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Abstract

The task is to locate a mass anomaly, particularly a void, in the near subsurface
based on gravity, gravity gradients, and magnetic field data. The motivation for
this search rises from multiple areas of applications such as urban planning, mining,
archeology, and extraterrestrial science. Assuming that the signal generated by the
sought mass anomaly is approximately known and can be described by the signal of a
three-dimensional prism, a Matched Filter (MF) is implemented to detect this signal
buried in the relatively strong noise of the geologic background. The background noise
is described in the filter function by covariances. One important aspect of the current
study is, therefore, to derive the covariance matrix that accounts for the relation
between gravity, gravity gradients, and the magnetic field. It turns out that the choice
of covariance function can have a significant influence on the MF performance. The
aim of this research is to answer some fundamental questions regarding the various
combinations of data types, the estimation of the depth or orientation of the mass
anomaly, as well as the optimal number of observed profiles. All tests are carried out
by Monte Carlo simulations, which include randomized simulated background fields.
In addition, a statistical interpretation based on the Neyman-Pearson hypothesis
test is provided. It determines the probabilities that either a sought anomaly is not
detected or that some background noise is mistaken for the sought anomaly. The
simulation results lead to the conclusion that the MF is a very strong tool to detect
the sought anomaly along an observed profile as it searches for the maximum Signal-
to-Noise ratio. Therefore, the MF is able to detect anomalies buried in the background
noise even if they are not directly visible in the data set. A data set of either gravity
gradients or the magnetic field leads to more successful detections compared to a data
set of gravity. The combination of several gravity gradient components as well as the
magnetic field further improves the filter performance. The MF is highly sensitive to
the depth of the sought anomaly but far less sensitive to its horizontal orientation.
As a consequence, it is possible to determine a rough estimate for the depth but
not for the orientation, which, however, can be approximated by measuring multiple
profiles.
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Chapter 1: Introduction

Geodesy on a global scale aims to determine the size and the shape of the Earth
as well as their variations over time. A key property is thereby the gravity field,
which is mainly influenced by the geometry, rotation, mass types, and mass distri-
butions of the planet. Satellite missions such as CHAMP (CHAllenging Minisatellite
Payload) [Reigber et al., 2003], GRACE (Gravity Recovery and Climate Experiment)
[Tapley et al., 2004], and GOCE (Gravity field and steady-state Ocean Circulation
Explorer) [Rummel et al., 2000] have specifically been designed and launched to ob-
serve the gravity field. On a regional or local scale, the acquisition of airborne and
ground gravity data is not only of geodetic interest but also touches fields of geophysi-
cal explorations. In addition to the local determination of the geoid there is emphasis
on understanding the structure of the subsurface and locating mass anomalies. A typ-
ical geophysical exploration project is the search for natural resources (oil, gas, coal)
that occur at various depths in the Earth’s crust. While this involves anomalies at
depths of a couple of kilometers, which lies in the range of, for example, a seismic sur-
vey, local gravity gradient observations in contrast are mainly sensitive to the signals
in the shallow subsurface (< 100m). Exploring the near underground is a common
task in many engineering and environmental applications. Based on this background,
the scope of this dissertation is to localize a mass anomaly in the shallow subsurface
by acquiring ground gravity data. Those data sets are enhanced by the observation of
the spatial changes in gravity, i.e. the gravity gradients, and by the observation of the
magnetic field. Gravity, gravity gradients, and magnetic field form some of the most
fundamental properties of the Earth, which can be investigated without requiring
any active sensors. Due to the local scale, the observations are not only sensitive to
the sought anomaly but also to any variation in the geologic background of the local
environment. This research concentrates on those cases at the edge where the signal
of a sought mass anomaly is so weak that it is buried in the noise of the geologic
background and where the application is directed to measure only a single or a few
profiles of data across the anomaly. Hence, the sought signal is not imminently visible
in the observed data set. A filtering process is required to localize the mass anomaly
in the data. The Matched Filter (MF) is thereby considered advantageous over other
filters as it looks for the maximum Signal-to-Noise Ratio (SNR) [Dumrongchai, 2007].
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Most commonly, the mass anomaly is characterized by its low density compared
to the surroundings such as an air-filled or water-filled cave in a limestone rock. The
void is a special case of interest as it occurs in the majority of detection applications.

1.1 Applications for Void Detections

The search for those local mass anomalies, in particular voids, is a fundamental task,
which finds its use in various environments, ranging from engineering problems to
extraterrestrial science projects. Depending on the context, an underground void can
either be a natural feature or a man-made construction. The following subsections
present a summary of the major detection applications and introduce samples from
the real world.

1.1.1 Hazard Analysis

Voids in the shallow subsurface pose hazards in urban areas as they may result in
a collapse of land. Locating and delineating these voids is, therefore, an important
aspect of a safety plan for urban areas or of a construction plan before the urban-
ization. Tests have, for example, been carried out in northern California, USA, to
identify underground tubes produced by previous lava flows [FHWA, 2005]. Mapping
those tubes is crucial for the construction and maintenance of future roads. Neglect-
ing underground hazards in urban planning can lead to serious problems as reported
in the Ebro Basin, Spain [Benito et al., 1995]. There, large damages to buildings and
highways have already occurred caused by the formation of sinkholes. The under-
ground in this area consists of gypsum karst mantled by alluvial deposits. Caves are
produced from karstic processes and a mechanical erosion of the alluvial cover might
lead to a collapse of these caves. Therefore, locating all voids helps to identify areas
where sinkholes are likely to occur. The prediction of evolving sinkholes is also an
issue in an area near the Dead Sea, where resorts, highways and a dam are in dan-
ger [Rybakov et al., 2005]. This is due to gravel sinkholes in alluvial fans and mud
sinkholes in clay deposits.

Another type of hazard is generated by the subsurface conduits in the Woodville
Karst Plain, Florida, USA [Chicken et al., 2008]. Those conduits transport water
polluted from the urban areas to the nature preserves. In order to protect the en-
vironment the waterways of that area need to be understood. This requires that all
relevant conduits are located and equipped with water monitoring devices.

1.1.2 Mining

The search for mass anomalies is related to all different aspects of mining. It can either
mean to search for deposits directly, as, for example, [Keating, 1995] implements a

2



method to locate kimberlite pipes in the Kirkland Lake region, Ontario, Canada.
Kimberlites are known as a possible source of diamonds. Or mass anomalies indicate
danger areas in a mine, as, for example, [Gritto, 2005] tries to find gas-filled zones,
which may trigger explosions due to the excavations of a coal mine. In addition,
[Crouch et al., 1980] also point out that voids of abandoned underground coal-mines
can be used as a source of drinking water supply.

1.1.3 Archeology

Underground voids might be man-made structures of archeological interest. While
urbanization or agricultural treatment have likely destroyed any evidence in the to-
pography, unmapped underground structures still exist. An affirmation for this is
provided by an investigation site in Cornwall, Great Britain, where a fogou sur-
rounded by a round enclosure as well as two additional void features are suspected in
the subsurface [Linford, 1998]. A further void detection of archeological value is the
search for air-filled cavities in Honduras [Luke et al., 1997]. Those cavities might con-
tain burials of pre-Columbian settlements. Locating the cavities is, in this instance,
helpful to guide the actual site excavations.

1.1.4 Border Tunnel

Hidden tunnels under the border are built and used by smugglers and illegal im-
migrants. [Allen et al., 2008] try to find a technique how to detect those unknown
tunnels, for example, under the US border to Mexico and Canada.

1.1.5 Extraterrestrial Research

Caves are known for their own microclimate. Finding caves on Mars is an important
approach in the search for life on Mars since they provide a protection of the harsh
environmental conditions on the surface. This is the major aspect of the cave detection
research by [Wynne et al., 2009]. Furthermore, the caves could also contain drinking
water, oxygen, and hydrogen fuel resources for a future manned mission. A cave could
even be the base for constructing a permanent station on Mars.

1.2 Sensors used in Previous Research

The applications introduced in Section 1.1 have the common aim to detect a local
mass anomaly in the shallow subsurface. The type of acquired data, however, might
differ for each individual project. While geodesy puts an emphasis on gravity surveys,
a large range of geophysical techniques based on various sensors exists to collect local
ground data. The most common methods are described in the classic textbook liter-
ature such as [Sharma, 1997], [Parasnis, 1997], [Telford et al., 1990], [Sharma, 1976],
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[Dobrin and Savit, 1988], and [Burger et al., 2006]. A brief discussion about the pos-
sible sensors is presented in the following although this dissertation focuses only on
the basic data, namely the gravity and magnetic field of the Earth. The presented
overview of sensors serves as an introduction to alternatives that one day might be tied
to geodetic gravity surveys but for now are considered less suitable for this particular
void detection problem. All methods have in common that they are non-destructive
– in contrast to drilling or excavation – and that they can be applied locally.

Gravity. The most straightforward approach to detect a mass anomaly is mea-
suring the variation in gravity caused by the density contrast of the anomaly. The
measurement setup is very simple as only one instrument, a relative gravimeter, is
needed. The magnitude of the gravity anomaly is, however, much smaller than the
overall gravity field of the Earth, which requires sensitive instrument care and pre-
cise fieldwork. This technique is, therefore, also referred to as microgravity. If the
observation profile is not level, elevation corrections must be applied.

The major difficulty with gravimetry is that it poses an inverse problem of the
potential field. While a geometric shape uniquely defines its gravity effect, an identi-
cal gravity field can be generated by unknown combinations of different sources. As
a consequence, the interpretation of data might be challenging. The geologic back-
ground information as well as a table for rock type and mineral densities become
relevant. Gravity gradiometry enhances the classic gravimetry as it adds more spa-
tial information to the data. Furthermore, it emphasizes the short wavelengths of
the signal and is, therefore, predisposed to show sharper contrasts in the data and to
better delineate the contours of the mass anomaly. The main difficulty here is that,
as a spatial derivative of the gravity vector, gravity gradiometer signals are even
weaker than those of a gravity survey. That requires extra care when operating the
highly sensitive instrument. While gravimeters (Section 2.2.1) are robust and mature
instruments, applicable local gradiometers (Section 2.2.2) are still under development.

Magnetic. The principles of the magnetic survey are very similar to those of
gravimetry since the magnetic potential is related to the gravitational potential (Sec-
tion 2.1.3). The measurement setup is simple and only one instrument is utilized, a
portable proton or a fluxgate magnetometer (Section 2.2.3). The observed magnetic
field is a vector quantity consisting of the total field intensity and direction. The
directional component makes the correct interpretation of the magnetic data even
more difficult than the interpretation of the gravity data. An additional aspect is
to ensure that no remanent properties or other magnetic sources disturb the field
observations or if they do the observations need to be corrected. These effects are
difficult to model. Furthermore, magnetization is generally low in sedimentary rocks
and only moderate in soils. The signal generated by the mass anomaly is, therefore,
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expected to be small but still within the measurable range of a magnetometer (order
of 0.1 nT).

Seismic. For the seismic method, seismic waves are generated, for example, by
dropping a weight or by causing a small explosion, and observing the wave propagation
over time. A void, for example, produces an anomalous perturbation in the travel-
time curves. Refraction, reflection and resonance surveying distinguish the common
seismic techniques. The first two techniques are successfully used for larger depths
(e.g. search for oil) but detecting a small mass anomaly in the shallow subsurface is
far more difficult. The low frequency (long wavelength) of the seismic waves might
miss the small mass anomaly of a few cubic meters. Even if it is possible to determine
the location of a void, its delineation still remains a challenge. An advanced spectral
analysis is required. The major drawback of the seismic method (in contrast to
gravity or magnetic) is its cost intensity and that the placing of geophones is rather
laborious. Depending on the environmental conditions, nearby traffic or winds can
further deteriorate the measurements.

Self-Potential. This technique lies among the electric methods such as induced po-
larization, resistivity and conductivity, but the electric current is here not generated
artificially. The self-potentials of the Earth are also called spontaneous or natural po-
tentials and are produced in the subsurface by either electrochemical actions between
mineral and fluids or by electrokinetic processes based on ionic flows. The different
potentials that can be observed are electrofiltration, thermoelectric, electrochemical,
and mineralization potential. The measurement setup simply consists of two elec-
trodes and a voltmeter to determine the potential gradients (differences in voltage).
This allows for a rapid and inexpensive survey. The wires can be unpractical in the
field though. A subsurface cave defines, for example, a basin for the groundwater
flow. This results in a self-potential anomaly (accumulation of ions) and can be de-
tected in the observed data. Heavy rainfall, on the other hand, might corrupt the
interpretation of the data.

Induced Polarization. An electric current is temporarily applied to the ground.
When the current is switched off, a fractional voltage is observed, which decays to zero.
The ratio between the fractional and the original voltage describes the concentration
of metallic minerals in the ground. The ionic conduction path in the ground is
hindered by the mineral particles, in which the current is based on electrons. This
leads to an accumulation of ions observed as the fractional voltage. Clay particles
show a similar effect. This method is often utilized to search for groundwater.

Resistivity. In order to measure the resistivity of the subsurface (reciprocal of
electrical conductivity), an artificial electric current is applied to the ground by a set
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of electrodes. An additional set of electrodes observes then the potential differences.
The apparent resistivity is determined by the observations and the specific positioning
pattern of the electrodes. Voids will change the resistivity in contrast to an ideal
homogeneous underground layer. However, deteriorations are also caused by the
natural variations in the Earth’s resistivity and other inhomogeneities in the ground.
The resistivity method is relatively tedious since the electrodes need to be distributed
while shallow anomalies require small electrode spacing.

Electromagnetic Conductivity. The basic idea is to induce an electromagnetic
field in the subsurface. This primary field spreads out and induces a secondary
electromagnetic field in the conductive materials of the subsurface. Measuring the
resulting field provides information about the subsurface conductors. Materials that
drastically enhance the conductivity within the Earth are fluids and metals. That
means this is an appropriate method to detect salt-water-filled caves or tunnels that
contain wires. A void, on the other hand, will be difficult to distinguish from the
surrounding materials, except if the surrounding material is, for example, clay, or
other materials of good conductivity. Advantages of this technique are its rapid use
as the instrument does not require ground contact and its simple setup as no cables
are needed.

GPR. The concept of Ground Penetrating Radar (GPR) is similar to the seismic
reflection method. In this case, radio waves, which are part of the electromagnetic
spectrum, are transmitted to the ground and their reflections are observed. The
resulting travel-time curves map out the boundaries between subsurface features of
different dielectric properties. GPR presents a rapid and high resolution method,
where its depth is usually limited to the shallow subsurface. Restrictions are similar
to those of the electromagnetic conductivity observations. GPR works well for ice,
dry sand, and gravel but does not penetrate materials of high conductivity such as
clay. This is a major drawback in case of a wet underground.

Radioactivity. This only requires a passive sensor since radioactivity is present
in most of the rocks and minerals although only at a low level. The radioactive
signature determines the underground rock type. The most basic instrument is the
Geiger counter, which often records the radiation intensity as counts per minute.
Topography, weathering, and background radiation can have disturbing effects on
the observations. In geophysics, the radioactivity technique is mainly utilized to
monitor movements of fluids in conjunction with groundwater and soil contamination.
Radioactivity can also be used in faults and fracture zones but its usage in void
detection is not obvious.

6



Geothermal. Nowadays, it is common to acquire geothermal data by infrared sur-
veys. Thermal anomalies are, for example, found at cave entrances as the temperature
of the entrance rock differs from the temperature of the surrounding rock. However,
a correct thermal interpretation is very complex.

Many previous researches have studied and applied the above geophysical techniques
to detect a void. The conclusion is that a single ideal technique does not exist since
all techniques struggle with their specific difficulties. However, none of the above
techniques can be completely dismissed either. Table 1.1 gives references to some of
the previous void detection researches and their specific scope of techniques.

1.3 Current Approach and Outline

The task of this dissertation is to elaborate an effective solution to the localization of
a void by suggesting the type of sensor, filter technique, and statistical interpretation
from a geodetic point of view.

As shown in Section 1.2, the search for voids in the shallow subsurface has a
broad range of practical applications. This dissertation will provide an approach
on detecting a mass anomaly (void) in general, i.e. solving the geophysical inverse
problem. The only specifications are that the mass anomaly is of very local dimensions
(several meters), it has a horizontal, linear structure and its shape is simple enough
to be approximated by a three-dimensional prism or a cylinder. These specifications
cover most of the before mentioned applications. Depending on the characteristics
of the mass anomaly and the environmental condition in each case, certain sensors
are more successful than others. However, a general conclusion in many cases is to
utilize a combination of two or more sensors. Here, the combination of gravity, gravity
gradient, and magnetic field data are explored. Gravimetry and magnetometry are
the most fundamental techniques in geophysics. They only require passive sensors, are
robust to the weather conditions, cost-effective, and easy to apply. Adding the gravity
gradients means to go beyond the standard observations and gaining additional spatial
information. The field of all three data types, generated by a simple geometric feature,
can be forward modeled by a closed analytic expression. While the relation between
gravity and gravity gradients is obvious, the gravity gradients can also be linked to
the magnetic field as shown by Poisson’s Relation [Blakely, 1996]. This mathematical
and physical relation will facilitate the statistical interpretation, such as a description
of covariances and error estimations.

In contrast to previous implementations, this dissertation combines consistently
all observed data (gravity, gravity gradients, magnetic field) into one simultaneous
detection solution. A Matched Filter (MF) forms the basis for the detection of the
mass anomaly and a statistical analysis interprets the outcome. The MF, which has
originally been developed in communication theory, is a promising tool in geophysical
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Table 1.1: Sensor Applications
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exploration as it is sensitive to small variations in the SNR of the observations. The
major challenge with this technique is that it requires to model the sought signal gen-
erated by the void. However, this model also serves as a constraint for the geophysical
inverse problem, which otherwise would not have a unique solution.

The structure of this dissertation is such that the introduction in Chapter 1 is fol-
lowed by the theoretical background in Chapter 2. The basic theory of the observed
quantities as well as the mathematical derivation of the MF formula is presented.
The central aspect of this research are the MF computations that simulate the detec-
tion problem. A detailed overview of the simulation setup and involved parameters
is provided in the beginning of Chapter 3. Furthermore, Chapter 3 contains all MF
simulations with their corresponding results and interpretations. Some of those sim-
ulations are even combined with actual field data. A statistical analysis of the MF
simulations is developed and tested in Chapter 4. The document finalizes with a
conclusion based on the evaluation of the MF simulations and an outlook for future
research in Chapter 5.
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Chapter 2: Theoretical Background

2.1 Observation Quantities

The data of interest in this research are the gravity, gravity gradients, and magnetic
field data since they are the most fundamental observations in geophysics. It is open
to future research to test if a combination of more data types will be reasonable and
deliver an improvement to the detection problem. As indicated in Chapter 1, different
sensors and combinations of sensors may have advantages depending on the specific
application.

2.1.1 Gravity Field

The gravity potential, W , at an arbitrary point x on or above the surface of the Earth
is the summation of the gravitational potential, V , caused by the mass of the Earth
and of the centrifugal potential, Φ, caused by the rotation of the Earth (compare
[Heiskanen and Moritz, 1967], [Moritz, 1989], or [Torge, 2001]):

W (x) = V (x) + Φ (x) . (2.1)

The gradients of these potentials describe the accelerations due to the respective
fields:

∇W (x) = ∇V (x) +∇Φ (x) . (2.2)

The gradient of the gravity potential is also defined as the gravity vector

g (x) = ∇W (x) =

 ∂W/∂x1

∂W/∂x2

∂W/∂x3

 =

 g1

g2

g3

 , (2.3)

which direction points in the direction of the plumb line (the vertical). Gravity, g, is
defined as the norm of the gravity vector, g.

Taking the spatial derivatives of the gravity vector results in the gravity gradient
tensor

Γ (x) = ∇g (x) =

 ∂g1/∂x1 ∂g2/∂x1 ∂g3/∂x1

∂g1/∂x2 ∂g2/∂x2 ∂g3/∂x2

∂g1/∂x3 ∂g2/∂x3 ∂g3/∂x3

 =

 Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33

 , (2.4)
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which presents the changes in gravity along the coordinate axes of the defined system.
The gravity potential, W , of the Earth can be approximated by a normal poten-

tial, U , which is the gravity potential of a known reference field, such as, for example,
the Geodetic Reference System 1980 (GRS80) or the World Geodetic System 1984
(WGS84). The reference field is defined as a rotational ellipsoid representing an
equipotential surface of the normal gravity field. U is the sum of the normal grav-
itational potential and the centrifugal potential. The gradient of U is the normal
gravity vector, which magnitude is called normal gravity, γ. The disturbing poten-
tial, T , is defined as the remaining difference between the gravity potential and the
normal potential, which eliminates the centrifugal part:

T (x) = W (x)− U (x) . (2.5)

Consequently, the gravity disturbance, δg, is the difference between gravity and nor-
mal gravity

δg (x) = g (x)− γ (x) , (2.6)

and the disturbing gradients are the difference between the gravity gradients and the
normal gravity gradients.

From this point on, gravity, g, and gravity gradients, Γ, will refer to the distur-
bances, skipping the δ sign in order to simplify the notation. All MF simulations
in Chapter 3 are also based on the disturbing data. However, one has to note that
actual static measurements on the ground always refer to the gravity potential while
airborne measurements can be processed to yield gradient disturbances.

