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Abstract 

 
  Two harmonic expansions are compared on modeling the gravitational field of 
non-spherical attracting bodies. As a solution to the Laplace’s equation based on 
spherical coordinates, the spherical harmonic series (SHS) is uniformly convergent 
outside a certain reference sphere that encloses the entire body mass. The 
convergence can be doubtful in close proximity to the body. On the other hand, a 
tri-axial ellipsoid, being more arbitrary-shaped than a sphere, is more apt to be 
closely fitting to the attracting body. It would be desirable to apply the ellipsoidal 
harmonic series (EHS) for field modeling if the body is distinctly non-spherical. To 
obtain the EHS one solves the Laplace’s equation in ellipsoidal coordinates. In theory, 
the EHS is akin to the SHS in terms of representation, properties and relation to the 
field potential problem. It can be shown that EHS is convergent outside a certain 
reference ellipsoid, thus could have more convergence region than the SHS. 
However, the application of the EHS for field modeling is obscured by many 
numerical difficulties. The theoretical formulation is far from practical and needs to 
be modified at the cost of computational complexity. The numerical scheme of 
applying the EHS for field modeling presented by Garmier and Barriot has been 
reviewed and adopted for application in this work. The numerical accuracy of the 
EHS may deteriorate from a certain degree, e.g., around 15, which limits the use of 
higher-degree expansions. 
  In simulation we choose to compare the performance of EHS and SHS in 
modeling the gravitational field of the Martian moon Phobos and asteroid 433 Eros, 
both assumed to be homogeneous. Of the two bodies, Phobos has moderate shape 
non-sphericity, while Eros is highly irregular-shaped. Results suggest that the EHS 
and SHS models are comparable in performance in their respective convergence 
regions. Outside the convergence region, both models are subject to divergence, i.e., 
incurring substantial modeling errors. And the further outside the convergence region, 
the greater the errors. The divergence will be aggravated by increasing the degree of 
expansions rather than be abated. With smaller convergence region than the EHS, the 
SHS becomes more vulnerable to divergence in close range of the body, e.g., on the 
reference ellipsoid. On the other hand, even if the EHS is applied outside its 
convergence region, e.g., on the surface of the body, it is less error-prone than the 
SHS, as the surface points usually reside at more shallow depth below the reference 
ellipsoid than below the reference sphere. The comparison of simulation results on 
Phobos and Eros suggest that the EHS is a more consistent model than the SHS for 
the non-spherical bodies, at the expense of increased computational effort. And the 
more non-spherical the body is, the more advantageous it is to apply the EHS. 
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1. Introduction 
 

In the last half a century or so there has been immense interest in exploring 
extraterrestrial objects, most notably the Moon[1] and other major planets such as 
Mars[2], Jupiter[3] etc. Space missions that involved sending spacecrafts with 
scientific instruments to approach or even land on the mission target[4] have greatly 
improved our understanding of formation, condition and possible inhabitability of 
these planets[5,6]. Meanwhile, smaller objects in the solar system such as comets, 
asteroids have also been subject of scrutiny; more are being marked as future targets 
of exploration[7]. To name but a few reasons for this, these small bodies denote a 
significant departure from major planets, dwarf planets and some planetary satellites 
such as the Moon in size, shape, mass and interior structure etc.[8] Knowledge of 
these small bodies may well complement our knowledge of the solar system[9]. 
Furthermore, some planets, e.g. Mars, Saturn have planetary moons of which some 
are small ones, exploring them may facilitate the understanding of the origin and 
evolution of the respective planetary system. Last but not least, there are numerous 
asteroids in the solar system, many whose trajectories come close to the Earth may 
pose risks of future crashing with potential damage, even devastation[10]. 
 
  As a spacecraft approaches a celestial body, it is subject to the body’s gravitation. 
Modeling the gravitational field is therefore an indispensable task for accurately 
tracking and controlling the spacecraft, which is a requisite condition for the 
functionality of onboard research instruments, e.g., satellite altimetry relies heavily 
on orbital accuracy especially the radial component[11,12]. Another major motivation 
is that, since gravitation is essentially determined by the mass distribution of the 
attracting body, knowledge of the field may shed light on the interior condition such 
as composition and structure of the body. In general, to represent the gravitational 
field one can use either forward or backward modeling methods. The former is an 
intuitive yet not always realistic method based on the fact that the mass distribution 
of the attracting body, if known, uniquely determines the gravitational field [13,14,15], 
while the reverse, unfortunately, is usually not true. The dilemma, however, is that 
not only is the mass distribution not easily known, but also it is likely the riddle itself 
we try to solve (e.g., in geophysics). On the other hand, backward-modeling may be 
of more practical significance. In this case, rather than pursuing the mass distribution, 
one uses measurements on or outside the attracting body to comprehensively 
characterize the exterior gravitational field. For example, a common practice in 
geodesy is to use ground-based and airborne gravimetric measurements of local 
accelerations for studying the Earth gravity∗ field[16,17]. With the advent and later 
pervasiveness of space technology, satellite laser ranging[18,19], satellite-to-satellite 
tracking[20,21], GPS[22] etc. were also found to be highly serviceable and 
complementary for field modeling. Although the actual specifics vary, the above 
                                                        
∗ Gravity is related to but differs from gravitation which we neglect for the moment. 
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geodetic principle can be readily (have been) extended to extraterrestrial bodies, e.g., 
making use of Doppler, VLBI tracking data of the nearing spacecraft to derive the 
gravitational field of the attracting object[23,24,25]. 
 
  Appropriate mathematical methods are also crucial for field modeling. The basis 
of representing the gravitational field in free space is expressed by the Laplace’s 
equation, a solution to which would form a field model. These solutions are known 
as harmonic functions whose forms vary according to the coordinate system used. 
For the Earth and other bodies whose shape is nearly spherical, a natural choice is 
the set of spherical coordinates. Accordingly the gravitational model is expressed by 
the series expansion of spherical harmonics. Specifically, the backward modeling is 
to determine a set of coefficients for the spherical harmonics that conform to the true 
field. Spherical harmonic series is prevalently used for gravitational field modeling 
due to its elegant form, straightforward formulation, and being probably the easiest 
solution to find. As a series solution the use of spherical harmonics is not 
unconditional. To model the exterior field, for instance, the series is uniformly 
convergent outside a certain reference sphere enclosing the entire attracting body. 
Inside the sphere the convergence can be doubtful. The implication is that, spherical 
harmonics are better suited for spherical bodies as their shape is more likely to fill up 
the reference sphere. The unoccupied area inside the sphere known as divergence 
region is where spherical harmonics would be subject to errors in practice. For 
planets such as Earth and Mars, the figure oblateness is typically on the order of 
0.001 or less, which suggests slight deviations of their shape from a sphere. We need 
not worry about related errors except for exacting applications. In case the errors are 
not tolerable, one remedy is to resort to the spheroidal harmonics[26] for which the 
reference surface is an ellipsoid of revolution to reduce the divergence region. 
 
  Problems arise when the attracting object assumes a more arbitrary or irregular 
shape. In this case since the body does not fit snugly into the (any) reference sphere 
(or spheroid) there is a considerable region of divergence inside the reference surface 
where the spherical (or spheroidal) harmonic model might incur errors. This could 
become a significant issue, e.g., when we evaluate the landing trajectory of the 
spacecraft close to the arbitrary-shaped body. Intuitively, the body is more likely to 
be fitted by an arbitrary or tri-axial ellipsoid, for which sphere and spheroid are but 
special cases. The divergence region is expected to be well restricted in the ellipsoid 
of proper choice. Therefore we are curious about the possible solution to the 
Laplace’s equation based on ellipsoidal coordinates: the ellipsoidal harmonics. In 
particular, a fundamental issue we wish to explore is the convergence behavior of the 
ellipsoidal harmonics. Furthermore, we are interested in how ellipsoidal harmonics 
perform compared to their counterpart spherical harmonics in terms of complexity, 
effectiveness as well as necessity of application. 
 
  The theoretical aspects of ellipsoidal harmonics were well addressed as early as 
the 1800’s. Comprehensive discussions on this topic can be found in Hobson[27], 
Byerly[28]. The ellipsoidal harmonics are based on Lamé’s functions. With an 
ellipsoid as the reference surface, ellipsoidal harmonics are analogous to spherical 
harmonics in formulation, and come with similar properties. Most desirably, it will 
be shown that the ellipsoidal harmonics are convergent outside the reference 
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ellipsoid, therefore expected to have greater convergence region than spherical 
harmonics near the attracting body. On the other hand, the computational complexity 
of ellipsoidal harmonics far exceeds that of spherical harmonics, largely due to the 
lack of recurrence relation for the Lamé’s functions, and the fact that the theoretical 
form of the ellipsoidal harmonics can be numerically unstable. We will review and 
apply a numerical scheme presented by Garmier and Barriot[29] for gravitational field 
modeling via the ellipsoidal harmonics. Certain frequently encountered numerical 
issues such as singularities, loss of significant digits, and etc., will be investigated. 
Some complementary notes and formulae will be provided for handling the 
singularities, especially for computing the higher-order derivatives of the ellipsoidal 
harmonics. 

 
The application is to model the gravitational field of the Martian moon Phobos and 

the asteroid 433 Eros. The performance of the spherical and ellipsoidal harmonic 
models will be compared. Eros is an archetype of the non-spherical, irregularly 
shaped bodies, and the motivation to exploit the ellipsoidal harmonics in prior 
works[30,31]. The limitation of spherical harmonic model can be fully revealed for 
these bodies. On the other hand, Phobos is less remarkable as an irregular-shaped 
body. We recall several gravitational field models developed so far for 
Phobos[13,15,32,33], and note that an ellipsoidal harmonic model has yet to be presented. 
A goal of this work is then to apply ellipsoidal harmonics to model the field of 
Phobos. Moreover, with its distinct but still moderate non-sphericity among the 
irregular bodies, We deemed Phobos to be a supplementary case for model 
comparison. For example, whether the ellipsoidal and spherical harmonics tend to 
concur for less non-spherical bodies, and how their performance varies for different 
shapes of the body, and etc. 
 
  The contents of this thesis are organized as follows: in chapter 2, we shall only 
briefly introduce the background of gravitational field modeling based on spherical 
harmonics, as the subject can be easily found in a great many reference. In chapter 3, 
we will revisit the theory of ellipsoidal harmonics based on Hobson’s discussions 
with some explanatory notes. The computation of the ellipsoidal harmonics will be 
discussed in chapter 4, based on the numerical method by Garmier. In chapter 5, we 
will provide simulation results of comparing the performance of the ellipsoidal and 
spherical harmonics for modeling the gravitational field of Phobos and 433 Eros. 
Finally, concluding discussions will be presented in chapter 6. 
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 2. Background of Gravitational Field Modeling 
 
2.1 Gravitational potential, acceleration and gradient 
  The gravitational potential V of a point mass M at a certain exterior point in space 
can be expressed as[34] 

 GMV
r

=  (2.1) 

where G is the Newton’s gravitational constant, r the distance from M to the given 
point. If we adopt a rectangular coordinate system of x,y,z, r can be expressed as 

 ( )
1

2 2 2 2
0 0 0( ) ( ) ( )r x x y y z z= − + − + −  

Here (x y z)T is the vectorized position of the given point, and (x0 y0 z0)T that of the 
point mass. The gravitational acceleration at x,y,z is obtained by taking the gradient 
of (2.1) such as 

 

0 0 03 3 3( ) ( ) ( )

T

T

V V VV
x y z

GM GM GMx x y y z z
r r r

⎛ ⎞∂ ∂ ∂
= ∇ = ⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞= − − − − − −⎜ ⎟
⎝ ⎠

a
 (2.2) 

Taking the second order derivative of the three components of a with respect to x,y,z 
yields 

 

2 2 2

2

2 2 2

2

2 2 2

2

2 2
0 0 0 0 0

2 2
0 0 0 05

3( ) 3( )( ) 3( )( )
3( )( ) 3( ) 3( )(

xx xy xz

yx yy yz

zx zy zz

V V V
x y x zx

V V V
y x y zy
V V V

z x z y z

x x r x x y y x x z z
GM y y x x y y r y y z z
r

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂ ∂∂⎜ ⎟ ⎛ ⎞Γ Γ Γ
⎜ ⎟∂ ∂ ∂ ⎜ ⎟

= ∇ = = Γ Γ Γ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂∂⎜ ⎟ ⎜ ⎟Γ Γ Γ⎝ ⎠⎜ ⎟∂ ∂ ∂⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

− − − − − −
= − − − − − −

Γ a

0
2 2

0 0 0 0 0

)
3( )( ) 3( )( ) 3( )z z x x z z y y z z r

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− − − − − −⎝ ⎠

 (2.3) 

Γ  is known as the gravitational gradient matrix. Here we define explicitly that for 
∇  acting on column vector such as a, the result is a matrix such as 
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 ( )

x x x

T y y y
x y z

z z z

a a a
x y z

a a a
a a a

x y z
a a a
x y z

∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂

∇ = ∇ ∇ ∇ = ⎜ ⎟
∂ ∂ ∂⎜ ⎟

⎜ ⎟∂ ∂ ∂
⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

a  (2.4) 

We note that[35] 

 
,

0,

,
xx yy zz

xy yx yz zy zx xz

Γ + Γ + Γ =

Γ = Γ Γ = Γ Γ = Γ
 (2.5) 

  If mass M is not a point but an attracting body that occupies a certain volume, (2.1) 
needs to be modified as follows, 

 
M v

G GV dM dv
r r

ρ
= =∫ ∫∫∫  (2.6) 

in which case M is decomposed into various point mass dM occupying infinitesimal 
volume dv with density ρ , the potential at the given point is then integrated over the 
entire body (Figure 2.1). Likewise, the expressions for a and Γ  based on (2.2) and 
(2.3) would both involve volume integrals. However, though we obtained (2.5) 
assuming that M is a point mass, this relation also holds for M that occupies a certain 
volume[35]. We note that, to be able to apply (2.6), we must know the mass or density 
distribution of the attracting body.  
 
 

  
 Figure 2.1 Decomposition of M into infinitesimal mass elements  
 
 
2.2 Laplace’s equation in relation to gravitational potential 
  The gravitational potential in the free space must satisfy the Laplace’s equation[34], 
 0VΔ =  (2.7) 
The Laplacian operator Δ , in some orthogonal coordinate system of 1ξ , 2ξ , 3ξ  can 
be expressed as 

 2 3 3 1 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 h h h h h h
h h h h h h

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
Δ = + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ξ ∂ξ ∂ξ ∂ξ ∂ξ ∂ξ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (2.8) 

where hi is the distance scale along iξ , with i = 1,2,3. In the rectangular coordinates 

M

dM

r

P
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(2.8) simply becomes 

 
2 2 2

2 2 2x y z
∂ ∂ ∂

Δ = + +
∂ ∂ ∂

 (2.9) 

Of particular interest is expressing (2.8) in the spherical coordinates of radius r, 
latitude ϕ  and longitude λ  (Figure 2.2), for which the distance scales are 
 1, , cosrh h r h rϕ λ= = = ϕ  (2.10) 
 
 

   
 
 
Eq. (2.8) then becomes 

 
2 2 2

2 2 2 2 2 2 2

2 1 tan 1
cos

V V V V V
r rr r r r

∂ ∂ ∂ ϕ ∂ ∂
Δ = + + − +

∂ ∂ϕ∂ ∂ϕ ϕ ∂λ
 (2.11) 

(2.11) can be solved via separation of variables to seek such a V that has the form 
 ( ) ( ) ( )V f r g h= ϕ λ  (2.12) 
The solution to be found is given by the spherical harmonic expansion series whose 
form is either 

 ( )
0 0

(sin ) cos sin
n

n m
n nm nm

n m
V r P A m B m

∞

= =

= ϕ λ + λ∑ ∑  (2.13-1) 

or 

 ( )1
0 0

1 (sin ) cos sin
n

m
n nm nmn

n m
V P A m B m

r

∞

+
= =

= ϕ λ + λ∑ ∑  (2.13-2) 

The integers n, m denote the degree and order of the series, respectively. m
nP  are the 

Legendre’s functions if m=0, or associated Legendre’s functions for m≠0, defined as 

 

0 2

2 2

1( ) ( ) ( 1) ,
2 !

( )
( ) (1 )

n
n

n n n n

m m
m n

n m

dP x P x x
n dx

d P x
P x x

dx

= = −

= −

 (2.14) 

Anm, Bnm are the coefficients to be determined. 
  The exterior gravitational potential should vanish at infinity, i.e., 
 Lim 0

r
V

→∞
=  (2.15) 

Therefore (2.13-2) is a viable solution while (2.13-1) is not, since V→∞ as r→∞. 

 z

x 
y

ϕ

λ

r 

r 

 
Figure 2.2 Spherical coordinates in relation to rectangular coordinates 
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2.3 Spherical harmonic expansions 
  As was mentioned in the previous part, the spherical harmonic series (SHS) 
provide a form of solution to the Laplace’s equation in spherical coordinates. There 
are several interesting properties associated with the SHS. Among them 
orthogonality is of great importance to us, and shall be briefly discussed in this part. 
First let us contract the notations of harmonic functions in (2.13-2) as 

 
( , ) (sin )cos ,

( , ) (sin )sin

m m
n n
m m
n n

R P m

S P m

ϕ λ = ϕ λ

ϕ λ = ϕ λ
 (2.16) 

also known as the spherical surface harmonics. Then we have 
 0, 0m q m q

n p n pR R d S S d
σ σ

σ = σ =∫∫ ∫∫ , if m q≠  or n p≠  (2.17) 

Here the integration is over a unit sphere with surface area 4σ = π , centered at the 
origin of the coordinate system. And cosd h h d d d dϕ λσ = ϕ λ = ϕ ϕ λ  for r=1. On the 
other hand, we have 

 
( )

( ) ( )

20

2 2

4 ,
2 1

2 ( )!, for 0
2 1 ( )!

n

m m
n n

R d
n

n mR d S d m
n n m

σ

σ σ

π
σ =

+

π +
σ = σ = ≠

+ −

∫∫

∫∫ ∫∫
 (2.18) 

If we multiply V by m
nR  or m

nS , and integrate the resulting product over a certain 
sphere of radius r=r0 with 2

0 cosd r d dσ = ϕ ϕ λ , since 2
0r  being a constant can be 

dropped out we get 

 
( )

( )

2

0 1
0

2

0 1
0

( , , )

( , , )

m mnm
n nn

m mnm
n nn

A
V r R d R d

r
B

V r S d S d
r

+
σ σ

+
σ σ

ϕ λ σ = σ

ϕ λ σ = σ

∫∫ ∫∫

∫∫ ∫∫
 (2.19) 

Hence (2.19) suggests a way of determining the coefficients Anm, Bnm, given that V on 
such a sphere of r0 is known. This leads to one kind of the boundary value problem 
known as Dirichlet’s problem. We shall hereafter discuss a slight variant of the SHS 
and accordingly a different form of (2.19) for evaluating coefficients. 

For the purpose of modeling the gravitational potential at an exterior point, it is 
often insightful to rewrite (2.13-2) as 

 ( )
0 0

( , ) ( , )
n n

m m
nm n nm n

n m

GM RV C R S S
r r

∞

= =

⎛ ⎞= ϕ λ + ϕ λ⎜ ⎟
⎝ ⎠

∑ ∑  (2.20) 

where R is the radius of some reference sphere and Cnm, Snm are the new coefficients. 
Cnm, Snm characterize the gravitational field, and they may be determined in the same 
manner as determining Anm, Bnm via solving the Dirichlet’s problem given that V on 
the reference sphere is known. Please note that 0,0 01, 0nC S= = . 

The advantage of (2.20) is that now Cnm, Snm are all (for different n and m) 
dimensionless quantities[36]. Furthermore, to prevent the values of Cnm, Snm to vary 
too much for different n or m, the normalized spherical harmonics ,m m

n nR S   are 
favored for computations, in which case the integrals in (2.18) all become unity 
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( )

( ) ( )

2

2 2

1,

1, for 0

n

m m
n n

R d

R d S d m

σ

σ σ

σ =

σ = σ = ≠

∫∫

∫∫ ∫∫
 (2.21) 

(2.20) can be expressed as 

 ( )
0 0

( , ) ( , )
n n

m m
nm n nm n

n m

GM RV C R S S
r r

∞

= =

⎛ ⎞= ϕ λ + ϕ λ⎜ ⎟
⎝ ⎠

∑ ∑  (2.22) 

with 

 1/2
0 0

1/2

(sin ) cos , (sin )sin

, , (2 1)

( )!, , 2(2 1)
( )!

m m m m
n n n n

n n n n n n n

m m nm nm nm
n nm n nm

nm nm nm

R P m S P m

P N P C C N N n

C C N n mP N P N n
n mS S N

= ϕ λ = ϕ λ

= = = +

= ⎛ ⎞+
= = +⎜ ⎟−= ⎝ ⎠

 (2.23) 

And m
nP  are the associated Legendre’s functions normalized by the normalization 

constants Nnm. 
  So a practical form of (2.19) for us is as follows, applied on the sphere of radius R, 

 

ˆ( , , ) ( , )

ˆ( , , ) ( , )

m
n nm nm

m
n nm nm

GMV R R d C C
R

GMV R S d S S
R

σ

σ

ϕ λ ϕ λ σ = =

ϕ λ ϕ λ σ = =

∫∫

∫∫
 (2.24) 

In simulations GM may be assumed a known quantity, therefore we can obtain 
,nm nmC S  directly. However, in reality GM is usually not known beforehand, in this 

case we could always determine 0,0Ĉ  first and then use  

 0,0
0,0

0,0

ˆ
ˆC R

GM C R
C

= =  (2.25) 

And other ,nm nmC S  can be subsequently obtained based on (2.24). 
 
