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Abstract 

 

This study developed a geostatistical method to determine the required extent of 

terrain corrections for gravity gradients under the criterion of different applications. We 

present the different methods to compute the terrain corrections for gravity gradients for 

the case of ground and airborne gravity gradiometry. In order to verify our geostatistical 

method and study the required extent for different types of terrain, we also developed a 

method to simulate topography based on the covariance model. The required extents were 

determined from the variance of truncation error for one point, or furthermore from the 

variance of truncation error difference for a pair of points, and these variances were 

verified with that from the deterministic method. The extent of terrain correction was 

determined for ground gradiometry based on simulated, ultra-high resolution topography 

for very local application, and also was determined based on mountainous topography of 

large areas. For airborne gradiometry, we compute the terrain corrections and the 

required extent based on Air-FTG observations at Vinton Dome, LA and Parkfield, CA 

area; also they were verified with the results of Bell Geospace. Finally, from the mostly 

flat, medium rough and mountainous areas, an empirical relationship was developed 

which has the properties that the required extent has 4 times relationship corresponding to 

the amplitude of PSD has 100 times relationship between mountainous and mostly flat 

areas, and it can be interpolated for other types of topography from their geostatistics. 
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Chapter 1 

 Introduction 

1.1 Terrain Correction of Gravity and Gradiometry 

 The gravimetric technique has been used for over a century to study the surface 

and interior of the earth and the planet as well. Also for geophysics, gravity together with 

other techniques are used extensively in exploring the subsurface for energy and mineral 

resources, geological hazards, and other features of societal significance. Gravity 

exploration is concerned with measuring gravity anomaly components to learn the mass 

density contrast and subsurface anomaly body’s depth, shape and size.  

 Gravity gradiometry is used by oil, gas and mining companies to measure the 

density of the subsurface, effectively the rate of change of rock properties. Then by 

applying the inverse theory, geophysicists can map and locate the target oil, gas and 

mineral deposits if a picture of subsurface anomalies can be obtained by removing the 

noise of unwanted features from the observed signal.  

 As the result of recent advances in instrumentation and field procedures, gravity 

gradiometers are becoming increasingly available (Difrancesco, 2007). Generally 

speaking, gravity gradiometers are more sensitive to mass anomaly than the gravimeter 

since gravity gradients are the second-order derivative of gravity potential. On the other 

hand, gravity gradiometers also show disadvantage because of its high sensitivity of 

topographic mass in land and airborne surveys which will be considered as noise if our 

application is the subsurface exploration. A terrain correction, computed from a model 

structure, accounts for the variation of topographic mass and so the procedure of 

computing terrain correction is most necessary and important in dealing with gravity and 

gravity gradiometry data.   However, the high sensitivity signal from the gradiometer due 

to subsurface structures will not be correctly obtained if the terrain corrections were not 

computed properly using the high resolution terrain. For example, in rough topography, 

the magnitude of terrain corrections for gradient can reach about hundreds of E (1 E 

(Eötvös) =10
-9

 s
-2

) while the anomaly of ore-body usually will only generate a signal of 

about several tens of E (Nabighian et al., 2005). So the application of high accuracy 

gradiometer is limited by the ability to estimate inner-zone terrain corrections precisely 

and by the quality of the digital elevation model. Not only the relative proximity of the 

terrain to the gravity gradiometer, but also the relative magnitude of the density contrast 
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often result in a terrain correction that is larger than the anomaly signal of interest in 

subsurface exploration (Chen and Macnae, 1997; Dransfield and Zeng, 2009). Therefore, 

the increased sensitivity of the second-order derivative of the potential will limit their 

utility in subsurface exploration, especially in areas of rugged relief if we cannot obtain 

the terrain corrections of the second-order derivative of the potential more accurate than 

that of the first-order derivative of the potential. In the past several decades, many efforts 

have been put into developing different methods and algorithm of computing terrain 

corrections for gravity gravimeter. However the proper extent and resolution of terrain, 

also, the effect of varying surface density on the computation of terrain corrections for 

the gravity gradiometer are still not deeply researched and no consistent results were 

obtained, so it gives the motivation of this dissertation study. 

1.2 Background 

 The gravity gradients have been quickly applied for mineral, oil and gas 

exploration since Baron Lorand von Eötvös invented the torsion balance instrument and 

the surveys were mainly carried out in Hungary throughout the last century (Bod et al., 

1990), and were also used in the U.S. and Western Europe extensively. However due to 

the cumbersome field procedures and the long observation time needed for each station, 

especially in the rugged terrain, the instrument was largely displaced by high accuracy 

gravimeter in the 1940s. 

 Recent developments in airborne gravity gradiometry such as the FTG (Full 

Tensor Gradient) system by Bell Aerospace (now Lockheed Martin) and the Falcon 

system by BHP Billiton (recently acquired by Fugro) have sparked renewed interest in 

the use of gravity gradients for subsurface exploration (e.g., Nabighian et al., 2005). The 

airborne systems can survey large areas quickly on any type of terrain with advertised 

measurement accuracies of 5 Eötvös for the gradients (Asten, 2000), this is the main 

reason for its rapid development in the recent 20 years. 

 A major limitation of using gravity gradients in subsurface exploration, especially 

in areas of rugged relief, is stripping out the gradient effects of the terrain with commonly 

variable physical properties (e.g., Dransfield and Zeng, 2009; Chinnery, 1961). Many 

methods and algorithms have been developed to compute the terrain corrections of 

gravity and gravity gradients and the conventional terrain modeling schemes involve 

solutions that are closed formulas derived from mass prism that are cumbersome to 

implement efficiently. Substituting the mass prism using the equivalent point source, the 

closed mass prism formula can be approximated by point source formula and can be 

computed using Gauss-Legendre Quadrature methods which will significantly reduce the 

formula terms especially for the high order derivatives of potential (e.g., Grant and West, 

1965; Ku, 1977). Terrain effect computations from the fast Fourier transform (FFT) of 
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the DEM have also been devised (e.g., Forsberg, 1985; Sideris, 1985). Furthermore, 

Jekeli and Zhu (2006) compared different algorithms for calculating the gravity-gradient 

terrain effect from gravity data and topographic data, providing useful information on the 

relative speed and accuracy of these algorithms. 

 The terrain correction model together with its analytical formula for airborne 

gravity anomaly and gravity gradients has been discussed extensively in the literature 

(Chinnery, 1961; Hammer, 1976; Tziavos et al., 1988; Parker, 1995). In Hammer’s 

optimistic opinion, the gradient noise generated from the local terrain or the shallow 

variations in soil density is not serious for the expected gradient methods. However, there 

exists a reverse conclusion about the topographic corrections. Chinnery (1961) points out 

that the average terrain will generate the gradients at an aircraft altitude of the same order 

as that due to some common ore bodies. And the vertical gradient data are much more 

sensitive to near surface masses than the normal gravity data. Therefore the terrain 

corrections for the gradient will be more important than for the gravity. The simulation 

result of Chen and Macnae (1997) seems support the above second point of view. Their 

results show that the terrain effects of topography will seriously affect both the airborne 

gravity and gradient measurements. For the gravity, this can be corrected by using the 

standard Bouguer correction; while for gravity gradients, this effect remains a problem 

even if the terrain correction is carried out with a density error of only 100 kg/m
3
. Thus, 

the conclusion is that it is hard to detect the anomaly from an airborne gradiometer since 

it is severely affected by regolith, bedrock topography even if the terrain corrections are 

made. 

 Different algorithms and methods on computation of terrain corrections were 

applied for the different application, most of them are only focused on the gravity, not the 

gradients, and there is no deep, systematic research carried out on the necessary extent 

and resolution of the terrain correction of the gravity, especially of the gradients for the 

application of subsurface exploration. Badekas (1967) assumed the topography is varying 

linearly in radial and azimuthal direction, the terrain correction is computed by directly 

integrating within the area of different radius and azimuth and applied these corrections 

to the torsion balance observations in Southwest Ohio in 1966. The total extent reached  
oo 55  and the different resolutions of DEM data were used for different section of 

extent. Parker (1972) developed the gravity potential formula in frequency domain 

through the frequency transform of the topography height, while Tziavos et al., (1988) 

computed the effect of the terrain on airborne gravity and gradiometry using FFT method 

and studied effects of terrain representation (mass lines or prisms), height data resolution 

needed, and the number of expansion terms required to approximate the basically 

nonlinear terrain effect integrals. The total extent of the original grid was 56.6 km36.7 

km with a DEM grid spacing of 0.1 km. From their results, they concluded that in order 
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to obtain terrain gravity effects at accuracy of 0.3~0.5 mGal (1 mGal=10
-5

 m/s
2
) and 

terrain gravity gradient effects at accuracy of 1 E respectively, the grid spacing should be 

0.5 km0.5 km for a flying altitude of 1 km above the highest topography. The extent of 

terrain correction they used roughly agrees with the required extent we determined 

considering the different flight altitude and characters of the terrain. If the flying altitude 

is below 600 m, then the height spacing needs to increase to 0.25 km0.25 km. The 

terrain correction integral was expanded to third-order terms in both cases. And they 

suggest that in order to obtain an RMS accuracy of gradient effects better than 1 E, a ratio 

of 1/3 between grid spacing and flight altitude above maximum elevations seems to be 

reasonable. Hwang et al. (2003) compared the computation of terrain corrections for 

gravity by using Gaussian quadrature, prism and FFT methods. By comparing different 

pairs of inner zones, it is concluded that if the required accuracy of terrain correction is 

0.1 mGal, an inner radius of 20 km is sufficient; and by comparing different pairs of outer 

zones (fixed inner zone 20 km), it is concluded that to meet a 0.1 mGal accuracy in 

terrain correction, an outer radius of 200 km is sufficient, also an outer radius of 100 km 

is sufficient at elevations below 1000 m. It is also shown that among the three methods 

the Gaussian quadrature method recovers higher resolution of the terrain correction signal 

than the other two methods, however, still smaller than the highest grid data resolution, 

i.e., the corresponding Nyquist frequency. The needed computation time is most for 

Gaussian quadrature and least for FFT method and it is suggested that the Gaussian 

quadrature method is intended for point-by-point computation not for wide area grid 

point computation. From their computation results, the Gaussian quadrature method has 

the highest accuracy and the standard deviation of the terrain correction difference for 

gravity between Gaussian quadrature method and FFT method is 7.28 mGal, it is 

concluded that the achieved accuracy in terrain correction is worth the extra computing 

time. 

 Kass and Li (2008) extended Parker’s (1972) formula in frequency domain to the 

gradient formula in frequency domain and applied this frequency method to the 

computation of terrain correction for gradient. They used this algorithm to examine the 

spatial extent and resolution of terrain model required for performing accurate terrain 

correction in airborne gravity gradiometry. Also a Gaussian hill was used to simulate the 

topography and compute the terrain correction of each gradient for different extent size of 

the topography. By analyzing the RMS difference of the terrain correction between each 

different extent pairs, they show that the empirical rule for the spatial extent can be 

approximated by 9 times the relief which assumes the needed maximum terrain 

correction extent is proportional with respect to the relief height. The extent of terrain 

correction from their results does not agree with the required extent of ours. According to 

results of our study, an extent of 400 km is needed with respect to the relief about 4000 
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m. Through computing the energy lost with respect to the resolution, their results show 

that 20 m resolution is sufficient for the terrain correction computation of the gradient. 

 Also, Dransfield and Zeng (2009) pointed out that the relative proximity of the 

terrain to the gravity gradiometer and the relative magnitude of the density contrast often 

result in a terrain correction that is larger than the geologic signal of interest in resource 

exploration. According to the terrain correction integral, the errors in density, the errors 

in DEM elevation, the errors in the evaluation point position and the errors in the DEM 

that is too coarsely sampled will result in the residual errors in the terrain correction.  

  Less effort has been concentrated on the topic of density variations effect on the 

terrain correction in the literature since the surface density variation is complicated and it 

is time consuming and laborious to measure the density variations for an area by 

sampling. Grant and Elsaharty (1962) proposed the concept of “Bouguer density” which 

is a weighted average of real density. It varies with respect to each observation point and 

they provide a procedure to compute it by minimizing the correlation between the local 

gravity anomalies and topography. Using their procedure the Bouguer density map can be 

generated and contoured. In their example, the correspondence between their results and 

the known geology appears to be good and indicates that Bouguer density variations due 

to changing surface conditions can be used routinely in the reduction of gravity data. 

 However, Tziavos et al., (1996) worked on the other side of this topic, provided 

that the surface density grid data are known. They investigated the effect of the variations 

of surface density values to the computation of terrain corrections on the gravity using the 

algorithm of mass prism topographic representation. They compute the terrain correction 

effect by applying the efficient FFT technique that they already derived (Tziavos et al., 

1988), the only difference is to do the Fourier transform with respect to h  terms 

instead of only h  terms. The numerical examples on the computation of terrain 

corrections were carried out in Austria, where both the terrain (DEM) and density (DDM) 

files are available at the same grid with the same resolution of 57.1852.11  . It is also 

concluded that the differences in the mass prism model when using a uniform density 

value instead of an actual density grid are correlated with the topography and existing 

density variations. Their numerical tests showed that the differences are close to 0.4 

mGal with a maximum absolute value close to 9.5 mGal and a variation which reached 

the level of 11 mGal. They did not compute the terrain correction effects for the gravity 

gradient using the surface grid density variations. 

 Up to here, different terrain correction methods and algorithms for the gravimeter 

or gradiometer were reviewed; it was argued that the terrain correction for gravity 

gradiometry is significantly more important than the gravity gravimetry for the 

application of subsurface exploration especially in rugged terrain area. Among all the 

terrain effect computations using different models and methods, one common problem is 
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to determine the extension and resolution of terrain source, while the above review shows 

that no consistent results were given. Also there is no conclusion about the density 

variation effect on the terrain correction for gravity gradiometry, and it may play an 

important role on the gravity gradients reductions. The required resolution and the 

density variation of the terrain are not included in this dissertation and should leave for 

the future research. 
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Chapter 2  

 Terrain Correction for Gravity Gradiometry 

2.1 Gravitational Gradient and Terrain Correction 

 The gravitational potential at a point, x , due to the masses distributed at points, 

x  , over the volume, v  , is given by Newton’s law of gravitation: 

x
xx

x
x 




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plane is set as the plane approximating the local geoid.  )(x  is the mass density 

distribution and G  is the gravitational constant. 