Only five of the nine gravity gradient tensor components are mutually independent
due to following symmetries of the off-diagonal elements:

Γ12 = Γ21

Γ13 = Γ31

Γ23 = Γ32,

(2.7)

and due to the following condition given by Laplace’s Equation:

Γ11 + Γ22 + Γ33 = 0. (2.8)

In geodetic applications, the unit of gravity is presented in milligal with 1mgal =
10−5 m/s2 and the unit of the gravity gradient tensor is Eötvös with 1E = 10−9 1/s2.
These units better represent the small magnitudes that are measured in the real world.

2.1.2 Magnetic Field

The magnetic field strength H induces a magnetic flux. The density of this magnetic
flux is given by the magnetic field B. The equation

B = µH (2.9)
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shows the most general relationship between B and H where µ is the absolute per-
meability of the medium. In case of free space, the magnetic permeability is given
by

µ = µ0 = 4π · 10−7 N

A2
. (2.10)

Inside a medium the absolute permeability is adjusted to µ = µ0µm, which can be
inserted in (2.9). This leads to the derivation of a more complete equation for the
magnetic field [Parasnis, 1997]:

B = µ0µmH

= µ0H + µ0 (µm − 1) H

= µ0H + µ0χH

= µ0 (H + Mi) .

(2.11)

The term (µm − 1) is substituted by χ, the susceptibility of the medium (e.g. defined
by the type of rocks). The susceptibility, χ, is not necessarily a proportionality
constant, in some cases it might even be a tensor. In the case of a local field and
where the induced magnetization is only generated by the main magnetic field of the
Earth, a proportionality constant can be assumed. From (2.11), it becomes obvious
that inside a medium an additional field strength is introduced. This field strength
is the induced magnetization, Mi = χH. Some bodies, as for example a bar magnet,
contain magnetization, which is not induced by an external field strength. This type
of magnetization is called remanent magnetization, Mr, and leads to the extended
equation of the total magnetic field:

B = µ0 (H + Mi + Mr) . (2.12)

Remanent magnetization poses a special case in the real world and will here be set
to zero to simplify the simulations.

Similar to the gravity case, where disturbances are derived by subtracting the
properties generated by a normal gravity field from the properties of the total gravity
field, as in (2.5) and (2.6), the magnetic case as well defines a residual field of per-
turbation. The perturbation, F, is the difference between the total magnetic field, B,
and the main field, B0 = µ0H,

F = B−B0 (2.13)

where the latter can be estimated by the International Geomagnetic Reference Field
(IGRF) model of the specific survey date [IAGA, 2010]. While a magnetometer usu-
ally measures the magnitude of the total magnetic field (2.12), the data of interest
are the magnitude of the magnetic field anomaly. The anomaly, ∆B, is defined as
the difference in magnitudes of the total magnetic field and the main field:

∆B = ‖B‖ − ‖B0‖ . (2.14)
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Figure 2.1: Magnetic Field Directions

Under the assumption that the magnitude of the main magnetic field is much larger
than the magnitude of the perturbation, F, generated by a magnetic anomaly

‖B0‖ � ‖F‖ , (2.15)

the magnetic field anomaly can be approximated by the perturbation in direction of
the main magnetic field

∆B ≈ κT0 · F (2.16)

where κ0 is the unit vector in direction of the main magnetic field [Blakely, 1996].
All vector quantities are illustrated in Figure 2.1. In the special case that remanent
magnetization does occur, the magnetic field perturbation is the superposition of the
induced magnetic field and the remanent magnetic field:

F = Fi + Fr = µ0χH + µ0Mr. (2.17)

2.1.3 Poisson’s Relation

[Poisson, 1826] points out the similar structure of the gravitational and the magnetic
field. Based on that, he relates magnetometry to gravity gradiometry (for other
additional details, see [Blakely, 1996]).

The gravitational potential due to a mass source with the density distribution,
ρ (x′) = ρ (x1

′, x2
′, x3

′), is given for an arbitrary point, x =
[
x1 x2 x3

]T
, above

this mass source by

Vgrav (x) = G

∫∫∫
v

ρ (x′)√
(x1 − x1

′)2 + (x2 − x2
′)2 + (x3 − x3

′)2
dx1

′dx2
′dx3

′. (2.18)

The scalar magnetic potential due to a source with the magnetization distribution,
M (x′) = M (x1

′, x2
′, x3

′), is given for an arbitrary point, x =
[
x1 x2 x3

]T
, above
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this source by

Vmag (x) =

µ0

4π

∫∫∫
v

MT (x′)∇(x′)

 1√
(x1 − x1

′)2 + (x2 − x2
′)2 + (x3 − x3

′)2

dx1
′dx2

′dx3
′.

(2.19)
Both potentials are described as a volume integral over the inverse distance between
the integration points, x, and the source points, x′. As the gravitational potential
depends on the scalar density in (2.18) the magnetic potential depends in the same
way on the magnetization vector in (2.19). Furthermore, Vgrav contains the gravita-
tional constant, G = 6.673 · 10−11 m3/ (kg s2), while Vmag also includes the gradient
operation ∇(x′).

Poisson’s Relation, derived below, only holds under the two conditions that:

1. The gravitational and the magnetic potential are generated by the same body.

2. The ratio of magnetization to density of this body is constant (2.20). While the
magnitude of the magnetization may vary, its direction must be constant.

‖M (x′)‖
ρ (x′)

= const (2.20)

If the second condition is not fulfilled, the body source can be subdivided into parts,
which each fulfill the second assumption. Superposition will then realize Poisson’s
relation again.

The derivation is simplified by assuming that the body source has only one con-
stant density

ρ (x′) = ρ. (2.21)

Similarly, the magnetization throughout the source is assumed constant along the
directions of magnetization implemented by a unit direction vector κ:

M (x′) = Mκ. (2.22)

Expressing the distance between observation and source point by

‖x− x′‖ =

√
(x1 − x1

′)2 + (x2 − x2
′)2 + (x3 − x3

′)2 (2.23)

and with

∇(x′)
1

‖x− x′‖
= −∇(x)

1

‖x− x′‖
(2.24)

the equations for the gravitational and magnetic potential are modified to

Vgrav (x) = Gρ

∫∫∫
v

1

‖x− x′‖
dx′ (2.25)
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Vmag (x) = −µ0

4π
MκT∇(x)

∫∫∫
v

1

‖x− x′‖
dx′. (2.26)

Rearranging (2.25) to ∫∫∫
v

1

‖x− x′‖
dx′ =

Vgrav (x)

Gρ
(2.27)

and inserting (2.27) into (2.26) leads to the formula of Poisson’s Relation

Vmag (x) = −µ0

4π

M

Gρ
κT∇(x)Vgrav (x) , (2.28)

which now phrases the magnetic potential in terms of the gravitational potential
[Blakely, 1996]. The right side of it is also called the pseudo-magnetic potential.

Considering that the gradient of the gravitational potential is the gravitational
acceleration vector

g (x) = ∇(x)Vgrav (x) (2.29)

equation (2.28) is rewritten to

Vmag (x) = −µ0

4π

M

Gρ
gT (x)κ. (2.30)

Poisson’s Relation can be developed one step further by taking the gradient on both
sides of (2.30), leading to

∇(x)Vmag (x) = −µ0

4π

M

Gρ
∇(x)g

T (x)κ. (2.31)

The gradient of g (x) is the gravitational gradient tensor

Γ (x) = ∇(x)g
T (x) (2.32)

and the negative gradient of the magnetic potential is defined as the magnetic field
vector

B (x) = −∇(x)Vmag (x) . (2.33)

In order to derive the magnitude of the total magnetic field in the direction of magne-
tization, the magnetic field is multiplied by the unit vector pointing in the direction
of magnetization:

B (x) = κTB (x) . (2.34)

Substituting (2.32) to (2.34) in (2.31), results in the final Poisson’s Relation that
expresses the magnetic field in terms of the gravitational gradient tensor:

B (x) =
µ0

4π

M

Gρ
κT0 Γ (x)κ0. (2.35)
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Figure 2.2: Inclination and Declination

Here, the direction of magnetization is approximated by κ ≈ κ0, which is the unit
vector in direction of the main magnetic field, Figure 2.1. This is a justified approx-
imation in cases where the main magnetic field is much greater than the disturbing
magnetic field (2.15). If the special case of remanent magnetization is neglected and
the magnetization of an anomaly is simply M = χH, the magnetic field in (2.35)
stands for the magnetic field anomaly ∆B as described in (2.16). However, in the fol-
lowing the magnetic field anomaly will simply be noted as B. The tensor Γ in (2.35)
consists of the gravitational gradients since Poisson’s Relation is derived from the
gravitational potential, which does not contain the centrifugal potential. As defined
in Section 2.1.1, Γ, will from now on refer to the disturbing gravity gradients. This
substitution is legitimate since the disturbing gravity gradients also do not contain
a centrifugal part. As mentioned above, the disturbing gravity gradients will simply
be called gravity gradients in the following. The right side of (2.35) is also labelled
pseudo-magnetic field anomaly. All parameters require units given in the SI system
(Système international d’unités).

The components of the unit vector κ0 consist of the direction cosines

α = cos (−I) cos (−D)

β = cos (−I) sin (−D)

γ = sin (−I) .

(2.36)

I and D are thereby the inclination and the declination of the Earth’s gravity field,
respectively. Figure 2.2 presents those angles within the assumed North-East-Down
(NED) coordinate system of the gravity field. The inclination is the vertical angle to
the magnetic field from the horizontal plane. The declination is the horizontal angle
to the magnetic field from North.
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The negative signs in (2.36) account for the fact that I and D are commonly
defined in the NED system while this dissertation refers all values to the North-West-
Up (NWU) system. If all gravity gradients are known, the magnetic field can be

computed considering Poisson’s relation and the direction κ0 =
[
α β γ

]T
. The

components of the magnetic field vector are given below:

B1 =
µ0

4π

χH

Gρ
(αΓ11 + βΓ12 + γΓ13) , (2.37)

B2 =
µ0

4π

χH

Gρ
(αΓ21 + βΓ22 + γΓ23) , (2.38)

B3 =
µ0

4π

χH

Gρ
(αΓ31 + βΓ32 + γΓ33) . (2.39)

Those components are given with respect to the coordinate axes of the gravity field.
It is common, however, to measure the total magnetic field in direction of the mag-
netization as shown in the next computation step

B = αB1 + βB2 + γB3. (2.40)

While Poisson’s Relation is a valid theory, the question arises how practical it is in a
real world example. Remanent magnetization, for example, is very difficult to handle
as it can alter the direction of magnetization significantly. The key aspect is the ho-
mogeneity of the survey area. A comparison between magnetic and pseudo-magnetic
data of various areas in the USA shows evidence that Poisson’s Relation is hardly
applicable on a regional scale [Jekeli et al., 2011]. While, there, the compared maps
prove some correlation, highly magnetic features are not presented in the pseudo-
magnetic maps and, on the other hand, strong gravity signals caused by a change in
topography are not reflected in the magnetic maps. This lack in correlation is due
to the fact that the conditions of Poisson’s Relation are violated, namely the mag-
netization to density ratio (2.20) is not constant throughout the investigated area.
However, preliminary gradient measurements based on a relative gravity gravimeter
and magnetic field measurements based on a proton-precession magnetometer in the
same area show clearly a correlation on a local scale [Abt et al., 2011]. In conclusion,
the above experiments show that Poisson’s Relation strongly depends on the mass
density and magnetization and is only reasonable in a local area at a time. Since
this research concentrates only on small observation grids (100m× 100m), Poisson’s
Relation is confidently applied to derive statistical functions such as the covariances
between the gravity and the magnetic field. Furthermore, closed formulas for gravity
gradient signals generated by a specific source, can easily be transformed into closed
formulas for magnetic field signals as presented in [Telford et al., 1990]. Extra cau-
tion has to be paid if the survey area is located in an urban environment as other
artificial sources such as wires are likely to interfere with the magnetic measurements
and strongly overpower the signal of the sought magnetic anomaly.
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Figure 2.3: Simple Pendulum

2.2 Measurement Instruments

Studies of interest in Geodesy occur at all scales spanning from close-range, local,
regional, up to global applications. All data collecting sensors need, therefore, be
adjusted to the corresponding scale. Typically, sensors are divided into ground, air-
borne, and satellite instruments. Since, the MF application of this research applies
to a local area, mainly the ground instruments are of interest and will be presented
in the following. This section briefly introduces the basic concepts of the gravime-
ter, gravity gradiometer, and magnetometer. Detailed instrument descriptions and
mathematical derivations of the observation equations are provided in [Torge, 1989]
for gravity related measurements and in [Burger et al., 2006] and [Parasnis, 1997] for
magnetic related measurements.

2.2.1 Gravimeter

The early gravity measurements starting with Galileo Galilei are carried out with a
pendulum device (Figure 2.3) [Torge, 2001]. In an ideal mathematical case, a point
mass, m, is suspended from a massless string of a constant length, l, and freely swings
in the vertical plane with an oscillation period, T , at a small amplitude, ϕ0. Under
those circumstances the oscillation period is approximately expressed by

T = 2π

√
l

g
(2.41)
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as derived, for example, by [Fishbane et al., 2005, p.379] or [Halliday et al., 2001,
p.356]. Knowing the length of the string and measuring the oscillation period can
solve for gravity

g =
4π2l

T 2
. (2.42)

Any physical realization of the pendulum device leads to the problem to accurately
determine T and l, which are not stable quantities. Taking the difference between two
gravity readings of the same pendulum at two different observation points will reduce
some errors such as those caused by the unstable effect of the length, l. However,
even the most elaborate pendulum devices are still limited to an accuracy of 0.1mgal
[Parasnis, 1997].

Nowadays, a different approach results in more compact, less time-intensive, and
more accurate measurement devices. The instruments are thereby divided into ab-
solute and relative gravimeters. Absolute gravimeters, as for example the FG5
[Carter et al., 1994], are based on Galileo’s law of falling bodies [Fishbane et al., 2005,
p.45]

z =
1

2
gt2. (2.43)

The concept of a free falling mass avoids the additional force caused by the tension in
the string of the pendulum device. z is the local vertical distance the body covers over
a time period, t. Measuring both quantities solves for gravity under the assumption
that it is constant over distance. High accuracies are achieved by measuring the time
with a small atomic clock and by measuring the distance based on laser interferometry.
Due to the difficulty to accurately determine the starting point of the instrument, z0,
at time, t0, and due to small seismic accelerations, ż0, (2.43) is modified to

z (t) = z0 + ż0 (t− t0) +
1

2
g (t− t0)2 . (2.44)

This equation of three unknowns requires at least three measurements in order to be
solvable. An actual measurement at one station is based on several hundreds of mass
drops to average out most of the random errors. Absolute gravity measurements are
expensive and time-intensive and are, therefore, only used for special tasks such as
establishing a gravity network. The standard gravity applications mostly require just
a relative gravity measurement that can be acquired by the less expensive and more
practical relative gravimeter. Many systematic errors are thereby eliminated auto-
matically due to the differencing but the overall accuracy (0.01mgal [Torge, 2001]) is
less than in case of the absolute gravimeter (0.002mgal [Niebauer et al., 1995]).

Relative gravimeters are designed by the concept of a proof mass on an elastic
spring. A change of gravity between two stations is observed by the difference in
the extension of the spring. In order to increase the sensitivity of the spring the
concept of the zero-length spring is adopted. A zero-length spring is pre-stressed in
such a way that its extension equals its actual physical length, i.e. if no mass were
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Figure 2.4: Torsion Balance

attached it would theoretically collapse to zero length. A more advanced realization
of this basic concept is to attach the mass to a rotating lever, which is connected
to the spring. The torque applied to the spring in order to generate an equilibrium
of torques can be related to the torque generated by gravity. Since the elasticity of
the spring is the most critical feature of the relative gravimeter, the instrument is
internally kept at a constant temperature, under constant air-pressure, and shielded
from outside magnetic fields. Modern relative gravimeters such as, for example,
the CG-5 Scintrex Autograv System [SCINTREXLimited, 1997], already perform an
Earth tide reduction (based on input coordinates) as well as a drift control (based on
instrument calibration) in their observations. However, some drift and tares of the
spring are unavoidable, which cause changes in the zero reading of the instrument. In
order to reduce the resulting errors, a base station is repeatedly observed throughout
a measurement campaign, which allows to model the residual drifts. A further error
source in a practical application is the leveling of the instrument, which has a standard
deviation of 0.002mgal [Torge, 1989]. Overall, the measurements take a few minutes
per station.

2.2.2 Gradiometer

The first instrument to measure all independent components of the gravity gradient
tensor (except Γ33) is the torsion balance developed by Loránd Eötvös around 1900.
The instrument was developed from Coulomb’s torsion balance [Fishbane et al., 2005,
p.618] and is schematically drawn in Figure 2.4. The torsion balance consists of two
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Figure 2.5: Airborne Gradiometer Disk

equal masses, m, connected by a rigid horizontal beam of length, l. One mass is
lowered from the beam by the height difference, h. The horizontal components of
the gravity vector generate a torque acting on the two masses and cause a twist in
the torque wire, which is placed at the center of the instrument. Rotating the beam
around the vertical axis leads to an equilibrium of torques, which is described by a
combination of the gravity gradient components, Γ22−Γ11, Γ12, Γ13, Γ23 [Torge, 1989].
In order to estimate those components at least five observations at various azimuths
are necessary. The observations are very laborious and time intensive, especially in
uneven terrain. This technique is, therefore, rather outdated.

A more common approach based on the somewhat different concept of differen-
tial accelerometry is used in systems that are currently being deployed on aircraft
and ships. Airborne gradiometry, in particular, is capable to cover a regional area
in a short time span with a point resolution between 50m − 2000m and a standard
deviation of 5E [Murphy, 2004]. Bell Aerospace developed, for example, a rotating
gradiometer system that is now operated by Bell Geospace, Inc. This Full Tensor
Gravity Gradiometry system (FTG), contains two pairs of accelerometers mounted
orthogonally on a rotating disk [Jekeli, 1988] as illustrated in Figure 2.5. The dif-
ference in the reading of one accelerometer pair is the gravity gradient along their
particular axis. The rotation of the disk modulates the undesired difference in scale
factor of the accelerometer pair and allows to adjust for this error. Furthermore,
the rotation modulates the gradient observation to a higher frequency and allows to
eliminate the low frequency noise (red noise) caused by the individual accelerometer.
Three of those disks containing each two accelerometer pairs are mounted together in

21



such an arrangement that the five independent gravity gradients can be determined by
linearly combining the accelerometer differences of the individual disks [Jekeli, 1988].
The introduction of two more accelerometer pairs on each disk will lead to redundant
measurements that improve the precision. Furthermore, if five rather than three of
those disks are appropriately mounted together, it will be possible to measure each
of the nine tensor components independently [Jekeli, 2006]. Independent measure-
ments are important when postprocessing the data set. An identified anomaly in one
gravity gradient component is expected to have a corresponding response in the other
components. If this is not the case, the signal of the assumed anomaly is declared as
noise and removed from the data set. In contrast to airborne gravity measurements,
gravity gradiometry automatically eliminates the first order acceleration of the air-
craft by taking the differences of the accelerometers. The same advantage also applies
if the gradiometer is alternatively mounted on a vessel for marine research.

The first full-tensor gravity gradiometer orbiting the Earth has been launched with
the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite in
2009 [Rummel et al., 2000]. This might inspire researchers to a further improvement
of ground gravity gradiometry as well and to develop a more accurate and feasible
alternative to the torsion balance.

2.2.3 Magnetometer

The two types of magnetometers that are widely in use are the proton-precession
magnetometer and the flux-gate magnetometer. Both instruments measure the total
magnetic field as described in Section 2.1.2. The proton-precession magnetometer was
developed by Varian Associates in 1955. It consists of a cylindrical container filled
with a hydrogen-rich fluid and is surrounded by a coil. The flow of a direct current
through that coil generates a magnetic field with field lines parallel to the axes of
the coil. A few hydrogen protons in the liquid align themselves to the resultant of
the generated and the magnetic field of the Earth. As soon as the direct current is
interrupted, the protons are not instantaneously reverted to their original direction
but will instead precess under the torque caused by the total magnetic field, B. This
precession causes a small alternating voltage in the coil. The precession frequency,
fprecess, of this voltage is the measured quantity as it is proportional to the magnitude
of the total magnetic field

B =
2πfprecess

γgyro

. (2.45)

The voltage decays exponentially as the protons reach their original orientation. The
proportionality constant in (2.45) is called the gyromagnetic ratio of a proton, γgyro =
2.667520 · 108 (T s)−1. The major advantage of the proton-precession magnetometer
is that it does not require leveling or stabilization of the instrument. This ensures a
very rapid and easy measurement procedure for collecting ground as well as airborne

22



data. A disadvantage is that it, unlike the flux-gate magnetometer, only determines
the quantity of the total magnetic field but not its direction.

