the TAEKF estimates, where the navigation errors and the

IMU errors are decomposed into two stages. The subscripts in the legends denote the

adaptive methods. For example, TAEKFR×Rb stands for adapting the observation

matrix R in the two-stage filter, and TAEKFQx stands for only adapting the process-

ing noise of the navigation errors in equation (3.3.31), while leaving the processing
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Figure 3.3: Estimated Orientation Errors by the Maximum Likelihood estimator

Figure 3.4: Estimated Accelerometer Biases by the Maximum Likelihood estimator

noises (in equation 3.3.36) of the IMU error models untouched. The two-stage setup

allows us to have more flexibility in adapting the filter to yield the best results.

Analogously, the estimated results by rescaling the processing noise (section 3.4.2)

are shown in Figures 3.8 to 3.14, in which the thick solid(red) lines are from equation

(3.3.19) with equation (3.3.17) substituted into equation (3.4.8). By replacing QX(k)

with SkQX(k) in equation (3.3.31), the dashed(green) lines show the quantity in

equation (3.3.34), while the thin solid lines in Figures 3.8 to 3.10 show the quantity

in equation (3.3.43). The dashed lines in Figures 3.11 to 3.14 show the quantity in

equation (3.3.39), after changing Qb(k) into SkQb(k) in equation (3.3.36).

The rescaling covariance matrix (see section 3.4.3) estimation results are shown in

Figures 3.15 to 3.21, where the thick solid(red) lines are from equation (3.5.7). The
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Figure 3.5: Estimated Gyro Biases by the Maximum Likelihood estimator

Figure 3.6: Estimated Accelerometer Scale by the Maximum Likelihood estimator

dashed(green) lines are the bias free estimator from equation (3.5.14). The thin(blue)

lines in Figures 3.15 to 3.17 are from equation (3.5.30), while in Figures 3.18 to 3.21

they are the bias estimator from equation (3.5.23).

In all the Figures 3.1 to 3.21, the first 1500 seconds are the stationary data. The

vehicle began traveling with an average speed of 22 meters per second after that. Due

to the change of dynamics, we can see that there are relatively large oscillations in the

state estimations from epoch 1500 to 2000, during which the filters adapt themselves

to the new observation condition. In the figures which show the estimated IMU errors,

we can see that in general the TAEKF provides relatively smoother estimation than

the AEKF does. Recalling that our purpose of the INS/GPS integration is not only to

fix the data gaps in the GPS solutions, but also to try to obtain the long wavelength
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Figure 3.7: Estimated Gyro Scale by the Maximum Likelihood estimator

Figure 3.8: Estimated Position Error by rescaling the processing noise

IMU errors, which can be used in estimating the gravity disturbances, we choose the

TAEKF in the following analysis. As for the different adaptive schemes, they do not

show too much difference in the results, but the processing noise rescaling method

described in section 3.4.2 is relatively easier to be implemented. As a result, the

two-stage filter with processing noise rescaling method is used in the data analysis in

chapter 6.
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Figure 3.9: Estimated Velocity Error by rescaling the processing noise

Figure 3.10: Estimated Orientation Error by rescaling the processing noise

Figure 3.11: Estimated Accelerometer Biases by rescaling the processing noise
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Figure 3.12: Estimated Gyro Biases by rescaling the processing noise

Figure 3.13: Estimated Accelerometer Scale by rescaling the processing noise

Figure 3.14: Estimated Gyro Scale by rescaling the processing noise
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Figure 3.15: Estimated Position Errors by rescaling the covariance matrix

Figure 3.16: Estimated Velocity Errors by rescaling the covariance matrix

Figure 3.17: Estimated Orientation Errors by rescaling the covariance matrix

42



Figure 3.18: Estimated Accelerometer Biases by rescaling the covariance matrix

Figure 3.19: Estimated Gyro Biases by rescaling the covariance matrix

Figure 3.20: Estimated Accelerometer Scale by rescaling the covariance matrix
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Figure 3.21: Estimated Gyro Scale by rescaling the covariance matrix
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CHAPTER 4

INS ACCELERATION CALIBRATION AND GPS DATA
PROCESSING

In the SINS/GPS gravimetric system, the gravity signal is the difference between

the GPS determined kinematic acceleration and the IMU measured dynamic acceler-

ation. As a result, the accuracy of the accelerations directly determines the accuracy

of the gravity estimates. This chapter describes methods to improve the accuracy of

these accelerations. First, in Section 4.1, the INS dynamic acceleration is calibrated

based on the TAEKF estimated long wavelength errors. The rest of this chapter then

focuses on improving the GPS measured kinematic acceleration and on related issues

in the data processing aspects. Both the position method and the phase method

are employed to determine the GPS acceleration. The final kinematic acceleration

is obtained by correlating the position derived acceleration and the phase derived

acceleration in the frequency domain.

4.1 Dynamic acceleration

From Chapter 2, we know that in the SINS, the specific force applied to the system

is measured by the accelerometers in the b-frame. The following equation transforms

this raw acceleration into the i-frame.

~̃ai = C̃i
b~̃a
b (4.1.1)

where C̃i
b is computed by the quaternions, see Chapter 2.

~̃ab is the b-frame acceleration measured by the accelerometers.

From Chapter 3, we know the observation errors of the inertial sensors have two

components. One consists of the low frequency bias and scale errors. The other is

the dominant high frequency noise. Through the TAEKF described in Chapter 3, the

bias and scale errors can be estimated at least partially. Then these errors can be

45



removed by the following equations from the dynamic acceleration:

~̂ai = Ĉi
b~̂a
b (4.1.2)

where

Ĉi
b =

(
I − [Ψ̂i×]

)−1

C̃i
b (4.1.3)

~̂ab = ~̃ab − b̂a − diag{~̃ab}k̂a (4.1.4)

Ψ̂i, b̂a, and k̂a are the TAEKF estimated orientation error, accelerometer bias and

accelerometer scale error.

4.2 Kinematic acceleration

On the other hand, determining the kinematic acceleration is not as straightfor-

ward as determining the INS dynamic acceleration. It involves much more compli-

cated computations. In general, there are two methods that may be used to obtain

the kinematic acceleration. One is the position method where the acceleration is

computed by taking two consecutive derivatives of the GPS-determined position with

respect to time. The other method may be referred as the phase method (Kleus-

berg et al., 1990; Jekeli 1994; Jekeli and Garcia, 1997; Kennedy 2002; Serrano et

al., 2004), where the accelerations are obtained by directly taking derivatives of the

GPS carrier phase observables. The first method is relatively straightforward and

easy to implement once the precise positioning solution is available. But it requires

at least cm level precision in positioning in order to yield relatively accurate results

(precision better than hundreds of mGal). To obtain this level of precision all the

time for a terrestrial moving base system is very challenging in practice. However,

the second method relaxes the stringent requirement of the position accuracy from

mm-level or cm-level to meters (< 10m). But it requires continuous GPS phase ob-

servables because of the derivative computation. So any cycle slip in the phase data

should be detected and fixed. After establishing the fundamental building blocks of

the GPS data processing in Section 4.3 and Section 4.4, detecting and fixing cycle

slips in kinematic scenarios are studied in section 4.5. Section 4.6 gives the typical

differential GPS positioning algorithms. The phase method is introduced in Section

4.7, which is followed by some examples in Section 4.8.
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4.3 Satellite position

Computing the satellite orbits is one of the fundamental steps of GPS data pro-

cessing. The GPS satellite position can be obtained either by using the broadcast

ephemeris or by interpolating the precise orbits provided by IGS or other GPS analy-

sis centers in the post processing model. The observed GPS satellite orbit parameters

are stored in the navigation file. The GPS satellite coordinates at given epoch can

be computed based on these orbit parameters, for details see Appendix A.

In the post processing stage, the IGS precise orbit may be used to yield more

accurate satellite coordinates. However, the IGS precise orbits only give GPS satel-

lite position every 15 minutes, which usually does not match the sampling rate of

the moving base system. The Lagrange interpolation method is probably the most

convenient and efficient method and has several advantages (Cheney and Kincaid,

1994; Witchayangkoon, 2000) to interpolate these orbits into the desired epochs.

Having a set of fixed nodes, x1, x2, . . ., xn, the Lagrange interpolating polynomial,

P (x), of degree n−1, that passes through the n points (x1, y1 = f(x1)), (x2, y2 = f(x2)

),. . ., (xn, yn = f(xn)), and is given by

P (x) =
n∑
j=1

Pj(x) (4.3.1)

where

Pj(x) = yj

n∑
k=1,k 6=j

x− xk
xj − xk

(4.3.2)

Written explicitly,

P (x) = (x−x2)(x−x3)···(x−xn)
(x1−x2)(x1−x3)···(x1−xn)

y1

+ (x−x1)(x−x3)···(x−xn)
(x2−x1)(x2−x3)···(x2−xn)

y2

+ · · ·+ (x−x1)(x−x2)···(x−xn−1)
(xn−x1)(xn−x2)···(xn−xn−1)

yn

(4.3.3)

The formula was first published by Waring in 1779, rediscovered by Euler in 1783,

and published by Lagrange in 1795 (Jeffreys 1988). For interpolating the satellite

coordinate, it is enough to use 11 nodes in equation (4.3.3) to yield mm-level accuracy.

Both the precise and broadcast orbits are evaluated at the same time span, and the

comparison results are shown in Appendix A.

47



4.4 GPS observables and their linear combinations

In GPS data processing, the following three kinds of observables are usually used,

pseudo-range, phase, and Doppler.

The GPS pseudo-range observable:

P k
i,l = ρki + T ki + Iki,l + c(∆ti −∆tk) + c(bk + bi) +mk

i,l + εki,l (4.4.1)

where ρki is the true geometric distance from satellite k to receiver i,
T ki and Iki,l are the troposphere and ionosphere delay,
c is the speed of light in vacuum,
∆ti,∆t

k are the satellite and receiver clock errors,
bk and bi are the hardware delays,
mk
i,l is the multi-path effect,

εki,l is the observation error,
l stands for the carrier phase. For example, l = 1 means pseudo-range

carried by GPS L1 carrier.

The GPS phase observation equation:

Φk
i,l = ρki +c(∆ti−∆tk)+T ki −Iki /f 2

l +λlB
k
i +λlN

k
i,l+λl(ϕ

k
0−ϕil,0)+mk

i,l+ε
k
i,l (4.4.2)

where Φk
i,l is the phase observation value on frequency L1 or L2 as indicted by l = 1

or l = 2 respectively.
fl is the GPS frequency.
λl is the corresponding wavelength,
Iki /f

2
l is the ionosphere effect (first order only),

Bk
i constant bias expressed in cycles in practice it may contain the phase
windup (Leick 2004; Wu. et. al., 1993) delays, which is due to the relative
rotation between the GPS antenna and the river antenna.

ϕk0 is the initial phase of satellite k.
ϕil,0 is the initial phase of receiver i.
mk
i,l is the multi-path effect.

εki,l contains other un-modeled errors and observation errors.
The Doppler data:

The equation for the observed Doppler shift, D, scaled to range rate is given by:

−D ∗ λ = ρ̇+ c∆δ̇ + e (4.4.3)

where ρ̇ is the first order derivative of the true geometric range from satellite to

receiver with respect to time, and ∆δ = δR−δs. Assuming the satellite clock bias, δs,

has been corrected, ∆δ equals the receiver clock delay, δR. e is the observation error,

which may include the atmosphere errors. The achievable observation accuracy of
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the Doppler frequency is 0.001 Hz. This corresponds to 0.3m/s if the Doppler shift is

measured in the C/A-code tracking loop (Hoffman-Wellenhof et al. 2001). A detailed

derivation of Doppler equations within the frame of GPS is given in Remondi (1984).

To eliminate or reduce the systematic errors, various linear combinations such as

the double difference and triple difference have been established.

The Double Difference (DD) model is commonly used to remove or reduce the

error terms in the above one-way observables.

Φkl
ij,1 := (Φk

i,1 − Φk
j,1)− (Φl

i,1 − Φl
j,1) = ρ∗klij − Iklij /f 2

1 + λ1N
kl
ij,1 + εklij,1 (4.4.4)

Φkl
ij,2 := (Φk

i,2 − Φk
j,2)− (Φl

i,2 − Φl
j,2) = ρ∗klij − Iklij /f 2

2 + λ2N
kl
ij,2 + εklij,2 (4.4.5)

P kl
ij,1 := (P k

i,1 − P k
j,1)− (P l

i,1 − P l
j,1) = ρ∗klij + Iklij /f

2
1 + eklij,1 (4.4.6)

P kl
ij,2 := (P k

i,2 − P k
j,2)− (P l

i,2 − P l
j,2) = ρ∗klij + Iklij /f

2
2 + eklij,2 (4.4.7)

where

ρ∗klij = ρklij + T klij (4.4.8)

εklij,1(2) contains the DD multi-path effect, differential code bias, and phase windup

effect as well as observation errors. eklij,1(2) contains the DD multipath effect, and

observation errors. However, when establishing the DD observables in practice, the

following three requirements (Rizos 1999) need to be considered:

(1). All receivers should take observations to common-view satellites at epochs

that are within 30 milliseconds (10−3 second) of each other, to ensure that satellite

clock errors cancel in between receiver differences. This requirement is modest. In

general, it is not difficult to achieve 30 milliseconds synchronizations for the satellite

transmission epochs.

(2). Receivers should be synchronized with each other at the microsecond (10−6

second) level to ensure that all the observation time-tags are consistent with each

other.

(3). All receivers should be “externally” synchronized to the Satellite Ephemeris

Time Scale (in general, GPST) at the millisecond level.

The time-tag requirements (points (2) and (3)) can be met if the GPS navigation

solution is used to individually synchronize the receiver to GPST. The receiver clock

bias (which defines the offset of the internal clock from GPST) can be determined to

better than 1 microsecond accuracy using the pseudo-range point position solution.

