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ABSTRACT

The determination and the representation of the gravitgl ithe Earth are some of the most impor-
tant topics of physical geodesy. Traditionally in sateltjravity recovery problems the global gravity
field of the Earth is modeled as a series expansion in termshafrical harmonics. Since the Earth’s
gravity field shows heterogeneous structures over the gllmeulti-resolution representation is an
appropriate candidate for an alternative spatial modelinghe last years several approaches were
pursued to generate a multi-resolution representatioheofjeopotential by means of spherical base
functions.

Spherical harmonics are mostly used in global geodetidegifuns, because they are simple and the
surface of Earth is nearly a sphere. However, an ellipsoidtation, i.e., a spheroid, means a better
approximation of the Earth’s shape. Consequently, elifzdarmonics are more appropriate than
spherical harmonics to model the gravity field of the Eartlowidver, the computation of the coeffi-
cients of a series expansion for the geopotential in terntwthf, spherical or ellipsoidal harmonics,
requires preferably homogeneous distributed global detta s

Gravity field modeling in terms of spherical (radial) basediions has long been proposed as an
alternative to the classical spherical harmonic expanaiwh is nowadays successfully used in re-
gional or local applications. Applying scaling and wavdiatctions as spherical base functions a
multi-resolution representation can be established. ir8calnd wavelet functions are characterized
by the ability to localize both in the spatial and in the freqay domain. Thus, regional or even local
structures of the gravity field can be modeled by means of progpate wavelet expansion. To be
more specific, the application of the wavelet transformvesldhe decomposition of a given data set
into a certain number of frequency-dependent detail siggred mentioned before the spheroid means
a better approximation of the Earth than a sphere. Conséguer treat in this report the ellipsoidal
wavelet theory to model the Earth’s geopotential.

Modern satellite gravity missions such as the Gravity Reopnd Climate Experiment (GRACE)

allow the determination of spatio-temporal, i.e., foumdnsional gravity fields. This issue is of
great importance in the context of observing time-varigdflenomena, especially for monitoring the
climate change. Global spatio-temporal gravity fields aally computed for fixed time intervals

such as one month or ten days. In the last part of this reporvwtlane regional spatio-temporal

ellipsoidal modeling. To be more specific, we represent ithe-tdependent part of our ellipsoidal
(spatial) wavelet model by series expansions in terms ofdimensional B-spline functions. Thus,
our concept allows to establish a four-dimensional mesetution representation of the gravity field
by applying the tensor product technique.



ACKNOWLEDGEMENT

The research which led to this report was initiated during a visit to the Ohio State
University (OSU) from February 2002 through January 2003, and partially supported by
grants from the National Geospatial-Intelligence Agency's (NGA's) University Research
Initiative (NURI), entitled 'Application of spherical wavelets to the solution of the
terrestrial gravity field model' (NMA201-00-1-2006, 2000-2005, PIs: C. Shum), and from
the National Science Foundation's Collaboration in Mathematics and Geosciences (CMG)
Program, entitled 'Multi-resolution inversion of tectonically driven spatio-temporal
gravity signals using wavelets and satellite data' (EAR-0327633, 2003-2007, PIs: C.K.
Shum).

The authors benefited very much from discussions with many researchers at the OSU and
thank C.K. Shum and the OSU for hospitality. Further thanks go to the German Geodetic
Research Institute (DGFI) and the University of Munich (LMU), at which parts of the
work were conducted. Finally we thank Erik W. Grafarend for many fruitful discussions,
which were the actual starting point for this project.

iv



Contents

Abstract

Acknowledgement
1 Introduction

2 Mathematical Foundations
2.1 BasicEllipsoidal Settings . . . . . . . . ... e

2.2 Basic Spherical Settings . . . . . ... e

3 Multi-Resolution Representation on the Ellipsoid
3.1 EllipsoidalKernels . . . . . . . . . . . ... e e
3.2 Ellipsoidal Scaling Functions and Wavelets . . . . . .. ...... ... ... ...
3.2.1 Ellipsoidal Multi-Resolution Representation of 8econd Kind . . . . . . .
3.2.2 Ellipsoidal Multi-Resolution Representation of fiestKind . . . . . . ..
3.2.3 Order-Independent Coefficients . . . . . ... ... ... .. ... ...

3.3 lIsotropic Wavelets . . . . . . . . . . e e

4 Regularization
4.1 SobolevSpaces . . . . ... e

4.2 Ellipsoidal Wavelet Regularization . . . . . ... .. ... ... .........



5 Multi-Resolution Representation of Bandlimited Signals
5.1 BasicSettings . . . . . . . . e e e e

5.2 Decomposition and Reconstruction . . . . . . . . .. ... . e o ..

5.21 InitialStep . . . . . . e e

5,22 PyramidStep . . . . . . . . e
5.2.3 Reconstruction Step . . . . . ... e e,

5.3 Numerical Example . . . . . . . . . . . e

6 Multi-Resolution Representation of Spatio-Temporal Sigals
6.1 Tensor Product Approach . . . . . . . . . . . . . . . e e
6.2 B-SplineModeling . . .. .. .. . . . .. ... e

6.3 4-D Multi-Resolution Representation. . . . . . . . . .. . . .. ... .. ...

References

Vi

42



Chapter 1

Introduction

The determination and the representation of the gravitd fiélthe Earth are some of the most im-
portant topics of physical geodesy. Traditionally in dételgravity recovery problems the global
gravity field of the Earth is modeled as a series expansioarmg of spherical harmonics (Reigber
et al., 2005). Since the Earth’s gravity field shows hetemeges structures over the globenailti-
resolution representatiois an appropriate candidate for an alternative spatial firagleln the last
years several approaches were pursued to generate a esaltifion representation of the geopoten-
tial by means of spherical base functions; see e.g. Fred®99), Freeden et al. (1998), Freeden and
Michel (2004), Kusche (2002), Prijatna and Haagmans (2a8aagmans et al. (2002), Panet el al.
(2005) or Schmidt et al. (2006, 2007a).

Spherical harmonics are mostly used in geodetic applicgatioecause they are simple and the surface
of Earth is nearly a sphere (Heiskanen and Moritz, 1967). élew an ellipsoid of rotation, i.e., a
spheroid, means a better approximation of the Earth’s sliapesequently, ellipsoidal harmonics are
more appropriate than spherical harmonics to model thetgrfgld of the Earth and the region of
divergence of an ellipsoidal harmonic expansion is sm#flen the corresponding one of a spherical
harmonic expansion. However, the computation of the coeffis of a series expansion for the
geopotential in terms of both, spherical or ellipsoidalnhanics, requires preferably homogeneous
distributed global data sets. Since a wavelet function &atterized by its ability to localize both
in the spatial and in the frequency domain, regional or ewsall structures can be modeled by
means of an appropriate wavelet expansion. Applying theslgairansform, a given data set can
be decomposed into a certain number of frequency-depemdgail signals, i.e. a multi-resolution
representation is performed.

In order to consider the Laplacian differential equatiom approaches are based on an ellipsoidal
wavelet theory. In chapter 2 we present the mathematicaldations. The basic formalism eflip-
soidal signal representatiors introduced in section 2.1. Since spherical coordinates spherical
harmonics are still standard in modern gravity field modgline additionally introduce basic spher-



ical relations in section 2.2.

The multi-resolution representatiois treated in detail in chapter 3. After introducing genesifip-
soidal kernels in section 3.1 their properties are speedlin the following section 3.2 to ellipsoidal
scaling functions and wavelets, which mean the basic coemgsrof the multi-resolution representa-
tion. As a special topic subsection 3.3 is dedicated toagatrwavelets, which are generally definable
only on spheres.

One of the main applications of the spherical wavelet th&esyin theregularizationof inverse prob-
lems related to the sphere. In Earth’s gravity field studeggilarization is needed for the downward-
continuation of the gravity data, e.g., from a satelliteitord the Earth’s surface. Thus, after intro-
ducing Sobolev spaces in section 4.1 we discuss regulanzat the context of ellipsoidal wavelet
theory in section 4.2.

In chapter 5 we treat the multi-resolution representatibbamdlimited signalas a kind of speciali-
sation. To be more specific we transfer the integal equatiGeiies expansions, because in geodesy
one is always interested in estimating the target coeffisibyp parameter estimation procedures, for
instance, least-squares techniques. After presenting k&ations in section 5.1 we discuss the de-
composition and the reconstruction of signals on the @igpsn detail in subsection 5.2. In the
following section 5.3 we complete the chapter by a numeggample.

In chapter 6 we outline thepatio-temporal ellipsoidal modelingf the gravity field. This issue is
of great importance in the context of observing time-vdegihenomena, especially for monitoring
the climate change by modern satellite missions like thevi@r&ecovery And Climate Experiment
(GRACE). We start with the definition of the spatio-tempot@hsor product approach in section
6.1. The time-dependent part of our model is based on Besplimroduced in section 6.2. Finally
we outline the four-dimensional (4-D) multi-resolutiorpresentation of spatio-temporal signals in
section 6.3.

As mentioned before the ellipsoidal wavelet theory is mguprapriate for modeling the Earth’s
geopotential than spherical base functions. Howevergalilts based on the ellipsoidal theory and
presented in this report can be easily transferred to thergeih case. This fact means another reason
why we decided to derive our approaches in the ellipsoidaled.

Heiskanen and Moritz (1967) presented basic relationslpseidal series expanisons of the gravity
field. An extensive introduction to a spheroitialarmonic model of the terrestrial gravity field was
published by Thong and Grafarend (1989); the exact tramsfhon formula between ellipsoidal and
spherical harmonic expansions is given by Jekeli (1987).

'as mentioned before a spheroid means an ellipsoid of réwnlut



Chapter 2

Mathematical Foundations

The basic idea of thenulti-resolution representatiois to split a given input signal into a smoothed
version and a certain number of band-pass signalsuggessive low-pass filteringn the context

of wavelet theory, this procedure consists of deeompositiorof the signal into wavelet coefficients
and the(re)constructiorof the (modified) signal by means détail signals The latter are the spectral
components of the multi-resolution representation bexthey are related to certain frequency bands.
In the sequel we want to transfer the concept of the multhi®n representation from the well-
known spherical theory into the ellipsoidal setting.

2.1 Basic Ellipsoidal Settings

First we introduce the gravitational potentid(x), which is assumed to be harmonic in the exterior
of the Earth, i.e., it fulfills thd_aplacian differential equationThe geocentric position vector

T
T = [\/ u? 4+ €2 cospcos \, Vu? 4 e2cosgpsin\, using | = |x|r (2.1)

of any arbitrary observation poi® = P(x) may be expressed by means of ttaeobi ellipsoidal
coordinates(\, ¢, u) with A\ = spheroidal longitude = spheroidal latitude and = spheroidal
height; for details on the Jacobi ellipsoidal coordinates refer to Thong and Grafarend (1989).
Furthermore, in Eq. (2.1)

e =1Va?%—b? (2.2)
denotes the absolute eccentricity of théerence ellipsoid

Eipy={x|0<A<2m—-m/2<¢<m/2,u=b} (2.3)



of Somigliana-Pizetti type with semi-major axisand semi-minor axi$. Finally, with |z| =
u? + €2 cos? ¢ the unit vectorr = x/|x|, introduced in Eq. (2.1), reads

T
u? + €2 6 cos A u? + €2 ésin A u? .
= ——————— COS ¢ COS ———————cos¢sin —————sin
u? + €2 cos? ¢ "\ u2 4+ €2cos? "\ u? + €2 cos? ¢

(2.9)
Expanding the three componentsrointo geometric series we obtain
(1 + 5 sin? ¢ 2—22 + @(Z—i)) COS ¢ COS A
r= (1+%sin2¢§;+(9(§;)> cosdsin\ | = & + or (2.5)
(1 — 1 cos? qﬁfL—z + @(%)) sin ¢

with the "spherical” unit vector

N

£ =[cospeos A, cos psin\, sing]” (2.6)

and the latitude-dependent ellipsoidal correcden= or (¢, u), which vanishes foe = 0. Besides
the reference ellipsoid (2.3) we define it sphere

ST={gl0<A<2m—T/2<¢p<7m/2} =S, (2.7)
In the sequel we additionally need the family of confocahslbids
E%/mvu:{mmS/\<27r,—7r/2§¢§7r/2,u>0} (2.8)

as well as the family of concentric spheres
SE={r-€|0<A <2, —7w/2<¢p<m/2,r>0}. (2.9)

of radiusr. Recall, that in analogy to the definition (2.9) of sphe#@sas the collection of all points
P(r - &) with the same radial coordinate the spheroidal coordinate is chosen to define ellip-
soids (2.8) as level sets. Since only ellipsoids of revolutare considered, the spheroidal longi-
tude \ agrees with the spherical longitude. While the coordinate @\, «) therefore has an ob-
vious geometric background, the definition of the sphetdat#iude ¢ is more subtle. Actually it
has no direct geometric interpretation, instead it is naddéid by the attempt to have nice solutions
of the Laplacian differential equation. Indeed, the spluiolatitude ¢ is chosen so that solving
the Laplacian differential equation via separation of ableés again leads to the spherical harmon-
ics. To be more specific, we split the gravitational potéritié\, ¢, u) into separable functions, i.e.,
UN, ¢,u) = A(N) ©(¢) U(u), and obtain the solution of tHeoundary value problerfor the outer
spachij‘t of the reference eIIipsoiﬂgvb asFourier series

U6 =3 S w2l o (0,0) 210)

b
n=0 m=—n Zm(g)



in terms of thesurface ellipsoidal harmonics

. ) Ccos MmA vV m>n
enm(X @) = Pl (sing) § = eam(£) | (2.12)
sin [m|A VvV m<0
see e.g. Heiskanen and Moritz (1967). The functi®}is,(-) andQ7,,,( - ) are the normalized asso-
ciated Legendre functions of the first and of the second kieghectively;n means the degree and
the order. Defining theuter ellipsoidal harmonics
rom (2)
By (N, b, 0) = 2
Qm (?)

the Fourier series (2.10) can be rewritten as

enm(\, @) = hb (x) (2.12)

UNgu) =D > tinm hp(N d,u) . (2.13)

n=0 m=—n

On the level ellipsoid, i.e., fot = b, the Eqgs. (2.10) and (2.13) reduce to

UAG,0) =D > tinm enm(A, ¢) (2.14)

n=0 m=—n

with

Wl (N ,0) = enm(N, @) - (2.15)

—=2,ext

Hence, the representations (2.10) and (2.13) hold far allE, ", wherein

—=2,ext

E.; =By UEZ, (2.16)

ext

means the union of the outer spaiEéb and the reference eIIipsoEib. Obviously, the outer
ellipsoidal harmonics (2.12) are the harmonic continuatibthe surface ellipsoidal harmonics (2.11)
into the outer spacE>{*" of the reference ellipsoitt? ,. OnE2 , the surface ellipsoidal harmonics

(2.11) fulfill the orthonormality condition with respect tive weighted scalar (inner) product

1
< epq()v ¢) ’ enm()‘a (b) >w = S ) /E2 dSa,b((b) w((b) epq()‘a (b) enm()‘a (b) = 5pm 5qn .
a, a,b
(2.17)
Herein
B 2\ 9 l lf a—+e€
Sap = area(Eg,) =4ma <2 + 1o In p—
2w ab® sae . €
= (b—2 + arcsinh (5)) (2.18)



means the total area of the reference ellipsoid and

dSap(¢) = d{area(Eib)} = a /b2 + e2sin? ¢ cos pd\ do (2.19)

the corresponding ellipsoidal surface element. The wdigittionw(¢) is defined as

w(e) = ——2 <l LN a—“) : (2.20)

b2+ e2sin®¢ \2 dae a—e

see e.g. Ardalan and Grafarend (2001). The procedure pegsieefore can be interpreted as follows:
due to the weight function (2.20) we remove the ellipsoigat pf both the ellipsoidal surface element
(2.19) and the total area (2.18). What remains is the ortlmality condition for the (spherical)
harmonicse,.,,,(\, #) given on the unit spher§®. Hence, we summarize that in the sense of the
weighted scalar product (2.17) the set of surface ellididrmonics (2.11) constitutes a complete
orthonormal basis of the spadeg(Egvb) of square-integrable functions on the reference ellipsoid
(2.3).