The gravitational acceleration vector is given by 
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The gravitational gradient tensor due to these masses is defined by 
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The diagonal gradients are called in-line gradients and the off-diagonal gradients are 

called cross-gradients. 

The gradient tensor has the following properties: 

(1) The gradient tensor is symmetric. 
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(2) The in-line gradients satisfy the Poisson’s equation, )(4 xGV  .            (2.4) 

where 
2

3

2

2

2

2

2

1

2

x
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x

V
V




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


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


                                                        (2.5) 

Outside the volume, v , in empty space, the density is zero, so 0V , which is called 

Laplace’s equation. Thus, the gradient tensor only has 5 independent elements, three off-

diagonal elements and two diagonal elements. 

 The total terrain effect is the gravitational potential and its derivatives at a point 

due to all the topographic masses above the geoid (Figure 2.1). The residual terrain effect 

is due to the topographic masses relative to a level surface through the point, or relative 

to some other approximation to the terrain. That is, if we construct a topography by this 

level surface (or some other approximation to the terrain), the additional masses that have 

been included and those not yet included constitute the residual masses that generate the 

residual terrain effect. For the observation point, P , on the Earth’s surface, the Bouguer 

plate is an infinite, flat plate between the geoid and the level surface passing through the 

point, both approximated as horizontal planes. The terrain correction is a procedure 

which is defined by taking into account (that is, removing) the gravitational attraction of 

the residual topography, that is, the deviation of the actual topographic masses from the 

Bouguer plate of the point, P (Fig. 2-1) (Heiskanen and Moritz, 1967).  

 

Figure 2.1 Terrain effect of topography (dotted area) and terrain correction of residual 

terrain (red area) w.r.t Bouguer plate 

 In our upward positive coordinate system, removing the mass above the Bouguer 

plane (mass attracts P upward, i.e., removing a positive value) will cause the terrain 

Bouguer plate 

Geoid 

P 

B 

A Positive density 

Negative density 

Topography surface 
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correction to be negative; while adding mass below the Bouguer plane (mass attracts P 

downward, i.e., adding a negative value) will also cause the terrain correction to be 

negative. So the terrain correction is always negative for the vertical gravitational 

acceleration in our upward positive coordinate system if we define gravitation as the 

positive gradient of potential. 

The same procedure can be used to compute terrain effect on the gravitational 

gradients at point, P. So, we have the total terrain effect on the gravitational gradients at 

point, P, from equation (2.1), (2.3) as 
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which can be written as 
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where A is the horizontal area of topographic masses around the point, P. The area A can 

be separated into the sum of A_above and A_below, where A_above is the area of 

topography masses above the point, P; and A_below is the area of topographic mass voids 

below the point, P. 

The terrain correction is the negative of the residual terrain effect, that is, residual to the 

Bouguer plate: 
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So substitute (2.8) into (2.7), we have  
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It shows that the sum of the total terrain effect of topography and the terrain correction is 

the terrain effect of the Bouguer plate. 

By moving the zero horizontal plane to the computation point, P, in (2.7), the terrain 

correction can also be written as  
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The corresponding residual terrain effect is the negative of terrain correction (2.10), 

which can also be written as 
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2.2 The Extent of DEM for Terrain Correction 

 The terrain effects are frequently decomposed into the effects of Bouguer plate 

and the terrain corrections in order to simplify the computations (Sjöberg, 2009).The 

model and the method of terrain correction computation for gravitation were well 

discussed in the literature, e.g. Forsberg (1984), Li and Sideris (1994), Nahavandchi and 

Sjöberg (1998) and Tsoulis (2001). With the application of airborne gravity gradiometry, 

the terrain corrections for the gradients were also discussed, e.g. Chinnery (1961), Chen 

and Macnae (1997), Dransfield and Walker (2005), Kass and Li (2008).  In general, the 

computation method depends on the discrete representation of the topography. If the 

topography surface is modeled by specific, discrete height data, the topography can be 

modeled using concentric compartments and the terrain correction can be computed using 

the direct integral method (Mueller, 1964). More commonly, the topography is modeled 

by regular, equally spaced data, which then may be represented by many right rectangular 

prisms (Nagy, 1966), or polyhedrons (Paul, 1974). Thus the terrain correction can be 
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computed by summing up the gravitational effects due to all the right rectangular prisms, 

or polyhedrons, where the effects are closed analytic formulas. Alternatively, for large 

DEM (Digital Elevation Model) data grids, the Fast Fourier Transform method can be 

applied to speed up the computation. However, this method assumes that the data are 

periodic (period equal to the extent of the data) and that they are given with equal 

spacing. Also it has the limitation that the computation points need to be at a plane of 

constant height. Most representative in this respect are the algorithms of Parker (1972) 

and Forsberg (1985).  

Many papers in the literature discuss these methods and the efficiency of 

computing the terrain correction based on different models and DEM data; however, few 

papers touch on the question: What is the extent of terrain needed for the desired 

accuracy of the correction?  There is no consistent conclusion that can be found in the 

literature and each extent of terrain defined by investigators was based on their particular 

applications. For example, for the terrain correction on gravitation, Hammer (1939) took 

21.944 km, whereas, Bullard (1936) went out to 
o

2

1
1  or a distance of 166.735 km using 

tables by Cassinis et al. (1937). The complete Bouguer reduction includes the simple 

Bouguer slab correction (Bullard A), a curvature correction (Bullard B) and the terrain 

correction (Bullard C).  The effect of an infinite Bouguer slab with the curvature 

correction equals the effect of a spherical cap with a surface radius of 166.735 km. It is 

hard to know otherwise from the literature why people choose 166.735 km as the surface 

radius of the spherical cap. Lafehr (1991) derived an exact solution for the gravity 

curvature correction as 
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where RR /0  and Rh / ; hRR  0 , h is the elevation of the station , but 

measured from the station to 0R (sea level); 
0R

S
 ,  S  is the spherical surface distance. 

He also pointed out that the 166.735 km radius (which is the outer radius of the Hayford-

Bowie Zone O) is based on minimizing the difference between the effect of the cap and 

that of an infinite horizontal slab for a significant range of elevations between sea level 
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and about 4000 meters. Based on the terrain correction normally extended to a distance of 

166.735 km, Nowell (1999) refined the process of terrain correction for the effects of 

height, nearby terrain or buildings, including correction ns for the sea or the lake bed 

instead of to the water surface and for the masses of water, as well as stations above and 

below ground level. More recently, Danes (1982) noted that 52.6 km is much further than 

most investigations would carry their terrain corrections. Chen and Macnae (1997) 

computed terrain corrections for airborne gravity gradiometer data using a 10 m 

resolution DEM with the extent of 10 km by 5 km for detecting an orebody of 100 m by 

100 m by 100 m, located at 50 m beneath the surface.  

Li and Sideris (1994) show that the limitation of the integration cap size to 100 

km by 100 km results in a geoid undulation bias with an RMS of 10 cm compared with 

the extent of integration cap size of 600 km by 600 km. Comparing to literature papers 

which discuss the terrain correction extent for the gravimetry, there are fewer papers that 

discuss the terrain correction extent for gravity gradiometry. Kass and Li (2008) 

determined the minimum required spatial extent for a terrain correction of each gradient 

component to achieve 1 (Eötvös) RMS error. For example, for the zzT  component, the 

stated required radius of included terrain as a function of terrain relief should be 8.49×h, 

where h is the height of terrain relief which is a synthesized Gaussian-type terrain with 

slop of 45 degree. With the fast development of gravity gradiometry and the improving 

accuracy of the gradiometer instruments in recent years, the required extent of terrain 

corrections should be revisited in order to make efficient and correct utilization of gravity 

gradiometry. 

Sprenke (1989) also devised a method for optimizing the distance to which terrain 

corrections are made based on a geostatistical analysis of the topography around a given 

area. Sprenke simulated the topography based on the geostatistics derived from a profile 

representative of the actual terrain. First, with the assumption of stationary and isotropic 

variability of elevations, the elevation HZ  of a radial zone centered on a station can be 

expressed as RH Z
rc

Z
rc

Z 


















202

)(
1

)(


, where 0Z  is the station elevation, RZ  is the 

mean regional elevation; )(rc is the covariance function, r is the mean radius of the zone 

and 2 is the variance of the elevations in the region. The detailed derivations can be 

found in Journel and Huijbregts (1978). Next, with the assumption of uniform 

distribution of elevation, the elevations in any subarea of the radial zone are evenly 

distributed between the lowest and highest elevation. Sprenke did his computation in the 

space domain using direct numerical integration with a maximum radius of the area equal 
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to the standard extent of 167 km. The necessary extent of the terrain correction for the 

gravity was derived from the criterion that the error should be smaller than the gravity 

accuracy of 0.1, 0.5, 1.0 and 1.5 mGal. 

 In this chapter, our object is to solve for the extent of terrain correction for gravity 

gradiometry. First, we develop our method to compute the terrain correction for gravity 

gradients in the spectral domain and compare this with other methods which are 

commonly used for, such as numerical integration and right rectangular prism methods. 

Next, we apply the truncation theory to our method for the purpose of computing the 

error in the terrain correction of gravity gradients due to neglecting the terrain beyond a 

certain extent. Through a statistical analysis of the truncation error, we can find the 

functional relationship between the variance of the error and the extent of the terrain 

correction. For the general application, we can set up a criterion that the variance of 

truncation error should be smaller than that of the instrument error, and this makes sure 

that the terrain correction under such an extent is enough and necessary considering the 

accuracy of our instrument for gravity gradiometry.  

We also simulate the topography based on the stationary and isotropic properties 

of the topography, but our high frequency part of topography is simulated based on the 

empirical PSD (Power Spectral Density) of the given data, which contains relatively 

lower frequency, and making use of power-law extension in the frequency domain. 

Sprenke (1989) computed the terrain correction only for the gravity using the analytical 

formula in the space domain. The variance of the truncation error of the terrain correction 

is computed based on the simulated topography whose statistics come from a profile 

representative of the region. However, we compute the variance of truncation error (or 

variance of truncation error difference) for terrain correction of gravitational gradients 

through the FFT method in the frequency domain. The details about the topography 

simulation and extent determination are given in Chapters 3 and 4. Our method of extent 

determination is more general and can be applied to different observations, such as 

ground, airborne, and space gravity gradiometry. For the latter, the effect of total 

topographic mass above the geoid or residual topographic mass relative to a spherical 

Bouguer layer is computed at Earth’s surface or at satellite altitude using the spherical 

coordinates (Martinec, 1998). By truncating the spherical integral limits as well as the 

spherical harmonic expression of topography data, the truncation error and its variance 

can also be computed and used to determine the extent of total topography or residual 

topography. This part is outside the scope of the present dissertation due to the time 

limitation and will be left for future research. Our computations are strictly for the planar 

approximation and Cartesian coordinates, which may be applied to ground and airborne 

data. For ground data, we compute the terrain correction using the residual terrain; for 

airborne data, we compute the total terrain effect since the observation point is usually 
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above all the terrain; and also this is consistent with the procedures implemented by Bell 

Geospace for their airborne gradiometer survey. 

2.2.1 Terrain correction computation methods 
 For general gravimetric applications (gravity or gravity gradient measurements), 

we define the terrain correction as the appropriate gravitational effect due to the removal 

of masses above the plane of computation point, and the addition of masses below the 

plane in order to create a Bouguer plate. The removal of the mass corresponds to an 

effect with negative sign of the density; while adding mass below corresponds to a 

positive sign for the density. Thus the terrain correction can be interpreted as a 

gravitational effect due to negative density above the plane and positive density below 

the plane (see Figure 2.1). 

For very local observations, we define the residual terrain relative to a point, P, on 

the Earth’s surface as the difference between the actual elevation and the Bouguer plate 

through the point. More generally, for regional applications, we may also consider a 

higher-order reference topography instead of the Bouguer plate. For example, the 

reference topography can be high-degree harmonic expansion of the terrain, such as a 

global 5'× 5' Digital Topographic Model (DTM2006.0) with spherical harmonic 

expansion (to harmonic degree 2160) of Earth's topography and it is made available by 

the EGM2008 development team (Pavlis et al. 2007). DTM2006.0 relies heavily on 

elevation information made available from the Shuttle Radar Topography Mission 

(SRTM) and some other data sources, such as laser altimeter data over Greenland and 

Antarctica, and data of DTM2002 which includes bathymetry from altimetry data and 

ship depth soundings of Smith and Sandwell (1997). The residual topography model 

between SRTM and DTM2006.0 can be used to augment EGM2008 vertical deflection 

predictions and also for source-modeling of high-frequency gravity field signals. For 

example, Hirt et al. (2010) combined EGM2008 and SRTM/DTM2006.0 residual terrain 

model data to improve the quasigeoid computations in mountainous areas. For our 

regional terrain correction computations, we can set our reference using the mean 

elevation of the terrain, or using a higher-order reference surface such as DTM2006.0. 

The residual terrain in this case bounds the masses that are removed and added between 

the higher order reference surface and the actual topographic surface (Figure 2.2). 
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Figure 2.2 Terrain effect of topography (dotted area) and terrain correction of residual 

terrain (red area) w.r.t higher order reference surface 

i. Right rectangular prisms for terrain corrections of ground data 

One common method to compute the terrain correction and terrain effect is to 

represent the mass between the topography surface and the geoid (in planar 

approximation) using right rectangular prisms. The assumption of planar approximation 

is appropriate since for our local gradiometry application, the gravity gradient signal is 

presumed to be a very local phenomenon. We set up our coordinate system using the 

East-North-Up coordinate system and the x-o-y plane is the reference plane passing 

through observation point, P. For a topographic height above the reference plane, it is 

modeled by a negative density prism; for a topographic height below the reference plane, 

it is a positive density prism (Figure 2.3). The terrain correction can be computed by 

summing up the effect results of all MN   prisms around the point, P, if the topographic 

surface height is measured at MN   discrete points (equal spacing: length a along the 1x  

direction; width b along the 2x  direction), where N is the number of heights along 1x ; 

and M is the number of heights along 2x .  
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Figure 2.3 Coordinate System for residual terrain 

The assumption of constant density was applied to the residual terrain. Then the terrain 

correction of gradients for the i-th prism element (length: a , width: b , height: 

pii hhh    , the center point coordinates ( ii ba , )) either above ( ih  positive) or below (

ih  negative) the reference plane, can be derived from (2.6) , respectively (j=1,2,3; 

k=1,2,3)  
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It can be shown that the integral of (2.11) for in-line and cross gradients (Zhu, 2007; 

Jekeli and Zhu, 2006), is given by 
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where in each case, the index set, },,{ lkj , is a cyclic permutation of  }3,2,1{  and 03 x . 
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If the terrain height is measured on a regular grid (equal spacing), with a total of N×M 

points, then the terrain correction can be computed by summing up all these N×M prisms 

using 
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and       is the constant density of topography; 

 a and b are spacing of the regular grid in two directions, 1x  and 2x ; 

pii hhh    is the residual terrain height with respect to reference plane passing 

through observation point, ph ; 

 N and M are the number of grid points in two directions, 1x  and 2x .  

ii. Right rectangular prisms for terrain effect of airborne data 

 For the case of airborne gravity gradiometry, when the point of computation is not 

on the topographic surface, we compute the terrain effect (See figure 2.4, the 03 x
 

plane is the approximately planar geoid) as we mentioned at the end of chapter 2.2.0. 