The flux-gate magnetometer was invented by Victor Vacquier in the 1930s. Ten
years later, it was modified to make it also applicable for airborne projects. A typical
flux-gate magnetometer consists of two parallel metal bars with high permeability.
Each bar is wrapped by a primary coil. The windings of these coils are, however,
reversed so that the flow of an alternating current induces two magnetic fields that
are antiparallel in orientation. A set of two secondary coils are wrapped around the
primary coils. Under the assumption of no external magnetic field, the voltage in
the secondary coils are zero as both induced magnetic fields cancel each other out.
If the instrument is aligned along a component of an external field though, one bar
will damp the external field while the other will reinforce it. Due to this difference
a voltage is induced in the secondary coils. This induced voltage is proportional to
the corresponding magnetic filed component of the external field. Depending on the
orientation of the instrument, the magnetic field is measured in different directions.
This is an advantage but at the same time makes the placing of the instrument in an
actual survey more challenging.

In general, magnetic measurements are performed more rapidly than gravity mea-
surements but they are also more vulnerable to disturbing sources from the outside.
The operator can already cause magnetic noise with the zipper of his jacket or the
metal rings that hold his shoelaces.

2.3 Matched Filter

The detection of the mass anomaly is here solved by applying a Matched Filter (MF).
The MF is in general used as a technique to identify the signal of a specific source
within a noisy background field. The sought signal generated by the source is thereby
“matched” with the observed data in the area of interest. This requires that the
signal generated by the source is known, which is often the case for man-made mass
anomalies. Geologic features, on the other hand, can most likely be approximated
by an object of simple known structure as, for example, a prism or a cylinder. If
the shape of the geologic feature is more advanced, such as a fault, the combination
of several prisms is suggested. Furthermore, the MF requires that the noise of the
background field can be statistically described by a covariance function as part of the
MF input. Since the MF searches for the maximum Signal-to-Noise Ratio (SNR), it
is able to detect a signal hidden within the noise where other techniques might fail.
The MF is simple to implement and does not require too much computational effort.
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2.3.1 History

Due to the general character of the MF, its applications range over a huge variety of
different tasks. Some common applications exist in communication, medicine, elec-
trical engineering and astrophysics. Specific MF examples, that are closer related
to geosciences, are the processing of stellar images in order to detect, recover, and
track near-Earth asteroids [Gural et al., 2005] as well as the processing of InSAR (In-
terferometric Synthetic Aperture Radar) measurements in order to study the crustal
deformation of the Earth [Zebker, 2000]. Matched filtering of infrared images with
a three-dimensional object model is used by [Lundberg and Gu, 1999] to detect and
locate land mines in the shallow subsurface. The infrared images account for the
fact that land mines produce a thermal contrast to the soil over time. A further MF
example is given by [Dobbs et al., 2005], who develop a low-cost fiber-based LIDAR
(Light Detection and Ranging) method for atmospheric exploration of the Earth.

Contributions of the MF to the studies of the Earth’s gravity field are rare and this
suggests, therefore, a new area to explore. Based on the available literature, the MF
is slightly more common for magnetic applications. The simultaneous combination of
magnetic field data, gravity, and gravity gradients in a MF process still needs to be
further investigated. One of the early approaches based on an MF and magnetic data
is provided by [Naudy, 1971]. He developed a method that locates a magnetic anomaly
source such as a bottomless prism (dike) or a thin layer and determines their depths.
His method is based on the MF although he does not name it so. The aeromagnetic
data of an observed profile are compared to the theoretically generated profile. The
profile signal is separated into a symmetric and an anti-symmetric component. The
MF is applied twice. First to the symmetric part and then to the anti-symmetric part
after it has been made symmetric by reducing it to the pole, i.e. modifying the mag-
netic data as if the inclination, I, (2.36) were 90 ◦. A further MF example provided
by [Keating, 1995] is based on magnetics and the detection of kimberlites, a major
source for diamonds. Kimberlites are best modeled by a finite vertical cylinder. This
model and the actual magnetic data are compared by a pattern recognition technique
that involves a moving window. [Keating, 1995] does not provide any detailed for-
mulas but his ideas sound similar to matched filtering. The drawbacks are that the
diameters and depths of the kimberlites must be estimated a priori. An application
that is based on the gravity field of the Earth is [White et al., 1983] where the MF is
used to locate seamounts from satellite radar altimetry. Airborne gravity gradients
are applied in [Dumrongchai, 2007]’s project. He uses the MF as a tool to detect
man-made mass anomalies in the shallow subsurface. The present dissertation can
be seen as a continuation and extension of this project applied to local ground data.
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2.3.2 Mathematical Derivation

The MF is a convolution of the input vector, z, which contains the observations, and
the filter function, h, leading to the equation

y (xr) =
∑
j

hT (xr − xj) z (xj) =
∑
j

hT (xj) z (xr − xj) (2.46)

where y is the scalar filter output as also described by [Dumrongchai, 2007] and
[Jekeli and Abt, 2010]. All values are here discrete and depend on their spatial co-
ordinate x. It is assumed that the observed points have a constant interval and lie
on a horizontal plane. The vertical coordinate is, therefore, neglected. The hori-
zontal coordinate can either describe a profile, xj =̂ xj1 , or a grid of observations,
xj =̂ xj1,j2 = (xj1 , xj2) with j1 = j2 = 1, 2, . . . . In case of a survey grid, each sum-
mation in (2.46) and the following equations is replaced by a double sum over both
horizontal coordinates. The observation vector, z, is defined by the summation of the
sought signal, s, and of the noise vector, n, and can be written as

z (xj) = s (xj − xm) + n (xj) . (2.47)

While the sought signal is generated by the source at the unknown location, xm, the
noise vector is mainly generated by the correlated gravity background field as well as
by some random instrument errors. Hence, the MF output can be split into a sought
signal and a noise part after inserting (2.47) into (2.46):

y (xr) =
∑
j

hT (xj) s (xr − xj − xm) +
∑
j

hT (xj)n (xr − xj). (2.48)

The Signal-to-Noise Ratio (SNR) of the MF is here defined by the squared norms of
the sought signal and noise part:

SNR (xr) =

(∑
j

hT (xj)s (xr − xj − xm)

)2

ε

(∑
j

hT (xj)n (xr − xj)

)2
 . (2.49)

ε stands for the statistical expectation as the actual values of the noise are unknown.
The input of the MF requires that the noise is statistical described by a covariance
matrix of the following expression:

cov
(
n (xr − xj) , n (xr − xk)

)
= ε
(
n (xr − xj)n (xr − xk)

)
. (2.50)

The noise is assumed to be a Gaussian stationary process with a zero-mean. The
covariance function that describes this noise, therefore, depends only on the horizontal
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coordinate differences. The notation of this covariance function is defined as:

φ
(
(xr − xj)− (xr − xk)

)
= φ

(
−xj − (−xk)

)
=̂ φ (−xj,−xk) .

(2.51)

Here, the coordinate difference between two points is defined as the coordinates of
the first observation point minus the coordinates of the second observation point. If
the values of the background field were uncorrelated φ would be a diagonal matrix.
However, it is assumed that the background field is correlated and that φ is a full
matrix.

After the derivation of the noise covariance matrix , it is now possible to determine
the filter function, h. The noise part can be described by the denominator of (2.49)

P (xr) =
∑
j

∑
k

hT (xj)φ (−xj,−xk)h (xk) . (2.52)

A more compact notation of the summations is introduced in order to facilitate the
derivation of the filter function. For that reason all h (xj) are summarized in one
vector, h, and all covariance submatrices, φ, are summarized in one global covariance
matrix, Φ−, where the minus sign in the index is a reminder of the negative input
coordinates (2.51). In the same way all signal values of the summation in (2.48) are
summarized in one vector sr,m =̂ s (xr − xj − xm). Considering this vector notation,

P (xr) = hTΦ−h (2.53)

presents the noise and
Q (xr) =

(
hT sr,m

)2
(2.54)

presents the signal part (numerator of (2.49)) of the MF, respectively.
The aim is to define a filter function that maximizes the SNR at the location of

the sought signal, xr = xm. In that specific case the signal vector, sr,m, is given by

sm,m =
∑
j

s (−xj) =̂ s−. (2.55)

The SNR is independent of the scale of the filter function (2.49) and P is independent
of the xr-coordinate. In conclusion, the denominator of (2.49) can be represented by a
positive constant, const2. A cost function with Lagrange multiplier [Bronshtĕın, 2007,
p.403] is established,

Λ =
(
hT s−

)2
+ λ2

(
const2 − hTΦ−h

)
, (2.56)

that maximizes Q (2.54) under the constraint that P (2.52) equals const2. Taking
the derivatives of Λ with respect to the two unknowns lead to the two equations:

∂Λ

∂h
= 2hT s−sT− − λ2

(
hTΦ− + hTΦT

−
)

(2.57)
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and
∂Λ

∂ (λ2)
= const2 − hTΦ−h. (2.58)

The next computational step is achieved by setting the derivatives to zero and by
assuming that the covariance matrix is symmetric.

λ2hTΦ− = hT s−sT− (2.59)

hTΦ−h = const2 (2.60)

Multiplying (2.59) by h from the right on both sides and inserting (2.60) solves for
the maximum SNR:

λ2 =
hT s−sT−h

const2
. (2.61)

Taking the transpose of (2.59) and then multiplying by Φ−1
− from the left on both

sides of the equation computes the next line

Φ−1
− s−sT−h = λ2h. (2.62)

Φ− is always invertible. Φ−1
− s−sT− is a matrix of rank 1 and has, therefore, only one

non-zero eigenvalue. The corresponding eigenvector is

h =
const√
sT−Φ−1

− s−

Φ−1
− s− (2.63)

for the eigenvalue
λ2 = sT−Φ−1

− s− (2.64)

based on (2.61) and (2.62). This eigenvalue also equals the trace of the matrix,Φ−1
− s−sT−.

Since the scale of the filter has no influence on the SNR of the MF, as stated
above, const2 is simply set to 1. This results in the filter function

h =
1

λ
Φ−1
− s− (2.65)

Turning back to the original notation including summations, the filter function is
expressed by

h (xj) =
1

λ

∑
k

φ−1 (−xj,−xk) s̄ (−xk). (2.66)

While the parameter s in (2.47) stands for the actual sought signal generated by the
source, the parameter s̄ in (2.66) denotes the modeled sought signal, which ideally
equals s but might differ in practice. The superscript ‘−1’ indicates that the matrix
element, φ, is taken from the inverted covariance matrix, Φ, and does not stand for
the inverse of the individual matrix element.
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The filter function is scaled by the reciprocal of λ derived from the eigenvalue

λ2 =
∑
j

∑
k

s̄T (−xj)φ−1 (−xj,−xk) s̄ (−xk), (2.67)

which is also the maximum of the SNR at the location xr = xm:

max
r

(
SNR (xr)

)
= λ2. (2.68)

The final equation for the MF output is given by

y (xr) =
1

λ

∑
j

∑
k

s̄T (−xk)φ−1 (−xj,−xk) z (xr − xj). (2.69)

The filter function, h, is determined from the covariances, φ, and the sought sig-
nal, s. The matrix φ contains the covariances of the background field noise at the
corresponding observation points.

Due to the assumed zero-mean of the noise, the statistical mean of the filter output
becomes

µr = ε
(
y (xr)

)
=

1

λ

∑
j

∑
k

s̄T (−xk)φ−1 (−xj,−xk) s (xr − xj − xm) (2.70)

and the variance of the filter output is

var
(
y (xr)

)
= 1 (2.71)

as derived in [Jekeli and Abt, 2010]. Setting xr = xm in (2.70) and inserting (2.67)
leads to the maximum filter output

max
r

(
ε
(
y (xr)

))
= ε
(
y (xm)

)
= λ. (2.72)

This validates the initial goal to design a filter function that locates the sought signal
by the maximum filter output.

Due to the subtraction of coordinates in the implementation of the MF (2.69)
and through the above derivation, some signal and observation values lie outside the
domain of the finite survey area. This problem is solved by periodically repeating the
signal and observation of the entire survey area with a period equal to the initially
defined domain. An alternative solution would be zero-padding along the borders of
the defined survey area. However, since the noise in a real application is unlikely to
be zero, periodicity is a more realistic generalization. In addition, periodicity is a
requirement if the MF computations are carried out in the frequency domain using
the discrete Fourier transform. Since the scope of this research is limited to a local
area with a manageable amount of survey points, a transfer into the frequency domain
is not necessary at this point.
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Chapter 3: Simulations

3.1 Setup

The ability of the Matched Filter (MF) to detect a local mass anomaly in the shallow
subsurface is first tested by setting up a simulation that describes the typical envi-
ronment of a future application. The area of interest is designed to be level and of
100m2 size. The data points of that area lie on a grid with a constant point interval
of 1m along both directions. In order to simplify the computations it is assumed that
the observations of different sensors (gravity, gravity gradients, magnetic field) refer
to exactly the same observation points and one observation point lies exactly above
the center of the sought anomaly. Furthermore, no remanent magnetization is taken
into account.

3.1.1 Sought Signal

The sought signal, s, is generated by a three-dimensional prism, which is defined by
its center coordinates

[
x1
′ x2

′ x3
′ ] T and its width, a, length, b, and height, c, as

drawn in Figure 3.1. Throughout this dissertation, a local North-West-Up (NWU)
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Figure 3.1: 3d Prism simulates Mass Anomaly

coordinate system is utilized. As derived in [Jekeli, 2003a], the gravity gradient com-
ponents above such a prism can be computed by closed formulas:

Γ11 = arctan
(x2 − x2

′) (x3 − x3
′)

(x1 − x1
′) r

∣∣∣∣a2
x1=−a

2

∣∣∣∣∣
b
2

x2=− b
2

∣∣∣∣∣∣
c
2

x3=− c
2

Γ22 = arctan
(x1 − x1

′) (x3 − x3
′)

(x2 − x2
′) r

∣∣∣∣a2
x1=−a

2

∣∣∣∣∣
b
2

x2=− b
2

∣∣∣∣∣∣
c
2

x3=− c
2

Γ33 = arctan
(x1 − x1

′) (x2 − x2
′)

(x3 − x3
′) r

∣∣∣∣a2
x1=−a

2

∣∣∣∣∣
b
2

x2=− b
2

∣∣∣∣∣∣
c
2

x3=− c
2

Γ12 = − ln (x3 − x3
′ + r)|

a
2

x1=−a
2

∣∣∣ b2
x2=− b

2

∣∣∣∣ c2
x3=− c

2

Γ13 = − ln (x2 − x2
′ + r)|

a
2

x1=−a
2

∣∣∣ b2
x2=− b

2

∣∣∣∣ c2
x3=− c

2

Γ23 = − ln (x1 − x1
′ + r)|

a
2

x1=−a
2

∣∣∣ b2
x2=− b

2

∣∣∣∣ c2
x3=− c

2

.

(3.1)
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Those closed formulas correspond to the magnetic gradients formulas presented in
[Sharma, 1997, Appendix C]. However, the latter are based on coordinate axes point-
ing North-East-Down (NED) while (3.1) is based on the NWU axes system. De-
pending on the type of gradiometer not all of the above gradient components are
necessarily measured. The corresponding gravity value is

g3 =− (x3 − x3
′) arctan

(
(x1 − x1

′) (x2 − x2
′)

(x3 − x3
′) r

)
− (x1 − x1

′) ln (x2 − x2
′ + r)

− (x2 − x2
′) ln (x1 − x1

′ + r)|
a
2

x1=−a
2

∣∣∣ b2
x2=− b

2

∣∣∣∣ c2
x3=− c

2

(3.2)

in the NWU coordinate system. It is conventional to define gravity as pointing
positively downward. Since the vertical coordinate axis is here pointing upwards the
following relation holds

g3 = − ∂T
∂x3

(3.3)

with T being the disturbing potential (Section 2.1.1).
In the current example, the following parameters of the prism are used: a = 1m,

b = 100m, and c = 2m. The length of the prism, b, is set arbitrarily long to reduce
the two-dimensional detection problem into a one-dimensional problem. The sought
signal has the same dimensions as the observations. In order to derive the sought sig-
nal for the filter function the horizontal center coordinates of the prism are set to zero
in (3.1) and (3.2) while the computation points are x1 = − (N1−1)

2
∆x1, . . . ,

(N1−1)
2

∆x1

and x2 = − (N2−1)
2

∆x2, . . . ,
(N2−1)

2
∆x2. N1 and N2 are the dimensions of the obser-

vation grid. The point interval is given by ∆x1 and ∆x2. Assuming an observation
field of 101× 101 grid points with a 1m spacing leads to x1 = x2 = −50, . . . , 50. If
the vertical center coordinate of the prism is, for example, x3

′ = −3m, the depth to
the top of the prism defined above is 2m, assuming the observation grid is at zero
elevation, x3 = 0m.

In order to ensure that the gravity gradients are given in Eötvös, (3.1) is multiplied
by the Gravitational Constant, G = 6.673 ·10−11 m3/ (kg s2), a scale factor of 109, and
the density, ρ. However, a void is not simulated by zero density but by the assumed
density difference, ∆ρ = −2670 kg/m3, in contrast to the surrounding rocks. The
same multiplications hold for gravity (3.2) in milligal, except that the scale factor is
105. The magnetic field generated by the prism is just a combination of the above
gravity gradients (3.1) applying Poisson’s Relation (2.40). Both the Gravitational
Constant and the density contrast thereby cancel out. The scale factor is also 109

implying nano-Tesla. Similarly, the magnetic field of the void does not include zero
magnetization but the difference in magnetization ∆M = ∆χH = −0.005 · 5600 nT.
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Figure 3.2: Grid of Γ13 Signal

The assumed inclination and declination in radians in the NED system are

I = 68◦
π

180◦
(3.4)

and
D = −7◦

π

180◦
. (3.5)

The actual angles for a specific day are provided online by the National Oceanic and
Atmospheric Administration (NOAA).

The simulated sought signal in case of the gradient component Γ13, is plotted in
Figure 3.2. The center of the signal (origin of source coordinate system) is moved
to the center of the simulated field. The signal is generated by a prism of the above
dimensions at 2m depth to the top of the prism. The length of the prism is clearly
reflected in the x2-direction. The sought signal is zero or close to zero anywhere but
above the mass anomaly or in its proximity.

The extension of the mass anomaly in the x2-direction is designed in order to
reduce the initial two-dimensional detection problem to a one-dimensional problem.
Now, only the x1-coordinate of the location is of interest. The sought signal can,
therefore, be described by a single horizontal profile taken from the entire grid. The
center profile for gravity, the gravity gradients, and the magnetic field is plotted in
Figure 3.3 and Figure 3.4, respectively. Since the simulated signal does not vary
in x2-direction, the gravity gradient components Γ12 and Γ23 equal zero. Γ22 is not
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Figure 3.3: a) - d) Sought Signal Profiles

33



� �� �� �� �� ���
���

����

���

����

���

����

�
�
���

��
�

�
��
�������

� �� �� �� �� ���
��

����

����

����

����

�

���

���

���

���

�

�
�
���

��
�

�
��
�������

� �� �� �� �� ���
���

���

���

���

���

���

���

���

���

�

��

�
�
���

��
�

�
��
�������

� �� �� �� �� ���
���

���

���

���

���

�

��

��

�
�
���

��
�
�

���������

Figure 3.4: e) - h) Sought Signal Profiles
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exactly zero due to the finite extension of the prism (100m in x2-direction) but as
shown here it is still very small (maximum is 0.28E). Here, due to Laplace’s Equation
(2.8), Γ11 = −Γ33. The asymmetry in B is caused by the direction of the magnetic
field.

If an application requires to model the signal of a source that is more advanced
in its shape, one possible solution is to combine several three-dimensional prisms
together in a way that best fits this shape. The resulting gravity gradients are the
total sum of the gravity gradients generated by the individual prisms. Alternatively,
other closed formulas as, for example, for a dike or fault [Telford et al., 1990, p.40]
can be implemented. This dissertation will only focus on single prism examples but
it can easily be updated for other source signal shapes. It has to be regarded though
that the signal is restricted to a local extension, i.e. the sought signal is zero for most
part of the profile along x1 except above or close to the anomaly. Otherwise, the MF
will encounter edge effects that make it difficult to identify the sought signal.

3.1.2 Observation

The observation vector (2.47), z, consists of a superposition of three signals:

1. The sought signal, s, at the location, x1 = xm,

2. The noise signal of the background field, and

3. Some random instrument noise.

The sought signal is generated as in Section 3.1.1 but shifted to the left side (x1-
direction) of the field to simulate a new “unknown” location of the source at x1 = 30m.
The random instrument noise is simulated by white noise with zero mean and the
respective standard deviations for gravity, σg, gravity gradients, σΓ, and the magnetic
field, σB, (Table 3.1).

The major part of the observation, however, is derived from the background
field. The background field is based on a covariance model (Section 3.2) for the
disturbing potential, T , between two points at x and x′. The model is introduced
in [Jekeli, 2003b] and describes a stationary, Gaussian, stochastic process with zero-
mean. The assumption that those properties also apply to the background field is
further discussed and justified in [Jekeli and Abt, 2011]. The Fourier transform of
the covariance of T results in the corresponding Power Spectral Density (psd) in the
frequency domain

ΦT (µ1, µ2;x3, x3
′) =

∑
j

σ2
j

αjµ
e
− 2πµ
αj e−2πµ(x3+x3′) (3.6)

containing the model parameters αj and σj, which are empirically determined from
actual data and given in Appendix A. The model presents a sum of functions based
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on the different model parameter pairs. The psd depends on the cyclical frequencies

µ1 =
n1

∆x1N1

µ2 =
n2

∆x2N2

(3.7)

and

µ =
√
µ2

1 + µ2
2, (3.8)

which are defined by the integers

n1 = −(N1 − 1)

2
, . . . , 0, . . . ,

(N1 − 1)

2

n2 = −(N2 − 1)

2
, . . . , 0, . . . ,

(N2 − 1)

2
,

(3.9)

the point intervals (∆x1 = ∆x2 = 1m), as well as the dimension of the observation
grid (N1 = N2 = 101).