Theseries coefficients,,,, of the Fourier series (2.13) are computed byehipsoidal Fourier trans-
form

Unm = < f(/\anS(pb) | enm(/\lbqbq) >w

1

- /E s A524(60) 0(80) F g 00 (o) (2.21)

from given boundary values
fAgdg:b) = f(mg) =U(mg) ¥V mg €EZ,. (2.22)

Inserting Eq. (2.21) into Eq. (2.13) yields under the coesition of the Egs. (2.15) and (2.22)

U\, ¢,u) =

1
Sa,b /Ei,b dSa(dq) w(dg) X

X (Z Z hfbm(/\mqbl]vb)hfLm(/\’qb»u)) f(/\q>¢qvb)

n=0 m=—n

= Sab/]Ei’b dSa,b((bQ) w(¢q) sz()\q,(lsq,b, )\7 (ﬁ"a) f()\q’(b(pb)

)

1

= S(Lb /]Ei’b dSa,b((bq) w(¢q) sz(x7wq) U(wq)

= ( K§p(x, @) |U(z,) ), (2.23)



with z € B3 anda, € E2 . In this inner product we find thellipsoidal Abel-Poisson kernel

Kip(z, ) = ZZh )

n=0 m=—n

—ZZ

=0 m=—n m _)

nm (&) €nm (&) - (2.24)

At the surface of the reference ellipsoid, i.e. foe b, the ellipsoidal Abel-Poisson kernel reduces to

Kip(z mq Z Z enm(&) enm £q) (2.25)

n=0 m=-—n

Inserting theaddition theorem

n

D eam(&) enm(€,) = (2n +1) Pa(€7¢,) (2.26)

m=—n

into EqQ. (2.25) yields théegendre series
K§p(w, @) =Y (2n+1) Pu(€7¢,) (2.27)
n=0

of thedelta functioni( - ), i.e. Kip(x, ) = 0(§ — &,)-

For numerical applications we deal now with the quoti@mn(%)/Q;m(%o). In the sequel we as-
sume that the reference ellipsoid (2.3) is defined by theeglu=: a¢ andb =: b, for the semi-major
and the semi-minor axis, respectively; thus, the eccetyti(2.2) is given as = /a3 — b3. Accord-
ing to Martinec and Grafarend (1997) we may write

( ) entl Z anmke2k
* (U
jm( © ) = =0 (2.28)
T e ™Y anmned
k=0
with
€ € €
e = = = — 5 229
Vuz+e2  Ju?+ad+b3 (2.29)
€ €
’ VO3 +e  ao (2.30)
The coefficients:,,,,,;, can, for instance, be computed by the recurrence relation
2k — 1)2 —m?
= O F ) —m for k>1 (2.31)

ok (2n + 2k + 1) mmekol



starting witha,,,,0 = 1. Thus, it follows from Eq. (2.28) considering the right-dasides of the Egs.
(2.29) and (2.30)

o
14 Z anmke%
k=1

rom (€) ap\ "t
R es2
nm\ e 1+ Z anmkegk
k=1
Expanding the denominator into a geometric series yields
Qun(2) _ (a0t (|, S
o = ()7 (1 e ) (1= X w4
nm\ e k=1 k=1
a n+1
= (f) (1—|—anmle2—|—...) (1—anmle(2)—|—...)
a n+1
— (f) (1+anm1(62 —e%) + )
n+1 n+1
= (%) + (%) Gl (a_2 — a62) 4. . (2.33)

According to Eq. (2.31) the coefficients,,,,; are given ag,,,,1 = ((n+1)2—m?)/(4n+6). In case
that the reference ellipsoll?, , corresponds to the reference sph&fewith radiusR = ag = bo

a

Eq. (2.33) reduces with= 0 to
* u n+1
am(e) (5) (2.34)

witha=u=r.

Due to the relation (2.34) between the ellipsoidal and thespal theory we at first study in the next
section some spherical features in more detail.

2.2 Basic Spherical Settings

In the spherical theory we choose according to Eq. (2.343phere
S ={R-r|0<A<2m,—7/2<B3<7/2, R>0} . (2.35)

as defined in Eq. (2.9) with = R as the reference sphere; in order to avoid a mix-up between th
ellipsoidal and the spherical scenarios we substitute tbekgetters for ¢ andr for the unit vector

&. Hence, the coordinate triple\, 3, r) consists ofA = spherical longitude = spherical latitude
andr = radius. Note, that the spherical longitude is equivaletiiécellipsoidal longitude introduced



in Eg. (2.1). Usually in Eq. (2.35R is defined as a mean Earth radius. Howeﬁ%g,can also be
identified with theBrillouin sphereor the Bjerhammer spheresee e.g. Torge (2001). In spherical
coordinates the position vectsrof an arbitrary point? = P(x) reads

a::r'[cosﬁcos/\, cos Bsin A, Sinﬁ]T:r-r (2.36)

with |x| = r. Analogous to Eq. (2.10) and considering the result (2.3 phtain the solution
e ) n R n+1
U\ B.r) = Ezjo m;n Unm <—> enm(), ) = U() (2.37)

of the Laplacian differential equation for the gravitagbmotentiallU (x) in a point P(x) with €
=2,ext

Sp = S5 U §%, whereinS;™" means the exterior of the sphe#g, cf. Eq. (2.16). Theurface
spherical harmonics

. ‘ CcoS MmA YV m>n

enm (A, B) = Py, (sin) ¢ = enm(T) , (2.38)
sin [m|A vV m<O0

(see e.g. Heiskanen and Moritz (1967, p. 21)) fulfill the onibrmality condition

1

< epq(As B) | enm (A, B) > = S_R /S2 dSR(B) epg(A, B) enm (A, B) = Spm Ogn (2.39)

with respect to the spheBg;. Herein

Sk = area(S%) = 47 R? (2.40)
means the total area of the sphere and

dSg(B) = d{area(S%)} = R? cos Bd\dj3 (2.41)

the corresponding spherical surface element; cf. Eqgs.8Yafhd (2.19) as well as the comments
following Eq. (2.20). From Eq. (2.39) we conclude that thedesurface spherical harmonics (2.38)
constitutes a complete orthonormal basis of the sﬁ@c@@%) of square-integrable functions on the
reference sphere (2.35).

Defining theouter spherical harmonics

n+1
BE (A Bor) = (5> eam(\B) = WP (@) (2.42)

T

the Fourier series (2.37) can be rewritten as

UNBr) =Y > ub, bl (A B,7). (2.43)

n=0 m=—n



On the reference spheﬁé?, i.e., forr = R, the Egs. (2.37) and (2.43) reduce to
=> > U eam(NB) (2.44)
n=0 m=—n

with b2 (X, B, R) = enm (), 3). Theseries coefficients?,, are computable via thepherical Fourier
transform

Uy, = < f(Ag Bys R) ‘ enm(Ag; Bq) >

1

-5 /% dSr(By) (Mg Bys R) €nm(Ags By) (2.45)

from given boundary values
fAg; By, R) = f(zg) = U(zyg) V xg=R-1g € S%% . (2.46)

Inserting Eq. (2.45) into Eq. (2.43) yields under the coesition of the Egs. (2.42) and (2.46)

( 57 )_ ! SQ SR 5{1 (Z Z h Q75Q7R)h§m()‘767T)> f()‘mﬁq?R)

n=0 m=—n

1
-5 /S , ASi(f) KRp (g By R 5:) £ 3y )

1
- S_R /S?2 dsR(ﬁq) KZP($,$[1) U(azq)

= ( Kip(® 2q) | U(=,) ) (2.47)

2,ext

withz =7-r €Sy andz, = R-r, € S%. Thespherical Abel-Poisson kernel

Kip(x,z,) = ZZh xq)

n=0 m=-—n

:i Zn: (?)nﬂﬁnm(r)enm(rq) (2.48)

n=0 m=—n

reduces on the sphegg;, i.e. forr = R, to

K3p(x, @) Z Z enm(7) enm(7g) - (2.49)

n=0 m=—n

Inserting the addition theorem

n

Z enm (1) enm(ry) = (2n + 1) Py(rTr,) (2.50)

m=—-n

10



yields the Legendre series

(e}

Kip(z,@g) = > (2n+1) Po(rTry) . (2.51)
n=0

In the spherical theory the argumentr, of the Legendre polynomiaP,(-) in Eq. (2.51) defines
the spherical distance = arccos(r’r,) between two points®(r) and P(r,) on the unit sphere
S2. Thus, if we keepr = R - r fixed and varyx, = R - r, the spherical Abel-Poisson kernel is
rotational symmetrici.e. isotropic. However, for the level eIIipsoIB%,b, i.e. for Eq. (2.27), this
statement holds only, if the position vectorEq. (2.1), points either to the north or to the south pole.
The deviation from the rotational symmetry depends on tligseidal correctionyr defined in Eq.
(2.5). But due to the formal identity of the Eqgs. (2.27) and {2 we conclude that wavelet theory for
functions on the ellipsoid mostly agrees with the wavelebtly for functions on the sphere. Another
excellent feature, already mentioned, is the fact thatraog to the Egs. (2.39) and (2.17) the surface
harmonicse, (- ) constitute orthonormal bases of the Hilbert spakbg§%) and Ly(E2 ;).

Next, we introduce the genersppherical kernel

K (x,xq) = szh o (24)

n=0 m=—n

_Z Zn: (Trq> Hknenm(r)enm(rq)- (2.52)

n=0 m=—n

with z,z, € Sé . Since theLegendre coefficients,, depend exclusively on the degreg the

addition theorem (2.50) can be applied. Thus, the kern&R}ds rotational symmetric and can be
expanded as the Legendre series

o 2
K(z,@g) =Y (2n+1) <R ) k P.(rTr,) . (2.53)

=0 T T‘q
Note, that in the Abel-Poisson case (2.48) all Legendreficiaits k,, are equal to one.

Eq. (2.47) can be rewritten apherical convolution
Ux) = (Kip x U ) (x) (2.54)

generally defined as
Kef(z) = (Ks*f) <Ksa7$q)‘f($q)>

/ dSr(By) K*(x,xq) f(xq) (2.55)

11



for a functionf € Ly(S%) and a kernek® (z, x,) according to (2.52) witk: € S3°" andz, € S%.
For studying this convolution in the spectral domain we ntbed

Lemma (Funk-Hecke formula): Let f € LQ(S?R), ie.,
Tq) = Z Z frm €nm(Tq) (2.56)
n=0 m=-—n
with z, € S%, and K'* a spherical kernel, i.e.,

Nz, zq) ZZkh R o(x,)

n=0 m=—n

:i EH: <§>n+lknenm(r)enm(rq) (2.57)

n=0m=—n

withx € gigm andz, € S% . Then the spherical convolution

(@) = (K7 ) (@) = o /S ASR(B,) K (,q) f(zy) (2.58)

is given from the products of the spherical Fourier coeffitsef,’, . andk,, of f and K*, i.e.

Kof(m) = (K% f)( Z Z kn fom T (@) (2.59)

=0 m=-—n
This statement can be proven by introducing Eqgs. (2.56) ar¥) into Eq. (2.58) and considering
the orthonormality condition (2.39).

The comparison of the result (2.59) with the representaf@of3) shows, that the spherical Fourier
coefficients(K® f)s,,, of the spherical convolutiofC® f (x) are defined as

(K2 f)oum = Fn frm - (2.60)

Forz,z, € S%, i.e.,r = r, = R the kernel (2.57) reads

(x,xzq) Z Z kr, €nm (1) €nm(Tq) - (2.61)

n=0 m=-—n

Considering the orthonormality condition (2.39) we obtain

Ks(a:,a:q):i@n—i-l)k P(rTr)) = K(rTr,), (2.62)
n=0

12



cf. the Abel-Poisson kernel (2.51). Sinae= arccos(r’r,) the argument’r, = cosa =: tis
restricted to-1 < ¢ < 1. Thus, the kernek *(rT'r,) = K*(t) is a member of the spade([—1,1])
spanned by the Legendre polynomidfs(-). Equation (2.62) is known as thiaverse Legendre
transform Consequently, theegendre transforns defined as

1
ko = / K*5(t) Py(t) dt . (2.63)
-1

From the results presented before we conclude, that acgptdiEqg. (2.58)C* means arintegral
operatorwith the rotational symmetric kernél*(r’r,) =: K*(t) defined in Eq. (2.62). Nearly all
operators in gravimetry with the sphere as reference sudage from the above type. Examples in-
clude the spherical Abel-Poisson as already studied, thielr@erivatives on the sphere, the spherical
Stokes operator or the operators computing sphericalesiidigiuble-layer potentials.

Next, we study thepherical scalar product

1

(1@ ls@)) = 5= [, d5al(®) f(@)g(a) (2.60

of two functionsf, g € LQ(S?R) with x € S% in more detail. Expanding both functions into spherical
Fourier series, i.e.,

F@)=>""3" fimeam(r), (2.65)

n=0 m=—n

9@ =" > Gom eam(r) (2.66)

n=0 m=—n
according to Eq. (2.44) yields under the consideration efdatthonormality condition (2.39)

o0 oo

(1@ lsl@)) = 5= [, aa(9) (Z > fim enm<r>> (Z > o epq<r>>

n=0 m=—n p:O q=—p

) n e ] p i 5 1
= (Z X2 D fom gpq> S5 /S ASR(B) enm(r) epg(r)

n=0 m=—n p=0 q=—p

=> "> o o - (2.67)

n=0 m=-—n

Thus, the scalar produétf(z) | g(x) ), defined in the spatial domain on the sphere, corresponds in
the spectral domain to the sum of the products of the sphé&maier coefficientsf;;,, andg;,,. This
relation is known a®arseval’s identity The L (S%)-norm ||f||L2(§§2) of the functionf(x) is defined

as
1Al Lye2y =/ F@) | f(=) ) - (2.68)

13



Applying Parseval’s identity (2.67) we finally obtain

11l Las2) = \l Z Z (fiam)? - (2.69)

n=0 m=—n

Note, that the norm can also be interpreted as the energgrdamtthe global root-mean-square (rms)
value of the functiorf (x).

