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PREFACE

This report was prepared for and submitted to the Graduate School of the Ohio State University
as adissertation in partial fulfillment of the requirements for the PhD degree.



Abstract

This study developed a geostatistical method to determine the required extent of
terrain corrections for gravity gradients under the criterion of different applications. We
present the different methods to compute the terrain corrections for gravity gradients for
the case of ground and airborne gravity gradiometry. In order to verify our geostatistical
method and study the required extent for different types of terrain, we also developed a
method to simulate topography based on the covariance model. The required extents were
determined from the variance of truncation error for one point, or furthermore from the
variance of truncation error difference for a pair of points, and these variances were
verified with that from the deterministic method. The extent of terrain correction was
determined for ground gradiometry based on simulated, ultra-high resolution topography
for very local application, and also was determined based on mountainous topography of
large areas. For airborne gradiometry, we compute the terrain corrections and the
required extent based on Air-FTG observations at Vinton Dome, LA and Parkfield, CA
area; also they were verified with the results of Bell Geospace. Finally, from the mostly
flat, medium rough and mountainous areas, an empirical relationship was developed
which has the properties that the required extent has 4 times relationship corresponding to
the amplitude of PSD has 100 times relationship between mountainous and mostly flat
areas, and it can be interpolated for other types of topography from their geostatistics.
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Chapter 1
Introduction

1.1 Terrain Correction of Gravity and Gradiometry

The gravimetric technique has been used for over a century to study the surface
and interior of the earth and the planet as well. Also for geophysics, gravity together with
other techniques are used extensively in exploring the subsurface for energy and mineral
resources, geological hazards, and other features of societal significance. Gravity
exploration is concerned with measuring gravity anomaly components to learn the mass
density contrast and subsurface anomaly body’s depth, shape and size.

Gravity gradiometry is used by oil, gas and mining companies to measure the
density of the subsurface, effectively the rate of change of rock properties. Then by
applying the inverse theory, geophysicists can map and locate the target oil, gas and
mineral deposits if a picture of subsurface anomalies can be obtained by removing the
noise of unwanted features from the observed signal.

As the result of recent advances in instrumentation and field procedures, gravity
gradiometers are becoming increasingly available (Difrancesco, 2007). Generally
speaking, gravity gradiometers are more sensitive to mass anomaly than the gravimeter
since gravity gradients are the second-order derivative of gravity potential. On the other
hand, gravity gradiometers also show disadvantage because of its high sensitivity of
topographic mass in land and airborne surveys which will be considered as noise if our
application is the subsurface exploration. A terrain correction, computed from a model
structure, accounts for the variation of topographic mass and so the procedure of
computing terrain correction is most necessary and important in dealing with gravity and
gravity gradiometry data. However, the high sensitivity signal from the gradiometer due
to subsurface structures will not be correctly obtained if the terrain corrections were not
computed properly using the high resolution terrain. For example, in rough topography,
the magnitude of terrain corrections for gradient can reach about hundreds of E (1 E
(Ecvés) =10 s) while the anomaly of ore-body usually will only generate a signal of
about several tens of E (Nabighian et al., 2005). So the application of high accuracy
gradiometer is limited by the ability to estimate inner-zone terrain corrections precisely
and by the quality of the digital elevation model. Not only the relative proximity of the
terrain to the gravity gradiometer, but also the relative magnitude of the density contrast
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often result in a terrain correction that is larger than the anomaly signal of interest in
subsurface exploration (Chen and Macnae, 1997; Dransfield and Zeng, 2009). Therefore,
the increased sensitivity of the second-order derivative of the potential will limit their
utility in subsurface exploration, especially in areas of rugged relief if we cannot obtain
the terrain corrections of the second-order derivative of the potential more accurate than
that of the first-order derivative of the potential. In the past several decades, many efforts
have been put into developing different methods and algorithm of computing terrain
corrections for gravity gravimeter. However the proper extent and resolution of terrain,
also, the effect of varying surface density on the computation of terrain corrections for
the gravity gradiometer are still not deeply researched and no consistent results were
obtained, so it gives the motivation of this dissertation study.

1.2 Background

The gravity gradients have been quickly applied for mineral, oil and gas
exploration since Baron Lorand von EGv invented the torsion balance instrument and
the surveys were mainly carried out in Hungary throughout the last century (Bod et al.,
1990), and were also used in the U.S. and Western Europe extensively. However due to
the cumbersome field procedures and the long observation time needed for each station,
especially in the rugged terrain, the instrument was largely displaced by high accuracy
gravimeter in the 1940s.

Recent developments in airborne gravity gradiometry such as the FTG (Full
Tensor Gradient) system by Bell Aerospace (now Lockheed Martin) and the Falcon
system by BHP Billiton (recently acquired by Fugro) have sparked renewed interest in
the use of gravity gradients for subsurface exploration (e.g., Nabighian et al., 2005). The
airborne systems can survey large areas quickly on any type of terrain with advertised
measurement accuracies of 5 EGv for the gradients (Asten, 2000), this is the main
reason for its rapid development in the recent 20 years.