Assuming that the observation grid is level and at zero height (x3 = x3
′ = 0m),

the psd will simplify to

ΦT (µ) =
∑
j

σ2
j

αjµ
e
− 2πµ
αj . (3.10)

The spectrum of the disturbing potential, T0, is finally computed from the psd by

(T0)n1,n2
= (ηn1,n2 + iζn1,n2)

√
∆x1N1∆x2N2

√
ΦT (µ) (3.11)

(compare (3.45)).
The index n1, n2, indicates that T0 is a matrix of the same dimensions as those of

the observation grid in the space domain (N2 × N1). The psd, ΦT , only depends on
the magnitude of the cyclical frequencies µ, which on the other hand depends on n1,
n2. The two newly introduced variables,

ηn1,n2 ∼ N
(

0,
1√
2

)
ζn1,n2 ∼ N

(
0,

1√
2

)
,

(3.12)

are normally distributed random numbers that will synthesize a random background
field. That means a specific set of these random numbers defines one specific back-
ground field in the simulations. Up to 1000 different background fields are simulated
and evaluated in this research. The two variables have a zero-mean and a standard
deviation of 1/

√
2 (3.12). This ensures that the variance of the psd of the synthesized

field per frequency is equal to the psd of the model.
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In the space domain, the gravity and gravity gradients are derived from the first
and second spatial derivative of the disturbing potential, respectively. Similar but
simpler relationships hold in the frequency domain, leading to the spectra of gravity

G1 = i2πµ1T0

G2 = i2πµ2T0

G̃3 = −2πµT0

(3.13)

and gravity gradients
G11 = −4π2µ2

1T0

G12 = −4π2µ1µ2T0

G13 = −i4π2µ1µT0

G22 = −4π2µ2
2T0

G23 = −i4π2µ2µT0

G33 = 4π2µ2T0.

(3.14)

G̃3 implies the consequent derivative in the NWU coordinate system. However, since
gravity is commonly defined as positive downward (in direction towards the mass
anomaly), G3 = −G̃3 will be utilized in the following. This step is equivalent to the
definition of equation (3.3) in the space domain.

The Inverse Fourier Transformation of the above spectra provides the gravity
vector (g1, g2, g3) and gravity gradient tensor components (Γ11, Γ12, Γ13, Γ22, Γ23, Γ33)
in the space domain. Furthermore, the gradients can be combined as, for example,

2Γ12

Γ22 − Γ11,
(3.15)

which is measured in the specific instrument frame by the Bell Aerospace/Lockheed
Martin gradiometer [Jekeli, 1988].

In order to preserve consistency, all gravity and gravity gradient components are
based on the same T0, which again is defined by its specific set of random variables,
η and ζ. The magnetic field, B, in the space domain is computed, by combining
the gravity gradients according to Poisson’s Relation (2.40) with the values of (2.10),
(3.4), and (3.5).

Figure 3.5, Figure 3.6, and Figure 3.7 present the background realizations of the
first out of 1000 fields for g3, Γ33, and B, respectively. The black line in each plot
shows a profile at x2 = 37m, which is taken for the further simulations. Instead of
searching the entire area of 100m2, only this profile of 100m length will be analyzed.
The simulated setup is shown by Figure 3.8. It has to be noted that while the entire
area has a zero-mean this is not necessarily true for the single profile. At this point,
the synthetic observations are not entirely consistent with the covariance function
anymore, which assumes a zero-mean.
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Figure 3.9 a) summarizes the three signals that go into the superposition of the
observation vector, z, in case of the gradient component Γ33. The prism is modeled
at a depth of 2m. Figure 3.9 b) plots the resulting observation profile. The center of
the sought signal at x1 = 30m is not obvious in these observations.

3.2 Covariance Model

The covariance model [Jekeli, 2003b], which is used to describe the noise of the back-
ground field, is based on the following planar reciprocal distance model

φT (dx1, dx2;x3, x3
′) =

∑
j

σ2
j√(

1 + αj (x3 + x3
′)
)2

+ α2
jr

2

. (3.16)

It is a sum of functions with various model parameter values, αj and σj. The psd
(3.10) is the Fourier Transform of (3.16) including the same model parameters (Ap-
pendix A); therefore, the covariance model is consistent with the synthetically gener-
ated background field. The covariance matrix, φT , designed for the disturbing poten-
tial, T , is symmetric and positive definite since the noise generated by the background
field is assumed to be stationary with a zero-mean.

�
�
����������������

�
�
���

� �
��
�

�� �� �� �� ���

��

��

��

��

��

��

��

��

��

���

�����

�����

�����

�����

�

����

����

����

����

���

Figure 3.5: g3 Background with Observation Profile
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Figure 3.6: Γ33 Background with Observation Profile
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Figure 3.7: B Background with Observation Profile
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Figure 3.8: Schematic Setup of Observation Profile

The horizontal coordinate differences,

dx1 = x1 − x1
′

dx2 = x2 − x2
′,

(3.17)

are defined as the coordinates of the first point minus the coordinates of the second
point. The horizontal distance is, therefore,

r =

√
dx2

1 + dx2
2. (3.18)

Assuming again, that all points lie on a planar grid at a height of x3 = x3
′ = 0 and

defining the following abbreviations

βj = 1 + αj (x3 + x3
′)

Mj = β2
j + α2

jr
2 (3.19)
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Figure 3.9: a) Observation Components b) Total Observation
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Observation Type Instrument Noise

Gravity σg 0.01mgal
Gravity Gradients σΓ 3E
Magnetic Field σB 1 nT

Table 3.1: Sensor Specific Standard Deviations

where βj = 1, leads to the simplified covariance model for the disturbing potential T

φT (dx1, dx2) =
∑
j

σ2
j√
Mj

. (3.20)

φT is isotropic as it only depends on the distance, r, between two points, (x1, x2) and
(x1
′, x2

′).
The element in the MF function, φ−1 (−xj,−xk), as defined in (2.51) and derived

in Section 2.3.2, is an element (for one data type) or a submatrix (for a combination
of data types) of the inverse of the entire covariance matrix, Φ. The covariance matrix
is a summation of the matrix that describes the noise of the background field, Φbg,
and the matrix that describes the instrument noise, Φi, as given by

Φ = Φbg + Φi. (3.21)

While Φbg is based on the model function (3.16) and will be derived in the following
sections, Φi is simply a diagonal matrix as the instrument noise is uncorrelated. The
diagonal elements are the noise variances of the corresponding sensor. Typical stan-
dard deviations for gravimeter, gradiometer, and magnetometer noise are provided
in Table 3.1. The noise generated by the background field and by the instrument is
uncorrelated to each other. The dimension of Φ is

(N1 ·N2 · ndata)× (N1 ·N2 · ndata) (3.22)

with ndata being the number of observation types. For example, if ndata = 3 for an
observation combination of g3, Γ33, and Γ13, and a profile (N2 = 1) of N1 = 101
observed points leads to a covariance matrix of 303× 303 size. While the covariance
model for gravity and gravity gradients is designed for local and regional applications,
it should be reminded, that the following covariances for the magnetic field only hold
within a restricted area where the conditions for Poisson’s Relation (2.20) are not
violated.
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3.2.1 Gravity and Gravity Gradients

The covariances of the gravity and gravity gradient tensor components can be derived
by applying covariance propagation [Moritz, 1989, p.86] to the basic covariance model
of the disturbing potential (3.20). This is possible since g and Γ are directly related
to T (compare (2.3), (2.4), and (2.5)).

The covariances of the components g3,

φg3 =
σ2
jα

2
j

M
5
2
j

(
2β2

j − α2
jr

2
)

, (3.23)

and Γ33,

φΓ33 =
3σ2

jα
4
j

M
9
2
j

(
8β2

j − 24β2
jα

2
jr

2 + 3α4
jr

4
)

, (3.24)

are also isotropic but other components might depend on dx1 or dx2 (3.17).
Covariance propagation also computes the cross-covariances between the gravity

and gravity gradients, as e.g.

φg3,Γ33 =
3σ2

jα
3
jβj

M
7
2
j

(
−2β2

j + 3α2
jr

2
)

= φΓ33,g3 . (3.25)

Furthermore, the covariances of linear gravity gradient combinations (3.15) such as
described in Section 3.1.2 are also derived by covariance propagation assuming a zero
mean:

φΓ22−Γ11 = ε
(
(Γ22 − Γ11) (Γ22 − Γ11)

)
= ε

(
Γ2

22 − 2Γ11Γ22 + Γ2
11

)
= φΓ11 + φΓ22 − 2φΓ11,Γ22 ,

(3.26)

φ2Γ12 = 4φ2
Γ12

, (3.27)

φ2Γ12,Γ22−Γ11 = 2φΓ12,Γ22 − 2φΓ12,Γ11 . (3.28)

All of the above covariance equations refer to the NWU coordinate system where
gravity is defined to point positively downward according to (3.3).

3.2.2 Gravity Gradients and Magnetic Field

Poisson’s Relation states that under certain conditions (2.20) the magnetic field is
directly related to the gravity gradients. Hence, covariances between B and Γ can be
propagated in the same way (assuming zero mean) as the covariances between g and
Γ, if the conditions are fulfilled and the direction cosines of magnetization (α, β, γ)
are known (2.36). The resulting covariances, for example, for Γ33 and B are

φΓ33,B = αφΓ33,B1 + βφΓ33,B2 + γφΓ33,B3 (3.29)
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and
φB,Γ33 = αφB1,Γ33 + βφB2,Γ33 + γφB3,Γ33 . (3.30)

The above covariances are based on the covariances between gravity gradients and
the magnetic field vector components:

φΓ33,B1 =
µ0χH

4πGρ
(αφΓ33,Γ11 + βφΓ33,Γ12 + γφΓ33,Γ13) , (3.31)

φΓ33,B2 =
µ0χH

4πGρ
(αφΓ33,Γ12 + βφΓ33,Γ22 + γφΓ33,Γ23) , (3.32)

φΓ33,B3 =
µ0χH

4πGρ
(αφΓ33,Γ13 + βφΓ33,Γ23 + γφΓ33) , (3.33)

φB1,Γ33 =
µ0χH

4πGρ
(αφΓ11,Γ33 + βφΓ12,Γ33 + γφΓ13,Γ33) , (3.34)

φB2,Γ33 =
µ0χH

4πGρ
(αφΓ12,Γ33 + βφΓ22,Γ33 + γφΓ23,Γ33) , (3.35)

φB3,Γ33 =
µ0χH

4πGρ
(αφΓ13,Γ33 + βφΓ23,Γ33 + γφΓ33) . (3.36)

A complete list of the gravity gradient and magnetic field covariances is provided in
Appendix B. The auto-covariance for B is also derived by covariance propagation

φB = α2φB1 + 2αβφB1,B2 + β2φB2 + γ2φB3 (3.37)

where some cross-covariances cancel out according to the negative symmetries in
the covariances between certain gradient combinations. Equation (3.37) includes the
auto-covariances of the magnetic field vector components:

φB1 =

(
µ0χH

4πGρ

)2 (
α2φΓ11 + 2αβφΓ11,Γ12 + β2φΓ12 + γ2φΓ13

)
, (3.38)

φB2 =

(
µ0χH

4πGρ

)2 (
α2φΓ12 + 2αβφΓ12,Γ22 + β2φΓ22 + γ2φΓ23

)
, (3.39)

φB3 =

(
µ0χH

4πGρ

)2 (
α2φΓ13 + 2αβφΓ13,Γ23 + β2φΓ23 + γ2φΓ33

)
. (3.40)

A full list of the magnetic field covariances is provided in Appendix C.
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3.2.3 Magnetic Field and Gravity

In contrast to Section 3.2.1 and Section 3.2.2, there is no simple relationship between
gravity and the magnetic field. This complicates a covariance propagation in the
space domain. For that reason the problem is transformed to the frequency domain.
[Jekeli, 2009] derives an expression for the spectrum of the magnetic field. This
expression utilizes Poisson’s Relation in the frequency domain and is either based on
the spectrum of the gravitational potential

B(V ) (µ1, µ2, z) =
µ0χH

4πGρ
(2πi (αµ1 + βµ2)− γµ)2 V (µ1, µ2, z) , (3.41)

the spectrum of the gravity vector components, as, for example,

B(g3) (µ1, µ2, z) =
µ0χH

4πGρ

(2πi (αµ1 + βµ2)− γµ)2

−µ
∂V

∂z
(µ1, µ2, z) (3.42)

or the spectrum of the gravity gradients such as

B(Γ33) (µ1, µ2, z) =
µ0χH

4πGρ

(2πi (αµ1 + βµ2)− γµ)2

µ3
G33 (µ1, µ2, z) (3.43)

and

B(Γ31) (µ1, µ2, z) =
µ0χH

4πGρ

(i (αµ1 + βµ2)− γµ)2

−iµ1µ
G31 (µ1, µ2, z) . (3.44)

The above equations are in the NWU coordinate system and the cyclical frequen-
cies µ1, µ2 (3.7), µ (3.8) indicate that the magnetic field, the gravity potential and
its derivatives are given in the frequency domain. The output of each equation is
theoretically the same, however, the latter ones have to compensate for the division
by zero since the zero frequency is included. This is due to the fact that the zero
frequency components of g3 in (3.13) and Γ33 in (3.14) are zero and by Poisson’s
Relation, the pseudo-magnetic field must also have zero for the zero-frequency term.
If those cases are simply set to zero, some information will be lost, so that, for ex-
ample B(V ) 6= B(Γ33). For that reason, the magnetic field is here only derived from
the gravitational potential, using (3.41). A quick test of the simulations shows that
the Inverse Fourier Transformation of (3.41) equals the pseudo-magnetic field directly
computed in the space domain (2.40) up to residuals about 10−14 nT.

An auto-periodogram of an observation field is computed by multiplying the spec-
trum of a data set with its complex conjugate

Φgg =
1

∆x1N1∆x2N2

G∗k1k2 (µ1, µ2)Gk1k2
(µ1, µ2) (3.45)

where ∆x1, ∆x2 are the point intervals, N1 × N2 is the dimension of the grid and ∗
denotes the complex conjugate.
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Figure 3.10: Empirical Covariances based on Individual Fields

A cross-periodogram of an observation field is computed by multiplying the spectra
of two different types of data, e.g. insert for G the Fourier transform of g3 and for H
the Fourier transform of B:

Φgh =
1

∆x1N1∆x2N2

G∗k1k2 (µ1, µ2)Hk1k2
(µ1, µ2) . (3.46)

Transforming the periodogram into the space domain

(φgh)l1l2 = IDFT (Φgh)k1k2

=
1

∆x1N1∆x2N2

N1−1∑
k1=0

N2−1∑
k2=0

(Φgh)k1k2 e
i2π

(
k1l1
N1

+
k2l2
N2

)
(3.47)

results in the covariance matrix between the corresponding data combinations, as e.g.
φg3,B.

Figure 3.10 shows the resulting covariances of Γ33 for five different fields generated
by five different sets of random numbers. For simplifications, Figure 3.10 only shows
the covariances over distance instead of the arrangements of the entire covariance
matrix of size (3.22). Field 1 through Field 5 do not generate exactly the same
covariances. This occurs mostly for the long wavelengths due to the limitation of data.
In order to determine the covariances for a distance of up to 100m along the coordinate
axes, a 201 × 201 periodogram is produced, i.e. N1 and N2 in (3.46) are set to 201.
Figure 3.11 represents φgh for the data combination G = B(V ) and H = G13 based on
Field 1 and Field 5, respectively. Here, the zero-distance component is shifted to the
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Figure 3.11: Covariances derived from a) Field 1 b) Field 5

center of the grid so that the center of the plot defines the cross-variance at the same
observation point. Covariances between two different points depend on their relative
horizontal distances (dx1 = −100 m, . . . , 100 m and dx2 = −100 m, . . . , 100 m). Since
φgh differs depending on the Field, which is defined by its set of random numbers,
the mean of the 1000 simulated fields is computed. The resulting φ̄gh are presented
in Figure 3.12, Figure 3.13, and Figure 3.14.

3.2.4 Verification

In contrast to the covariances defined by the model [Jekeli, 2003b], the covariances
computed from the periodogram are empirical covariances. This section compares
the empirical covariances to the model covariances by plotting both over distance.
These theoretical and empirical covariances are supposed to be the same since the
same model is also used to generate the psd for the 1000 simulated fields in the
periodogams. However, as Figure 3.10 in the example for Γ33 illustrates, the empirical
covariances of various fields diverge over the longer distances, which correspond to
the longer wavelengths. This divergence is explained by the limitation of data in the
periodogram. A 101 × 101 observation grid requires a periodogram of the size of at
least 201 × 201 entries. Hence, the 1x101 simulated profile of 100m length in this
thesis requires at least a 1× 201 point periodogram. Figure 3.15 illustrates, however,
if more data are involved, e.g. a periodogram of 1 × 1001 points generating a 500m
profile, the covariances derived from the periodogram move closer to the model. This
effect corresponds to the rule of thumb that empirical covariances are only reliable
up to a lag distance that is 10 % of the available data domain. For that reason, all
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Figure 3.12: a) - f) Covariances derived from Field 1-1000
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Figure 3.13: g) - l) Covariances derived from Field 1-1000
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Figure 3.14: m) - p) Covariances derived from Field 1-1000

49



� �� �� �� �� ���
��

�

�

�

�

�

��

��

���

��
�
�
��
�
�

��������������������
��

�����

�����������

������ �������

�������

�������
�������

�������

Figure 3.15: Influence of Grid Size in Periodogram Method

empirical covariances that are derived from the periodogram in this dissertation are
from now on based on a 1 × 1001 periodogram. The resulting empirical covariances
are compared to the model in Figure 3.16 and Figure 3.17. The covariances of the
gravity gradients, Γ33 and Γ13, seem to be consistent with regard to the comparison
of model versus periodogram and so are the covariances of the magnetic field, B. A
constant needs to be subtracted from the covariances generated by the periodograms
in order to adjust those curves to the model. The remaining plots point out that in
some cases an adjusting constant is necessary while for some other combinations it
is not. This can be explained by the fact that the model takes into account the long
wavelength signals of the Earth, which are not properly represented in the limited area
that derives the empirical covariances. However, simulations show that this constant
does not influence the overall detection performance of the MF.

The covariances for gravity diverge more strongly for a point distance longer than
30m. However, it has to be considered that the overall quantities in this case are
small compared to the covariances of the other data components. The covariances of
data combinations start to diverge after around 30m distance (e.g. φΓ33,Γ13) or stay
close up to a distance of almost 80m (e.g. φΓ33,B). φg3,Γ13 drifts apart after only a few
meters although the overall values in that case are also relatively small. This entire
exercise demonstrates that it is legitimate to compute the covariances by applying
the periodogram method. This is necessary in the case of gravity and magnetic
field combinations as there is no linear equation that relates those two quantities
to each other, which would allow for covariance propagation. An alternative in the
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Figure 3.16: a) - d) Model vs. Periodogram
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Figure 3.17: e) - h) Model vs. Periodogram
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Figure 3.18: Periodogram Method Result for φg3,B

space domain would be the empirical determination of the covariance function. This,
however, requires a high computational effort in order to yield reasonable results.

The periodogram method finally allows to derive φg3,B (Figure 3.18), which is
required for the upcoming MF simulations in Section 3.3. All covariance matrices
that do not require φg3,B remain as described in Section 3.2.1 and Section 3.2.2,
which are based on the covariance model (3.20).

3.3 Matched Filter Performance

The domain of the MF output equals the domain of the observations. That means a
1×101 observation profile results in a y vector of 1×101 entries, where the maximum,
ymax, indicates the location of the mass anomaly. Each entry of the filter output is
computed by the general equation

y = 1/λ · s̄T · Φ−1 · z

[1×1] [1×1] [1×101] [101×101] [101×1]
, (3.48)

which also labels the matrix dimensions in case only one type of data is utilized. More
data types will alter the dimensions of the observation and sought signal vectors as
well as the dimension of the covariance matrix, respectively. (3.48) is a computational
sub-step for each xr of the summation in (2.69). Φ stands for the covariance matrix
as defined in (2.51) and as derived in Section 3.2.
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Detection Rate [%]

Observation Type 2m 3m 4m 5m

Gravity g3 24.7 15.1 10.6 9.4

Gravity Gradients
Γ11 90.2 21.7 14.0 11.6
Γ33 88.2 19.2 12.6 10.9
Γ13 84.9 16.0 10.5 8.6

Magnetic Field B 96.1 17.4 10.5 9.7

Table 3.2: Detection Rates for Individual Type of Data Components and Depths

3.3.1 Comparison of Types of Data

A Monte Carlo simulation is carried out based on the setup described in Sec-
tion 3.1. 1000 fields, each defined by a specific set of random numbers that simulate
the background noise, are generated and entered in the simulations. This number
is sufficient to analyze the characteristics of the MF as tests have shown that even
only 100 different fields lead to very similar filter results. The input data for the
MF is either the simulated g3, Γ11, Γ33, Γ13, or B. As described above, the source
is a prism with the dimensions of a = 1m, b = 100m, c = 2m placed at various
depths. Table 3.2 summarizes the percentage of successful detections out of the 1000
simulation runs, where success means ymax is located in the range of x1 = 30m± 2m.
The columns correspond to the various depths of the top of the mass anomaly. The
results demonstrate that, in comparison, gravity is the least successful data while the
results of all the gravity gradient components are similar to each other. The results of
the magnetic field are in a similar range than the gravity gradients since B is derived
from their linear combination. Γ11 is slightly more successful than Γ33. Both compo-
nents generate the same sought signal with opposite signs due to Laplace’s Equation
(2.8) and Γ22 ≈ 0. However, the background noise defined by Γ33 is generally larger
than that defined by Γ11. The predominance of Γ11 over Γ33 in the success rate of
MF is, therefore, consistent with a larger SNR. In general, as the signal strength
decreases with depth, the MF performance attenuates as well. Figure 3.19 illustrates
the dependence between depth and successful detection. The figure also contains the
results from Table 3.2. The data g3, Γ33 and B are hereby analyzed.