From Eq. (2.61) we conclude that besides the complete sg@hefigal harmonics,,,,, () the func-
tions K*(rTr,) as defined in Eq. (2.62) span the spdegS?%). For this reason, they are called
spherical base functiongdence, the function (2.65) can be modeled as

F@) = 5= [, dSn(8) K2 Try) (@) = (K ) (a) 2.70)

with an unknown functior*(z,) andz, € S%.
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Chapter 3

Multi-Resolution Representation on the
Ellipsoid

As already mentioned the fundamental idea of a multi-ré&miurepresentation is to split a given
input signal into a smoother version and a number of detgilads by successive low-pass filtering;
this procedure, which provides a sequence of signal apmaiions at different resolutions, is also
known as multi-resolution analysis (Mertins, 1999). Thadeignals are the spectral components or
modules of the multi-resolution representation becausyg dne related to specific frequency bands.

3.1 Ellipsoidal Kernels

We already mentioned that we can study functions on thesellipas functions on the sphere via
introducing an appropriate weighted inner product, cf.dtieonormality condition (2.17). However,
we also have seen from the discussion in the context of E§l)2that the exclusive restriction to
rotational symmetric kernels on the ellipsoid is no longatunal and appropriate. In the following
we present the natural multi-resolution representatiaet@®n the ellipsoidal harmonics. For this we
start with introducing thgeneralized ellipsoidal kernel

K(@,@g) =D D ko i () B ()

n=0 m=-—n

=> > Zm((g)) "*m((g)) finm €nm (&) enm () (3.1)
n=0 m=—n nmai e nm\'e

15



2,ext

with x, x, € Eab , cf. Eq. (2.52). On the reference ellipsoid, i.e., for thecsal caser, x, € Eab,
Eq. (3.1) reads

m mq Z Z Enm enm enm(&q) . (32)

n=0 m=—n

Next, we define thellipsoidal convolution

Kef() = (K« f), (@) = (K (x,2q) | fzg) ),

1
" Sas / s 1BaplBq) widg) KE(@,2q) J(o) (3.3)

for a functionf € Ly(E2 ,) and a kerneK®(x, z,) according to (3.1) withx: € Eifft andz, € B2,
cf. Eq. (2.23). For studying the relation (3.3) in the spaaiomain we need the

Lemma (generalized Funk-Hecke formula):Let f Lg(Egvb), ie.,

(wq) = Z Z fnm enm(gq) (34)

n=0 m=—n

withz, € Egvb, and K¢ a generalized ellipsoidal kernel, i.e.,

“(z, xq) Zanm ()

n=0 m=—n
* E

—Z Z Z knm €nm (&) enm (&,) (3.5)

n=0 m=—n nm e

with x € Eifﬁ andx, € Eﬁ,b. Then the ellipsoidal convolution

Kof(@) = (K 1) (@) = 5= [, dSuslén) wléy) K@) fa,) (3.6)

is given from the products of the ellipsoidal Fourier coédfids f,,,,, and k..., of f and K¢, i.e.

Kef(®)= (K% f), Z Z Knm frm W () - 3.7)

n=0 m=—n

This statement can be proven by introducing the Egs. (3d)a5) into Eg. (3.6) and considering
the orthonormality condition (2.17).

The comparison of the result (3.7) with the representatibh3) shows, that the ellipsoidal Fourier
coefficients( K€ f )., of the ellipsoidal convolutiorkC¢ f (x) are defined as

(lcef)nm = knm fnm . (38)

16



Analog to the spherical theory the ellipsoidal scalar pobdalready introduced in Eq. (2.17), of two
functionsf, g € Ly(E} ;) withz € B2, i.e.,

F@)=>">"" fum eam(é), (3.9)
n=0 m=—n
9@ =" > gum enm(€) (3.10)
n=0 m=—n
is defined as
1
(1@ 9@)), =5 [ 54(6)w(6) f@) o) 3.1

Inserting the representations (3.9) and (3.10) into Eql1{3and considering the orthonormality
condition (2.17) yields

(f@)]g(z) ),

1

= Sa’b /Eib dSa,b(¢)w(¢) (Z Z fnm emm(&)) (Z Z 9pq epq(§)>

n=0 m=-n p=0 g=—p

[e%} n 0 P 1
= (Z > 2D fum gpq> 5 /E dS5(8) W()) e (£) €pq(€)

n=0 m=—n p:O q=—p a,b

n=0 m=—n

Thus, the scalar produgt f(z) | g(x) ), . defined in the spatial domain on the reference ellipsoid,
corresponds in the spectral domain to the sum of the prodddtee ellipsoidal Fourier coefficients
fnm and g,.,. We denote this relation as tralipsoidal Parseval identity The Lg(Egvb)—norm
Hf”h(Ei’b) of the functionf (x) is defined as

1 lagez ) = /{ F@) | F() ), - (3.13)
Applying the ellipsoidal Parseval identity (3.12) we fiyadibtain

HfHLg(]Egﬁb) = J Z Z (fam)? . (3.14)

n=0 m=-—n

Besides the ellipsoidal harmonies,, (§) the functionskK ¢(x, z,) for x, x, € Eﬁ,b as defined in Eq.
(3.5) span the spawg(Ez,b). For this reason, they are calletlipsoidal base functionsThus, the
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Eg. (3.2) means a transformation between different setagé flunctions. Analog to Eq. (2.70) a
. . —=2,ext
function f(z) with z € E.’,~ can be modeled as

flx) =

Si,b /Ei,b dSap(dg) w(gg) K (@, x4) c(xy) = (K® * ¢), () (3.15)

with the unknown functior(x,) andx, € Eib. We will deal with such kind of series expansions in
chapter 4.

3.2 Ellipsoidal Scaling Functions and Wavelets

In order to derive an ellipsoidal multi-resolution repnetsgion we identify the kernek ©(x, x,), as
defined in Eq. (3.1), with thgeneralized ellipsoidal scaling function

i, 2q) ZZ@NM ( q)

n=0 m=—n

=> > "’”(E) "m(?)@mmenm(&)enm(&q) (3.16)

of resolution level (scale) € Ny. In other words we define scaling functions and waveletshéa t
series coefficient®;.,,. In the sequel we also want to deal witandlimited ellipsoidal scaling
function Such a function is defined by finite sums, i.e., Eq. (3.16uced to

j(@, @) Z Z Bjsnm iy () B (24) | (3.17)

n=0m=-—n
= h(z)"B; h(z,) . (3.18)
With 7; = (2n); + 1) them; x 1 vectorsh(z) andh(x,) are defined as
h(w) = [ (Hho(w), 11 (@), oo By @) ] (3.19)

for h(z,) replacex by x,. FurthermoreB; means am; x 7; diagonal matrix given as

Bj = diad(¢;j:00; #j;1,-15 $5:10, Pji11s -+ Pt ) - (3.20)

In the following we introduce additional restrictions orthegendre coefficients; ., .
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3.2.1 Ellipsoidal Multi-Resolution Representation of theSecond Kind

In the ellipsoidal multi-resolution representation of #ezond kind we choose coefficients,,,, for
j € Ngwithn € Ny and—n < m < n such that

(¢j;00)2 =1, 0< (¢j;nm)2 <1, (¢j+l;nm)2 > (¢j;nm)2 ) lim ((bj nm) =1; (321)

J—>

for the spherical analogon in case of rotational symmetigelfunctions see Freeden et al. (1998a),
Freeden (1999); cf. section 3.3. Since the squares of therldeg coefficients;.,,,, are used within
the conditions (3.21), we call this approach multi-redolutrepresentation of theecondkind. We
notice from the conditions (3.21), that the scaling funtsidorj = 0, 1, . . . establish a set of consec-
utive low-pass filterswith

lim ®;(x,x,) =d(§ —&,) (3.22)
Jj—00
according to Eq. (2.27). The fundamental idea of the mekitution representation of the second
kind is the decomposition of a sign#}(x) of level j + 1 with € Eab, defined as a double
convolution of the input signaf € L2(E§7b) with the level-(j + 1) scaling function® ;1 (x, ),
ie.

fin(@) = (i * i1 * f), (@) = Piyaf(2) (3.23)
into the low-pass filtered levelj signal

fi(@) = (@ x B; * f), (x) = P;f(x) (3.24)
and the level-j detail signal

gi() = (U5 « U; » f) (x)=R;f(x) (3.25)

absorbing all the fine structures Bf, 1 () missing inf;(x) with € E2 a- IN other words the signal
fj(x) means the levelj approximation of the level(j + 1) signal f; 11 (x) or the input signaff (x),
respectively. In this approach, the decomposition

fj+1($) = f](m) + gj(a:) . (326)

is performed via thellipsoidal wavelet functions;(x, x,) of level j and its duals ; (x, ) defined
as

m mq Z Z 7/@ mm enm enm(gq) 5 (327)

n=0m=-—n

i’j (x mq Z Z ¢j um €nm (& enm(&q) . (3.28)

n=0m=-—n
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Applying Eq. (3.7) to the Egs. (3.23), (3.24) and (3.25) gsel

fj+1($) = Z Z (¢j+1;nm)2 fnm enm(&) s (329)
n=0 m=—n

fj(m) = Z Z (¢j;nm)2 Jnm enm(f) ) (3.30)
n=0 m=—n

gj($) = Z Z ¢j;nm Jj;nm fnm enm(&) . (331)

n=0 m=—n

Considering these results in Eq. (3.26) the (ellipsoitiad)-scale relation

wj;nm {/;j;nm - (¢j+1;nm)2 - ((bj;nm)z (332)

between the coefficients of the wavelet functions and théngcéunctions is derived. Since the
scaling functionsb;(x, z,) and®;(x, z,) act as low-pass filters, the spherical wavelet function
(3.27) and its dual (3.28) can be interpretechand-pass filters The successive application of Eq.
(3.26) yields the ellipsoidal multi-resolution repressitn

flx) = fy(x) +

J=J

gi()  with  j €Ny (3.33)

o
>/

of the input signalf € Lo (Ei,b) as an alternative to the series expansion (3.9) in termdip$eidal
harmonics (2.11). By substituting the Egs. (3.30) and (B8idtb the right-hand side of Eq. (3.33)
and comparing the result with Eq. (3.9) we obtain the cooiti

((bj’;nm)z + Z wj;nm {Ej;nm =1 (334)

J=J'
for the series coefficients of the ellipsoidal scaling andielet functions. If we restrict the series
coefficientsy;.,,,, andv;.p,, t0

wj;nm = TZj;nm V neNyg, —n<m<n (335)
it follows
\Ilj(m>mq) = {Ivjj(m>mq) = Z Z 77Z)j;nm enm(&) enm(é'q) (336)

n=0m=-—n

for the spherical wavelet function (3.27) and its dual (3.28spectively. Furthermore, the condition
(3.34) reduces to

((bj’;nm)z + Z(wj;nm)z =1. (337)

J=y’
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According to Eqg. (3.32) the coefficients;.,,,,, of the ellipsoidal wavelet function are calculable from

T;Z)j;nm = \/(¢j+1;nm)2 - (ij;nm)z . (338)
Equation (3.25) allows the introduction of teélipsoidal wavelet coefficients
cj(x) = (\I/j * f )w(a:) =V, f(x) . (3.39)

Finally we summarize that thallipsoidal multi-resolution representation of the seddindreads

f@)=(@p « o« f) @ +> (¥ *e), (@) with ' eNg. (3.40)
Jj=Jj’ —_—
= fir(x) + g;(x)

3.2.2 Ellipsoidal Multi-Resolution Representation of theFirst Kind

In case of the ellipsoidal multi-resolution representatdd the first kind we replace the conditions
(3.21) for the coefficients;.,,,, of the level-; scaling function (3.16) by the conditions

¢j;00 =1 5 0 < ¢j;nm < 1 5 ¢j+1;nm > ij;nm 5 Jliglo ¢j;nm =1. (341)

Note, that these conditions affect that the diagonal md#jxdefined in Eq. (3.20) for the bandlim-
ited case is at least positive semi-definite. In this apgroae avoid the computation of ellipsoidal
wavelet coefficients (3.39) and, consequently, the makolution representation (3.40) reduces to
theellipsoidal multi-resolution representation of the firsbd, i.e.,

flx)= (2 ~ f) Z (T *f), () with  j € Np. (3.42)
%,_/ %,_/
= fir(x) + g;(x)

Thus, the smoother levelj signal f;(x) and the level j detail signalg;(x) are defined as
fil@)= (@~ f), (z), (3.43)

gi(x) = (¥ = f),(=) . (3.44)
In the frequency domain both signals can be rewritten aoaigly to the Eqgs. (3.30) and (3.31) as

n=0 m=—n

n=0 m=-—n
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Consequently, the two-scale relation (3.32) reads now

T;Z)j;nm = ¢j+1;nm - ij;nm . (347)

In the same manner as for the multi-resolution representati the second kind we obtain the condi-
tion
Gt + D Vjonm = 1 (3.48)
=3’
for the coefficients of the scaling and wavelet functionsriyoducing the representations (3.45) and
(3.46) into (3.42).

For numerical investigations we rewrite the Egs. (3.40) @w2) as

J o)
fl@)=fr@) + > gil)+ > giz) .
=5’ =T+
= fry1(x) +  s(x) (3.49)

The influence of neglecting the non-stochastic high-fregyesignals(x) (omission erroy on the
multi-resolution representation is knownal&sing error, see e.g., Kusche (2002).

Due to the definitions (3.21) and (3.41) of the ellipsoidalisy and wavelet functions the mean
values of the detail signal;(x) = g;(\, ¢, b), vanish over the eIIipsoiﬁ:Z’b, i.e., it follows

a

1
; = 3.50
53 e SO 500.) =0 (350)
forall j € {j/,...,J}. Note, that the same statement holds for the ellipsoidakleacoefficients

(3.39).

3.2.3 Order-Independent Coefficients

With Eq. (3.16) we introduced the generalized ellipsoidallisg function®;(x, x,). However, in
the case of order-independent coefficients, i.e., the coaitis¢;.,,,, are restricted to the conditions

Gjm = 0jm ¥V neNg, —-n<m<n, (3.51)
the ellipsoidal scaling function (3.16) reduces fgex, € Egvb to

<I>j(:1c,:1cq) = Z Z ¢j;n enm(&) enm(éq) )

n=0m=-—n

= Z (2n +1) ¢jm Pn(foq) . (3.52)

n=0
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As we already discussed in the context of Eq. (2.51), funstiof the type (3.52) are not rota-
tional symmetric (except at the poles) on the referencessid IEZJ,. However, since they would
be isotropic on a sphere, we denote kernel functions of the {8.52) in the sequel aetational
symmetricor isotropic If we substitute the unit vectorsandr, for the unit vectorg andg§ , i.e., we
neglect the deviation& anddr, as defined in Eq. (2.5), we would obtain from Eq. (3.52) theniefi
tion equation of the spherical levef scaling function; for an intensive study of the sphericavelat
theory we refer here to Freeden et al. (1998a), Freeden J&9@Freeden and Michel (2004). Recall
that the deviatiordr vanishes fok = 0, i.e., the ellipsoid mutates to a sphere.