A major limitation of using gravity gradients in subsurface exploration, especially
in areas of rugged relief, is stripping out the gradient effects of the terrain with commonly
variable physical properties (e.g., Dransfield and Zeng, 2009; Chinnery, 1961). Many
methods and algorithms have been developed to compute the terrain corrections of
gravity and gravity gradients and the conventional terrain modeling schemes involve
solutions that are closed formulas derived from mass prism that are cumbersome to
implement efficiently. Substituting the mass prism using the equivalent point source, the
closed mass prism formula can be approximated by point source formula and can be
computed using Gauss-Legendre Quadrature methods which will significantly reduce the
formula terms especially for the high order derivatives of potential (e.g., Grant and West,
1965; Ku, 1977). Terrain effect computations from the fast Fourier transform (FFT) of
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the DEM have also been devised (e.g., Forsberg, 1985; Sideris, 1985). Furthermore,
Jekeli and Zhu (2006) compared different algorithms for calculating the gravity-gradient
terrain effect from gravity data and topographic data, providing useful information on the
relative speed and accuracy of these algorithms.

The terrain correction model together with its analytical formula for airborne
gravity anomaly and gravity gradients has been discussed extensively in the literature
(Chinnery, 1961; Hammer, 1976; Tziavos et al., 1988; Parker, 1995). In Hammer’s
optimistic opinion, the gradient noise generated from the local terrain or the shallow
variations in soil density is not serious for the expected gradient methods. However, there
exists a reverse conclusion about the topographic corrections. Chinnery (1961) points out
that the average terrain will generate the gradients at an aircraft altitude of the same order
as that due to some common ore bodies. And the vertical gradient data are much more
sensitive to near surface masses than the normal gravity data. Therefore the terrain
corrections for the gradient will be more important than for the gravity. The simulation
result of Chen and Macnae (1997) seems support the above second point of view. Their
results show that the terrain effects of topography will seriously affect both the airborne
gravity and gradient measurements. For the gravity, this can be corrected by using the
standard Bouguer correction; while for gravity gradients, this effect remains a problem
even if the terrain correction is carried out with a density error of only 100 kg/m®. Thus,
the conclusion is that it is hard to detect the anomaly from an airborne gradiometer since
it is severely affected by regolith, bedrock topography even if the terrain corrections are
made.

Different algorithms and methods on computation of terrain corrections were
applied for the different application, most of them are only focused on the gravity, not the
gradients, and there is no deep, systematic research carried out on the necessary extent
and resolution of the terrain correction of the gravity, especially of the gradients for the
application of subsurface exploration. Badekas (1967) assumed the topography is varying
linearly in radial and azimuthal direction, the terrain correction is computed by directly
integrating within the area of different radius and azimuth and applied these corrections
to the torsion balance observations in Southwest Ohio in 1966. The total extent reached
5° x5%and the different resolutions of DEM data were used for different section of
extent. Parker (1972) developed the gravity potential formula in frequency domain
through the frequency transform of the topography height, while Tziavos et al., (1988)
computed the effect of the terrain on airborne gravity and gradiometry using FFT method
and studied effects of terrain representation (mass lines or prisms), height data resolution
needed, and the number of expansion terms required to approximate the basically
nonlinear terrain effect integrals. The total extent of the original grid was 56.6 kmx 36.7
km with a DEM grid spacing of 0.1 km. From their results, they concluded that in order
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to obtain terrain gravity effects at accuracy of 0.3~0.5 mGal (1 mGal=10" m/s?) and
terrain gravity gradient effects at accuracy of 1 E respectively, the grid spacing should be
0.5 kmx 0.5 km for a flying altitude of 1 km above the highest topography. The extent of
terrain correction they used roughly agrees with the required extent we determined
considering the different flight altitude and characters of the terrain. If the flying altitude
is below 600 m, then the height spacing needs to increase to 0.25 kmx0.25 km. The
terrain correction integral was expanded to third-order terms in both cases. And they
suggest that in order to obtain an RMS accuracy of gradient effects better than 1 E, a ratio
of 1/3 between grid spacing and flight altitude above maximum elevations seems to be
reasonable. Hwang et al. (2003) compared the computation of terrain corrections for
gravity by using Gaussian quadrature, prism and FFT methods. By comparing different
pairs of inner zones, it is concluded that if the required accuracy of terrain correction is
0.1 mGal, an inner radius of 20 km is sufficient; and by comparing different pairs of outer
zones (fixed inner zone 20 km), it is concluded that to meet a 0.1 mGal accuracy in
terrain correction, an outer radius of 200 km is sufficient, also an outer radius of 100 km
is sufficient at elevations below 1000 m. It is also shown that among the three methods
the Gaussian quadrature method recovers higher resolution of the terrain correction signal
than the other two methods, however, still smaller than the highest grid data resolution,
i.e., the corresponding Nyquist frequency. The needed computation time is most for
Gaussian quadrature and least for FFT method and it is suggested that the Gaussian
quadrature method is intended for point-by-point computation not for wide area grid
point computation. From their computation results, the Gaussian quadrature method has
the highest accuracy and the standard deviation of the terrain correction difference for
gravity between Gaussian quadrature method and FFT method is 7.28 mGal, it is
concluded that the achieved accuracy in terrain correction is worth the extra computing
time.