  Eq. (2.20) expresses the gravitational potential. The gravitational acceleration is 
the gradient of the potential. Using the SHS, the acceleration in the rectangular 
coordinates can be computed by 
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⎜ ⎟⎜ ⎟ ∂λ∂ ∂ ∂ ⎝ ⎠⎝ ⎠
⎛ ⎞∂⎜ ⎟

∂⎜ϕ λ − ϕ λ − λ⎛ ⎞⎜ ∂⎜ ⎟= ϕ λ − ϕ λ λ ⎜⎜ ⎟ ∂ϕ⎜⎜ ⎟ϕ ϕ⎝ ⎠⎜ ∂⎜⎜ ∂λ⎝ ⎠

a

⎟
⎟
⎟
⎟
⎟
⎟⎟

 (2.26) 

  The gravitational gradient can be found in a similar fashion, and is of the form 

 ( )

yx z

yT x z

yx z

aa ar
r r rx x x

aa ar
y y y

ar a a
z z z

∂⎛ ⎞∂ ∂⎛ ⎞∂ ∂ϕ ∂λ
⎜ ⎟⎜ ⎟ ∂ ∂ ∂∂ ∂ ∂ ⎜ ⎟⎜ ⎟

∂⎜ ⎟∂ ∂∂ ∂ϕ ∂λ⎜ ⎟= ∇ = ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ϕ ∂ϕ ∂ϕ⎜ ⎟⎜ ⎟
⎜ ⎟∂∂ ∂ϕ ∂λ⎜ ⎟ ∂ ∂

⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ∂λ ∂λ ∂λ⎝ ⎠

Γ a  (2.27) 

The expressions for elements in Γ  are nevertheless complicated. Being of no 
further interest to us in the ensuing text, they are omitted here for the sake of brevity. 
 
2.3.1 A condition of using spherical harmonics 

It is important to note that (2.13-2) and (2.20) are both infinite series. It is easily 
understood that (2.20) is uniformly convergent outside reference sphere of radius R, 
i.e., 

 1R
r
<  (2.28) 

As r R→  they will converge to the prescribed values of V on the reference 
sphere[27]. Inside the reference sphere the convergence is not unconditional1. In 
practice, we always truncate (2.20) at a certain degree. Using (2.20), we are not 
concerned with the divergence of the series (in the mathematical sense) so much as 
the errors that will be introduced due to the violation of (2.28). Quite obviously, the 
further inside the reference sphere, the larger R r  is, the larger errors are likely to 
be introduced. However, in order to distinguish such error as is caused by the 
divergence of the series from others, we will sometimes refer to it as divergence 
errors or simply divergence. 

In principle, in order for (2.20) to accurately describe the gravitational potential 
outside the reference sphere, the entire attracting body should be inside the reference 
sphere, i.e., no mass is left outside. 
                                                        
1 It can be shown that (2.13-2) and (2.20) are uniformly convergent outside the smallest bounding sphere of the 
body, known as the Brillouin sphere, which is not necessarily the reference sphere. However, we do not 
distinguish such difference as we will later investigate the convergence of the series numerically. 
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2.4 Centrifugal effect 
  When it comes to describing the dynamics of particles in a rotating coordinate 
system, e.g., at the surface of the Earth, it is often more straightforward to introduce 
the gravity potential W, defined as 
 W V= + Φ  (2.29) 
V is the aforementioned gravitational potential and Φ  the centrifugal potential. In 
the rectangular coordinate system fixed to the rotating body with the z-axis 
coincident with the axis of rotation, Φ  can be expressed as 

 2 2 21 ( )
2

x yΦ = ω +  (2.30) 

where ω  is the rotation rate. Taking the gradient of Φ  yields the centrifugal 
acceleration such as 
 ( )2 2 0

T
x yΦ = ∇Φ = ω ωa  (2.31) 

Then the gravity acceleration can be expressed by 
 W Φ= ∇ = +g a a  (2.32) 
The second order derivatives of centrifugal potential can be easily calculated as 

 

2

2

0 0
, 0 0

0 0 0

xx xy xz

yx yy yz

zx zy zz

G G G
G G G
G G G

Φ Φ

⎛ ⎞⎛ ⎞ ω
⎜ ⎟⎜ ⎟

= = + = ∇ = ω⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

G Γ Γ Γ a  (2.33) 

Similar to (2.5), if we consider the centrifugal effects we have 
 22xx yy zzG G G+ + = ω  
 ,,xy yx yz zy zx xzG G G G G G= = =  (2.34) 
 
 
 



 11

 
 
 
 

 3. Ellipsoidal Harmonic Expansions 
 
  The spherical harmonics are solution to the Laplace’s equation in the spherical 
coordinates. In this chapter, we will discuss another solution to the Laplace’s 
equation, based on the ellipsoidal coordinates. 
 
3.1 Ellipsoidal coordinates 
  The ellipsoidal coordinates can be found by solving the roots of the equation of 

2λ  

 
2 2 2

2 2 2 2 2 1x y z
h k

+ + =
λ λ − λ −

 (3.1) 

where x,y,z are the rectangular coordinates, and h<k are two positive real constants. 
Rearranging (3.1), we have 

 

( ) ( )3 22 2 2
2 1 0

2 2 2 2 2 2 2 2 2 2 2 2
0 1

2 2 2 2 2
2

0,

, ( ) ,

( ),

a a a

a x h k a x h k y k z h h k

a x y z h k

λ + λ + λ + =

= − = + + + +

= − + + + +

 (3.2) 

Therefore (3.1) is a cubic equation of 2λ . It can be shown that there are three 
distinct real roots for (3.2)[37], denote these roots as 2

1λ , 2
2λ , 2

3λ  that satisfy 
 2 2 2 2 2 2 2

1 2 3, , 0k k h hλ ≥ ≥ λ ≥ ≥ λ ≥  (3.3) 
Then (3.1) can be expressed as 

 
2 2 2

2 2 2 2 2
1 1 1

1x y z
h k

+ + =
λ λ − λ −

, (3.4-1) 

 
2 2 2

2 2 2 2 2
2 2 2

1x y z
h k

+ − =
λ λ − − λ

, (3.4-2) 

 
2 2 2

2 2 2 2 2
3 3 3

1x y z
h k

− − =
λ − λ − λ

. (3.4-3) 

which represent an ellipsoid, a one-sheet hyperboloid and a two-sheet hyperboloid, 
respectively (Figure 3.1). Particularly, for the ellipsoid with three semi-axes, a > b > 
c, we have  
 2 2 2 2,k a c h a b= − = −  (3.5) 
thus k and h are the focal lengths. 
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  The solution of (3.4) can be found by the following expressions, 

 

2 2
1

2 2
2

2 2
3

2 cos ,
3 3

42 cos ,
3 3
22 cos

3 3

a
Q

a
Q

a
Q

θ
λ = −

θ + π
λ = −

θ + π
λ = −

 (3.6) 

where 

 
3

32
2 2 1 01 2

cos , , ,
3 2

2 9 273
,

3 27

R p qQ R
Q

a a a aa a
p q

−
θ = = = −

− +−
= =

 (3.7) 

Note that the coefficients a0,a1,a2 come from (3.2). So that (3.6), (3.7) in conjunction 
with (3.2) give the expressions of transformation from the rectangular to ellipsoidal 
coordinates. 

The numerical results by (3.6) and (3.7) via trigonometric expressions may not be 
accurate enough and need to be refined. We could always take such results as initial 
values and use numerical schemes such as the Newton-Raphson method to obtain 
more accurate results. 

To prevent subscripts cluttering the notations, we shall also denote the three 
ellipsoidal coordinates as follows 
 1 2 3, ,ρ = λ μ = λ υ = λ  (3.8) 
And throughout this text we shall use both notations interchangeably unless stated 

 

 
Figure 3.1 The three orthogonal surfaces that correspond to 

the fixed ellipsoidal coordinates. Upper-right: ellipsoid; lower-left:  
one-sheet hyperboloid; lower-right: two-sheet hyperboloid. 
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otherwise. Moreover, hereafter we shall reserve , 1, 2,3j jλ =  with or without the 
subscript j for the ellipsoidal coordinates, rather than for the longitude of spherical 
coordinates. 

On the other hand, the transformation from ellipsoidal to rectangular coordinates 
can be expressed by 

 
2 2 2

2
2 2x

h k
ρ μ υ

=  (3.9-1) 

 
( )( )( )

( )
2 2 2 2 2 2

2
2 2 2

h h h
y

h k h

ρ − μ − − υ
=

−
 (3.9-2) 

 
( )( )( )

( )
2 2 2 2 2 2

2
2 2 2

k k k
z

k k h

ρ − −μ − υ
=

−
 (3.9-3) 

  We can easily verify that the three surfaces of (3.4) are orthogonal to one another. 
For example, consider the normal vectors to surfaces expressed by (3.4-1) and 
(3.4-2) 

 1 2 2 2 2 2

T
x y z

h k
⎛ ⎞

= ⎜ ⎟ρ ρ − ρ −⎝ ⎠
n  (3.10-1) 

 2 2 2 2 2 2

T
x y z

h k
⎛ ⎞

= −⎜ ⎟μ μ − −μ⎝ ⎠
n  (3.10-2) 

Taking the product of n1 and n2 yields 

 
( )( ) ( )( )

2 2 2

1 2 2 2 2 2 2 2 2 2 2 2

x y z
h h k k

⋅ = + −
ρ μ ρ − μ − ρ − −μ

n n  (3.11) 

Substituting equations (3.9) into the above expression, 

 

( )
( )

( )
( )

( ) ( ) ( )
( )

2 2 2 22

1 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2
0

h k

h k h k h k k h

k h k h h k

h k k h

− υ − υυ
⋅ = + −

− −

υ − + − υ − − υ
= =

−

n n

 (3.12) 

Other two orthogonal relations can be shown in a similar manner. 
 

It is noted that in (3.9) the correspondence between the ellipsoidal and rectangular 
coordinates are not one-to-one because of the squares. For the time being we ignore 
the sign ambiguity and consider, 

 

2 2 2 2 2 2

2 2

2 2 2 2 2 2

2 2

, ,
h h h

x y
hk h k h

k k k
z

k k h

ρ − μ − − υρμυ
= =

−

ρ − − μ − υ
=

−

 (3.13) 

and introduce the following entities 
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2 2 2 2

2 2

2 2 2 2

2 2

sin , cos cos ,

cos sin

h h
hk h k h

k k

k k h

μ − − υμυ
= φ = φ γ

−

− μ − υ
= φ γ

−

 (3.14) 

,φ γ  are as illustrated in Figure 3.2. We noted that 

 
2 2

2 2

sin , cos cos ,

cos sin

x y h

z k

= ρ φ = ρ − φ γ

= ρ − φ γ
 (3.15) 

Therefore (3.15) further illustrates the meaning of h and k as two focal lengths for 
the ellipsoid with semi-major axis ρ . 
 

  
 
Taking the total derivatives of (3.9) with respect to the ellipsoidal coordinates we 
have 

 dx d d d
hk hk hk
μυ ρυ ρμ

= ρ + μ + υ  

 

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2

h h h h
dy d d

h k h h h k h h

h h
d

h k h h

ρ μ − − υ μ ρ − − υ
= ρ + μ

− ρ − − μ −

υ ρ − μ −
− υ

− − υ

 (3.16) 

 

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2

k k k k
dz d d

k k h k k k h k

k k
d

k k h k

ρ − μ − υ μ ρ − − υ
= ρ − μ

− ρ − − − μ

υ ρ − − μ
− υ

− − υ

 

Thus the infinitesimal distance is related to the differential increments in ellipsoidal 
coordinates via 

 x 

y 

z
φ

γ

r 

 

Figure 3.2 Spherical coordinates based on ,φ γ  
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( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )

2 2 2 2

2 2 2 2 2 2 2 2 2 22 2
2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 22 2
2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 22 2

2 2 2 2 2 2 2

dl dx dy dz

h h k k
d

h k h k h h k k h k

h h k k
d

h k h k h h k k h k

h h k k

h k h k h h

= + +

⎡ ⎤ρ μ − − υ ρ − μ − υμ υ⎢ ⎥= + + ρ +
− ρ − − ρ −⎢ ⎥⎣ ⎦

⎡ ⎤μ ρ − − υ μ ρ − − υρ υ⎢ ⎥+ + μ +
− μ − − −μ⎢ ⎥⎣ ⎦

υ ρ − μ − υ ρ − −ρ μ
+ +

− − υ

( )
( )( )

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

2
2

2 2 2 2 2

2 2 2 2 2 2 2 2
2 2

2 2 2 2 2 2 2 2

2 2 2 2
2

2 2 2 2

d
k k h k

d d
k h k h

v
d

h k

⎡ ⎤μ
⎢ ⎥ υ

− − υ⎢ ⎥⎣ ⎦

ρ − μ ρ − υ ρ − μ μ − υ
= ρ + μ +

ρ − ρ − −μ μ −

ρ − μ − υ
υ

− υ − υ

 (3.17) 

It follows that the distance scales for ρ , μ  and υ  are  

 
2 2 2 2

2 2 2 2
h

k h
ρ

ρ − μ ρ − υ
=

ρ − ρ −
, 

2 2 2 2

2 2 2 2
h

k h
μ

ρ − μ μ − υ
=

−μ μ −
,  

 
2 2 2 2

2 2 2 2
h

h k
υ

ρ − υ μ − υ
=

− υ − υ
 (3.18) 

 
3.2 Ellipsoidal harmonics 
  To introduce the ellipsoidal harmonics, it is helpful to first look at the Laplace’s 
equation in the sphero-conal coordinates , ,r μ υ  which are related to the rectangular 
coordinates via[27] 

 

2 2 2 2 2 2 2 2
2 2

2 2 2 2 2

2 2 2 2 2
2

2 2 2

( )( ), ,
( )

( )( )
( )

r r h hx y
h k h k h

r k kz
k k h

μ υ μ − − υ
= =

−

− μ − υ
=

−

 (3.19) 

It can be verified that the sphero-conal coordinates are also orthogonal, and the 
distance scales are given by 

 1rh = , 
2 2

2 2 2 2

r
h

k h
μ

μ − υ
=

− μ μ −
, 

2 2

2 2 2 2

r
h

h k
υ

μ − υ
=

− υ − υ
 (3.20) 

The Laplace’s equation is, substituting the above expressions into (2.8), 
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( )2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 0

Vr
r r

Vh k h k

Vh k h k

∂ ∂⎛ ⎞μ − υ +⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞∂ ∂

μ − −μ μ − − μ +⎜ ⎟∂μ ∂μ⎝ ⎠
∂ ∂⎛ ⎞− υ − υ − υ − υ =⎜ ⎟∂υ ∂υ⎝ ⎠

 (3.21) 

If we introduce the following two intermediate variables 

 
2 2 2 2h

dt

t h k t

μ
η =

− −
∫ , (3.22-1) 

 
0 2 2 2 2

dt

h t k t

υ
ζ =

− −
∫  (3.22-2) 

Then (3.21) can be written as, 

 ( )
2 2

2 2 2
2 2 0V V Vr

r r
∂ ∂ ∂ ∂⎛ ⎞μ − υ + + =⎜ ⎟∂ ∂ ∂η ∂ζ⎝ ⎠

 (3.23) 

Assume that ( , )nV r u= η ζ , then (3.23) becomes 

 ( )
2 2

2 2
2 2( 1) 0V Vn n u ∂ ∂

μ − υ + + + =
∂η ∂ζ

 (3.24) 

Further assume that u has the form of ( ) ( )E Eμ υ , and substitute this expression into 
(3.24), we get 

 ( )
2 2

2 2
2 2

( ) ( )( 1) ( ) ( ) ( ) ( ) 0d E d En n E E E E
d d

μ υ
μ − υ + μ υ + υ + μ =

η ζ
 (3.25) 

And we must have 

 

2
2

2

2
2

2

( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( ) 0

d E n n E E
d

d E n n E E
d

⎡ ⎤μ
+ μ + μ υ⎢ ⎥η⎣ ⎦

⎡ ⎤υ
+ − υ + υ μ =⎢ ⎥ζ⎣ ⎦

 (3.26) 

Particularly, for some constant p, the above equation can be manipulated as follows, 

 

2
2

2

2
2

2

( ) ( 1) ( ) ( ) ( )

( ) ( 1) ( ) ( ) ( ) 0

d E n n E pE E
d

d E n n E pE E
d

⎡ ⎤μ
+ μ + μ − μ υ +⎢ ⎥η⎣ ⎦

⎡ ⎤υ
− υ + υ + υ μ =⎢ ⎥ζ⎣ ⎦

 (3.27) 

Therefore, the expressions in the two brackets satisfy 

 
2

2
2

( ) ( 1) ( ) ( ) 0d E n n E pE
d

μ
+ μ + μ − μ =

η
 (3.28-1) 

 
2

2
2

( ) ( 1) ( ) ( ) 0d E n n E pE
d

υ
− υ + υ + υ =

ζ
 (3.28-2) 

Upon substituting (3.22-1) into (3.28-1), we get 
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( )( )

2
2 2 2 2 2 2 2

2

2 2 2

( ) ( )(2 )

( ) ( 1) ( ) 0

d E dEk h h k
dd

p h k n n E

μ μ
μ − μ − + μ μ − − +

μμ

⎡ ⎤+ − + μ μ =⎣ ⎦

 (3.29) 

And for υ  we would get an expression of the exact same form as (3.29). 
  Now we consider the Laplace’s equation for the ellipsoidal coordinates. 
Substituting (3.18) into (2.8) yields 

 

( )

( )

( )

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 0

Vk h k h

Vk h k h

Vk h k h
v

⎛ ⎞∂ ∂
μ − υ ρ − ρ − ρ − ρ − +⎜ ⎟∂ρ ∂ρ⎝ ⎠

⎛ ⎞∂ ∂
ρ − υ − μ μ − −μ μ − +⎜ ⎟∂μ ∂μ⎝ ⎠

∂ ∂⎛ ⎞ρ − μ − υ − υ − υ − υ =⎜ ⎟∂ ∂υ⎝ ⎠

 (3.30) 

Again refer to (3.22) but introduce another intermediate variable 

 
2 2 2 2k

dt

t h t k

ρ
ξ =

− −
∫  (3.31) 

The Laplace’s equation then becomes 

 ( ) ( ) ( )
2 2 2

2 2 2 2 2 2
2 2 2 0V V V∂ ∂ ∂

μ − υ + ρ − υ + ρ − μ =
∂ξ ∂η ∂ζ

 (3.32) 

This time we assume  
 ( ) ( ) ( )V cE E E= ρ μ υ∑  (3.33) 
where c is some constant. Substitute (3.28) in (3.32) for ( )E μ  and ( )E υ , we find 
that 

 
2

2
2

( ) ( 1) ( ) ( ) 0d E n n E pE
d

ρ
− ρ + ρ + ρ =

ξ
 (3.34) 

And furthermore, we see that 

 
( )( )

2
2 2 2 2 2 2 2

2

2 2 2

( ) ( )(2 )

( ) ( 1) ( ) 0

d E dEk h h k
dd

p h k n n E

ρ ρ
ρ − ρ − + ρ ρ − − +

ρρ

⎡ ⎤+ − + ρ ρ =⎣ ⎦

 (3.35) 

Therefore ( ), ( ), ( )E E Eρ μ υ  satisfy the differential equation of the same form. 
However, , ,ρ μ υ  each has different ranges of values as given by (3.3). 
 
3.2.1 Lamé’s functions 
  We see that the solution to the Laplace’s equation in the ellipsoidal coordinates is 
of the form ( ) ( ) ( )E E Eρ μ υ . Moreover, ( ), 1, 2,3jE jλ =  satisfies the second order 
differential equation of (3.29) for all three ellipsoidal coordinates. In this part we 
discuss the form of ( )iE λ . 
  Referring back to the SHS, (2.13-1) suggests spherical harmonics are of the form 

(sin )cosn m
nr P mφ γ  or (sin )sinn m

nr P mφ γ . Note that we have substituted ,φ γ  for 
the original spherical coordinates ,ϕ λ  in (2.13-1). The associated Legendre’s 
functions can be expressed as[36] 
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 2
, ,

0

(sin ) cos sin ,
2

s
m m n m j

n n m j
j

n mP s− −

=

−⎢ ⎥φ = φ α φ = ⎢ ⎥⎣ ⎦
∑  (3.36) 

where , ,n m jα  is constant, and ‘ •⎢ ⎥⎣ ⎦ ’ means that the result is rounded down to the 
nearest integer. On the other hand, 
 ( )icos Re( ) Re (cos isin )m mm e γγ = = γ + γ  (3.37) 
and 

 
0

(cos i sin ) i cos sin
m

m m l l m l

l

m
l

− −

=

⎛ ⎞
γ + γ = γ γ⎜ ⎟

⎝ ⎠
∑  (3.38) 

where the binomial coefficient is given by 

 !
!( )!

m m
l l m l

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

 (3.39) 

Taking the real part of the (cos i sin )mγ + γ  forces terms associated with im-l when 
m-l is odd number to vanish. Therefore we need to distinguish between the even and 
odd values of m for sin mγ  and cos mγ . 