From equation (2.6), for the i-th prism, we have 
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Applying the same derivation as for the ground data; we have the terrain effect for the 

gravitational gradients as 
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Figure 2.4 Terrain effect for airborne data 

For ground observations, we separate the total terrain effect into the Bouguer plate part 

and the residual terrain part. The terrain correction is computed based on the residual 

terrain. The formula of Bouguer plate is derived from an infinite plate, for example, 

phG2  for the vertical gravity component; zero for horizontal gravity components. 

For airborne observations, we can separate the topography into the residual terrain 

relative to the mean elevation of the area and the Bouguer plate passing through the mean 

elevation; also we can use the minimum or maximum elevation of the topography as 

reference plane. Thus, the vertical gravitational component still is a constant and the 

horizontal components are zero for such an infinite Bouguer plate. Furthermore, we can 

even define the residual terrain relative to the higher order reference surface. For this 

case, the vertical and horizontal gravitational components of the mass between the 

reference surface and the geoid are complicated, and do not have analytical formulas. For 

the actual application, our DEM data area is always finite, which will cause the computed 

effect of the Bouguer plate to be not exactly equal to the analytical value, especially for 

observation points at the edge of the area. Thus, an error will be included in the total 

topography effect for a given observation point. In our statistical method, we determine 

the extent of topography by the variance of the truncation error for observation point, and 

the observation point is always at the center of the computation area, so this Bouguer 

plate effect error will not affect our comparison results since it is the same for all 
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truncation values. It is also noted that 3x  is the height of the observation point and it is 

not necessary to be constant. 

iii. FFT method for ground data 

The potential of the residual terrain can be written as 
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where phhh  .                                                                  (2.22) 

Substituting (2.21) into (2.3), we have the following integrals for the residual terrain 

effect on the gradients evaluated on the reference plane passing through observation 

point, P,  such that 03 x : 
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Furthermore, (2.23) can be written as 
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with kjjk FF  . 

The integrals of jkF  with respect to '

3x  can be derived using a variable change, 

and result in (Jekeli and Zhu, 2006, with 03 x ) : 
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where 2'

22

2'

11

2 )()( xxxxs  . 

Thus )(xjk  can be computed by using a numerical method of integration, such as the 

rectangular rule, which approximates eq. (2.24) according to: i

i

jkjk ATG   )(x , 

where for a regular rectangular grid, '

2

'

1 xxAi  . However, when dealing with a large 

amount of data on a regular grid, the FFT method can be applied to reduce the 

computation time.  



21 

 

 By following Forsberg’s method (Forsberg, 1985), the terrain effect integrals can 

be expanded into series of convolutions and the convolution can be computed very 

quickly in the frequency domain by using the convolution theorem. The convolution 

theorem (Wikipedia, http://en.wikipedia.org/wiki/Convolution_theorem) states that if the 

signals g and h are finite energy signals, then the Fourier transform of a convolution is 

the pointwise product of Fourier transforms. The 2-D convolution is defined as  

'

2

'

1

'

2

'

1

'

22

'

11212121 ),(),(),(*),(),( dxdxxxhxxxxgxxhxxgxxc
A

                    (2.28) 

From the convolution theorem, we have  

),(),()()()*(),( 212121 ffHffGhghgffC                                         (2.29) 

and 

))()((* 1 hghgc                                                                                      (2.30) 

where  

* denotes the convolution operator, ),( 21 ff  is the horizontal frequency pair;  

  denotes the Fourier transform and 1  denotes the inverse Fourier transform; 

HGC ,, are Fourier transform of hgc ,, , respectively. 

We expand the functions, )( '

3xF jk  in equations (2.26) into Taylor series, with respect to 

zero (corresponding to the reference plane of the residual terrain): 

         ( )

3 3 3

1
' 0 0 ' 0 '

!

nn

jk jk jk jkF x F F x F x
n

                                       (2.31) 

Then, we substitute these into equation (2.24) and integrate with respect to '

3x : 

    
 

 2 ( ) 11 1
(0) 0 0

2! 1 !

n n

jk jk jk jk

A

G F h F h F h dA
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     
 

        
x          (2.32) 

The derivatives of jkF  are taken with respect to '

3x  and evaluated at 0'

3 x .  

They are easily derived, for example, for 33F : 

7
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33333

225
)0(  ,0)0(  ,

9
)0(  ,0)0(  ,

1
)0(

s
FF

s
FF

s
F                 (2.33) 

http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Pointwise_product
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When using the FFT method to compute the terrain effect for ground observation 

positions, the heights of the computation points is not constant, 

constant),(  ppp yxhh , i.e., substitute ).( pp yxhhh   into (2.32), we have 
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(2.34) 

where )0,0)(( jkF , )0,0)(( '

jkF  are values at zero frequency of the Fourier transforms of 

jkF ,
'

jkF , respectively. 

We neglect the terms in the Taylor expansion (2.32) for derivative orders higher than one 

(the loss of the accuracy is acceptable for our application of extent determination, see 

chapter 4.2 analysis), thus (2.34) can be expressed as  

)]0,0)((
2

1
)0,0)((*)0(

!2

1
*)0()0([)( '22''

jkpjkpjkjkpjkjk FhFhhFhFhhFG   x

 
(2.35) 

Next, we use 33  as an example to illustrate how to compute (2.35) for discrete data. 

The terrain correction for the other gradients can be computed similarly. 

We substitute (2.33) into (2.35), and apply the convolution theorem, we have 

)}0,0)(()]()([{)( 3333

1

33 FhhFG p   x                                                  (2.36) 

where )0,0)(( 33F  is value at zero frequency of of the Fourier transform of 33F .  

A numerical implementation of equation (2.36) requires using the discrete Fourier 

transform, or equivalently the Fast Fourier Transform (FFT). This transform operates 

only on discrete and periodic functions. Let 
21 ,mmg  and 

21 ,mmh be the discrete kernel 
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function 33F  and the terrain elevation on a regularly spaced grid, respectively. The FFT 

and its inverse are defined as follows: 

 (with 1,,0,,;1,,0,, 222111  MnpmNnpm  ): 
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The discrete convolution of 
21 ,mmg  and 

21 ,mmh  is defined as 
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and the convolution theorem yields: 

))()((
212121 ,,

1

, ppppmm hFFTgFFTFFTc  .                                              (2.40) 

Thus the numerical equivalent of eq.(2.36) is  

  })()()({),( 0,033,,,,33

1

2133 21
21

2121
FFFThhFFTFFFTFFTGnn nnnnpppp   .         (2.41) 

It is noted that the terrain effect computed here is for every observation point on the 

topographic surface and so the observation point's height, 
211 ,nnh , is not constant. In other 

words, the reference plane of the residual terrain which passes through the observation 

point is changing for every observation point.  However, the convolution theorem is 

applied only to the convolutions of the total topographic height.  

Also from equation (2.9), we know the gravitational gradients of the Bouguer 

plate can be computed as x
xx

x

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xx
G
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h

kj

Bouguer

jk

p

0

2 )(
. For an infinite Bouguer 

plate, the gravitational gradients should be zero since the vertical component of 

gravitational acceleration for a Bouguer plate is constant: phG2 , while the horizontal 

components of gravitational acceleration for a Bouguer plate are zero. Actually, if we do 

the computations for a finite area using prisms (formulas (2.12) and (2.13)) for the total 

effect, then the gravitational gradients are not exactly zero. And the gravitational 
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gradients of the finite Bouguer plate will not only be non-zero but also they are different 

for each observation point since each observation point has a different elevation height. 

Thus when we want to do the Bouguer reduction, each observation point needs to remove 

its corresponding gravitational gradients of Bouguer plates. Also as we mentioned 

previously for the right rectangular prism method, the finite Bouguer plate errors can not 

be neglected, but it can be neglected since our statistical method always does the 

computation for a center point. Also we determine the extent of topography based on the 

variance of the truncation error using the residual terrain before the Bouguer plate 

correction is involved, i.e., the finite Bouguer plate error will affect the total topography 

effect but not affect our extent determination. 

iv. FFT method for airborne data 

When dealing with airborne gravity gradient data, we compute the terrain effect 

for the topography above the geoid (see figure 2.4).  Tziavos et al. (1988) computes the 

terrain effect for airborne gravity and gradiometry using the residual terrain referring to 

the reference plane which is the average height of the topography in the area. Thus their 

total terrain effect is the sum of the gravitational effect of a Bouguer plate associated with 

the average height of the topography and the effect of the residual terrain relative to that 

height. The advantage of using an average height is faster convergence of their binomial 

series expansion comparing to the series expansion with respect to the zero plane, as done 

by Sideris (1984). Here, we do not separate the topography into a Bouguer plate plus the 

residual terrain in order to make our results consistent with the terrain effect computed by 

Bell Geospace at Vinton Dome, LA and Parkfield, CA. 

The residual height h  in (2.21), (2.22), (2.23), (2.24), (2.32) should be changed to 

topographic height, h , which will result in 

x
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2
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2
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2

11 )()()( xxxxxxr  xx ,                                           (2.45) 

and  
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with kjjk FF  . 

Similar to the derivation for the residual terrain of ground data, the functions, )( '

3xF jk

were expanded into Taylor series and after the integration with respect to '

3x , it can be 

expressed as convolution form, provided that constant3 x : 
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Thus the terrain effect of the topography can be derived as 
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Here, 
)1( n

jkF  is the (n-1)th derivative of )( '

3xF jk  
and evaluated at 0'

3 x , however 03 x  

but it should be constant. 

They are easily derived, for example, for 33F : 
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                  (2.49) 

where 2

3

2'

22

2'

110 )()( xxxxxr                                                                      (2.50) 

We neglect the terms in the Taylor expansion for orders of height higher than one, thus 

the terrain effect for gradients can be expressed as  
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        )]()0((
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1
)()0(([)( 2'1 hFhFG jkjkjk  x                                  (2.51) 

where )0(),0( '

jkjk FF  come from (2.49). 

Also, a numerical implementation of equation (2.51) requires using the discrete 

Fourier transform, or equivalently the Fast Fourier Transform (FFT) which is described 

in method iii. It should be pointed out that when computing the terrain effect for the 

airborne observation points, the computation height, 3x  , in equation (2.50) should be 

constant for all ),( '

2

'

1 xx  in order to express equation (2.32) as a series of convolution and 

such that we can use the FFT technique for fast computations.  

v. FFT method combined with right rectangular prism model method 

When we expand the kernel functions )( '

3xF jk  
into Taylor series using equation 

(2.31), we need to be careful about the convergence of the series especially for dense 

topography grids or in rough areas. Tsoulis (1998) expanded the terrain effect integral for 

gravity into a binomial series and thus formed the convolution. He also pointed out that 

the degrees of expansion as well as the convergence condition for the validity of the 

series affect the final result. 

Tsoulis (1998) divided the total terrain effect of the topography into the effect of a 

Bouguer plate of a height equal to ph  minus the deviation of the actual terrain from this 

plate, i.e., the terrain correction of the residual terrain. We also applied the same 

procedure for the gravitational gradients, see equation (2.10). The vertical component of 

the residual topographic attraction at P is equal to the vertical derivative of equation 

(2.21), 
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It is easy to integrate (2.52) with respect to '

3x  first and one obtains after a few steps 

(Tsoulis,1998) 
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Let 2)(
s

hh
x

p 
  ,  Tsoulis (1998) expands equation (2.53) into a series which involves 

the convolution by using the binomial expansion of 2/1)1(  x  according to  


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1
1)1( xxxx                                                           (2.54) 

under the precondition that 11  x . This convergence condition means the slope of 

the terrain surrounding the computation point should not exceed 45
0
 (Forsberg, 1985; 

Tsoulis, 1998; Tsoulis, 2001).  After substituting (2.54) into (2.53), we have  
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21                        (2.55) 

After expanding the numerators in (2.55) into polynomials, ph can be moved outside the 

integral and equation (2.58) can be expressed as a series of convolutions between powers 

of 
s

1
 and powers of h . Thus these convolutions can be computed using the convolution 

theorem and the FFT methods.  When the source point is close to the observation point, 

the binomial series may not converge, so the FFT method will not give an accurate result. 

Tsoulis (1998) solved this problem for the gravity terrain correction by combining the 

FFT method and the right rectangular prism method, thus both the computational 

efficiency and the accuracy of results are obtained. Tsoulis (2001) proposed a 

combination method which applied the FFT method to all DEM data except for a small 

zone surrounding the computation point which, where the analytical right rectangular 

prism formula was used. He tested this combination method for a DEM area with extent 

of 15 km by 20 km and resolution of 50 m. His results showed that the combination 

method overcomes the convergence problem, which will happen for the rough terrain 

area. At the same time, the results still maintain the computation efficiency of FFT 

method, while keeping satisfactory agreement with the prism summation method. We 

also use this combination method to solve our Taylor series converge problem, where the 

FFT method is applied for the outer area where the series convergence holds; while the 

prism summation method is applied for inner area. 

 Studies in the published literature seldom discussed the convergence problem for 

gradient terrain correction. Their computation using the FFT method starts from the 

spectrum of the vertical gravitational components, where they assume the convergence 

problem is solved for the gravity terrain correction, for example, using the method of 

Tsoulis (1998, 2001). Based on their previous computations for the gravity terrain 
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correction, Tziavos et al. (1988) also computed the terrain corrections for the gradient 

tensor using the formulas from (2.56) to (2.61). Since V is a harmonic function and 

satisfies Laplace's equation, it can be proved (Tziavos et al., 1988) that the spectra of the 

gradients and the spectrum of the vertical gravitational component have the following 

relationships 

)(2)()( 1 zxzzx gif                                                (2.56) 

)(2)()( 2 zyzzy gif                                                 (2.57) 

)(2)( zzz gf                                                               (2.58) 
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where 2/12

2

2

1 )( fff  . 