Kass and Li (2008) extended Parker’s (1972) formula in frequency domain to the
gradient formula in frequency domain and applied this frequency method to the
computation of terrain correction for gradient. They used this algorithm to examine the
spatial extent and resolution of terrain model required for performing accurate terrain
correction in airborne gravity gradiometry. Also a Gaussian hill was used to simulate the
topography and compute the terrain correction of each gradient for different extent size of
the topography. By analyzing the RMS difference of the terrain correction between each
different extent pairs, they show that the empirical rule for the spatial extent can be
approximated by 9 times the relief which assumes the needed maximum terrain
correction extent is proportional with respect to the relief height. The extent of terrain
correction from their results does not agree with the required extent of ours. According to
results of our study, an extent of 400 km is needed with respect to the relief about 4000
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m. Through computing the energy lost with respect to the resolution, their results show
that 20 m resolution is sufficient for the terrain correction computation of the gradient.

Also, Dransfield and Zeng (2009) pointed out that the relative proximity of the
terrain to the gravity gradiometer and the relative magnitude of the density contrast often
result in a terrain correction that is larger than the geologic signal of interest in resource
exploration. According to the terrain correction integral, the errors in density, the errors
in DEM elevation, the errors in the evaluation point position and the errors in the DEM
that is too coarsely sampled will result in the residual errors in the terrain correction.

Less effort has been concentrated on the topic of density variations effect on the
terrain correction in the literature since the surface density variation is complicated and it
IS time consuming and laborious to measure the density variations for an area by
sampling. Grant and Elsaharty (1962) proposed the concept of “Bouguer density” which
is a weighted average of real density. It varies with respect to each observation point and
they provide a procedure to compute it by minimizing the correlation between the local
gravity anomalies and topography. Using their procedure the Bouguer density map can be
generated and contoured. In their example, the correspondence between their results and
the known geology appears to be good and indicates that Bouguer density variations due
to changing surface conditions can be used routinely in the reduction of gravity data.

However, Tziavos et al., (1996) worked on the other side of this topic, provided
that the surface density grid data are known. They investigated the effect of the variations
of surface density values to the computation of terrain corrections on the gravity using the
algorithm of mass prism topographic representation. They compute the terrain correction
effect by applying the efficient FFT technique that they already derived (Tziavos et al.,
1988), the only difference is to do the Fourier transform with respect to p-h terms
instead of only h terms. The numerical examples on the computation of terrain
corrections were carried out in Austria, where both the terrain (DEM) and density (DDM)
files are available at the same grid with the same resolution of 11.25"x18.75" . It is also
concluded that the differences in the mass prism model when using a uniform density
value instead of an actual density grid are correlated with the topography and existing
density variations. Their numerical tests showed that the differences are close to 0.4
mGal with a maximum absolute value close to 9.5 mGal and a variation which reached
the level of 11 mGal. They did not compute the terrain correction effects for the gravity
gradient using the surface grid density variations.

Up to here, different terrain correction methods and algorithms for the gravimeter
or gradiometer were reviewed; it was argued that the terrain correction for gravity
gradiometry is significantly more important than the gravity gravimetry for the
application of subsurface exploration especially in rugged terrain area. Among all the
terrain effect computations using different models and methods, one common problem is
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to determine the extension and resolution of terrain source, while the above review shows
that no consistent results were given. Also there is no conclusion about the density
variation effect on the terrain correction for gravity gradiometry, and it may play an
important role on the gravity gradients reductions. The required resolution and the
density variation of the terrain are not included in this dissertation and should leave for
the future research.



Chapter 2
Terrain Correction for Gravity Gradiometry

2.1 Gravitational Gradient and Terrain Correction

The gravitational potential at a point, x, due to the masses distributed at points,
x" , over the volume, Vv , is given by Newton’s law of gravitation:

V0o -eff de 1)

= \/(xl —X!)? + (X, —X5)* +(X; —X,)? , is the Euclidian distance between the

where

integration point (x;, X5, x;) and the computation point(x,,X,,X,), defined in the local

coordinate system with axes pointing in the east, north and up directions, the x, =0

plane is set as the plane approximating the local geoid. p(X') is the mass density
distribution and G is the gravitational constant.
The gravitational acceleration vector is given by

ov oV oV ¢

g =(g1792’g3) _(_ 67 87) (2-2)

The gravitational gradient tensor due to these masses is defined by

oV . oV oV
OX,0X;  OXOX, OX,0Xq
r=vv'v=r,|= ov_ oV oV (2.3)
OX,0X;  OX,0X, OX,0%,
o oV oV
| OX0%  OX30K,  OX30X, |

The diagonal gradients are called in-line gradients and the off-diagonal gradients are

called cross-gradients.

The gradient tensor has the following properties:
(1) The gradient tensor is symmetric.



(2) The in-line gradients satisfy the Poisson’s equation, AV = —42Gp(X). (2.4)

2 2 2
whereAV=a\£+6V2+aV2 (2.5)
OX,” OX,” 0OX,

Outside the volume,v, in empty space, the density is zero, so AV =0, which is called
Laplace’s equation. Thus, the gradient tensor only has 5 independent elements, three off-
diagonal elements and two diagonal elements.

The total terrain effect is the gravitational potential and its derivatives at a point
due to all the topographic masses above the geoid (Figure 2.1). The residual terrain effect
is due to the topographic masses relative to a level surface through the point, or relative
to some other approximation to the terrain. That is, if we construct a topography by this
level surface (or some other approximation to the terrain), the additional masses that have
been included and those not yet included constitute the residual masses that generate the
residual terrain effect. For the observation point, P, on the Earth’s surface, the Bouguer
plate is an infinite, flat plate between the geoid and the level surface passing through the
point, both approximated as horizontal planes. The terrain correction is a procedure
which is defined by taking into account (that is, removing) the gravitational attraction of
the residual topography, that is, the deviation of the actual topographic masses from the
Bouguer plate of the point, P (Fig. 2-1) (Heiskanen and Moritz, 1967).