  If m is even, i.e., 2 , 0,1, ,
2
nm l l ⎢ ⎥= = ⎢ ⎥⎣ ⎦

"  

 2 2

0

cos ( 1) cos sin
2

l
l i i m i

i

m
m

i
− −

=

⎛ ⎞
γ = − γ γ⎜ ⎟

⎝ ⎠
∑  (3.40) 

Therefore 

 

( )( )

2 2 2
, ,

0 0

2 2 2 2 2
, ,

0 0

(sin )cos

cos sin ( 1) cos sin
2

sin ( 1) cos cos cos sin
2

m
n

s l
m n m j l i i m i

n m j
j i

s l
n m j l i i i m i m i

n m j
j i

P m

m
i

m
i

− − − −

= =

− − − − −

= =

φ γ

⎛ ⎞ ⎛ ⎞
= φ α φ ⋅ − γ γ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞

= α φ ⋅ − φ γ φ γ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑

 (3.41) 

Referring to (3.14), we see that  

 
2

, ,
0

2 2
2 2 2 2 2 2 2 2

2 2 2 20

(sin )cos

( 1)
2

m
n

n m js

n m j
j

i m i
l

l i

i

P m

hk

m h h k k
i h k h k k h

− −

=

−

−

=

φ γ

⎛ ⎞μυ⎛ ⎞= α ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞μ − − υ −μ − υ⎛ ⎞
⎜ ⎟ ⎜ ⎟− ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ − −⎝ ⎠ ⎝ ⎠

∑

∑

 (3.42) 

Remembering that m is even, the above expression will be of the following form 

 ( )( )2 2 2 2
0 1 0 1

(sin )cos

,
2

m
n

n n n r n n n r
r r

P m
na a a a a a r− − − −

φ γ =

⎢ ⎥μ + μ + μ υ + υ + υ = ⎢ ⎥⎣ ⎦
" "

 (3.43) 

where ai, i=1,2,…,r are constants. The scale of the expression is arbitrary. 

  On the other hand, if m is odd, i.e., 12 1, 0,1, ,
2

nm l l −⎢ ⎥= + = ⎢ ⎥⎣ ⎦
"  
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 2 1 2 1

0
cos ( 1) cos sin

2 1

l
l i i m i

i

m
m

i
− + − −

=

⎛ ⎞
γ = − γ γ⎜ ⎟+⎝ ⎠
∑  (3.44) 

Then 

 

( ) ( )2 1 2 12
, ,

0 0

2

, ,
0

2 1
2 2 2 2 2 2 2 2

2 2 2 2

(sin )cos

sin ( 1) cos cos cos sin
2 1

( 1)
2 1

m
n

s l
i m in m j l i

n m j
j i

n m js

n m j
j

i m

l i

P m

m
i

hk

m h h k k
i h k h k k h

+ − −− − −

= =

− −

=

+

−

φ γ

⎛ ⎞ ⎛ ⎞
= α φ ⋅ − φ γ φ γ⎜ ⎟ ⎜ ⎟+⎝ ⎠⎝ ⎠
⎛ ⎞μυ⎛ ⎞= α ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞μ − −υ −μ −υ⎛ ⎞
⎜ ⎟ ⎜ ⎟− ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ − −⎝ ⎠ ⎝ ⎠

∑ ∑

∑
2 1

0

i
l

i

− −

=
∑

 (3.45) 

For odd m, m-2i-1 is even but 2i+1 is odd in the above expression, it follows that 
(sin )cosm

nP mφ γ  for odd m is of the following form 

 
( )

( )

2 2 1 3 2 1
0 1

2 2 1 3 2 1
0 1

(sin )cos

,

m n n n r
n r

n n n r
r

P m h a a a

h a a a

− − − −

− − − −

φ γ = μ − μ + μ + μ ⋅

− υ υ + υ + υ

"

"
 (3.46) 

with 1
2

nr −⎢ ⎥= ⎢ ⎥⎣ ⎦
. In the similar fashion, one can show that for even m 

 
( )

( )

2 2 1 3 2 1
0 1

2 2 1 3 2 1
0 1

(sin )sinm n n n r
n r

n n n r
r

P m k a a a

k a a a

− − − −

− − − −

φ γ = − μ μ + μ + μ ⋅

− υ υ + υ + υ

"

"
 (3.47) 

And for odd m, we have 

 
( )

( )

2 2 2 2 2 4 2 2
0 1

2 2 2 2 2 4 2 2
0 1

(sin )sinm n n n r
n r

n n n r
r

P m h k a a a

h k a a a

− − − −

− − − −

φ γ = μ − − μ μ + μ + μ ⋅

− υ − υ υ + υ + υ

"

"
 (3.48) 

with 1
2
nr ⎢ ⎥= −⎢ ⎥⎣ ⎦

. 

So we know that the spherical surface harmonics correspond to four distinct 

classes of functions, which we define as follows 

 ( ) ( )KK uλ = λ , 2 2( ) ( )LL h uλ = λ − λ  

 2 2( ) ( )MM k uλ = − λ λ , 2 2 2 2( ) ( )NN h k uλ = λ − − λ λ  (3.49-1) 

with 

 ( ) ( ) 2 ( ) 2
0 1( ) ,

2
K n K n K n r

K r
nu a a a r− − ⎢ ⎥λ = λ + λ + λ = ⎢ ⎥⎣ ⎦

"  

 ( ) 1 ( ) 3 ( ) 2 1
0 1

1( ) ,
2

L n L n L n r
L r

nu a a a r− − − − −⎢ ⎥λ = λ + λ + λ = ⎢ ⎥⎣ ⎦
"  (3.49-2) 

 ( ) 1 ( ) 3 ( ) 2 1
0 1

1( ) ,
2

M n M n M n r
M r

nu a a a r− − − − −⎢ ⎥λ = λ + λ + λ = ⎢ ⎥⎣ ⎦
"  
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 ( ) 2 ( ) 4 ( ) 2 2
0 1( ) , 1

2
N n N n N n r

N r
nu a a a r− − − − ⎢ ⎥λ = λ + λ + λ = −⎢ ⎥⎣ ⎦

"  

( ) , 1, 2, ,ia i r• = "  are constants for any of the four classes of functions1. Next we 
seek to determine these constants so that K,L,M,N will satisfy (3.28), which is 
rewritten as follows 

 
( )

2
4 2 2

2

2 2 2 2 2

( ) ( )(2 )

( 1) ( ) 0, ,

d E dE
dd

p n n E h k h k

λ λ
λ − αλ + β + λ λ − α +

λλ
⎡ ⎤α − + λ λ = α = + β =⎣ ⎦

 (3.50) 

And please note that we dropped the subscript j for jλ  and are reminded again that 
it should not be confused with longitude of the spherical harmonics. The K-, L-, M- 
and N-functions that satisfy (3.50) are defined as the four classes of Lamé’s functions. 
Eq. (3.50) is known as the Lamé’s equation. 
 
Determination of coefficients of the Lamé’s functions 
  Let us first look at the class-K function. Dropping the superscript ‘(K)’ of ( )K

ia  in 
(3.49-2) and differentiating K gives 

 1 2 1
0 ( 2 )n n i

i
dK na n i a
d

− − −= λ + + − λ +
λ

" " (3.51-1) 

 
2

2 2 2
02 ( 1) ( 2 )( 2 1)n n i

i
d K n n a n i n i a
d

− − −= − λ + + − − − λ +
λ

" "  (3.51-2) 

Note that the negative powers of λ  vanish in (3.51). Substituting (3.51) into (3.50), 
evidently, the coefficients for various powers of λ  must all equal zero. For instance, 
the coefficient for nλ  is 2

0 1( ) 2(2 1) 0p n a n aα − − − = . 

More generally for 2 , 0
2

n i ni r− ⎢ ⎥λ ≤ ≤ = ⎢ ⎥⎣ ⎦
 the coefficient is 

 1 1( ) 0,i i i i i if a g p a h a− ++ − α + =  (3.52) 
with 

 2

( 2 2)( 2 1),

( 2 ) ,
2( 1)(2 2 1)

i

i

i

f n i n i

g n i
h i n i

= −β − + − +

= α −
= + − −

 (3.53) 

And, please distinguish the difference between focal length h and coefficient hi. It is 
worth pointing out that there is no a(-1), so f0 is unimportant. On the other hand, we 
assumed that ar+1 = 0 when i r= , in which case hr becomes trivial. And the same is 
true with 2 3, ,r ra a+ + " . Therefore we end up with a tri-diagonal r+1 by r+1 matrix 

                                                        
1 Please note that in our text the integer r takes different values according to the degree n and class, whereras in 
Hobson[27], / 2r n= ⎢ ⎥⎣ ⎦ . 
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0 0

1 1 1

K
i i i

r r

g h
f g h

f g h

f g

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

T
% % %

% % %

 (3.54) 

 
that satisfies 
 ( )0 1, T

K rp a a a− α = =T x x 0 x "  
Since p is a constant that needs to be determined, we drop the preceding coefficient 
of α , so the above expression becomes 
 K p− =T x x 0  (3.55) 
It becomes clear that determining a0,a1,…ar is basically to solve (3.55) for the r+1 
eigenvectors of TK that correspond to different eigenvalues of p. 
 
  The above discussion applies to the Lamé’s functions of class K. And the 
coefficients for classes L,M,N can be determined in the same fashion. For the sake of 
brevity, we omit the derivations and only include results below. 
  For class L, the elements in the tri-diagonal matrix TL are as follows 

 2 2

( 2 1)( 2 ),

( 2 1) (2 4 1),
2( 1)(2 2 1)

i

i

i

f n i n i

g n i k n i
h i n i

= −β − + −

= α − − + − −
= + − −

 (3.56) 

where 10 ,
2

ni r r −⎢ ⎥≤ ≤ = ⎢ ⎥⎣ ⎦
. 

  For class M, the elements in TM are 

 2 2

( 2 1)( 2 ),

( 2 1) (2 4 1),
2( 1)(2 2 1)

i

i

i

f n i n i

g n i h n i
h i n i

= −β − + −

= α − − + − −
= + − −

 (3.57) 

And r is the same as for class L.  
  For class N, the elements in TN are 

 2

( 2 )( 2 1),

( 2 1) ,
2( 1)(2 2 1)

i

i

i

f n i n i

g n i
h i n i

= −β − − −

= α − −
= + − −

 (3.58) 

with 1
2
nr ⎢ ⎥= −⎢ ⎥⎣ ⎦

. 

  For a given degree n, we have 2 1n +⎢ ⎥⎣ ⎦  K-functions, ( 1) 2 1n − +⎢ ⎥⎣ ⎦  L- or 

M-functions, 2n⎢ ⎥⎣ ⎦  N-functions. Therefore the number of Lamé’s functions for a 
given degree is 2n+1, the same as for the spherical harmonics. 
 
  As a brief summary for this section, we have found that, in relation to the spherical 
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harmonics, ( )E λ  is of four forms given by K,L,M,N, satisfying (3.50). For a given 
degree n there should be 2n+1 such ( )E λ . And we shall seek 2n+1 distinct values of 
p so as to determine the same number of Lamé’s functions. The correspondence 
between the Lamé’s functions and the spherical surface harmonics can be expressed 
by 

 
cos ( , )

(sin ) ( ) ( )
sin ( , )

m
m i in

n i n nm
in

m R
P c E E

m S
γ φ γ

φ = = μ υ
γ φ γ ∑  (3.59) 

with 
 ( ) ( )E Kλ ∈ λ ,  if m as in cos mγ  is even. 
 ( ) ( )E Lλ ∈ λ ,  if m as in cos mγ  is odd. 
 ( ) ( )E Mλ ∈ λ ,  if m as in sin mγ  is even. 
 ( ) ( )E Nλ ∈ λ ,  if m as in sin mγ  is odd. 
And ci are some constants. We also use subscript ‘n’ to indicate the degree of ( )E λ . 
 
3.2.2 Properties of Lamé’s functions 
  There are several properties associated with Lamé’s functions that serve as the 
basis of application of ellipsoidal harmonics, which are comprehensively discussed 
by Hobson[27]. Of those, three properties will be reviewed in brief in this section. 
Firstly, we shall see that Lamé’s functions are linearly independent, that is, one 
cannot be expressed as a linear combination of others. Secondly, the orthogonality1 
is an essential condition for the expressibility of a function by ellipsoidal harmonics. 
Thirdly, we will also show that the zeros of Lamé’s functions, i.e., the roots of the 
Lamé’s equation, are all located in the range [-k,k] and they are all distinct. 
 
Linear independence 
  Suppose 1 ( )nE μ  and 2 ( )nE μ  of degree n and of the same class satisfy 

 
2

2
2 ( 1) 0n

n n
d E

n n E pE
d

+ μ + − =
η

 (3.60) 

where μ  has been suppressed for nE  in this part. We have 

 
2 1 2 2

2 1 1 2 2 2
1 22 2( 1) ( 1)n n

n n n n
d E d E

n n E p E n n E p E
d d

+ μ + − = + μ + −
η η

 (3.61) 

Then 

 
2 1 2 2

2 1 1 2
1 22 2 ( )n n

n n n n
d E d E

E E p p E E
d d

− = −
η η

 (3.62) 

Rearrange (3.62) as follows, 

 
2 1 2 1 2 1 2 2

2 1 1 2
1 22 2 ( )n n n n n n

n n n n
d E dE dE dE dE d E

E E p p E E
d d d dd d

+ − − = −
η η η ηη η

 (3.63) 

and integrate the (3.63) on both sides from 0 to ω  where 

 
2 2 2 2

k

h

d

h k

μ
ω =

μ − −μ
∫  (3.64) 

                                                        
1 This relation was referred to as ‘the evaluation of a certain double integral’ by Hobson in [27]. Somehow it 
plays an analogous role to the orthogonality relation of the spherical harmonics, and is therefore simply called the 
orthogonality for the ellipsoidal harmonics in this text. 
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We get 

 
1 2

2 1 1 2
1 20

0

( )n n
n n n n

dE dE
E E p p E E d

d d

ω
ω⎡ ⎤

− = − η⎢ ⎥η η⎣ ⎦
∫  (3.65) 

Alternatively, the left-hand side (LHS) is  

 
1 2

2 2 2 2 2 1

k

n n
n n

h

dE dE
k h E E

d d
⎡ ⎤⎛ ⎞

− μ μ − −⎢ ⎥⎜ ⎟μ μ⎢ ⎥⎝ ⎠⎣ ⎦
 (3.66) 

It can be shown that this expression will vanish for all four classes of Lamé’s 
functions. Therefore the right-hand side (RHS) of (3.65) is 

 1 2
1 20

( ) 0n np p E E d
ω

− η =∫  (3.67) 

Subsequently we have 

 1 2

0
0n nE E d

ω
η =∫  (3.68) 

unless 1 2p p= , in which case the integral in (3.67) becomes 2

0
( )nE d

ω
η∫  which 

certainly cannot vanish.  
  It follows that ( )nE μ  of the same class are linearly independent. For instance, let 
us assume 

 
1

0
r

i
i n

i

c E
=

=∑  (3.69) 

and multiply the LHS of (3.69) by i
nE , and then integrate it from 0 to ω . We note 

that 2

0
( )i

nE d
ω

η∫  does not vanish, thus (3.69) cannot hold. Therefore all ( )E μ  of 

the same degree and of the same class must be linearly independent. Of course this 
result holds for the Lamé’s functions based on other ellipsoidal coordinates.  
 
Orthogonality 

Denote ( )E μ  for degree n associated with a certain eigenvalue p by ( )p
nE μ , and 

that for degree m and eigenvalue q by ( )q
mE μ . Consider  

 
2

2
2

( )
( 1) ( ) ( ) 0

p
p pn

n n
d E

n n E pE
d

μ
+ μ + μ − μ =

η
 (3.70-1) 

 
2

2
2

( )
( 1) ( ) ( ) 0

q
q qm
m m

d E
m m E qE

d
μ

+ μ + μ − μ =
η

 (3.70-2) 

Multiplying the LHS of (3.70-1) by ( )q
mE μ  and subtracting the LHS of (3.70-2) 

multiplied by ( )p
nE μ , we get 

 
[ ]{ }

2 2

2 2

2

( ) ( )
( ) ( )

( 1) ( 1) ( ) ( ) ( )

p q
q pn m
m n

q p
m n

d E d E
E E

d d

n n m m p q E E

μ μ
μ − μ =

η η

μ + − + − − μ μ
 (3.71) 

Integrate both sides of the equation from 0 to ω , the LHS of (3.71) vanishes, 
therefore 

 [ ]{ }2

0
( 1) ( 1) ( ) ( ) ( ) 0q p

m nn n m m p q E E d
ω
μ + − + − − μ μ η =∫  
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or 

 
[ ] 2

0

0

( 1) ( 1) ( ) ( )

( ) ( ) ( )

q p
m n

q p
m n

n n m m E E d

p q E E d

ω

ω

+ − + μ μ μ η

= − μ μ η

∫
∫

 (3.72-1) 

In the same way for ( )p
nE υ  we can get 

 
[ ] 2

0

0

( 1) ( 1) ( ) ( )

( ) ( ) ( )

q p
m n

q p
m n

n n m m E E d

p q E E d

σ

σ

+ − + υ υ υ ζ

= − υ υ ζ

∫
∫

 (3.72-2) 

Here σ  refers to ζ  such as 

 
0 2 2 2 2

h d

h k

υ
σ =

− υ − υ
∫  (3.73) 

We get, by multiplying the RHS of (3.72-1) with LHS of (3.72-2), and the LHS of 
(3.72-1) with RHS of (3.72-2), then subtracting the results, that 

 
[ ]

2 2

0 0

( 1) ( 1) ( )

( ) ( ) ( ) ( ) ( ) 0p q p q
n m n m

n n m m p q

E E E E d d
ω σ

+ − + − ⋅

μ − υ μ μ υ υ η ζ =∫ ∫
 (3.74) 

Therefore the integral 2 2

0 0
( ) ( ) ( ) ( ) ( )q p q p

m n m nE E E E d d
ω σ

μ − υ μ μ υ υ η ζ∫ ∫  vanishes, 

unless 
 n m=  and p q=  
  If n≠m and p≠q, we know from (3.74) that the integral vanishes. 

If n=m and p≠q, 
0

( ) ( ) 0q p
n nE E d

ω
μ μ η =∫  as we know from (3.68). The same is true 

with 
0

( ) ( ) 0q p
n nE E d

σ
υ υ ζ =∫ . Therefore the integral in (3.74) must vanish. 

If n≠m and p=q, we know from (3.72) that 2

0
( ) ( ) 0q p

m nE E d
ω
μ μ μ η =∫  and 

2

0
( ) ( ) 0q p

m nE E d
σ
υ υ υ ζ =∫ . Therefore the integral in (3.74) vanishes. 

When n=m and p=q,  

 
2 2

0 0

22 2

0 0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

q p q p
m n m n

p p
n n

E E E E d d

E E d d

ω σ

ω σ

μ − υ μ μ υ υ η ζ

⎡ ⎤= μ − υ μ υ η ζ⎣ ⎦

∫ ∫
∫ ∫

 (3.75) 

It can be shown that  

 
22 2

0 0
( ) ( ) ( )p p p

n n nE E d d
ω σ

⎡ ⎤μ − υ μ υ η ζ = γ⎣ ⎦∫ ∫  (3.76) 
p
nγ  is some constant which can be used to normalize p

nE  so that 

 
22 2

0 0
( ) ( ) ( ) 1p p

n nE E d d
ω σ

⎡ ⎤μ − υ μ υ η ζ =⎣ ⎦∫ ∫  (3.77) 
p

nE  is the normalized Lamé’s function. We will discuss the normalization in the next 
section. 
 

Assume that a certain function ( , )f μ υ  can be expressed by  
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 ( ), ( ) ( )p p p
i i i

i p

f c E Eμ υ = μ υ∑∑  

where p
ic  is some constant. If we multiply both sides by 2 2( ) ( ) ( )p p

n nE Eμ − υ μ υ  
and integrate from 0 to ω  for η  and from 0 to σ  for ζ , we get 

 

22 2

0 0

2 2

0 0

( ) ( ) ( )

( ) ( , ) ( ) ( )

p p p
n n n

p p
n n

c E E d d

f E E d d

ω σ

ω σ

⎡ ⎤μ − υ μ υ η ζ⎣ ⎦

= μ − υ μ υ μ υ η ζ

∫ ∫
∫ ∫

 

From (3.76), we get 

 
2 2

0 0
( ) ( , ) ( ) ( )p p

n np
n p

n

f E E d d
c

ω σ
μ − υ μ υ μ υ η ζ

=
γ

∫ ∫  (3.78) 

This is how the coefficients p
ic  in ( , )f μ υ  can be obtained. 

 
Zeros for the Lamé’s functions 
  The real roots of the Lamé’s equation ( ) 0E λ =  all fall in the range of [-k,k]. First 
of all, it can be shown that ( )u λ  as in (3.49-2) must satisfy the following equation 

 
2

2 2 2 2
2( )( ) ( ) ( ) 0d u duh k P Q u

dd
λ − λ − + λ + λ =

λλ
 (3.79) 

In this case neither P nor Q contains factors of 2 2hλ −  or 2 2kλ − . If we assume 

that ( ) 0u λ =  has roots at hλ = ±  or ±k, according to (3.79) du
dλ

 must also 

vanish at ,h kλ = ± ± . Differentiating (3.79) again gives 

 
( )

3 2
2 2 2 2 2 2 2

3 2( )( ) 2 (2 )

0

d u d uh k h k P
d d

dP du dQQ u
d d d

λ − λ − + λ λ − − + +
λ λ

⎛ ⎞+ + + =⎜ ⎟λ λ λ⎝ ⎠

 (3.80) 

Hence 
2

2
,

0
k h

d u
d ± ±

=
λ

 since its coefficient is non-zero. One can go on differentiating 

(3.80) to show that higher derivatives of u all vanish if u vanishes at hλ = ±  or ±k. 
Therefore we know that ( ) 0u λ =  must not have roots at hλ = ±  or ±k. Similarly, 
the above reasoning can be applied to show that ( ) 0u λ =  can not have equal roots 
and neither can ( ) 0E λ = . 
 