However, we do not use this method to compute the terrain correction for 

gravitational gradients. Jekeli and Zhu (2006) provide and compare other methods to 

compute the terrain correction for gravitational.  One method is the numerical integration 

method (see equations (7), (9), (13), (14)); another method is the same as we described in 

previous section (iv: FFT method for airborne data). But, the convergence problem is not 

well discussed, so now we solve the convergence problem by using a combination 

method similar to the method of Tsoulis (1998).  

Tsoulis (1998) used the binomial series expansion to express the terrain correction 

for vertical gravitational components as convolutions, whereas, we use the Taylor series 

expansion. We can show that the convergence condition of the Taylor series is the same 

as that of the binomial series by showing that the two series are the same. The function, 

jkF , is expanded into a Taylor series  with respect to variable '

3x , and the different orders 

of derivatives of jkF  are evaluated at 0'

3 x . Thus, the function jkF  can be expressed as 
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a series of different powers of '

3x  (2.31). At the same time, the function, jkF , can also be 

expanded into a series of different powers of '

3x  using the binomial expansion as shown 

below. First, since jkF  has the expression (2.46) for airborne data, we express the term, 

r

1
, as: 
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, so it can be expanded into series of different powers of x  by using 

the binomial expansion of (2.54). The result has the expression 
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Thus, the terms,
3

1

r
and 

5

1

r
 in equation (2.46) can also be expanded into series of 

different powers of x  by  using the series expression of 
r

1
, we derived above, as: 
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Substitute (2.63), (2.65) and (2.66) into (2.46) and compute the powers 3, 5 of the series 

in (2.65), (2.66); then compute all terms, rearrange and merge the terms which have the 

same power of '

3x . At last, we can express jkF , as a general series with respect to 

different powers of '

3x : 



30 

 

 3'

34

2'

33

'

321 )()( xAxAxAAFjk                                             (2.67) 

where ,,,, 4321 AAAA  are the coefficients. 

The convergence condition of (2.67) can be obtained from the convergence condition of 

(2.64), which is 1)( 2
'

33 


s

xx
. 

By comparing (2.31) and (2.67), we are expanding the same function jkF  into two series 

of powers of '

3x , thus the two series are the same and share convergence conditions. So it 

is easy to see that the convergence condition is 1)( 2
'

33 


s

xx
 for our Taylor series. 

So when the integration point is close to the computation point, or the terrain 

between the integration point and the computation point has the ratio of height difference 

to horizontal distance greater than one, there exist the dangers that the Taylor series does 

not converge in theory. In order to avoid this kind of convergence problem, we modify 

our FFT method and divide the terrain around the computation point into an inner zone 

and an outer zone. The inner zone was selected to include the terrain where the 

convergence condition does not hold, and its effect was computed using the prism 

summation method. While the outer zone was selected to include the terrain where the 

convergence condition holds (i.e., the slopes between the source point and the 

computation point are less than 45
o
) and its effect was determined using the FFT method 

with a modified kernel function (Tsoulis, 1998; Tsoulis, 2001).  

The above method was applied to our terrain correction computations for the 

gradients on the ground or for airborne data. First, we modified our kernel functions 

)1( n

jkF   in (2.33) for ground data or (2.49) for airborne data as follows:  
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where 21, RR  are the selected horizontal distances of  the inner zone. 
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The terrain correction or terrain effect within the inner zone is computed using the right 

rectangular prism method by (2.14), (2.15), (2.16) for ground gradients, or (2.18), (2.19), 

(2.20) for airborne gradients. Next, we combine the inner zone result with the outer zone 

result for each observation point. So, finally our formula for the terrain correction of the 

residual terrain at ground is 
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(2.70) 

And the formula for the terrain effect of gradients at airborne altitude is 
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(2.72) 

The DEM we used for our analysis comes from the 3   SRTM data (around 90 m 

resolution) in an area defined by latitude: 29.977
o
~30.323

o
; and longitude: -93.753

o
~-

93.437
o
 , which is also the terrain correction area for the Air-FTG at Vinton Dome, LA; 

see Chapter 4.3, Figure 4.17. We selected the 3 x 3 grid points around the observation 

point as the inner zone. Thus the minimum horizontal distance between a source point in 

outer zone and the observation point is 1.5 times the grid resolution, which is about 

m 139
1803600

3
5.1 





R  in 2x  direction, and about 

m 120
1803600

3
)30cos(5.1 




oR  in 1x  direction. At the same time, the maximum 

height difference between the observation point and the source point is about 80 m which 

can be seen from Table 4.4. Thus, both these two horizontal distances are greater than 80 

m, which ensures that the convergence condition holds in outer zone. Also in our 

computations, the observation point height is selected at constant flight altitude of 80 m. 

The topography density is set to 1 gm/cc in order to compare our results with those of 

Bell Geospace, who used this density value (as a scale factor). We make an assumption 

that the result from the right rectangular prism method is the true value. The two 

differences between the normal FFT (method iv) and the true value, and between the 

modified FFT (method v) and the true value are computed, respectively, and shown in 

Figure 2.5 for a W-E profile ( 33 , for example), together with the contribution of the 

topography outside the inner zone. It is shown that the normal FFT method has an error 

of about 10 E, while the modified FFT method only has an error of about 0.1 E. This 

means that the difference of these two errors is caused by the inner zone topography, 

because the Taylor series does not converge within the inner zone. It also shows that the 

modified FFT method reduces the effect of the inner zone errors significantly, leaving 

only sub-Eӧtvӧs error. 
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Figure 2.5 Normal FFT method comparing with the combination method and its outer 

zone contribution  

 

2.2.2 Extent determination by Geostatistical methods 
 One common problem of the terrain correction for gravity or gravity gradients is 

how much terrain should be included, and furthermore the extent used should be based on 

our application of gravity gradiometry. For example, for the application of subsurface 

exploration, the grid spacing error, the instrument error, the size of observation area, the 

signal of the subsurface object, and the noise of the background etc., should all have an 

influence on the determination of the required topographic data extent. The more area of 

terrain is included, the more computation effort and cost of exploration will be needed, so 

our purpose is to find an efficient way to determine the extent of the topographic data 

based on the actual need of our application. One direct method is to compute the terrain 

correction for gradients at a certain extent based on given DEM data, then increase the 

extent and repeat the computation until we can see that the latter topography we included 

no longer has a significant contribution compared to the previously included topography. 

Such a method has the problem that it needs great computational effort in order to 

analyze the problem for a given regional terrain, as detailed in the previous sections. Also 
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this method needs a large area DEM data around the observation area which may not be 

available for every situation. In order to learn how much contribution the remote 

topography will have on our observations; an alternative method is developed by 

applying classical truncation theory and a geostatistical analysis. The geostatistical 

analysis method is an efficient method based on a stochastic representation of the 

topography that can quantify the errors in truncating the terrain effect. 

 Sprenke (1989) used this method for optimizing the distance to which terrain 

corrections are made. His method is similar to ours, but differs in three ways. First, the 

topography simulation method is different although both are based on the geostatistical 

method. He only used statistics from a profile of the area to simulate the radial zone 

elevation around the observation station, and then the elevations in the subarea of the 

radial zone are simulated by a uniform distribution of elevations. However we simulate 

the whole topography by extending the covariance model to higher frequencies and our 

covariance model is based on the statistics of all points within an area. Second, the 

truncation error computation method is different; Sprenke used the direct numerical 

integration, while we use the spectrum method. The difference of these two methods was 

discussed by Jekeli and Zhu (2006). Third, Sprenke computed the truncation error for 

gravity, while we compute the variance of truncation error for gravity gradients. Also his 

extent determination is based on the error while ours based on the variance of error. 

Furthermore, we also consider the error in the differences of terrain effect at two 

neighboring points. This is important because usually the remote terrain has similar 

gravitational effect on a pair of observation points, which are separated by a short 

distance. That is, in this case the effect is like a bias and can be neglected under certain 

situations; and, thus the required extent maybe significantly smaller. 

i. PSD of terrain correction (effects) 

The 2-D convolution of our signals hg   ,  can be computed in the frequency domain by 

using equation (2.29) according to the convolution theorem, assuming the signals hg,  

are finite power signals.  Then the power spectral density of the function, c, is given by 

),(),(),( 212121 ffCffCffc

 ,                                                       (2.73) 

where   denotes the complex conjugate. 

Apply (2.73) to our terrain effect of the residual terrain, )(xjk , calculated in equation 

(2.34), we can apply the periodogram method to compute the power spectral density of 

the terrain effect of the gradients for ground data, as 

 )()]([),( *

21 jkjkff
jk

                                               (2.74) 
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Also by applying (2.73) to our terrain effect of the topography, )(xjk , calculated in 

equation (2.48), we have the power spectral density of the terrain effect of the gradients 

at altitude,  
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ii. Truncation theory applied to geostatistical analysis 

We assume a planar approximation since the terrain correction for gravity gradiometry is 

presumed to be a very local phenomenon. Although for the extent determination of the 

terrain effect, we are interested in the distant zone effect, we still can take the planar 

approximation for the purpose of a comparative analysis. Also, it is anticipated that the 

gradient effect decreases very fast when the distance enlarges, since the function, jkF , 

involves the high orders (order 3 and 5) of inverse distance (see (2.26), (2.46)). 

Nevertheless, the effect of mountainous terrain can still be large at large distances; then if 

larger areas are analyzed, the spherical approximation may need to be used instead. 

However, we confine our analysis to the planar case and also assume that the terrain of 

the distant zone is a stochastic process and is a stationary, ergodic process. For terrain 

that involves rapid changes from one kind of topography (i.e., mountainous area) to 

another (i.e., flat plains), the above assumption may not be suitable and will cause the 

geostatistical analysis to be inapplicable. Therefore, our analysis is somewhat restricted 

to cases where the assumptions of stationarity hold over the area of our geostatistical 

analysis. Equations (2.34) or (2.47) show that the terrain effect can be expanded in a 

series of convolutions of different powers of topography,  h (or residual terrain, h ) and 

the corresponding kernel functions )0()1( n

jkF . These functions depend on the distance 

between the integration point and the evaluation point; they are singular at the origin and 

yield strongly singular integrals for ground gravity gradiometry observations. However 

we don’t need to worry about their behavior at zero distance since our analysis concerns 

the truncation error in restricting the terrain correction area A to a finite region where the 

distance in this error expression is always greater than zero. The truncation theory is 
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developed below in general terms for a single convolution (2.28), and it can be applied to 

as many of the terms in equation (2.34) or (2.47) as needed. 

 Equation (2.28) is analogous to one convolution term in equation (2.34), or (2.47), 

where c  corresponds to a contribution to the terrain effect, g  corresponds to the kernel 

function jkF  (or a higher order derivative of jkF ), and h  corresponds to a power of the 

terrain. If h  is used only in some finite domain around the computation point, ( 21 , xx ), 

that is,
22
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We define a new kernel: 
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so that the truncation error can be expressed as a convolution over the plane: 
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Applying this to the series of convolutions in equations (2.34) or (2.47), we get the 

truncation error of the terrain effect of gradients on the ground beyond the finite extent: 
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Also, the truncation error in the terrain effect of gradients at altitude is: 
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The spectrum of the truncation error can be computed by the convolution theorem, such 

as for (2.80): 
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,                                                (2.82) 

The above first Fourier transform holds for any topography but it has to be computed for 

each extent   1 2,T T .  

Thus the power spectral density of the truncation error can be computed by: 

),(),(),( 212121 ffEffEff  ,                                                                     (2.83) 

And the covariance function of the error is just the inverse Fourier transform of 

),( 21 ff  , given by 

)),(),((),( 2121

1

21 ffEffEss  .                                                   (2.84) 

where 21 , ss  are the horizontal distances along 21 , xx  directions between a pair of 

observation points. 

The value of the covariance function at zero distance ( 0,0 21  ss ) gives the 

variance of the truncation error for the observation point at the center of the computation 

area, due to the neglect of the remote zone beyond the limited extent. The variance of the 

truncation error represents the statistical variation of the errors for an observation point 

always centered within its data area. The needed extent of the terrain correction can be 

determined by evaluating the variance for the  1 2,T T  that is less than some threshold 

value, such as the variance of the gradient measurement error, typical values of 10
-2

 E
2
.  

Furthermore, for a pair of points separated by a specified distance, s , we can 

formulate the variance of the error difference as a function of the size of the limited 

extent,  1 2,T T . Since the effect of the remote zone will be nearly the same for two 

neighboring points of interest, it behaves like a bias among many points within a smaller 

area of computation and could be calibrated by other methods. Therefore, for such points 

in a limited area, the determined values of  1 2,T T  may be smaller if the bias is not a 

concern. For points further apart, the effect of the remote zone will have a larger 

difference and it will not behave like a bias. In this case, we need to increase the values of 

 1 2,T T  further in order to reduce the truncation effect until it behaves like a bias.  
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We define the error difference as 
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at two points, ),( )1(

2

)1(

1 xx and ),( )2(

2

)2(

1 xx , separated by distance s . Again, with the 

assumption of a stationary stochastic process, its variance is: 
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We make the assumption that all errors have zero mean in order to derive (2.86), and here 

E  is expectation operator. If this is not the case, we can redefine the error to satisfy this 

requirement, since we are only interested in the variance of the error. For a particular 

distance, ),( 21 ss , the covariance of the difference of errors depends on  1 2,T T . It is the 

covariance for the effect of the remote zone beyond  1 2,T T  computed for all pairs of 

points with distance ),( 21 ss , where each point of a pair theoretically is centered within the 

same size data area. Thus, we find the specific value of  1 2,T T  which yields a chosen 

variance of the difference of the errors; again, e.g., less than the variance of the 

measurement error. Usually, we determine the extent  1 2,T T  only for the distance

2

2

2

1 sss  , and then it has the limitation that we need to assume the difference of 

errors is isotropic, which is not always the case. Another limitation is that our error 

estimation is for the points centered within the survey area, so when the observation 

points are actually near the edge, the result will be biased by the different geometry of the 

correction; and this will be left for future research. 
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Chapter 3  

 Topography Simulation 

3.1 Reciprocal distance covariance model 

 In the previous chapter, we developed a method to determine the extent of terrain 

correction for gravity gradients by applying the truncation theory and a geo-statistical 

analysis. However such an analysis, the results of which are given in Chapter 4, should 

also be confirmed by simulations using traditional terrain correction calculations. 