. Topography surface

Positive density

Figure 2.1 Terrain effect of topography (dotted area) and terrain correction of residual
terrain (red area) w.r.t Bouguer plate
In our upward positive coordinate system, removing the mass above the Bouguer
plane (mass attracts P upward, i.e., removing a positive value) will cause the terrain
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correction to be negative; while adding mass below the Bouguer plane (mass attracts P
downward, i.e., adding a negative value) will also cause the terrain correction to be
negative. So the terrain correction is always negative for the vertical gravitational
acceleration in our upward positive coordinate system if we define gravitation as the
positive gradient of potential.

The same procedure can be used to compute terrain effect on the gravitational
gradients at point, P. So, we have the total terrain effect on the gravitational gradients at
point, P, from equation (2.1), (2.3) as

0 (X)
Fie = axax m X%, [ (2.6)

which can be written as

~ o* [ p(x)

T —Gjﬂ OX, 0%, [|x X' de
b0t pd) - [0 [Pt Yy
ol [ el 2

where A is the horizontal area of topographic masses around the point, P. The area A can
be separated into the sum of A_above and A_below, where A_above is the area of
topography masses above the point, P; and A_below is the area of topographic mass voids
below the point, P.

(2.7)

The terrain correction is the negative of the residual terrain effect, that is, residual to the
Bouguer plate:
de'

) =6 -U J‘8x OXy [p(—X)jdX e -U Iax axk(
PX) 4
j xon [ X,de (2.8)

A_aboveh, A below
A_ belowh

o [] o] 2% oc-c ]

A_aboveh,

=— J”ax axk[|x(xx)|] ‘

So substitute (2.8) into (2.7), we have




to® [ ptx)
I, +0° =G dx’ . 2.9
jk TOLjk IA -E@Xjﬁxk (|X—X’|J X (2.9)

It shows that the sum of the total terrain effect of topography and the terrain correction is
the terrain effect of the Bouguer plate.

By moving the zero horizontal plane to the computation point, P, in (2.7), the terrain
correction can also be written as

h

B O R WA B O
N e e e N

A_above 0 A peow h=hp
h-hy 2 ’ h-h, 2 ’
I [p(x),}dx’—e [ ['O(X),]dx’ (2.10)
A_above 0 aXjaxk |X_X A_below 0 aXjéxk |X_X

B ORI
__GJ.;\[ ;[ X, 0X, [|x—x’|}dx

The corresponding residual terrain effect is the negative of terrain correction (2.10),
which can also be written as

o =Gﬂhjhp 0| PX) 4 (2.11)
k Lo oxox, (X=X

2.2 The Extent of DEM for Terrain Correction

The terrain effects are frequently decomposed into the effects of Bouguer plate
and the terrain corrections in order to simplify the computations (Sjcberg, 2009).The
model and the method of terrain correction computation for gravitation were well
discussed in the literature, e.g. Forsberg (1984), Li and Sideris (1994), Nahavandchi and
Sjcherg (1998) and Tsoulis (2001). With the application of airborne gravity gradiometry,
the terrain corrections for the gradients were also discussed, e.g. Chinnery (1961), Chen
and Macnae (1997), Dransfield and Walker (2005), Kass and Li (2008). In general, the
computation method depends on the discrete representation of the topography. If the
topography surface is modeled by specific, discrete height data, the topography can be
modeled using concentric compartments and the terrain correction can be computed using
the direct integral method (Mueller, 1964). More commonly, the topography is modeled
by regular, equally spaced data, which then may be represented by many right rectangular
prisms (Nagy, 1966), or polyhedrons (Paul, 1974). Thus the terrain correction can be
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computed by summing up the gravitational effects due to all the right rectangular prisms,
or polyhedrons, where the effects are closed analytic formulas. Alternatively, for large
DEM (Digital Elevation Model) data grids, the Fast Fourier Transform method can be
applied to speed up the computation. However, this method assumes that the data are
periodic (period equal to the extent of the data) and that they are given with equal
spacing. Also it has the limitation that the computation points need to be at a plane of
constant height. Most representative in this respect are the algorithms of Parker (1972)
and Forsberg (1985).

Many papers in the literature discuss these methods and the efficiency of
computing the terrain correction based on different models and DEM data; however, few
papers touch on the question: What is the extent of terrain needed for the desired
accuracy of the correction? There is no consistent conclusion that can be found in the
literature and each extent of terrain defined by investigators was based on their particular
applications. For example, for the terrain correction on gravitation, Hammer (1939) took

0

21.944 km, whereas, Bullard (1936) went out to 1% or a distance of 166.735 km using

tables by Cassinis et al. (1937). The complete Bouguer reduction includes the simple
Bouguer slab correction (Bullard A), a curvature correction (Bullard B) and the terrain
correction (Bullard C). The effect of an infinite Bouguer slab with the curvature
correction equals the effect of a spherical cap with a surface radius of 166.735 km. It is
hard to know otherwise from the literature why people choose 166.735 km as the surface
radius of the spherical cap. Lafehr (1991) derived an exact solution for the gravity
curvature correction as

) (52 = 2+ 5cosa +3c0s” a)y/(cosa — 5)° +sin’ a
BB = 21Gp h(-m%)—% —6cos? asin(a/?2) +4sin®(al?2)
2(sin(a 1 2) —sin’(a 1 2))