If the clock is reset always to GPST, code-correlating receivers can be considered as

being always (automatically) synchronized to each other via GPST. On the other

hand, if the receiver clock is not continuously reset to GPST using the navigation
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solution, then this needs to be done during post-mission analysis of the recorded

data. As a result, in the post data processing stage, a point positioning solution at

both ends of the base line is performed to check the receiver clock errors. If the clock

error was not corrected based on the navigation solution, i.e., the receiver did not

have the “clock steering” feature, then the receiver clock is adjusted based on the

estimated clock error provided by the point positioning results to fulfill the point (3).

As Gurtner (2001) pointed out, the corresponding range and phase observations at

this epoch should be adjusted by the equations (4.4.9) to (4.4.11):

tcor = trec − dTrec (4.4.9)

where trec is the receiver clock time, dTrec is the estimated receiver clock error, and

tcor is the corrected receiver clock time.

ρcor = ρobs − c ∗ dTrec (4.4.10)

where ρobs is the receiver observed pseudo-range, and ρcor is the adjusted pseudo-

range.

φcor = φobs − dTrec ∗ f (4.4.11)

where φobs is the observed phase data unit in cycles, and f is the frequency of the

corresponding carrier.

The Triple Difference (TD) which is defined to be the differences of DD between

two successive epochs is another commonly used linear combination. Suppose the

data having a 1Hz sampling rate, the TD observables are given by equations (4.4.12)

to (4.4.15).

δΦkl
ij,1(t) := Φkl

ij,1(t)− Φkl
ij,1(t− 1)

= ρklij (t)− Iklij (t)/f 2
1 + T klij (t) + λ1N

kl
ij,1(t) + εklij,1(t)− ρklij (t− 1)+

Iklij (t− 1)/f 2
1 − T klij (t− 1)− λ1N

kl
ij,1(t− 1)− εklij,1(t− 1)

=
[
ρklij (t)− ρklij (t− 1)

]
−
[
Iklij (t)− Iklij (t− 1)

]
/f 2

1 +[
T klij (t)− T klij (t− 1)

]
+ λ1

[
Nkl
ij,1(t)−Nkl

ij,1(t− 1)
]

+ δεklij,1(t)

(4.4.12)

δΦkl
ij,2(t) := Φkl

ij,2 − Φkl
ij,2(t− 1)

= ρklij (t)− Iklij (t)/f 2
2 + T klij (t) + λ2N

kl
ij,2(t) + εklij,2(t)− ρklij (t− 1)+

Iklij (t− 1)/f 2
2 − T klij (t− 1)− λ2N

kl
ij,2(t− 1) + εklij,2(t− 1)

=
[
ρklij (t)− ρklij (t− 1)

]
−
[
Iklij (t)− Iklij (t− 1)

]
/f 2

2 +[
T klij (t)− T klij (t− 1)

]
+ λ2

[
Nkl
ij,2(t)−Nkl

ij,2(t− 1)
]

+ δεklij,2(t)
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(4.4.13)

δP kl
ij,1(t) =

[
ρklij (t)− ρklij (t− 1)

]
+
[
Iklij (t)− Iklij (t− 1)

]
/f 2

1 +
[
T klij (t)− T klij (t− 1)

]
+ δeklij,1(t)

(4.4.14)

δP kl
ij,2(t) =

[
ρklij (t)− ρklij (t− 1)

]
+
[
Iklij (t)− Iklij (t− 1)

]
/f 2

2 +
[
T klij (t)− T klij (t− 1)

]
+ δeklij,2(t)

(4.4.15)

In this combination, the ionosphere and toposphere effects are further reduced. If

the phase observables do not have the cycle slips, then the TD phase observable does

not include the integer ambiguity, which means that we need not worry about this

issue in the TD model. However, due to the differencing procedures, TD observables

have a much higher noise level than the DD observables. As a result, it is not

recommended if the highest accuracy is expected (Rizos 1999). It is usually used to

get the first positioning solution in the post data processing.

4.5 Cycle slip detection and validation

In GPS data processing, especially in the phase acceleration method, which re-

quires taking derivatives of the phase observables, cycle slips must be properly han-

dled. Over the past decades, many cycle-slip-sensitive linear combinations, such

as ionosphere-only (Goad 1986; Bastos and Landau 1988; and Seeber 2003), wide-

lane-phase-minus-narrow-lane-pseudo-range (Blewitt,1990; Gao and Li 1999; Bisnath

2000), and Triple Difference (Kim and Langley 2001) combinations have been inves-

tigated. In this section, first these methods are tested in the kinematic case. Then

a new filtering model is proposed to reduce the noise level of the code measurements

for fixing the cycle slips in the phase observables.

4.5.1 Ionosphere-only linear combination

By taking differences between (4.4.4) and (4.4.5), the geometric range and tropo-

effect are cancelled. This leads to the ionosphere-only linear combination as shown

in equation (4.5.1).

Φkl
ij,1 − Φkl

ij,2 = − Ikl
ij

f2
1

+
Ikl
ij

f2
2

+ λ1N
kl
ij,1 − λ2N

kl
ij,2 + εklij,12

=
f2
1−f2

2

f2
1 f

2
2
Iklij + λ1N

kl
ij,1 − λ2N

kl
ij,2 + εklij,12

(4.5.1)
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Many researchers noticed that under benign observation condition, this linear

combination and its time differences are very sensitive to a cycle slip. The time

differences of the ionosphere-only combination leave a very small component of the

ionospheric, multi-path and noise terms, and an estimate of the cycle slip, if any

(Bisnath 2000). However, by only using the ionosphere-only linear combination, it is

not possible to determine the size of the cycle slip on L1 and L2. It can only tell us

there is a cycle slip in the phase observables. So other linear combinations are needed

to determine its size.

4.5.2 Range Residuals

Bastos and Landau (1988) proposed the so-called range residuals as in equation

(4.5.2) to detect and fix the cycle slip.

∆ρLi(t) = λi(ϕi(t) + ∆Ni − ϕi(t1))− (ρ(t)− ρ(t1)) i = 1, 2 (4.5.2)

This quantity is not affected by the motion of the receiver, clock, tropospheric, or

relativistic errors, because they are the same for both pseudoranges and phase ranges

and therefore disappear when the two are differenced. However, the range residuals

have a noise level that can reach tens of cycles due to measurement, ionospheric, and

multipath errors. Linear regression or a Kalman filter is required to reduce the noise

level before and after cycle slip estimation.

4.5.3 Wide lane phase minus narrow lane pseudo-range

Blewitt (1990), Gao and Li (1999), and Bisnath (2000) proposed the so-called

wide-lane-minus-narrow-lane linear combination as shown in the equation (4.5.3):

λ4(∇∆ϕ1 −∇∆ϕ2)− λ5(∇∆P1

λ1
+ ∇∆P2

λ2
)

= λ4(∇∆N1 −∇∆N2)
+λ4(∇∆m1

λ1
− ∇∆m2

λ2
)− λ5(∇∆M1

λ1
+ ∇∆M2

λ2
)

+λ4(∇∆ε1
λ1
− ∇∆ε2

λ2
)− λ5(∇∆e1

λ1
+ ∇∆e2

λ2
)

(4.5.3)

where

λ4 = (λ−1
1 − λ−1

2 )−1 (4.5.4)

λ5 = (λ−1
1 + λ−1

2 )−1 (4.5.5)

∇∆ϕ1, and ∇∆ϕ2 are the corresponding quantities on the left side of equation (4.4.4)

and equation (4.4.5), respectively. But the units are in cycles. ∇∆P1, and ∇∆P2

are coming from equations (4.4.6) and (4.4.7). Instead of using the superscripts and
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subscripts (•klij ), ∇∆ is used to denote the double difference operation. On the right

side of equation (4.5.3), the double difference ambiguities, ∇∆N1 and ∇∆N2, are

constants. The linear combinations of the error terms should show a white noise

characteristic. Without cycle slips, there should not be big jumps in this linear

combination. As a result, any abrupt change may indicate a cycle slip. However, the

observation noises in the pseudo-ranges disallow directly using this linear combination

to determine the small cycle slips (< 10 cycles). Again, before and after a cycle slip,

curve fitting or Kalman filtering techniques are required to reduce the pseudo-range

noises.

4.5.4 TD observables minus the Doppler predicted range
changes

It was noted above that the success of these methods depends on filtering and

fitting techniques. However, many cycle slips in a kinematic scenario usually occur

consecutively in time, making it rather challenging to find appropriate filtering and

smoothing methods. Recognizing this problem, Kim and Langley (2001) used the TD

observables, and the Doppler observables to detect and fix cycle slips. The TD phase

observables are given by:

δ∇∆Φ1 = δ∇∆ρ+ λ1C1 + δ∇∆τ + δ∇∆s− δ∇∆I + δ∇∆b1 + δ∇∆ε1 (4.5.6)

δ∇∆Φ2 = δ∇∆ρ+ λ2C2 + δ∇∆τ + δ∇∆s− γ · δ∇∆I + δ∇∆b2 + δ∇∆ε2 (4.5.7)

where C1 and C2 are the potential cycle slips in L1 and L2 carrier phases, respectively;

τ is the delay due to the troposphere; s is the satellite orbit bias; I is the delay of the

L1 carrier phase due to the ionosphere; γ = (λ2/λ1)2 ≈ 1.65; b is the multi-path; and

ε is the receiver system noise.

As pointed out by Kim and Langley (2001), the geometric range should be removed

to estimate the size of the cycle slips. After removing it from equation (4.5.6) and

(4.5.7), the TD carrier-phase prediction residuals are given by:

δ∇∆ΦTD1 = δ∇∆Φ1 − δ∇∆ρ̂ = λ1∇∆C1 +4ε′1 (4.5.8)

δ∇∆ΦTD2 = δ∇∆Φ2 − δ∇∆ρ̂ = λ2∇∆C2 +4ε′2 (4.5.9)

where δ∇∆ρ̂k = −(∇∆Dk + ∇∆Dk−1)/2 if the Doppler frequencies are available,

otherwise δ∇∆ρ̂k = (∇∆Pk −∇∆Pk−1)/(tk − tk−1).

The above two equations and their statistics provide some confidence intervals for

the candidates of the cycle slips. To validate the amount of the cycle slips, Kim and

Langley (2001) used a search method, which is conceptually the same as resolving the
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ambiguities in DD observations. This method is very complicated to implement in a

kinematic scenario. A more efficient method based on the Doppler data is explored

in the following section.

4.5.5 Kalman filtering the pseudo-range by use of Doppler
data

Suppose the acceleration of the DD geometric distances can be characterized as

white noise, the dynamics of the DD geometric distance is written by:

d

dt

[
∇∆P

∇∆Ṗ

]
=

[
0 1
0 0

] [
∇∆P

∇∆Ṗ

]
+

[
0
e

]
, e ∼ N(0, σ2

e) (4.5.10)

A first order approximate solution of the above equation is given by:[
∇∆P

∇∆Ṗ

]
k

=

[
1 ∆t
0 1

] [
∇∆P

∇∆Ṗ

]
k−1

+

[
ε1

ε2

]
, ε1/2 ∼ N(0, σ2

ε1/2
) (4.5.11)

Considering that the DD model of equation (4.4.3) does not contain the clock

errors any more, the observation equation is given by:

z :=

[
∇∆P

∇∆Ṗ

]
k

=

[
∇∆P
−∇∆Doppler

]
k

+

[
v1

v2

]
, v1/2 ∼ N(0, σ2

v1/2
) (4.5.12)

The above equations can be framed into a Kalman filter system by use of the

following conventional notations.

The state transition equation:

Xk = Φk,k−1Xk−1 + εk (4.5.13)

where Xk :=

[
∇∆P

∇∆Ṗ

]
k

, Φk,k−1 =

[
1 ∆t
0 1

]
, εk ∼ (0, Qk).

The observation equation:

zk := HkXk + vk (4.5.14)

where Hk =

[
0 1
0 0

]
, vk ∼ (0, Rk)

The solution of Xk is given by the well known Kalman algorithm as in the following

steps:
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Prediction:

X̂−k = Φk,k−1X̂k−1 (4.5.15)

P̂−k = Φk,k−1P̂k−1ΦT
k,k−1 +Qk−1 (4.5.16)

where Xk denotes the KF estimated state vector;
X−k is the predicted state vector for the next epoch;

P̂k is the estimated state covariance matrix;

P̂−k is the predicted state covariance matrix
Update:

Kk = P̂−k H
T
k (HkP̂

−
k H

T
k +Rk)

−1 (4.5.17)

X̂k = X̂−k +Kk(zk −HkX̂
−
k ) (4.5.18)

P̂k = (I −KkHk)P̂
−
k (4.5.19)

where Kk is the Kalman gain, which defines the updating weight between measure-

ments and predictions from the system dynamics model.

Suppose the observation errors in the pseudo-ranges are significantly reduced by

the Kalman filter. Then the ionosphere-only and the wide-lane-phase-minus-narrow-

lane-pseudo-range linear combinations are used to detect the cycle slips in the phase

observables. The time differences of the ionosphere-only combination is defined by

equation (4.5.20):

∆ξn := (Φkl
ij,1 − Φkl

ij,2)n − (Φkl
ij,1 − Φkl

ij,2)n−1

≈ λ1(Nkl
ij,1 + C1)− λ2(Nkl

ij,2 + C2)− [λ1N
kl
ij,1 − λ2N

kl
ij,2]

= λ1C1 − λ2C2

(4.5.20)

If ∆ξn > τ , say 2.5cm, then a cycle slip is identified at epoch n. Time differences of

the wide-lane phase minus narrow-lane pseudo-range linear combination are used to

validate the amount of the slip at this epoch.