Although we have very good topographic data already, such as SRTM "1  DEM for the 

entire US, we may still need higher resolution data for terrain correction applications 

using very local gravity gradiometry, which is sensitive to very local mass distributions. 

For example, a ground gravity gradiometry observation area may extend only about a few 

hundred meters in length and width. In order to determine the extent of terrain correction 

for such a local area, we need high resolution DEM, higher than 30m, even up to a few 

meters. By developing a method of simulating different spectra and resolution of the 

topography, we have complete control of every element to see how they affect our results 

of extent determination. 

 The simulation procedure is as follows. In chapter 3.1, based on the reciprocal 

distance covariance model (Moritz, 1980), we use its high frequency part as the PSD 

model of high frequency topography. Jekeli (2003) used the model to study the gravity 

field from the terrain and thus the low frequency part of the model is fitted with gravity 

field. Here, we only simulate the high frequency topography by extending the PSD model 

of low frequency topography to higher frequencies. Thus, the parameters of the low 

frequency part of the model are not needed in our application. However, it is also noted 

that sometimes when people study the ocean bottom topography, the satellite radar 

altimetry is used and thus the topography or the bathymetry is modeled from gravity 

field.  In our application, by fitting an isotropic empirical PSD of DEM data with the PSD 

model of topography, we find appropriate parameters of the covariance model at high 

frequencies. By using the high frequency information of the fitted PSD model, we 

simulate the very high frequency part of topography (i.e., higher than 30 m resolution), 

and combine this with the part up to 30m resolution (which comes from the DEM data). 

The spectrum of the topography can be derived from the PSD of the topography where 

they are related with each other by the periodogram method. After we have the spectrum 

of the topography, the inverse Fourier transform can be applied to produce the realized 

topography. Thus we obtain the simulated topography with an arbitrarily high resolution. 
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 Although modeling the PSD of the topography does not explicitly depend on a 

model for the gravitation, the forms of the two models are similar due to the fact that in 

many cases gravitation and topography are linearly correlated at the higher frequencies. 

Therefore, the following development is based on potential and gravitation, which are the 

original quantities for which the reciprocal distance model was designed.  Later, we 

simply interpret the gravitation PSD model with appropriate scaling as a model for the 

topography. We assume that both the disturbing potential, T, and the topography in a 

region are stationary, isotropic stochastic processes on the plane. Under such an 

assumption, a standard model for the covariance function of T, called the reciprocal 

distance model (Moritz, 1980), is 


 


J

j
jj

j

T

sxx
xxxx

1
222'

33
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'
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 ,                          (3.1)  

where 

'

111 xxx  , '

222 xxx  ,
2

2

2

1 xxs  , and where jjJ  ,,  are parameters 

whose values are selected to fit an empirical determination of the covariance or power 

spectral density (PSD) of the disturbing potential or one of its derivatives.  

The PSD model corresponding to equation (3.1) is given by: 
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,                                    (3.2) 

where the magnitude of the spatial frequencies, 1f  and 2f  is given by 

2

2

2

1 fff  ,                                                        (3.3) 

That T  depends only on f  is a consequence of T  depending only on s , which means 

that the potential field is assumed to be statistically isotropic. 

The gravity anomaly is defined as QPP gg  , where Pg  is the gravity at a point P of 

the geoid, Q  is the normal gravity at a point Q of the reference ellipsoid, and P is 

projected onto the point of Q by means of the ellipsoidal normal. With the planar 

approximation of the earth, the auto-covariance function for gravity anomalies, according 

to the rules of propagation of covariance (Moritz, 1980), is given by 
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The corresponding PSD relationships in the frequency domain between the potential and 

its vertical derivatives are given by (Jekeli 2003): 

 Tgg f  

2

, )2(  .                                                            (3.5) 

3.2 Topography simulation using covariance model 

 In order to relate the gravity field with topography, it is a reasonable assumption 

that the high frequency anomalies of the gravity field are generated principally by the 

terrain variations. For example, Wang and Rapp (1990) applied the assumption of linear 

relationship between free-air gravity anomalies and topographical heights in geoid 

undulation computations. Voigt (2006) also points out that local gravity field effects are 

strongly correlated with the topography and the case of high frequency terrain effects in 

gravity field modeling was studied using "1"1  DEM. However, Vanicek and Kleusberg 

(1987) did not make such an assumption for the effects of terrain in Helmert's 2nd 

condensation method. Martinec et al. (1993) also pointed out that both methods, Vanicek 

and Kleusberg (1987) as well as Wang and Rapp (1990), are approximate for different 

reasons and there are cases when the mass distribution in the earth creates the gravity 

field which behaves opposite to the above assumption. Here we apply the assumption of 

Wang and Rapp (1990) to our application, realizing also that it is particularly applicable 

to the higher frequencies representing the local features of the topography and gravitation 

(Jekeli, 2006). To simplify the relationship between the gravitational field and the 

topographic heights, we approximate the topography by its Helmert condensation 

(Heiskanen and Moritz, 1967) onto the geoid. The topographic masses thus are modeled 

as a two-dimensional mass layer on the geoid with density equal to h  at any point, 

where   is the crustal density (constant) and h  is the terrain elevation at this point. From 

the equation (2.1), we have the potential V  at a point P , due to such a layer is given by 

dA
r

h
GV

A

 )(x ,                                                           (3.6) 

where G is Newton’s gravitational constant, A  represents the integration area and r  is 

the distance between the computation point and the integration point. With planar 

coordinates, we have 
2

3

2

22

2

11 )()( xxxxxr   and ),( '

2

'

1 xx  are coordinates of the 

integration points on the geoid.  
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Equation (3.6) is a convolution of h  with the inverse distance, 1r  and can be written as

1)(  rhGV x . We can apply the convolution theorem (2.30), (2.31) to (3.7) and also 

we have the 2-D Fourier transform of 
2
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2

2

2

1

1

xxx 
 as 

fx
e

f
321 

 which is a Hankel 

transform. Thus it is shown that the Fourier transform of the potential at the level 03 x  

is given by  

,)()( 32 fx
eh

f

G
V

 
                                                        (3.7) 

Equation (2.70) gives the relationship between power spectral density and spectra. 

Therefore, we obtain the (cross-) PSD of the potential at two levels, 3x  and '

3x , by 

substituting (3.7) into (2.70) 

.)()()())((),;(
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'
33 xxf
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G
VVxxf
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                         (3.8) 

From equations (3.5) and (3.8) we can get the PSD of the vertical derivative of V by 

.)()2(),;(
)(22'

33

'
33 xxf

hg efGxxf


 
                                      (3.9) 

Equation (3.9) gives the relationship between the PSD of gravity anomaly with PSD of 

topography which is based on our assumption that gravity anomaly is linearly related 

with the topography elevation. 

The next step is to synthesize the topography in space domain from the discrete PSD. 

We assume that the topography height signal is a finite power signal and that it is 

truncated at 21,TT  along the two directions of a region and so can be treated as a finite 

energy signal; and we apply the Fourier transform to it. From equation (2.70), we have: 

))),(),(
1

((),( 21,21,

21,
21 2121

21

lim ffHffH
TT

ff TTTT
TT

h





  .                          (3.10)  

Therefore, the PSD of the topography can be estimated from its spectrum by the 

periodogram. We want to synthesize the topography on a 2-D grid, 
21 ,kkh (evenly spaced, 

21, xx  ) where 1,,0;1,,0 2211  NkNk  . We use discrete Fourier transforms 

and estimate the PSD by ignoring the limit and the expectation in (3.10): 
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and ),( 21, 21
ffH TT  is the discrete spectrum of topography height for the interval 21,TT . 

So the spectrum of topography, ),( 21, 21
ffH TT , on our synthesized grid can be computed 

according to: 

),()( 212211,,, 212121
nnxNxNicbH hnnnnnn  ,                               (3.12) 

where 
2121 ,, , nnnn cb are assumed to be normally distributed random variables: 

).)2/1(,0(~ ),)2/1(,0(~ 2

,

2

, 2121
ΝcΝb nnnn                                      (3.13) 

By substituting (3.12) back into (3.11), the square-root of the periodogram of 
21 ,nnH  is 

2

,

2

,21 2121
),( nnnnh cbnn  . 

Since 
21 ,nnb ,

21 ,nnc  are normally distributed and independent, we have 
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And by using the law of propagation of variances, (3.14) has the variance 22  , thus we 

can derive that the standard deviation of 2

,

2

, 2121 nnnn cb   is 1. Therefore, the standard 

deviation of the square-root of h̂  is ),( 21 nnh , for all 21,nn .  

Thus, the inverse discrete Fourier transform of 
21 ,nnH  yields a realization of the 

corresponding topography. 

3.3 Simulation results 

 The topographies in two areas (Figure 3.1) were selected to compute the empirical 

PSD and thus to select the proper parameters in (3.1) to make the PSD of the reciprocal 
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distance covariance model fit the empirical model. Area 1 represents relatively smooth 

terrain, and Area 2 is a rough mountainous terrain. The topographies simulated in smaller 

Area 1_a (using the PSD of Area 1) and Area 2_a (using the PSD of Area 2) are based on 

DTM2006 5data; while the topographies simulated in smaller Area 1_b (using the PSD 

of Area 1) and Area 2_b (using the PSD of Area 2) are based on SRTM 03   data. 

 

Figure 3.1  Four Areas (1_a, 1_b; 2_a, 2_b) of Simulated Topography. 

Two kinds of low frequency terrain data were used for the simulation. Dataset1 is coming 

from the DTM2006 model which uses spherical harmonic expansion (to harmonic degree 

2160) of Earth's topography made available by the EGM2008 development team (Pavlis 

et al., 2007). Dataset1 has resolution 5  and is computed for large Area 1 (Latitude: 

42
o
~48

o
, Longitude: 259

o
~269

o
) and large Area 2 (Latitude: 37

o
~44

o
, Longitude: 

250
o
~257

o
), respectively, for the purpose of empirical PSD computation. The software 

we used is NGA's harmonic synthesis program; both it and the spherical harmonic 

coefficients of the topographic elevation, are downloaded from the NGA website: 

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/first_release.html. Dataset2 

is the SRTM (Shuttle Radar Topographic Mission) global dataset (Farr et al., 2007) and 

its resolution is 03  . Dataset2 is downloaded for large Area 1 and large Area 2, 

respectively, also for the purpose of empirical PSD computation; and, it is downloaded 

from website: http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10008_1. 

The dataset1 (5  resolution) for large Area 1 has 72×120 grid points, while for large Area 

2 has 84×84 grid points. The dataset2 ( 03   resolution) for large Area 1 has 720×1200 

grid points, while for large Area 2 has 840×840 grid points. 

1 
2 

1_a 

1_b 

2_b 

2_a 

1 

2 

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/first_release.html
http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10008_1
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Dataset1, Dataset 2 were also used to model the low-frequency terrain data in our 

simulation sub-Areas, i.e., Dataset 1 for Area 1_a (latitudes: oo 7.49~47 , longitudes:
oo 7.265~263 ) and Area 2_a (latitudes: oo 7.37~35 , longitudes: oo 7.252~250 ); 

Dataset2 for Area 1_b (latitudes: oo 7.44~42 , longitudes: oo 7.261~259 ) and Area 2_b 

(latitudes: oo 7.39~37 , longitudes: oo 7.252~250 ), respectively.  

First, the empirical PSD, 
21 ,)ˆ( kkh of topography data was computed using the 

periodogram method, i.e., equation (3.11) evaluated for our two-dimensional grid dataset 

of Area1 and Area2. Next, the isotropic empirical PSD was computed by averaging the 2-

D discrete PSD values within each radial frequency band using following equations 





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i

irhr

isotropic

h f
N

f
1

))(ˆ(
1

)(ˆ                                                  (3.15) 

where 2

2

2

1 fff r  , is radial frequency; )
1

,
1

min(
2211 xNxN

f


  and 

)(
f

f
Intergr r


 is the radial frequency band number, N is the total number of 

21 ,)ˆ( kkh

whose radial frequency is located between the frequency band ),[ frr ff  . 

The angular units for the downloaded grid data of Area 1 and 2 have been converted to 

horizontal distance units using  RdxdRx  21 ;cos , where R is the radius of the 

earth,   is the average latitude of the area. Also the horizontal frequency units can be 

obtained from the units of 21, xx  . The fitted reciprocal distance covariance model, 

especially the lower frequency parameters were obtained such that the various 

components of the reciprocal distance model are tangent to (osculating) the empirical 

power law PSD, as described in section 28 of Freeden et al. (2010). The following figures 

(Figure 3.2; Figure 3.3) show the isotropic empirical PSD of two datasets (blue line: 

DTM2006 5  grid; green line: SRTM 03   grid), the global DTM2006 degree variances 

(black line) and the PSD of the fitted reciprocal distance covariance model (red line) in 

Area 1 and Area 2 respectively. For Area 1, the global DTM2006 degree variances up-

shift with respect to the local empirical PSD, indicating that the topographic features of 

Area 1 are not represented well by the global topographic PSD. On the other hand, Area 2 

is a relatively mountainous area and the local topographic feature is more consistent with 

the degree variances of the global topography (and bathymetry). Also the low frequencies 
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of DTM2006 degree variances do not fit well with the covariance model because the low 

frequencies of the covariance model come from the gravity potential, which means that 

the low frequencies of DTM2006 are not consistent with that of the gravity field. 

However, this will not affect our topography simulation since we only use the high 

frequency part of the covariance model. The PSD magnitude jump (for blue line and 

green line) occurs where the radial frequency, rf  exceeds the Nyquist frequencies

2

2

1

1
2

1
)(,

2

1
)(

x
f

x
f NN





 . The reason is that not enough data information exists along 

the radial direction when reaching the boundaries of the square. 
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Figure 3.2 Empirical PSD and Reciprocal Distance model PSD in Area 1. 

 

Figure 3.3 Empirical PSD and Reciprocal Distance model PSD in Area 2. 
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The parameters 
2

j  and j  in equation (3.1) that are the selected values to fit empirical 

PSD's are shown in Table 3.1. Although the table gives the all parameters corresponding 

to whole frequencies, we only use the parameters representing the high frequency part of 

the covariance model to simulate the topography. 