~3sin?acosalog,
COS e — & ++/(COs & — 5)% +5in° a

where § =R, /R and n=h/R; R=R, +h, his the elevation of the station , but

measured from the station to R, (sea level); a = Ri , S is the spherical surface distance.
0

He also pointed out that the 166.735 km radius (which is the outer radius of the Hayford-

Bowie Zone O) is based on minimizing the difference between the effect of the cap and

that of an infinite horizontal slab for a significant range of elevations between sea level
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and about 4000 meters. Based on the terrain correction normally extended to a distance of
166.735 km, Nowell (1999) refined the process of terrain correction for the effects of
height, nearby terrain or buildings, including correction ns for the sea or the lake bed
instead of to the water surface and for the masses of water, as well as stations above and
below ground level. More recently, Danes (1982) noted that 52.6 km is much further than
most investigations would carry their terrain corrections. Chen and Macnae (1997)
computed terrain corrections for airborne gravity gradiometer data using a 10 m
resolution DEM with the extent of 10 km by 5 km for detecting an orebody of 100 m by
100 m by 100 m, located at 50 m beneath the surface.

Li and Sideris (1994) show that the limitation of the integration cap size to 100
km by 100 km results in a geoid undulation bias with an RMS of 10 cm compared with
the extent of integration cap size of 600 km by 600 km. Comparing to literature papers
which discuss the terrain correction extent for the gravimetry, there are fewer papers that
discuss the terrain correction extent for gravity gradiometry. Kass and Li (2008)
determined the minimum required spatial extent for a terrain correction of each gradient

component to achieve 1 (EGva) RMS error. For example, for the T,, component, the

stated required radius of included terrain as a function of terrain relief should be 8.49 Xh,
where h is the height of terrain relief which is a synthesized Gaussian-type terrain with
slop of 45 degree. With the fast development of gravity gradiometry and the improving
accuracy of the gradiometer instruments in recent years, the required extent of terrain
corrections should be revisited in order to make efficient and correct utilization of gravity
gradiometry.

Sprenke (1989) also devised a method for optimizing the distance to which terrain
corrections are made based on a geostatistical analysis of the topography around a given
area. Sprenke simulated the topography based on the geostatistics derived from a profile
representative of the actual terrain. First, with the assumption of stationary and isotropic

variability of elevations, the elevation Z,, of a radial zone centered on a station can be

expressed as Z,, =(i?}zo +(1—ir2))ZR , Where Z, is the station elevation, Z is the
o o

mean regional elevation; c(r) is the covariance function, r is the mean radius of the zone

and o?is the variance of the elevations in the region. The detailed derivations can be

found in Journel and Huijbregts (1978). Next, with the assumption of uniform

distribution of elevation, the elevations in any subarea of the radial zone are evenly

distributed between the lowest and highest elevation. Sprenke did his computation in the

space domain using direct numerical integration with a maximum radius of the area equal
12



to the standard extent of 167 km. The necessary extent of the terrain correction for the
gravity was derived from the criterion that the error should be smaller than the gravity
accuracy of 0.1, 0.5, 1.0 and 1.5 mGal.

In this chapter, our object is to solve for the extent of terrain correction for gravity
gradiometry. First, we develop our method to compute the terrain correction for gravity
gradients in the spectral domain and compare this with other methods which are
commonly used for, such as numerical integration and right rectangular prism methods.
Next, we apply the truncation theory to our method for the purpose of computing the
error in the terrain correction of gravity gradients due to neglecting the terrain beyond a
certain extent. Through a statistical analysis of the truncation error, we can find the
functional relationship between the variance of the error and the extent of the terrain
correction. For the general application, we can set up a criterion that the variance of
truncation error should be smaller than that of the instrument error, and this makes sure
that the terrain correction under such an extent is enough and necessary considering the
accuracy of our instrument for gravity gradiometry.

We also simulate the topography based on the stationary and isotropic properties
of the topography, but our high frequency part of topography is simulated based on the
empirical PSD (Power Spectral Density) of the given data, which contains relatively
lower frequency, and making use of power-law extension in the frequency domain.
Sprenke (1989) computed the terrain correction only for the gravity using the analytical
formula in the space domain. The variance of the truncation error of the terrain correction
is computed based on the simulated topography whose statistics come from a profile
representative of the region. However, we compute the variance of truncation error (or
variance of truncation error difference) for terrain correction of gravitational gradients
through the FFT method in the frequency domain. The details about the topography
simulation and extent determination are given in Chapters 3 and 4. Our method of extent
determination is more general and can be applied to different observations, such as
ground, airborne, and space gravity gradiometry. For the latter, the effect of total
topographic mass above the geoid or residual topographic mass relative to a spherical
Bouguer layer is computed at Earth’s surface or at satellite altitude using the spherical
coordinates (Martinec, 1998). By truncating the spherical integral limits as well as the
spherical harmonic expression of topography data, the truncation error and its variance
can also be computed and used to determine the extent of total topography or residual
topography. This part is outside the scope of the present dissertation due to the time
limitation and will be left for future research. Our computations are strictly for the planar
approximation and Cartesian coordinates, which may be applied to ground and airborne
data. For ground data, we compute the terrain correction using the residual terrain; for
airborne data, we compute the total terrain effect since the observation point is usually

13



above all the terrain; and also this is consistent with the procedures implemented by Bell
Geospace for their airborne gradiometer survey.
2.2.1 Terrain correction computation methods

For general gravimetric applications (gravity or gravity gradient measurements),
we define the terrain correction as the appropriate gravitational effect due to the removal
of masses above the plane of computation point, and the addition of masses below the
plane in order to create a Bouguer plate. The removal of the mass corresponds to an
effect with negative sign of the density; while adding mass below corresponds to a
positive sign for the density. Thus the terrain correction can be interpreted as a
gravitational effect due to negative density above the plane and positive density below
the plane (see Figure 2.1).