Under the condition (3.51) we obtain from Eq. (3.38) thetieta

T;Z)j;n = \/(¢j+1;n)2 o (¢j;n)2 (353)

for the Legendre coefficients;.,, = 1;.,, of the rotational symmetric ellipsoidal wavelet function

\I/j Zr a:q Z Z 1/}]77, enm enm(Eq) ’

n=0m=—n

Z (2n+1) Vi Pa(€7€,) - (3.54)

In case of bandlimited scaling functions as defined in E4.7B8the Egs. (3.52) and (3.54) reduce to

a: a:q Z Z ¢j n enm enm(Eq) )

n=0m=-—n

n’

= (2n+1) ¢y Pal€7E,) (3.55)
n=0

$ $q Z Z T,Z)j n enm enm(&q) ’

n=0 m=—n
= 2n+1) Yy Pa(€7€,) (3.56)

n=0

the different values/’. andnJH for the upper summation index are due to the relation (3.53).

As a first example of such an ellipsoidal function (3.55) wiedduce theShannon scaling function
defined by the Legendre coefficients

1 for n=0,...,2 -1 -
Gjin = . =: Pjn (3.57)

0 for n>2
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of resolution levelj € Ny with n; = 27 — 1. In Fig. 4.1 theShannon wavelet functiob; (z, z,) =:
\I']S.h(a:, x,) for various level valueg is shown. The corresponding level Legendre coefficients are
calculated by inserting (3.57) into Eqg. (3.38), i.e.,

0 for n=0,...,20 -1
Uim=11 for n=2,. .. 2t 15 =¢5h. (3.58)

]7”

0 for n > 29+l

As can be seen from the two panels a) and b) of Fig. 3.1 the Shawavelet functions show
global oscillations. These undesired effects can be mainhpressed by using tiackman wavelet
function ¥ ;(x, z,) =: \I/?l(a:,a:q) shown in Fig. 3.2. To be more specific, tBéackman scaling
functionis defined by the Legendre coefficients

1 for n=0,...,2771 -1
Gjm = Aj(n)  for n=2"1.. 20 —1 3 = ¢l . (3.59)
0 for n>2J

The Blackman scaling function is based on the Blackman windo

2mn 47n
Aj(n) =0.42 — 0.50 cos <2—J> + 0.08 cos (2—]> , (3.60)

which is often used in classical signal analysis; see e.grtihe(1999). Inserting (3.59) into Eq.
(3.53) yields the Legendre coefficients

0 for n=0,...,2771 -1
1—(4;(n)2  for n=20"1 .2/ -1
Bjm = , , =, (3.61)
(4j11(n))? for n=2/,...,27t1 —1
0 for n>2it+1

of the Blackman wavelet functiow !z, z,).

We want to emphasize particularly, that both the Shannontlamdlackman wavelet functions are
strictly bandlimitedi.e. only the Legendre coefficients within a finite frequebandB; are different
from zero. In the case of the Blackman wavelet, for instaitdellows from Eq. (3.61)

B;:={n|27 ' <n<2t}. (3.62)

It can be taken from Fig. 4.2c, that for level= 7 the frequency band reads; = {n|64 < n <
255}.

For more details concerning these and other scaling andlstduactions we refer to the textbooks
of Freeden (1999) and Freeden et al. (1998) as well as to Stletral. (2007a).
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a) spatial localization (one - dimensional )
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Figure 3.1: Shannon wavelet functions for different resofulevels; ; a) one-dimensional represen-

tation in dependence on the argumeant arccos(ngq), b) two-dimensional representation on the
reference eIIipsoidEib with b = 6356751.92m ande = 521853.58m, c) frequency representation:

since the wavelet functions are non-overlapping, they gtegonal to each other.
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a) spatial localization (one - dimensional )
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Figure 3.2: Blackman wavelet functions for different regimin levels; ; a) one-dimensional repre-
sentation in dependence on the argument arccos(ngq), b) two-dimensional representation on
the reference eIIipsoiEfL,b with b = 6356751.92m ande = 521853.58m, c) frequency representation.
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Different detail signalg;, (x) andg;, (x), i.e. j1 # j2, computed by levelj; and level-j, Shannon
waveletstS? (x, x,) and W5 (x, x,), respectively, arerthogonalto each other, since it follows

(95 (®) ] 9j(®) ), =
1
Y ACYURED w SR

n l
X Z Z fnm flk enm(E) elk(g)

m=—nk=—1

:ZZ le ]27 Z Z fnmflk X

n=0 [=0 m=—nk=—|

1
W /IE 150(0) w(0) enn (&) e (€)

X

—Z i)’ (Whin Z f,=0. (3.63)

m=—n

by applying the Egs. (3.31), (3.35), (3.51), (3.61) and @eTing the orthonormality condition (2.17).

3.3 Isotropic Wavelets

We outlined in the previous subsection that the sphericakleatheory is obtained from the ellip-
soidal wavelet theory by restricting to Legendre coeffitse). ,,,, and+;.,,»,, which are independent
of the orderm = —n,...,n. The motivation for this was given by the conclusion that do& 0,
i.e., when the ellipsoidal is a sphere, the resulting sgadind wavelet function®; and¥; become
rotational symmetric or isotropic, that is, the values of

.'r :rq Z Z ij n enm enm(&q) ’

n=0m=—n
Z 2+ 1) djin Pul€”E,) . (3.64)

and¥;(x, z,) depend only on the geometric distarcgiven bycos o = £T5q. Since this no longer
holds for an arbitrary ellipsoid with # 0, i.e., the quantityx does not correspond to the geometric
distance betweefiand{, itis no longer natural to restrict ourselves to scaling aasielet functions
with order-independent coefficients.
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On the other hand, as seen before restricting to coeffictepending only on the degree we can
benefit from the fact that the computation of the scaling aadelet functions is drastically simplified,
cf. the definitions (3.57) to (3.61). This does not only fallivom the fact that the values &f;(x, )
andV¥,(x,x,) depend only orngq € [-1,+1] rather than on the tupler, =), but also relies on
the observation that now only the Legendre polynomigjsnstead of all associated Legendre poly-
nomials P, ,,, enter the computation a@b; and¥;. When one is only interested in a multiresolution
representation of the Earth’s gravity field without downevar upward continuation of gravity data,
more generally, solving geodetic boundary value problenisllows that one should use the special
spherical theory with its order-independent coefficientdetter computational efficiency.

Besides that we emphasize in advance that we cannot getdaooder-dependent coefficients in the
next section when we describe regularization. Thus, we wafihish this section by illustrating
how the general ellipsoidal wavelet theory allows us to useiliresolution analysis, which is better
suited to the special geometry of the ellipsoid. More prggjsve want to outline the construction of
scaling and wavelet functior; (x, x,) and¥ ;(x, x,) for a fixed reference eIIipsoiEiO,b0 with the
fixed absolute eccentricityy = /a3 — b3 according to Eq. (2.1), which are not fully isotropic, but
depend only up to a minimal error on the geometric distanggasfd§,, with respect to the standard

metric onIEa0 bo-

For this purpose let us introduce beside filkedreference elllpsomEa0 », @ Second (auxiliary) ellip-
soid Ea »» Which isvariable in the sense that the eccentricity= /a2 — b2 is allowed to vary. We
identify both ellipsoidéE bo andE? a,p Via the standard ellipsoidal coordinates ¢), which we have
on both of them, cf. Eq (2.3). Choosing a countable (for ficatpurposes still finite) sequence
of half axesu; > ... > u; > ... > ux = b, note that we get a countable family of ellipsoidal
Abel-Poisson kernel&§; . ;, defined as

Kp(z, x,) Z Z T e (€) enm (€,)

n=0m=-n Qnm

= Ki&P,j(EaEq) (365)

according to Eq. (2.24) with = 1,...,00. Now observe that the ellipsoidal kernels (3.65) natu-
rally can serve as scaling functiods of an ellipsoidal multiresolution representation on thedix
reference ellipsoid? , by identifying E2 andEib via setting

ag,bo ao,bo
(I)e'(mvmq) = Kf{P,j(gvé'q) (366)
withx, z, € an b~ While the sequence of half axis, . . ., uy, . . ., ux describes the different levels

of resolution, observe that the variable eccentrieiof the auxiliary eIIipsoidEgvb plays the role of a
shape parameter for the scaling functidris Choosing this shape parameter in an optimal way one
can achieve that the scaling functiogfsdepend only up to a minimal error on the geometric distance
of ¢ and¢,, with respect to the standard metric g, .
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Chapter 4

Reqgularization

As mentioned before one of the main applications of the spdilewavelet theory lies in theegu-
larization of inverse problems related to the sphere. In Earth’s gréfield studies regularization
usually concerns the downward-continuation of the gradéya, e.g., from a satellite orbit to the
Earth’s surface. Since the upward-continuation can bepedd by convolving the gravity function
with a rotational symmetric kernel, namely the (spheriéddel-Poisson kernel (2.48), and therefore
represents a compact operator, the inverse operator ivagivhere defined and unbounded. Given
a spherical wavelet transform one can construct out of ttatiomal symmetric wavelet functions and
the rotational symmetric Abel-Poisson kernel a family daatimnal symmetric regularization wavelets
to solve the inverse problem, see e.g., Freeden (1999)elellipsoidal case the upward-continuation
of a gravity potential from the reference ellipsdig, to an elllpsdef/—2 , (Eq. 2.8), withu, > b
again leads to an integral operator. However, in this caseltipsoidal Abel-Poisson kernel (2.24) is

not rotational symmetric anymore, which is expressed byjtiatient

wm(e)
Am(2)

according to Eq. (2.34) the quotieR/r)"*! within the spherical Abel-Poisson kernel (2.48) de-
pends only on the degree valueand not on the order values.

4.1 Sobolev Spaces

With Eqg. (2.58) we introduced an integral operakor with kernel (2.57) applied to a functiofi(x)

on the spher@%. The corresponding Fourier coefficients were defined with E260). When
moving from operators on the sphere to their ellipsoidal@anses, the essential difference is that the
coefficients for the ellipsoidal operators do no longer aidypend on the degree value but they
explicitly become functions of both degreeand ordem. Thus, an ellipsoidal integral operathF,
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with kernel

“(x, xq) Zanm ()

n=0 m=—n

*

Z Z (u)) Krm €nm (§) €nm (&) (4.1)

according to Eq. (3.1) witk, € Ea »» IS defined by the set of coefficients
knm With neNy and —n<m<n. 4.2)
The Fourier coefficients of the ellipsoidal convolutitli f (x) were defined in Eq. (3.8), i.e.,

(lcef)nm = knm fnm . (43)

Solving the equation

(K f)(®) = g(x) , (4.4)

whereing(x) is given andf () the unknown target function with € L2(Ez,b), is called avell-posed
problem, whenevek*® is bijective and the inverse operator is boundedefencg. However, it is a
well-known fact from functional analysis, that operatofthe above form areompacti.e., the image
of the unit ball ian(Egvb) underkC¢ is a compact subset (ﬁg(Eib). As an important consequence,
K¢ cannot possess a bounded inverse: Provided there existsddmboperatof/C¢)~!, the unit ball

in Lg(Eg,b) must be compact, which would prove thbg(Eib) has a finite basis. Althougk* is
injective in many cases, it follows from the non-existen€¢he bounded invers(elCe)—l, thatKe is
not surjective, more precisely, the image

ImK® = {K°f|f € La(E2,)} (4.5)

is not a proper subspace ﬁfz(IEib). In order to proof this statement we introduce the space of
functionsf € Ly(E2 ), Eq. (3.9), with

Z Z 2 (fam)? < (4.6)

n=0m=—n

and denote it byH(ICe;IEgvb). From Eq. (3.12) we know that < Lg(Egvb) is equivalent to the
condition

DY (fam)? <0 4.7)

n=0m=—n
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Since the coefficients,,,,, converge to zero for growing degree vahugt follows that the coefficients
fnm Of the functionsf € H(K¢; E?L,b) must converge very fast to zero in order to keep the left-hand
side of Eqg. (4.6), i.e., the norm

HfHH(ICC;IEib = J Z Z 2 (fom)? (4.8)

n=0 m=—n

finite. If we introduce a function

n=0m=—n

according to Eq. (3.9), we notice that the condition (4.7¥uilled, i.e., x € Ly(E2,), but
Kk ¢ H(ICE;E;,,), since the condition (4.6) fails. ConsequentH/(ICe,Ea, ) is a proper subspace
of LQ(EZJ,). Since the norm (4.8) is defined as weighted sum of Fouriefficisats, spaces of the
above form are calleBobolev space$-urthermore H (K¢; Ez,b) is naturally equipped with the inner
product

(f@)9®) ) ez ) Z Z 2 fam Gam (4.10)

n=0m=-n
for functions f, g € H(K%E2 ;).

After this short excursion into functional analysis, weuretto the study of ellipsoidal operators. As
we have seen above, solving the equation (4.4) is not a wekkgb problem, i.e., it igl-posed It
is well-known that solving ill-posed problems requiresutagization. Here, aegularizationof the
ill-posed problem(k¢)~! is defined as a countable family of linear operatgrssuch that4; is
bounded for allj € Ny and that it converges pointwise (&¢)~! onIm K¢, i.e.,

lim Ajg(x) = (K) ' g() (4.11)

Jj—00
for all g € Im K¢ in the Ly-sense.

For a particular choice df, it can be seen that we are now confronted with two types ofgrnamely
aregularization errorand adata error from the measurement. In general, an increasglefds to
a decrease of the regularization error whereas the dataircreases. The optimal level valyiaf
obtained by minimizing the sum of data and regularizatioorer

4.2 Ellipsoidal Wavelet Regularization

As mentioned before, the multi-resolution representapimvides a way to regularize ill-posed prob-
lems. In order to make this clear, fix an integral oper&ibrand a multi-resolution representation of
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Lz(Eib) with ellipsoidal scaling function®;(x, ) and ellipsoidal wavelet functions; (x, z,) ac-
cording to the Egs. (3.16) and (3.27) fpe Ny. In the sequel we directly assume that all scaling and
wavelet functions areotational symmetrias defined with the Eqgs. (3.52) and (3.54), which makes
the computations much more efficient, because only Leggraymomials have to be evaluated.