It becomes again obvious that the MF performance based on g3 stands out as
being the least effective in contrast to those of the other components. Even if the
prism is only half a meter deep, the g3 component detects the prism in less than
90 % of the times. Utilizing B, has an effect similar to utilizing Γ33. One exception
is at the depth of 2m where the magnetic field is about 10 % more successful than
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Figure 3.19: Detection Rates for Different Types of Data

the gradient. This can be explained by the fact that B is derived from a weighted
combination of gradients, where Γ33 has the most significant influence. The sought
signal is weaker in B than in Γ33 (compare Figure 3.4) but at the same time the
background noise of B is correspondingly weaker than the background noise of Γ33

(compare Figure 3.7 and Figure 3.6). The performance of B and Γ33 are, therefore,
supposed to be similar. Nevertheless, the instrument noise is assumed to have a
standard deviation of σB = 1 nT in the magnetic case and σΓ = 3E in the gravity
gradient case (Table 3.1). This advantage of the magnetic field observation is mirrored
in its outstanding performance at the 2m depth. With larger depths though, the
overall noise increases and this advantage diminishes. Tests have shown that an
increase of the assumed magnetic instrument noise leads to a closer resemblance of
the MF performance curves for B and Γ33. A drastic decline in detection can be
witnessed once the depth reaches 2m, which corresponds to the height, c, of the
prism. Interestingly, the detections based on g3 are able to catch up with those
for the other data for depths of 3m and below, where the decrease in successful
detection of all four graphs slows down. When the depth, d, approaches infinity, the
detection turns into the case where the sought signal does not exist in the observations.
The maximum filter output, ymax, will fall at a random position of the profile. The
histogram of ymax locations of the Monte Carlo simulations with, for example Γ33, is
presented in Figure 3.20. The maximum output indicates a random position after
each MF run. Each position is thereby hit between 0.4 % and 1.7 % of the 1000
filter runs. Ideally, each location would have been chosen 1 % of the times. Under the
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Figure 3.20: Filter Output Locations if Anomaly is at Infinite Depth

assumption that the conditions of Poisson’s Relation are fulfilled (2.20), a preliminary
conclusion can be drawn that the magnetic field data is the most successful in the
very shallow subsurface (here, around 2m depth), while gravity gradients show a
similar performance. Gravity, however, seems to contribute more to the detection
problem at slightly lower depths (> 3m). The results in the 2m case mainly depend
on the differences in instrument noise. Simulations show that all three sensors will
have a 100 % detection rate if the instrument noise is set to zero. For the 3m case,
however, the detection rate based on, g3, Γ33, and B, are without instrument noise
17.7 %, 21.2 %, and 23.2 %, respectively. These variations clearly do not depend on
the instrument noise but are due to the specific signal and background noise properties
and are similar to the variations in Table 3.2.

In order to better understand the characteristics of the different data types, the
Signal-to-Instrument-Noise Ratio is determined by

SNInstrumentR =
max ‖s (x)‖
σInstrument

. (3.49)

It is defined as the extremum of the sought signal, s, divided by the standard deviation
of the random instrument noise. The extrema are

max ‖g3 (x)‖ = 0.024 mgal

max ‖Γ33 (x)‖ = 86.107 E

max ‖B (x)‖ = 45.309 nT

(3.50)
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Figure 3.21: SNInstrumentR for a Prism at 2m Depth

if the signal is generated by a prism at 2m depth under the conditions specified in Sec-
tion 3.1.1. With the typical standard deviations as previously introduced (Table 3.1),
σg = 0.01mgal, σΓ = 3E, and σB = 1 nT, the SNInstrumentR values are expected to be

SNInstrumentR
(g3) = 2.400

SNInstrumentR
(Γ33) = 28.702

SNInstrumentR
(B) = 45.309.

(3.51)

Figure 3.21 plots the amount of successful detections with respect to various SNInstrumentR
values. This underlines the above conclusion that the MF performance based on
gravity data is less reliable than the MF performance based on the vertical gravity
gradient or on the magnetic field data. One reason is the high instrument noise of
the gravimeter relative to the quantity of the signal (3.51). In addition to that, the
SNInstrumentR based on g3 has to increase to 200 in order to reach 90 % success in
detection. This is only a theoretical number, which will not be achieved in a real
application (compare Section 2.2.1). However, the above analysis also demonstrates
that even if the instrument noise is approaching zero, the gradiometer is still superior
over the gravimeter. An explanation for that is the difference in their correspond-
ing signal structure. The gradiometer components are more represented by the high
frequencies and show a signal with sharp contours while the gravity signal is rather
spread out and less distinct in comparison (Figure 3.3 and Figure 3.4).
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Figure 3.22: SNInstrumentR for a Prism at 3m Depth

The same tests as above are also executed for the case where the prism is simulated
at 3m depth. The respective extrema of the sought signal are

max ‖g3 (x)‖ = 0.018 mgal

max ‖Γ33 (x)‖ = 46.807 E

max ‖B (x)‖ = 25.376 nT.

(3.52)

The resulting SNInstrumentR based on the typical standard deviations (Table 3.1) lead
to

SNInstrumentR
(g3) = 1.800

SNInstrumentR
(Γ33) = 15.602

SNInstrumentR
(B) = 25.376.

(3.53)

As the greater depth decreases the signal strength of each data type, the SNInstrumentR
decreases as well. Figure 3.22 plots the detection rate versus the SNInstrumentR based
on a prism located at 3m depth. Again, most of the assumed instrument noise values
are just theoretical and do not occur in a real application but it is interesting to realize
that a small decrease in the gravimeter instrument noise (equals a small increase of
the low SNInstrumentR) has a large effect on the MF performance. A decrease of the
gradiometer or magnetometer instrument noise, on the other hand, hardly yields any
improvement. However, it has to be noted that the success rate of the detection is low
in general and that all three data types are relatively close to each other in contrast
to the case of 2m depth in Figure 3.21. Therefore, less emphasis should be put on
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the differences in Figure 3.22. The above observations correspond to the conclusions
from Figure 3.19 that the superiority of the magnetic field and the gravity gradients
over gravity vanishes at larger depths.

3.3.2 Comparison of Various Data Combinations

So far, each type of observation has been tested individually. In the following, a
MF is simulated with its input consisting of various types of data combinations.
The setup is otherwise the same as described in Section 3.1 and simulated in Section
3.3.1. The outputs of several possible data combinations are summarized in Table 3.3.
The columns are divided according to the different depths at which the prism is lo-
cated (2m – 5m). For each depth and data combination, the percent of the successful
detection out of 1000 runs, the square root of the maximum SNR (2.68) and the
mean value of 1000 maximum filter outputs are presented. The combinations that
simultaneously contain g3 and B utilize a noise covariance matrix derived from the
periodogram (Section 3.2.3), all other covariance matrices are directly derived from
the covariance model [Jekeli, 2003b]. The variance of the instrument noise, φi, that
is added to the background covariances (3.21), is identical for both cases.

The simulation results emphasize the advantage of data combinations as in most
cases they significantly improve the results of the single data in Table 3.2. The
combination (Γ33, Γ31), for instance, has around 10 % more successful detections than
those gradients individually in the case where the anomaly is at 2m depth. Adding
the component Γ11 to the above combination will even further improve the detection
with an additional 2.5 %. In comparison to that, the use of all six gravity gradient
components, on the other hand, shows hardly any impact, as the gravity changes in
x2-direction are too small in this simulation setup. These simulation results match
the beforehand expectations.

According to the simulations, adding gravity to the other data does not signifi-
cantly improve the MF performance. Comparing Table 3.3 and Table 3.2, for example,
shows that (g3, Γ13, Γ33) yields results similar to (Γ13, Γ33). Adding g3 to the obser-
vations might even lead to a small disadvantage as shown by the results of (g3, Γ13,
Γ33, B) and (Γ13, Γ33, B) in the case of 2m depth.

Except for g3, the simulations show that any other combination advances the MF
detection. The more data components the better the performance. The overall shape
of the performance curve is still the same as plotted in Figure 3.19. The combination
of data will improve the detections but the drastic decline from an anomaly at 2m
depth to an anomaly at 3m depth still exists. A further notable finding is that the
detections are most successful in those cases where ȳmax is close to the value of λ.
This corresponds to the fact that the expectation of ymax equals λ if the sought signal
exists (2.72).
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Figure 3.23: Signal Strength Depending on Depth

3.3.3 Estimation of Depth

The MF technique is in general used to locate an anomaly in a plane or along a profile.
This section analyzes whether it is also possible to extract some information about
the depth, d, of the anomaly. The depth is not treated as an unknown parameter but
as a characteristic of the sought signal (Section 3.1.1). Alternatively, it could also be
seen as a characteristic of the background noise magnitude. Since it is required for the
MF to model the sought signal, the depth of the anomaly must be known or estimated
a priori. While the size of the simulated prism (a, b, c) determines the shape of the
sought signal, the estimated depth of the prism defines the amplitude of the sought
signal: the shallower the location of the anomaly the stronger the signal. The putative
signal, for example, for Γ33 is plotted in Figure 3.23, representing the different cases
of d. If the actual anomaly depth in the observation is unknown, the modeled depth
in the filter function may be wrong. Figure 3.24 presents the results for four different
cases where the actual anomaly is at 2m, 2.5m, 3m, and 3.5m, respectively. The
data consist of Γ13 only. The abscissa indicates the anomaly depth that is modeled
for the sought signal. The ordinate refers to the successful detection out of 1000
simulations. Hence, the circle tags the cases where assumed and actual depth fall
together. The MF performance is clearly sensitive to the assumed depth and is most
successful if the correct depth is assumed. However, this property vanishes with larger
depths (3.5m). In any case, making the modeled signal stronger (shallower depth)
than the actual observed signal diminishes the success rate of locating the anomaly.
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Figure 3.24: MF Performance under Assumed Depths for Γ13

A further conclusion is that the maximum of the graph is not very sharp. The MF
performance based on 0.5m more or less than the actual depth is still very close to the
results produced by the correct depth. This is an important conclusion for a practical
application. Under similar circumstances (size of anomaly, noise level of background
field), the depth of the anomaly should ideally be known or estimated within 0.5m.

Figure 3.25 plots the mean value of the maximum filter outputs of the 1000 simu-
lations against the assumed depths. Those are the corresponding graphs to the detec-
tions in Figure 3.24. The symbol [-] indicates that the values are unitless. Similarly,
the maximum of each graph corresponds to the correctly assumed depth (circled), ex-
cept for the case of d = 3.5m. In a real world application, the MF can be run several
times, where each time the modeled signal assumes a different anomaly depth. The
maximum of all the maximum filter outputs,

y
···

max

= max
(
yAssumed Depth

max

)
, (3.54)

is most likely the one based on the correct anomaly depth, also assuming that the
maximum filter output is most likely at the location of the sought signal. However,
it has to be taken into account that the results in Figure 3.24 refer to the mean of
1000 detections per depth, while in real life there is, of course, only a single field.
The standard deviation for the 1000 ymax at each of the assumed depths is around
0.8. This is relatively high considering that all the ymax in Figure 3.25 lie in the range
from 2 to 4. However, this is to be expected since the standard deviation of the filter
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Figure 3.25: Mean of the Maximum Filter Output under Assumed Depths for Γ13

output, y, is one (2.71). In order to underline these studies, the same tests are carried
out for the Γ33 gradient component leading to very similar results.

The purpose of the next MF simulations is to have a more detailed look at the
individual fields to be closer to a real world situation where ymax is not averaged.
Figure 3.26 a), for example, is based on a mass anomaly located at 2m depth while
the assumed depth ranges from 0.5m to 5m. The maximum of those ten ymax values,
namely y

···
max

(3.54), is determined. Figure 3.26 a) shows a histogram of the y
···

max

based

on 1000 different background fields. In 32.9 % of the cases, y
···

max

occurs at an assumed

depth of 2m, which coincides with the simulated actual depth. If a deviation of 0.5m
is accepted the results at 1.5m and 2.5m depths are included and the percentage
increases to 77.2 %. That means in 77.2 % of the 1000 cases y

···
max

appears where

the assumed depth is correct or only 0.5m off. Figure 3.26 b) through d) represent
the corresponding histograms based on the actual depths of 2.5m, 3m, and 3.5m,
respectively. Figure 3.26 b) through d) reveal a high accumulation of y

···
max

at the

assumed depths of 0.5m and 2.5m, which is unexpected for Figure 3.26 c) and d),
where the simulated prism is located at 3m and 3.5m, respectively. However, those
solutions might not necessarily be successful in the detection of the mass anomaly.
For that reason, all unsuccessful detections (x1 outside the range of x1 = 30m± 2m)
are removed from the data set. The remaining maxima of ymax, i.e. the updated
y
···

max

, are presented in the updated histograms (Figure 3.27). Obviously, the deeper
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Figure 3.26: Detection Histogram of y
···

max

based on Γ13 and Depth of a) 2m b) 2.5m

c) 3m d) 3.5m
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Figure 3.27: Successful Detection Histogram of y
···

max

based on Γ13 based on Γ13 and

Depth of a) 2m b) 2.5m c) 3m d) 3.5m
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the actual depth, the lower the number of correct detections but in addition to that,
the remaining data show a clear accumulation at the correctly assumed depth. One
exception is Figure 3.27 d), which similar to Figure 3.24 does not have a maximum at
d = 3.5m. A possible explanation is the strength of the background signal compared
to the decreasing strength of the sought signal generated by the mass anomaly. It is
interesting to notice that y

···
max

also accumulates at the assumed depth of 5m when

the actual depth is deep. This finding, however, cannot be observed in the curves
based on the overall mean of ymax in Figure 3.25. Observing the same profile several
times or including multiple parallel profiles might, therefore, eliminate this edge effect
in practice.

This section has shown that, although the implemented MF is only two-dimensional,
its performance is clearly sensitive to the estimated depth in the sought signal. It
seems, therefore, to be possible to develop a reasonable algorithm that estimates the
depth of the anomaly. A possible scenario in a real world application could be, for ex-
ample, to run the MF with various assumed depths and to determine the most likely
horizontal position of the void, i.e. its x1-coordinate, based on those MF results. The
filter outputs assumed to be false can be deleted from the computed solutions and
the corresponding assumed depths are ruled out. The maximum of the remaining
maximum filter outputs is the updated y

···
max

and is likely an indicator of the correct

depth (here up to 0.5m). This method becomes less applicable if the signal strength
decreases (increase in depth) with respect to the strength of the background noise.
Taking several measurements of the same or parallel profiles and averaging their ymax,
might make this method more stable though. The simulation in Figure 3.24 can al-
most be reproduced by averaging as little as 10 filter outputs.

The MF performance is clearly linked to the ymax parameter. It does not only
help to estimate the depth of the mass anomaly but it also provides a test quantity
for the statistical interpretation of the suggested horizontal solution. Knowing the
quality of the localization will help to rule out the possible false detections at various
assumed depths. The statistical details are presented in Chapter 4.

3.3.4 Non-Stationarity and Anisotropy in the Background

The covariance model applied in the MF assumes that the background noise is a
stationary process. Furthermore, the covariances for the disturbing potential, φT , and
the covariances for its radial derivatives, φg3 and φΓ33 , as well as their cross-covariances
are isotropic. The following study intends to answer the question if the applied MF
method is still valid in case that stationarity and isotropy are not guaranteed.

The standard MF procedure is applied to the different data types: g3, Γ33, Γ13,
B. Four different cases are compared to the standard MF simulation. In the first
case, a positive linear trend along the x1-direction is added to the noise, n, generated
by the background. The minimum and maximum value of the trend is defined by
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Figure 3.28: Positive Trend in the g3 Background

the minimum and maximum of the simulated background field. As a result, the
trend varies for each field. One example for a trend added to the random noise of a
gravity field is shown in the Figure 3.28. In the second case, the trend is reversed and
becomes negative along the x1-direction. In the third and fourth case, an anomaly is
added or subtracted to the background, respectively. The anomaly is computed by
the following equations:

A = max (n) (3.55)

σx1 = 40

σx2 = 20
(3.56)

Θ =
π

6
(3.57)

ã =
cos2 Θ

2σ2
x1

+
sin2 Θ

2σ2
x2

(3.58)

b̃ =
− sin 2Θ

4σ2
x1

+
sin 2Θ

4σ2
x2

(3.59)

c̃ =
sin2 Θ

2σ2
x1

+
cos2 Θ

2σ2
x2

(3.60)

x0 =
N1

2
+ 10

y0 =
N2

2
− 5

(3.61)
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Figure 3.29: Positive Anomaly in the g3 Background Field

x1 = 0, . . . , (N1 − 1)

x2 = 0, . . . , (N2 − 1)
(3.62)

nAnomaly = A · e−L

L = ã (x1 − x0)2 + 2b̃ (x1 − x0) (x2 − y0) + c̃ (x2 − y0)2 ,
(3.63)

where the magnitude of the anomaly depends on the maximum value of the particular
background field. One example for an anomaly in a gravity field is presented in
Figure 3.29. The horizontal profile at x2 = 37m is extracted and added to the
random observation noise (Figure 3.30). Figure 3.31 compares the MF output based
on g3 in the standard case to the case where a positive trend has been introduced to
the background noise. While the standard case correctly detects the sought signal
(maximum output at x1 = 30m), the positive trend causes a large maximum in the
MF output at the beginning of the profile and a corresponding minimum at the end of
the profile. This can be explained by the fact that the sought signal is a negative lobe
(gravity above a void) and that the trend leads to an increase of numbers towards the
end of the observation profile. The positions for maximum and minimum MF output
are reversed if the negative trend is added instead. This can again be explained by the
corresponding fact that the negative trend generates higher values at the beginning of
the profile. The same effects but even more distinct are identified by the simulations
utilizing Γ33 as shown in Figure 3.32. The positive trend applied to Γ13 and B data
sets are presented in Figure 3.33. The MF output contains one dominant global
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Figure 3.30: Positive Anomaly in the g3 Background Profile
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Figure 3.31: g3 Background for a) Isotropy b) Positive Trend
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Figure 3.32: Γ33 Background for a) Isotropy b) Positive Trend

maximum at the beginning of the profile in case of Γ13, and one dominant global
minimum at the end of the profile in case of B. Beside this, the two side-lobes of
the overall maximum/minimum still overpower the maximum caused by the sought
signal in both cases. The effects of an anisotropic background field as generated by the
introduced positive or negative anomaly (Figure 3.34) are similar to the effects caused
by the positive or negative trend. However, as it is to be expected, the effects are not
as strong. All four cases of different background noise reveal that the introduction
of a trend or an additional anomaly cause undesired maxima at the edges of the MF
output profile as the overall trend of the added noise interferes with the shape of
the sought anomaly. In order to avoid those false detection results, the edges of the
output can be omitted when selecting the maximum. This requires that the sought
signal does not occur at the edge of the profile. Tests based on 1000 simulated data
sets suggest to cut off about 10 % (ten points) on either side of the MF output to
avoid these edge effects. If the background noise contains a positive or negative trend,
the MF is unable to detect the sought signal because the maximum filter output is
always at the edge of the profile. If the values at those edges of the filter output
are set to zero, the MF results resemble the results of the standard stationary case.
As observed above, the introduced anomaly in the background triggers similar effects
as the introduced trend. In the same way, the detection problems can be avoided
by setting the edges of y to zero. In contrast to the trend, the anomaly still allows
for a few correct detections out of 1000 simulations even if the edges are not set to
zero. The success rate of the standard stationary case slightly increases by setting the
edges to zero, which is obvious as the number of possible wrong locations (the sought
signal is at x1 = 30m) is reduced. This seems to be the only reason for the increase
in success of the detection as the improvement is only marginal. It can, therefore, be
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Figure 3.33: Positive Trend in the Background for a) Γ13 b) B
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Figure 3.34: Positive Anomaly in the Background for a) g3 b) Γ33 c) Γ13 d) B
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concluded that a stationary background field does not lead to edge effects in the MF
output as generated by the trend or anomaly.