For very local observations, we define the residual terrain relative to a point, P, on
the Earth’s surface as the difference between the actual elevation and the Bouguer plate
through the point. More generally, for regional applications, we may also consider a
higher-order reference topography instead of the Bouguer plate. For example, the
reference topography can be high-degree harmonic expansion of the terrain, such as a
global 5' X 5' Digital Topographic Model (DTM2006.0) with spherical harmonic
expansion (to harmonic degree 2160) of Earth's topography and it is made available by
the EGM2008 development team (Pavlis et al. 2007). DTM2006.0 relies heavily on
elevation information made available from the Shuttle Radar Topography Mission
(SRTM) and some other data sources, such as laser altimeter data over Greenland and
Antarctica, and data of DTM2002 which includes bathymetry from altimetry data and
ship depth soundings of Smith and Sandwell (1997). The residual topography model
between SRTM and DTM2006.0 can be used to augment EGM2008 vertical deflection
predictions and also for source-modeling of high-frequency gravity field signals. For
example, Hirt et al. (2010) combined EGM2008 and SRTM/DTM2006.0 residual terrain
model data to improve the quasigeoid computations in mountainous areas. For our
regional terrain correction computations, we can set our reference using the mean
elevation of the terrain, or using a higher-order reference surface such as DTM2006.0.
The residual terrain in this case bounds the masses that are removed and added between
the higher order reference surface and the actual topographic surface (Figure 2.2).
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Figure 2.2 Terrain effect of topography (dotted area) and terrain correction of residual
terrain (red area) w.r.t higher order reference surface
I. Right rectangular prisms for terrain corrections of ground data

One common method to compute the terrain correction and terrain effect is to
represent the mass between the topography surface and the geoid (in planar
approximation) using right rectangular prisms. The assumption of planar approximation
is appropriate since for our local gradiometry application, the gravity gradient signal is
presumed to be a very local phenomenon. We set up our coordinate system using the
East-North-Up coordinate system and the x-o-y plane is the reference plane passing
through observation point, P. For a topographic height above the reference plane, it is
modeled by a negative density prism; for a topographic height below the reference plane,
it is a positive density prism (Figure 2.3). The terrain correction can be computed by
summing up the effect results of all N xM prisms around the point, P, if the topographic

surface height is measured at N x M discrete points (equal spacing: length a along the X,
direction; width b along the x, direction), where N is the number of heights along x;

and M is the number of heights along X, .
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Figure 2.3 Coordinate System for residual terrain
The assumption of constant density was applied to the residual terrain. Then the terrain
correction of gradients for the i-th prism element (length: a , width: b, height:

oh; =h; —h, , the center point coordinates (a;,b;)) either above (oh; positive) or below (

oh, negative) the reference plane, can be derived from (2.6) , respectively (j=1,2,3;

k=1,2,3)
a;+al2b+b/2 o 2

O} (%4, %,,0)==Gp | ©_ Loxaxax,, (2.11)
a—al/2b-b/2 0 anan r

It can be shown that the integral of (2.11) for in-line and cross gradients (Zhu, 2007;
Jekeli and Zhu, 2006), is given by

, lasaiz [B*b/2 My

i X, — X )(X; — X

O (xl,xz,O):—Gptan’l( %) | ) , (2.12)
(X; =x;)r ‘
x=am2l2l p bz,

i . a+al2 bi+b/2 a

O (%, %,0) = Gpln(x, —x + )" [ (2.13)
' e B )

where in each case, the index set, {j,k, 1}, is a cyclic permutation of {1,2,3} and x, =0.
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If the terrain height is measured on a regular grid (equal spacing), with a total of N>V
points, then the terrain correction can be computed by summing up all these N>M prisms
using

a;+al2 bi+b/2 on
NxM : NxM ~ (X _X)(X _X)
O (X, %p,0) = ) 0T} = -Gp ) tan 2o~k 2 . (2.14)
i=1 i=1 (Xj Xj)r '
X=a-al2|y o X,=0
e NxM i NxM , aral2  |Bith/2 o
5 (%1,%,0) = D o =Gp Y In(x —x +1) © " | (2.15)
rry Y 1=8i Xp=bi—b/2|, o
where r=./(X, =%, )2 + (X, = X,)? +(X,)? 2.16
1 1 2 2 3

and  p is the constant density of topography;

a and b are spacing of the regular grid in two directions, X, and X, ;
oh, =h, —h, is the residual terrain height with respect to reference plane passing

through observation point, h ;

N and M are the number of grid points in two directions, X, andXx, .
ii. Right rectangular prisms for terrain effect of airborne data

For the case of airborne gravity gradiometry, when the point of computation is not

on the topographic surface, we compute the terrain effect (See figure 2.4, the x, =0

plane is the approximately planar geoid) as we mentioned at the end of chapter 2.2.0.
From equation (2.6), for the i-th prism, we have