In analogy to the definition of Sobolev spacdﬁ(lCE;Eg,b), we introduce the subspace
H(K¢;[-1,1]) ¢ L*([-1,1]) of functions

k(x, x,) Z Z (2n+1) K, Po(€7€,) (4.12)

n=0m=-—n
fulfilling the condition
S>> (k) PR <0 (4.13)
n=0m=—n

Note, that we writel.?([—1, 1]) in order to indicate, that the argumeraf the Legendre polynomials
P, (t) is restricted to the interval-1, 1], cf. Eq. (2.62). Under these assumptions we defgelar-
ized scaling functionandregularized wavelet functiorféj(w, x,), and\f'j(a:, x,), respectively, via
the series expansions

(z mq Z Z ¢j;n enm (&) enm(gq) ) (4.14)

n=0m=—n

(z, z,) Z Z i enm(€) enm(€,) - (4.15)

n=0m=-—n

It is important to observe, that both regularization fumict are no longer rotational symmetric, since
their coefficients

aj;nm = (knm)_l ¢j;n 5 (416)
Jj;nm = (knm)_l wj;n (417)

now explicitely depend on the order.

Analogous to the Egs. (3.24) and (3.25) we define the leyetgularized smoothed signal
fim) = (®; * @; » f) () = P;f(x) (4.18)
as well as the levelj regularized detail signal

gi(@) = (U; » U x f) () = R;f(x) (4.19)
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of the signalf (x) with = € Eﬁ:i"t. An easy calculation shows
Pif(@) = K° Pif(x) = P; K°f () . (4.20)
R;f(x) = K* R; f(w) = R; K°f () . (4.21)
Let A; be recursively defined as
A f(x) =Pjif(z), (4.22)
Ajiif(@) = Aif (@) + Ry f () . (4.23)

Then we have under the consideration of the Egs. (3.40) addl (4

Jim Ay K9f(z) = lim Ajii9(z) = lim (P K f(z) + Z RKEf(
J
= Jim | Py f(@)+ 3 Rif(@)
Jj=y'

J
= lim. (fg (z) + Z gj(-’L’))

= f(x) . (4.24)
Comparing this result with Eq. (4.11) yields
f(@) = (K9)'g(@) = lm Asiig(@). (4.25)
Hence, the family4; with j = j, ..., J is a regularization ofiC¢)~!
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Chapter 5

Multi-Resolution Representation of
Bandlimited Signals

So far we studied non-bandlimited functions or signéls), i.e., their representation (3.9) in ellip-
soidal harmonics (2.11) means an infinite series expandiorihe sequel, however, we deal with
bandlimitedsignals.

5.1 Basic Settings

Let f(«) be abandlimitedsignal f («) defined as the finite sum

fz) = Z Z Jnm h%m(m) (5.1)

n=0 m=-—n

with € Ezzz"t and highest degree valué < co. According to Eq. (2.17) thén + 1 ellipsoidal

harmonicse,,,,, (€) of a specific degree valueand ordern = —n, ..., n constitute an orthonormal
basis of the finite dimensionalilbert spaceHarmn(IEib). Consequently, all ellipsoidal harmonics
enm (&) of degree values = 0,...,n' and ordenn = —n, ..., n establish an orthonormal basis of

the Hilbert space

i

Harmy,._ . (E2,) = €D Harm,(E2 ) (5.2)

n=0

with dimension

dim(Harmy_/(E2,)) = (n' +1)* = 7. (5.3)
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In addition, we define the space Ha{(ﬁii’(t) spanned by thén + 1 outer ellipsoidal harmonics

h (x) of the specific degree valueand ordemn = —n,...,n as well as the space
Harmy,_ (B2 @ Harm, (B> (5.4)
of all outer ellipsoidal harmonic?,, (x) of the degree values = 0,...,n’ and orderm =

—n,...,n. If we assume, that the potentiél(x) is bandlimited i.e. U ¢ Harnh,___,n/(Eif,Xt),

we can rewrite Eg. (2.10) as

:Z Z Unm hfzm(w)

n=0 m=-—n
=h(z)'u (5.5)
with = € EZiZXt. Hereinu andh(x) denoten x 1 vectors given by
u = [uoo, UL, 15 vy Up! ]T , (5.6)
h(@) = [ hiy(@), b _y(@). ..., by (@) ]" (5.7
the vectorh(x) was already defined in Eq. (3.19).

Thereproducing kernel

() Qi (GE)
rep (w mq Z Z l_)) (Q) enm (&) enm(gq) (5.8)
n=0 m=—n e nm
of the Hilbert space Harm__ .,/ (IE2 eXt) has to fulfill the conditions<f,, € Harrrb7___,n/(Ei’,§Xt) and
fle) = (K * f),(@); (5.9)

see e.g. Moritz (1980). Recall, that fot — oo the reproducing kerndk,, equals theAbel-Poisson
—=2,ext

kernel K§p as defined in Eq. (2.24) far € £, andz, € Ea b

As mentioned before the ellipsoidal harmonics are a venallg system of base functions for mod-
eling the geopotential globally. However, for regional ocdl representations we would prefer a
system of base functions which allows the computatio® 6f) mainly from signal values given in
the vicinity of P(x), i.e. which is characterized by the ability to localize. A®wn in the Figures
4.1 and 4.2 ellipsoidal scaling functions are examplesudchkind of localizing functions.

In the following we study Eq. (3.23) fogr= J + 1 and ;11 =: U 41 in more detail. From Eq. (3.7)
we obtain analogously to Eqg. (3.30)

Uspr(z) = (@41 * @y x U ) () Z Z (Gs+15nm)* Unm () (5.10)

n=0 m=—n
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for x € Eifft. As mentioned before we want to restrict our investigatitmbandlimited rotational
symmetric scaling functions according to (3.58) and (3.81)s, Eq. (5.10) reduces to

niyon

Urpr(@) = (g1 * Sy + U ) @) =D > ($sr1m)? tnm by (@) | (5.11)

n=0 m=-—n

whereinn/, ;= 277! — 1. Next we define the bandlimited kernel
Os1(x,xy) = ( Py * Py ), (x,2,)

"I+1 n

=30 Orirn W (@) My () (5.12)

n=0 m=-n

with Legendre coefficients

9J+1;n = (¢J+1;n)2 (513)
and rewrite Eqg. (5.11) as

"J+1 n

Ursi(@) = (O * U ) (@) =D > Oritin tm hby () - (5.14)

n=0 m=-—n

Defining with7i ;1 = (n/,; +1)? = 22/*? them;,; x 1 vectors

u = [uoo, UL—15 -5 Unl ot ]T, (5.15)
h(@) = [ hiy(@), b _y(@), ..., bE, o (@)]" (5.16)
as well as thér ;1 x 7y positive definite diagonal matrix
B =diag011;0, 071151, 05411, 05410, 054152, -5 Oy, ) (5.17)
we rewrite Eq. (5.14) as
Urri(z) = (©41 % U ) (2) = h(x) By u. (5.18)

In the context of Eq. (3.15) we argued that the infinite setasfdbfunctionds e(a: mq) with z, z, €
(l’b spans the spacbg(IEm ). Consequently, the finite sé&f®(x, x),) with x € E 2 andaxy, € Ea,

spans the space Hagm ./ ( Z’f‘t) i.e.,
Harmy, . (Eo5") = spa( K¢(@, @y) |z € Bop™, @y € B2y, k=1,...,N} (5.19)

with N > 7. Based on this insight we conclude, that the convolufiéh;; x U ) () isa member

—2,ext
of the space Harm“’n] (E; 'Zx ) and can be modeled as a series expansion

Ny

Uppr(@) = (©01 + U ) (@) = dyg O11(m,x) (5.20)
k=1
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in terms of ellipsoidal base functior@Hl(x,a:g); the level-J scaling cofficientsi;; are linked

to the N; computation pointsP(a:g) with £k = 1,..., N; on the reference eIIipsoiEib. Note

that the right-hand side of Eq. (5.20) also can be seen ascaetimation of the convolution
(®J+1 * U )w(a:) as defined in Eg. (3.3). Analogously to Eq. (5.5) we rewrite E§.20) as
the scalar product

Ujii(z) =0,11(x)" dy (5.21)

—2,ext

withz € £, of the twoN; x 1 vectors

dy=[ds, dya, .., dyn, |7, (5.22)

041(2) = [Osi(z,2]), Oy, 2f), ..., Opa(zxf)]" . (5.23)
According to Eqg. (3.17) the expression

01z, xj) = h(z])" Byi1 h() (5.24)

holds for each component of the vecér, 1 (). Hence, we obtain from the Egs. (5.23) and (5.24)

01(x) = H Byy1 h(z) , (5.25)
wherein
H = [h(z]), h(z]), ..., h(z%,)]" (5.26)

means anV; x my41 matrix. As mentioned before the;; components of the vectdi(x), Eq.

(5.16), establish a complete basis of the space I(—)[a.r’m]H(EziZXt). If for N; > my,1 the matrix

H is of full column rank, i.e. ranld = rank(H B ;1) = 741, the altogethetV; components
—=2,ext

Oy+1(z, x) with k = 1,..., N, of the vectord ;1 (z) span the space Haﬁmmim(E&b ), too,
as required in EqQ. (5.19). In this case the system

Sn,(Bay) ={m{ € B2, |k =1,...,N;} (5.27)

of pointsP(a:g) on the reference eIIipsoﬂEib is calledadmissible If even the equalityV; = 7541
holds, the matrixt is regular andSy, (E?L,b) is calledfundamentalsee Freeden et al. (1998). In the
following we always assume that point systefi)s (E?L,b) such asSy;, (E?L,b) are at least admissible.

Note, that the series expansion (5.20) means the desiraderpart to the representation (5.5) in
terms of ellipsoidal harmonics; the level scaling coefficientsl;;, with £ = 1,..., N; play the
role of the ellipsoidal harmonic coefficients,,,, forn = 0, ... ,n{]H andm = —n,...,n collected
inthem ;41 x 1 vectoru, Eq. (5.15). In order to find a relation between the two setpefficients
we insert Eq. (5.25) into Eq. (5.21) and obtain 6= U4

U(x) =h(x)' By, H dy . (5.28)
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Comparing the right-hand sides of the Egs. (5.18) and (Gt#8)lesired relation
u=H"d; (5.29)

follows. Note, that from this result th@; ., ellipsoidal harmonic coefficients,,,, with n =
0,...,n,,, andm = —n, ... n are uniquely computable from th€; level-.J scaling coefficients
djr With k =1,..., N;. However, only in case of a fundamental point system, i.eMg = 711
the reverse does also hold. Before we procede with the catigutof the detail signals, we want to
emphasize the main difference between the representdtasignal in terms of ellipsoidal harmonics
and its decompoasition into detail signals by means of alligedl wavelets:

— The ellipsoidal harmonic coefficients,,,,, areglobal parametersbecause they do not depend on
a spatial position. On the other hand these coefficientslaeacterized by aoptimal frequency
localization because:,,,, is directly related to the frequency value

— The scaling coefficientd ;;,, however, argooint parametersbecause they are a function of the
position vectora:g with mg € E?L,b. The frequency localization is worse than in the ellipsbida
harmonic case, because each coefficient is related to eefregiandsB;, defined in Eq. (3.62).

The items listed before are the consequences of the saeail@ertainty principle(Mertins 1999),
originally introduced in the context of quantum mechanitfie necessity of the gravity field rep-
resentation in point parameters was already identified sswlissed more than 30 years ago (Heitz
1975).

Next, we introduce the wavelet functidin; (x, mg) represented analogously to Eqg. (5.24) as
Uy(z,z)) =hz))T Cyh(x). (5.30)
In opposite to the matriB ;. we assume now that they; x m ;. diagonal matrix
Cy = diag 0, Y1, v, Yo Va5 g, ) (5.31)

might be just positive semidefinite since the Legendre aeffts: ;. fulfill the condition

ZZ)J;n 1ZJ;n = \/(¢J+1;n)2 - (¢J;n)2
:\/HJ_H;”—QJ;” A n:O,...,anl (532)

according to the Eqgs. (3.32) and (5.13). It follows from EQ3.3Q) that the convolution
(¥; + f),(z) has to be evaluated to calculate the levélwavelet coefficients:; (). Thus, it
follows analogously to Eq. (5.18)

ci@)= (U, +xU) (&) =h(z)'Csu. (5.33)
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Substituting the result (5.29) far yields

=1, (x)"d, (5.34)

wherein

P(x) =[Oz, x]), Vi(xaf), ..., Oizx,)]" . (5.35)

means anV; x 1 vector collecting the wavelet functions, (z, =) as defined in Eq. (5.30). Thus,
if the coefficient vectorl; is known once, it can be used to calculate both, the ellipddidrmonic
coefficientsu,,,, according to Eq. (5.29) and any convolution of the functidtx) with kernel
functions

"f]+1 n
Ké(@ap) =) Y ku (@) hop () (5.36)
n=0 m=-n
with x € EZ’,ZXt andxy € Sy, (Ez,b) fulfilling the condition
kn, >0 A4 n=0,...,n5,, (5.37)

for the Legendre coefficients,. As seen before the ellipsoidal wavelet functidp means an exam-
ple for such a kernek®. All ellipsoidal scaling functiongb; with ;7 < J and all ellipsoidal wavelet
functionsV; with j < J as well as their dual¥; are further examples.

5.2 Decomposition and Reconstruction

Based on the definition (5.32) of an ellipsoidal wavelet fiorcthe two main steps to create a multi-
resolution representation of a given band-limited inpghal f(x) can be outlined as follows:

1. Analysis The (primal) ellipsoidal wavelet functio ;(x, z;) with j € {j’,...,J} decomposes
the input signalf (x) into its wavelet coefficients

ci(@) = (U x ) (@) =) d; (5.38)
with the N; x 1 vector

¥(@) = [ Uz, 2]), U(z,2]), ..., Uz, )]" (5.39)
of wavelet functions;[/j(x,a:i) and theN; x 1 vector
]T

dj = [dj1, dja, ..., djn, (5.40)
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of the level-; scaling coefficientsl; ; with k = 1,...,N; and N; > 741 = (nf; + 1)%
As mentioned before we assume that the position veatgrare related to théV; points of the
admissible systemyy (Ez,b). The decomposition of the input signal into wavelet coedfits via
Eq. (5.38) is also known anulti-resolution analysigMRA).

2. SynthesisThe dual ellipsoidal wavelet functioﬁj(a:,xk) performs the reconstruction

J

fl@) = fp(x)+ ) gi(x) (5.41)

.

J=J

by means of théevel-;’ approximation

fi@)= (0 * f), (@) (5.42)
and thelevel-; detail signals
gj(@) = () * ¢ ), (@) (5.43)
with j = j/,...,J < oo. The ellipsoidal kernel functio®; (x, x;) is given as
"o,
Op(@.xk) =) Y Ojin hpn () B () (5.44)

n=0 m=—n

according to Eq. (5.12).

In the sequel we describe at first the decomposition pro@ssy(sis) in more detail by identifying
the input signalf (x) with the gravitational potentidl/(x) or the disturbing potentidl’(x).