The described edge effects are the only problems that arise due to the additional
noise (trend or anisotropic anomaly) and can easily be overcome. For that reason,
it is justified to continue with the introduced covariance model although it is only
designed for stationary data.

3.3.5 Sensitivity to Covariance Model

Up to this section, all MF results are derived from simulations of the background
field, which is based on the same model as the covariances. In order to verify the
validity of the utilized covariance model, the background field in this section is taken
from a set of real field measurements.

In July 2008, Bell Geospace Inc. (BGI) observed the Vinton Dome area to test
their three-dimensional Full Tensor Gravity Gradiometry (FTG) platform in an air-
borne mission [BGI, 2008]. The Vinton Dome is located in southwestern Louisiana
near the Texas border. The survey area covers approximately 196.2 km2 and lies be-
tween latitudes 30.07 ◦ and 30.23 ◦ North and longitudes 93.66 ◦ and 93.53 ◦ West.
Figure 3.35 plots the survey lines, which were flown in North-South direction, and
several perpendicular to that. The survey lines are about 250m apart from each
other. This data set is now used to simulate the background field in the current MF
simulations. In contrast to local measurements on the ground, the airborne survey
is more challenging. The position, orientation, and speed of the aircraft have to be
determined and aligned via time stamps with the actual gravity gradient measure-
ments. Further steps are the downward continuation of the signal to the ground,
the terrain correction, and the correction for the gravity gradients generated by the
aircraft and instrument platform. The Vinton Dome data set provided by BGI is
already preprocessed, i.e. leveled, de-noised, and corrected for topography. More
details about the applied corrections can be found in [BGI, 2008]. Despite the extra
challenges, airborne gravity gradiometry has the advantage to cover a large area in a
short time span. Since the signal strength and the resolution in airborne gradiome-
try is lower than in a local application, this method is designed to find larger mass
anomalies than the prism described in Section 3.1.1. The usage of either airborne
or ground gradiometry is a question of the scale the application requires. For that
reason, the analysis of the Vinton Dome data set will also hold for the local MF case
as the computational difference is represented by only a scale factor.

The free air Γ33 of the data set is mapped in Figure 3.36, where the center of the
map clearly marks the outline of the Vinton Dome. The profile L881 is the profile
with North-South expansion that is furthest east in the observed area. It can be
treated as a real example of an observed gravity gradient field without the influence
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Source: BGI

Figure 3.35: Vinton Dome Flight Tracks
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Source: BGI

Figure 3.36: Vinton Dome Free Air Γ33
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Figure 3.37: Vinton Dome a) Horizontal Coordinates b) Profile Point Interval

of a distinctive mass anomaly such as the dome, which lies only in the center of the
observed area.

Figure 3.37 a) shows the horizontal coordinates of the observed L881 profile points
(reduced to the coordinates of the first point). The North-South direction is declared
as x1. The profile length is about 17 km and points deviate from a straight profile
line by no more than 20m (in x2). Figure 3.37 b) presents the interval in meters
between the 321 points of the profile. Two consecutive points are between 46m and
64m apart along the profile direction. The average point interval is 52.34m.

For practical reasons, it is assumed that all points are located on a straight profile
(x2 = 0m), at constant height (x3 = 0m), and with a constant point interval (∆x1 =
52.34m). The data set provides measurements of all gravity gradients. However, only
the gravity gradient component Γ33 will be discussed here and is plotted in Figure 3.38.
In order to adjust the MF simulations to the Vinton Dome example, the dimensions
of the prism that generates the sought signal is modified to a = 10m, b = 10000m,
and c = 4m. The center of the prism is now located at xm1 = 100 · ∆x1 = 5234m
and the depth to the top of the prism is d = 22m. The altitude of the airborne data
is thereby neglected and assumed to be zero. The large depth of the simulated prism
is chosen to decrease the signal strength of the sought signal since the signal strength
of the background field is comparatively low. An alternative simulation would be,
for example, to decrease the width of the prism, a, however, this might get too small
for the resolution of the observed profile. The density contrast of the prism is here
∆ρ = −1.8 g/cm3 as this magnitude was also used in the terrain correction of the
Vinton Dome data file.

The sought signal in [E] is generated and added to the observed profile L881
resulting in the observation vector in [E] of the MF simulation plotted in Figure 3.39.

75



� ���� ���� ���� ���� ����� ����� ����� ����� �����
���

���

���

���

��

�

�

��

��

��

���������
��
������

���

��
�

Figure 3.38: Γ33 of Vinton Dome Profile L881

The resulting MF output is unitless [−] and multiplied by 50 for visual reasons, clearly
locates the mass anomaly of the prism by ymax at 5234m. However, the local maxima
at 1361m is almost of the same size as ymax. This shows that the MF detection in
this example is successful but also very fragile. The slightest decrease of the sought
signal strength might lead to a higher output at the local background anomaly than
at the location of the sought signal. A further indication for the vulnerability of
this particular example is the low λ = 0.195. The above MF computation contains
the covariance matrix (3.21) as described in Section 3.2. The matrix of instrument
noise variances, Φi, is for now identical to that used in the previous simulations.
The horizontal coordinate differences (3.17) that enter the covariance function for
the matrix of the background noise, Φbg, are in this case computed by assuming
a constant point interval of ∆x1 = 52.34m. For the gravity gradient component
Γ33, the covariance function is described by the variance Var = φ (0) = 8879.7E2

and the correlation length CL = 13.2m. The correlation length as it is defined
in [Moritz, 1989, p.174] determines the distance between two points for which the
covariance has decreased to half the value of its variance:

φ (CL) =
1

2
φ (0) . (3.64)

Simulations show that the MF performance can be improved drastically when modi-
fying the covariance function while the sought signal and observation vector remain
the same as above. Increasing the correlation length from 13.2m to 690.5m under the
same variance leads to a more distinct MF output (Figure 3.40). The filter output
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Figure 3.39: MF Simulation of Vinton Dome Profile L881

is still multiplied by 50 just to be consistent with the filter output in Figure 3.39.
The increase of the CL interprets data to be higher correlated to each other, which
in this particular case corresponds to the assumption that the point interval is only
∆x1 = 1m. The result is an increase of λ from 0.195 to 4.01.

In order to better understand the covariance model, the empirical covariances are
derived from the L881 observations. The gravity gradients of two points, xi and yi,
with the same distance, l, to each other (within a precision of ∆x1) are grouped
together and their corresponding empirical covariance is estimated by

φx,y (l) =

{
1

N

N∑
i=1

(xi − µ) (yi − µ)

}
l

(3.65)

where N is the number of point combinations within a group of same (similar) l and
µ is the mean value of the entire profile. Obviously, the longer the distance, the
fewer samples there are to contribute to the estimate of the covariance. Figure 3.41
plots the empirical covariances over l. The covariances are cut off after approximately
l = 2000m, while the covariance function crosses zero at around l = 1000m. The
variance is 67.6E2 with CL = 209.5m.

Figure 3.42 finally compares the empirical covariances, the analytic covariances,
and the analytic covariances stretched to a CL = 690.5m. The empirical covariances
do not match to the model unless they are multiplied by 100, which alters the scale.
The overall MF performance should not be affected. Minor differences can occur
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Figure 3.40: MF Simulation of Vinton Dome Profile L881 with CL = 690.5m
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Figure 3.41: Empirical Covariance Function of Vinton Dome Profile L881
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Figure 3.42: Model vs. L881 Empirical Covariance Function

though, as Φi remains the same in both cases and the new scale is, therefore, not
entirely constant for the entire covariance matrix.

A second profile of the Vinton Dome data set is selected. It is labeled L471.
This profile is also measured in North-South direction but it crosses the center of
the dome. L471 consists of 317 observation points and has an average point interval
of ∆x1 = 52.93m. Figure 3.43 presents the gravity gradient Γ33 of the profile. The
Vinton Dome generates a clear maximum within the data set. However, the question
is in what way the dome interferes with the localization of a void, which generates a
minimum in the Γ33 signal. Due to that, the sign of the observed profile is intentionally
reversed in the simulations, generating an interfering minimum. The results of the
MF under this setup are summarized in Figure 3.44. First of all, there are no edge
effects visible compared to those generated by the noise anomaly (3.63). This might
be explained by the smaller width of the Vinton Dome anomaly so that the major
part of the dome signal is not stretched over the entire profile. It is difficult to provide
a more specific explanation at this point as the actual data, in contrast to the Monte
Carlo simulations, only provide one realization. The MF fails to detect the sought
signal of the prism (x1 = 5234m) as the maximum output is located above the dome
(x1 = 6563m). However, the second highest output locates the sought prism. This
example emphasizes that even if the global maximum delivers the wrong result it is
still worth investigating the local maxima. The shapes of the two maxima (above
prism and dome) also indicate that the sharper one is generated by the sought prism.

In contrast to the simulation above, Figure 3.45 shows the results if the covariance
matrix is replaced by a simple identity matrix. Again, the global maximum of the
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Figure 3.43: Γ33 of Vinton Dome Profile L471

� ���� ���� ���� ���� ����� ����� ����� ����� �����
���

���

���

���

���

���

���

�

��

��

��

�������������������������������
��

���

�������������

�����������

��������������

Figure 3.44: MF Simulation of Vinton Dome Profile L471
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Figure 3.45: MF Simulation of Vinton Dome Profile L471 with Identity Covariance
Matrix

filter output lies above the dome but otherwise no distinctive local maximum can be
detected. This emphasizes the importance of an appropriate covariance model. If the
covariance matrix for the L471 case is replaced by a covariance matrix based on the
function with CL = 690.5m, the sought signal is easily detected by the MF (compare
Figure 3.46). The dome seems to have no major influence. Edge effects occur in the
filter output that look similar to those observed in Section 3.3.4. The first and last
5 points of the filter output are, therefore, deleted. Since the choice of correlation
length in the covariance function has such a huge impact on the performance of the
MF, the following simulations are based on different CLs of the covariance model.
The assumed point intervals in the computation of the sought signal are always the
actual average point intervals of the corresponding observed profile. The prism for the
321-point profile (L881) is located at x1 = 5234.38m and the prism for the 317-point
profile (L471) is located at x1 = 5292.75m.

A comparison of the results based on the standard covariance function (CL =
13.2m) and the modified covariance function (CL = 690.5m), shows that the latter
leads to a more distinct and powerful localization of the sought anomaly. One char-
acteristic is thereby the higher value of ymax. However, a high ymax is not necessarily
an indication for a successful and distinct detection, as a local maximum of the same
filter output might be high as well. In that case it becomes unclear if ymax is generated
by the sought signal or by a random anomaly in the background field. A Maximum
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Figure 3.46: MF Simulation of Vinton Dome Profile L471 with CL = 690.5m

Comparison Ratio is, therefore, defined by

MCR =
ymax

1
3%N

3%N∑
i=1

ylocal maximum
i

(3.66)

that takes into account ymax with respect to 3 % of the next highest values of the
profile. That means, for the number of points N ≈ 300, ymax will be divided by
the average of 10 side maxima, ylocal maximum

i . A high MCR stands for a distinct MF
output.

Table 3.4 lists the ymax and MCR values of L881 and L471 with respect to the
different CLs that were applied in the computation of the covariances. The maxima
of ymax and MCR over all cases are in bold. Both parameters are compared to
demonstrate that considering ymax only would lead to a different conclusion than
to what the MCR suggests. Considering ymax would lead to the interpretation that
the strongest filter output is given by CL = 1385.2m, while the MCR reveals that
CL = 690.5m leads to the most distinct MF output. In addition to the two profiles
introduced above, the profile L841 with ∆x1 = 51.64m is included. It runs closely
parallel to L881. The MF successfully locates the sought signal except in the cases
that are starred. The starred cases of L471 mean that the dome has been detected
instead. A first impression is that the larger CLs of the covariance model result
in a higher filter output. However, the MCR indicates for all three profiles that the
covariance function with CL = 690.5m gives the best results. Best results means here

82



ymax [−] MCR [−]

CL [m] L881 L841 L471 L881 L841 L471

7012.5 201.47∗ 214.10 243.83∗ 1.24∗ 1.50 1.43∗

2313.4 196.22 246.60 220.84 2.35 2.67 2.62
1385.2 239.74 257.01 226.64 4.61 4.37 4.21
863.1 223.74 228.75 226.79 9.09 7.81 8.48
690.5 201.84 203.81 201.47 10.73 10.08 10.08
575.4 174.79 177.24 175.75 9.34 8.80 8.58
460.8 127.07 128.97 128.18 6.04 5.94 6.13
345.2 54.66 55.92 55.28 5.23 5.25 5.46
172.7 13.57 15.79 14.56 4.05 5.13 4.20
115.1 10.77 13.23 11.86 2.93 3.95 2.99
86.4 10.03 12.44 11.15 2.80 3.81 2.76
69.1 9.64 12.00 10.70 2.74 3.75 2.60
34.5 8.26 10.69 9.26 2.26 3.33 1.95
23.0 7.52 10.09 8.53 1.95 3.01 1.57
17.3 7.02 9.72 8.15∗ 1.72 2.75 1.34∗

13.8 6.66 9.47 8.86∗ 1.55 2.55 1.35∗

13.2 6.59 9.42 9.05∗ 1.52 2.51 1.36∗

12.6 6.52 9.37 9.18∗ 1.48 2.46 1.36∗

11.5 6.41 9.29 9.46∗ 1.43 2.40 1.36∗

10.6 6.31 9.23 9.73∗ 1.39 2.33 1.36∗

∗ false detection, e.g. dome x1 = 6563m

Table 3.4: Vinton Dome Simulations based on a Variation in CL

that the maximum filter output is very distinct and robust to large background noise.
The achieved improvement in the MF performance becomes visible, for example, for
the L471 profile. There, the MF is able to detect the sought signal if CL = 690.5m
but falsely detects the dome where either the original CL or the CL generating the
largest ymax is used as part of the covariance function.

As mentioned before, the covariance matrix of the instrument noise is given by
a diagonal matrix with the variance, σ2

i = σ2
Γ33

= 9E2, on the diagonal (Table 3.1).
Assuming different standard deviations for the instrument noise leads to the effects
(for L881) listed in Table 3.5, which compares the MCRs with respect to various σi.
The table distinguishes between the results based on the original background noise
covariance function and its modification for correlation length and instrument noise.
A change in σi has clearly an effect on the MCR, however, in all cases it becomes
also obvious that the MCR is much higher for the modified covariance function. The
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MCR [−]

σi[E] CL = 13.2m CL = 690.5m

1 1.52 8.52
3 1.52 10.73
10 1.51 8.39
20 1.47 5.95

Table 3.5: MCR under the Influence of Instrument Noise in Vinton Dome Simulations

improvement of the MF performance if CL = 690.5m, is, therefore, obvious, regardless
of the covariance matrix describing the instrument noise.

The proceeding MF computations analyze if the simulation setup that one obser-
vation point is always centered above the modeled mass anomaly influences the out-
standing improvement in detection. For that reason, the origin of the mass anomaly
is now placed at xm1 = 100 ·∆x1− 20m = 5214.38m of the L881 profile. That means
the center of the prism is placed 20m to the south from the closest observation point,
which reduces the observed signal strength of the sough mass anomaly. The observa-
tion vector, the sought signal, and the MF output based on the original covariance
function are plotted in Figure 3.47 a). ymax is located at x1 = 1361m, which is not
the location of the sought anomaly but of a random background anomaly. This is also
the local maxima in Figure 3.39 and demonstrates how fragile the detection is in this
case. If the interval between the observation points is too large, so that the distance
of the void to the nearest observation point is relatively far, the MF might fail and
be corrupted by the local background noise. Figure 3.47 b) shows a close-up of the
location around the void. The MF output is still sensitive to the sought signal but
overpowered by the background signal. If the same shift of 20m is simulated again
but now in combination with the covariance function of CL = 690.5m, the MF is able
to clearly detect the void as shown in Figure 3.48. The MCR is 3.96 versus 10.73
(Table 3.4) in the case where one observation point falls above the center of the prism.
Placing the maximum of the sought signal between two observation points decreases,
of course, the strength of the sought signal part in the observation vector and results
in a weaker MF performance (smallerMCR). However, the above simulations still
show the same positive effect by modifying the correlation length of the covariance
function.

The question is if these findings are also reflected in the simulations designed in
Section 3.1. For that reason, the previous Monte Carlo simulations based on Γ33 are
carried out again but with covariance matrices varying in CL. Only 3 side maxima
of the filter output enter (3.66) since the number of profile points is reduced to 101.
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Figure 3.47: Center of Signal shifted from L881 Observation Point a) Profile b) Close-
Up
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Figure 3.48: Center of Signal shifted with CL = 690.5m
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CL [m] λ [−] ymax [−] % MCR [−]

132.9 39.320 71.014 25.0 1.153
66.7 32.283 55.243 27.7 1.201
44.4 24.918 39.679 28.4 1.235
33.3 18.739 27.154 34.3 1.256
26.1 13.963 18.249 42.1 1.296
21.9 10.407 12.219 54.0 1.351
18.8 7.811 8.496 65.0 1.445
16.5 5.934 6.176 75.0 1.558
14.7 4.588 4.688 82.3 1.679
13.2 3.627 3.690 84.9 1.747
12.0 2.947 3.014 82.6 1.724
11.0 2.479 2.564 78.0 1.640
10.2 2.134 2.282 68.9 1.546
9.5 1.901 2.118 61.9 1.462
8.8 1.738 2.024 54.4 1.394
8.3 1.624 1.973 47.9 1.341
7.8 1.544 1.950 42.9 1.302
7.3 1.487 1.942 40.3 1.273
6.9 1.447 1.944 38.0 1.252
6.6 1.419 1.950 37.0 1.238

Table 3.6: Monte Carlo Simulations based on a Variation in CL

The results are summarized in Table 3.6, which lists the square root of the SNR, the
mean of 1000 maximum filter outputs, the percentage of successful detections and the
mean of all the Maximum Comparison Factors. The largest value of each column is
bold. It should be noted that the mean of the maximum filter output does not only
account for the successful detections but includes the maxima for all 1000 simulations.
A successful detection is here defined in the range of ±2∆x1 = ±2m from the correct
location at xm1 = 30 · ∆x1 = 30m. Again, the longest correlation length generates
the highest maximum filter output as well as SNR but the highest MCR is provided
by the covariance function with a correlation length of CL = 13.2m. This case also
stands for the most successful detection of the mass anomaly. It is interesting to
realize that it is also the case where the difference between λ and ymax is the smallest.
These Monte Carlo simulations analyze the detections where the best results are
achieved if the simulated point interval and the correlation length of the covariance
model coincide. That means a change in CL from the natural one does not enhance
the detection.
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CL [m] λ [−] ymax [−] % MCR [−]

6600.0 53.389 56.678 72.6 1.581
2200.0 50.330 52.571 78.3 1.663
1320.0 47.034 48.782 82.0 1.696
825.0 41.489 43.232 82.0 1.684
660.0 37.272 39.034 80.1 1.637
550.0 32.479 34.477 76.3 1.543
440.0 23.709 25.774 71.6 1.383
330.0 10.318 11.136 72.8 1.396
165.0 3.066 3.136 88.6 1.816
110.0 2.616 2.683 86.3 1.781
82.5 2.475 2.539 86.4 1.778
66.0 2.388 2.449 86.4 1.777
33.0 2.137 2.197 85.1 1.760
22.0 2.031 2.090 84.1 1.748
16.5 1.965 2.028 83.3 1.727
13.2 1.921 1.989 81.6 1.707
12.0 1.892 1.964 81.1 1.692
11.0 1.905 1.975 80.4 1.699
10.2 1.881 1.955 80.0 1.686

Table 3.7: Monte Carlo Simulations based on a Variation in CL and 50m Spacing

The next set of tests (Table 3.7) are a mixture of the simulations of Table 3.4
and Table 3.6 as the following results are based on a Monte Carlo simulation with
101 observations points and a point interval of ∆x1 = 50m resulting in a profile of
5 km length. The size of the prism is also a = 10m, b = 10000m, and c = 4m.
The prism is only at a depth of d = 6m and located at xm1 = 30 · ∆x1 = 1500m.
A successful detection is defined as a detection within a range of ±2∆x1 = ±100m
from the actual location. The maximum values in the columns of Table 3.7 are again
given in bold. In contrast to the previous analysis where the optimal CL coincides
with the original CL = 13.2m modeled for a point interval ∆x1 = 1m, this modified
simulation suggests an optimal CL of 165m . However, the differences in the MCR
are relatively small and the improvement in a successful detection with respect to the
point interval of the observations increases only by 7 %. Furthermore, the standard
deviation of the MCR,

σMCR =

√√√√ 1

N − 1

N∑
i=1

(
MCR (i)−MCR

)2
, (3.67)
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over N = 1000 realizations in the standard simulations (Table 3.6) is 0.458 for
CL = 13.2m, and the corresponding standard deviation in the modified simulation
(Table 3.7) is 0.483 for CL = 165m. Those standard deviations are relatively high
and, therefore, less emphasis should be put on the small differences in MCR if only
a single realization is available. However, further simulations based on the same set-
tings as for Table 3.7 show that even if the simulated observation point interval is
altered to either ∆x1 = 30m, ∆x1 = 100m, or ∆x1 = 150m the most successful
detection is provided by applying the covariance model of CL = 165m. Success is
thereby measured by a large MCR and a high detection rate. The question why the
optimal CL is not more sensitive to the simulated point interval is a task for future
studies.