  On the other hand, based on (3.74) we see that 

 2 2

0 0
( ) ( ) ( ) 0E E d d

ω σ
μ − υ μ υ η ζ =∫ ∫  (3.81) 

Because 2 2( )μ − υ  is always non-negative, so either ( )E μ  or ( )E υ  must have a 
zero between the respective integration limits. Let 
 2 2 2 2( ) ( )( )f r r r= μ − υ −  (3.82) 
where 2 20 r k< <  that satisfies ( ) 0E r = . Applying the condition of orthogonality, 
we see that, assuming the polynomial ( )f r  to be of a different degree than that of 

( ) ( )E Eμ υ , 
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 2 2

0 0
( ) ( ) ( ) ( ) 0f r E E d d

ω σ
μ − υ μ υ η ζ =∫ ∫  (3.83) 

This suggests that either ( )E μ  or ( )E υ  must have zeros between (0, )r  or ( , )r k . 
In this manner one can go on to show that all roots are between 0 and k and unequal. 
Note that ( ) 0E λ =  may have a root at 0λ = . 
 

 
 
  Figure 3.3 shows the behavior of Lamé’s functions for different classes and 
different degrees. The change in λ  is expressed as the ratio of either hλ  or kλ . 
The scale of the Lamé’s functions can be arbitrarily set. Additionally, the sign of the 
preceding factor 2 2 2 2| |, | |k hλ − λ −  as in (3.49-1) is chosen such that whenever 
λ  passes ±h or ±k the sign changes. 
 
3.2.3 Normalization factor of Lamé’s functions 
  It is often desirable to use the normalized Lamé’s functions that satisfy (3.77). For 
example, one of the advantages is the ease to apply (3.78). The expression on the 
LHS of (3.76) can be rearranged as 

 

22 2

0 0

2 2 2 22 2

0 0 0 0

( ) ( ) ( )

( ) ( ) ( ) ( )

p p
n n

p p p p
n n n n

E E d d

E d E d E d E d

ω σ

σ ω ω σ

⎡ ⎤μ − υ μ υ η ζ =⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤υ ζ μ μ η− μ η υ υ ζ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∫ ∫
∫ ∫ ∫ ∫

(3.84) 

Specifically, 

 
2

2

0 2 2 2 2

( )
( )

p
k np

n h

E d
E d

h k

ω ⎡ ⎤μ μ⎣ ⎦⎡ ⎤μ η =⎣ ⎦
μ − − μ

∫ ∫  (3.85-1) 

Figure 3.3 Behavior of Lamé’s functions. Top: degree 2 class K (left) and N (right). 
Bottom: degree 5, class K (left) and L (right) 
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2

2

0 0 2 2 2 2

( )
( )

p
h np

n

E d
E d

h k

σ ⎡ ⎤υ υ⎣ ⎦⎡ ⎤υ ζ =⎣ ⎦
− υ − υ

∫ ∫  (3.85-2) 

Now without loss of generality, we assume p
nE  is of class K, so that 

 2 2
0 1

0
( )

r
p n n n i

n i
i

E a a a− −

=

μ = μ + μ + = μ∑"  

2
nr ⎢ ⎥= ⎢ ⎥⎣ ⎦

 being an integer. Therefore 
2

( )p
nE⎡ ⎤μ⎣ ⎦  is essentially a polynomial of the 

form 

 
2 2

0

( )
n

p i
n i

i

E a
=

′⎡ ⎤μ = μ⎣ ⎦ ∑  (3.86) 

where ia′  are some constants to be determined from the coefficients of the Lamé’s 
functions as ( )K

ia  in (3.49). Eq. (3.85-1) becomes 

 

2

2 0

0 4 2
( )

n
i

ikp i
n h

a
E d d

ω =

′μ
⎡ ⎤μ η = μ⎣ ⎦

−μ + αμ −β

∑
∫ ∫  (3.87) 

And ,α β  are the same as in (3.50). It is realized that 

 
( )4 2

3 1 1

4 2

( 2) ( 1)

m

m m m

d
d

m m m+ + −

μ −μ + αμ −β
μ

− + μ + + αμ − βμ
=

−μ + αμ −β

 (3.88) 

And obviously we have 

 4 2 0
k

m

h

⎡ ⎤μ −μ + αμ −β =⎣ ⎦  (3.89) 

If we integrate the RHS of (3.88) with respect to μ  from h to k, we have 

 
3 1 1

4 2

( 2) ( 1) 0
m m mk

h

m m m d
+ + −− + μ + + αμ − βμ

μ =
−μ + αμ −β

∫  (3.90) 

Therefore, (3.90) can be used as a recurrence algorithm, e.g., to express 3

0

m d
ω +μ η∫  

by 1

0

m d
ω +μ η∫  and 1

0

m d
ω −μ η∫ . Note that for (3.90) the recurrence holds if m 

descends as odd numbers through m=1, when 4

0
d

ω
μ η∫  shall be expressed by 

2

0 0
,d d

ω ω
μ η η∫ ∫ . Eventually, we will have 

 
2 2

0 0 0
( ) ,p

nE d A d B d
ω ω ω
⎡ ⎤μ η = μ η+ η⎣ ⎦∫ ∫ ∫  (3.91) 

where A and B are certain constants. It can also be shown that 

 
2 2

0 0 0
( )p

nE d A d B d
σ σ σ
⎡ ⎤υ ζ = υ ζ + ζ⎣ ⎦∫ ∫ ∫  (3.92) 

Using the same reasoning, we have 
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22 2

0 0 0

22 2

0 0 0

( ) ,

( )

p
n

p
n

E d A d B d

E d A d B d

ω ω ω

σ σ σ

′ ′⎡ ⎤μ μ η = μ η+ η⎣ ⎦

′ ′⎡ ⎤υ υ ζ = υ ζ + ζ⎣ ⎦

∫ ∫ ∫
∫ ∫ ∫

 (3.93) 

,A B′ ′  are likewise constants. Finally, based on (3.91) through (3.93), eq. (3.84) can 
be effectively reduced to 

 

22 2

0 0

2 2

0 0

( ) ( ) ( )

( ) ( )

p p
n nE E d d

A B AB d d

ω σ

ω σ

⎡ ⎤μ − υ μ υ η ζ =⎣ ⎦

′ ′− μ − υ η ζ

∫ ∫
∫ ∫

 (3.94) 

It can be shown that 

 2 2

0 0
( )

2
d d

ω σ π
μ − υ η ζ =∫ ∫  (3.95) 

Therefore, to normalize the Lamé’s functions, we need to compute A,B and ,A B′ ′ , 
and use 
 ( )1/4

( ) ( )p p p
n n nE Eμ = μ γ  (3.96) 

with 

 ( )
2

p
n A B AB π′ ′γ = −  (3.97) 

as the normalization factor. This will ensure that (3.77) holds, and ( )p
nE μ  is now 

the normalized Lamé’s function. To simplify notations, in (3.77) we drop the bar in 
( )p

nE μ , considering that the scale of Lamé’s functions as determined by (3.55) is 
arbitrary. Therefore we will hereafter assume the following relation to hold in this 
text, unless stated otherwise, 

 
22 2

0 0
( ) ( ) ( ) 1p p

n nE E d d
ω σ

⎡ ⎤μ − υ μ υ η ζ =⎣ ⎦∫ ∫  (3.98) 

 
3.2.4 Lamé’s functions of the second kind 

The ellipsoidal harmonics discussed so far are applicable to representing the 
interior potential. For example, eq. (3.33) suggests that 
 ( ) ( ) ( )V cE E E= ρ μ υ∑  
for a certain set of constants c. Suppose ( )E ρ  belongs to class K, ( )E ρ  is to be the 
following form 
 2

0 1( ) n nE a a −ρ = ρ + ρ +"  
( )E ρ  becomes infinity as ρ  reaches infinity. Therefore (3.33) cannot be used to 

model the exterior gravitational potential. The same is true for other classes of L,M,N. 
A different expression is needed such that when ρ  approaches infinity, the potential 
vanishes. It has been found that ( )E ρ  is the solution to 

 
2

2
2

( ) ( 1) ( ) ( ) 0d E n n E pE
d

ρ
− ρ + ρ + ρ =

ξ
 (3.99) 

Another solution to this equation, namely, the Lamé’s function of the second kind 
( )F ρ , can be found as follows. First, it also satisfies 

 
2

2
2

( ) ( 1) ( ) ( ) 0d F n n F pF
d

ρ
− ρ + ρ + ρ =

ξ
 (3.100) 
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Multiplying the LHS of (3.99) with ( )F ρ  and subtracting it from the LHS of (3.100) 
multiplied with ( )E ρ  yields, 

 
2 2

2 2

( ) ( )( ) ( ) 0d E d FF E
d d

ρ ρ
ρ − ρ =

ξ ξ
 (3.101) 

then 

 

2 2

2 2

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) 0

( ) ( )( ) ( ) 0

d E dE dF dE dF d FF E
d d d dd d

d dE dFF E
d d d

ρ ρ ρ ρ ρ ρ
ρ + − − ρ =

ξ ξ ξ ξξ ξ

⎡ ⎤ρ ρ
⇒ ρ − ρ =⎢ ⎥ξ ξ ξ⎣ ⎦

 (3.102) 

Therefore 

 ( ) ( )( ) ( )dE dFF E C
d d
ρ ρ

ρ − ρ =
ξ ξ

 (3.103) 

where C is some constant. The above equation can be written as 

 [ ]2 ( )( )
( )

d FE C
d E

⎡ ⎤ρ
ρ =⎢ ⎥ξ ρ⎣ ⎦

 (3.104) 

Then 

 
[ ]2

( )
( ) ( )

b

a

F C d
E E
ρ

= ξ
ρ ρ∫  (3.105) 

The limits of integration a,b are chosen in such a way that when ρ  reaches infinity, 

( ) ( )F Eρ ρ  becomes zero. Upon substituting 2 2 2 2dt t k t h d= − − ξ  in (3.105), 
we get 

 
[ ]2 2 2 2 2

( )
( ) ( )

F C dt
E E t t h t k

+∞

ρ

ρ
=

ρ − −
∫  (3.106) 

Furthermore, the constant C is to be determined such that when ρ  becomes a very 
large quantity, 

 1

1( ) nF +ρ =
ρ

 or 2 1

( ) 1
( ) n

F
E +

ρ
=

ρ ρ
 (3.107) 

Of course ( )F ρ  in this case would be analogous to the attenuation factor of 11 nr +  
for the spherical harmonics. Eq. (3.107) suggests that, for very large ρ  

 2 1 2 2

( ) 1
( ) n n

F dtC
E t

∞

+ +ρ

ρ
= =

ρ ρ ∫  (3.108) 

Hence 
 2 1C n= +  (3.109) 
In this case a0, which is the coefficient for nρ  in (3.49-2), is taken to be one. Finally, 
we have 

 
[ ]2 2 2 2 2

( ) (2 1) ( )
( )

dtF n E
E t t h t k

+∞

ρ
ρ = + ρ

− −
∫  (3.110) 

And the exterior potential can be represented by 
 ( ) ( ) ( )V cF E E= ρ μ υ∑  (3.111) 
where c is some constant. 
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3.3 Gravitational field modeling via ellipsoidal harmonics 
  Our interest is to apply the ellipsoidal harmonic series (EHS) to model the 
gravitational potential of the attracting body at the exterior point. We found that 
(3.111) is a promising form of EHS for such a purpose. In analogy with the SHS of 
the following form 

 ( )1
0 0

1 (sin ) cos sin
n

m
n nm nmn

n m
V P A m B m

r

∞

+
= =

= ϕ λ + λ∑ ∑  

we shall look for the EHS of the form 

 
2 1

0 1

( ) ( ) ( )
n

m m m
nm n n n

n m

V c F E E
∞ +

= =

= ρ μ υ∑∑  (3.112) 

In (3.112), n as always is the degree number. nmc , analogous to Anm and Bnm, are the 
coefficients that characterize the gravitational field of the attracting body. For a given 
n there are 2n+1 m

nE  and m
nF  that are associated with different eigenvalues of pm. 

These functions are numbered as 1, 2, , 2 1m n= +" . The correspondence between 
different m and four classes of m

nE  we define as follows: 
 m

nE K∈ , if 1 Km n≤ ≤  (3.113-1) 
 m

nE L∈ ,  if K K Ln m n n< ≤ +  (3.113-2) 
 m

nE M∈ ,  if 2K L K Ln n m n n+ < ≤ +  (3.113-3) 
 m

nE N∈ ,  if 2 2 1K Ln n m n+ < ≤ +  (3.113-4) 
with nK and nL denoting the number of K- and L-functions, respectively, such as 

 1
2K
nn ⎢ ⎥= + ⎢ ⎥⎣ ⎦

, 1
2L

nn +⎢ ⎥= ⎢ ⎥⎣ ⎦
 (3.114-1) 

For the sake of clarity, we also re-write explicitly the number of M- and N-functions, 

 M Ln n= , 
2N
nn ⎢ ⎥= ⎢ ⎥⎣ ⎦

 (3.114-2) 

And of course we must have 2 1K M L Nn n n n n+ + + = + . Note that if any inequality 
in (3.113) does not hold then that particular class simply does not exist. For example, 
there are no functions of class L, M for degree zero, whereas there is no N for either 
degree zero or one. 
 
3.3.1 Field coefficients of ellipsoidal harmonics 
  Eq. (3.112) can be used to model the exterior gravitational field of the attracting 
body. The coefficients nmc  should be chosen in such a way that as the degree n 
approaches infinity, the EHS modeled V shall converge to the true potential. One 
possible way in which nmc  can be determined is to apply the orthogonality of the 
EHS. We first re-express equation (3.78) as follows, with slight changes in notation 
in conformity with (3.112) 

 2 2

0 0
( ) ( , ) ( ) ( )m m

nm n nc f E E d d
ω σ

= μ − υ μ υ μ υ η ζ∫ ∫  (3.115) 

Note that we dropped the normalization factor m
nγ  assuming that m

nE  has already 
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been normalized. Substituting V for ( , )f μ υ , where V is the potential given on a 
certain ellipsoid with semi-major axis of 0ρ (Figure 3.4) 

 
2 1

0 0
0 1

( , , ) ( ) ( ) ( )
n

m m m
nm n n n

n m

V V c F E E
∞ +

= =

= ρ = ρ μ υ = ρ μ υ∑∑  

would result in 

 
2 2

0 0

22 2
0 00 0

( ) ( , ) ( ) ( )

( ) ( ) ( ) ( ) ( )

m m
n n

m m m m
nm n n n nm n

V E E d d

c F E E d d c F

ω σ

ω σ

μ − υ μ υ μ υ η ζ

⎡ ⎤= ρ μ − υ μ υ η ζ = ρ⎣ ⎦

∫ ∫
∫ ∫

 (3.116) 

The integration is over the entire ellipsoidal surface. Therefore we have 

 
2 2

0 0

0

( ) ( , ) ( ) ( )

( )

m m
n n

nm m
n

V E E d d
c

F

ω σ
μ − υ μ υ μ υ η ζ

=
ρ

∫ ∫  (3.117) 

By deriving nmc  this way we ensure that the EHS-modeled potential VEHS will 
conform to the prescribed values of V on the ellipsoid. It is found that it is more 
convenient to express (3.112) as follows 

 
2 1

EHS
0 1 0

( )
( ) ( )

( )

mn
m mn

nm n nm
n m n

F
V c E E

F

∞ +

= =

ρ
= μ υ

ρ∑∑  (3.118) 

Please note the difference of nmc  in (3.112) and (3.118). We see that now 
0

( )
( )

m
n
m

n

F
F

ρ
ρ

 

plays the same role as 
1nR

r

+
⎛ ⎞
⎜ ⎟
⎝ ⎠

 for the SHS. We shall hereafter refer to nmc  as the 

gravitational field coefficients or simply field coefficients for ellipsoidal harmonics.  
 

 
 

 
Figure 3.4 The ellipsoid on which V is proscribed, 

with semimajor axis 0ρ  and focal lengths h,k  
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3.3.2 Brief notes on the convergence of ellipsoidal harmonics 
  So far we have not attended to the convergence of the EHS. For the SHS of (2.20), 
we know that it is uniformly convergent outside the reference sphere of radius R. 

Because the attenuation factor 
1nR

r

+
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is smaller than unity hence the convergence 

is guaranteed (provided that the field coefficients are bounded). In this section we 
shall show (but not with indisputable rigor) that (3.118) is uniformly convergent 

outside the ellipsoid given by 0ρ = ρ , by discussing the role of 
0

( )
( )

m
n
m

n

F
F

ρ
ρ

. 

  First of all, we remind ourselves that ( )F ρ  is given by 

 
[ ]2 2 2 2 2

( ) (2 1) ( )
( )

dtF n E
E t t h t k

+∞

ρ
ρ = + ρ

− −
∫  (3.119) 

Without loss of generality, let us assume that ( )E ρ  is of class K. In this case 
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1 2
2 2 2 2
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E q q q
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−
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= ≤ ⎜ ⎟ρ ρρ ρ − ρ − ρ − ⎝ ⎠

"
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 (3.120) 

where 
2K
nr n ⎢ ⎥= = ⎢ ⎥⎣ ⎦

, and q1,q2,… are the zeros of Lamé’s functions. Hence ( )F ρ  

shall satisfy 

 
0 0 0

( ) ( )
( ) ( )

n
F I
F I

⎛ ⎞ρ ρ ρ
≤ ⎜ ⎟ρ ρ ρ⎝ ⎠

 (3.121) 

where 

 
[ ]2 2 2 2 2

( )
( )

dtI
E t t k t h

+∞

ρ
ρ =

− −
∫  (3.122) 

Because the zeros of Lamé’s functions are all in range [-k,k] and let us assume 
kρ > , we have 

 [ ] [ ]2 2( ) ( ) ,E E t tρ ≤ ρ ≤  
Moreover, for t ≥ ρ  we could find such constants 0 0,C C ′  that satisfy 

 1 2
2 2 2

0

( ) (1 )(1 ) (1 )
n

n rq q q tE t t
Ct t t

= − − − ≥"  (3.123) 

and 

 
2 2 2

2 2 2 2 2
2 2

0

1 1h k tt h t k t
Ct t

− − = − − ≥
′

 (3.124) 

Combining (3.123) and (3.124), we have 

 ( )2
0 1 2 22 2 2 2 2

( ) nn

dt dtI C C
tt t k t h

+∞ +∞

+ρ ρ
ρ ≤ ≤

− −
∫ ∫  (3.125) 

And 2
1 0 0( )C C C ′=  is some constant. Changing the integration variable via 

 2

1 1,t dt ds
s s

= = −  (3.126) 

in the integral of (3.125) results in 
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1/ 2 1

1 2 10

1( )
(2 1)

n
n

C
I C s dt

n
ρ

+ρ ≤ =
+ ρ∫  (3.127) 

On the other hand, again referring to (3.123) and (3.124), we could find such a 
constant C2 that satisfies 

 0 2 2 2( ) n

dtI C
t

+∞

+ρ
ρ ≥ ∫  (3.128) 

Therefore 

 
1/ 2 2

0 2 2 10
0

1( )
(2 1)

n
n

C
I C s dt

n
ρ

+ρ ≥ =
+ ρ∫  (3.129) 

By substituting the inequalities (3.127) and (3.129) into (3.121), we obtain 

 
1

0 1

0 2

( ) ,
( )

n CF C C
F C

+
ρ⎛ ⎞ρ

≤ =⎜ ⎟ρ ρ⎝ ⎠
 (3.130) 

The fact that the attenuation factor 
0

( )
( )

F
F

ρ
ρ

 for the EHS is equivalent to the form of 

1
0

n+
ρ⎛ ⎞

⎜ ⎟ρ⎝ ⎠
 suggests that (3.118) will be convergent outside the ellipsoid of 0ρ . For 

other classes of Lamé’s functions, (3.130) can be derived in a similar way, and is not 
discussed here.  
 

It can also be shown that (3.118) will indeed converge to the prescribed values of 
V on the ellipsoid as 0ρ → ρ . Furthermore, we understand that, to apply (3.118), the 
mass of the attracting body must be all inside the ellipsoid of 0ρ , just as the entire 
mass must be inside the reference sphere for the SHS. Now (3.118) is ever more 
promising to be applied to model the gravitational field of the attracting body. In the 
following chapter, we shall discuss the numerical computations of the EHS. 
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4. Numerical Considerations for 
Computing Ellipsoidal Harmonics 

 
  The theory of ellipsoidal harmonic expansions was reviewed in chapter 3 based on 
Hobson’s discussions of the subject. Unfortunately, when it comes to numerical 
computations of Lamé’s functions and the application of (3.118) etc., the 
afore-adopted formulation of the EHS is far from applicable. A more practical 
numerical scheme of applying the EHS for gravitational field modeling was 
elaborated by Garmier[29] that could accommodate the numerical difficulties, which 
is the focus of this chapter. 
 
4.1 Computation of Lamé’s functions 
  The first and foremost task of using the EHS is to generate Lamé’s functions. All 
these functions satisfy (3.50). We are seeking the solution as a power series as given 
by (3.49), and solve for the eigenvalues and eigenvectors of the following 
tri-diagonal real matrix T as in (3.54). 