∆ηn :=
{
λ4(∇∆ϕ1 −∇∆ϕ2)− λ5(∇∆P1

λ1
+ ∇∆P2

λ2
)
}
n

−
{
λ4(∇∆ϕ1 −∇∆ϕ2)− λ5(∇∆P1

λ1
+ ∇∆P2

λ2
)
}
n−1

≈ λ4(C1 − C2)

(4.5.21)

Finally, the cycle slips are determined by solving equations (4.5.20) and (4.5.21),

which gives:

C2 =

(
∆ξn
λ1

− ∆ηn
λ4

)
λ1

λ1 − λ2

(4.5.22)
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C1 = ∆ηn/λ4 + C2 (4.5.23)

4.6 DGPS solutions

In the TD observables, the ionosphere and troposphere effects are reduced. Fur-

thermore, the integer ambiguities are cancelled out in the cycle slip free phase ob-

servables. If j is the base station, whose coordinates are given, then

ρklij (t) = ρki (t)− ρli(t)− ρkj (t) + ρlj(t)
= ρki (t)0 − ρli(t)0 − ρkj (t) + ρlj(t)

+
[
xi(t)0−xk(t)

ρk
i (t)0

− xi(t)0−xl(t)

ρl
i(t)0

]
∆Xi(t)

+
[
yi(t)0−yk(t)

ρk
i (t)0

− yi(t)0−yl(t)

ρl
i(t)0

]
∆Yi(t)

+
[
zi(t)0−zk(t)

ρk
i (t)0

− zi(t)0−zl(t)

ρl
i(t)0

]
∆Zi(t)

(4.6.1)

The TD observation equation is given by:

δΦkl
ij (t) = [ρklij (t)− ρklij (t− 1)] + δεklij,1(t)

= ρki (t)0 − ρli(t)0 − ρkj (t) + ρlj(t)

+
[
xi(t)0−xk(t)

ρk
i (t)0

− xi(t)0−xl(t)

ρl
i(t)0

]
∆Xi(t)

+
[
yi(t)0−yk(t)

ρk
i (t)0

− yi(t)0−yl(t)

ρl
i(t)0

]
∆Yi(t)

+
[
zi(t)0−zk(t)

ρk
i (t)0

− zi(t)0−zl(t)

ρl
i(t)0

]
∆Zi(t)

−ρki (t− 1)0 + ρli(t− 1)0 + ρkj (t− 1)− ρlj(t− 1)

−
[
xi(t−1)0−xk(t−1)

ρk
i (t−1)0

− xi(t−1)0−xl(t−1)

ρl
i(t−1)0

]
∆Xi(t− 1)

−
[
yi(t−1)0−yk(t−1)

ρk
i (t−1)0

− yi(t−1)0−yl(t−1)

ρl
i(t−1)0

]
∆Yi(t− 1)

−
[
zi(t−1)0−zk(t−1)

ρk
i (t−1)0

− zi(t−1)0−zl(t−1)

ρl
i(t−1)0

]
∆Zi(t− 1)

(4.6.2)

where (t) denotes the current epoch, (t − 1) denotes the previous epoch, and the

subscript zeros denote the corresponding values that are evaluated by using the given

approximate coordinates.

If the first epoch coordinates are given, then we have:

δLklij (t) := δΦkl
ij (t)−

(
ρki (t)0 − ρli(t)0 − ρkj (t) + ρlj(t)

)
−
(
−ρki (t− 1)0 + ρli(t− 1)0 + ρkj (t− 1)− ρlj(t− 1)

)
=

[
xi(t)0−xk(t)

ρk
i (t)0

− xi(t)0−xl(t)

ρl
i(t)0

]
∆Xi(t)

+
[
yi(t)0−yk(t)

ρk
i (t)0

− yi(t)0−yl(t)

ρl
i(t)0

]
∆Yi(t)

+
[
zi(t)0−zk(t)

ρk
i (t)0

− zi(t)0−zl(t)

ρl
i(t)0

]
∆Zi(t)

(4.6.3)
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Analogously, the TD pseudo-range observation equation is given by:

δP kl
ij (t) := δP kl

ij (t)−
(
ρki (t)0 − ρli(t)0 − ρkj (t) + ρlj(t)

)
−
(
−ρki (t− 1)0 + ρli(t− 1)0 + ρkj (t− 1)− ρlj(t− 1)

)
=

[
xi(t)0−xk(t)

ρk
i (t)0

− xi(t)0−xl(t)

ρl
i(t)0

]
∆Xi(t)

+
[
yi(t)0−yk(t)

ρk
i (t)0

− yi(t)0−yl(t)

ρl
i(t)0

]
∆Yi(t)

+
[
zi(t)0−zk(t)

ρk
i (t)0

− zi(t)0−zl(t)

ρl
i(t)0

]
∆Zi(t)

(4.6.4)

The TD solution may be obtained by solving equation (4.6.3) and equation (4.6.4).

First, an initial approximation position is needed to compute the quantities with the

subscript zero, and ∆Xi(t), ∆Yi(t), and ∆Zi(t) are computed by solving the linear

system described by equations (4.6.3) and (4.6.4). Then an improved approximation

position is obtained by adding the computed ∆Xi(t), ∆Yi(t), and ∆Zi(t) into the

initial approximation coordinates. The procedures are repeated several times, usually

less than 5, till the linear system converge. Figures 4.1 and 4.2 show the position

differences between the TD solution and the presumably more precise DGPS solutions

offered by the ApplanixTM software (http://www.applanix.com).

Figure 4.1: Position differences between TD solution and ApplanixTM solution

57



Figure 4.2: Total positioning distances between TD solution and ApplanixTM solution

From Figures 4.1 and 4.2, we can see that the differences are relatively small in

the first 1600 seconds, when the vehicle is stationary. But the differences are getting

larger in the kinematic part. The reason is that the commercial software uses a

built-in Kalman filter to yield an optimal solution. The TD solution is just an epoch-

by-epoch least-squares estimation; and the noise level in the TD observables is much

higher than in the DD and SD observables due to the linear operations, as pointed out

by many researchers. Hence, the ApplanixTM is used in the following data processing,

when a high accuracy solution is required. However, the TD epoch by epoch solution

may be better than the filtered results in the stationary case, at least in the vertical

component. Indeed, Figure 4.3 shows the ellipsoidal height solution of the TD and

ApplanixTM output when the vehicle is stationary.

4.7 Kinematic acceleration computation by phase method

This section introduces the phase method to compute the GPS acceleration. Un-

like the position method, it relaxes the requirements in the positioning accuracy.

Kleusberg et al. (1990), and Jekeli (1994) showed some preliminary results in the

static case. Jekeli and Garcia (1997) and Kennedy (2002) presented the results in the

kinematic case for the determination of gravity disturbances in the airborne gravi-

metric system. However, some implementation procedures such as cycle slip deter-

mination and fixing still remain vague. Here, we try to develop a clear and effective

routine to obtain the GPS accelerations directly from the phase observables.
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Figure 4.3: Vertical positioning results of TD solution and ApplanixTM solution

From the phase acceleration algorithm in the 4-satellite scenario provided by Jekeli

and Garcia (1997), an extension to more than four satellite observations is given to

determine the acceleration of the rover GPS receiver in an inertial frame, as shown

in equation (4.7.1).

~̈xm = [ET
p,q;q,r;r,s;s,t;...Ep,q;q,r;r,s;s,t;...]

−1ET
p,q;q,r;r,s;s,t;...


ap,q
aq,r
ar,s
as,t
. . .

 (4.7.1)

where ~̈xm is the rover acceleration in the i-frame

Ep,q;q,r;r,s;s,t;... =


~ep,qm
~eq,rm
~er,sm
~es,tm
. . .

 (4.7.2)
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where ~ep,qm = ~epm − ~eqm, and ~eqm is the unit vector along the line of sight from receiver

m to satellite q.
ap,q
aq,r
ar,s
as,t
. . .

 =


−ρ̈p,qm + (~epm • ~̈xp − ~eqm • ~̈xq) + (~̇epm • ~̇xpm − ~̇eqm • ~̇xqm)

−ρ̈q,rm + (~eqm • ~̈xq − ~erm • ~̈xr) + (~̇eqm • ~̇xqm − ~̇erm • ~̇xrm)

−ρ̈r,sm + (~erm • ~̈xr − ~esm • ~̈xs) + (~̇erm • ~̇xrm − ~̇esm • ~̇xsm)

−ρ̈s,tm + (~esm • ~̈xs − ~etm • ~̈xt) + (~̇esm • ~̇xsm − ~̇etm • ~̇xtm)
. . .

 (4.7.3)

ρ̇p,qm = ρ̇p,qm,k + ρ̇p,qk (4.7.4)

ρ̈p,qm = ρ̈p,qm,k + ρ̈p,qk (4.7.5)

The first term of the right hand sides of equations (4.7.4) and (4.7.5) is obtained by

taking derivatives of the cycle slip free DD phase observables, which can be obtained,

for instance, from section 4.5.5. The second term could be computed by taking the

derivatives of the range differences between the base station and the satellites, which

could be computed from the given base station coordinates and the interpolated

satellites coordinates.

The line of sight velocities can be obtained by using equations (4.7.6) - (4.7.9).

~̈xm = [ET
p,q;q,r;r,s;s,t;...Ep,q;q,r;r,s;s,t;...]

−1ET
p,q;q,r;r,s;s,t;...


bp,q
bp,r
bp,s
bp,t
. . .

 (4.7.6)

where

Ep,q;p,r;p,s;p,t;... =


~ep,qm
~ep,rm
~ep,sm
~ep,tm
. . .

 (4.7.7)


bp,q
bp,r
bp,s
bp,t
. . .

 =


ρ̇p,qm − ~eqm • (~̇xp − ~̇xq)
ρ̇p,rm − ~erm • (~̇xp − ~̇xr)
ρ̇p,sm − ~esm • (~̇xp − ~̇xs)
ρ̇p,tm − ~etm • (~̇xp − ~̇xt)
. . .

 (4.7.8)

60



Finally, we use equation (4.7.9) to compute the derivative of the unit vector.

~̇epm =
1

ρpm
(I − ~epm(~epm)T )~̇xpm (4.7.9)

To perform the computation, first, we need the position of the rover receiver and

the position of the satellites. Second these coordinates are transformed into a prede-

fined inertial frame. Then, we take the derivatives of these i-frame coordinates and

the DD phase observables. Finally, the rover acceleration in the i-frame is computed

based on the flow chart in Figure 4.4.

Figure 4.4: Flow chart of the phase method of determining kinematic vehicle acceleration
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4.8 Acceleration computation tests

The rover GPS acceleration can be computed either by using the phase method

described in the previous section or by taking two consecutive time derivatives of the

position results, i.e. the position method, which is straightforward to implement once

the high precision position solution is available. But in practice it is very challenging

to obtain the required precision solution at all times. As a result, the phase method

becomes a good alternative. In this section, the phase method is tested first by using

static data; then it is applied to kinematic data. From the static data test result, we

can check the algorithm and computer code. The kinematic results show that it is

possible to improve the accuracy of the position-derived acceleration by incorporating

the phase-derived acceleration.

4.8.1 Static data test

To test the algorithm, a set of static observation data from two CORS stations,

MSOL and INDP, is used. The data were collected on June 15, 2005 at these two

sites which are approximately 190 Km apart. These data sets are accessible to the

public at the NGS ftp server. To simulate the situation, we chose the GPS receiver

at MSOL as the base station in the DD mode, but the receiver at INDP is assumed

to be a rover. The commonly viewed satellites at both ends of the baseline are shown

in Figure 4.5.

Figure 4.5: Common satellites observed at MSOL and INDP
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Diff (mGal) X Y Z
Mean −1.461 −0.544 0.048
STD 230.787 359.164 241.626

Table 4.1: Statistics of the acceleration differences between the L1 phase determined
GPS acceleration and the true acceleration.

In Figure 4.5, we can see that the total number of commonly viewed satellites is

changing with respect to time. To reflect this, the color of each PRN satellite is used

to indicate the change of satellite constellation. Based on this figure, PRN23, PRN13,

PRN16, PRN20, and PRN27 are selected as the common-view satellites (from 1800

seconds to 5400 seconds after 259200 seconds of the week). The point positioning

method is applied at both MSOL and INDP to estimate the receiver clock error and

thus synchronize the receiver clocks to the GPST. Then the ionosphere-only linear

combination is used to detect the cycle slips in the phase observables. Figure 4.6

shows the ionosphere-only solution for the selected satellites. We can see that the

amplitudes of the ionosphere-only linear combinations in Figure 4.6 do not have large

jumps (> λ2), which implies that no cycle slip happened in this period of time. As

a result, for the selected static data set, it is not necessary to use the Kalman filter,

described in section (4.5.5). The rover acceleration (i.e., the INDP CORS station

acceleration) in the i-frame is computed by use of the L1 phase observation, and is

plotted in Figure 4.7.

The computed acceleration components are shown by the thick solid(blue) lines.

The true acceleration of the “rover” in the i-frame can be easily obtained by using

the mean Earth rotation rate and INDP’s coordinates. The differences between the

phase acceleration and nominal acceleration, indicated by the thin lines, are due to

the observation errors. The statistics of the differences are shown in Table 4.1. On

the other hand, the position method is also used to compute the accelerations. First,

we use the Trimble Geomatics Office (TGOTM) to compute the coordinates of the

“rover” GPS receiver at INDP at every epoch in the selected time interval. Then

the solutions are transformed into the i-frame. And the accelerations are obtained

by take two consecutive derivatives of the computed i-frame coordinates, which are

also include in Figure 4.7, from which we can see the precision of the position method

generated acceleration is much worse than the phase method derived acceleration.

The main reason is due to the very long base line (around 200km) between MSOL

and INDP.
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Diff (mGal) X Y Z
Mean −4.329 −4.636 2.513
STD 372.371 492.863 379.547

Table 4.2: Statistics of the acceleration differences between the L2 phase determined
GPS acceleration and the true acceleration.