In conclusion, there is no apparent reason in theory that requires a covariance
function of a modified large CL. The simulations of the Vinton Dome profiles reveal
though that the modified CL has a huge impact on the MF performance while the
simulated profiles only gain a minor improvement if any. A possible reason for these
different effects is that the Vinton Dome data in contrast to the simulated background
is airborne and, therefore, smoother, which consequently leads to a higher correlation.
The narrow anomaly introduces a short-wavelength signal, which sticks out if the
surrounding background is highly correlated.

The practical conclusion from these tests is that one way to further advance the
MF performance is to add a sought signal to the observed data and to determine the
best covariance for the detections based on various CLs. This covariance matrix can
then be used for the entire data set. The generated sought signal should either be
placed in an area where it is known that no other signal exists or it should be different
from the actual signal of interest to avoid interferences. The gained improvement
becomes especially apparent if the instrument noise is high, interference from a strong
background anomaly exists, and no observation point is directly placed above the
sought anomaly.

3.3.6 Multiple Profiles

The major scope of this dissertation is to locate a mass anomaly along a straight
profile, hence the extended shape of the prism in x2-direction. However, the MF
formulas in Chapter 2 are designed such that a two-dimensional search for a mass
anomaly limited in both x1- and x2-dimensions is possible as well. A new set of Monte
Carlo simulations computes three profiles along the x1-direction, that are parallel to
each other and ∆x2 = 3m apart. The observation point interval along the profile
remains ∆x1 = 1m. Due to the designed extension of the void (b = 100m), the task
remains a one-dimensional search (location of the anomaly along x1) but the task is
now to see if the observations of a grid rather than a profile are able to improve this
detection. The global maximum filter output determines the location of the mass
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Detection Rate [%]

Observation Type 2m 3m 4m 5m

Gravity Gradient Γ13 99.4 24.7 13.6 10.8

Table 3.8: MF Detection with 3 Profiles for Various Depths of the Anomaly

anomaly, however, due to the long shape of the prism, all three profiles are expected
to have a local maximum at x1 = 30m. The output domain of the MF is here 3×101.

Out of 1000 MF runs the observation based on Γ13 have the following success
rate depending on the depth of the void (see Table 3.8). All detections, which are
determined by the global maximum filter output, have improved in comparison to the
single profile simulations (see Table 3.2). Even though the profiles are highly corre-
lated, adding two more profiles improves the MF performance. This result is similar to
combining the Γ13 observations with two further gravity gradient components, where
Γ11 and Γ33 are negatively correlated to each other. Figure 3.49 compares the suc-
cessful detection rate for a single profile, three profiles, and a single profile with three
components with respect to the anomaly depth. It is interesting to notice that the
curve of the three profiles is similar to the one for one profile with three components
only up to a depth of 3m. Beyond that, the three components are more successful
while there is hardly any difference between the solutions based on the three or on the
one profile anymore. Adding more observation profiles seems to have only a positive
effect in the very shallow subsurface. One issue that arises in this case is that the
three profiles are highly correlated to each other in x2-direction (across-track), which
results in a high correlation of the MF outputs, y. This complicates a statistical
interpretation of the MF output as described in Chapter 4.

3.3.7 Orientation of Source

The MF simulations are based on several assumptions to detect a mass anomaly. In
order to solve for the geophysical inverse problem and to implement an MF, the prop-
erties of the sought signal must be known or estimated a priori. Those properties are
the shape and size of the anomaly (prism parameters), the depth (or signal strength),
the density and magnetic contrast, and the orientation of the anomaly. The above
simulations assume that the prism lies in the horizontal plane and its long side is
perpendicular to the observed profile. In the following MF simulations the prism is
rotated around the vertical axis, x3, by the angle, γrot. The pivot point lies thereby
above the center of the prism (Figure 3.50). That means the pivot point is at the
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Figure 3.49: MF Detection with 1 or 3 Profiles

origin of the local coordinate system when deriving the sought signal. When mod-
eling the signal in the observation field (3.1) the coordinates of the pivot point are[
x1 x2 x3

]T
=
[

30m 37m 0m
]T

. The same equations (3.1) hold that com-
pute the three-dimensional prism in Chapter 3.1.1 in the local x–coordinate system.
However, in order to change the orientation of the prism, the input coordinates are
rotated by the angle γrot. For example, the previous 101 × 101 grid points of the
sought signal, x1 = x2 = −50, . . . , 50, now become the grid points in the rotated
u-coordinate system  u1

u2

u3

 = R3 (γrot)

 x1

x2

x3

 (3.68)

with the rotation matrix

R3 (γrot) =

 cos (γrot) sin (γrot) 0
− sin (γrot) cos (γrot) 0

0 0 1

 . (3.69)

As the rotation is defined in the horizontal plane, the vertical coordinate remains zero,
u3 = x3 = 0. The coordinates of the rotated u-system enter the equations for the
gravity gradients above a prism (3.1). In order to yield the same gravity gradients in
the x–coordinate system, the entire tensor matrix is transformed back to the original
system by Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33


x - system

= RT
3 (γrot)

 Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33


u - system

R3 (γrot) . (3.70)
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Figure 3.50: Horizontal Rotation of Prism

The magnetic field generated by a rotated prism is derived by applying Poisson’s
Relation (2.40) to the gravity gradients on the left-hand side of (3.70). A comparison
of the sought signal of, for example Γ13 and Γ22, based on the original simulation
setup, where the prism is perpendicular to the profile (γrot = 0 ◦), and based on
γrot = 45 ◦ are plotted in Figure 3.51. In the case of Γ13, the rotation produces a
slightly broader and weaker signal while in the case of Γ22, the sought signal changes
from almost being zero to a sharp peak of about 43E.

Again, 1000 test runs are simulated and their results presented in Figure 3.52. It
plots the percentage of a successful detection against the rotation angle γrot, which
goes from 0 ◦ to 45 ◦. Beyond 45 ◦, the profile should be heading from East to West (x2-
direction) as the location of the prism is in that case rather defined by the x2- than the
x1-coordinate. The interval between two consecutive rotations is 2.5 ◦. The dashed
line in Figure 3.52 is based on the gravity gradient component Γ13 and a simulated
mass anomaly at 2m depth. As it is to be expected, the performance of the MF
decreases with an increase in γrot. The MF is able to detect the prism in 88.2 % of the
cases where γrot = 0 ◦ (compare Table 3.2) but only 27.3 % where γrot = 45 ◦. On the
other hand, the gravity gradient component Γ22 improves the performance (line of
vertical stripes) with an increase in γrot, correspondingly. This gradient component
was neglected so far since it is very small (zero if b = ∞), however, the rotations
result in a gravity change along the x2-direction. The solid line describes the MF
performance when the two gradients are combined in the detection process. The
performance of the combination always exceeds the single gradient solution at any
point. The successful detection does not fall below 64 %. This supports the conclusion
that the more gravity gradients are combined the better the detection as presented in
Table 3.3. The minimum of the (Γ13, Γ22) detection line is at the same angle where
the Γ13 detection line and the Γ22 detection line cross.
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Figure 3.51: Effect on Prism Rotation on a) Γ13 b) Γ22
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Figure 3.52: MF Performance under Rotation of the Prism
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Figure 3.53: Estimation of Rotation with Prism Depth at a) 2m b) 3m

The follow-up question is how sensitive is the MF performance to a falsely assumed
rotation angle, γrot, in the design of the sought signal, s. Figure 3.53 demonstrates
the effects for Γ13 observations where the anomaly is placed at 2m and 3m depth,
respectively. The line of vertical stripes contains observations based on γrot = 10 ◦

and the dashed line contains observations based on γrot = 25 ◦ as the true orientation
of the sought signal. The assumed γrot in the sought signal ranges from 0 ◦ to 45 ◦ with
an interval of 2.5 ◦. The solid line serves as a reference where γrot in the observation,
z, and the sought signal, s, are the same, hence the crossing points at 10 ◦ and 25 ◦.
That also means that the solid curve in Figure 3.53 is identical to the dashed curve
in Figure 3.52.

The MF detection performance is clearly less sensitive to the discrepancy of the ro-
tation angles between the modeled signal and the signal contained in the observations
than it is to the discrepancy of the assumed and actual prism depths (Section 3.3.3).
Here, there is no distinctive maximum in the performance where the assumed γrot

matches the actual γrot. A difference of up to 20 ◦ in both of those angles hardly
diminishes the MF performance. If data are collected along several parallel profiles
(see Section 3.3.6), the maximum of the MF output, y, in each line will delineate the
prism according to its orientation. Only in the case of γrot = 0 ◦ the maximum is
supposed to be at x1 = 30m in each line. A rough estimate of the assumed rotation
angle in the design of the sought signal should be sufficient. Otherwise, an iteration
of assumed γrot further improves the delineation of the prism [Jekeli and Abt, 2010].
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Chapter 4: Statistical Analysis

The Matched Filter (MF) maximizes the Signal-to-Noise Ratio (SNR) and the max-
imum of the filter output indicates the location of the sought signal, s. That means
the MF will always declare a location for the sought signal because there is always a
maximum value even if the sought signal does not exist. In such a case, the maximum
in the filter output is generated by a random local anomaly in the background noise.
Sometimes, the sought signal does exist but is too weak to be detected, e.g. if the
generating source is buried too deeply under the ground. Again, the maximum of the
filter output might be generated by a local background feature. In general, the MF
provides the most likely location of the sought signal but the question of how likely
is only answered by looking into statistical details.

In statistics, binary hypothesis tests are designed to determine if either one choice
or the other is true (Null Hypothesis, H0, versus Alternative Hypothesis, H1). Here,
the decision is to be made if the maximum filter output locates the sought anomaly
or not. This decision is derived by a test of likelihood ratio based on the observations
and its comparison to a defined threshold. Two fundamental types of hypothesis tests
are commonly in use where the threshold is either designed by the Bayes criterion or
by the Neyman-Pearson criterion ([Kay, 1998], [Middleton, 1960], [Srinivasan, 2002]).
The Bayes criterion requires an estimate of the a priori probability of the observations
in order to determine the decision threshold. Since, in the case of the presented
MF application, it is unknown if the sought signal even exists, modeling a priori
probabilities becomes challenging. The Neyman-Pearson criterion, however, defines
the threshold not by a priori probabilities but by a constraint as stated below and is,
therefore, applied to the given MF example.

4.1 Neyman-Pearson Criterion

The Neyman-Pearson criterion tests the hypotheses while minimizing the probability
of a Type II error, denoted β, for a given probability of a Type I error, denoted
α. The Type I error is defined as the wrong rejection of the Null Hypothesis, and
the Type II error is defined as the wrong acceptance of the Null Hypothesis. The
decision process is a tradeoff between the probabilities of those two errors. In contrast
to Bayes, Neyman-Pearson cannot reduce both probabilities simultaneously.
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Figure 4.1: Probabilities based on Decisions

Two different approaches are possible to formulate the Null Hypothesis. Under
Setup A, the Null Hypothesis states that there is no signal, and under Setup B, the
Null Hypothesis sates, that there is a signal. The Alternative Hypotheses change
accordingly.

Setup A

H
(A)
0 : There is no (detectable) signal in the observations.

H
(A)
1 : There is a (detectable) signal in the observations.

Setup B

H
(B)
0 : There is a (detectable) signal in the observations.

H
(B)
1 : There is no (detectable) signal in the observations.

The purpose why both setups are considered is that Setup A allows to determine
the Probability Of a Miss (POM) and Setup B allows to determine the Probability
Of a False alarm (POF). A miss is the error that occurs when the MF output has
correctly detected the sought signal but the selected hypothesis declares that there
is no signal. A false alarm occurs when the MF output has not detected the sought
signal but the selected hypothesis declares that the filter output locates the signal.
Both probabilities are illustrated in Figure 4.1. Whether Setup A or Setup B is more
appropriate depends on the specific application. When detecting hazardous areas, it
is more important not to miss any hazards even if it increases the number of false
alarms. When detecting a mineral for mining, it is more important to avoid cost
intensive false alarms even if it increases the chance of missing some sources. Setup A
and B are mostly inverse to each other but will here still be discussed separately in
more details. All probabilities are thereby theoretically derived and do not depend
on empirical or simulated data sets.
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4.1.1 Setup A

The Neyman-Pearson criterion compares a likelihood ratio, LR, to a threshold, ψ0,
defined by probabilities. In case of Setup A, LR is defined as the ratio between the a
posteriori probability densities, f , for the observations, z, where either H

(A)
1 or H

(A)
0

is true

LR =
f
z|H(A)

1

(
z|H(A)

1

)
f
z|H(A)

0

(
z|H(A)

0

) . (4.1)

The decision whether H
(A)
0 is accepted or rejected is based on a constant threshold,

ψ
(A)
0 .

If LR ≥ ψ
(A)
0 =⇒ reject H

(A)
0

If LR < ψ
(A)
0 =⇒ accept H

(A)
0

(4.2)

LR is linearly related to the maximum filter output, ymax, given by

ln (LR) = λymax −
1

2
λ2 (4.3)

under the assumption that the background noise is Gaussian [Jekeli and Abt, 2010].
An appropriate threshold can, therefore, simply be compared to ymax instead of LR.
As described in Section 3.1.2 and 3.2, the background noise is considered to be ap-
proximately a stationary Gaussian process. Consequently, the observation (2.47) is
also approximately Gaussian distributed and since the MF is a linear filter, the filter
output, y, will also be Gaussian with the statistical mean (2.70) and a unit standard

deviation (2.71). If the sought signal is strong (reject H
(A)
0 and accept H

(A)
1 ) the

maximum filter output, ymax, will not vary in location among all, r, with different
realizations. Consequently, ymax will also be Gaussian and its probability density
under hypothesis H

(A)
1 can be expressed as

f
ymax|H(A)

1

(
ymax|H(A)

1

)
=

1√
2π
e−

1
2

(ymax−λ)2 , (4.4)

[Bronshtĕın, 2007, p.758].

If there is no signal (accept H
(A)
0 and reject H

(A)
1 ) the maximum filter out-

put, ymax, is not Gaussian anymore but will follow the concepts of order statistics
[Nevzorov, 2001], [Srinivasan, 2002]. If the filter outputs, y, are identically and inde-
pendently distributed for all r, the probability density function is defined by

fymax (ymax) = N (Fy (ymax))N−1 fy (ymax) (4.5)

where N is the number of points, r, and fy stands for the density function of y.
The function F is called Cumulative Distribution Function (CDF) and represents the
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probability that y ≤ ymax is true [Evans et al., 2000]. Following this theory, F is a
continuous variable depending on the parameter ymax.

The MF outputs, y, are identically distributed (Gaussian, zero-mean, unit stan-
dard deviation) in the absence of a signal. This fulfills the condition of order statistics
but, in general, the background noise has some correlation and in addition, the ob-
servation vector, z, is convolved with the same sought signal, s, for all realizations.
This has the effect that the MF outputs are no longer independently distributed.
However, since the signal shape is rather sharp (Figure 3.3, Figure 3.4) and zero
most of the time, the MF outputs are here assumed as approximately independently
distributed [Jekeli and Abt, 2010] so that the theory of order statistics can still be
applied. Inserting the density function

f
y|H(A)

0

(
ymax|H(A)

0

)
=

1√
2π
e−

1
2
y2max (4.6)

and the CDF for the standard normal distribution [Bronshtĕın, 2007, p.759],

F
y|H(A)

0

(
ymax|H(A)

0

)
=

1

2
+

1

2
erf

(
ymax√

2

)
, (4.7)

into (4.5), the probability density for y under H
(A)
0 is presented by

f
ymax|H(A)

0

(
ymax|H(A)

0

)
= N

(
1

2
+

1

2
erf

(
ymax√

2

))N−1
1√
2π
e−

1
2
y2max (4.8)

where erf stands for the error function.
The probabilities of a Type I error, α, and a Type II error, β, determined by the

Neyman-Pearson hypothesis test are derived as

α(A) =

∞∫
ψ
(A)
0

f
ymax|H(A)

0

(
ymax|H(A)

0

)
dymax

=
N√
2π

∞∫
ψ
(A)
0

(
1

2
+

1

2
erf

(
ymax√

2

))N−1

e−
1
2
y2maxdymax

(4.9)

and

β(A) =

ψ
(A)
0∫

−∞

f
ymax|H(A)

1

(
ymax|H(A)

1

)
dymax

=
1

2
+

1

2
erf

(
ψ

(A)
0 − λ√

2

) (4.10)

where ψ
(A)
0 is the constant threshold under Setup A (4.2). As stated above, the

Neyman-Pearson criterion minimizes β for a given α. Setting α(A) to a certain value,
(4.9) can be numerically solved for the threshold ψ

(A)
0 .
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4.1.2 Setup B

The likelihood ratio, LR, in Setup B is the reverse of the ratio in Setup A (4.1) and
becomes

LR =
f
z|H(B)

0

(
z|H(B)

0

)
f
z|H(B)

1

(
z|H(B)

1

) . (4.11)

The decision making process changes accordingly to

If LR ≥ ψ
(B)
0 =⇒ reject H

(B)
0

If LR < ψ
(B)
0 =⇒ accept H

(B)
0 .

(4.12)

Under both Setup A and B, the LR or ymax must be greater or equal to the cor-
responding threshold in order to declare the maximum filter output as a detected
signal.

The probability densities for ymax underH
(B)
0 andH

(B)
1 in Setup B are also reversed

to those of Setup A and can be expressed as

f
ymax|H(B)

0

(
ymax|H(B)

0

)
= f

ymax|H(A)
1

(
ymax|H(A)

1

)
(4.13)

and
f
ymax|H(B)

1

(
ymax|H(B)

1

)
= f

ymax|H(A)
0

(
ymax|H(A)

0

)
. (4.14)

This results in the following probabilities of a Type I error

α(B) =

ψ
(B)
0∫

−∞

f
ymax|H(B)

0
dymax

=
1

2
+

1

2
erf

(
ψ

(B)
0 − λ√

2

) (4.15)

and a Type II error

β(B) =

∞∫
ψ
(B)
0

f
ymax|H(B)

1

(
ymax|H(B)

1

)
dymax

=
N√
2π

∞∫
ψ
(B)
0

(
1

2
+

1

2
erf

(
ymax√

2

))N−1

e−
1
2
y2maxdymax,

(4.16)

which are opposite to those of Setup A.
The threshold under Setup B is determined by choosing a value for α(B) and

solving (4.15) for ψ
(B)
0 :

ψ
(B)
0 = λ+

√
2 erf−1

(
2α(B) − 1

)
. (4.17)

Table 4.1 summarizes the POMs and POFs under Setup A and B.
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Error Probability Setup A Setup B

α (Type I) theoretical POF theoretical POM
β (Type II) theoretical POM theoretical POF

Table 4.1: Theoretical Error Probabilities

4.2 Statistical Interpretation of MF Simulations

The performance of the Matched Filter is tested by implementing the Monte Carlo
simulation with 1000 test runs of the track of N = 101 points. Based on this,
the empirical, here more precisely the simulated, POMs and POFs are derived and
compared to the theoretically computed probabilities. If ymax is greater or equal to
the corresponding threshold of Setup A or B, the MF filter output is accepted as a
successful detection. If ymax is less than the corresponding threshold the MF filter
output is rejected and no signal is found. The empirical POM is the number of all
wrongly rejected successes divided by the total number of successes,

POM =
# successes when ymax < ψ0

# successes
. (4.18)

The empirical POF is the number of all wrongly accepted failures divided by the total
number of failures,

POF =
# failures when ymax > ψ0

# failures
. (4.19)

Setting the probability of a Type I error under Setup A to α(A) = 5 % gives the
following threshold ψ

(B)
0 = 3.287 based on N = 101 profile points. The threshold

is numerically derived from Figure 4.2 which is the discrete realization of equation
(4.9).

Table 4.3 shows the MF results for the gravity gradient component Γ33 where the
sought signal is buried at 1m to 5m depth. The threshold for Setup B is computed
by (4.17) and presented in Table 4.2. Table 4.3 shows the percentage of the 1000 test
runs that correctly detect the sought signal and the percentage of the MF output that
is accepted based on Setup A and B, respectively. Furthermore, the empirical POMs
and POFs are compared to their theoretical values. The theoretical probabilities are
computed from theoretical values only.

The MF simulations show that Setup A and Setup B have an opposite trend.
As the sought signal becomes weaker (increase in depth), Setup A accepts fewer MF
outputs. Setup B, on the other hand, accepts more MF outputs. Setup B is, therefore,
counterintuitive.
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Figure 4.2: Decision Threshold Under Setup A

Depth [m] 1 2 3 4 5

λ [−] 22.996 3.627 1.055 0.517 0.330

ψ
(B)
0 [−] 21.351 1.983 −0.590 −1.1275 −1.3148

Table 4.2: Decision Threshold Setup B
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Depth [m] 1 2 3 4 5

Detection [%] 100 84.9 16 10.5 8.6

S
et
up

A

Accept [%] 100 63.7 6.5 3.9 2.9

POF [%] - 13.2 5.1 3.9 2.9
POM [%] 0 27.3 86.3 96.2 95.3

α [%] 5

β [%] 0 36.7 98.7 99.7 99.8
S
et
up

B

Accept [%] 95.5 99.5 100 100 100

POF [%] 4.5 0.1 0 0 0
POM [%] - 97.4 100 100 100

α [%] 5

β [%] 0 91.2 100 100 100

Table 4.3: Comparison Setup A and Setup B Results

Depth [m] 1 2 3 4 5

λ [−] 22.9958 3.6274 1.0551 0.5174 0.3301

ψ
(B)
0 [−] 22.611 3.241 0.670 0.132 −0.055

Table 4.4: Decision Threshold Setup B (α(B) = 35 %)

Setup A is more reasonable than Setup B if the error α is set to 5 %. Comparing
again the case of 2m depth, (4.10) leads to β(A) = 36.7 % and the numerical com-
putation of (4.16) results in β(B) = 91.2 %. However, in order to show that Setup A
and B are corresponding to each other, α(B) is now set to 35 % in (4.15) resulting in
β(B) = 5.8 %. The corresponding results are listed in Table 4.4 and Table 4.5.