 

0 0

1 1 1

1 1 1r r r

r r

g h
f g h

f g h
f g

− − −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

T % % %  

Depending on the class of Lamé’s functions, coefficients fi,gi,hi will take on different 
values, as are given by (3.53) and (3.56) through (3.58). We note that fi are all 
multiples of 2 2h kβ = , while gi are the multiples of 2 2h kα = + . Since h and k both 
have the dimension of distance, elements on different diagonals of T can be 
sometimes severely ‘out of balance’, i.e., the magnitude of fi is likely greater than hi. 
Another distinct issue is with the dimension of coefficients for the Lamé’s functions. 
Namely, since jλ  has the dimension of distance as h and k, the coefficients of ai as 
in (3.49) will each be of different dimensions. This certainly is not desirable (e.g., 
compared to Cnm, Snm for the SHS). To address the above issues, we could introduce 
another set of variables[38] 

 21 , , 1, 2,3j
j j jt t j

h
λ

Λ = − = =  (4.1) 

Again jλ  is the ellipsoidal coordinate. Subsequently, corresponding to (3.49) the 
Lamé’s functions of four classes are as follows 
 2( ) ( )n r m

j j n jK t u−λ = Λ  (4.2-1) 

 2 1 2( ) 1 ( )n r m
j j j n jL t t u− −λ = − Λ  (4.2-2) 

 2 1 2 2( ) ( )n r m
j j j n jM t t u− −λ = − κ Λ  (4.2-3) 
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 2 2 2 2 2( ) 1 ( )n r m
j j j j n jN t t t u− −λ = − − κ Λ  (4.2-4) 

with 

 k
h

κ =  (4.3) 

Here we assume 
 0 1( )m r

n j j r ju b b bΛ = + Λ + Λ"  (4.4) 

with 
2
nr ⎢ ⎥= ⎢ ⎥⎣ ⎦

 for class K, 1
2

nr −⎢ ⎥= ⎢ ⎥⎣ ⎦
 for class L or M. 1

2
nr ⎢ ⎥= −⎢ ⎥⎣ ⎦

 for class N. 

Since tj as well as jΛ  are dimensionless, bi are all (for different i) of the same 
dimension. 
  The coefficients bi can be determined in the exact same way as determining ai in 
(3.49). Suppose we want to find bi for class K. First, we have 

 ( )1 1
1 22 2 ( 2 )r iK

r i
du

t b b rb ib t
dt

− −= − + Λ + + Λ = + − Λ +" " "  (4.5-1) 

It follows that 

 
2

2
2 2 [(2 1) 2 2 ]iK

i
d u

ib i i
dt

−= + − Λ − Λ + − +… "  (4.5-2) 

Having now introduced Λ  we must therefore distinguish between the even and odd 
values of degree n, as it affects the preceding function of tn-2r in (4.2-1). It can be 
shown that, if n is even, (3.50) is equivalent to 

 
2

2 2 2 2 2
2( )( 1) (2 ) [ ( 1) ] 0K K

K
d u du

t t t t p n n t u
dtdt

′− κ − + − α + − + =  

where 

 2
2 1

h
α′α = = + κ  (4.6) 

And, more relevant is the following form of (3.50) 

 
2

2
2( 1) (2 2 ) [ ( 1)( 1)] 0K K

K
d u du

t p n n u
dtdt

′Λ + κ − Λ − Λ − + α + + + Λ − =  (4.7) 

Substituting (4.2-1) and (4.5) into (4.7) and equating coefficients of different powers 
in Λ  to zero, results in the following equation in matrix form 

 

0 0 0 0

1 1 1 1 1

1 1 1 1 1

0
0

( )
0
0

K

r r r r r

r r r r

g h b b
f g h b b

p p
f g h b b

f g b b
− − − − −

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ = − = −
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

T I b% % % # ##  (4.8) 

where I denotes the identity matrix. The elements fi,gi,hi in TK are not the same as 
those given in (3.54). In this case for class K and even n we have 

 2 2

2

2( 1)(2 1),

2 (2 1) 4 ( 2),

2( 1)(2 1)( 1)

i

i

i

f r i r i

g r r i

h i i

= − − + + −

= + + κ −

= − + + κ −

 (4.9) 

Hence, in order to get bi we must solve for the r+1 eigenvalues, i.e., p1,p2,…,pr+1, 
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and the same number of associated eigenvectors b in (4.8). The components in each 
of the r+1 eigenvectors give the coefficients for the Lamé’s functions of class K, 
even n. Note that the scale of the eigenvectors is not important. 
  The above discussion only applies to class K with even n. If n is odd, it can be 
shown that (3.50) becomes 

 

2
2 2

2( 1) [2 ( 1) ( 2 2)( 1)]

[ ( 2)( 1)( 1)] 0

d u dut
dtdt

t p n n u

′Λ Λ + κ − + Λ Λ + κ − + α + Λ − Λ −

′+ − α + + − Λ − =
 (4.10) 

We need not heed t appearing in the above equation as it will become a common 
factor once we have substituted (4.5-1) into (4.10). 
  Thus we will have another equation in the form of (4.8) but with different fi,gi,hi. 
The Lamé’s equations of other classes will be given in Appendix A. We see that in 
total there are eight such equations (two for each class) in matrix form, each of 
which comes with a set of coefficients fi,gi,hi, for 0,1, ,i r= " . The expressions for 
these coefficients can be found in Dobner[38] as well as Garmier[29]. For the sake of 
consistency, the expressions are also provided in Appendix B. Please note that, since 
we use tj rather than jλ  in the preceding functions for m

nu  in (4.2), all coefficients 
in our expressions differ from those provided Garmier by a common factor of h2. 
  There are well established numerical schemes for solving for p and b in (4.8). Our 
experience shows that the Implicitly Shifted QR algorithm[39] suffices for our 
purpose. 
 
4.1.1 Normalization of Lamé’s functions based on Λ  
  The numerically derived coefficients of Lamé’s functions are now based on tj and 

jΛ . The formulas for normalizing Lamé’s functions as given in section 3.2.3 also 
need to be adapted. From (3.84) we see that there are four integrals to be evaluated, 
namely, 
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There is only need to consider two of them, i.e., those associated with either μ  or 
υ . We shall discuss only the case for μ  
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Expressed in t2 and 2Λ  these two functions become 
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The numerators in the integrals are of the form 
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where ,i ic c′  are constants to be determined from the coefficients of Lamé’s 
functions as bi in (4.4). On the other hand, the common denominator in the integrals 
is 
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Following the discussion in section 3.2.3, we see that 
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For some non-negative integer of l, we have 
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Eq. (4.14) suggests a recursive relation analogous to (3.88). If we denote 
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Then 2
2( )lI +Λ  can be expressed recursively by 1

2( )lI +Λ  and 2( )lI Λ , and this 
recurrence relation is valid for descending values of l through l=0, when 2

2( )I Λ  is 
expressed by 2( )I Λ  and 0

2( )I Λ . Eventually we should get 
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⎡ ⎤μ η = ⋅ Λ + ⋅ Λ⎣ ⎦∫ , (4.17-1) 
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′ ′⎡ ⎤μ μ η = ⋅ Λ + ⋅ Λ⎣ ⎦∫  (4.17-2) 

It can be shown that such a relation also holds for υ . The normalization factor is 

 2

( )
2

m
n

AB A B
h
′ ′− π

γ =  (4.18) 

We see that the coefficients of Lamé’s functions as well as the normalization factors 
are essentially related to the focal lengths h,k. Once we have fixed the reference 
ellipsoid of 0ρ  together with the focal lengths, the coefficients are specified once 
and for all. 
 
4.1.2 Computing Lamé’s functions of the second kind 
  The computation of Lamé’s functions of the second kind involves evaluating a 
certain integral in (3.122) 
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ρ
ρ =

− −
∫  

It would be desirable to transform this function in such a way that the integration 
limits are both finite. One way is to do so via (3.126) as 
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∫  (4.19) 

Since now ( )E ρ  is expressed as a function of s, i.e., with coefficients other than 
those in the Lamé’s functions. For example, suppose ( )E ρ  is of class K, 
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 (4.20) 

Therefore (3.122) can be rewritten as follows 
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 (4.21) 

It can be easily verified that (4.21) also holds for other classes as well. Eq. (4.21) can 
be integrated numerically as a quardrature problem. 
  Hence we see that Lamé’s functions of the second kind are now of the form 
 ( ) (2 1) ( ) ( )F n I Eρ = + ρ ρ  (4.22) 
 
 
4.2 Numerical modeling of the gravitational field via ellipsoidal harmonics 
  We wish to represent the gravitational potential by the EHS given by (3.118) 
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In section 4.1, we have reviewed a more practical formulation for computing the 
Lamé’s functions, and shall decompose ( ) ( ) ( )m m m

n n nF E Eρ μ υ  into the following form 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )m m m m m m m

n n n n n n nF E E I E E Eρ μ υ = ρ ρ μ υ  (4.23) 
Note that in (4.23) the common factor 2n+1 was dropped. The matter of computing 

m
nE  really comes down to computing ( )ju Λ  as in (4.3) and (4.4). Therefore we 

could express (4.23) further as 
 1 2 3 1 2 3( ) ( ) ( ) ( , , ) ( ) ( ) ( )m m m m m m m

n n n n n n nE E E t t t u u uρ μ υ = Φ Λ Λ Λ  (4.24) 
The form of 1 2 3( , , )m

n t t tΦ  according to the evenness of degree n and class, is given 
in the Table 4.1. 
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Note that the expressions based on ti in Table 4.1 all have sign ambiguities which 
result from the squares in the expressions of (3.9). However, we could always resort 
to the rectangular coordinates to remove such ambiguities. We shall simplify the 
expression of (4.23) as (for a given degree n, class and m) 

 1 1 2 3

1 2 3

( ) ( ) ( ) ( , , ) ( ) ( ) ( ) ( )

( , , , , , )

m m m m m m m m
n n n n n n n n

m
n

F E E x y z I u u u

Y x y z

ρ μ υ = Φ λ Λ Λ Λ

= λ λ λ
 (4.25) 

This is the practical expression for the EHS. 
 
4.2.1 Gravitational acceleration via ellipsoidal harmonics 
  Eq. (4.25) is a form favorable for numerically expressing the gravitational 
potential. Taking the gradient of (4.25) with respect to the rectangular coordinates 
x,y,z results in the gravitational acceleration. We first need to differentiate (4.25) with 
respect to the three ellipsoidal coordinates, and then project the resulting derivatives 
to the x,y,z directions (with the exception of elements in m

nΦ  that are based on x,y,z). 
As we shall show hereafter, computing the gravitational acceleration (and gradient) 
via the EHS is far more cumbersome than via the SHS. 

In order to simplify our notations in this section, we drop n,m and replace 
variables , ,ρ μ υ  with subscripts ‘(j)’ for the functions to indicate their exclusive 
dependence on jλ (or equivalently jΛ ). Taking the gradient of (4.25) in the 
rectangular coordinates we obtain the following expression 
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The expression for ∇Φ  can be easily obtained based on Table 4.1. For (1)I∇  we 

Table 4.1. Expressions for the preceding function m
nΦ  for different n and m 

m
nΦ  n even n odd 
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shall have 
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 (4.27) 

From (3.122) we find that 
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We will discuss the expression of j∇λ  later (given in (4.35) if one prefers). On the 
other hand, for ( )ju∇  we have 
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d
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And it can be easily found that ( )j

j
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 is given by 
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with 
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 (4.32) 

To express the acceleration, we find expressions for j∇λ  in the following form 
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Note that j
id  means taking the derivative of jλ  with respect to the ith rectangular 

coordinate with i=1,2,3 indicating x,y,z, respectively. 
However, though (3.9) gives the expressions of x,y,z as functions of jλ , the 

reverse expressions could be formidably complicated. A practical yet seemingly 
mechanical method is to pursue 
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After some derivations, one would eventually get 
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Note that the element of 3
1d  comes with a singularity at 3 0λ = . To address this 

issue, we rewrite 3
1d  as follows, 
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And it follows that when 3 0λ = , 3
1

1 2

khd =
λ λ

.  

At this point, (4.26) can be evaluated without further trouble. The acceleration is 
given by, retrieving the notations for n,m 
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4.2.2 Gravitational gradient via ellipsoidal harmonics 
  The gravitational gradient is obtained by taking the gradient of (4.26), consider the 
case for given n and m, 
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So the problem boils down to calculating m
n∇Z  which is a 3×3 symmetric matrix. 

The expression for m
nZ  is given in (4.38). Again we drop the n,m in the notations 
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and use subscript ‘(j)’ to denote the function being dependent solely on jλ , 

 (1) (1) (1)
(1) (1)

3

( ) ( ) ( )
1 ( ) ( )

1 1 ( ) ( )

1 1 ( ) ( )

1 1 ( ) ( )

m T
n

T

T
j j j

j j j

I I I
I I

u u u
u u=

⎛ ⎞∇ = − ∇Φ ∇Φ +∇ ∇Φ +⎜ ⎟Φ Φ⎝ ⎠
⎛ ⎞
− ∇ ∇ +∇ ∇ +⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
− ∇ ∇ +∇ ∇⎜ ⎟⎜ ⎟
⎝ ⎠

∑

Z

 (4.40) 

(1)I∇  and ( )ju∇  are given by (4.27) and (4.29). Now we turn to how to evaluate the 
expressions ( )∇ ∇Φ , (1)( )I∇ ∇  and ( )( )ju∇ ∇  in (4.40). 
  The elements in ( )∇ ∇Φ  are easily derived based on Table 4.1 and are omitted in 
our discussion. For (1)( )I∇ ∇ , referring to (4.27), 
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And the expression for 
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 can be directly derived from (4.28) as follows 
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Let us remind ourselves that (1)E  in (4.42) should not be taken for u(1), as E(1) also 

has a preceding factor that varies from one class to another, e.g., 2 2
1 hλ −  for class 

L, 2 2
1 kλ −  for class M, and etc. When taking the derivative of E(1) this preceding 

factor must be taken into account. Similarly, (4.29) suggests that 
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 can be calculated as 
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where 

 
2 2

( ) 2
2 32 2 2

22 3 2 ( 1) ,j jr
j r j

j j

d u d
b b r r b

d d h
− Λ

= + ⋅ Λ + − Λ = −
Λ λ

"  (4.45) 

So far all the expressions in (4.41) and (4.43) except ( )j∇ ∇λ  are known. On the 
other hand, ( )j∇ ∇λ  can be expressed as 
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with ,
j

i kd  the derivative of j
id  with respect to the kth rectangular coordinate, i.e., 
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where j
id  are given by (4.35). We note that there are three such matrices as in (4.46) 

that correspond to different jλ . Last but not least, the total 27 expressions for ,
j

i ld�  
can be directly derived from (4.35). However, as is the case for computing the 
acceleration, we again have to be concerned with singularities for 3 0,hλ =  and 

2 ,h kλ = . For example, for several ,
j

i kd  we need to remove 3λ  appearing in the 

denominator of ,
j l

i l kd d� . This issue will be discussed in Appendix C. 
 
4.2.3 Two numerical issues encountered with the computation of ellipsoidal 

harmonics 
  The numerical scheme reviewed above come with several issues, of which two 
will be discussed as they have been encountered in our simulations. For a more 
comprehensive discussion on the numerical uncertainties of the EHS and the causes, 
readers are encouraged to refer to Garmier et al.[29] 
 
Removing singularities in a certain integral 
  The factor 2 2 2 2

j jh kλ − λ −  appears quite commonly in the denominator in 

several integrals, causing singularities. For example, when evaluating the field 
coefficients nmc in (3.115), we have to deal with the integral of the form 

 
0 2 2 2 2 2 2 2 2

( , )k h

h

f d d

h k h k

μ υ μ υ

μ − − μ − υ − υ
∫ ∫  (4.47) 

Since 0 h≤ υ ≤  and h k≤ μ ≤ , 2 2hμ − , 2 2k −μ  and 2 2h − υ  are all 
associated with singularities. One solution to this issue is to introduce different 
integration variables. 
  For the singularity associated with 2 2h − υ , we let 

 sin , 0
2

h π
υ = θ ≤ θ ≤  (4.48) 

so that 
 2 2 cosh h− υ = θ , 2 2cosd h d h dυ = θ θ = − υ θ  (4.49) 

Therefore 2 2h − υ  cancels out in the integral. 

  For the singularities associated with 2 2hμ −  and 2 2k −μ , we first introduce 
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 2 2 2 2, 0t h t k hμ = + ≤ ≤ −  (4.50) 
Then 

 
2 2htd dt dt

μ −
μ = =

μ μ
 (4.51) 

Therefore 2 2hμ −  is removed from the denominator. Finally we see that 

 2 2 2 2 2( )k k h t−μ = − −  
And we let 

 2 2 sin , 0
2

t k h π
= − ϑ ≤ ϑ ≤  (4.52) 

then 
 2 2 2 2cosdt k h d k d= − ϑ ϑ = −μ ϑ  

Therefore we see that the last singularity of 2 2k −μ  in the integral is also 
cancelled out. 
  For [ , ]kρ∈ ∞  we rarely need to cope with the issue of singularity. Because, for 
example, ρ  will not be equal to k outside the reference ellipsoid of 0ρ . 
 
Numerical singularities with normalization of Lamé’s functions 
  Another numerical issue has been encountered when normalizing the Lamé’s 
functions using (4.17) and (4.18). Sometimes ‘Not-a-Number’ result was produced in 
the coefficients of Lamé’s functions, which was obviously caused by division by 
zero p

nγ  for some degrees and classes. 
For example, when normalizing the Lamé’s functions for the reference ellipsoid 

with axes of 20.5 km, 10.4 km and 7.5 km, p
nγ  turned out to be zero numerically for 

class L, M and N of degree 20. Let us first take a look at how these functions behave. 
Figure 4.1 clearly shows that the unnormalized functions seem far different from 
those in Figure 3.3. For example, the variation near the origin is ominously greater 
by order of 1014 than that towards kλ = ±  where roots are tightly spaced in a 
narrow span of 0.05k k h≈ − . Also, the difference of 1014 touches the precipice of 
15 digit precision (which we used). Therefore we infer that the problem is with 
(4.18), i.e., AB BA′ ′− , and that this results from the subtraction of two great and 
close numbers leading to the loss of the significant digits. 
 

    
Figure 4.1 Behavior of one of the Lamé’s functions for degree 20 class L (left) and  

N (right), in range from –k to k (top) and from 0.94k to k (bottom). 
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A possible remedy is to use more significant digits since the computation and 

normalization of Lamé’s functions are carried out only once. However, after an 
unsuccessful attempt to adopt this recipe with outdated versions of fortran compilers, 
we retained the 15 digit precision, but resorted to an expedient approach. Namely, 
there is nothing that forbids us attempting to integrate (3.76) numerically to get p

nγ  
such as 

 
22 2

0 0
( ) ( ) ( )p p p

n n nE E d d
ω σ

⎡ ⎤μ − υ μ υ η ζ = γ⎣ ⎦∫ ∫ �  

Here we include the symbol ‘~’ to explicitly indicate that such p
nγ  is numerically 

integrated. Even though it calls for more elaborate effort to rigorously validate this 
idea, our experience in simulations suggests that it at least alleviates the abrupt 
cancelling of trailing digits, since now the integration is performed incrementally 
over the reference ellipsoid. 
 
  On a further note regarding Figure 4.1, it is suggested that roots staying too close 
to one another may also be a stumbling block of applying the EHS beyond degree 15. 
Being unable to delve into this issue at this point, we found, based on our simulations 
afterwards that, the roots are numerically distinguishable up to degree 20 as far as the 
behavior of Lamé’s functions is concerned. So even though the 15 digit precision 
may not accommodate the aforementioned large variation of some Lamé’s functions 
which obviously could mar the result for that particular degree, we believe that such 
related errors are far from catastrophic.  
 

In this chapter, we reviewed a favorable numerical scheme for applying the EHS 
to model the gravitational field of the attracting body. The first task is to compute the 
Lamé’s functions not only distinguishing different classes but also according to the 
evenness of degree n. Based on the Lamé’s functions computed this way, it is more 
desirable to represent the EHS modeled potential in the form of (3.118). The 
expressions for the gravitational acceleration and gradient need to be refurbished 
accordingly. In the next chapter we will apply the afore-discussed formulation of the 
EHS to model the gravitational field of the attracting body, and compare its 
performance with that of the SHS. 
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5. Comparison of Spherical and Ellipsoidal Harmonics: 
 Simulation Results on Modeling the Gravitational 

 Field of Phobos and 433 Eros 
 

In this chapter, we shall apply the SHS and EHS to model the gravitational field of 
two non-spherical attracting bodies, namely, the Martian moon Phobos and asteroid 
433 Eros. As one of the two moons of Mars, Phobos is weakly gravitating and 
irregular-shaped, e.g., its apparent polar and equatorial flattening, many 
distinguished impact craters, and etc., all indicate distinct non-sphericity of the body. 
As of yet, the gravitational field of Phobos remains largely unknown due to the 
limitation of the quality as well as availability of observations. For example, while 
the mass and the mean density of Phobos has been determined to a certain accuracy 
(with a relative error on the order of 1%)[40], other characteristic parameters such as 
J2, C22, etc. are still elusive. Eros is the second largest known near-Earth asteroid 
(NEA)[9]. Partly owing to its close encounters with the Earth, Eros is one of the few 
small bodies that have been explored in detail. In particular, the spacecraft NEAR 
Shoemaker orbiting Eros in the year 2000 has enabled a successful attempt of 
recovering its gravity field[30,41]. As far as the shape is concerned, Eros is not only 
highly non-spherical but also more irregular than Phobos (Figure 5.1), thus regarded 
as a more typical example of irregular bodies in this work. 
 