The acceleration could also be computed by using L2 phase observables. The

results are shown in Figure 4.8. The statistics of the accelerations errors by use of L2

data are shown in Table 4.2. From Tables 4.1 and 4.2, we can see that the L1 data

give a better solution than the L2 data, which makes sense because the wavelength

of L1 is shorter than the wavelength of L2.

4.8.2 Kinematic data

The next step is to compute acceleration from some actual kinematic data. We

select the same GPS data set that we used in Section 3.5 (refer to Chapter 6 for more

details of the data set). The MSOL CORS station is still used as the base station in

the DD model. The selected common satellites viewed at both ends of the base-line

are shown in Figure 4.9.

After synchronizing the GPS receivers, the DD observables are constructed so that

the cycle slips could be detected and validated using the method described in Section

4.5.5. The ionosphere-only linear combinations of the DD observables constructed by

the selected satellites are shown in figure 4.10.

Figure 4.10 shows significant cycle slips in the observed phases, which need to

be resolved and fixed. Furthermore, we can see that some cycle slips in ∇∆Φ15,18,

∇∆Φ18,26, and ∇∆Φ15,26 occurred within very short time intervals. Apparently, there

are not enough data to perform the filtering or smoothing between these cycle slips.

As a result, the observation errors in the range residuals or wide-lane phase mi-

nus narrow-lane pseudo-range linear combinations can not be reduced by the con-

ventional methods. The Kalman filter developed in Section 4.5.5 is used to reduce

the noise level in the pseudo-ranges so that the wide-lane-phase-minus-narrow-lane-

pseudo-range linear combination can be used together with the ionosphere-only linear

combination to validate the cycle slips in both L1 and L2 frequencies. The residuals of

the Kalman filtered pseudo-ranges are plotted in Figure 4.11. Figure 4.12 shows the

wide-lane-phase-minus-narrow-lane-pseudo-range linear combinations based on these

filtered pseudo-ranges.
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After fixing the cycle slips by using equations (4.5.22) and (4.5.23), the ionosphere-

only linear combinations are shown in Figure 4.13. Comparing Figures 4.10 and

4.13, we can see that the large jumps in the ionosphere-only linear combinations are

eliminated. This proves that our new cycle slip fixing algorithm works well, even

under extremely bad observation conditions, where the conventional cycle slip fixing

techniques do not work. It is true that there are still some jumps in Figure 4.13,

which may be due to the round-off error in equations (4.5.22) and (4.5.23). But they

are much smaller than any GPS frequency wavelength, and their effects on computing

the phase accelerations should not be significant.Finally, these cycle-slip-free phase

observables are used in equations (4.7.4) and (4.7.5) to compute the derivatives of the

phase data, which eventually leads to the acceleration of the GPS receiver following

by the steps in Figure 4.4.

On the other hand, the accelerations also can be computed by using the position

method which takes derivatives of the provided GPS coordinates. However, the data

gaps in the position solution should be fixed by using the TAEKF. To yield better

results, the final GPS kinematic acceleration is determined by combining these accel-

erations in the frequency domain via the wave number correlation filter (see section

5.3.2 for details). The results are shown in Figures 4.14 - 4.16.

In Figures 4.14 to 4.16, the dotted(red) lines are the position derived GPS accel-

eration, the dashed(blue) lines are the phase method provide GPS acceleration, and

the solid(green) lines are the correlated GPS acceleration. Both the position derived

GPS acceleration and the phase determined GPS acceleration show high frequency

noises. In the kinematic scenario, neither of these methods provides apparently better

results than the other. As we have already seen, the position method is very straight

forward once obtaining the precise positioning solutions, while the phase method in-

volves much more computations, especially for a long period of observation time, in

which we have to change the satellite constellations from time to time to yield better

results. But these repeated and independent accelerations at least can serve as a

reference to each other to prevent major computation blunders.

The histograms of the differences between the phase acceleration and the position

acceleration are shown in Figure 4.17, which in general show normal random distri-

butions. We also find that the noise is essentially white. Hence, the wave-number

correlation method can be employed to filter out the uncorrelated signals in these

two kinds of accelerations. The better conditioned GPS acceleration is then used to

estimate the gravity disturbances in Chapter 5.
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Figure 4.6: Ionosphere-only linear combinations of DD ob-
servables of the static data collected at MSOL and INDP
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Figure 4.7: Acceleration results by using L1 phase observables
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Figure 4.8: Acceleration results by using L2 phase observables
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Figure 4.9: Satellites observed at both ends of the base-line in
the kinematic case
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Figure 4.10: Ionosphere-only linear combination of the kinematic data before fixing cycle
slips
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Figure 4.11: Kalman residuals of the pseudo-ranges
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Figure 4.12: Wide lane phase minus narrow lane pseudo-range
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Figure 4.13: Ionosphere-only linear combinations of the kinematic data after
fixing cycle slips
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Figure 4.14: X-component kinematic acceleration in the i-frame

Figure 4.15: Y-component kinematic acceleration in the i-frame
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Figure 4.16: Z-component kinematic acceleration in the i-frame

Figure 4.17: Statistics of the acceleration differences
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CHAPTER 5

GPS/SINS VECTOR GRAVIMETRY

In Chapter 4 the long wavelength errors in the dynamic acceleration are removed

by the TAEKF estimated IMU biases and scale errors. The precision of the kinematic

acceleration is improved by combining the phase determined acceleration and the

position derived acceleration. However, the noise level in the accelerations is still

much higher than the gravity disturbance signal. It is well known that the gravity

disturbance vector generally does not exceed a few hundred mGal in each component

over a distance of about 100km (Kwon 2000), while the non-gravitational accelerations

can be larger than the gravity disturbance signal by factors of 100 to 1000, as reported

by Hannah (2001), among others. As a result, it is necessary to employ advanced

techniques to obtain the gravity disturbance from the noisy acceleration observations.

5.1 Introduction

Isolation of the target gravity signal from the effects of motion noise is the pri-

mary challenge in a moving base gravimetric system. The techniques described in

the previous chapter mainly focused on improving the robustness of the individual

systems. For example, the TAEKF described in Chapter 3 can fix the position gaps in

the GPS solutions. The phase method introduced in Chapter 4 provides alternatives

in determining GPS acceleration. However, the noise level in the raw observations

can not be reduced significantly enough with these methods to let the gravity dis-

turbance vectors stand out directly. Further data processing is necessary to separate

the gravity disturbance signals from these observables in such a low signal-to-noise-

ratio (SNR) system. From the previous airborne gravimetry studies conducted by

Jekeli and Kwon (Jekeli and Kwon, 1999; Kwon, 2000; Kwon and Jekeli, 2001), we

know that the B-spline smoother very efficiently reduces the high frequency noises in

both the GPS acceleration and the INS acceleration, and the modified Kalman filter

(Kwon and Jekeli, 2001) could provide a preliminary estimate of the gravity distur-

bances. However, we know that the success of separating the gravity disturbances
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from the noisy accelerations in certain frequency bands (corresponding roughly to

spatial resolutions between 2km and 100km) is based on the following assumptions:

first, the gravity signal dominates the noise in the long wavelengths, even though there

are long-wavelength errors in the system; second, the noise is primarily restricted to

shorter wavelength and can be removed by low-pass filtering.

However, in the terrestrial moving base system, due to the lower altitudes, com-

pared to the airborne system, the shorter wavelength gravity signal is intensified. For

instance, compared to gravity at 1000m altitude, the relative increase of gravity at

resolution of 20km (harmonic degree complete to 1000) at ground level is about 17%

(Figure 5.1). As a result, the high frequency band may contain both the observa-

tion noise and a significant part of the true gravity signal. A careful combination

of the signal processing techniques is very important to obtain precise results with

high resolution. Computation tests show that the B-spline smoothing method never-

theless should be applied first to effect a consistent comparison of the GPS and INS

accelerations. Then the wavelet de-noising method is employed to isolate the gravity

signal from the preliminary estimates provided by the modified Kalman filter. By

using the de-noising method, even in the low speed scenario, the B-spline smoother

does not need an extra large window (greater than 200 seconds) to reduce the high

frequency noises. Thus, we can still preserve certain part of the high frequency signal

in the gravity disturbance estimates. The wave-number correlation method can also

be applied to further improve the precision of the gravity disturbance estimation if

we have repeated estimates along the same traverses.

To validate the precision of the results, we have to interpolate the ground control

data onto the points where the estimates are. Based on intensive computational

tests, in the survey area, the multiquadrics interpolation method shows advantages

over other methods, such as the Least Square Collation method, which suffers from

the ill conditioned covariance matrix of the control data.

5.2 Basics of GPS/SINS gravimetry

In the local north-east-down (NED, n)-frame, the gravitational acceleration, ~gn

is obtained according to Newton’s second law of motion, with appropriate rotations

applied (Jekeli, 2000):

~̃gn = Cn
i (~̈xi − Ĉi

b~̂a
b) (5.2.1)

where Cn
i is the rotation matrix from the i-frame to the n-frame and ~̈xi is the total

kinematic acceleration in the i-frame, both obtained from GPS (see Chapter 4); Ĉi
b

is the rotation matrix from the b-frame to the i-frame, and ~̂ab is the specific force
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Figure 5.1: Relative increase in gravity by harmonic degree if the altitude
decreases 1000m near the Earth’s Surface

in the body frame, both determined from calibrated inertial sensor measurements

(see chapters 3 and 4). The techniques described in Chapter 3 and Chapter 4 provide

continuous GPS and INS accelerations for determining the gravity disturbance vector,

which is given by.

δ~̃gn = ~̃gn − γn (5.2.2)

where γn is the normal gravitation (normal gravity corrected for the centrifugal term

associated with Earth’s rotation). In practice, the low SNR of the gravity disturbance

relative to the system errors makes it difficult to identify the gravity disturbances

directly from equations (5.2.1) and (5.2.2).

To reduce the high frequency noise, previous studies of a number of low-pass filters

such as the resistor-capacitor filter, Gaussian filter, and Butterworth filter, etc, (Kwon

2000, Kwon and Jekeli 2001) have shown that the B-spline smoother is a very efficient

choice to reduce the noise in the GPS and INS accelerations. However, in the grand

vehicle system, the relatively low speed and complicated dynamics introduce much

more noises than in the airborne scenario. As a result, a 180-second, instead of 60-

120 seconds (normally used in the airborne system), window size B-spline smoother

is used to reduce the noises both in ~̈xi and in Ĉi
b~̂a
b. After this, the modified Kalman
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filter developed by Kwon and Jekeli (2001) is used to obtain a preliminary estimate

of the gravity disturbance. The states of this filter include constant biases, bg, ba, and

scale factor errors, κg, κa, for each of the gyros and accelerometers, respectively, as

well as the orientation errors, Ψ, of the system. The following linear state-propagation

model is formulated for these states:

Xk = ΦXk−1 + ε k = 1, 2, . . . , (5.2.3)

where k is a time index and

Xk =
(
bTa bTg κTa κTg (Ψi)T

)T
(5.2.4)

The TAEKF developed in Chapter 3 can provide the initial statistics of the state

vector, if the a priori information of the system errors is not available. For example,

the initial accelerometer biases of the SR43 data (collected on June 15 2006) can be

obtained from Figures 3.10-3.15 (end value of the blue line). The differences between

the smoothed GPS and INS accelerations are used to relate the filter states and the

gravity disturbance as shown in equation (5.2.5).

~yk := smoothed(~̈xi)− smoothed(Ĉi
b~̂a
b)− γn = HXk + δ~gik + δ~̈xik (5.2.5)

where H is the observation matrix and the last term is the assumed white noise in

the observed GPS acceleration. The specific construction of matrices H and Φ is

in Appendix B (see Kwon 2001 for details). The observation is computed from the

smoothed GPS acceleration and the smoothed INS accelerations as well as the normal

gravity, as shown in equation (5.2.6):

~̃yk = ~̈xik − ~̂aik − γik. (5.2.6)

Instead of modeling the gravity disturbance components in the states of the sys-

tem (which has been done with mixed results; Schaffrin and Kwon, 2002), they are

included in the observation residuals of the filter, given by:

∆~̃gik = ~̃yk −HX̂k = δ~gik + δ~̈xik − Ci
bε
b (5.2.7)

where εb is the IMU processing error (Jekeli, 2000). The gravity disturbance estimate

is thus:

∆~̂gnk = Cn
i ∆~̃gik (5.2.8)

where errors in the rotation matrix, Cn
i (depending only on position coordinates), can

be neglected.
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5.3 Wavelet De-noising and Wave-Number Correlation

From equations (5.2.8), and (5.2.7), it is clear that the errors in the estimated

gravity disturbances are commingled with the GPS acceleration errors and the IMU

processing errors. The differentiation operations which are used to calculate the GPS

accelerations, as well as the road dynamics of the vehicle tend to concentrate the GPS

acceleration error at the higher frequencies, where also some significant gravity distur-

bance signals reside (since the gravity disturbance is estimated at ground-level, rather

than at altitude where field attenuation would ameliorate this concern). Therefore,

extra efforts are needed to isolate the gravity disturbances from these errors.

We employ two steps to identify and isolate the gravity disturbance signal within

the residuals. First, the wavelet de-noising approach (Donoho and Johnstone, 1994;

Donoho and Johnstone, 1995) is used to reduce the noise across the entire spectrum.

Because wavelet de-noising can localize the noise and does not have spectrum leakage

(Li and Jekeli, 2004), the SNR at each frequency is improved, which simplifies the next

step. Second, a wave-number correlation approach attempts to extract the gravity

disturbance signal from background errors by comparing the estimates from repeated

traverses (Kwon and Jekeli, 2001).

5.3.1 Wavelet De-noising

Unlike the traditional smoothing operators which remove high frequencies and re-

tain low frequencies, wavelet de-noising attempts to remove whatever noise is present

and retain whatever signal is present regardless of the frequency content of the sig-

nal. This section briefly recalls the general procedure of wavelet shrinkage de-noising.