Today geopotential models are eittsatellite-only modelsnostly based on measurements from the
modern gravity space missions, namely the CHAllenging Béitellite Payload (CHAMP), the Grav-
ity Recovery And Climate Experiment (GRACE) as well as thev8y field and steady-state Ocean
Circulation Explorer (GOCE) or so-callesbmbined modej$or more details concerning these grav-
ity missions see, e.g. Reigber et al. (2000, 2005). The nghfgsolution Earth Gravity Model 2007
(EGMQ7), for instance, is computed until degree- 2160 from a combination of satellite and surface
data; see e.g., Pavlis et al. (2005). Nowadays, besidedabsical procedures, alternative methods
such as thenergy balance approaabr the Fredholm integral approaclisee e.g., Mayer-Gurr et al.
2005, 2006) are used to derive global and regional geopatenbdels.

The energy balance approach and its application to LowhEarbiting (LEO) satellites goes back
to the 60’s (Bjerhammer 1967) and was rediscovered by JEI@%9), van Loon and Kusche (2005),
Ilk and Locher (2005) and others. An extensive overview aliaa topic is presented by Han (2003)
and Han et al. (2006).
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5.2.1 Initial Step

As the result of the energy balance approach we assume mitilaéstep of the decomposition process
that geopotential measuremebitér,) = U1 (xp) are given along the orbit of a LEO satellite.

According to Eqg. (5.21) the observation equation reads
Ulzp) = 0J+1($p)T dj. (5.45)

The numerical value for the highest resolution level, J.e- 1 depends on the maximum degreg.x
we want to solve for. Thus, it follows + 1 > logy(nmax + 1). For the CHAMP case, e.g., we may
choosen,.x = 120. Consequently, the valugé+ 1 = 7 follows.

Furthermore, as mentioned in the context of Eq. (5.26) thebax N, of points P(z]) with

k = 1,...,Ny of the level-J admissible systernSNJ(E?L,b), Eq. (5.27), is restricted t&v; >
2272 = 7 4. In order to estimate the unknowN; x 1 vectord, of scaling coefficientsl,
with k = 1,..., N; from Eq. (5.45), we need altogetherdiscrete observation poini3(x,) with
p=1,...,PandP > N;. Howevergeodetic measuremenjéx,) =: y,, are always erroneous, i.e.
U(xp) = y(zp) + e(zp) or U, = y, + €,. Hereine, := e(x,,) denotes the measurement error. Under
these assumptions Eqg. (5.45) can be rewritten asltkervation equation

yp+ep=07,1.,d; (5.46)

for a single observatiop,; herein we se ;i (x,) =: 6;11.,. Note, that usually the observations
are reduced by so-called background models, i.e., all ttoenvations which are a priori known are
subtracted from the original observations. This way, theeokationsy, have to be interpreted as
residual observationssee e.g. Schmidt et al. (2006, 2007a).

The procedure described here allows the combination adrdift kinds of measurements, e.g., geopo-
tential values and gravity anomalies. In such a combinatas® additional operators, like the Stokes
operator, have probably to be considered in the ve#jqr. ,. Introducing theP x 1 vectors

y="[v, va - up ], (5.47)
e= [61, €, ..., ep]T (5.48)
of the observations and the measurement errors, resggctive P x N; coefficient matrix
Aj=[0s11. 05512, ..., 041 | (5.49)
and theP x P covariance matriX)(y) = 3, of the observations, the linear model
y+e=A;d; with Dy)=%,=0,V,' (5.50)

is established; see e.g. Koch (1999). Her@nand Vv, are denoted as the variance factor and the
weight matrix, which is assumed to be positive definite. Agatio the matrixH, Eq. (5.26), and
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depending on the distribution of the observation sites tlagrim A ; is of rankA; < 7544, i.€.

a rank deficiency of at leasV; — m ;41 exists. Besides the rank deficiency problem the resulting
normal equation system might lleconditioned If we, for instance, want to compute the gravity
field at the Earth’s surface just from satellite dategularization proceduretiave generally to be
applied. Solution strategies for these problems have bleeady discussed in section 4.2. However,
in the following we want to pursue a different way.

Let us assume that according to Eq. (5.5) a geopotential imode

Uo(x) = i Zn: Unm;0 h%m(a:) = h(a’)TUO (5.51)

n=0 m=—n

. —2,ext . . . . . .
with x € Eaf in terms of outer harmonics exists. The given series coefftsit,,,.o are collected
in them x 1 vector

T
uo = [ U000, U1,—150, - -5 Un/ 0 | (5.52)

with m = (n’ + 1)2. Now we interpreteu, and the associated covariance matfixug) as prior
information for the expectation vectd?(u) = p, and the covariance matrik(u) = 3, of the
vectoru collecting the ellipsoidal series coefficients,, forn = 0,...,n’ andm = —n,...,n and
introduce the additional linear model

W, +e,=Ad; with D(m,) =023, (5.53)

following Eq. (5.29) withH” =: A. In Eq. (5.53)e, is defined as the error vector of the prior
information and>2 the corresponding unknown variance factor. The combinaifcthe two models
(5.50) and (5.53) gives an extended linear model with unkneariance componentsg and o2,

namely
;i + :u - [‘:"] d; with D( liu] ) = 2 [Vgl g] + o2 g zou (5.54)
The method of estimating variance components (e.g. Kod®9)l@elds the solution
dy=(AJV, A+ XATS T A) (AT V,y + 20 ATS M) (5.55)
with the covariance matrix
D(dy) = o2 (ATV, A;+ X ATE 1 A) (5.56)

A= 05/03 might be interpreted as a regularization parameter. Niog( t),. means a symmetrical
reflexive generalized inverse.

Other solution strategies can be found in the literature;esg. Freeden and Michel (2004) or Schmidt
et al. (2007a). In the following we assume that the veatprand its covariance matrik(d;) are
given and mean the starting point of the multi-resolutigoresentation.
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5.2.2 Pyramid Step

In the so-called pyramid step we compute the levelesults from the level(j + 1) results for

j =4'...,J — 1. To be more specific, theJ — ;)" pyramid step consists mainly of the linear
equations
dj:dej+1:Pij+1...PJ_ldJ::Pj7JdJ, (557)
c;=Q;d;=Q; Pj;d;, (5.58)
whereinP;, P;.,, ..., P;_; arelow-pass filter matricesin particularP; is anN; x N;,1 ma-

trix, which transforms theV;_; x 1 scaling coefficient vectod; of level j + 1 into the V; x 1
scaling coefficient vectodi; of level j. Next, the vectow; is used to calculate th&; x 1 level—j
wavelet coefficient vectoe; = (c; ;) of wavelet coefficients; ,, £ = 1,..., N; according to Eq.
(5.58) using theV; x N; band-pass filter matribQ;. As mentioned in the context of Eq. (5.36)
the convolution( ¥; « U ) (x) can be evaluated also by means of the scaling vetiaralculated
(estimated) within the initial step. This procedure wouddida the drawback that in each pyramid step
the same admissible systesfy, (IEib) would be used. But as a matter of fact coarser structures are
modelable by less terms than finer structures. Since ustralynequality N; < N, holds, the

N; x Nj41 transformation matrixP; in Eq. (5.57) effects a downsampling process as the key point
of thepyramid algorithmvisualized in Fig. 5.1 by means of a filter bank scheme.

a) Filter bank of the decomposition process

y > dy Sdig S Sdyy Sd S S dy
l l il ! il
Cj Cj_1 Cjt1 & Cj/

b) Filter bank of the reconstruction process

Cj Cj_1 Cjt+1 Cj Cj/
! ! ! ! !
9; + 9,1+ -+ g + g5 + 0+ gy

Figure 5.1: Filter banks of the multi-resolution represéioh using wavelets. %’ means a symbol

for downsampling, e.qg., from levgl+ 1 to level j by a factorN;/N;.
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For the derivation of the matri®; we start from the Egs. (5.20) and (5.21), get: j and obtain

(41 % U), (@) = Oj41(mp)" d
Recall, that theV; x 1 scaling vectof; 1(x,) =: 0,1, ,,n, is computed by the level(j +1) kernel
function®;,, and related to the admissible point syst&m (Egh) defined in Eq. (5.27). Due to the
condition (5.37) it follows in addition
(©jr1 % U), (xp) = 0j11(2p)" djpa
=07 1Ny D1 - (5.60)

The N; 1 x 1 vectorf;,1(x,) =: 0;11;p.n,,, is in fact also computed by the leve(j + 1) kernel
function ©;,4, but in opposite to Eq. (5.59) related to the admissible qosrys;temSNjH(E?L,b).
Equating the right-hand sides of the Eqgs. (5.59) and (5t&f¥efore yields

03T+1;p;Nj dj = 93T+1;p;Nj+1 dji1 - (5.61)

Note, that due to condition (5.37) the levélj + 1) kernel function®;,, can be replaced by the

,ext

reproducing kerneK¢, . of the space Harm___,ngﬂ(_ib ) as defined in Eq. (5.8).

rep

Next, we identify the vectoe,, with x,, € Ei:i"t one after another with the elements of the admissible
point systemSy; (IEz’b). Hence, we obtain the linear equation system

T

[0j110;5 Ojr128;, -5 Ojpivgn; | dy

T
= [ 04118015 04128, -5 Oj41N;iNgy | Dt (5.62)

which can be rewritten as

Aj dj = Bj+1 dj+1 (5.63)
by introducing theV; x N; matrix

T

Aj=[0j11.1.n,, Oj112n,, -, Oj41.8,:N, | (5.64)

with rankAj =Njy1 = 22i+2 gnd thENj X Nj+1 matrix
T
Bji1 = [ 01158000 04128400 -5 QNN |- (5.65)

Hence, the left-hand side multiplication of Eq. (5.63) wittle matrixA?, i.e.

ATAjd;j=A]Bj1dj1, (5.66)
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yields a solution
dj = (A]Aj})s AT Bji1djq (5.67)

wherein (A7 A;);; means a symmetrical reflexive generalized inverse of theimat! A;. The
comparison of the result (5.67) with Eq. (5.57) defines thepass filter matrixP; as

Pj:=(ATAj) ATBj. . (5.68)

Note, that this result is not unique, because any genedaiiimerse(AjTAj)— would solve the linear
system (5.66) for the coefficient vectdy (Koch 1999). For numerical investigations we may use the
pseudoinverséA'fAj)Jf, which is unique. In order to avoid the matrix calculatiorsiged before
other strategies can be applied to compute the transfamgi.57) of the scaling coefficients; see
e.g. Freeden (1999) and Schmidt et al. (2007a).

Due to the condition (5.37) Eq. (5.59) can be rewritter{ &1 » U ) () =: 6], 1.,.y, dy, i.€.
the convolution is computed by the scaling coefficient vedtpof highest resolution level. Thus,
the low-pass filter matrixP;. ;, introduced in Eq. (5.57), can be computed directly by sgjvihe
linear equation system ; d; = B; d; with the N; x N; matrix
]T

BJ = [GJ;I;Np 0J;2;NJ7 ey 0J;NJ;NJ+1 (569)

analog to the procedure described before. Instead of thei@ol(5.68) we obtainP; ; :=
(A;fAj);S A;FBJ. A construction ofP;. ; by evaluating the matrix produc®; P, ... Pj_;
according to Eq. (5.57) is therefore not necessary.
The N; x N; band-pass filter matrig ;, defined in Eq. (5.58), follows from Eq. (5.38) and reads
T
QJ = [wjglv '%’;27 LR wj;Nj ]

with o (z,) =: ¢, ,andp =1,..., Nj.

(5.70)

The different steps of the decomposition process areiiditedt in the top part of the filter bank scheme
shown in Fig. 5.1. Since all computations are performed fiydr equation systems thav of error
propagationcan be applied easily in order to calculate the correspgneiwariance matrices; e.g. the
covariance matrix)(c;) of the level-j wavelet coefficient vectoe; reads under the consideration
of the right-hand side of Eq. (5.57)

D(c;) = Q; D(d;) Q7
=Q; P;;D(d)) P]; Q] . (5.71)

That way, tests of hypothesis can be applied in order to ctieckavelet coefficients for significance.
This procedure means a kind @éta compressiobased on statistics.
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5.2.3 Reconstruction Step

In the reconstruction step we start from the wavelet coefficvectore; of level j € {;',...,J} and
compute in accordance with Eq. (5.43) the x 1 level- detail signal vectorg; from the matrix
equation

gj = Kj Cj . (572)
Herein theM x N; matrix K; works as éand-pass filteand has to be computed from the dual

ellipsoidal wavelet functior'iflj as will be demonstrated in the following. The elemeptsc,) of the

vectorg; are related to the point®(z,) with z, € EZ:E“ andg = 1,..., M. According to Eq.

(5.41) the multi-resolution representation reads
J
f=r+> g5, (5.73)
J=j’

wherein f means thél/ x 1 vector offiltered or predictedsignal valuesf(x,) not necessarily being
the geopotential valueS (z,). Since these values might also be functionald/ofve keep in the
following the letterf. Thus, the components of the vectpy = (f;(x,)) are calculated from

fi(xg) = 0j(xq)" djr (5.74)

according to Eq. (5.59) and mean the lev¢lapproximation of the signal valuggx,). The N, x 1
vectorf:(x,) is given by Eq. (5.23) replacing + 1 by j'.

In order to compute thé/ x N; matrix K ;, defined in Eq. (5.72), we subsitute thg x 1 wavelet
coefficient vectorc; for the N x 1 observation vectoy on the left-hand side of the linear model
(5.50). Thus, it follows withd; =: t; ande = 0

C; = Aj tj s (575)
wherein theN; x N; matrix
Aj=[041,1, Oj11:2, ..., 041N, ]T (5.76)

with rankA; = 7, is defined analogously to Eq. (5.49). Recall that; = (n/; +1)* = 2% 2
holds. Equation (5.75) can be solved by

t; = (A]Aj) Al ¢;, (5.77)
wherein(AjTAj);S means a symmetrical reflexive generalized inverse of theixnag Aj.

Analog to the matrb@;, defined in Eqg. (5.70), we introduce thé x IN; matrix

@j = [’(Zj;la /;Z)j;Za EERE) /;Z)j;M ]T . (578)
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The M vectorsi,(x,) =: 4;., With ¢ = 1,..., M are assembled by the dual ellipsoidal wavelet
function valuesy; (x4, x;) with x; € Sy, (Eib). Due to the condition (5.37) we substitufg; for
A; in Eq. (5.75) and obtain with the result (5.77)

9,=Q;t=Q; (AJA)); AT ¢; . (5.79)
The comparison of the Egs. (5.72) and (5.79) defines the xnAtjias
K;:=Q; (ATA)); AT (5.80)

As in Eqg. (5.68) we may substitute the pseudoinvér;ék%Aj)Jr in Eq. (5.80) for the symmetrical
reflexive generalized invers{etlfAj);S for numerical computations.

The covariance matri¥)(g;) of the detail signal vectag; follows from Eq. (5.72) under the consid-
eration of Eq. (5.71) by applying the law of error propagatiioe.