 
 
 
5.1 Truth gravitational field via polyhedron method 
  The performance of either EHS or SHS will be assessed based on the 
discrepancies between their modeled gravitational field and the truth field. The truth 
field will be computed by the polyhedron method (PM)[42], which shall be briefly 
introduced in this part. 
  The PM essentially builds on the Gauss’ divergence theorem. We use the 

  
Figure 5.1 Phobos (left, credit: Bell, E. V., Viking project, JPL, NASA) and 

433 Eros (right, credit: NEAR Project, NLR, JHUAPL, Goddard SVS, NASA) 
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rectangular coordinate system in which X,Y,Z are the coordinates for a differential 
volume dV of the attracting body, and x,y,z that for the field point P. The vector from 
P to dV is 
 ( ) ( )T T

X Y Zr r r X x Y y Z z= = − − −r  (5.1) 
Using r̂  to denote the unit vector and r the magnitude of r, it can be easily shown 
that 

 2ˆ X Y Zr r r
X r Y r Z r r
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∇ ⋅ = + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

r  (5.2) 

It follows that if the body has constant density, its gravitational potential can be 
calculated as follows 

 ˆ ˆ ˆ
2 2v S S

G dv G GV dS dS
r
ρ ρ ρ

= = ∇ ⋅ = ⋅∫∫∫ ∫∫ ∫∫r n r  (5.3) 

ρ  is the density of the body (hopefully in this chapter distinguishable from the 
ellipsoid coordinate), and n̂  the unit out-pointing normal vector to the surface of V 
(Figure 5.2).  

So (5.3) basically transforms the volume integral into surface integral over the 
body. The PM then seeks to approximate the attracting body as a polyhedron of a 
finite number of flat faces, in which case the integral in (5.3) can be arranged as 

 
1 1

ˆ ˆ ˆ ˆ ˆ
i i

N N

i iS S S
i i

dSdS dS
r= =

⋅ = ⋅ = ⋅∑ ∑∫∫ ∫∫ ∫∫n r n r n r  (5.4) 

where now the integer 1 i N≤ ≤  refers to the ith face of the approximating 
polyhedron. We note that the dot product ˆ i i⋅n r  can be taken outside the integral as 
a constant because any ri (from P to anywhere on the ith face) has the same projected 
length on ˆ iin . On the other hand, the integral 

iS
dS r∫∫  can be conveniently 

evaluated adopting the Green’s theorem. In particular, when the face is a polygon, it 
can be shown that, 

 
,

, ,
1

ˆ ˆ
i i j

M

i j i j i i iS L
j

dS dL
r r=

= ⋅ − ⋅ ω∑∫∫ ∫n r n r  (5.5) 

with subscripts of integer 1 j M≤ ≤  denoting the jth edge associated with the ith 
face (polygon). And ,ˆ i jn  denotes the unit out-pointing normal vector to the jth edge 
and orthogonal to ˆ in , ri,j is the vector from P to anywhere along the jth edge. iω  is 
expressed as 

 3

ˆ
i

i i
i S

dS
r
⋅

ω = ∫∫
n r

 (5.6) 

Usually one does not use (5.6) directly for computations, as iω  can be interpreted 
as the signed area of the polygon projected onto the unit sphere centered at the field 
point or the solid angle (Figure 5.3 on the right). It is more straightforward to 
calculate iω  based on this geometric meaning. The practical expressions, however, 
will not be discussed here. 
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  Even better, the curve integral in (5.5) now over a straight line can be expressed by 
an intrinsic function as 

 ln
L

dL a b e
r a b e

+ +
=

+ −∫  (5.7) 

The scalar quantities a,b,e are illustrated in Figure 5.3 on the left. 
So it is now understood that the gravitational potential of a polyhedron having 

constant density can be calculated exactly as follows 
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, ,
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i i i j i j i i iL
i j

G dLV
r= =

⎛ ⎞ρ
= ⋅ ⋅ − ⋅ ω⎜ ⎟

⎝ ⎠
∑ ∑ ∫n r n r n r  (5.8) 

It is worth pointing out that, (5.2) is subject to singularities if the field point is on or 
inside the body, i.e., r may be zero. Therefore it is considered that (5.8) only strictly 
holds outside the attracting body[42]. Acceleration as well as gradient can also be 
conveniently expressed by the PM but the related discussions will be omitted here. 
Quite obviously, there is nothing that stands in the way of applying PM to varying 
density bodies, in which case one could decompose the body into different polyhedra 
and sum up the their respective resulting field. 
 

 
 
  Several practical expressions for PM can be greatly simplified if the body is 
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Figure 5.3 A field point in relation to a polygon on the body surface and its  

edges (left), and geometric meaning of iω  (right) 
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Figure 5.2 A differential surface dS in relation to the field point P 
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approximated as a polyhedron consisting of triangular faces. In that case the entire 
body is broken up into a number of tetrahedra with the origin of the shape model as a 
common vertex. To find such polyhedron approximation of the body, one may find 
the Delaunay Triangulation (DT) useful. 
  We now almost come to the heart of the matter in this text. We shall approximate 
the shape of Phobos and Eros as two respective polyhedra. Since our goal is to assess 
the performance of the EHS and SHS for irregular-shaped bodies, with no loss of 
generality we adopt the constant density and apply the PM to simulate the truth field 
for both bodies. We are interested in the modeling errors, i.e., the deviations of 
results given by the EHS and the SHS from the truth. 
 
 
5.2 Modeling the gravitational field of Phobos 
  A recent spherical harmonic shape model up to degree and order 17 is given by 
Willner[43], suggesting that the best-fitting ellipsoid of Phobos has three axes of 13.0 
km, 11.4 km and 9.1 km, respectively. The gridded shape model for Phobos was 
obtained by discretizing the spherical harmonic model such as 

 ( )
0 0

( , ) (sin ) cos sin
N n

m
n nm nm

n m
r P A m B m

= =

ϕ λ = ϕ λ + λ∑∑  (5.9) 

where r is the radii of the body as a function of latitude ϕ  and longitude λ . Anm, 
Bnm are the coefficients for the spherical harmonic model, and N=17 is the maximum 
degree. The shape model with a grid interval of 5° in both latitude and longitude is 
shown in Figure 5.4 on the left. The polyhedron model, based on the shape model 
with a grid interval of 10°, is illustrated on the right. 1.876 g/cm3 is used for the 
density of Phobos[40]. 
 

 
 
5.2.1 Gravitational field via spherical harmonics on reference sphere 
  In this part we shall first look at how the SHS can be used to represent the 
gravitational field of Phobos. The reference sphere we choose is centered at the 
origin of the shape model and has a radius of 14 km, ensuring that the polyhedron 
has no vertex on or outside the reference sphere. We need to point out that this 
reference sphere is by no means intended to be the best choice, e.g., not the smallest 
sphere to the body.  

Figure 5.4 Shape model of Phobos (left), and Phobos approximated by a polyhedron (right) 
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Gravitational potential 
  Using the PM, we obtained the gravitational potential on the reference sphere of 
14 km as shown in Figure 5.5. The shape model is also plotted in order to better 
illustrate the correlation of the topography and the gravitational potential. As we 
have assumed that Phobos has constant density, the most powerful relation is that, 
the closer the body surface is to the reference sphere, the greater the potential is. The 
PM derived potential on the reference sphere is then used in (2.24) (for V) to 
calculate the field coefficients ,nm nmC S  up to degree and order 20. Specifically, V is 
obtained at a 100×200 grid in latitude and longitude. The resolution of the grid for V 
is obviously higher than that can be accounted for by the SHS up to degree 20. 
However, it is intended to reduce the integration error when applying (2.24), so as to 
prevent it from affecting the modeling error. The field coefficients for the SHS are 
then used in (2.22) for “backtracking” the potential of Phobos.  

It would be natural to first look at the evaluated potential on the reference sphere, 
and see how it differs from that evaluated by the PM from which we derived the 
coefficients. We first look at the case of using the SHS up to degree 10 for modeling. 
The relative errors of the SHS in percentage are shown in Figure 5.6 as function of 
latitude and longitude. 
 

Figure 5.5 Gravitational potential on reference sphere with different views 
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  First of all, we observe that the errors on average are on the order of 0.01%, with 
distinct corrugated pattern or ringing effect that is expected to have resulted from the 
truncation of the SHS at degree 10. E.g., the dominant contribution seems to 
correspond to n=11 or greater. On the other hand, the errors are altogether evenly 
distributed, i.e., fluctuating around zero. One area near (-40°,0°), as 
(longitude,latitude), shows most pronounced ringing effect with the errors reaching 
the maximum of over 0.1%. To understand the reason of this observation, it is useful 
to look at Figure 5.6 at the bottom. Clearly, this area is where the reference sphere is 
the closest to the body of Phobos. In addition, we notice that a major crater of 
Phobos named Stickney is also located in the vicinity, adding to the high variability 
of the local gravitational field. 
  Next we increase n up to 20. The overall errors (Figure 5.7) decrease to 0.001%. 

 

 
Figure 5.6 Errors in potential via spherical harmonics up to degree 10 (top); errors 

represented on the reference sphere (bottom) 
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While the corrugated pattern is still present, now the dominant frequencies 
correspond to those values of n greater than 20 that have not been accounted for. At 
the same time, we notice that again the SHS seems to be faltering near Stickney, as is 
the case for n=10. 
 

   
 
Gravitational acceleration 
  For the gravitational acceleration, we shall look at the magnitude of errors in 
acceleration instead of each component. Figure 5.8 shows the distribution of the 
degree-10 SHS errors in latitude and longitude. Just as the case for the potential, 
errors in acceleration appear notably greater near (-40°,0°) where the topographic 
surface gets closer to the reference sphere. The most marked area is around Stickney. 
Again the larger variations should be due to that the body is closer to the reference 
surface so that the topography more significantly affects variation of the gravitational 
field. The gridded pattern of errors in acceleration exhibits higher-frequency 
behavior than that in potential. This should be attributed to the fact that the 
acceleration is related to the differentiation of the potential, thus the 
higher-frequency errors are amplified. On average, the errors in the modeled 
acceleration reach the level of 0.1%, one order of magnitude greater than in the 
potential. On the other hand, using the SHS up to degree 20 sees errors decrease by 
one order of magnitude, though the peak errors have not been substantially abated 
(Figure 5.9). 
 

 
Figure 5.7 Errors in potential via spherical harmonics up to degree 20 
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5.2.2 Gravitational field via ellipsoidal harmonics on reference ellipsoid 
  Now we turn to the ellipsoidal harmonics. First, we chose the reference ellipsoid 
that has three axes of 14.5 km, 12.5 km and 10.5 km, respectively. The ellipsoid is 
centered at the origin of the shape model. We stress again that the choice of reference 
surface is not unique; the only rule to follow is that it must contain the entire body 
thus the total mass. Nevertheless it is always desirable to have the reference surface 
fit the body snugly to reduce the space between the reference surface and the body 
where the EHS (or SHS) might suffer errors due to divergence. 

 
Figure 5.8 Errors in acceleration (magnitude) via spherical 

harmonics up to degree 10 

 
Figure 5.9 Errors in acceleration (magnitude) via spherical 

harmonics up to degree 20 
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Gravitational potential 

The PM evaluated gravitational potential on the reference ellipsoid is shown in 
Figure 5.10. First of all, it is interesting to note the difference between Figure 5.5 and 
5.10, in the former of which the potential is given on the reference sphere. Evidently, 
the ellipsoid being tri-axial in this case is a more arbitrary surface and thus is more 
apt to be a good-fitting surface to the shape of Phobos, even more so for the more 
irregular bodies. Since the ellipsoid overall would somewhat hug the topography 
more closely, quite interestingly, the two formerly higher potential areas located 
along the equator where topography is outstretched to reach the reference sphere, 
now have become subsided on the reference ellipsoid. Obviously because along the 

 

 
Figure 5.10 Gravitational potential on reference ellipsoid; potential represented on the 

reference ellipsoid (bottom) 
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semi-major axis the distance on the ellipsoid from the center of mass1 (CoM) is the 
greatest. In this case, distance overwhelms the variation of topography in shaping the 
gravitational field. 

The PM derived potential is used in (3.117) (for V) for evaluating the field 
coefficients cnm for the EHS up to degree 20. For comparison, V is given on a 50×50 
grid in υ  and μ , respectively, which corresponds to 100×200 grid in latitude and 
longitude. The field coefficients are then substituted in (3.118) for gravitational field 
modeling. 
  We assess the errors of the EHS in the same way by comparing the EHS modeled 
potential with the true values. For the EHS up to degree 10, the errors in potential are 
plotted in Figure 5.11. Errors appear uniform in the sense that the variations over the 
entire ellipsoid are comparable. The peak errors now are present both near Stickney 
and another area around (180°,-50°). Referring to Figure 5.10, we could certainly tell 
that this area is very close to the reference ellipsoid. Therefore we infer that the 
larger errors in these areas are to be accounted for by the more pronounced 
topographic variations. 
  On the other hand, the errors are generally on the order of 0.01% with the 
exception of the two peak areas. We argue that it is not really reasonable to compare 
the EHS errors with that of the SHS, because the potentials are different on different 
surfaces, as is suggested by the comparison of Figure 5.5 and 5.10. Errors in 
potential for the EHS up to degree 20 are plotted in Figure 5.12 for comparison. The 
errors are reduced to the level of 0.001%; the improvement seems comparable to that 
for the SHS. 
 

 
 

                                                        
1 The CoM of the polyhedron model for Phobos is offset from the origin by 106.5 m. 

Figure 5.11 Errors in the EHS modeled potential up to degree 10 
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Gravitational acceleration 

The relative errors of modeling the gravitational acceleration via the EHS up to 
degree 10 are in general on the order of 0.1%, but with peak errors in the same areas 
as the case of the potential (Figure 5.13). Increasing the maximum degree up to 20 
causes an overall decrease of errors, as well as more even error distribution except 
the peak areas (Figure 5.14). The gridded pattern of errors, with higher-frequency 
variations than that for the potential, is also well observed with the errors in the SHS 
modeled acceleration, due to the ringing effect and the fact that the acceleration is 
related to the differentiation of the potential. 
 

 
 

 
Figure 5.13 Errors (magnitude) in the EHS modeled acceleration up to degree 10 

 
Figure 5.12 Errors in the EHS modeled potential up to degree 20 



 57

 
 
5.2.3 Comparison of spherical and ellipsoidal harmonics on arbitrary surfaces 
  So far we have merely looked at the performance of SHS and EHS on their 
respective reference surfaces. It would be difficult to compare more comprehensively 
the performance of the two algorithms. In this section, we shall use the SHS and 
EHS to model the gravitational field on more arbitrary but common surfaces that are 
favorable for comparison. Specifically, there are three cases to be considered: 1) EHS 
on the reference sphere; 2) SHS on the reference ellipsoid; 3) EHS and SHS on the 
topographic surface. The reference sphere has radius of 14 km, and the ellipsoid has 
three axes of 14.5 km, 12.5 km and 10.5 km. Therefore neither is contained entirely 
in the other (Figure 5.15). This is desired since it allows us to investigate both 
algorithms outside their respective regions of uniform convergence for case 1) and 2). 
On the other hand, the topographic surface is inside both reference surfaces, thus 
inside the divergence regions for both. We shall be able to observe how tolerant or 
error-prone the SHS and EHS are. 
 

 
Figure 5.14 Errors (magnitude) in the EHS modeled acceleration up to degree 20 
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Gravitational field via ellipsoidal harmonics on reference sphere 
  The radius of the reference sphere is 14 km, greater than the two semi-minor axes 
of 10.5 km and 12.5 km for the ellipsoid, but the sphere is inside the ellipsoid at the 
two ends of the semi-major axis of 14.5 km. Figure 5.16 shows the relative errors of 
EHS up to degree 10 in the potential. It is quite obvious that the EHS is less suited to 
modeling the potential near the semi-major axis, i.e., near (0°,0°) and (180°,0°). The 
errors in percentage reach the maximum of 0.1%, which, if not notably smaller, are 
at least comparable to the errors of the SHS as shown in Figure 5.6. However, Figure 
5.17 shows the case for degree up to 20, where we observe that the errors are 
significantly reduced overall, and the peak errors decrease from 0.08% to 0.02%. 
This improvement suggests that the EHS remains quite reliable on the reference 
sphere, and, reassuringly, inside its divergence region. 
 

 
 Figure 5.15 The geometric relation between the  

reference ellipsoid and sphere
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Gravitational field via spherical harmonics on reference ellipsoid 
  Since the reference ellipsoid is for the most part inside the reference sphere, 
intuitively, this will put the SHS to the test, as it will be applied outside its 
convergence region. The errors in the SHS modeled potential are plotted in Figures 
5.18 and 5.19, for up to degree 10 and 20, respectively. In both cases, the pattern of 
errors is markedly different from that previously observed. Now the errors show 
clear dependence on latitude, increasing from 0.01% in the lower latitudes (<50°) to 
0.1% near the poles. This pattern is hardly unexpected, since the departure of the 

Figure 5.16 Errors in the EHS modeled potential up to 
degree 10 on reference sphere 

 
Figure 5.17 Errors in the EHS modeled potential up to 

degree 20 on reference sphere 
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sphere from the ellipsoid is the greatest at the poles. On the other hand, around the 
equator along the semi-major axis the ellipsoid overlies the sphere, and the SHS 
performs normally. Along the semi-minor axis of the equator, though the ellipsoid 
falls underneath the sphere, the SHS does not seem to experience significant 
divergence in this case. 
  We also note that increasing the maximum degree does not yield any improvement 
in performance for the SHS over higher latitudes. On the contrary, the peak errors 
have indeed grown a bit rather than diminished. This further verifies that errors at the 
higher latitudes are due to divergence of the algorithm when the factor R/r is greater 
than unity. In this case, with ( )nR r  being an intensifying rather than an attenuating 
factor, the higher the degree, the more liable is the SHS to diverge. 
 

 

Figure 5.18 Errors in the SHS modeled potential up to 
degree 10 on reference ellipsoid 
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While the EHS is just as consistent on the reference sphere as on its reference 
ellipsoid, the SHS is clearly less reliable on the reference ellipsoid, particularly in 
higher latitudes where the ellipsoid resides in the divergence area. We have discussed 
and understood that such errors due to divergence cannot be lessened by increasing 
the degree of expansion. As a matter of fact, increasing the degree may be 
aggravating the divergence as the attenuation factor up to higher power, if greater 
than one, amplifies errors more severely. 
 
Spherical and ellipsoidal harmonics on the surface of Phobos 
  A cross check was carried out above on the consistency of the EHS and SHS on a 
mutual surface, i.e., EHS on the reference sphere and SHS on the ellipsoid. It is of 
interest to know the accuracy of the modeled gravitational field near the surface of 
the body. For instance, calculating the landing trajectory of a spacecraft on an 
asteroid, analyzing the movement of surface materials of the body[44], and so forth, 
would all benefit from this kind of practice. 
  The entire body is enclosed by both reference surfaces. Both algorithms will be 
tested in their respective divergence regions. Again the PM is used to generate the 
truth field near the surface of Phobos. In our simulation, we chose the evaluation 
points to be 0.1 meters above the polydedral surface, so as to guarantee they are all 
unequivocally outside the polyhedron. Figure 5.20 shows the relative errors in the 
EHS and the SHS modeled potentials, respectively, up to degree 10. The peak errors 
of the EHS are around 1%, and located at two known regions at the equator where 
the surface is the closest to the reference sphere. Let us refer to Figure 5.16 for 
comparison, on the reference sphere near the same locations the errors in the EHS 
modeled potential are at the level of 0.1%. As the body surface lies further below the 
reference sphere, we regard the 1% errors in this case as a sign of divergence for the 
EHS on the body surface. In other areas, errors are well bounded, overall on the 
order of 0.01%. A notable exception is the expansive area near the South Pole as 

Figure 5.19 Errors in the SHS modeled potential up to 
degree 20 on reference ellipsoid 
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shown in Figure 5.20 at the top, where errors are above 0.1%. This should be 
accounted for by the fact that around the South Pole the topography is distinctly 
caved in, thus altogether more distant from the reference ellipsoid. 
  On the other hand, also near the South Pole, the SHS is hard put to tracing the 
field variations due to divergence with errors reaching over 1%. It is not 
unreasonable to infer that the topographic subsidence at the South Pole also 
intensifies the errors, as they do not appear as significant near the North Pole. Other 
than the higher latitudes, the SHS is more or less consistent with the usual, mildly 
undulating error pattern that we have already seen. 
 

 
 

 

 
Figure 5.20 Comparison of errors in the EHS (top) and SHS (bottom) modeled potentials up 

to degree 10 on the body surface 
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A more straightforward comparison of EHS and SHS errors is given in Figure 5.21, 
in which the errors ranging from -1% to 1% are emphasized. The figure on the right 
clearly shows that the SHS is an inaccurate model near the poles. Whether SHS 
should be used in these areas would probably depend on the error budget of the 
application. 
 

 
 
  The errors in acceleration of the two algorithms up to degree 10 are shown in 
Figure 5.22. For the EHS, again the errors are one order of magnitude greater than 
that in the potential. The peak errors of over 20% appear at one of the most severe 
locations of divergence. Other scattered error-prone spots include one near the South 
Pole centered at (150°,-80°), and another near Stickney. If we refer back to Figure 
5.20, these locations can also be discerned in the error map for the potential, though 
less distinguishable. For the SHS (Figure 5.22 at the bottom), the errors now exceed 
100% around the South Pole and overwhelm those in other areas, where the errors 
could be on the order of 10% at worst. Based on this, we conclude that it would be 
inappropriate to use the SHS to model the field near the surface, at least not for 
evaluating the gravitational acceleration. 
 