More can be found in (Donoho and Johnstone, 1994; Donoho and Johnstone, 1995

Taswell 2000, Taswell 2001). Assume that we can decompose the Kalman residuals

into the following two parts

∆~̂gnk = δ~gnk +Gk (5.3.1)

in which Gk is an additive Gaussian noise, δ~gnk is the gravity disturbance signal, both

at sample point k. Let W{•}, and W−1{•} denote the forward and inverse wavelet

transform operators respectively. Let D{•, λ} denote the de-noising operator with

soft threshold λ. The wavelet shrinkage de-noising recovers δ~̌gnk as an estimation of

δ~gnk by the following three steps.

i. Linear forward wavelet transform

Y = W{∆~̂gnk} (5.3.2)
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where Y represents the wavelet coefficients, ∆~̂gnk is the n-frame Kalman residual from

equation (5.2.8). As pointed out by Strang (1989) and Daubechies (1992), the choice

of wavelet transform is essentially a choice of filter. However, there are no noticeable

differences in the results by using several different kinds of base wavelets such as the

Daubechies wavelet and Symlets wavelet. This agrees with the statements made by

Bruton et al. (2000) and Li and Jekeli (2004), even though the wavelet de-noising is

used for different purposes. For more details about the construction of wavelet, see

Strang and Nguyen (1996), and Nassar and El-Sheimy. (2005).

ii. De-noising by Shrinkage

In the second step, the de-noising operator D{•, λ} will process the wavelet coef-

ficient with soft threshold λ:

Z = D{Y, λ} (5.3.3)

where D{Y, λ} =

{
sgn(Y )(|Y | − λ) if |Y | ≥ λ
0 if |Y | < λ

λ = d(Y )
d(Y ) defines the threshold corresponding to Y according a given principle such as

RiskShrink, VisuSrhink, SureShrink, and Hybrid SureShrink, developed principally

by Donoho and Johnstone( 1994, 1995). They introduced RiskSrhink with the min-

max threshold, and VisuShrink with a universal threshold for all levels of decomposi-

tion (i.e. level of resolution) from fine to coarse. They also introduced the SureShrink

threshold which is a local threshold estimated adaptively for each level of decompo-

sition, and the Hybrid SureShrink to deal with the situation of extreme sparsity of

wavelet coefficients (Taswell 2001). Among them, the Hybrid SureShrink is simple

to implement and has broad adaptivity properties. This threshold selection scheme

is essentially a combination of universal threshold (
√

2log(length of the data) ) and

SureShrink threshold, which is based on Stein’s Unbiased Risk (see Donoho and John-

stone 1995 for details). The threshold is set to universal in dense situations and to

SureShrink in sparse situations to yield the best performance.

iii. Linear inverse wavelet transform

Finally, in the third step, the processed wavelet coefficients are transformed from

the wavelet domain back into the original domain with the same wavelet bases as

used in the first step. And the estimate of δ~gnk is obtained by equation (5.3.4):

δ~̌gnk = W−1{Z} (5.3.4)

From the above procedures, one can see that the wavelet de-noising does not

require any assumptions about the nature of the signal. Furthermore, it permits dis-

continuities and non uniform spatial variation in the signal. So even if the data are not
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uniformly distributed in time or space domain, this method still works. The wavelet

transform maps white noise in the signal domain to white noise in the transform

domain. Thus, while signal energy becomes more concentrated into fewer coefficients

in the transform domain, noise energy does not. This is the important principle that

enables the separation of signal from noise in the wavelet domain. Thus it works in-

dependently from the frequency domain analysis, which allows preserving the signal

at every frequency band (Taswell 2001).

5.3.2 Wave-Number Correlation

If we have repeated transverses on the same road, the estimates of the gravity

disturbances from different traverses should be highly correlated at the same locations,

while the systematic processing and instrument errors should be much less correlated.

One way to correlate the repeated estimates is by transforming each into the frequency

domain using the Fourier Transform. Then, a frequency component of the estimate

is retained if they are correlated more than a certain threshold. The final estimate

is obtained by taking the average of the retained components and transforming them

back to the original domain, either time or space.

Suppose we have two traverses along the same road segment, and after wavelet

de-noising the two gravity disturbance estimates are δ~̂gn1 (k) and δ~̂gn2 (k), k = 1, 2, . . . ,,

respectively. The corresponding Fourier transforms are G1(l) and G2(l), where l is

the wave number. The correlation coefficient is given by

σl =
Re(G1(l))Re(G2(l)) + Im(G1(l))Im(G2(l))

|G1(l)||G2(l)|
(5.3.5)

The signal is wave-correlation filtered via the following equations:

G1,2(l) =

{
G1,2(l) if σl ≥ tol
0 if σl < tol

(5.3.6)

where tol is a given tolerance, e.g., tol = 0.5; and

δ~̂gn(k) =
1

2
F
{
G1(l) +G2(l)

}
(5.3.7)

where F denotes the Fourier transform.

5.4 Control Data Interpolation

To evaluate the system accuracy compared with the external control data, it is

necessary to interpolate the discrete control data onto the survey traverses. There
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are many interpolation methods for scattered data in the literature, e.g., Franke

(1982) compared 29 algorithms. Even more broad reviews were given by Franke

(1987) and Hubeli and Gross (2000). However, it is very difficult to categorize and

rank these interpolation methods under uniform criteria, because the most important

categorization principles differentiate between discrete/continuous, linear/nonlinear

and local/global basis function models (Mautz et. al., 2003).

Here, the Least Square Collocation and Multiquadrics methods are considered.

The performances are compared with that of the Matlab subroutines, which apply

Delaunay triangulation-based cubic spline fits.

5.4.1 Least Square Collocation (LSC)

Consider the linear system:

l = LT + n (5.4.1)

where l is the vector of observables, L is a linear operator, T is a scalar stationary

and ergodic stochastic process with zero mean, n is the vector of observation errors

with dispersion matrix Dn, and T and n are uncorrelated. Then a linear estimator

of T based on observed values l may be written as

T̂ = HT l (5.4.2)

We wish to find a minimum error variance estimate for T , i.e., E
{

(T − T̂ )2
}

=min.

So we have:

E
{

(T − T̂ )2
}

= E
{

(T −HT l)(T −HT l)T
}

(5.4.3)

Under the ergodic and stationary assumption, the above equation can by written

as:

E
{
TT T − T lTH −HT lT +HT llTH

}
= CT,T + CT,LTH −HTCLT,T +HTCl,lH

(5.4.4)

where CT,T is the auto covariance function of T , CT,LT is the covariance function

between T and LT , and Cl,l is the covariance function of l. If we assume that T is

not correlated with the measurement error n, then

Cl,l = CLT+n,LT+n = CLT,LT +Dn,n (5.4.5)
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Also

Cl,T = CLT+n,T = CLT,T (5.4.6)

So we can write:

E
{

(T − T̂ )2
}

= CT,T −CT,LTC−1
l,l CLT,T + (HT −CT,LTC−1

l,l )Cl,l(H
T −CT,LTC−1

l,l )T

(5.4.7)

The only variance is H in the above equation. So it is clear that if we choose

HT = CT,LTC
−1
l,l , then the error variance reaches minimum in the above equation.

Therefore,

T̂ = CT,LTC
−1
l,l l (5.4.8)

If T and l refer to the same kind of quantity, say, the gravity disturbance δg, and

denoted by δg1, and δg
2

respectively, then we have

δĝ1 = Cδĝ1,δĝ2(Cδĝ2,δĝ2 +Dn)−1δĝ
2

(5.4.9)

and

E
{

(δg1 − δĝ1)2
}

= Cε,ε = Cδĝ1,δĝ1 − Cδĝ1,δĝ2(Cδĝ2,δĝ2 +Dn)−1CT
δĝ1,δĝ2

(5.4.10)

Equation (5.4.9) shows that if we observed δg at some points, we can estimate δg

at any point. In another words, LSC can be used for the purpose of interpolation.

However, in practice, the performance is directly determined by the quality of the

covariance models. In general, there are two categories of covariance models in the

literature, i.e., the empirical models, and global or local analytic models. Among

them, the empirical model is most useful for interpolation.

5.4.2 Multiquadrics

Another interpolation method selected here is the well known Multiquadrics (MQ),

introduced by Hardy (1971). Their functional model reads

f(x, y) =
n∑
k=1

Ak

√
r2
k + c2 (5.4.11)

where r2
k = (x− xk)2 + (y − yk)2 as the radial distance between the evaluation point

(x, y) and a fixed center position (xk, yk), which could be the location of one of the

observations. The coefficients, Ak, are the unknown parameters and c is a predefined
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real constant. As pointed out by Mautz et.al. (2003), this parameter is not very

sensitive to the data, and it is reasonable to be constant. However, in order to obtain

satisfying results, c has to be optimized prior to the application.

A natural extension of Hardy’s (1971) Multiquadrics into higher dimensioned

space gives the following expression of the underlying function as shown in equation

(5.4.12).

n∑
j=1

αj
[
(xj − xi)2 + (yj − yi)2 + (zj − zi)2 + c2

] 1
2 = δgi i = 1, 2, . . . , n (5.4.12)

where δgi is the gravity anomaly at point (xi, yi, zi) . Let X = [α1, α2, . . . , αn]T ,

and aij = [(xj − xi)2 + (yj − yi)2 + (zj − zi)2 + c2]
1/2

(i, j = 1, 2, . . . , n). If we let

A := [aij], and B = [δg1, δg2, . . . , δgn]T ,the coefficient X may be obtained from

equation (5.4.13):

X = (ATA)−1ATB (5.4.13)

Then one can evaluate the underlying function at any interested point by equation

(5.4.12).

5.4.3 Computation evaluations and conclusions

To evaluate the performances of the above methods, computation tests are con-

ducted in southwestern Montana area, as shown in Figure (5.2), which shows the

distribution of control points near and along the survey routes. The small dots in the

figure are the gravity data provided by the National Geospatial-Intelligence Agency

(NGA). The circled crosses are chosen for the purposes of testing. Three interpola-

tion methods, i.e., LSC, Multiquadrics (MQ), and the Matlab interpolation (Delaunay

triangulation-based cubic spline fit), are used to interpolate the values at the test-

ing points by using the neighboring control. The interpolated values are compared

with the original gravity values provided by NGA. Table 5.1 lists the statistics of the

interpolation errors for each method.

From Table 5.1, LSC show slightly better accuracy than multiquadrics interpola-

tion. However, the covariance function for LSC ( derived by Jekeli 2003 and rescaled

to fit the variance of the gravity anomalies in the Montana area) is unstable with

respect to the added noise variances most of the time when the control data are spa-

tially dense. As a result, the estimated error variances, as shown in equation 5.4.10,

are negative, which indicates that the estimation itself is unstable. Therefore, the

listed standard deviations are not necessarily representative of the accuracy of the

control data that are interpolated to the estimation points. The MQ method was
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Segment no. points [mGal] LSC MQ Matlab
I90 34 Mean −0.086 1.2 6.6

STD 4.2 4.7 12.
SR1 25 Mean 0.034 1.5 6.9

STD 2.1 3.2 13.
SR43 42 Mean 0.034 0.53 3.9

STD 2.6 2.7 6.0

Table 5.1: Statistics of interpolation errors of the selected methods

Figure 5.2: Control data and testing points in the survey area

found to be most stable and we can assume that this interpolated control has an

accuracy of approximately 2-4 mGal.

The only advantage of Matlab subroutines is in the computation speed. However,

considering computation time here is not very crucial, the MQ interpolation method

is used to interpolate the control data onto the survey traverses for the purpose of

external evaluation of the system accuracy in the following analysis.
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CHAPTER 6

APPLICATIONS AND RESULTS

Moving base INS/GPS gravimetric system provides an efficient way to improve

the resolution of the gravity field. Especially the airborne system has been exten-

sively studied and successfully used for many years. From Greenland to Antarctica,

many successful airborne gravimetric campaigns were conducted all over the world.

However, due to the attenuation of the gravity field at high altitude, it is very chal-

lenging to detect short wavelength (<10km) gravity signals. But many applications

in geology and geophysics require the knowledge of a local gravity field with a typical

half wavelength resolution of 1km to 10km, or even higher resolution. Considering

that the power of the gravity field (especially the short wavelength part) is greatest

at the surface of the Earth and that lower vehicle speed implies higher resolution, a

land vehicle based INS/GPS vector gravimetric prototype was developed at the Ohio

State University (OSU).

Although more high frequency gravity signals reside in the acceleration measure-

ments in the terrestrial system than in the airborne system, the dynamics of the

slower moving terrestrial system creates more turbulence and high frequency acceler-

ations. As a result, the observables of these two systems have different characteristics.

Furthermore, the terrestrial moving base system may experience a more complicated

observation environment than the airborne system. The survey routes may have turns

and ups and downs unlike the flight trajectories, which can maintain at a relatively

stable observation situation. This will severely degrade the quality of the observables,

especially the GPS related ones, which may have data gaps due to signal blocking in

valleys, forest, or tunnels.

So it is necessary to introduce new techniques and adjust the airborne algorithms

for the terrestrial moving base INS/GPS gravimetric system in order to overcome the

above difficulties. This chapter applies the techniques described in the previous chap-

ters to a terrestrial moving base INS/GPS gravimetric survey campaign conducted

by NGA and OSU on 2005 at southwestern Montana. The first section describes the

system setup and survey campaign. The second section contains the data processing
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details of the traverses on State Route 43 (SR43). The data processing procedures

and results on the other survey routes are contained in section 6.3.