Table 3.1 Reciprocal Distance Model Parameters 

Area 1 Area 2 

j 2 (m
4
/s

4
)  (1/m) j 2 (m

4
/s

4
)  (1/m) 

1 10
5 

3×10
-7 

1 10
5 

3×10
-7

 

2 3300 9.69×10
-7 

2 3300 9.69×10
-7

 

3 130 4.76×10
-6 

3 640 7.56×10
-6 

4 32.4 8.94×10
-6 

4 951 9.73×10
-6 

5 3.4 2×10
-5 

5 79.9 2.18×10
-5 

6 0.3205 4.48×10
-5 

6 6.71 4.88×10
-5 

7 2.01×10
-2 

1×10
-4 

7 0.564 1.09×10
-4 

8 2.53×10
-3 

2.25×10
-4 

8 4.74×10
-2 

2.44×10
-4 

9 1.59×10
-4 

5.03×10
-4 

9 3.98×10
-3 

5.47×10
-4 

10 1.994×10
-5 

1.13×10
-3 

10 3.34×10
-4 

1.23×10
-3 

11 1.565×10
-6 

2.52×10
-3 

11 2.81×10
-5 

2.74×10
-3 

12 3.93×10
-8 

5.64×10
-3 

12 2.36×10
-6 

6.14×10
-3 

13 2.47×10
-9 

1.26×10
-2 

13 1.98×10
-7 

1.37×10
-2 

14 1.55×10
-10 

2.83×10
-2 

14 1.66×10
-8 

3.08×10
-2 

15 9.74×10
-12 

6.33×10
-2 

15 1.4×10
-9 

6.89×10
-2 

The DTM2006.0 5 dataset (approximate 9.2 km resolution) has largest Nyquist 

frequency about 5.4×10
-5

 cy/m. If we need to simulate the topography with 20m 

resolution, which has Nyquist frequency 2.5×10
-2

 cy/m, then the PSD models with the 

parameters of Table 3.1 are suitable to simulate the topography with frequencies between 
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5.4×10
-5

 cy/m and 2.5×10
-2

 cy/m within Area 1 or Area 2. The reason is that those 

parameters in the reciprocal distance model of potential include the high frequency 

information of the empirical PSD of topography which indicates a power law, consistent 

with the known properties of the Earth’s topography. Therefore, we can extend it to the 

higher frequencies for our simulated topography. This extension of our PSD of 

topography from the 5  resolution empirical DTM2006 data up to frequency of 10
-3 

cy/m 

is reasonable and was verified by the empirical PSD of real SRTM 03   data (Figure 3.2, 

and Figure 3.3). We assume that this extension also holds for topography with even 

higher frequency, i.e., the Nyquist frequency of our simulated topography. This is 

combined with the DTM2006 5  topography to obtain the total simulated topography. 

For the SRTM 03  dataset (approximate 920m resolution), the simulation is for 

frequencies approximately between 5.4×10
-4

 cy/m and 2.5×10
-2

 cy/m. Four topographies 

were simulated for smaller Areas 1_a, 1_b, 2_a, 2_b, respectively; each area covers about 

300 km by 300 km with 20 m resolution. 

Figure 3.4 shows the simulation result for Area 1_a using the PSD of Area 1 and the 

DTM 2006 5  dataset; Figure 3.5 shows two W-E profiles of Figure 3.4. 

The similar figures for the simulated topography of Areas 1_b, 2_a, 2_b are shown in 

Figure 3.6~3.10. 
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 It can be seen from the above figures that the data (low frequency part of 

topography) provide the information needed to determine the PSD model and act as the 

smooth part of topography in the simulated results. If the data include higher frequency 

information (which also means less simulated topography), the better is the total 

simulated topography. This explains why the topography simulated from the SRTM 03   
DEM data looks much better than from the DTM 2006 5  data. Also it can be seen that 

the rough Area 2 has larger magnitude for high frequency topography than the smooth 

Area 1 because the PSD of h  for high frequency has larger magnitude in rough Area 2 

than in planar Area 1.  

 In order to know how reasonable our simulated topography is, for our selected 

Area 1_a, we simulated the topography up to resolution "30  on top of the DTM2006 '5  
data; also we simulated the topography up to resolution "3  on top of the SRTM "30  data.  

Then we compared these to the real SRTM data which has the same resolution as our 

simulated topography. These comparisons for Area 1_a are shown in Figures 3.12, and 

3.13. A West-East profile at latitude 47.33
o
 of Figure 3.12, 3.13 is shown in Figures 3.14, 

and 3.15. It can be seen that our simulation is closer to real data when simulation starts 

with higher frequency data, i.e., simulated topography based on SRTM "30  data is better 

than based on DTM2006 "5  data. Also the topography simulated in relatively rough areas 

is better than in flat areas. It is because our simulation is based on the stationary property 

of the high frequency topography signal, whereas, from the actual data we can see that 

the topography signal at high frequencies is not stationary, especially at the boundary 

between rough area, flat area and lake area. To improve the simulation results, two kinds 

of methods can be applied. In the first method we can smooth the simulated topographic 

signal for different subareas thus further simulating a kind of non-stationarity. In the 

second method we can divide the large simulation area into several subareas based on the 

topographic characteristics of flatness, such as flat or mountainous. Each subarea includes 

only one kind of topography and the stationarity can be assumed to hold within each 

subarea, while the stationarity between these subareas does not hold. The covariance 

models of PSD are fitted with the empirical data of each subarea, respectively, and then 

we simulate the topography for each subarea, respectively. Finally, the total topography is 

obtained by combining the simulation results of these subareas. However we did not 

apply such methods in our truncation error computations by geostatistical analysis, which 

may affect the validity of the results in applications where significant non-stationarity 

exists.  

By using this latter method, we can simulate ultra-high frequency topography 

(e.g., resolution up to 10 m) based on a model implied by the spectral attenuation of the 

prior low frequency DEM data. We use this simulated topography to test and verify the 



59 

 

method described in chapter 2 which determines the extent of terrain correction needed 

for specific applications. This part will be described in the next chapter. 
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Figure 3.14 Profile of low frequency data, simulated topography, and real topography 

 
Figure 3.15 Profile of low frequency data, simulated topography, and real topography  
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Chapter 4  

 Terrain Correction for Ground-based and 

Airborne Gravity Gradiometry 

4.1 Truncation error verification by deterministic method 

 In this section, we will verify the geostatistical methods by comparing with the 

deterministic method. The geostatistical method which we described in chapter 2.2.2 uses 

the statistics of the residual topography data or the geostatistics of our simulated 

topography to compute the variance of the truncation error. The deterministic method 

applies the analytical right rectangular prism method to the topography directly and 

computes the truncation error in space domain. Then by applying a Monte Carlo analysis, 

that is, by repeating the computation many times (such as, 1000 times) to get a large 

sample. Thus the variance of the truncation error is computed statistically based on the 

sample. In chapter two, we developed the geostatistical method where the data extent of 

the terrain correction can be determined by setting the criterion such that the truncation 

error is smaller than the typical gravity gradiometry instrument error, provided that we 

neglect other errors first. Since gravity gradients are very local signals, also for our 

application of subsurface detection, we need to quantify the extent of needed topographic 

data for the terrain correction of gravity gradients for a small observation area, say 

several hundred meters or a few kilometers. To aid in this investigation we also 

developed a method to simulate the ultra-high resolution topography based on the 

reciprocal distance covariance model that is constructed from given low, as well as high 

resolution data. In order to verify the procedure of extent determination using the geo-

statistical method for local gravity gradiometry, i.e., to verify the variance of truncation 

error, we need to compare it with the actual error variance determined by the 

deterministic method using the simulated topography. 

 First, we use the method described in chapter three to simulate topography with 

the resolution of 1 meter. The PSD covariance model was fitted to the low resolution 

SRTM 03   and high resolution SRTM 1  DEM data in Area 1 (Figure 4.1) and the 

parameters used for the reciprocal distance covariance model are listed in Table 4.1. 

Although the table gives the all parameters corresponding to whole frequencies, we only 

use the parameters which represent the high frequency part (higher frequency than 1  

DEM) of the covariance model to simulate the topography. The simulated 1 m resolution 
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topography (over an area, 3 km by 3 km) is shown in Figure 4.2 together with the SRTM 

1  DEM and also two profiles are shown in Figure 4.3, respectively. 

 

Figure 4.1 PSD covariance model with empirical PSD 
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Table 4.1 Parameters of Reciprocal Distance Covariance model for Area 1 

j 2 (m
4
/s

4
)  (1/m) 

1 1×10
5
 3×10

-7
 

2 3.3×10
3
 9.69×10

-7
 

3 1.3×10
2
 4.76×10

-6
 

4 3.24×10
1
 8.94×10

-6
 

5 3.4 2×10
-5

 

6 3.205×10
-1

 4.48×10
-5

 

7 2.01×10
-2

 1×10
-4

 

8 2.53×10
-3

 2.25×10
-4

 

9 1.59×10
-4

 5.03×10
-4

 

10 9.97×10
-5

 1.13×10
-3

 

11 1.565×10
-6

 2.52×10
-3

 

12 7.86×10
-8

 5.64×10
-3

 

13 1.482×10
-8

 1.26×10
-2

 

14 9.3×10
-10

 2.83×10
-2

 

15 9.74×10
-11

 5.93×10
-2

 

16 1.74×10
-12

 2.08×10
-1

 

17 1.8×10
-14

 8.48×10
-1
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 We apply the geostatistical procedure of Chapter 2 to compute the truncation error 

variance on the basis of this simulated topography. This means that we determine the 

covariance model for the truncation error for each truncated area according to equation 

(2.84). Then, the variance of the error is the covariance at zero distance, and the variance 

of the error difference between two neighboring points is given by equation (2.86). The 

results of the truncation error variance on the basis of this simulated topography are listed 

in Table 4.2, 4.3. In this way, we determine the extent of topographic data needed to 

make sure the variance of truncation error is smaller than the variance of instrument error, 

for example, 0.01 E
2
. Also we can determine the needed extent of topography data for a 

pair of points through the variance of truncation error difference.  

 Through the analysis in section 4.2, we will find that the extent determined for the 

truncation error of one point is much larger than the extent determined for the truncation 

error difference of a pair of points, provided the same criterion is used where the variance 

of instrument error is 0.01 E
2
. Since our simulated topography has only a 3 km by 3 km 

area, the variance of truncation error for one point will not reach the criterion even if the 

topography within the whole simulation area is included. 

 So for these simulated data, we only determine the extent of data for a pair of 

points separated by a certain distance, for example, up to 500 m, for local gradient 

observations. That is, in a local gradiometer survey over an area of about 500 m, only the 

variations in the gradients relative to the mean would be of interest.  

 The above describes the procedure of using the geostatistical method to compute 

the variance of truncation error difference (2.86). In this procedure, the FFT method was 

used to compute the convolution in (2.76) or (2.77) which means that the data are 

assumed to be periodic with period 3 km. For the observation point near the edge of the 

simulated area, the correction area is still 3 km by 3 km (determined by the kernel 

function area) and centered on the observation point. In effect, this will make the total 

topography area 6 km by 6 km which is achieved by the periodicity.  

 On the other hand, the deterministic method was also used to compute the the 

truncation error difference for a pair of points using the prism summation model 

described in chapter 2.2.1 in order to verify the above geostatistical method. Then the 

variance of the error difference was computed using the Monte Carlo method. We first 

compute the truncation error for one observation point using the simulated topography 

centered on this observation point, and then the computation was repeated for another 

observation point. The truncation error difference was obtained by subtracting one 

truncation error from the other. These two observation points should have the distance of 

500 m which is the same as that in the geostatistical method; also the direction along the 

pair of points should be random. The computation was repeated one thousand times for 

such a pair of points and then the variance was computed. 
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 It should be pointed out that for the deterministic method, the pair of points 

selected at random should appear in an area that is consistent with the area of data used in 

the geostatistical method. Since the simulated 3 km by 3 km topography used in the latter 

in effect covers an area 6 km by 6 km due to the periodicity assumption of FFT, also the 

pair of observation points for the deterministic method should be at the center of 3 km by 

3 km area extended periodically to cover 6 km by 6 km. Another case is that if real 

instead of simulated data are used for the computations, they usually will be padded with 

zeros in order to reduce the cyclic convolution error. To be consistent with the 

geostatistical method, the errors should also be computed using data in a zero-padded 

area. Figure 4.4 shows the diagrams of these two cases. For the above two cases, the 

actual computation area is four times larger than the simulated topography area. So, due 

to the computation capability and speed of our computer, we set our simulated 

topography with ultra-high resolution of 1 m to cover only a small area of 3 km by 3 km.  

 For our verification of the geostatistical method by using the deterministic 

method, we first select the data area as 1 km by 1 km, and then increase this with steps of 

0.5 km until it reaches the whole simulated area of 3 km by 3 km.  
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Figure 4.4 Diagram of deterministic method to compute variance of error difference. 

 The variance of truncation error differences coming from the geostatistical 

method in section ii of chapter 2.2.2 was compared with that from the deterministic 
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method described above. Table 4.2 shows results for the case of padding beyond the 3 km 

x 3 km area by zeros; Table 4.3 shows results for the alternative case of padding data 

periodically. Both results use the terrain correction for T11 as an example. 

Data padded by zeros 

Extent 

(km) 

Variance (E
2
) 

(truncation error difference) 

Variance (E
2
)* 

(actual error difference) 

1 3.430 3.638 

1.5 0.662 0.700 

2 0.156 0.163 

2.5 0.0265 0.0256 

3 0 0 

Table 4.2 Case 1: Variance of geostatistical method VS deterministic method 

Data padded periodically 

Extent 

(km) 

Variance (E
2
) 

(truncation error difference) 

Variance (E
2
)* 

(actual error difference) 

1 8.875 8.730 

1.5 0.9798 0.9776 

2 0.2502 0.2562 

2.5 0.1004 0.1069 

3 0 0 

Table 4.3 Case 2: Variance of geostatistical method VS deterministic method 

* denote the results based on 1000 random Monte Carlo samples 

 From the above results, it can be seen that the truncation error variances from the 

geostatistical analysis are consistent with those from the deterministic method. Here the 

good agreement is due to the fact that we compute the variance of truncation error using 

topography that is simulated with the same PSD that is used for the geostatistical method.  