The probabilities in the case of Γ33 based on the 2m depth are presented in
Figure 4.3 a) for Setup A and Figure 4.3 b) for Setup B.

Those figures clearly illustrate the asymmetry in the density function of the maxi-
mum output compared to the symmetric Gaussian function. The following Figure 4.4
is the same example of Setup B except that α(B) is set to 35 % instead of 5 % (compare
(4.17)). In order to evaluate the performance of the likelihood ratio test the Receiver
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Depth [m] 1 2 3 4 5

Detection [%] 100 84.9 16 10.5 8.6

S
et
up

B
Accept [%] 63.6 65.1 100 100 100

POM [%] 36.4 25.8 0 0 0
POF [%] - 13.9 100 100 100

α [%] 35

β [%] 0 5.8 100 100 100

Table 4.5: Setup B Results (α(B) = 35 %)
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Figure 4.3: Probabilities under a) Setup A b) Setup B
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Figure 4.4: Probabilities under Setup B with α(B)=35 %

Operating Characteristic (ROC) curves are computed [Kay, 1998, p.74]. The power
of the test is thereby defined as 1 − β and plotted against α where α again denotes
the probability of a Type I error and β stands for the probability of a Type II error
(Table 4.1). Any point on the curve represents, therefore, a specific pair of power
and corresponding error probability. It is obvious that in order to receive a stronger
power of the test, a higher probability of a Type I error needs to be accepted, i.e. the
test significance level increases. The decision threshold ψ0 corresponds to a certain
location on the curve. The ROC curves for the above simulations in Table 4.3 are
shown in Figure 4.5. It becomes obvious that Setup A and Setup B are the same and
are just mirrored along the diagonal axes of their intersection. Minor differences are
caused by the numerical integration in Setup A. If α is a priori defined to be lower
than 20 %, Setup A is the more powerful test statistic.

One issue that arises with the presented statistical interpretation is that it cannot
easily be applied to the case of multiple tracks described in Section 3.3.6. The proba-
bility density function derived from order statistics (4.5) requires that all MF outputs
are independently distributed. However, the three profiles are highly correlated in x2-
direction (across-track) and are, therefore, no longer independent. A new statistical
analysis is required. Since decorrelation of the three profiles is challenging, a simpler
approach is to look at each profile individually for the statistical interpretation.
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Figure 4.5: Receiver Operating Characteristic Curves for Setup A and B
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Chapter 5: Conclusion

The localization of an underground mass anomaly such as a void is an essential task
in a broad spectrum of real world applications. Avoiding urban constructions over
voids that possibly cause a collapse of land, finding archeological features prior to
excavations, and scientific research in caves on Mars, are just some of the purposes
that require the beforehand detection of voids. This dissertation is the result of a
general study that benefits the entire spectrum. While researchers apply a range of
different geophysical sensors, the scope is here only put on the fundamental quantities
of the Earth, gravity, gravity gradients, and the magnetic field, which also imply a
relatively easy data acquisition. All data are combined as input to a single detec-
tion solution. The relationship between gravity, gravity gradients and the magnetic
field is here, therefore, mathematically developed, including the derivation of their
covariances. The covariance function that describes the geologic background noise
is of importance as it is part of the Matched Filter (MF) function. The covariances
are either determined by a Power Spectral Density model, derived from covariance
propagation, or based on the periodogram method. A detailed description of the
simulation setup, as well as the results and statistical interpretations are provided.
The focus of this study is the detection using the MF with possible opportunities
to estimate selected parameters such as depth and orientation of the anomaly, along
with a probabilistic assessment.

The simulations in this dissertation clearly show how the MF is able to detect
the mass anomaly modeled as a linear feature in a single profile of observations, even
if the background noise is visually predominant. The MF proves to be a promising
tool as it correctly locates the sought void not in just one example but in most of the
1000 cases of varying background, where each time the void would not be visible to
an operator inspecting the raw data. The rate of successful detections with respect
to the number of simulations creates here the major criterion to validate the MF
performance.

It is concluded from the output of the simulations that the gravity data are the
least effective in comparison to gravity gradients and the magnetic field. The two ex-
planations for that are the relatively high instrument noise of the gravimeter leading
to a weak Signal-to-Instrument-Noise ratio and the signal shape of gravity, which is
not as sharp as those of its gradients and, therefore, less distinct in the background
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noise. The magnetic field data result in a similar strong performance as the gravity
gradient data. It has to be noted, though, that magnetic data depend on the direction
of magnetization, which can easily be interfered by an outside magnetic source. This
research encourages the use of gravity gradiometers as they seem to be advantageous
for the detection problem in the shallow subsurface. Combining several gradient com-
ponents leads to the best result, especially if the sought mass anomaly has a limited
extension in each direction of the coordinate system. Adding the magnetic data makes
the MF detection even stronger with feasible additional effort, however, it has to be
tested if Poisson’s Relation is applicable in the specific area. A further finding is that
if the background noise provides non-stationary or anisotropic conditions, edge effects
may occur in the filter output. In order to avoid this interference the edges of the
MF output can be simply eliminated.

The detection of an underground mass anomaly based on gravity and magnetic
data poses the geophysical inverse problem, which is non-unique. That means the
same observed data can be generated from different kinds of mass anomalies (different
shape, depth, density, and so on). This difficulty is sidestepped by utilizing an MF
as it requires that the sought signal is known. This additional constraint leads to a
unique solution resulting in the localization of the anomaly. Two sets of simulations
in this dissertation study the impact on the detection if the sought signal is falsely
estimated by modeling either the wrong depth or the wrong orientation in the filter
function. This also leads to the question if an unknown depth or orientation can
be derived from matched filtering. The two-dimensional filter is designed to find the
horizontal location of the mass anomaly but simulations reveal that it is also sensitive
to the depth parameter. The depth can be estimated after the horizontal position has
been determined. First, the MF is applied to the observations with varying depths
in the filter function. The next steps are to determine the horizontal position of the
anomaly based on an overview of all MF solutions and to eliminate those solutions
that deviate from this horizontal position. The correct depth is finally assumed to be
the one with the largest value of the remaining maximum filter outputs.

The MF is less sensitive to a horizontal rotation of the mass anomaly, which is,
therefore, difficult to estimate. Simulations show that even if the assumed orientation
differs from the true orientation, the MF is still able to locate the anomaly. In
order to better delineate the anomaly, i.e. finding its orientation, multiple profiles are
necessary. Each of these profiles defines a maximum that represents the center of the
anomaly along the corresponding profile. Based on that the orientation of the anomaly
can be extracted. If the sought anomaly has a more advanced feature than the
simple three-dimensional prism, the anomaly needs to be modeled by an appropriate
combination of several prisms. This is outside the scope of this dissertation but poses
an interesting task for the ongoing research. If the MF is implemented in order to not
only search for the position of the sought signal but also for its unknown orientation,
the observation of multiple profiles is useful. In any other case the increase in number
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of profiles is not necessarily justified with regard to the additional work caused during
data acquisition. The result of each profile is considered almost redundant and is only
helpful in the rare examples where the main profile does not locate the anomaly but
any of the additional profiles does. It is rather recommended to add magnetic data
(or another gravity gradient component) to the original profile than increasing the
number of profiles. The contribution to the MF solution in that case is similar but a
single profile has the benefit that its MF output can be statistically interpreted with
the Neyman-Pearson hypothesis test.

One interesting outcome of this dissertation is the conclusion that the correlation
length of the covariance function has in some cases a huge impact on the MF perfor-
mance. In contrast to the common preprocessing step to whiten, i.e. to decorrelate,
the observations, a new approach has been introduced that moves in the opposite
direction. By increasing the correlation length of the covariance function, the ob-
servations are treated as higher correlated than they actually are. While whitening
turns the covariance matrix into a simple diagonal matrix (with appropriate reduc-
tions applied to the observations), the new approach results in a covariance matrix
with higher off-diagonal elements (cross-covariances). The result is a drastic improve-
ment in the MF performance. The relation between the correlation length and the
success of the localization yields an important topic for future research. So far, it can
be stated that the drastic effect in the filter output seems to be independent of the
variances that are assumed to describe the white instrument noise. Modifying the
placing of the observation points along the profile or coping with a large anomaly in
the background field influences the overall performance of the detection but does not
change the fact that an increase in the correlation length can lead to an enormous
improvement of the MF result. As those findings mainly occur with the actual gravity
gradient but not so much with the simulated data sets, the next step continuing this
research would be the analysis of more real data profiles in various areas. Further-
more, real magnetic data should be included in order to validate the practicality of
Poisson’s Relation in the real world. The posed question is thereby how large the
area is that fulfills the required constant magnetization to density ratio.

The key aspect of future research is, therefore, to focus on actual observations
with the background and understandings developed from the simulations in this dis-
sertation. In an overall conclusion, the simulations demonstrate that the MF is a
powerful technique and encourage the observation of ground gravity gradients. An
even stronger detection performance is gained by combining gravity and magnetic
data on a local level.
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Appendix A: Covariance Model Parameter

σ2
1 = 100000

m4

s4
(A.1)

σ2
2 = 3500

m4

s4
(A.2)

σ2
3 = 778

m4

s4
(A.3)

σ2
4 = 300

m4

s4
(A.4)

σ2
5 = 20

m4

s4
(A.5)

σ2
6 = 0.2

m4

s4
(A.6)

σ2
7 = 0.02

m4

s4
(A.7)

σ2
8 = 0.003

m4

s4
(A.8)

σ2
9 = 3 · 10−4 m

4

s4
(A.9)

σ2
10 = 9 · 10−6 m

4

s4
(A.10)

σ2
11 = 4 · 10−7 m

4

s4
(A.11)

σ2
12 = 4 · 10−8 m

4

s4
(A.12)

σ2
13 = 5 · 10−9 m

4

s4
(A.13)

σ2
14 = 6 · 10−11 m

4

s4
(A.14)
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σ2
15 = 5 · 10−12 m

4

s4
(A.15)

σ2
16 = 5 · 10−13 m

4

s4
(A.16)

α1 = 3 · 10−7 1

m
(A.17)

α2 = 7.7 · 10−7 1

m
(A.18)

α3 = 3 · 10−6 1

m
(A.19)

α4 = 8.5 · 10−6 1

m
(A.20)

α5 = 2 · 10−5 1

m
(A.21)

α6 = 6 · 10−5 1

m
(A.22)

α7 = 1 · 10−4 1

m
(A.23)

α8 = 2 · 10−4 1

m
(A.24)

α9 = 4.8 · 10−4 1

m
(A.25)

α10 = 1.3 · 10−3 1

m
(A.26)

α11 = 3 · 10−3 1

m
(A.27)

α12 = 5 · 10−3 1

m
(A.28)

α13 = 1.1 · 10−2 1

m
(A.29)

α14 = 3 · 10−2 1

m
(A.30)

α15 = 5 · 10−2 1

m
(A.31)

α16 = 1.2 · 10−1 1

m
(A.32)
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Appendix B: Gravity Gradients and Magnetic Field
Covariances

φΓ11,B1 =
µ0χH

4πGρ
(αφΓ11,Γ11 + βφΓ11,Γ12 + γφΓ11,Γ13) (B.1)

φΓ11,B2 =
µ0χH

4πGρ
(αφΓ11,Γ12 + βφΓ11,Γ22 + γφΓ11,Γ23) (B.2)

φΓ11,B3 =
µ0χH

4πGρ
(αφΓ11,Γ13 + βφΓ11,Γ23 + γφΓ11,Γ33) (B.3)

φΓ22,B1 =
µ0χH

4πGρ
(αφΓ22,Γ11 + βφΓ22,Γ12 + γφΓ22,Γ13) (B.4)

φΓ22,B2 =
µ0χH

4πGρ
(αφΓ22,Γ12 + βφΓ22,Γ22 + γφΓ22,Γ23) (B.5)

φΓ22,B3 =
µ0χH

4πGρ
(αφΓ22,Γ13 + βφΓ22,Γ23 + γφΓ22,Γ33) (B.6)

φΓ33,B1 =
µ0χH

4πGρ
(αφΓ33,Γ11 + βφΓ33,Γ12 + γφΓ33,Γ13) (B.7)

φΓ33,B2 =
µ0χH

4πGρ
(αφΓ33,Γ12 + βφΓ33,Γ22 + γφΓ33,Γ23) (B.8)

φΓ33,B3 =
µ0χH

4πGρ
(αφΓ33,Γ13 + βφΓ33,Γ23 + γφΓ33) (B.9)

φΓ12,B1 =
µ0χH

4πGρ
(αφΓ12,Γ11 + βφΓ12,Γ12 + γφΓ12,Γ13) (B.10)

φΓ12,B2 =
µ0χH

4πGρ
(αφΓ12,Γ12 + βφΓ12,Γ22 + γφΓ12,Γ23) (B.11)

φΓ12,B3 =
µ0χH

4πGρ
(αφΓ12,Γ13 + βφΓ12,Γ23 + γφΓ12,Γ33) (B.12)
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φΓ23,B1 =
µ0χH

4πGρ
(αφΓ23,Γ11 + βφΓ23,Γ12 + γφΓ23,Γ13) (B.13)

φΓ23,B2 =
µ0χH

4πGρ
(αφΓ23,Γ12 + βφΓ23,Γ22 + γφΓ23,Γ23) (B.14)

φΓ23,B3 =
µ0χH

4πGρ
(αφΓ23,Γ13 + βφΓ23,Γ23 + γφΓ23,Γ33) (B.15)

φΓ13,B1 =
µ0χH

4πGρ
(αφΓ13,Γ11 + βφΓ13,Γ12 + γφΓ13,Γ13) (B.16)

φΓ13,B2 =
µ0χH

4πGρ
(αφΓ13,Γ12 + βφΓ13,Γ22 + γφΓ13,Γ23) (B.17)

φΓ13,B3 =
µ0χH

4πGρ
(αφΓ13,Γ13 + βφΓ13,Γ23 + γφΓ13,Γ33) (B.18)

φB1,Γ11 =
µ0χH

4πGρ
(αφΓ11,Γ11 + βφΓ12,Γ11 + γφΓ13,Γ11) (B.19)

φB1,Γ22 =
µ0χH

4πGρ
(αφΓ11,Γ22 + βφΓ12,Γ22 + γφΓ13,Γ22) (B.20)

φB1,Γ33 =
µ0χH

4πGρ
(αφΓ11,Γ33 + βφΓ12,Γ33 + γφΓ13,Γ33) (B.21)

φB1,Γ12 =
µ0χH

4πGρ
(αφΓ11,Γ12 + βφΓ12,Γ12 + γφΓ13,Γ12) (B.22)

φB1,Γ23 =
µ0χH

4πGρ
(αφΓ11,Γ23 + βφΓ12,Γ23 + γφΓ13,Γ23) (B.23)

φB1,Γ13 =
µ0χH

4πGρ
(αφΓ11,Γ13 + βφΓ12,Γ13 + γφΓ13,Γ13) (B.24)

φB2,Γ11 =
µ0χH

4πGρ
(αφΓ12,Γ11 + βφΓ22,Γ11 + γφΓ23,Γ11) (B.25)

φB2,Γ22 =
µ0χH

4πGρ
(αφΓ12,Γ22 + βφΓ22,Γ22 + γφΓ23,Γ22) (B.26)

φB2,Γ33 =
µ0χH

4πGρ
(αφΓ12,Γ33 + βφΓ22,Γ33 + γφΓ23,Γ33) (B.27)

φB2,Γ12 =
µ0χH

4πGρ
(αφΓ12,Γ12 + βφΓ22,Γ12 + γφΓ23,Γ12) (B.28)
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φB2,Γ23 =
µ0χH

4πGρ
(αφΓ12,Γ23 + βφΓ22,Γ23 + γφΓ23,Γ23) (B.29)

φB2,Γ13 =
µ0χH

4πGρ
(αφΓ12,Γ13 + βφΓ22,Γ13 + γφΓ23,Γ13) (B.30)

φB3,Γ11 =
µ0χH

4πGρ
(αφΓ13,Γ11 + βφΓ23,Γ11 + γφΓ33,Γ11) (B.31)

φB3,Γ22 =
µ0χH

4πGρ
(αφΓ13,Γ22 + βφΓ23,Γ22 + γφΓ33,Γ22) (B.32)

φB3,Γ33 =
µ0χH

4πGρ
(αφΓ13,Γ33 + βφΓ23,Γ33 + γφΓ33) (B.33)

φB3,Γ12 =
µ0χH

4πGρ
(αφΓ13,Γ12 + βφΓ23,Γ12 + γφΓ33,Γ12) (B.34)

φB3,Γ23 =
µ0χH

4πGρ
(αφΓ13,Γ23 + βφΓ23,Γ23 + γφΓ33,Γ23) (B.35)

φB3,Γ13 =
µ0χH

4πGρ
(αφΓ13,Γ13 + βφΓ23,Γ13 + γφΓ33,Γ13) (B.36)

φΓ11,B = αφΓ11,B1 + βφΓ11,B2 + γφΓ11,B3 (B.37)

φΓ22,B = αφΓ22,B1 + βφΓ22,B2 + γφΓ22,B3 (B.38)

φΓ33,B = αφΓ33,B1 + βφΓ33,B2 + γφΓ33,B3 (B.39)

φΓ12,B = αφΓ12,B1 + βφΓ12,B2 + γφΓ12,B3 (B.40)

φΓ23,B = αφΓ23,B1 + βφΓ23,B2 + γφΓ23,B3 (B.41)

φΓ13,B = αφΓ13,B1 + βφΓ13,B2 + γφΓ13,B3 (B.42)

φB,Γ11 = αφB1,Γ11 + βφB2,Γ11 + γφB3,Γ11 (B.43)

φB,Γ22 = αφB1,Γ22 + βφB2,Γ22 + γφB3,Γ22 (B.44)

φB,Γ33 = αφB1,Γ33 + βφB2,Γ33 + γφB3,Γ33 (B.45)
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φB,Γ12 = αφB1,Γ12 + βφB2,Γ12 + γφB3,Γ12 (B.46)

φB,Γ23 = αφB1,Γ23 + βφB2,Γ23 + γφB3,Γ23 (B.47)

φB,Γ13 = αφB1,Γ13 + βφB2,Γ13 + γφB3,Γ13 (B.48)
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Appendix C: Magnetic Field Covariances

φB1 =

(
µ0χH

4πGρ

)2 (
α2φΓ11 + 2αβφΓ11,Γ12 + β2φΓ12 + γ2φΓ13

)
(C.1)

φB2 =

(
µ0χH

4πGρ

)2 (
α2φΓ12 + 2αβφΓ12,Γ22 + β2

Γ22
+ γ2

Γ23

)
(C.2)

φB3 =

(
µ0χH

4πGρ

)2 (
α2φΓ13 + 2αβφΓ13,Γ23 + β2φΓ23 + γ2φΓ33

)
(C.3)

φB1,B2 =

(
µ0χH

4πGρ

)2 (
α2φΓ11,Γ12 + 2αβφΓ11,Γ22 + β2φΓ12,Γ22 + γ2φΓ13,Γ23

)
(C.4)

φB1,B3 =

(
µ0χH

4πGρ

)2 (
α2φΓ11,Γ13 + 2αβφΓ11,Γ23 + β2φΓ12,Γ23 + γ2φΓ13,Γ33

)
(C.5)

φB1,B = αφB1,B1 + βφB1,B2 + γφB1,B3 (C.6)

φB2,B1 = φB1,B2 (C.7)

φB2,B3 =

(
µ0χH

4πGρ

)2 (
α2φΓ12,Γ13 + 2αβφΓ12,Γ23 + β2φΓ22,Γ23 + γ2φΓ23,Γ33

)
(C.8)

φB2,B = αφB2,B1 + βφB2,B2 + γφB2,B3 (C.9)

φB3,B1 = −φB1,B3 (C.10)

φB3,B2 = −φB2,B3 (C.11)

114



φB1,B = αφB3,B1 + βφB3,B2 + γφB3,B3 (C.12)

φB,B1 = αφB1,B1 + βφB2,B1 + γφB3,B1 (C.13)

φB,B2 = αφB1,B2 + βφB2,B2 + γφB3,B2 (C.14)

φB,B3 = αφB1,B3 + βφB2,B3 + γφB3,B3 (C.15)

φB = α2φB1 + 2αβφB1,B2 + β2φB2 + γ2φB3 (C.16)
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