6.1 System Setup and Survey Campaign

The survey vehicle is a GMC Suburban modified for a GIS-type survey (2 GPS

antennas mounted on the roof, camera mounts available, and the interior is outfitted

with a secure instrument platform and battery-driven power supplies). This vehicle,

known as the GPSVan, belongs to OSU’s Center for Mapping. Figure 6.1 shows the

GPSVan and the interior suite of IMU and GPS instruments, looking aft. The SINS

is the high-accuracy Honeywell H764G inertial navigation system and is configured to

provide raw accelerometer and gyro data at a rate of 256 Hz. For redundancy, three

brands of geodetic quality GPS receivers were used in the GPSVan: Trimble5700,

Topcon, and NovAtel. In April and June of 2005, NGA and OSU performed the data

collection in southwestern Montana by using this system. The survey area map is

shown in Figure 6.2. The earlier test in April was mainly focused on the Interstate

Highway 90 (I90) from Butte to Missoula, MT. The data sets collected in June are

more extensive over some mountain passes and through major valleys. In all cases,

the vehicle essentially remained on well-paved roads.

Figure 6.1: System exterior and interior look

In addition to the nearby CORS station (MSOL) at Missoula, several temporary

GPS base stations were set up around the survey routes as shown in Figure 6.2 to

obtain the DGPS solution. The coordinates of these temporary base stations are

obtained by network adjustments using TGOTM (Trimble Geomatics Office). The

values are shown in Tables 6.1-6.3.
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Figure 6.2: Map of the survey area

Station Name Lat/Lon/Ht(WGS84)
BUTTE 45o 57’ 59.96768” N 112o 30’ 48.30209” W 1663.225m
FLNT1 46o 23’ 54.01455” N 113o 18’ 27.06106” W 1518.158m
FLNT2 46o 23’ 54.00591” N 113o 18’ 27.06384” W 1518.018m
TPCN2 46o 10’ 07.25022” N 113o 09’ 30.92281” W 1835.858m
DEER 46o 24’ 20.30241” N 112o 44’ 07.90459” W 1363.709m
RES1 46o 35’ 07.40556” N 112o 54’ 25.51021” W 1267.839m

Table 6.1: June 13 205 temporary base station coordinates.

Station Name Lat/Lon/Ht(WGS84)
TPCN2 45o 57’ 59.96661” N 112o 30’ 48.30269” W 1665.735m
BATT 45o 38’ 26.75867” N 113o 38’ 37.00976” W 1913.502m
DEER 46o 24’ 20.30278” N 112o 44’ 07.90449” W 1363.614m
RT43 45o 53’ 01.14267” N 113o 07’ 40.28175” W 1746.186m
VICT 46o 25’ 02.25527” N 114o 08’ 49.02570” W 1021.924m

Table 6.2: June 14 205 temporary base station coordinates.
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Station Name Lat/Lon/Ht(WGS84)
TPCN2 45o 57’ 59.96635” N 112o 30’ 48.30321” W 1665.635m
BATT 45o 38’ 26.63928” N 113o 38’ 36.96147” W 1913.415m
DARB 46o 01’ 39.66985” N 114o 10’ 36.14283” W 1169.582m
R43 45o 53’ 04.81068” N 113o 09’ 12.79905” W 1752.202m
VICT 46o 25’ 02.25119” N 114o 08’ 49.03433” W 1021.749m

Table 6.3: June 15 205 temporary base station coordinates.

From Figure 6.2, we can see that there are two repeated traverses on State Routes

43, 93, and 1 (SR43, SR93, SR1), and there are three repeated traverses on I90.

Not all the collected data were used in the final analysis due to a number of adverse

conditions (as well as blunders) encountered during the survey. Primarily, GPS data

and corresponding positioning solutions were not always adequate in the precision

needed to compute the kinematic accelerations; many of the temporary GPS base

stations were found to be less useful than originally anticipated, and the accuracy

of the INS data depended to some extent on the dynamics of the vehicle. However,

a large sample of data could be analyzed to assess the capability of the INS/GPS

gravimetric capabilities for the two types of roads (interstate highways and well paved

and graded state routes). The segments of successful estimation on SR1, SR 43, and

I90 are shown by the thicker lines in Figure 6.3.

The available gravity control data are shown by the (green) dots in Figure 6.3.

These data are measured by gravimeters. They are the magnitudes of the down grav-

ity component. The corresponding gravity disturbances at these points are obtained

by subtracting the normal gravity from the observed values. Also the DOV (deflec-

tion of vertical) data obtained by NGA with astrometric instruments (astrolabe and

theodolite) along SR1 and SR43 are plotted by the thick black lines in this figure. In

addition, the National Geodetic Survey (NGS) produced a 1′ × 1′ DOV grid derived

from a national geoid model (GEOID99; Smith and Roman, 2001). This DEFLEC99

model was computed by NGS using a two-step procedure. First, slopes of GEOID99

were determined using bicubic splines; and, subsequently, these were corrected for

the curvature of the plumb line based on simple Bouguer gravity anomalies to yield

DOV’s at the Earth’s surface. It allows the user to determine the deflection compo-

nents at any defined set of coordinates in the Conterminous United States. Table 6.4

gives the statistics of the differences (shown in Figure 6.4) between the interpolated

DEFLEC99 values and the presumably more accurate astrogeodetic DOVs at points

along SR1 and SR43. All deflection values were converted into equivalent horizontal
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gravity components. We conclude that the DEFLEC99 control is accurate to about

4.6 mGal (RMS), or about 1 arcsec (RMS). Table 6.5 summarizes the estimated

accuracies of all control data.

Figure 6.3: The successful estimates and the control data

These control data and the repeated estimates enable assessing both system ac-

curacy and internal repeatability. For instance, in the horizontal components, the

estimates are compared with the DEFLEC99 model generated values. The down

component estimates are compared with the control data interpolated to the esti-

mation points. The multiquadrics method (Section 5.4.2) is used to interpolate the

available gravity data onto the traverses. The repeated estimates are compared in

the along track distance domain; see the following section for details.

6.2 Data Processing on SR43

There are two repeated traverses on SR43 as shown in Figure 6.2. Traverse 1 was

run on June 14 2005 from northeast to southwest and Traverse 2 on June 15 2005, but

in the opposite direction. From Wisdom to Big Hole (Figure 6.2), these two traverses

generate two independent gravity disturbance estimates on SR43 with a total along-

track distance about 60km. The average speed is about 22m/s. Considering the

1Hz GPS sampling rate, the raw gravity disturbance observation has a 22-meter
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(mGal) mean St.dev. RMS abs max abs min
North (SR1) 4.15 3.27 5.29 12.48 0.54
East (SR1) 1.67 4.12 4.44 13.45 0.10
North (SR43) 2.07 3.46 4.03 10.48 0.22
East (SR43) 0.37 4.78 4.80 11.39 0.11
North (overall) 2.93 3.52 4.58 12.48 0.22
East (overall) 0.91 4.55 4.64 13.45 0.10

Table 6.4: Statistics of differences between interpolated DEFLEC99 DOV and NGA
DOV along SR1 and SR43.

Figure 6.4: The DOV differences

Data Type number; resolution accuracy
Gravity 6496; irregular 1 mGal (est)

(2-4mGal, interpolated value)
astro-geodetic DOV (SR1) 43; 1.6 km 0.5 arcsec (est)
astro-geodetic DOV (SR43) 62; 1.6 km 0.5 arcsec (est)
DEFLEC99 DOV Whole area; 1′ × 1′ 1 arcsec1

1 estimated from RMS comparison to astrogeodetic DOVs along SR1 and SR43 (Table 6.4) .

Table 6.5: Summary of control data.
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X(m) Y (m) Z(m) VX(m/s) VY(m/s) VZ(m/s)
Mean -0.402 0.641 -0.009 -0.107 0.056 0.007
STD 2.385 1.097 0.533 0.219 0.124 0.047

Table 6.6: statistics of the TAEKF positioning errors.

resolution. However, the 180-second B-spline smoother degrades the final resolution

to about 2.2km. This section describes the details of the data processing to estimate

the gravity disturbance on SR43.

6.2.1 Traverse1

Since it is important that the positioning solution is precise and continuous in the

moving base gravimetric system. The TAEKF (see section 3.4) is employed first to

fix the gaps in the DGPS solution. To test the algorithm, we generate a 50-second

artificial gap in the DGPS solutions of position and velocity from 1350 seconds to

1440 seconds of the SR43 segment. The filter is run in both forward and backward

directions. Then the data gap is fixed by optimally combining the forward direction

results and the backward direction results. Figure 6.5 shows the integration results

and the originally removed GPS solution (indicated by the red lines), which serves

as control data. The differences, estimated minus the original position and velocity

values, are shown in Figure 6.6. The statistics of the differences are shown in Table

6.6.

We see that by using the TAEKF the position gap can be fixed with accuracy at

the 1-2 meter level, and the velocity gap can be fixed at the accuracy level of tens of

cm. It is noted that in general the accuracy in the z direction is much better than in

the other two directions, i.e., x and y axes.

In Chapter 3, we know that the TAEKF also can provide the long wavelength

IMU errors. So the entire data set of this traverse is processed by the filter. The

estimated IMU errors are shown in Figures 6.7-6.10, and used to calibrate the dynamic

accelerations by using equation (4.1.2). The calibrated IMU accelerations are shown

in Figures 6.11-6.13. Even though this calibration does not appear to improve the

accuracy of the IMU accelerations significantly, it may still be worth from a theoretical

standpoint to attempt it in the preliminary data processing stage.

To obtain an estimate of the gravity disturbance, we also need to compute the

GPS acceleration. As described in Chapter 4, two methods are used to compute

the GPS acceleration. First, in the position method, the rover GPS data from a
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Figure 6.5: TAEKF positioning solutions

Figure 6.6: TAEKF integration errors
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Figure 6.7: Accelerometer Bias estimated by the TAEKF
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Figure 6.8: Gyro Bias estimated by the TAEKF
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Figure 6.9: Accelerometer Scale estimated by the TAEKF
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Figure 6.10: Gyro Scale estimated by the TAEKF

Figure 6.11: IMU acceleration in the x component of the inertial frame
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Figure 6.12: IMU acceleration in the y component of the inertial frame

Figure 6.13: IMU acceleration in the z component of the inertial frame
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Trimble receiver and the base station data from a Topcon receiver are used to build

the DD observables, which are then processed by the ApplanixTM software to obtain

the positioning solutions. To yield better results, the IGS precise orbits are used

instead of using the broadcast orbits. Then the acceleration is obtained by taking

two consecutive derivatives of the positioning solution. There are several ways to

implement the derivatives numerically (see e.g. Bruton et. al., 1999). Based on

our studies, we choose the B-spline method to obtain the derivatives. First, a B-

spline function is fitted to the data under the principle of least sum of squares. Then

the derivatives are obtained from the analytical representation of the fitted function.

Notice, before taking the derivatives, the positioning solution should be transformed

from the ECEF frame into the defined inertial frame, which is usually an earth-

centered, no-rotation, Cartesian frame, i.e., xi = Ci
ex

e. Second, the phase method

is employed to evaluate the GPS acceleration independently. As we have seen in

Chapter 4, the cycle slips should be correctly fixed so that we can take derivatives

of the phase observables. And the final solution is obtained via the wave number

correlation method, which combines the position derived acceleration and the phase

derived acceleration in the frequency domain. The acceleration results are shown in

Figures 6.16-6.18. From Chapter 4, we also know that after fixing the cycle slips, the

Triple Difference (TD) solution is easily obtained. Figure 6.14 shows the differences

between the TD solution and the ApplanixTM solution. At every epoch, the position

distance between these two solutions is plotted in Figure 6.15, which shows meter

level differences.

The accelerations in Figures 6.16-6.18 are highly correlated, implying that there

are no programming or computation errors in both methods. However, due to this

high correlation, the filtered acceleration after using wave-number correlation method

does not change too much in the high frequency components (Figures 6.16-6.18).

Only marginal improvements are noticed in the gravity diturbance estimates. The

IMU accelerations in Figures 6.11-6.13 also have strong high frequency components

(noise) which clearly are not due to gravity disturbance variantions. As a result, a B-

spline smoother is used to reduce these noises in both the GPS and IMU accelerations.

Numerical tests show that a window size of 180-second is a good choice of the smoother

(see Jekeli and Li 2006 for details). Previous studies conducted by Kwon (2000)

showed that a window size of 60-second or 90-second is appropriate for the airborne

data. However, the relatively low speed of the GPSVan introduces more effects of

atmospheric disturbances (See Appendix C for more details, also agrees with Hannah

2001). Moreover, the frequently changing heading direction and the ups and downs

also bring in more high frequency accelerations (In the airborne scenario, we noticed

large oscillations in the turns). Thus, we have to increase the window size in order

100



Figure 6.14: TD and ApplanixTM solution differences

Figure 6.15: TD and ApplanixTM position distances
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Figure 6.16: GPS acceleration in the x component of the inertial frame

Figure 6.17: GPS acceleration in the y component of the inertial frame
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Figure 6.18: GPS acceleration in the z component of the inertial frame

to yield better results in the terrestrial system, even though this will decrease the

resolution of the final estimates.

The Kalman system (equations 5.23-5.25) described in Section 5.2 is applied to

these smoothed accelerations to get the first estimates of the gravity disturbance.

The results are shown in Figure 6.19 for two sets of smoothed accelerations. The

thick(blue) lines are the gravity disturbance estimates based on the calibrated IMU

acceleration and the wave number correlated GPS accelerations. The dashed(red)

lines are based on the un-calibrated IMU acceleration and the position-derived GPS

acceleration. The horizontal control data are obtained from the DEFLEC99 model.

The vertical control data are obtained by the multiquadrics interpolation method de-

scribed in Chapter 5. The variations of the differences are described by the standard

deviations. From these statistics we can see that the improved GPS and IMU accel-

erations have a positive effect in the gravity disturbance estimates. The improvement

is mainly due to the improvements in the GPS accelerations.

6.2.2 Traverse2

We follow the same procedure as described in the above section to process the

data along traverse 2 of the SR43 segment. The TAEKF results are given in Figures
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Figure 6.19: Gravity disturbance estimate on Traverse 1 SR43
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3.11-3.14 in Section 3.5, and the GPS acceleration results are shown in Figures 4.14-

4.16 in section 4.8.2. After smoothing and Kalman filtering, the estimated gravity

disturbances are shown in Figure 6.20.