Also it is confirmed that the two methods yield consistent results for other distances 

between points. Therefore we confirm that our method of determining the extent of 

terrain correction is correct by using the geo-statistical method and the corresponding 

procedure described in chapter two. Also, if we pad data periodically instead of with 

zeros, the variance we get is larger due to the extra signal that contributes to the 

truncation error beyond the data area. As the extent increases, the excluded area becomes 

smaller, so the variance will also be smaller correspondingly. If we wish the variance of 

the truncation error for a pair of points with distance separated by 500 m to be smaller 

than 1 E
2
 as our criterion, then the minimum extent for this simulated case should be 1.5 

km. The truncation effect of the topography beyond this extent is larger for a single 
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observation point, but most of this just act like a bias, when considering a pair of points. 

The above conclusions are obtained for the topography we simulated in Area 1, which is 

a relatively smooth area; if the topography has another character, the consistency between 

the two methods still holds; however the values of the variances would be different. 

4.2 Extent of terrain correction for ground-based gravity 

gradiometry 

Now we apply the geostatistical method described in chapter 2.2.2 to determine 

the extent of terrain correction required for a possible set of ground-based gravity 

gradiometry observations. Since we compute only the truncation error or its variance, the 

integration area excludes a certain area around the observation points; and thus, since the 

integration source point will not approach the computation point, there are no 

convergence issue for the series developments in chapter 2, specifically (2.31), (2.32).  

The DEM we select to compute the terrain is the SRTM 3   DEM (about 90 m resolution) 

within an area of latitude: 35
o
N~40

o
N and longitude: 110

o
W~105

o
W. The terrain 

elevation data were downloaded from website 

“http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp”. The location and image of the 

DEM data are shown in Figure 4.5. The residual topography is computed for the ground 

reference plane at altitude of 2317.2 m which is the average altitude of the DEM area. 

        

Figure 4.5 SRTM 3  DEM data for ground gravity gradiometry 

When we compute the truncation error variance for the terrain correction using the 

geostatistical method, we expand the integral kernel using the Taylor series (2.31) in 

order to form the convolution and then apply the convolution theorem. Thus we need to 

evaluate which order of expansion is needed, i.e., determine the maximum n in (2.34). 

We did a test for T33 at one point, as well as for a pair of points separated by 0.9 km, 4.5 

km, 9 km, 18 km, 45 km, 90 km, 180 km, 270 km, and 360 km, respectively. The results 
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were computed for expansions of order one and order four and are shown in Figures 4.6, 

4.7. Figure 4.6 for the variances at one point shows that the difference between these two 

orders is only 10
-2

 E
2
 for the extent beyond 80 km; and it is even smaller for pairs of 

points, as shown in Figure 4.7. Therefore, the Taylor series expansion up to order one is 

enough for the extent determination. It should be pointed out that neglecting terms in 

Taylor expansion of order higher than one is only reasonable for the determination of the 

terrain correction extent. If we also want to compute the terrain correction using Taylor 

expansion of order one, then the method (v) in chapter 2.2.2 must be used, i.e., the inner 

zone must be computed separately using the prism summation method.  

 

Figure 4.6 Differences of truncation error variances between Taylor expansion order 1 

and order 4 for one observation point 
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Figure 4.7 Differences of truncation error difference variances between Taylor 

expansions order 1 and order 4 for pairs of points separated by different distances 
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lengths oooo 5 ,4.1667 ,2.5 ,0.8333 ,4167.0 o , respectively. Then the variance of the 

truncation error was computed using the given DEM data within each sub-area by 

applying equations (2.81), (2.82), (2.83), (2.84). The results were plotted versus the 

extent of terrain correction in the same Figure 4.8 for all 5 sub-areas (T33, for example). 

The variance of the error is not exactly equal to zero when the truncation extent is equal 

to the total sub-area. The reason is that we extend the area of the kernel function, )1(ˆ n

jkF , 

to four times larger than the data area, which means we are assuming there is always 

terrain outside the data area. If we truncate the kernel function outside the original data 

area to be zero (which means there is no extra terrain outside the data area), then the 

variance of truncation error will be very close to zero (see right plot of Figure 4.8). 

0 200 400 600
10

-20

10
-10

10
0

10
10

points separated by 0.9km

0 200 400 600
10

-10

10
-5

10
0

10
5

v
a
ri
a
n
c
e
 o

f 
e
rr

o
r 

d
if
fe

re
n
c
e
 f

o
r 

T 3
3
(E

2
)

points separated by 4.5km

0 200 400 600
10

-10

10
-5

10
0

10
5

v
a
ri
a
n
c
e
 o

f 
e
rr

o
r 

d
if
fe

re
n
c
e
 f

o
r 

T 3
3
(E

2
)

points separated by 9km

0 200 400 600
10

-10

10
-5

10
0

10
5

v
a
ri
a
n
c
e
 o

f 
e
rr

o
r 

d
if
fe

re
n
c
e
 f

o
r 

T 3
3
(E

2
)

points separated by 18km

0 200 400 600
10

-10

10
-5

10
0

10
5

v
a
ri
a
n
c
e
 o

f 
e
rr

o
r 

d
if
fe

re
n
c
e
 f

o
r 

T 3
3
(E

2
)

points separated by 45km

0 200 400 600
10

-10

10
-5

10
0

10
5

v
a
ri
a
n
c
e
 o

f 
e
rr

o
r 

d
if
fe

re
n
c
e
 f

o
r 

T 3
3
(E

2
)

points separated by 90km

0 200 400 600
10

-10

10
-5

10
0

10
5

points separated by 180km

0 200 400 600
10

-10

10
-5

10
0

10
5

extent(km)

v
a
ri
a
n
c
e
 o

f 
e
rr

o
r 

d
if
fe

re
n
c
e
 f

o
r 

T 3
3
(E

2
)

points separated by 270km

0 200 400 600
10

-10

10
-5

10
0

10
5

v
a
ri
a
n
c
e
 o

f 
e
rr

o
r 

d
if
fe

re
n
c
e
 f

o
r 

T 3
3
(E

2
)

points separated by 360km

 

 



7
5
 

     

 
 

 

F
ig

u
re

 4
.8

 T
ru

n
ca

ti
o
n
 e

rr
o
r 

v
ar

ia
n
ce

 v
er

su
s 

ex
te

n
t 

fo
r 

d
if

fe
re

n
t 

D
E

M
 d

at
a 

si
ze

s 

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

1
0

-3

1
0

-2

1
0

-1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

T
 (

k
m

)

Error variance (E2)

T
ru

n
c
a
tio

n
 E

rr
o
r 

va
ri
a
n
c
e
 f
o
r 

d
iff

e
re

n
t 

D
E

M
 d

a
ta

 s
iz

e
 

 

 

0
.4

1
6
7

o
x
0
.4

1
6
7

o

0
.8

3
3
3

o
x
0
.8

3
3
3

o

2
.5

o
x
2
.5

o

4
.1

6
6
7

o
x
4
.1

6
6
7

o

5
o
x
5

o

0
10

0
20

0
30

0
40

0
50

0
60

0
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

T 
(k

m
)

Error variance (E2)

Tr
un

ca
tio

n 
E

rr
or

 v
ar

ia
nc

e 
(t

ru
nc

at
ed

 k
er

ne
l f

un
ct

io
n)

 

75 



76 

 

It is shown that the extent of the terrain correction needs to reach 400 km in order that the 

truncation error variance is smaller than 10
-2

 E
2
, or 230 km for variance to be smaller than 

10
-1

 E
2
. It should be noted that these results are obtained for a single observation point. 

For a pair of points separated by a certain distance the terrain effect mostly cancels, even 

if the surrounding topography would generate a large terrain effect for one observation 

point. So if we consider the truncation error difference for a pair of points, then the extent 

needed will decrease significantly. The variance of the truncation error difference for a 

pair of points, separated by 0.9 km, 4.5 km, 9 km, 18 km, 45 km, 90 km, 180 km, 270 

km, and 360 km was computed and is shown in Figure 4.9, which also shows the variance 

of the absolute truncation error for one point. It can be seen that the extent needed on the 

basis of the error difference variance is dramatically smaller than the extent determined 

from the variance of the total error, especially for points separated by a short distance.  

 With the separation increasing, the required extent also becomes larger. For 

example, if we want the variance of the error difference to be smaller than 10
-2

 E
2
, then 

the extent only needs to be 35 km for points separated by 0.9 km, or 85 km for points 

separated by 4.5 km, etc. These results are obtained for the gravity gradient T33. The 

results for gravity gradients T11, T12, T13, T22, T23 are shown in Figure 4.10 ~4.14, 

respectively. It is noted that the required extent of the terrain correction for gravity 

gradients T13, T23 are much less than for the other gravity gradient components. It is 

because in the Taylor expansion of (2.32), 0)0(,0)0( '  jkjk FF  for T13, T23 considering 

(2.26); while 0)0(,0)0( '  jkjk FF  for the other gravity gradient components. )0(jkF  is 

associated with the residual terrain, h ; but )0('

jkF  is associated with the higher-order 

residual terrain, 2h . Also, from Figure 4.9 ~4.14, it is noted that the error variance for a 

single point is not always greater than the variance for a pair of points separated by large 

distance. The reason is that the covariance in (2.86) for a pair of points separated by large 

distance may be negative in certain cases. 
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Figure 4.9 T33: Variance of truncation error and error difference for different distance 

 

Figure 4.10 T11: Variance of truncation error and error difference for different distance 
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Figure 4.11 T12: Variance of truncation error and error difference for different distance 

 

Figure 4.12 T13: Variance of truncation error and error difference for different distance 
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Figure 4.13 T22: Variance of truncation error and error difference for different distance 

 

Figure 4.14 T23: Variance of truncation error and error difference for different distance 
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4.3 Terrain correction for airborne gravity gradiometry 

4.3.1 Terrain correction of Air-FTG at Vinton Dome, LA 
 A survey was done by Bell Geospace Inc. (BGI) using the Air-FTG (Full Tensor 

Gravity Gradiometry) installed on a BT67 fixed wing airplane in 2008 over the Vinton 

Dome located in the south-west of Louisiana close to the Texas boarder (Figure 4.15). 

The flight lines are between latitudes 30.07
o
 ~ 30.23

o
, and longitudes -93.66

o
 ~ -93.53

o
.  

 

Figure 4.15 Vinton Dome Air-FTG survey locations and terrain correction areas 

Figure 4.16 shows the location of the survey lines (South-North flight lines) and tie lines 

(West-East flight lines). There are a total of 53 survey lines separated by 250 meters and 

the center 18 survey lines are separated by 125 meters. Each survey line is about 16.7 km 

long. There are 17 tie lines separated by 1000 meters. Each tie line is about 11.7 km long. 

The survey area is a relative flat area, so the flight clearance does not vary much. The 

statistics of the terrain and flight altitude of the survey area are listed in Table 4.4. 
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Figure 4.16 Survey line position and two center lines as profile 

Bell Geospace computed the terrain correction based on a modeling package that uses 3-

D prism to represent the topography. Their computation assumes a density of 1.0 gm/cc, 

so the true value (assuming constant density) is simply a scaled version of their result. 

The terrain corrections for gravity and gravity gradients were computed using the 

topographic mass above the geoid. The terrain data they use is the SRTM 90 m DEM 

which extends 10 km in all directions beyond the survey area. 
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 Min Max Std. Dev. Mean 

Terrain -1.81 24.40 4.18 7.30 

Altitude 53.55 116.34 8.26 85.17 

Clearance 43.88 108.76 7.40 77.87 

Table 4.4 Flight altitude statistics (m) 

 It is of interest to compare our terrain corrections with Bell Geospace’s and also 

to check if the extent of terrain that Bell Geospace used for their terrain correction is 

reasonable or not under the criterion that the variance of truncation error should be 

smaller than the variance of instrument error. First, a SRTM 3   DEM dataset (Figure 

4.17) was downloaded from http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp within 

latitudes: 29.977
o
~30.323

o
 and longitudes: -93.753

o
~-93.437

o
. Then the method (ii) (i.e., 

space prism summation) in chapter 2.2.1 was used to compute the terrain corrections at 

the observation positions on the flight line. Figure 4.18 shows the terrain corrections of 

all gravity gradients for the T90 tie line profile using Bell Geospace’s and our results; 

while Figure 4.19 shows their differences. Figure 4.20 shows the terrain corrections of all 

gravity gradients for the L461 survey line profile using Bell Geospace’s and our results; 

while Figure 4.21 shows their differences. 

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
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Figure 4.17 SRTM 3   DEM used for the terrain correction 
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of de-noising (using a 150 meter cut-off wavelength) and represent a line leveled result, 
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longitudes -93.753
o
~-93.437

o
. The DEM data within these two areas are not exactly same 

and this is the another reason that cause the difference. 
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 Next, we should determine the required extent of the terrain correction. Since we 

do not know the largest data area that will cause the variance of truncation error to 

converge for any particular extent, we select three DEMs concentric with the observation 

area, respectively oo 22  , oo 11  , and oo 5.05.0  . The SRTM 3   DEM data for these 

three areas were downloaded from the website 

http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10008_2. Figure 4.15 outlines the 

three DEM areas with Vinton dome observation area: the outer area is oo 22   with ranges 

in latitudes: 29.15
o
~31.15

o
 and longitudes: -94.6

o
~-92.6

o
; the second is the oo 11   area 

between latitudes: 29.65
o
~30.65

o
 and longitudes: -94.1

o
~-93.1

o
; and the third is the 

oo 5.05.0   area between latitudes: 29.9
o
~30.4

o
 and longitudes: -93.85

o
~-93.35

o
. The 

innermost red area is the observation area bounded by latitudes: 30.07
o
 ~ 30.23

o
 and 

longitudes: -93.66
o
 ~ -93.53

o
. 