_ a+al2bj+h/2h 82 1
I, =Gp ~dx, dx,dx, (2.17)
J aiJ.aIZbibIZO axjaxk r

Applying the same derivation as for the ground data; we have the terrain effect for the
gravitational gradients as

h:
avaiz (b2 |%

NxM ; NxM (X, — X X _X
Fjj(xl’XZ’X3): erj :sztan l( k k)( '| |)
i=1 i1 (X, = x))r

(2.18)

x=a;—al2 X,=b,—b/2 o0
=
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NxM NxM ' avalz  [bib/2 h

Ty (4%, %)= D T ==Gp Y In(x, =x, +1) | (2.19)
i=1 i=1 1 X=b=b/2], o

where r = \/(xl — %)%+ (X, = X5)? + (X5 — X5)° (2.20)

Figure 2.4 Terrain effect for airborne data
For ground observations, we separate the total terrain effect into the Bouguer plate part
and the residual terrain part. The terrain correction is computed based on the residual
terrain. The formula of Bouguer plate is derived from an infinite plate, for example,

—22Gph, for the vertical gravity component; zero for horizontal gravity components.

For airborne observations, we can separate the topography into the residual terrain
relative to the mean elevation of the area and the Bouguer plate passing through the mean
elevation; also we can use the minimum or maximum elevation of the topography as
reference plane. Thus, the vertical gravitational component still is a constant and the
horizontal components are zero for such an infinite Bouguer plate. Furthermore, we can
even define the residual terrain relative to the higher order reference surface. For this
case, the vertical and horizontal gravitational components of the mass between the
reference surface and the geoid are complicated, and do not have analytical formulas. For
the actual application, our DEM data area is always finite, which will cause the computed
effect of the Bouguer plate to be not exactly equal to the analytical value, especially for
observation points at the edge of the area. Thus, an error will be included in the total
topography effect for a given observation point. In our statistical method, we determine
the extent of topography by the variance of the truncation error for observation point, and
the observation point is always at the center of the computation area, so this Bouguer
plate effect error will not affect our comparison results since it is the same for all
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truncation values. It is also noted that X, is the height of the observation point and it is

not necessary to be constant.
iii. FFT method for ground data

The potential of the residual terrain can be written as

h-h
P 1 ,
NV (X) = Gpj/! ! |X_X,olx (2.21)
where sh=h-h_. (2.22)

Substituting (2.21) into (2.3), we have the following integrals for the residual terrain
effect on the gradients evaluated on the reference plane passing through observation

point, P, such that x, =0:

ol 1
a., (x)=G dx’ 2.23
ey pj” .o, [|X_X,|J (2.23)
X3=0
Furthermore, (2.23) can be written as
dOgxe)
Ty () =Gp|[ [F,dxdA (2.24)
A 0
where dA = dx,dx, ; and with
X=X =1 =% = X)% + (%, =) +(0-X})? , (2.25)
we have
1 3(x,—x])° 3(x, - x)(x, — X)) 3(x, = x)(X})
Fu=-—>+ 151 F,=—2t 152 2 F,= 1 51 3
r r r ) r
1 3(x,-xy) 3(x, — X5)(X3)
Fpp=-—5+ : 5 : Fas 2 52 : (2.26)
r r o
1 3(x3)
e
r r
with F; =F,.

The integrals of F; with respect to X, can be derived using a variable change,

and result in (Jekeli and Zhu, 2006, with x, =0) :
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1 sh
— . ,$s=0
2(X3)2 '_O
P (%) | (6 —x)*(x) [
—((8° =3(x —x)*) 24 D0 520
S r r ‘o
0,s=0
. . . . oh
T12= (Xl_xl)(xz_xz) (_X3)3_3(_X3)
( ) s#0
s* rs r ]
X3=0
X1_Xi )
T13= 3
r X3=0
1 oh
T 2(0—X'3)2 Xé:o' -
2= L N2y \3 |
%((SZ—S(XZ—XIZ)Z)( X3)+(X2 X2)3( X3) ) , S;tO
S r r co
T X - X, §
23 — 3
r %3=0
1 oh
— = ,$=0
(_X3) .=0
71 ) 0
—2( LA : ) , s=0
S r r im0

where s% = (X, —X,)* + (X, —X,)°.

(2.27)

Thus oI, (x) can be computed by using a numerical method of integration, such as the

rectangular rule, which approximates eq. (2.24) according to: éij(x)szZTjkAA,

where for a regular rectangular grid, AA = Ax,Ax,. However, when dealing with a large

amount of data on a regular grid, the FFT method can be applied to reduce the

computation time.
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By following Forsberg’s method (Forsberg, 1985), the terrain effect integrals can
be expanded into series of convolutions and the convolution can be computed very
quickly in the frequency domain by using the convolution theorem. The convolution
theorem (Wikipedia, http://en.wikipedia.org/wiki/Convolution_theorem) states that if the
signals g and h are finite energy signals, then the Fourier transform of a convolution is
the pointwise product of Fourier transforms. The 2-D convolution is defined as

c(X,, X,) = g%, %, ) *h(X,, X,) = H g (X, — X, X, — X, )N(X,, X, )dx, dX, (2.28)
From the convolution theorem, wg have

C(f,, f,)=3(g*h)=3(g)-3(h) =G(f,, f,)H(f,, f,) (2.29)
and

c=g*h=37(3(9)-3() (2.30)
where

* denotes the convolution operator, (f,, f,) is the horizontal frequency pair;

3 denotes the Fourier transform and 37 denotes the inverse Fourier transform:
C,G, H are Fourier transform of c, g, h, respectively.