Figure 6.20: Gravity disturbance estimate on Traverse 2 SR43

Again, the dashed(red) lines are based on the un-calibrated IMU acceleration

and the position-derived GPS acceleration. The thick(blue) ones are based on the

calibrated IMU acceleration and the correlated GPS acceleration. From the statistics,
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both the IMU calibration and the GPS acceleration correlation procedure have a

positive effect on determining the gravity disturbances. As with traverse 1, improving

the GPS acceleration is more effective than calibrating IMU acceleration in terms of

improving the precision of the estimates. In the TAEKF, it is very challenging to

push the acceleration bias and scale effects down to the mGal accuracy level because

of the high frequency components in the observables. (Note, in order to preserve the

vehicle’s dynamics, we can not smooth the observables of the TAEKF filter with too

large window size, e.g., 180 seconds). As a result, there are still bias and scale error

effects in the gravity disturbance estimates, as shown in Figures 6.20.

6.2.3 Wavelet De-noising and Wave Number correlation

In the above two sections, we have obtained gravity disturbance estimates for the

two traverses on SR43. In other words, we have duplicated estimates along the same

route. Although they are not exactly at the same points, we can benefit from these

independent estimations. For instance, we can determine the system repeatability,

and obtain better results by performing a correlation analysis. To do this, we have to

reregister these two estimates so that they refer to the same location. One way to do

this is to transform the estimates from the time domain into the space domain and

use the along track distance as index to rearrange the gravity disturbance estimates.

First, we choose the starting point of traverse 2 as the origin of the along-track

distance. This point is close to Big Hole in Figure 6.2. Then for traverse 2, the

accumulated 3D distance is the along-track distance. For traverse 1, the accumulated

3D distance is computed in reverse in the time domain because traverse 1 is in the

opposite direction of traverse 2. It is very important to notice that some parts of the

data both in traverse 1 and traverse 2 are off-road, i.e., the van sometimes was driven

off the main road. These points in both traverses should be deleted in order to obtain

the correct ”along-track” distances on SR43; see Jekeli and Li (2006) for details.

Then, a spline fitting method is used to interpolate the gravity disturbances onto

exactly the same position in terms of along-track distances. The resulting repeated

estimates on SR43 are shown in Figure 6.21. The statistics of the differences are

shown in Table 6.7. The statistics in Table 6.7 are different from the counterparts in

Figures 6.19-6.20 due to the omission of the off-road points. After rearranging the

data, the gravity disturbance estimates on these two traverses show high correlation,

especially in the down component. The horizontal components appear to be subject

to an unknown scale effect. The wavelet de-noising (Hybrid SureShrink) and wave

number correlation (tol=0.5) methods (see Section 5.3 for more details) are used to

further isolate the gravity disturbance estimates from the observation errors, which
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Figure 6.21: Gravity disturbance estimates on SR43 in space domain

mGal North East Down
Mean st.dev. Mean st.dev. Mean st.dev.

Traverse 1- Traverse 2 -83.55 55.10 -61.40 54.76 -3.42 2.44
Traverse 1- Control -66.00 45.94 -49.96 37.03 33.26 2.51
Traverse 2- Control 17.55 31.95 11.44 36.01 36.68 2.61

Table 6.7: Statistics of the differences of the estimates and the control data on SR43.
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mGal North East Down
Mean st.dev. Mean st.dev. Mean st.dev.

Traverse 1- Traverse 2 -83.50 54.30 -61.37 51.80 -3.43 2.10
Traverse 1- Control -66.05 44.89 -49.98 35.95 33.26 2.39
Traverse 2- Control 17.45 30.36 11.38 32.31 36.68 2.39
Filtered- Control 13.05 17.40 -25.80 24.15 34.97 2.09

Table 6.8: Statistics of the differences of the estimates and the control data on SR43,
after wavelet de-noising and wave number correlation.

are the last two terms in equation (5.2.7). The results are shown in Figure 6.22. The

statistics of the differences are shown in Table 6.8.

Considering that we have interpolated control data on the traverses, the remain-

ing bias and trend in Figure 6.22 are removed by using the end-matching method

developed by Serpas (2003, pp 64.), which fits the estimates to the control values

at the beginning and end points to solve the bias and trend in the estimates. After

removing these estimated errors, the refined gravity disturbance estimates are shown

in Figure 6.23.

From Figure 6.23, we can see that the down component has 2-3mGal precision

and system repeatability, while the horizontal estimates are apparently contaminated

by some systematic errors, such as an IMU scale error. The reason is mainly due to

the special dynamics of the vehicle, which experiences relatively more heading angle

changes than the airplane, as shown in Figure 6.24. These frequently changing head-

ing angles make it very difficult for the IMU to accurately measure some components

of the rotation rate. As a result, the sytem can not precisely decompose the horizon-

tal gravity disturbance into North and East components. Comparing Table 6.7 and

Table 6.8, we notice that the wave-number correlation and wavelet de-noising improve

the precision by only a few tenths of mGal in the standard deviations. This may tell

us that the remaining random observation errors in the Kalman residuals as shown in

equation (5.2.7) are not very significant. However, the systematic IMU errors cause

large oscillations in the horizontal components, which prohibit horizontal component

estimates being as precise as the down component estimates. This problem will be

solved in section 6.3 by using the control data.
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Figure 6.22: Gravity disturbance estimates on SR43 after wavelet de-noising
and wave-number correlation
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Figure 6.23: Gravity disturbance estimates on SR43 after wavelet de-noising,
wave-number correlation and End point matching

Figure 6.24: Heading direction of Traverse 2 SR43
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6.3 Data Processing and results on SR1 and I90

Following the same procedure, the gravity disturbance estimates are obtained on

other segments, i.e., SR1 and I90 (see Figure 6.3). Note, the extended I90 segment,

indicated by the thick(blue) line in Figure 6.3, has a relatively worse DGPS position

solution at the begining and the end parts, as shown in Figure 6.25. The final es-

timation results are shown in Figures 6.26-6.28. The statistics are shown in Table

6.9. From the table and figures, we see the down component estimates have about 2-3

mGal precision compared with the interpolated control data. Slightly worse results in

the extended I90 part are mainly due to the degradation of the DGPS solution. The

system repeatability can be as good as 0.64mGal. In addition, the repeatability suf-

fers from the co-location error between the traverses. We note that for I90 (indicated

by the red line in Figure 6.3), Traverses 2 and 3 were run in opposite directions. There

is typically 25 to 30m, up to 100m, in the physical separation of the driving lanes

of the interstate highway. As a result, the “repeatability” is worse compared with

the repeatability between Traverse 2 and Traverse 4, which have the same traveling

direction (1.77 mGal, st.dev. vs. 0.64 mGal). Also, Traverse 1 and 2 on SR43 were

run in opposite directions, but in this case it is a two-lane road and the positioning

discrepancy is only about 3m.

Figure 6.25: Positioning precision along extended I90, indicated by
ApplanixTM . The two stars are the begining and end points of segment I90.
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mGal I90 I90 Extended SR1
Mean st.dev. Mean st.dev. Mean st.dev.

Trav1-Trav2 -0.26 2.46
Trav2-Trav3 2.48 1.77 -1.34 4.04
Trav2-Trav4 -0.38 0.64 7.31 4.75
Trav1-control -0.03 2.47
Trav2-control 3.27 2.58 3.47 3.80 0.29 2.89
Trav3-control 0.79 2.05 4.80 2.83
Trav4-control 3.65 2.84 -3.84 3.61
WC(1,2)-control 2.21 2.67
WC(2,3)-control 2.03 2.16 4.54 2.82
WC(2,4)-control 3.46 2.69 -0.16 2.97

Table 6.9: The statistics of the differences relative to MQ-estimated control of the ver-
tical gravity disturbance estimates after de-noising, wavenumber-correlation filtering,
and end-matching.

As we have seen in the previous section, the horizontal component estimates are

still problematic. However, the large estimation errors appear highly correlated be-

tween traverses. They are likely due to a systematic effect. Indeed, they are errors

because the control values are accurate to better than 5mgal. We suspect an un-

estimable scale error in the accelerometers and gyros. By using the DEFLEC99

values, these scale errors can be estimated by equations (6.3.1) and (6.3.2).

δgDEFLEC99
N,E (j)− δgDEFLEC99

N,E = κN,E(j)
(
δĝN,E(j)− δĝN,E

)
(6.3.1)

where a particular segment has J estimation points, δgDEFLEC99
N,E is the average north

or east DEFLEC99 gravity disturbance along the segment, and δĝN,E is the average

of the north or east INS/GPS gravity disturbance estimates. The final scale estimates

are given by equation (6.3.2). For each traverse, the estimated scale parameters are

shown in Table 6.10. On I90 Traverse 3, the procedure described in equations (6.3.1)

to (6.3.2) can not provide reasonable results. So the values of Traverse 2 on I90 are

used. Except that, most of the scale factors are of the same order of magnitude.

However, they are not constant from traverse to traverse, and, their calibration in the

absence of extensive control, therefore, remains a problem to be solved.

κN,E =
1

J

J∑
j=1

(κN,E(j)) (6.3.2)
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Figure 6.26: SR1 Gravity Disturbance Estimates Results after Kalman Fil-
tering, Wavelet De-noising, Wave-number Correlation, and End Point Match-
ing.
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Figure 6.27: I90 Gravity Disturbance Estimates Results after Kalman Filter-
ing, Wavelet De-noising, Wave-number Correlation, and End Point Matching.
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Figure 6.28: I90 Extended Part Gravity Disturbance Estimates Results af-
ter Kalman Filtering, Wavelet De-noising, Wave-number Correlation, and End
Point Matching.
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Scale Parameter North East
SR1 Traverse 1 0.28564410 0.26851645
SR1 Traverse 2 0.20040798 0.21776170
SR43 Traverse 1 0.04639524 0.03653619
SR43 Traverse 2 0.03724525 0.14321325
I90 Traverse 2 0.11819829 0.13316407
I90 Traverse 3 0.11819829 0.13316407
I90 Traverse 4 0.10246489 0.25810915
I90 Extended Part
Traverse 2

0.28367589 0.14648047

I90 Extended Part
Traverse 3

0.36641469 0.15979688

I90 Extended Part
Traverse 4

0.24821640 0.16547760

Table 6.10: The estimated scale errors used to calibrate the horizontal component
estimates.

mGal North East
STD STD

Traverse 1 -Traverse 2 8.26 6.74
Traverse 1 -CTL 5.04 8.24
Traverse 2 -CTL 8.75 9.77
Filtered -CTL 5.21 8.73

Table 6.11: Statistics of the rescaled horizontal component estimation errors on SR1.

δˆ̂gN,E(j) = κN,E
(
δĝN,E(j)− δĝN,E

)
+ δgDEFLEC99

N,E (6.3.3)

Using these scale error estimates, the horizontal estimates are calibrated according

to equation (6.3.3). The results are shown in Figures 6.29-6.32 with the statistics of

the estimation errors in Tables 6.11-6.14.

After removing the scale errors, the repeatability in the horizontal components

is in the range of 2-15 mGal (st.dev.) and agreement with the control at the level

of 5-9 mGal (st.dev.). Comparing Figures 6.26-6.28 with Figures 6.30-6.32, we see

this simple calibration significantly reduces the differences with respect to the control

data, and improves the internal repeatability, which proves our original assumption
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Figure 6.29: SR1 Horizontal Rescaled Gravity Disturbance Estimates.

Figure 6.30: SR43 Horizontal Rescaled Gravity Disturbance Estimates.

mGal North East
STD STD

Traverse 1 -Traverse 2 5.22 14.90
Traverse 1 -CTL 6.64 12.16
Traverse 2 -CTL 5.38 9.89
Filtered -CTL 5.06 7.71

Table 6.12: Statistics of the rescaled horizontal component estimation errors on SR43.
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Figure 6.31: I90 Horizontal Rescaled Gravity Disturbance Estimates.

mGal North East
STD STD

Traverse 2 -Traverse 3 2.59 2.97
Traverse 2 -Traverse 4 2.02 3.28
Traverse 2 -CTL 8.89 7.17
Traverse 3 -CTL 9.20 7.04
Traverse 4 -CTL 8.64 8.03
Filtered (2,3)-CTL 8.86 7.32
Filtered (2,4)-CTL 8.95 7.44

Table 6.13: Statistics of the rescaled horizontal component estimation errors on I90.

Figure 6.32: I90 Extended Part Horizontal Rescaled Gravity Disturbance
Estimates.
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mGal North East
STD STD

Traverse 2 -Traverse 3 11.08 5.02
Traverse 2 -Traverse 4 6.92 3.02
Traverse 2 -CTL 10.66 6.54
Traverse 3 -CTL 12.00 7.86
Traverse 4 -CTL 10.77 7.19
Filtered (2,3)-CTL 9.61 7.36
Filtered (2,4)-CTL 9.54 6.86

Table 6.14: Statistics of the rescaled horizontal component estimation errors on I90
extended part.

that the large oscillations are mainly due to a scale factor error. Indeed, it is known

that the scale factor errors of inertial sensors are modeled reasonably well as random

constants. That is, the scale factor error for the instrument may have a persistent

value (as supposed here), but it is not necessarily constant from traverse to traverse.

Thus, the success of the horizontal rescaling calibration is highly dependent on the

availability of the control data. In another words, it is not guaranteed to yield good

results if we apply the scale factors of one traverse to another traverse, even though

it works some time, such as for Traverses 2 and 3 along I90.
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CHAPTER 7

Conclusions

This study introduces the INS/GPS moving base gravimetric system. Both the

theoretical issues and the practical concerns are thoroughly discussed. To my knowl-

edge, this is the first time that the SINS/GPS based gravimetric system is working

in a ground vehicle, which experiences much more severe observation conditions than

the airborne system does.