D(g;) = K; D(c;) K]

=K;Q; Pj; D(d;) P]; Q] K] . (5.81)
The generalization of this result gives the covariance imatr
Clg;.91) = K; Q; Pj; D(dy) Pt ; Qi Kj; (5.82)
between two detail signal vectogs andg;, with j, k = j',..., J.

As in the decomposition case the different steps of the igoaction process (Egs. (5.72) and (5.73))
can be illustrated by synthesis filter banks shown in Fig. 4-3b.

In the decomposition process, Eq. (5.5P);_; is the low-pass filter matrix of largest size, namely
Nj_1 x Ny. According to Eg. (5.68) the application d?;_; requires the computation of the
symmetrical reflexive generalized inveréd’ ; Ay 1), or any other generalized inverse. In the
reconstruction process, however, the mafikix of highest levelJ is of size M x Nj with N; >
Nj_1. As can be seen from Eq. (5.80) we have to compute the synualeteflexive generalized
inverse(A” A ;) or any other generalized inverse of si¥g x N;. Thus, the reconstruction needs
more computational efforts and storage space than the gexsition. In order to avoid the calculation
of (AT A ), but to perform the multi-resolution representation (58 may prefer the ellipsoidal
multi-resolution representation of the first kind as exdal in subsection 3.2.2.

In the latter case we replace Eq. (5.72) by
g;=1L;d; (5.83)

with j = j/,...,J. TheM x N; matrix L; works as @&and-pass filteand is computed according to
Eq. (3.44) by the ellipsoidal wavelet functidky (x,, ;) with ; € Sy, (EZJ,) andg =1,..., M.
To be more specific we obtain analogously to Eq. (5.70)

Lj = [/l:bj;la /l/)j;27 ceey /l/)j;]\/f

1" (5.84)
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with 4, (x,) =: ;. ,andg = 1,..., M. The covariance matrix (5.82) reads now
Clg;.9x) = Lj Pjy D(dg) Pi; L. . (5.85)

The main advantage of this second approach is the efficienpotation of the detail signal vectors.
On the other hand the analysis step is reduced to the conguutdtthe vectorsi; of scaling coeffi-
cients according to the Eq. (5.5Data compression techniquase usually applied to wavelet coef-
ficients, because these quantities express the band-gassdyeof the data with respect to the spatial
position. Since the scaling coefficients reflect the comadng low-pass behavior, data compression
techniques applied to these values will not be as effedtiaa tn the case of wavelet coefficients.

5.3 Numerical Example

The concept presented in the last subsection shall now Bedpp a simulated global data set based
on the EGM 96 gravity model. We choose a reference eIIipE@&%O with a semi-minor axi$, =
6356.75192 km and an absolute eccentricity= 521.85358 km. Hence, the semi-major axis is given
asap = 6378.13657 km. We first compute disturbing potential valugge) =: T'(x) up to degree
n = 63 from EGM 96 on a standard spherical longitude-latitude gtidatellite altitudes randomly
distributed between 450 km and 500 km, i.e. the veatas defined by Eq. (2.36). Furthermore,
we consider additional noise for the disturbing potentalues with a prior standard deviation of
0.8 m? /32. Next, we transform the data to a Jacobian ellipsoidal doatd system, i.e. we solve
the components of the vectar as defined in Eq. (2.1) for the spheriodal coordinate$ andu;

cf. Grafarend et al. (1999). The altogether= 12960 observationsl'(x,) withp = 1,..., P,
shown in Fig. 5.2 neglecting the altitude variations, arllected in theP x 1 observation vector
y of the linear model (5.50) and mean the global input signdhefmulti-resolution representation.
A diagonal weight matrix/,, = (v,.,) with purely latitude-dependent elements, = cos ¢, was
chosen, whereim, is the spheroidal latitude of the observation pdiite,,).

In order to construct a multi-resolution representatiothefgiven disturbing potential data based on
the Blackman scaling and wavelet functions (cf. Egs. (3t693.61)) we sel/ = 5 (see Fig. 3.2) and
estimate the vectals = (ds ;) from the model (5.50). To be more specific, the coefficielgtg with

k =1,..., N5 are in this example related to a leveReuter gridconsisting ofN; = 5180 points
P(z3) on the reference eIIipsoiEiO,bO. Figure 5.3 shows, for instance, a level-3 Reuter grid with
altogetherNs; = 317 points. Note, that Reuter grids are non-hierarchical buidkstributed point
systems, i.e. the corresponding integration weights atepgendent on the position. The x N5
coefficient matrixAs, defined in Eq. (5.49) is of rankg = 4096, i.e. a rank deficiency of =

N5 — g = 184 exists.

Figure 5.4 displays exemplarily the estimated levelavelet coefficients; ;. collected in theVs x 1
vectorcs computed by Eq. (5.58). The related estimated covariandexmis calculated from Eq.
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spheroidal latitude

spheroidal longitude

| — ; I —
-8 -4 0 4 8
[ 100 m?/s?]

Figure 5.2: Observed disturbing potential dataPin= 12960 grid pointsP(x,) withp = 1,..., P
at satellite altitude. Note, that due to the reason of vizatbn the altitude variations are neglected
in this figure.

(5.71) after replacing the variance facttﬁ by its estimation

~T ~
, e Pye

0= —— 5.86

%= e (5.86)
wherein

e=Asds—y (5.87)

means the® x 1 vector of the residuals.

The histogram in Fig. 5.5 depicts clearly that a large nundfdevel-5 wavelet coefficients is nu-
merically close to zero. A test of significance proved that= 3001 coefficients are statistically
negligible. The data compression rate

Rj = le/Nj (588)

of level ; amounts forj = 5 thereforexs = 58 %. These results and the corresponding values for the
other levelgj are listed in Table 5.1. Various data compression or watetesholding techniques are
treated in detall, e.g., by Ogden (1997).

Fig. 5.6 shows the altogether six detail signgjéx) according to Eq. (5.72) with’ = 0 on the
reference eIIipsoicEfLOJ,O as the building blocks of the multi-resolution represeaatabf the input
signal shown in Fig. 5.2. Note, that in this example the moitx,), introduced in the context of
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Figure 5.3: LeveB Reuter grid withNs = 317 points P(z;) andk = 1,..., Ns.

spheroidal latitude

-180 -120 -60 0 60 120 180
spheroidal longitude

[ — I I — ]
-8 -4 0 4 8
[ 100 m?%/s?]

Figure 5.4: Estimated levél-wavelet coefficientsc; , defined on a level- Reuter grid with
k=1,...,N5 = 5180. Note, that these discrete values were interpolated foialization.

Eq. (5.72), are identified with the observation sifgsc,), i.e. M = N = 12960. Whereas Table 5.1
shows some statistics for the wavelet coefficients TablgEegents the corresponding values for the
detail signals. The estimated standard deviati(is ) are computed from the diagonal elements of
the covariance matrix (5.81) substituting again the estima?g for the variance factoarg.

As can be seen from Eq. (5.73) the sum of the six detail sigeetiovsg ; of the levels; = 0,...,5
yields an approximation of the disturbing potential on tbference eIIipsoidEgo,bO, since the vector
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300 4 level j=5

-0.8 -0.4 -0.0 0.4 0.8
coefficient value

Figure 5.5: Histogram of the estimated legelvavelet coefficients: . Almost60 % of them are
statistically non-significant.

levelj | N; a(cjk) n; ;i [%0]
5 5180 | 0.035-0.043 3001 58

4 1290 | =~ 0.0049 | 45 4
3 317 | = 0.0013 0 0
2 77 ~ 0.0005 0 0
1 20 ~ 0.0002 0 0
0 6 ~ 0.0002 6 100
Table 5.1: NumbersV; of wavelet coefficients; ;. of the levels; = 0,...,5, estimated standard

deviationsz (¢; ;) and results for the test of significanee; = number of non-significant coefficients,
kj = data compression rate.

fo reduces to

fo=ny1, (5.89)

whereinzi, means the estimator of the mean value of the observationstloweellipsoid andl =
[1,1, ..., 1]7 denotes ad/ x 1 vector. Figure 5.7 shows the elements of Mex 1 vectorf as the
output signal of the multi-resolution representation. éJdhat these results consider all coefficients,
even those which were downgraded as non-significant by #tistgtal test mentioned before.
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level j M (g5.k) n; Kj (%]
5 12960| 2.61 —3.00, 6306 49

4 12960 ~ 0.39 421 4

3 12960 =~ 0.11 41 0.4
2 12960 =~ 0.04 4 0.03
1 12960 ~ 0.02 5 0.04
0 12960| ~ 0.02 | 12960, 100

Table 5.2: Numbers of detail signal valuggs, of the levels; = 0,...,5, estimated standard de-
viations5(g; ,) in [m?/s?] and results for the test of significance; = number of non-significant
values,s; = data compression rate.

-180 -120 -60 0 60 120 180 -180 -120 -60

0
T— — T —T——
0 2 4

——— T
-0.0004 -0.0002 0.0000  0.0002 0.0004 -4 -2

-1.4 -0.7 0.0 0.7 1.4 -1.2 -0.6 0.0 0.6 1.2
[ 100 m?%/s? ] [ 100 m?/s?]

Figure 5.6: Detail signalg; of levelsj = 0, ...,5 at the Earth’s surface. The higher the level value
the finer the structures of the details. Each detail signalne@ band-pass filtered version of the input
signal shown in Fig. 5.2.
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spheroidal latitude

-180 -120 -60 0 60 120 180
spheroidal longitude

e — ; ———
-10.4 -5.2 0.0 5.2 10.4
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Figure 5.7: Disturbing potential valueg(:cq) at the Earth’s surface in point®(x,) with
g=1,...,M = N, collected in theM/ x 1 output signal vectoyf.
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Chapter 6

Multi-Resolution Representation of
Spatio-Temporal Signals

Mass redistributions within and between various compaeitthe Earth system cause temporal
variations of the Earth’s gravity field which have been cmmndiusly observed by the GRACE satellite
mission since April 2002. As mentioned before in satellitavily recovery problems the global
gravity field of the Earth is traditionally modeled as a sjg@rharmonic expansion. Furthermore,
spatio-temporal gravity fields from GRACE are usually cobepufor fixed time intervals, like one
month or one week; see e.g. Tapley et al. (2004).

6.1 Tensor Product Approach

As described in the previous sections the multi-resolutepresentation based on ellipsoidal scaling
and wavelet functions means an appropriate method for rimgpisle spatial structures of the Earth’s
gravity field. For considering the temporal variations df tiravity field within the multi-resolution
representation we rewrite Eq. (5.41) as

J
fl@,t) = fr(m )+ D gjlet)  with  j €N (6.1)
=3’
whereint means the time. According to Eqg. (3.25) each leyvetletail signal is computable from
gj(@.t) = () % (1) ), (@) (6.2)

by means of the level; wavelet coefficients

Cj(w’t) = (\Ijj * f(-,t) )w(w) (6.3)
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From the Egs. (6.2) and (6.3) in combination with the Figiddsand 3.2 we expect that different de-
tail signals would be more sensitive to particular inpuhsig f («, t) in dependence on their spectral
behavior and noise characteristics. Schmidt et al. (20@63tcucted a procedure to establish a spatio-
temporal multi-resolution representation based on thigetation; see also Prijatna and Haagmans
(2001) and Haagmans et al. (2002). To be more specific, weteckiq. (5.38) as

cj(@,t) = ;(x)" d;(t) (6.4)

and model each componedi;(t) of the N; x 1 vectord;(t) as an expansion

Kj —1
din(t) = Y djgg $ju(t) (6.5)
=0

in terms of time-dependent base functiefig(¢) with unknown spatio-temporal (4-D) scaling coef-
ficientsd; ., k= 1,...,N;; 1 =0,...,K; — 1. Introducing thek; x 1 vector

@;(t) = [ djo(t), ¢ja(t), ..., djx;—1(t) ]T (6.6)
and theN; x K; matrix

djgo djgn - djuk-1

D; = djzo dj21 - dj2K-1 (6.7)

dj N;;0 djNj1 -+ dj Ny K -1
of the spatio-temporal coefficiends ;.; we obtain
d;(t) = D; ¢;(t) (6.8)
from Eq. (6.5). Inserting Eq. (6.8) into Eqg. (6.4) yields teasor product approach
cj(@,t) =] () Dj ¢;(1)
= (¢] (t) ® 9] ()) vecD; ; (6.9)

a short introduction into tensor products of Hilbert spasagven by Weidmann (1976). In Eqg. (6.9)
we applied computation rules for the Kronecker product sylimed by '®’ (Koch, 1999); in addition
the vec-operator orders the columns of a matrix one below the othanastor. The matrixD; is
estimated by means of the observation equation

y(x,t) + e(w,t) = 07, () d;(t)
= (¢] (1) ® 0], (w)) vecD; (6.10)

following from Eq. (5.46) forx, = x.
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Schmidt et al. (2006) use (resolution) level-dependentguigse constant functions, i.e., the spatio-
temporal coefficients are estimated for specific leyetlependent time intervals such as one month
(for the finer structures) or ten days (for the coarser atres). To be more specific, the total obser-
vation intervalAT is divided intoK; non-overlapping level-dependent observation sub-iaterv

ATj,kj = [tj,kj’tj,kj-i-l) (6.11)
of constant length, i.€.; x, +1 — ¢, = ATj fork; = 0,..., K; — 1. Thus, it follows
AT = K; ATy . (6.12)

The motivation for this partitioning scheme is that the deieation of finer structures of the gravity
field requires a denser distribution of satellite obseoretithan the computation of coarser structures.
By introducing the stepwise functionts . (t) = X x,(t) defined as

1 if teAT;,.
() = IR 6.13
Xik; () {O otherwise } ( )

Eq. (6.5) reads

Kj—1

din(t) = Y djke; Xik (1) - (6.14)
k;=0

Under this assumption for a specific observation tiret,, the K; x 1 vectore;(t) as defined in Eq.
(6.6) reduces to the unit vectgr;(t,) = e, with the value "1’ at thenth position. Choosing an ap-
propriate ellipsoidal scaling function the spatio-tengdacaling coefficientd; ;.. can be estimated
from the observationg(x, t) by means of the observation equation (6.10).