Figure 5.21 Same comparison as in Figure 5.20, with errors represented on the body surface 
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5.3 Modeling the gravitational field of 433 Eros 
  We investigated the EHS and SHS modeled gravitational field for Phobos, whose 
figure cannot be closely fitted by a sphere. However, Phobos is hardly as irregular as 
numerous asteroids, comets, and so on, in our solar system. Eros is, as far as the 
contents in this text are concerned, a more representative case for the non-spherical 
bodies. We use the spherical harmonic shape model for Eros given by Zuber[45], and 
the gridded shape model of Eros with a resolution of 2° in both latitude and longitude 
is shown in Figure 5.23 on the left. To obtain the polyhedral approximation of Eros, 

 

 
Figure 5.22 Comparison of errors (magnitude) in the EHS (top) and SHS (bottom) modeled 

accelerations up to degree 10, on the surface of Phobos 
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we discretize the spherical harmonic model using grid interval of 10° in both latitude 
and longitude; the triangulation of the resulting vertices yields a 900-facet 
polyhedron model as shown in Figure 5.23 on the right. The density for Eros[41] is 
taken to be 2.67 g/cm3. 
 

 
 
5.3.1 Gravitational field via ellipsoidal harmonics on reference ellipsoid 
  The reference ellipsoid for Eros is centered at the origin of the shape model, and 
has three axes of 22.7 km, 10.4 km and 7.5 km, respectively. Other ellipsoids could 
be used so long as they contain the entire figure. The true potential of Eros on the 
reference ellipsoid is shown in Figure 5.24. The potential appears dominantly 
affected by the distance from the CoM of the body1: the greater the distance, the 
smaller the potential. Around the poles the potential is the greatest, whereas at the 
two ends of the semi-major axis it is the smallest. 
 

 
 
 The resolution of the PM derived potential on the reference ellipsoid for 

evaluating the field coefficients for Eros is the same as for Phobos. The errors in the 

                                                        
1 The CoM of the polyhedron model for Eros is offset from the origin by roughly 140 m. 

 Figure 5.23 Shape and polyhedron (right) models of 433 Eros 

 
Figure 5.24 The PM derived true potential of Eros on the reference ellipsoid 
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degree-10 EHS modeled potential and acceleration on the ellipsoid are depicted in 
Figure 5.25. For a very rough comparison, we note that the errors in potential in 
general are greater than for the similar case of Phobos (Figure 5.11), where errors did 
not exceed 0.1%, compared to over 1% for Eros. Also, errors in Figure 5.25 exhibit 
variations over large areas on the order of 0.1%, with the maximum occurring along 
the semi-major axis. The area between -50° and 15° in longitude experiences more 
uncertainties. We believe that it is due to the outthrust topography towards the 
ellipsoid, a phenomenon also observed for Phobos. The peak errors in acceleration 
appear in the same regions reaching above 25% of the total magnitude. While in 
other areas they are generally at the 1% level. For comparison the error map for EHS 
up to degree 20 is shown in Figure 5.26.  

 
 

 

 
Figure 5.25 Errors in the EHS modeled potential (top) and acceleration (bottom)  

up to degree 10 on the reference ellipsoid 
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  We find that increasing the maximum degree to 20 has reduced errors in both 
potential and acceleration by one order of magnitude, e.g., from 0.1% to 0.01% in 
potential. The pattern of peak errors in this case is well correlated and visible as a 
strip slanting northwesterly from the origin where errors are roughly 0.1%. The 
maximum error is no longer at the origin but offset in the same direction. We 
speculate that the same explanation provided for the locations of such errors based 
on the case of degree 10 should apply to this case as well. 
   

 
 

With no intention to investigate the extent to which the choice of degree affects 
the EHS performance, we can at least infer that using harmonic degrees up to 20 is 

 

 
Figure 5.26 Errors in the EHS modeled potential (top) and  

acceleration (bottom) up to degree 20 on the reference ellipsoid 
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advantageous for Eros to reduce the otherwise substantial errors in a degree-10 
expansion. 
  The reason why overall EHS suffers larger modeling errors for Eros than for 
Phobos can be quite complicated. Essentially it should be attributed to Eros being 
much more irregular in shape than Phobos. The implication is two-fold; firstly, the 
highly irregular shape of Eros generates highly variable gravitational field which is 
undoubtedly more difficult to represent by simple mathematical models. Secondly, 
Eros requires a much more elongated reference ellipsoid. For example, the two focal 
lengths h=20.183 km and k=21.385 km are rather close to one another. By definition 
the second ellipsoidal coordinate must satisfy h k≤ μ ≤ . Moreover, this will cause 
the roots of Lamé’s equations to be unevenly spaced and have very large variations 
(e.g., as in Figure 4.1). Clearly this has not caused significant numerical problems, as 
the pattern of errors is reasonable and accountable, indicating that the results do not 
suffer great errors. However, we certainly cannot rule out the possibility that it may 
have affected the modeling errors. At any rate we did not pursue this problem any 
further but decided to let the case present itself to be judged by readers. 
 
5.3.2 Gravitational field via spherical harmonics on reference sphere 
  Let us now attend to the errors in the SHS on its reference sphere of radius 17.5 
km. The true potential on the sphere is given in Figure 5.27. The error maps of the 
degree-10 SHS modeled potential and acceleration are given in Figure 5.28. On 
average, errors in potential vary on the order of 0.1%, and peak values appear at 
(180°,0°) where topography is the closest to the sphere (Figure 5.27). Compared to 
the EHS on the ellipsoid, the SHS is not challenged near (0°,0°), because here the 
topography remains distant from the sphere. As usual, the errors in the modeled 
acceleration (Figure 5.28 at the bottom) are greater than that in the potential by one 
order of magnitude. Near the area of peak errors in the potential, the acceleration 
errors reach nearly 10%.  
 

  
 Figure 5.27 The PM derived true potential of Eros on the reference sphere 
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  In the usual manner, when increasing the maximum degree from 10 to 20 we 
observe a reduction of overall errors, e.g., from 0.1% level to 0.01% in potential. 
Similarly, the peak errors decrease from 1% to 0.1%, again indicating the deficiency 
of the degree-10 SHS model as well as the validity of higher-degree expansions. 

 

 
Figure 5.28 Errors in the SHS modeled potential (top) and  

acceleration (bottom) up to degree 10 on the reference sphere 
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5.3.3 Comparison of spherical and ellipsoidal harmonics on arbitrary surfaces 
  Same as for Phobos, we shall examine the modeling errors of using the EHS and 
SHS for Eros on an arbitrary surface based on the following cases: 1) applying EHS 
on the reference sphere; 2) applying SHS on the reference ellipsoid; 3) applying EHS 
on the topographic surface of Eros. For case 3) we will pass over using the SHS on 
Eros’ surface for a reason that shall become evident later. The geometric relation of 
the two reference surfaces can be illustrated in Figure 5.30. 
 
 

Figure 5.29 Errors in the SHS modeled potential (top) and  
acceleration (bottom) up to degree 20 on the reference sphere 
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Ellipsoidal harmonics on the reference sphere 
  We first look at the modeling errors of the EHS up to degree 10 in potential on the 
sphere (Figure 5.31). As expected, the largest errors of over 30% occur around (0°,0°) 
and (180°,0°) where the sphere falls the lowest beneath the ellipsoid. Such errors 
completely overwhelm the rest. When we zoom in over the error range from -0.5% to 
0.5% we find that greater errors indeed correspond to the heart of the divergence 
areas for the EHS. While the convergence of EHS is doubtful in these two regions, in 
all other areas the errors typically fluctuate on the order of 0.01%. 
 

  

 
 Continued 

Figure 5.31 Errors in the EHS modeled potential up to degree 10 on reference sphere; 
errors ranging from -0.5% to 0.5% are emphasized at the bottom 

 
Figure 5.30 The geometric relation between the  

reference ellipsoid and sphere 
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Since the EHS modeled potential barely converges at the two critical locations 
near the equator, the modeled acceleration is not any better. Indeed the divergence is 
much more severe in acceleration, which can be seen in Figure 5.32. The peak errors 
at the center of the two locations have gone up to 1000%, suggesting that the EHS 
has failed altogether at these two locations. However, in all other areas EHS remains 
reliable. Note that in Figure 5.32, we accentuate only the error range from 0% to 
10% which covers most of the errors. The errors typically vary at the level of 0.1%, 
which is one order of magnitude greater than the usual potential errors, a familiar 
condition so far and a sign that the model is stable. 
 

 

Figure 5.31 continued 

Figure 5.32 Errors in the EHS modeled acceleration up to degree 10  
on the reference sphere; errors below 10% are emphasized 
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  Finally, let us look at the EHS modeling errors for maximum degree 20. Judging 
from the previous cases, we do not expect that increasing the maximum degree will 
alleviate the divergence problem. On the contrary, the divergence will likely intensify 
with the higher-degree EHS. Nevertheless, in areas outside the divergence region, we 
expect the EHS to improve in accuracy since the algorithm is reliable. Our reasoning 
is clearly confirmed by Figure 5.33. The peak errors in potential increase from 40% 
to 1400% at the two divergence regions. Elsewhere errors overall decrease from 
0.01% for degree 10 to 0.001% for degree 20, as is suggested by the fluctuating 
pattern. 
 

 
 
 
Spherical harmonics on the reference ellipsoid 
  When the SHS up to degree 10 is applied on the reference ellipsoid, significant 
errors of 800% in potential are present near the poles (Figure 5.34). Moreover, the 
error pattern looks almost symmetric hence we may infer that the character of errors 
is purely divergent (not showing any field potential variations). Figure 5.35 on the 
left shows the errors on the ellipsoid, with the range between -10% and 10% 
emphasized. It is clear that the use of SHS is overall problematic on the reference 
ellipsoid: only in the two restricted areas along the semi-major axis are the errors in 
the selected range. Figure 5.34 does not reveal the extent of divergence well enough, 
as the regions along the semi-minor axis in the lower latitudes also have substantial 
errors. This issue is not urgent for Phobos because of its moderate equatorial 
flattening. But the best-fitting ellipsoid of Eros has two like semi-minor axes of 5.77 
km and 5.33 km with a much longer semi-major axis of 20.9 km, which proved an 
unmanageable case for the SHS. 
 

Figure 5.33 Errors in the EHS modeled potential up to degree 20 on the  
reference sphere; errors ranging from -0.01% to 0.01% are emphasized. 
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On the other hand, applying the EHS (up to degree 10) on the reference surface 
seems much less problematic. On the sphere, only in two regions of approximately 
30°×30° do errors go beyond 1% in potential, as illustrated by Figure 5.35 on the 
right. 
  As should have been well anticipated at this point, the increase in maximum 
degree from 10 to 20 greatly exacerbates the divergence of the SHS and thus shall 
not be elaborated here. 
 

 
 
  Based on the above discussions, we see that the SHS is basically not suited for 
modeling highly irregular bodies such as Eros, especially far into the divergence 
region. The inferior performance of SHS on the reference ellipsoid eliminates the 
need of further testing it near the surface of the body. 
 
 

 Figure 5.34 Errors in the SHS modeled potential up to degree 10  
on reference ellipsoid 

Figure 5.35 Comparison of errors in the SHS modeled potential on reference ellipsoid (left) and 
EHS modeled potential on sphere (right), expansions up to degree 10 
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Modeling errors of ellipsoidal harmonics near the surface of Eros 
  The surface points are again chosen to be slightly elevated from the topography 
model in order to ensure that PM strictly holds. The EHS diverged for the most part 
along the equator, especially those areas that are subsided far below the reference 
ellipsoid (Figure 5.36). The greatest errors are 60% in the potential. On the other 
hand, the two areas on the equator more outstretched to the ellipsoid are relieved of 
large errors. For the geometry of the shape model and the reference ellipsoid please 
refer back to Figure 5.24. 
 

 
 
  The errors in acceleration are akin to that in potential. Where the evaluated 
potential diverges the acceleration diverges, too. Subsequently, the EHS is only 
reliable at two areas around the equator and in higher latitudes. Figure 5.37 
emphasizes the errors below 50% level in the acceleration, while the maximum 
errors reach 360%. 
 

 
 
  Last but not least, let us compare the errors of degree-10 and degree-20 
expansions near the surface. We shall confine our attention to the range between -1% 
and 1%, as it is well known to us that increasing the maximum degree will not 
mitigate the divergence. Instead we shall pay attention to the parts unaffected by 
divergence. Note that these areas are likewise below the reference ellipsoid. We are 
interested in whether the expansion up to degree 20 will enhance or degrade the 
performance of the EHS in these areas. From Figure 5.38, we can clearly tell that for 
the case of Eros, increasing the maximum degree of the EHS causes errors in higher 

 Figure 5.37 Errors (magnitude) in the EHS modeled acceleration up to degree 10 near  
 the body surface; errors below 50% are emphasized. 

 Figure 5.36 Errors in the EHS modeled potential up to degree 10 near the body surface; 
 errors in the range from -10% to 10% are emphasized. 
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latitudes to decrease significantly (though at the expense of magnifying the 
divergence near the equator). The results indicate that the EHS is convergent in 
higher latitudes, as the errors would have increased rather than decreased if the 
model was divergent. Note that the same scale was used for both graphs. 
 

 
 
 

Figure 5.38 Comparison of errors in the EHS modeled potential up to degrees 10 (left) and 
20 (right) near the body surface; errors ranging from -1.0% to 1.0% are emphasized 
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 6. Conclusions 
 
  Aiming at irregular-shaped attracting bodies, we compared two methods, the 
spherical and ellipsoidal harmonics, for gravitational field modeling. We are 
interested in the harmonic models mainly because they are more apt to be used for 
recovering the gravitational field from geodetic data. As series solutions, both 
methods have their respective regions of uniform convergence, which poses 
constraints on their application. Generally speaking, the SHS is uniformly 
convergent outside the enclosing reference sphere of the attracting body, while for 
the EHS, the uniform convergence holds outside the enclosing reference ellipsoid. 
When the shape of the attracting body is highly non-spherical and may not fit into 
any sphere closely, leaving a large volume of divergence region, the application of 
the SHS can be problematic. In this case, the EHS seems to be a promising 
alternative, because the ellipsoid, being more arbitrary-shaped than a sphere, is more 
likely to fit the body, thus has smaller volume of divergence than for the SHS. This is 
of particular importance if the field point lies close to the body. 
 

We reviewed Hobson’s discussions of the EHS theories in Chapter 3. The 
correspondence between the EHS and the SHS was analyzed. In particular, it was 
shown that the uniform convergence of the EHS is essentially governed by a factor 

1
0( / )n+ρ ρ  (for the exterior potential problem), thus analogous to the convergence 

problem of the SHS. The application of the EHS for gravitational field modeling was 
discussed in Chapter 4, following the procedures given by Garmier. It was found that 
a major downside of gravitational field modeling via the EHS was the numerical 
complexity and difficulty. To name a few reasons: there is no available recurrence 
relation for generating the Lamé’s functions; the lack of one-to-one transformation 
between the ellipsoidal and rectangular coordinates adds to the computational labor 
of applying the EHS. In addition, the normalization of the EHS for various degrees, 
e.g., those above degree ten, can be problematic. The Lamé’s functions for such 
degrees may have zeros that are unevenly spaced, and show larger variations than 
can be handled by the 15-digit precision. The modeling accuracy for these degrees 
may be dubious, although our experience suggested that this issue at least did not 
pose any severe problems, e.g., introducing out-of-scale errors in the model. 
 
  In Chapter 5, the performance of the EHS was compared to that of the SHS based 
on the gravitational field modeling of two non-spherical bodies: Martian moon 
Phobos and a NEA 433 Eros. Specifically, we analyzed the modeling errors, i.e., the 
discrepancies between the PM derived gravitational potential and acceleration, and 
that modeled by the EHS or SHS.  
 

Phobos is considered as a moderate case of the irregular-shaped body. We found 
that the EHS and SHS were consistent models on their respective reference surfaces. 
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For example, the errors in potential were overall on the order of 0.01% for both 
expansions up to degree 10, while using the degree-20 expansions saw a decrease in 
errors to the level of 0.001%. On the other hand, the errors in acceleration were 
generally one order of magnitude greater than that in potential, not an uncommon 
observation since the acceleration is related to the differentiated potential, causing 
especially the short-wavelength errors to intensify. Next the EHS and SHS were 
tested on the mutual reference surfaces. On the reference sphere, the EHS was still a 
reliable model. Outside its convergence region, i.e., inside the reference ellipsoid, the 
EHS incurred greater errors in potential, they were nevertheless still on the order of 
0.01%. This is because the ellipsoid does not fall far below the sphere. On the other 
hand, the SHS became uncertain near the poles on the reference ellipsoid, i.e., 
outside its convergence region. Here the errors in potential increased to 0.1%. We 
also observed that increasing the maximum degree of the SHS did not reduce such 
errors, suggesting that the errors were due to divergence of the model. To further 
explore this issue, we compared the EHS and SHS on the body surface, in which 
case both expansions were applied outside their respective convergence regions. 
Again the SHS model introduced large errors over 5% in potential near the poles, 
especially the South Pole since here the topography is distinctly caved in. The peak 
errors in acceleration exceeded 100% at this location. The EHS also showed mild 
signs of divergence at several locations where the topography is deep below the 
reference ellipsoid. For example, the peak errors in potential were around 1% while 
that in acceleration were over 20% for the degree-10 EHS model. Obviously, the 
smaller modeling errors of the EHS can be attributed to the fact that the reference 
ellipsoid more closely fits the body thus reducing the divergence region over the 
body surface. Another implication is that, the distance of a field point (if outside the 
convergence regions for both EHS and SHS) from the reference ellipsoid is likely 
shorter than that from the reference sphere. Judging from such comparisons, we 
conclude that the EHS is a more reliable method than the SHS for field modeling in 
close proximity to Phobos.  
 
  The asteroid Eros is more irregularly shaped than Phobos. The figure of Eros 
requires a much elongated fitting ellipsoid, yet still with significant departures. The 
sphere yields a rather poor fit to the figure. On their respective reference surfaces, 
the degree-10 EHS and SHS introduced errors on the order of 0.1% in potential, 
whereas increasing the maximum degree to 20 reduced errors to 0.01%. The same as 
for Phobos, the errors in acceleration were greater than that in potential: on average 
1% for degree-10 expansions, compared to 0.1% for the degree-20. The modeling 
errors of both expansions were larger for Eros than for Phobos. We regard this issue 
to be associated with the high variability of Ero’s gravitational field due to the shape 
irregularity, rather than an artifact or lapse of the software. This is because the results 
given by the EHS and SHS were in agreement. Furthermore, the observed pattern of 
errors is accountable and similar to that for Phobos. The irregularity of Eros also 
causes the two reference surfaces to be markedly different. The reference ellipsoid is 
for the most part far inside the reference sphere. However, the two ends of its 
semi-major axis are outside the reference sphere by nearly 5 km. Subsequently, the 
EHS, when applied on the reference sphere, diverged at (below) these two locations 
with the largest errors in potential over 40%. The divergence of the modeled 
acceleration was even more severe at these locations, e.g., the peak errors were over 
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5000%. On the other hand, the SHS model was altogether divergent on the reference 
ellipsoid, with the exception of the two areas along the semi-major axis which are 
inside the convergence region of the SHS. The results suggest that the SHS is not 
suitable for field modeling on the ellipsoid, let alone down on the body surface. Due 
to this reason, only the EHS was investigated on the surface of Eros. In this case, 
along the equator the EHS model was more vulnerable to divergence, obviously 
because there the topography is most varied and at many places falls far inside the 
reference ellipsoid. Specifically, using the degree-10 EHS, the errors in potential due 
to divergence were less than 50%. Away from the equator, the divergence was much 
less noticeable or absent. For example, we observed a decrease of errors in higher 
latitudes using the EHS up to degree 20, which would not be possible if the EHS was 
severely divergent. Whether EHS is useful for field modeling on the surface of Eros 
is likely a subjective matter. 
 
  Based on the above discussions, we may conclude that the EHS is a better method 
than the SHS for modeling the gravitational field close to the non-spherical bodies. 
The accuracy of the EHS, if not always significantly superior, is at least comparable 
to that of the SHS. More importantly, the EHS is obviously a more consistent and 
convergent model. In other words, it has smaller divergence region and, even if 
applied in its divergence region, suffers smaller errors than the SHS. Based on the 
comparison between Phobos and Eros, we may also infer that, the more irregular the 
attracting body is, the more advantageous it is to apply the EHS. However, we need 
to stress that such conclusions only apply to the low-degree expansions, i.e., not 
higher than degree 20. 
 
  Being but a rough review on the EHS in comparison with the SHS, there are 
numerous issues that were not addressed in this thesis. For example, one of the main 
concerns of applying the EHS is the numerical accuracy of the Lamé’s functions. 
Based on our observation, we consider that the degradation of the EHS model due to 
the inaccuracy of the Lamé’s functions is benign. However, what part did the errors 
of the Lamé’s functions play in the modeling errors and, what would be the optimal 
maximum degree of the EHS with regard to such errors? Another practical question 
is that, while the reference ellipsoid for the EHS should fit the attracting body as 
closely as possible, how will the shape of this ellipsoid, i.e., 0 , ,h kρ , affect the 
numerical accuracy of the Lamé’s functions and the EHS model? The answer to 
some of these questions would be interesting to explore and instrumental in practice 
in the future. 
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Appendix A. Lamé’s Equations Based on ,t Λ  
 
  Please note that 2/ , 1k h ′κ = α = + κ  in the following expressions. 
 