To overcome the special difficulties encountered under this scenario, several cutting-

edge techniques are applied in the data processing stage. First, the GPS positioning

gaps are fixed by using a Two-stage Extended Kalman Filter, which is based on

processing noise adapting. Second, the kinematic acceleration is determined by opti-

mally combining the position-derived acceleration and the phase-derived acceleration.

Third, the B-spline smoother and the modified Kalman filter are used to obtain a pre-

liminary estimate of the gravity disturbance. Then the wavelet de-noising and the

wave-number correlation methods are employed to further isolate the gravity distur-

bances from the remaining random errors. Finally, the biases in the estimates are

removed by using the end-matching method. Based on the analysis of a vast amount

of real data collected in a mountainous area (southwestern Montana), we have the

following conclusions.

1. The estimation of the gravity vector depends critically on the high performance

of both the INS and the GPS instruments. Assuming the INS and the GPS receiver

hardware operate satisfactorily, the most detrimental influence on the estimation

was the loss of lock on GPS signal, causing data gaps in the position solution. The

integrated GPS/INS solution only has meter level accuracy in 50-second gaps, and it is

even worse when the gap is longer. As a result, the position-derived GPS accelerations

were adversely affected.

2. The phase-derived GPS acceleration relaxes the stringent requirement on the

positioning accuracy, but it requires cycle slip free phase observables. In the kinematic

scenario, it is well known that fixing cycle slips is quite challenging. Furthermore,

when cycle slips occur consecutively within a short period of time, the classical fit-

ting and smoothing techniques do not work. Our new approach based on the Doppler
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observables successfully solved this problem. The resulting acceleration slightly im-

proves the precision of the gravity disturbances.

3. Gravity disturbance estimates show significant consistency (as good as 0.6

mGal, st.dev., but also as poor as 3.7mGal, st.dev.) in the vertical component on

repeated traverses where GPS quality is considered adequate. The consistency in the

horizontal components is lower and includes a scale error.

4. The accuracy of the horizontal component estimates improves substantially

after adjusting for a scale factor error and bias, both determined from control data

along the entire segment. While in an operational setting such control presumably

would not be available, the analysis shows that the large horizontal component errors

are of a simple character.

5. The estimates of the vertical gravity disturbance components, after wavelet

de-noising, wavenumber correlation filtering, agree with the available control at the

2-3mGal level (st.dev) along traverses where GPS quality is considered adequate.

Slightly higher standard deviations are obtained along the extended I90 segment on

which the GPS quality shows instances of clear degradation.

6. Wavelet de-noising and wavenumber correlation filtering have a positive effect

on the final estimation; however, they yield only a marginal improvement of a few

tenths mGal in the standard deviation of the errors (relative to the control data).

The biases in the estimation are removed by using the end-matching method.

7. Several interpolation techniques are used to interpolate the control data for

the vertical component. Even though the LSC offers the best results at the testing

points, its performance is not guaranteed considering the covariance matrix is singular

most of the time. The extended 3D multiquadrics method was found to be the most

stable one and we can assume that the corresponding interpolated control data has

an accuracy of approximately 2-4 mGal. Therefore, the INS/GPS estimates may have

better accuracy than indicated in Conclusion 5, above.

8. The resolution of the estimated gravity disturbances depends on the applied

data smoothing and the speed of the vehicle. With the 180-second B-spline smoother

and a vehicle speed of about 80km/hr (22m/s), we estimate a resolution of about

2km (minimum wavelengths of 4km).

We may conclude that the INS/GPS gravimetry system successfully recovers

the vertical gravity disturbance at a resolution of 2km and an accuracy of least

2-3mGal (st.dev). The horizontal component estimates still have relative poor ac-

curacy (5-9mGal, st.dev) after removing the scale factor error. Nevertheless, this

study shows it is feasible to estimate the gravity disturbance vector using a ground-

vehicle SINS/GPS system. To achieve better results, may require looking for new

algorithms, as well as designing the operations more carefully. For instance, consid-

ering the abundance of the control data, we may employ an artificial neural network
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to estimate the gravity disturbances; and considering the relatively high variations in

the heading angle, we may add the heading angle constraints in the system dynamic

equation.
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APPENDIX A

BROADCAST EPHEMERIS AND IGS ORBITS

The GPS satellite coordinates can be computed from the GPS broadcast ephemeris.

A typical record of the ephemeris is given in Figure A.1. Table A.1 describes the for-

mat and content of each record in the broadcast ephemeris.

Figure A.1: GPS broadcast ephemeris

The physical meaning of the parameters is shown in the Figure A.2. For more

information about the broadcast ephemeris please refers to the RINEX document

(Gurtner 2001).

The satellite ephemeris is broadcast two hours in advance of the epoch for which

they were calculated. The parameters are given in terms of the ephemeris reference

time (toe), which is normally the centre of the transmission period [Rizos 1999].

To compute the GPS satellite position by use of the above parameters, it is nec-

essary to obtain precise GPS time first. The GPS system time is characterized by

a week number and the number of seconds since the beginning of the current week.

The following algorithm (Hoffman-Wellenhof et al. 2001) is used to compute the GPS

week and seconds of the week.

Let the civil date be expressed by integer values for the year Y, month M, day D,

and a real value for the time in hours UT. Then, the Julian day, JD, is obtained by
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Line Description Field Width∗

1 Satellite PRN number I2
Epoch (year with 2 digits, month, day, hour, minute, sec-
ond)

I25I3,F5.1

Clock bias(s), drift, drift rate (s−1) [a0, a1, a2]∗∗ 3D19.12
2 Age of ephemerides data (s) [IODE] 3X,D19.12

Sine term for r-correction (m) [Crs] D19.12
Mean motion difference (rad s−1) [∆n]; Mean anomaly
(rad) [M0]

2D19.12

3 Cosine term for u-correction (rad) [Cuc]; Eccentricity [e] 3X,2D19.12
Sine term for u-correction (rad) [Cus]; Square root of semi-
major axis (sqrtm)

2D19.12

4 Time of ephemerides (seconds of GPS week) [Toe]; Cosine
term for i-correction (rad) [Cic]

3X,2D19.12

Node’s longitude (rad) [Ω0]; Sine term for i-correction (rad)
[Cis]

2D19.12

5 Inclination (rad) [i0]; Cosine term for r-correction (m) [Crc] 3X,2D19.12
Argument of perigee (rad) [ω]; Rate of node’s longitude
(rad s−1) [Ω̇]

2D19.12

6 Rate of inclination (rad s−1) [i̇]; Codes on L2 channel 3X,2D19.12
GPS week; L2 P data flag 2D19.12

7 SV accuracy; SV health; TGD; IODC Issue of data, Clock 3X,4D19.12
8 Transmission time of message (Sec of GPS week) 3X,D19.12

Fit Interval (hours) zero if not known; Spare; Spare 3D19.12
Note *: X denotes a blank space; I denotes an integer; F denotes a float number; D denotes

a double precision number.
**: The units are of the quantities are in ( ). The symbols that represent the quantities
are shown in [ ].

Table A.1: Rinex navigation message description
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Figure A.2: GPS orbit parameter description

the following equation:

JD = INT[365.25y] + INT[30.6001(m+ 1)] + D + UT/24 + 172098.5 (A.0.1)

where INT denotes the integer part of a real number and y, m are given by:
y = Y − 1 and m = M + 12 if M <= 12
y = Y and m = M if M > 12.

The GPS week is obtained by:

Week = INT[(JD− 2444244.5)/7] (A.0.2)
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The seconds of the week is obtained by using the following equations:

a = INT(JD + 0.5)⇒ b = a+ 1537⇒ c = INT[(b− 122.1)/365.25]
⇒ d = INT[365.25c]⇒ e = INT[(b− d)/30.600⇒
DD = b+ d− INT[30.6001/e] + FRAC[JD + 0.5]

(A.0.3)

where FRAC denotes the fractional part of a number.

The seconds of week, SOW, is given by:

SOW = [FRAC(DD) +N + 1] ∗ 86400.0d0 (A.0.4)

where N = modulo{INT[JD+0.5],7}.

However, this textbook algorithm only provides seconds of week with precision at

10−5 seconds. As a result, the Remondi DATE/TIME algorithm (Hilla et al. 2000)

is used instead.

The satellite coordinates are computed for a given epoch t with respect to the

Earth-fixed geocentric reference frame by the following equations.

tk = t− toe (A.0.5)

A possible change of the week has to be considered i.e.,

if tk = 302400 tk = 302400 (A.0.6)

if tk > 302400 tk = tk − 302400 ∗ 2 (A.0.7)

if tk < −302400 tk = tk + 302400 ∗ 2 (A.0.8)

(A.0.9)

n0 =

√
GM

A3
(A.0.10)

where GM = 3.986005d14m3/s2, A =
√
A

2

n = n0 + ∆n corrected mean motion (A.0.11)

Mk = M0 + n ∗ tk mean anomaly (A.0.12)

Kepler’s equation of eccentric anomaly

Ek = Mk + e ∗ sinEk (A.0.13)
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It is solved by iteration. Because of the very small eccentricity of the GPS orbits

(e< 0.001) usually two steps are sufficient.

The satellite coordinates are then obtained, using the following equations:

cos vk =
cosEk − e

1− e ∗ cosEk
true anomaly (A.0.14)

sin vk =

√
1− e2 sinEk

1− e ∗ cosEk
true anomaly (A.0.15)

Φk = vk + ω argument of latitude (A.0.16)

where ω = 7.2921151467 ∗ 10−5 rad/s.

δuk = Cuc cos 2Φk + Cus sin 2Φk argument of latitude correction (A.0.17)

δrk = Crc cos 2Φk + Crs sin 2Φk radius correction (A.0.18)

δik = Cic cos 2Φk + Cis sin 2Φk inclination correction (A.0.19)

uk = Φk + δuk corrected argument of latitude (A.0.20)

rk = A(1− 2 cosEk) + δrk corrected radius (A.0.21)

ik = i0 + i̇ ∗ tk + δik corrected inclination (A.0.22)

X ′k = rk cosuk position in the orbital plane (A.0.23)

Y ′k = rk sinuk position in the orbital plane (A.0.24)

Ωk = Ω0 + (Ω̇− ωe)tk − ωetoe corrected longitude of ascending node (A.0.25)

Earth-fixed geocentric satellite coordinates

Xk = X ′k cos Ωk − Y ′k sin Ωk cos ik (A.0.26)

Yk = X ′k sin Ωk + Y ′k cos Ωk cos ik (A.0.27)

Zk = Y ′k sin ik (A.0.28)

A set of GPS data is used to validate the above computation procedures. The

resulting GPS satellite coordinates are compared with the interpolated IGS precise

orbits (see section 4.3). The differences of the satellite coordinates at exactly the

same epoch for PRN15, PRN18 are shown in Figure A.3.

In Figure A.3, we see that the differences between the broadcast orbit and the

IGS precise orbit could reach several meters. The jumps in the differences probably

due to the change of broadcast orbit parameters, which are obtained from a curve
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fit to the predicted ephemeris over an interval of 4 to 6 hours. As a result, the IGS

precise orbit is used in the GPS data processing described in Chapter 4.
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Figure A.3: Broadcast and precise GPS orbit differences
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APPENDIX B

THE MODIFIED KALMAN SYSTEM FOR ESTIMATING
GRAVITY DISTURBANCES

The observation matrix H is given by equation B.0.1.

H :=
[
−Ci

b 0 −diag{ai}Ci
b 0 −ai×

]
(B.0.1)

where ai is the INS acceleration, Ci
b is the transformation matrix from b-frame to

i-frame, diag{ai} =

 ai1 0 0
0 ai2 0
0 0 ai3

, and ai× =

 0 −ai3 ai2
ai3 0 −ai1
−ai2 ai1 0

.

The state transition matrix Φ is given by equation B.0.2.

Φ :=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −Ci

b 0 −Ci
b[ω

b
ib] 0

 (B.0.2)

where ωbib is the angular velocity of the b-frame with respect to the i-frame with

coordinates in the b-frame.

130



APPENDIX C

POWER SPECTRAL DENSITY OF THE GPS AND INS
ACCELERATIONS IN BOTH AIRBORNE AND GROUND

SCENARIO

The data from Traverse 3 along I90 and a typical airborne data set provided by

NGA are used to demonstrate the effects in the INS/GPS vector gravimetry caused

by different observation scenarios. Figure C.1 shows seven passes in one flight test.

Table C.1 gives a short summary of each pass. Here, only the data from pass 6 are

used in the following analysis. The results from other passes are similar.

Figure C.1: Trajectory of the airborne data provided by NGA
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Table C.1: Summary of the passes in the flight test provided by NGA
Flight / duration mean length velocity Sampling
pass [s] altitude [m] [km] [m/s] Rate[Hz]

FLT02/5 767 6342.476 150.976 196.846
FLT02/6 963 6333.064 148.953 154.597 GPS 2
FLT02/7 794 6330.765 148.974 187.630
FLT02/8 1007 6325.897 148.838 147.807 INS 25
FLT02/9 819 6303.257 149.014 181.952
FLT02/10 1054 6301.224 148.930 141.302
FLT02/11 844 6299.020 148.113 175.386

Figure C.2 - C.7 show the power spectral density of the raw (unsmoothed) accel-

erations. We see the frequency contents of both the GPS and INS accelerations in

the ground-vehicle system are more complicated than in the airborne case.

Figure C.2: Power spectral density of the GPS accelerations along x compo-
nent
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Figure C.3: Power spectral density of the GPS accelerations along y compo-
nent

Figure C.4: Power spectral density of the GPS accelerations along z compo-
nent
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Figure C.5: Power spectral density of the INS accelerations along x compo-
nent

Figure C.6: Power spectral density of the INS accelerations along y compo-
nent
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Figure C.7: Power spectral density of the INS accelerations along z compo-
nent
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