In opposite to that approach sketched before Schmidt e2@D7p) model the time-dependency of
each scaling coefficient; ;(t) of the highest levell by a Fourier series. As disadvantages of this
approach the authors mention that a multi-resolution segr&tion with respect to time cannot be
considered and the detail signals of different levels agrattterized by the same temporal behav-
ior. In order to consider a different temporal behavior faclke spatial leve}, we now introduce a
level-dependent 1-D multi-resolution representatiorhwitspect to time for each scaling coefficient
d; 1 (t) analogously to the approach (6.9). To be more specific, 814HD multi-resolution repre-
sentation approach we distinguish between the spatial jeee{;’,...,J} and the temporal level
1j € {z’;», ..., 1;} depending ory. Thus, we expand each time-dependent scaling coeffidigrit)

by a series

my.—1
1

din(t) = > digra b1,4(t) (6.15)

=0

in terms of (temporal) levell; scaling functions);, ;(¢) with unknown spatio-temporal (4-D) scaling
coefficientsd; ., ;s k=1,...,N;; 1 =0,...,mp, — 1.
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6.2 B-Spline Modeling

For modeling the temporal behavior of the geopotential walyapormalized quadratic B-splines
N2(r) as 1-D base functions depending on the real-valued variableet m; be a positive integer
number; € {0, ..., I} the temporal level and assume further that a sequence aexneasing knots
T4, Tis - T 4o 1S given, the normalized quadratic B-spline functions aéineéd recursively with
[=0,...,m; —landm = 1,2 as

1 1 —
TN Nmel(r) 4 bl T T Nmod (6.16)
Ti4m — 717 Ti4m+1 — Ti41
with the initial values

{1 if 7'f§7'<7'li+1 and Tli<Tli+1}
b)

_ (6.17)
0 otherwise

NSZ(T ) =
e.g., Stollnitz et al. (1995) or Schmidt (2006). A B-splisecompactly supported, i.e. its values
are different from zero only in a finite range on the real aSisice N/(1) # O for 7/ < 7 < 7/,
and N?/(1) = 0 otherwise, this finite range is defined by the interjsl 7/, ;), mathematically
abbreviated as supfy; = [7/,7/,4). Since we want to use this approach for the finite time interva
AT as defined in Eqg. (6.12) we introduce thedpoint-interpolating quadratic B-splingefined on
the unit intervall = [0, 1]; e.g., Lyche and Schumaker (2001), Stollnitz et al. (1988hmidt (2006)
and Schmidt et al. (2007c). To be more specific, we set thelfirseé knots to zero and the last three
knots to one. Hence, the level knot sequence for endpoint-interpolating quadratic Bagslreads

) )

OZTé:Tf:T§-<T§<...<TmFl <T,im:7'fni+1:7'mi+2:1 (6.18)

with 7/, — 7/ = 27 forl = 2,...,m; — 1 andm; = 2’ + 2. Note, that in Eq. (6.16) under
the assumption (6.18) the factors are taken as zero if tlegiomhinators are zero. Since we apply
normalized quadratic endpoint-interpolating B-splin@4.6) as scaling functions;, ;, i.e.,

qb[jJ(T) = NIQJ-,Z(T) (6.19)

with [ =0, ..., my,—1, we actually have to replace the time variabie Eq. (6.15) by the normalized
time variabler = (t —ty)/AT; to = initial time epoch. But in order to avoid too much confusioa w
do not distinguish between the two variabteendr in the sequel and use always the letteFigure
6.1 depicts then, = 2%i 4 2 B-spline scaling functions for level; = 3 with 7 =: z.

6.3 4-D Multi-Resolution Representation

Introducing themny; x 1 vector

¢1,(t) = [ 61,0(8), S1,1(8), -y Drmy 1 (D) ] (6.20)
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0.0 0.2 0.4 0.6 0.8 1.0
variable x

Figure 6.1: B-spline functiong,, ; of resolution levell; = 3 with [ = 0,...,m3 — 1 andm; =

23 +2 = 10. Only the B-spline functiongs; for I = 2,...,7 are not affected by the endpoint
interpolating procedure. The other four functions witk- 0,1, 8,9 are modified by the endpoint-
interpolationg procedure. The larger the level valugs chosen the more narrow are the B-spline
functions; for details see e.g. Schmidt (2006).

and theN; x mj, matrix

dj;1,0 djugn e djastgmg -1
dj2n,0 djz - djorm, -1

D‘LI] — D445, 754315, 75 7]7m1j (6_21)
dj,N;;15,0 djN53 15,0 - -+ djN3Lma, -1
of the spatio-temporal coefficients ;.;, ; we obtain

d;j(t) = Dj1, ¢5,(t) (6.22)

from Eq. (6.15). Inserting Eq. (6.22) into Eq. (6.4) yields
Cj(mvt) = ¢§F(m) Dj;lj ¢Ij (t)
= (¢1,(t) ® ¥; (x)) vecDy;1,
= cj;p;(x,t) . (6.23)

Note, that the quantity;.;, (z, t) means the wavelet coefficient on the spatial lgvehd the temporal
level I;; it will be denoted in the following as level(j; I;) wavelet coefficient of the input signal.
According to Eq. (6.2) the detail signgJ(x, t) is computed as

gi(@,t) = (U * cjr, (1) ), (2)
= 951, (a:, t) . (624)

With Eg. (3.32) we introduced the decomposition equatiatinwgspect to space. The corresponding
equation with respect to the time domain reads

,(t) = Py i1 () + Q0,1 (1) | (6.25)
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wherein

T
b5, —1(t) = [ di;—10(t), diy—11(t), -, ¢ij—1,mij,1—1(t)] (6.26)
is them,, 1 x 1 vector of level-(i; —1) scaling functions;, _1,(¢) with i = 0,...,m;;—1 — 1. The
ni;—1 X 1 vector
wij—l(t) = |:¢ij—1,0(t)7 ¢ij—l,1(t)7 ety wij—l,nij,l—l(t) ]T (627)

contains the level(i; — 1) B-spline wavelet functionsbij_u(t) with I = 0,...,n;,—1 — 1 and
ng,—1 = m;, —m;,_1. Them,,_1 X m;, matrix P;, and then;,_1 x m;; matrix@j are computable
from

P;. 1
[a.]] =[P, Q;] (6.28)
&

the entries of then;; x m;, 1 matrix P;; and them;; X n;,_; matrix QZ-], can be taken from Stollnitz

et al. (1995). Figure 6.2 shows two selected leveB-spline wavelets of the family)s; with
1=0,...,n3 — 1, which are compactly supported, too.

Inserting the two-scale relation (6.25) fgr= I; into Eq. (6.23) we obtain the decomposition

Cj;[j(m7t) = 'gbf(a:) Dj— ¢1j—1(75) + ¢?(m) W1 ¢1j—1(t)

= ¢jir-1(x, 1) + T 1 (1) (6.29)
wherein
=T

is the V; x mp, 1 matrix of the spatio-temporal scaling coefficietits..;, —1, needed to compute the
level-(j; I; — 1) approximatiorc;,;, 1 (z, t) of the level-(j; I;) wavelet coefficients; ;, (x,t); the
Nj x nr;—1 matrix

—T
Wi =Djr, Qp (6.31)

A ,

value
N O

'8 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
variable x

Figure 6.2: Selected wavelets, ; of resolution level;; = 3 for [ = 0 (blue) andl = 5 (red) of
altogetherns = my — mg = 8 waveletsy ;(z) with [ = 0,...,n3 — 1. The wavelety)s (x) is
affected by the endpoint interpolating procedure.
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contains the spatio-temporal sub-wavelet coefficients ;-1 ; of the level-(j; I;—1) detail-wavelet
coefficientsc;.;;—1(x, t). The recursive application of this procedure gives findily temporal (1-D)
multi-resolution representation

-1
¢y (x,t) = Cj;i;(wat) + Z Cji; (1) - (6.32)

R
ij=1]

of the level-(j; I;) wavelet coefficients;,;, (z, ). According to Eq. (6.29) the level(j; i;) approx-
imationc;.;, (=, t) and the levek(j;i;) detail-wavelet coefficients;;, (x,t) are defined as

¢j; (@, 1) = ] (x) Dy ¢, (1) (6.33)
Ciiiy (1) = ] (@) Wi, (t) - (6.34)

and computable via the pyramid algorithm. To be more spesiacting with the initial matrixD .,
the N; x m;, matrix D;,;, of level—(j;4;) scaling coefficientsl; ;.;.; and theN; x n;; matrix of
level-(j; ;) sub-wavelet coefficients; x.;, ; are computed recursively as

=T

Dji; = Djiij1 Py, (6.35)
=T

Wi, = Djijr1 Qi1 (6.36)

forij :ji/,...,Ij—l.

Inserting Eq. (6.32) into Eq. (6.24) yields

-1
gisty (@, t) = (W) % cjr (1) ) (@) + Y (W5 % 2y (- 1) ), (@)
ij:i;-
I,—1
= Gy (@, 1) + Y Fjg (@1 - (6.37)
ij:i;-
Herein
gisi (®,1) = (V5 % cj (-,1) ) (@) (6.38)

means the level(j; ;) approximation of the level(j; I;) detail signalg;.;,(z, ). The functions
G, (@, 1) = (¥ * T (1) ), (2) (6.39)

we will call sub-detail signal of leve(j; i;).

61



Next we consider Eq. (6.37) in Eq. (6.1) and obtain the sgetioporal (4-D) multi-resolution
representation

J Ij—1

fla,t) = f]mt+§jg”wt+§j§jgwmt (6.40)

j=3j’ zj—z
with given valuesi’ € {0,..., J} andd; € {0,...,1; — 1}.

If we identify the functionf(x, t) with the gravitational potential, i.ef (x,t) =: U(x,t), we may
subtract a reference potentidl.;(x, t) and rewrite Eq. (6.40) as

oU(x,t) = U(x,t) — Upet(, 1)

J Ij—1

:1r:t—|—Z:g]Z ar:t—l—zzz:gjZ (x,t) + AU(x, 1) . (6.41)

j=j’ z]—z

Herein, the signalAU (x, t) stands for all the parts of the gravitational potentialati#ncesU (z, t)
not considered in the series expansion until highest dpetral J. Furthermore, in Eq. (6.41)
oU;/(x,t) means the level;j’ approximation of the residual gravitational potenddl(x,t), the
signaIng;i;_(a:,t) andgj;ij (x,t) are the corresponding leve(; z';-) detail signal approximation and
the level-(j;i;) sub-detail signals, respectively. If the summation lirmt&q. (6.41) are chosen ap-
propriately, the subsignatd/; (x,t) andAU (x,t) can be omitted, i.e. we definé/; .7, (x,t) =
Ujy1;1,(2,t) — Uret (2, ) and obtain

J Ij—1

U 1.1, () = Zgﬂ z,t +Z Z G, (1) (6.42)

j=j’ zj—z

Note, that due to the ansatz (6.15) with (spatial) levelesielent numbers; the pyramid algorithm -
explained before in subsection 5.2.2 in detail - cannot Ipfieghanymore.

In the following we outline the different steps of the spagmporal procedure:

1. In the initial step we estimate the unknown parameterimd®;.;, as defined in Eq. (6.21) for
j = J. For that purpose we recall Eq. (6.10) for= J sety(x,t) = 0U 41,1, (x,t) + e(x, t) and
obtain the level(J+1; 1) observation equation

SU 151, (2, 1) = (@7, (t) @ 07,1 (x)) veeD sz, . (6.43)

2. In the second step the estimaﬁrJ;IJ of the matrixD ;.;, is used to calculate the estimations
Dj;;, andW ;;, fori; = i;,...,1;—1 according to the Egs. (6.35) and (6.36). Based on
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these results the estimatdis;, and@,.;, of the the level-(.J; i) approximations:y.;, and the
level—(J;1i;) detail-wavelet coefficients;.;, are computed via the Egs. (6.33) and (6.34), i.e.,

@iy (@) = 45 (@) Dy, by, (1) . (6.44)

iy () = 0 (@) W g, 1y, (1) - (6.45)
These results are then used to calculate the estimated-lekel;) approximation

Gra (@, t) = (U % Cpr (+,1) ), (@) (6.46)
of the level-(J; 1 ;) detail signalg.;, (x,t) and the estimated levelJ; ;) sub-detail signals

Gy, (@ t) = (Vg x Ty, (1)), (%) (6.47)

following the Eqs. (6.38) and (6.39). Consequently, at ek & the second step the estimation

I;—1
§J;1J(m>t) ng Z .ngJ €z, t (648)
iy= 2J

of the level-(J; I ;) detail signal is given.

. In the next intermediate step we subtract the estimaigubki(6.43) fromoU 1.1, (x,t) =
U1, ,(x,t) —gr1,(x,t), define the reduced leve(J; I;_;) observation equation

U1, (®,1) = (97, ,(t) © 7 (2)) veeD 11, , (6.49)
analogously to Eq. (6.40).

. In the fourth step we perform the same estimation proceexlained in the second step. To be
more specific, with the estimatdp ;_;. IJ , of the matrixD ;_,.7, , we calculate the estimations
DJ iy 4 andWJ i, , foriy_y =4, _,,...,I;_1—1according to the Egs. (6.35) and (6.36).
Based on these results the estimators;;, , andﬁ];i‘,fl of the the level-(J;i;_1) approxima-
tionscy.;, , and the level(J;i;_) detail-wavelet coefficients;;, , are computed via the Egs.
(6.33) and (6.34), i.e.,

Sty (@ t) =5 () Dy, bi, (1) (6.50)

iy (1) = P53 (@) W,y () (6.51)
These results are then used to calculate the estimated-level 1;4/,_,) approximation

G-, (@) = ( Uy * Crn, (51)) (@) (6.52)

of the level-(J — 1;1;_;) detail signalg;_1.;, ,(x,t) and the estimated levelJ — 1;i;_1)
sub-detail signals

Gy, (@) = (V1 x Tyop, (1)), (2) (6.53)
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following the Eqs. (6.38) and (6.39). Consequently, at tek @& the fourth step the estimation

Iy -1
Gi—vi1, (@, ) =Gy 1, (@,1) + Z 971, (1) (6.54)

ig1=i_y
of the level-(J — 1; I;_1) detail signal is given.

5. In the next intermediate step we subtract the estimatgaaki(6.54) fromdéUy.r, | (x,t) =
SUj-1.1, ,(x,t) —gy—1.1, ,(x,t), define the reduced leve(J — 1;1;_») observation equation

SU 11, (@ t) = (61, (1) @ ¢}, (x)) vecD 1, , (6.55)
analogously to Eq. (6.49).

6. If we proceed in the same manner as explained for the seoahthe fourth step until spatial level
7 = 7', we end up with estimations of all signals introduced on thletrhand side of Eq. (6.42).

Following this procedure, our final result for the geopatart (x, ¢) reads

J Ij—-1

U(x,t) = refmt+Zgﬂmt+ZZngt (6.56)

j=j’ zJ:zJ

For monitoring the climate change as mentioned in the inictidn mass variations estimated from
GRACE observations can be transferred to equivalent waights or to height deformations follow-
ing Farrell’s (1972) theory. To be more specific, the geopize U or the residual geopotential/
as estimated by Eq. (6.56) can be transformed into heigbtibeations

J
h(z,t) =Y hj(x,t) (6.57)
J=J

>/

at the Earth’s surface with respect to the reference mogglx,t) by evaluating the ellipsoidal
convolutions

hj(x,t) = (Ke * gj;Ij(-,t) )w(a:) (6.58)

with respect to the detail signajs,;; as introduced in Eq. (6.37). In Eq. (6.58) the kerf€l(x, x,)
is defined as

o /

Ke(x,@q) =Y (2n+1) W
n=0

Pa(€7¢,) (6.59)

with &/, andh/, being the static gravitational and vertical load Love nuralué degree:, respectively;
g = (mean) absolute value of the gravity acceleration; for nuatails see Schmidt et al. (2006).
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