Class K 
n even: ( ) ( )m m

n nE t u= Λ  
2

2
2( 1) ( 2 2) [ ( 1)( 1)] 0d u dut p n n u

dtdt
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Class L  

n even: 2( ) 1 ( )m m
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′⎡ ⎤− κ − α + + − Λ − =⎣ ⎦

 (a.1.3) 

 

n odd: 2( ) 1 ( )m m
n nE t t u= − ⋅ Λ  

2
2

2

2 2

( 1)

( 2 4 4) ( 1)( 2)( 1) 0

d u
dt

dut p n n u
dt

Λ Λ + κ − −

′ ⎡ ⎤α + κ + Λ − + − κ + − + Λ − =⎣ ⎦

 (a.1.4) 

 
 
Class M 

n even: 2 2( ) ( )m m
n nE t t t u= − κ ⋅ Λ  

[ ]

2
2 2

2( 1) 2 ( 1) ( 2 4 )( 1)

3 ( 3)( 2)( 1) 0

d u dut
dtdt

p n n tu

′⎡ ⎤Λ Λ + κ − + Λ Λ + κ − + α − + Λ Λ − +⎣ ⎦

′− − α + + − Λ − =
 (a.1.5) 

 

n odd: 2 2( ) ( )m m
n nE t t u= − κ ⋅ Λ  
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[ ]

2
2

2( 1)

( 2 4 4) 1 ( 1)( 2)( 1) 0

d u
dt

dut p n n u
dt

Λ Λ + κ − −

′α + + Λ − + − + − + Λ − =
 (a.1.6) 

 
 
Class N 

n even: 2 2 2( ) 1 ( )m m
n nE t t t u= − κ − ⋅ Λ  

[ ]

2
2

2( 1)

3 ( 2 2) ( 3)( 2)( 1) 0

d u
dt
dut p n n u
dt

Λ Λ + κ − −

′ ′α + Λ − + − α + + − Λ − =
 (a.1.7) 

 

n odd: 2 2 2( ) 1 ( )m m
n nE t t t t u= − − κ ⋅ Λ  

[ ]

2
2 2

2( 1) 2 ( 1) 3( 2 2)( 1)

4 ( 4)( 3)( 1) 0

d u dut
dtdt

p n n tu

′⎡ ⎤Λ Λ + κ − + Λ Λ + κ − + α + Λ − Λ − +⎣ ⎦

′− α + + − Λ − =
 (a.1.8) 
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Appendix B. Elements of the Tridianogal Matrix T for 
Determining the coefficients of Lamé’s Functions 

 
  Please note that in all the expressions in this part we have 0,1, ,i r= " , where the 
integer r takes different values according to the degree n and class. Please also note 
that /k hκ = . These expressions are also given in [29] (Annex 3). 
 
Class K 
n even 

 2 2

2

2( 1)(2 2 1)

2 (2 1) 4 ( 2)

2( 1)(2 1)( 1)

i

i

i

f r i r i

g r r i

h i i

= − − + + −

= + + κ −

= − + + κ −

 (a.2.1) 

n odd 

 2 2 2

2

2( 1)(2 2 1)

2( 1)(2 1) 4 (2 1) ( 1)

2( 1)(2 1)( 1)

i

i

i

f r i r i

g r r i i

h i i

= − − + + +

= + + − + + κ −

= − + + κ −

 (a.2.2) 

with 
2
nr ⎢ ⎥= ⎢ ⎥⎣ ⎦

. 

 
 
Class L 
n even 

 2 2 2

2

2( )(2 2 1)

2 (2 1) (2 1) 4( 1) ( 1)

2( 1)(2 3)( 1)

i

i

i

f r i r i

g r r i i

h i i

= − − + +

= + − + + + κ −

= − + + κ −

 (a.2.3) 

n odd 

 2 2

2

2( 1)(2 2 1)

2( 1)(2 1) (2 1) ( 2)

2( 1)(2 3)( 1)

i

i

i

f r i r i

g r r i

h i i

= − − + + +

= + + + + κ −

= − + + κ −

 (a.2.4) 

with 1
2

nr −⎢ ⎥= ⎢ ⎥⎣ ⎦
. 

 
 
Class M 
n even 
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 2 2

2

2( )(2 2 1)

2 (2 1) (2 1) ( 2)

2( 1)(2 1)( 1)

i

i

i

f r i r i

g r r i

h i i

= − − + +

= + + + κ −

= − + + κ −

 (a.2.5) 

n odd 

 2 2 2

2

2( 1)(2 2 1)

2( 1)(2 1) (2 1) 4 ( 1)

2( 1)(2 1)( 1)

i

i

i

f r i r i

g r r i i

h i i

= − − + + +

= + + − + + κ −

= − + + κ −

 (a.2.6) 

with 1
2

nr −⎢ ⎥= ⎢ ⎥⎣ ⎦
. 

 
 
Class N 
n even 

 2 2 2

2

2( )(2 2 1)

2 (2 1) 4( 1) 2( 1) ( 1)

2( 1)(2 3)( 1)

i

i

i

f r i r i

g r r i i

h i i

= − − + +

= + − + + + κ −

= − + + κ −

 (a.2.7) 

n odd 

 2 2

2

2( )(2 2 3)

2( 1)(2 1) 4( 1) ( 2)

2( 1)(2 3)( 1)

i

i

i

f r i r i

g r r i

h i i

= − − + +

= + + + + κ −

= − + + κ −

 (a.2.8) 

with 1
2
nr ⎢ ⎥= −⎢ ⎥⎣ ⎦

. 
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Appendix C. Removing the Singularities for the Computation 
of the Gravitational Gradient Matrix 

 
In this text, ,

j
i ld�  in (4.46) corresponds to ij lP∂ ∂λ  in reference [29] (Annex 1). 

The complete expressions for ,
j

i ld�  are not given here. There are four types of 

singularities, namely, 2 2
2 hλ − , 2 2

2 kλ − , 2 2
3 hλ −  and 3λ  which can be zero in the 

denominator. We can cancel out the first three factors while computing ,
j l

i l kd d�  when 

evaluating ,
j

i kd  via (4.46). 
 
Terms associated with 2 2

2 hλ −  

1) For 
2 2 2

1 1 2 1 2
2,2 2 2 2 2 2

1 2 2

( 2 )
( )( )

h
d d

h
λ λ + λ −

=
λ − λ λ −

� : 

2 2 2 2 2 2 2
1 2 1 1 2 1 2
2,2 1 2 2 3 2 2 2 2

1 2 1 3 2 3

( )( )( 2 )
( ) ( )( )

k k h
d d xy

λ λ − − λ λ + λ −
=

λ − λ λ − λ λ − λ
� , (a.3.1) 

2 2 2 2 2 2 2 2 2 2 2 2
1 2 1 2 1 1 2 3 1 2
2,2 2 2 2 2 2 2 3 2 2 2 2

1 2 1 3 2 3

( )( )( )( )( 2 )
( )( ) ( )( )
h k k h h

d d
h k h

λ λ λ − λ − − λ − λ λ + λ −
=

− λ − λ λ − λ λ − λ
� , (a.3.2) 

2 2 2 2 2 2
1 2 1 2 1 1 1
2,2 3 2 2 3 2 2 2 2

1 2 1 3 2 3

( )( 2 )
( ) ( )( )

k h
d d yz

λ λ λ − λ + λ −
= −

λ − λ λ − λ λ − λ
� .  (a.3.3) 

 

2) For 
2 2 2 2 2 24 2 2 2 2 2

2 2 2 2 1 32 2
2,2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 2 3 2 1 2 2 3

2 ( )(2 )4 (3 2 )
( )( )( ) ( ) ( )

kh k h k
d y

h
⎡ ⎤λ − λ λ − λ − λλ − + λ +

= − −⎢ ⎥λ − λ λ − λ λ − λ − λ λ − λ⎣ ⎦
� : 

2 2 4 2 2 2 2 2
2 2 2 2 2
2,2 1 2 2 2 2 2 2

2 1 2 2 3

2 2 2 2 2 2 2 2
2 2 2 2 1 3

2 2 3 2 2 3
1 2 2 3

( )(4 (3 2 ) )
( ) ( )

2 ( ) ( )(2 )
( ) ( )

k h k h k
d d xy

k h

⎡ − λ λ − + λ +
= − −⎢ λ λ − λ λ − λ⎣

⎤λ − λ λ − λ − λ − λ
⎥λ − λ λ − λ ⎦

�

 (a.3.4) 

2 2 2 2 2 2 4 2 2 2 2 2
2 2 1 3 2 2 2 2
2,2 2 2 2 2 2 2 2 2 2 2

2 1 2 2 3

3 2 2 2 2 2 2 2 2
2 2 2 2 1 3

2 2 3 2 2 3
1 2 2 3

( )( ) ( )(4 (3 2 ) )
( ) ( ) ( )

2 ( ) ( )(2 )
( ) ( )

h h k h k h k
d d

h k h

k h

⎡λ − − λ λ − λ λ − + λ +
= − −⎢− λ λ − λ λ − λ⎣

⎤λ − λ λ − λ − λ − λ
⎥λ − λ λ − λ ⎦

�

 (a.3.5) 

4 2 2 2 2 2
2 2 2 2 2
2,2 3 2 2 2 2 2 2

1 2 2 3

3 2 2 2 2 2 2 2 2
2 2 2 2 1 3

2 2 3 2 2 3
1 2 2 3

(4 (3 2 ) )
( ) ( )

2 ( ) ( )(2 )
( ) ( )

h k h k
d d yz

k h

⎡λ λ − + λ +
= −⎢ λ − λ λ − λ⎣

⎤λ − λ λ − λ − λ − λ
⎥λ − λ λ − λ ⎦

�

 (a.3.6) 
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3) For 
2 2 2

3 3 2 2 3
2,2 2 2 2 2 2

2 3 2

( 2 )
( )( )

h
d d

h
λ λ + λ −

= −
λ − λ λ −

�  

2 2 2 2 2 2 2
3 2 3 3 2 2 3
2,2 1 2 2 2 2 2 2 3

1 2 1 3 2 3

( )( )( 2 )
( )( )( )
k k h

d d xy
λ − λ − λ λ + λ −

=
λ − λ λ − λ λ − λ

�  (a.3.7) 

2 2 2 2 2 2 2 2 2 2 2 2
3 2 3 2 1 2 3 3 2 3
2,2 2 2 2 2 2 2 2 2 2 2 3

1 2 1 3 2 3

( )( )( )( )( 2 )
( )( )( )( )
h k k h h

d d
h k h

λ λ λ − − λ − λ − λ λ + λ −
=

− λ − λ λ − λ λ − λ
�  (a.3.8) 

2 2 2 2 2 2
3 2 3 2 3 2 3
2,2 3 2 2 2 2 2 2 3

1 2 1 3 2 3

( )( 2 )
( )( )( )

k h
d d yz

λ λ − λ λ + λ −
= −

λ − λ λ − λ λ − λ
�   (a.3.9) 

 
Terms associated with 2 2

2k − λ  

1) For 
2 2 2

1 1 2 1 2
3,2 3 2 2 2 2

1 2 2

( 2 )
( )( )

k
d d

k
λ λ + λ −

= −
λ − λ − λ

�  

2 2 2 2 2 2 2
1 2 1 1 2 1 2
3,2 1 2 2 3 2 2 2 2

1 2 1 3 2 3

( )( )( 2 )
( ) ( )( )

h h k
d d xz

λ λ − λ − λ + λ −
= −

λ − λ λ − λ λ − λ
� , (a.3.10) 

2 2 2 2 2 2
1 2 1 2 1 1 2
3,2 2 2 2 3 2 2 2 2

1 2 1 3 2 3

( )( 2 )
( ) ( )( )

h k
d d yz

λ λ λ − λ + λ −
= −

λ − λ λ − λ λ − λ
�   (a.3.11) 

2 2 2 2 2 2 2 2 2 2 2 2
1 2 1 2 1 1 2 3 1 2
3,2 3 2 2 2 2 2 3 2 2 2 2

1 2 1 3 2 3

( )( )( )( )( 2 )
( )( ) ( )( )
h k h h k

d d
k k h

λ λ λ − λ − λ − − λ λ + λ −
=

− λ − λ λ − λ λ − λ
�  (a.3.12) 

 

2) For 
2 2 2 2 2 24 2 2 2 2 2

2 2 2 2 1 32 2
3,2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 2 3 2 1 2 2 3

2 ( )(2 )4 (2 3 )
( )( )( ) ( ) ( )

hh k h k
d z

k
⎡ ⎤λ λ − λ − λ − λλ − + λ +

= −⎢ ⎥λ − λ λ − λ − λ λ − λ λ − λ⎣ ⎦
�  

2 2 4 2 2 2 2 2
2 2 2 2 2
3,2 1 2 2 2 2 2 2

2 1 2 2 3

2 2 2 2 2 2 2 2
2 2 2 2 1 3

2 2 3 2 2 3
1 2 2 3

( )(4 (2 3 ) )
( ) ( )

2 ( )( ) (2 )
( ) ( )

h h k h k
d d xz

k h

⎡ λ − λ − + λ +
= ⎢ λ λ − λ λ − λ⎣

⎤λ − λ λ − λ − λ − λ
− ⎥λ − λ λ − λ ⎦

�

 (a.3.13) 

4 2 2 2 2 2
2 2 2 2 2
3,2 2 2 2 2 2 2 2

1 2 2 3

3 2 2 2 2 2 2 2
2 2 2 2 1 3

2 2 3 2 2 3
1 2 2 3

(4 (2 3 ) )
( ) ( )

2 ( )( )(2 )
( ) ( )

h k h k
d d yz

h k

⎡λ λ − + λ +
= ⎢ λ − λ λ − λ⎣

⎤λ λ − − λ λ − λ − λ
− ⎥λ − λ λ − λ ⎦

�

 (a.3.14) 

2 2 2 2 2 2 4 2 2 2 2 2
2 2 1 3 2 2 2 2
3,2 3 2 2 2 2 2 2 2 2 2

1 2 2 3

3 2 2 2 2 2 2 2 2
2 2 2 2 1 3

2 2 3 2 2 3
1 2 2 3

( )( ) ( )(4 (2 3 ) )
( ) ( ) ( )

2 ( ) ( )(2 )
( ) ( )

k k h h k h k
d d

k k h

h k

⎡λ − − λ λ λ − λ − + λ +
= − ⎢− λ − λ λ − λ⎣

⎤λ λ − − λ λ − λ − λ
− ⎥λ − λ λ − λ ⎦

�

 (a.3.15) 

 

3) For 
2 2 2

3 3 2 2 3
3,2 3 2 2 2 2

2 3 2

( 2 )
( )( )

k
d d

k
λ λ + λ −

=
λ − λ − λ

�  
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2 2 2 2 2 2 2
3 2 3 2 3 2 3
3,2 1 2 2 2 2 2 2 3

1 2 1 3 2 3

( )( )( 2 )
( )( )( )

h h k
d d xz

λ λ − − λ λ + λ −
= −

λ − λ λ − λ λ − λ
� , (a.3.16) 

2 2 2 2 2 2
3 2 3 2 3 2 3
3,2 2 2 2 2 2 2 2 3

1 2 1 3 2 3

( )( 2 )
( )( )( )

h k
d d yz

λ λ − λ λ + λ −
= −

λ − λ λ − λ λ − λ
�   (a.3.17) 

2 2 2 2 2 2 2 2 2 2 2 2
3 2 3 2 1 2 3 3 2 3
3,2 3 2 2 2 2 2 2 2 2 2 3

1 2 1 3 2 3

( )( )( )( )( 2 )
( )( )( )( )
k h h k k

d d
k k h

λ λ λ − λ − − λ − λ λ + λ −
=

− λ − λ λ − λ λ − λ
�  (a.3.18) 

 
Terms associated with 2 2

3h − λ  

1) For 
2 2 2

1 1 3 1 3
2,3 2 2 2 2 2

1 3 3

( 2 )
( )( )

h
d d

h
λ λ + λ −

= −
λ − λ − λ

�  

2 2 2 2 2 2 2
1 3 1 1 3 1 3
2,3 1 2 2 2 2 3 2 2

1 2 1 3 2 3

( )( )( 2 )
( )( ) ( )

k k h
d d xy

λ λ − − λ λ + λ −
= −

λ − λ λ − λ λ − λ
�  (a.3.19) 

2 2 2 2 2 2 2 2 2 2 2 2
1 3 1 3 1 1 2 3 1 3
2,3 2 2 2 2 2 2 2 2 3 2 2

1 2 1 3 2 3

( )( )( )( )( 2 )
( )( )( ) ( )
h k h k h

d d
h k h

λ λ λ − λ − λ − − λ λ + λ −
=

− λ − λ λ − λ λ − λ
�  (a.3.20) 

2 2 2 2 2 2
1 3 1 3 1 1 3
2,3 3 2 2 2 2 3 2 2

1 2 1 3 2 3

( )( 2 )
( )( ) ( )

k h
d d yz

λ λ λ − λ + λ −
=

λ − λ λ − λ λ − λ
�   (a.3.21) 

 

2) For 
2 2 2

2 2 3 2 3
2,3 2 2 2 2 2

2 3 3

( 2 )
( )( )

h
d d

h
λ λ + λ −

= −
λ − λ − λ

�  

2 2 2 2 2 2 2
2 3 2 2 3 2 3
2,3 1 2 2 2 2 2 2 3

1 2 1 3 2 3

( )( )( 2 )
( )( )( )
k k h

d d xy
λ − λ − λ λ + λ −

= −
λ − λ λ − λ λ − λ

�  (a.3.22) 

2 2 2 2 2 2 2 2 2 2 2 2
2 3 2 3 1 2 2 3 2 3
2,3 2 2 2 2 2 2 2 2 2 2 3

1 2 1 3 2 3

( )( )( )( )( 2 )
( )( )( )( )
h h k k h

d d
h k h

λ λ λ − λ − − λ − λ λ + λ −
=

− λ − λ λ − λ λ − λ
�  (a.3.23) 

2 2 2 2 2 2
2 3 2 3 2 2 3
2,3 1 2 2 2 2 2 2 3

1 2 1 3 2 3

( )( 2 )
( )( )( )

k h
d d yz

λ λ − λ λ + λ −
=

λ − λ λ − λ λ − λ
�   (a.3.24) 

 

3) For 
4 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 1 2
2,3 2 2 2 2 2 2 2 2 2 2 2 2

1 3 2 3 3 1 3 2 3

4 (3 2 ) 2 ( )(2 )
( )( )( ) ( ) ( )

h k h k k
d y

h
⎡ ⎤λ − + λ + λ − λ λ − λ − λ

= − −⎢ ⎥λ − λ λ − λ − λ λ − λ λ − λ⎣ ⎦
�  

2 2 4 2 2 2 2 2
3 3 3 3 3
2,3 1 1 2 2 2 2 2 2 2

1 3 2 3

2 2 2 2 2 2 2 2
3 3 3 3 1 2

2 2 3 2 2 3
1 3 2 3

( )(4 (3 2 ) )
sign( )

( ) ( )

2 ( ) ( )(2 )
( ) ( )

k h k h k
d d x y

hk

k h
xy

− λ λ − + λ +
= − ⋅ λ λ

λ − λ λ − λ

λ − λ − λ λ − λ − λ
+

λ − λ λ − λ

�

 (a.3.25) 

2 2 4 2 2 2 2 22 2 2 2
3 3 3 3 3 31 2
2,3 2 2 2 2 2 2 2 2 2 2

1 3 2 3

3 2 2 2 2 2 2 2 2
3 3 3 3 1 2

2 2 3 2 2 3
1 3 2 3

( )(4 (3 2 ) )( )( )
( ) ( ) ( )

2 ( ) ( )(2 )
( ) ( )

k h k h kh h
d d

h k h

k h

⎡λ − λ λ − + λ +λ − λ −
= ⎢− λ − λ λ − λ⎣

⎤λ − λ − λ λ − λ − λ
− ⎥λ − λ λ − λ ⎦

�

 (a.3.26) 
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4 2 2 2 2 2
3 3 3 3 3
2,3 3 2 2 2 2 2 2

1 3 2 3

3 2 2 2 2 2 2 2
3 3 3 3 1 2

2 2 3 2 2 3
1 3 2 3

(4 (3 2 ) )
( ) ( )

2 ( )( )(2 )
( ) ( )

h k h k
d d yz

h k

⎡λ λ − + λ +
= ⎢ λ − λ λ − λ⎣

⎤λ − λ − λ λ − λ − λ
− ⎥λ − λ λ − λ ⎦

�

 (a.3.27) 

 
The singularities in 1

1,3d�  and 2
1,3d�  associated with 3λ  can be removed directly such 

as 
2 2 2 22 2 2 2

1 1 1 3 1 31 1
1,3 1 2 2 2 2 2 2 2 2

3 1 3 1 1 2 1 3 3 1 3

2 2 2 2 2 2
2 1 1 1 3

2 2 2 2 2
1 2 1 3

( )( )( )
( ) ( )( ) ( )

( )( )( )
sign( )

( )( )

x k h
d d

k h
x

hk

λ + λ λ + λλ − λ −
= =

λ λ − λ λ λ − λ λ − λ λ λ − λ

λ λ − λ − λ + λ
= ⋅

λ − λ λ − λ

�

 (a.3.28) 

 
2 2 2 22 2 2 2

2 2 2 3 2 32 2
1,3 1 2 2 2 2 2 2 2 2

3 2 3 2 1 2 2 3 3 2 3
2 2 2 2 2 2

1 2 2 2 3
2 2 2 2 2
1 2 2 3

( )( )( )
( ) ( )( ) ( )

( )( )( )
sign( )

( )( )

x k h
d d

k h
x

hk

λ + λ λ + λ− λ λ −
= =

λ λ − λ λ λ − λ λ − λ λ λ − λ

λ − λ λ − λ + λ
= ⋅

λ − λ λ − λ

�

 (a.3.29) 
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