 We use the geostatistical procedure described in chapter 2.2.2 to compute the 

variance of truncation error and variance of truncation error difference for three different 

sizes of DEMs by using equations (2.81) ~ (2.84). The observation height is set at hp=80 

m, which is about the average flight altitude. Next the extent of terrain correction was 

determined by letting the variance be smaller than the variance of typical instrument 

error, for example, high-accuracy airborne gradiometers with accuracy of 0.1 HzE /  

(Jekeli, 2006); the results were shown in Figure 4.22, 4.23. Since the observation area is 

about 11.7 km x 16.7 km, so we set a pair of computation points separated with distance 

20.7 km which is the longest distance within the observation area. It can be shown from 

the results in Figure 4.22 that the extent needed is about 35 km for oo 5.05.0   area; 55 

km for oo 11   area, and 110 km for oo 22   area based on the criterion of making the 

variance smaller than 10
-2

 E
2
. For any pair of points separated by 20.7 km, it can be seen 

from Figure 4.23 that the extent needed from each point is about 25 km for oo 5.05.0   

area; 35km for oo 11   area, 45 km for oo 22   area based on the same criterion. Here the 

required extent differs for three different sizes of area and does not converge quickly 

even when the area size increases to oo 22   because the topography in this area shows 

strong non-stationarity which is the assumption of our geostatistical analysis. On the 

other hand, if the topography is stationary, then these lines will converge quickly when 

the area size increasing (see Figure 4.8, Figure 4.32, 4.33 cases). Considering that the 

observation area is about 11.7 km x 16.7 km, and that Bell Geospace selected a DEM that 

extended 10 km along all directions of observation, their total extent of the DEM for the 

terrain correction is about 37 km, so their extent is enough to make sure the variance of 

truncation error for a single point is smaller than the criterion we set in terms of the 

variance of instrument error (i.e., 10
-2

 E
2
).  

http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10008_2
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Figure 4.22 Variance of truncation error for three different sizes of DEM 

 

Figure 4.23 Variance of truncation error difference for three different sizes of DEM 
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4.3.2 Terrain correction of Air-FTG at Parkfield, CA 
 Bell Geospace also collected Air-FTG observations near Parkfield, California, 

from September 15, 2004 to September 17, 2004. Figure 4.24 shows the location of the 

survey area which covers about 100 km
2
. Figure 4.25 shows the location of Air-FTG 

survey flight lines (Bell Geospace, 2004). The northwest-southeast flight lines are survey 

lines and the northeast-southwest flight lines are tie lines. There are 49 survey lines 

separated by 200 meters. Each survey line is about 11.2 km long. There are 10 tie lines 

separated by 1000 meters. Each tie line is about 10.3 km long. Table 4.5 shows the 

information of the terrain, altitude and clearance of the survey area. Bell Geospace uses 

the same procedure, method, and software package as that used for Vinton Dome area 

(Bell Geospace, 2008) to compute the terrain correction. The DEM data used for the 

terrain correction is the SRTM "1  dataset with about 30 m resolution.  

 

 

Figure 4.24 Location of survey area and terrain correction areas 
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Unit: m Min Max Std. Dev. Mean 

Terrain 410 1064.3 108.0 705.7 

GPS Altitude 839.4 1350.5 109.9 1096.4 

Ground Clearance 183.4 674.5 93.5 390.7 

Table 4.5 Flight altitude statistics 

 

Figure 4.25 Air-FTG survey flight lines 

Zhu (2007) also computed the terrain correction using the direct numerical integration 

methods. He used the USGS "1  DEM within the area defined by latitude: 
"'"' 380436~285235 oo and longitude: "'"' 3025120~5341120 oo  ; whereas, we used the 
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space prism summation method described in chapter 2.2.1. Two different sources of 

SRTM "1  DEM data were used for our computation, respectively; one dataset (named as 

DEM1) was downloaded from 

http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10008_2 and covers the same area 

as that of Zhu (2007), the other dataset (named as DEM2) is the dataset from the USGS 

website. The difference between the DEM1 and DEM2 datasets are shown in Figure 4.26, 

with their statistics listed in Table 4.6. The two DEMs have differences of about ±7 m, 

but the means of the terrain heights for two DEMs are almost same.  

 

Figure 4.26 Height difference between DEM1 and DEM2 (unit: meter) 

 

 Min Max Mean Std. 

Differences (m) -7.42 6.85 0.01 1.0 

Table 4.6 Statistics of difference between DEM1 and DEM2 

Figure 4.27 shows our results using the DEM1 dataset compared with corresponding 

results from Jekeli and Zhu (2006) and Bell Geospace (2004) with respective differences 

shown in Figure 4.28. Figures 4.29, Figure 4.30 show results similar to Figure 4.27, and 

Figure 4.28, but for DEM2 dataset. 
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It can be seen from Figure 4.27, 4.29 that the three results are basically consistent with 

each other. Figures 4.28, 4.30 show that the differences with respect to Bell Geospace 

(2004) are between ±2 E using either the DEM1 dataset or the DEM2 dataset.  
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Figure 4.27 Terrain corrections of all gradients between three methods for Line 241 

 

Figure 4.28 Differences of terrain corrections between three methods for Line 241 
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Figure 4.29 Terrain corrections of all gradients between three methods for Line 241 

 

Figure 4.30 Differences of terrain corrections between three methods for Line 241 
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 The differences of the terrain corrections for all gravity gradients between the 

DEM1 and DEM2 datasets are shown in Figure 4.31. Using the prism summation method 

these differences vary about ±0.4 E, which means the error of the DEM has little weight 

on the terrain corrections. 

 

Figure 4.31 Differences of terrain corrections between DEM1 and DEM2 for Line 241 

 Next we select four DEM areas concentric with observation area, i.e.,
oo 95.195.1  , oo 25.125.1  , oo 83.083.0  and oo 42.042.0  , respectively. The SRTM 3   

DEM data are downloaded from the website 

http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10008_2. Figure 4.24 shows the 

sketches of these DEM areas, where the innermost red area is observation area.  

Following the same procedure as for the Vinton Dome area, we computed the variance of 

the truncation error and of the truncation error difference for four different sizes of 

DEMs. Then, the extent of the terrain correction was determined based on the variance. 

Since the observation area is about 10 km x 10 km, we considered a pair of computation 

points separated by 14 km, which is the longest distance within the observation area. The 

observation plane height is the average flight altitude of 1096.4 m. The results (for 

gradient T33) are shown in Figures 4.32, and 4.33.  

http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10008_2
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Figure 4.32 Variance of truncation error for four different sizes of DEM 

 

Figure 4.33 Variance of truncation error difference for four different sizes of DEM 
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 It can be seen from Figure 4.32 that even if we corrected all the terrain within
oo 95.195.1  , we still cannot reach the goal of making the variance smaller than 10

-2
 E

2
.  

If we use the more realistic variance, such as 1 E
2
, then the extent needed is 120 km for 

one single point and 40 km from each point for a pair of points within the oo 95.195.1   

DEM area in Parkerfield. It is because the area is rougher and the altitude of flight above 

the ground is much higher than for the Vinton Dome area. Likewise, for any pair of 

points separated by 14 km, the extent needed is about 120 km which is much larger than 

Bell Geospace’s DEM correction area of about 16 km x 16 km. 

 

4.3.3 Extent of terrain correction for different characters of topography 
 In the previous section, we determined the extent of terrain correction by 

computing the variance of truncation error through the geostatistical methods. The 

different types of topography can be quantified by geostatistics, so we can relate them 

directly to the corresponding required extent of terrain correction. For a specific 

observation area, we can just compute the geostatistics of the terrain around the 

observation area and find the required extent easily through a modeled relationship, thus 

avoiding extensive trial-and-error computations.  

 We selected three areas which contain distinctive characters (mostly flat, medium 

rough and mountainous) of topography and computed the covariance model of the terrain 

height, i.e., fitted an isotropic PSD to the empirical PSD of the height. The locations of 

three areas are shown in Figure 4.34.  
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Figure 4.34 Three areas with distinctive characters of topography 

Area 1 is oo 22   with a range of latitudes: oo 44~42 , and longitudes: oo 99~101  , 

and represents medium rough terrain. Area 2 is oo 55   with a range of latitudes: 
oo 40~35 , and longitudes: oo 105~110  , and represents mountainous terrain. Area 3 

is oo 22   with a range of latitudes: oo 15.31~15.29 , and longitudes: oo 6.92~6.94  , 

and represents the mostly flat terrain. The reciprocal distance covariance model was fitted 

to the empirical PSDs of these three areas. We also determined the required extent of 

these three areas by using the geostatistical method. The results of these three covariance 

model and the corresponding variance of truncation error is given in Figure 4.35 for a 

single point, and in Figure 4.36 for a pair of points.  

 From the left plot of Figure 4.35 we can see that the PSD magnitude for the 

mountainous topography is 100 times that of the mostly flat topography comparing at 

medium wavelength; the corresponding extent determined for a certain variance 

magnitude of truncation error is about 4 times larger. For example, the required extent is 

400 km for Area 2, while about 100 km for Area 3 provided the variance of truncation 

error is 10
-2

 E
2
. For a pair of points separated by about 20 km, the required extent is 160 

km for Area 2, while 40 km for Area 3 for the same truncation error variance. 

Alternatively, for a variance of 10
-1

 E
2
, the required extent is 100 km for Area 2, and 25 

km for Area 3. Thus, if we know the geostatistics of the terrain around our observation 
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area, we can easily know the required extent through the relationship. For other types of 

topography, the result can be obtained by interpolation. 
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Chapter 5  

 Conclusion 
In this study we developed a method to estimate the required extent of terrain 

correction of gravity gradients for geophysical studies based on a geostatistical method 

and truncation theory. The truncation theory was developed and applied to Forsberg’s 

FFT method for the computation of the power spectral density and thus the covariance of 

the terrain. The truncation error represents the gravity gradient effect of neglecting the 

remote terrain beyond the specified area defined by truncation extent T. The variance of 

the error is based on the covariance analysis of the terrain in the neighborhood of the 

computation point. Therefore the necessary extent for the terrain correction of gravity 

gradients can be determined such that the truncation error variance is below a chosen 

value, e.g., the variance of the gradient measurement error. However, the effect of the 

remote zone will be nearly the same for two neighboring points of interest. The effect 

acts like a bias and like other biases is not of particular interest in a gravity gradient 

survey. For close points, the value of T will be smaller to obtain the same variance of 

error difference; for points further apart, the value of T will be larger. So if we consider 

the variance of the error difference for close points, then the needed extent of terrain 

correction should be decreased dramatically compared to the extent needed for single 

point.  

The geostatistical analysis of the required extent can be done for different spectra 

of topography (smooth and rough). We confirmed the predicted truncation errors in each 

case by simulations using traditional terrain correction methods. We developed a method 

to simulate the different types of topography (smooth or rough with the desired 

resolution) based on the reciprocal distance covariance model. The low frequency part of 

topography can be obtained from known models, such as DTM2006, or from other 

available models, such as the SRTM DEM. Through the topography simulation, we can 

obtain different characters (smooth or rough), resolutions (even ultra-high resolutions) 

topography and also verified our procedure of geostatistical method for the determination 

of required extent of the terrain. We simulated 20 m resolution topographies based on 

DTM2006 5  and SRTM 03  data for two different types of area (smooth and rough), 

respectively.  

We also validated our methods with the usual deterministic method by applying 

the analytical terrain correction formulas using the right rectangular prism to the 

simulated topography. The deterministic variances of the error or error difference are 
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computed from one thousand error samples in a Monte Carlo fashion by randomly 

selecting computation points within the same area used in the geostatistical method. 

These analyses show that two methods produce consistent results for our 3 km by 3 km 

high resolution (1 m) topography simulation. They differ only by 0.2 E
2
 for a small 

truncation extent of 1 km; by 0.007 E
2
 for a truncation extent of 2 km, and by 0.0009 E

2
 

for a truncation extent of 2.5 km. For a local gravity gradiometric survey (within 3 km by 

3 km), the minimum extent we need to compute the terrain correction is 1.5 km in order 

that the variance of truncation error is smaller than 1 E
2
. An extent of 2.5 km is needed in 

order to reduce the truncation error variance to 0.1 E
2
. 

Our previous result is based on an ultra-high resolution of topography for a very 

local survey. Considering the regional survey, the needed extent of terrain will also 

increase; at the same time, the curve line of the truncation error variance versus the extent 

should converge when we increase the outer boundary of the terrain. From our 

computation results, it shows that the curve line will converge quickly if the terrain is 

stationary; furthermore, the speed of convergence is slow if the terrain is not stationary. 

And based on the 3   resolution DEM of such an area, it is concluded that the extent of 

terrain correction need to reach 400 km in order that the truncation error variance is 

smaller than 10
-2

 (E
2
), or 230 km in order that the truncation error variance is smaller 

than 10
-1

 (E
2
). It can be seen that the extent determined from the variance of truncation 

error difference for pairs of points is much less (especially for points separated by short 

distance) than that from the variance of truncation error for a single point. With the 

separated distance increasing, the required extent also increases. The simulation shows 

the required extent is 35 km for points separated by 0.9 km, 85 km for points separated 

by 4.5 km, 120 km for points separated by 9 km, 165 km for points separated by 18 km, 

240 km for points separated by 45 km. And the above result is obtained from terrain 

correction of gravity gradient T33. It is also concluded that the required extent for the 

terrain correction on gravity gradients T13, T23 are much less than for other gravity 

gradient components. 

We analyzed Bell Geospace’s terrain correction computed for the Air-FTG 

observations at Vinton Dome, LA, and Parkfield, CA. Our computations of the terrain 

correction are consistent with Bell Geospace’s result and that of Zhu (2007). The 

differences between these methods are about ±5 E for Vinton Dome area; ±2 E for 

Parkfield, CA area. Also by our geostatistical analysis, the extent needed is about 35 km 

for the terrain correction of gravity gradients in the Vinton Dome area, which agrees with 

Bell Geospace’s assumed area, but it is about 120 km for the Parkfield area, which does 

not agree with Bell Geospace’s use of only about 20 km. The reason why the latter needs 

much larger DEM extent is the much rougher terrain than in the vicinity of the Vinton 

Dome area. Also the flight clearance above the ground at Parkfield is much higher than 
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for Vinton Dome. Finally we determined the required extent for three different areas of 

typical topography, which are represented by mostly flat, medium rough and 

mountainous terrain. We also characterize these topographies using the reciprocal 

distance of covariance model, and we set up an empirical model between the required 

extent and the characteristic terrain. Thus the required extent for other characteristic 

terrain can be interpolated easily. 

Further research still needs to be carried out to study the effect of different DEM 

resolution and of mass density variations on the determination of needed extent. Also our 

geostatistical method relies on some basic assumptions such as the stationarity, isotropy 

of the terrain, etc. However these assumptions may not be valid in some actual cases, thus 

the sensitivity of these assumptions should be tested and analyzed in future research. Also 

the future work should be done is to extend our theory to satellite altitude and solve the 

problem using the spherical approximation.  
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