We expand the functions, F; (x,) in equations (2.26) into Taylor series, with respect to

zero (corresponding to the reference plane of the residual terrain):

Fi (X'3)=F; (0)+F, (0) '+-.-+% Fil”(0) (%) +--- (2.31)

Then, we substitute these into equation (2.24) and integrate with respect to x,:

5ij(X)=GpH(F,-k(0)-5h+%ij’(o) Sh? 4+ F. ™ (0)5h”*1+~-} dA (2.32)
A

(n+1)r X
The derivatives of F are taken with respect to x, and evaluated at x, =0.

They are easily derived, for example, for F,,:

1

' i 225
Fa@ =—5 Fu =0 Fy 0 =5, R (0 =0, F,, " (0 = =5

35, (2.33)

S
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When using the FFT method to compute the terrain effect for ground observation
positions, the heights of the computation points is not constant,

h, =h(x,,y,) # constant, i.e., substitute sh = h —h(x .y ) into (2.32), we have
! r 1 ’ ’ r
O3 () = Gp [ (Fic(0)- (M, y) =h(x;., ) + 2 Fie(0)- (n(X', y') = h(x;., y,))* +++)dA
) !

Fic (0)-h(X,y") = Fi (Oh(X', y)h(x,, y,) + % Fi(0)-h*(x,y")

= Gpﬂ dA

1,
g —F,-k(O)-h(Xp,yp)+§F,-k(O)-hz(Xp,ypH“-

’ 1 r
ij(o)*h(xp!yp)_h(xplyp)' ij(o)*h(xp!yp)+Eij(0)*h2(Xp!yp)

—h(xp,yp)-S(F,-k)(o,on%hZ(xp,yp)-S(F,-'k>(o,0)+---

(2.34)

where 3(F;,)(0,0), S(Fj'k)(0,0) are values at zero frequency of the Fourier transforms of

F . Fj . respectively.

We neglect the terms in the Taylor expansion (2.32) for derivative orders higher than one
(the loss of the accuracy is acceptable for our application of extent determination, see
chapter 4.2 analysis), thus (2.34) can be expressed as

&, (X) = Gp[F, (0) xh—h,_ - F, (0)*h +% F, (0)*h? —h, -3(F,)(0,0) +%h§ -3(F,,)(0,0)]
(2.35)

Next, we use ol ;, as an example to illustrate how to compute (2.35) for discrete data.

The terrain correction for the other gradients can be computed similarly.
We substitute (2.33) into (2.35), and apply the convolution theorem, we have

35(X) = Gp{3[I(Fs;) - I()] -, - 3(F,2)(0,0)} (2.36)

where 3(F;;)(0,0) is value at zero frequency of of the Fourier transform of F,,.

A numerical implementation of equation (2.36) requires using the discrete Fourier
transform, or equivalently the Fast Fourier Transform (FFT). This transform operates

only on discrete and periodic functions. Let g, . and h, . be the discrete kernel

22



function F,, and the terrain elevation on a regularly spaced grid, respectively. The FFT
and its inverse are defined as follows:

(with m;, p,,n, =0,---,N-Lm,, p,,n, =0,---,M =1):

N-1M-1 |27z( p1m1+p2m2)

FFT (9p,m,) =Gy p, = AXAX, Y Z Opme N M (2.37)
m;=0m,=0
) 1 NA ML 2P, Pl
FFT ~(G = = G,,e M M 2.38
( P1xpz) gmumz NAX MAXZ r;)r;—o P1: P2 ( )
The discrete convolution of g,, . and h, . is defined as
N-1M-1 . )
Com = 2 2 I nemsony N i, A AX (2.39)
m;=0m, =0

and the convolution theorem yields:
Crm, = FFT ‘1(FI——F(g)pbp2 FET(h),,.0,) - (2.40)

Thus the numerical equivalent of eq.(2.36) is
Oy, 1,) = GA{FFT *(FFT (Fyo) , , FET (M), ) =y FFT(Fy)ood. (241)

It is noted that the terrain effect computed here is for every observation point on the

topographic surface and so the observation point's height, hn »,» 18 N0t constant. In other

words, the reference plane of the residual terrain which passes through the observation
point is changing for every observation point. However, the convolution theorem is
applied only to the convolutions of the total topographic height.

Also from equation (2.9), we know the gravitational gradients of the Bouguer

(X')

x". For an infinite Bouguer

2
plate can be computed as I";"%"* = GHI& 5 {
X, OX,

plate, the gravitational gradients should be zero since the vertical component of

gravitational acceleration for a Bouguer plate is constant: —22Gph , while the horizontal

components of gravitational acceleration for a Bouguer plate are zero. Actually, if we do

the computations for a finite area using prisms (formulas (2.12) and (2.13)) for the total

effect, then the gravitational gradients are not exactly zero. And the gravitational
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gradients of the finite Bouguer plate will not only be non-zero but also they are different
for each observation point since each observation point has a different elevation height.
Thus when we want to do the Bouguer reduction, each observation point needs to remove
its corresponding gravitational gradients of Bouguer plates. Also as we mentioned
previously for the right rectangular prism method, the finite Bouguer plate errors can not
be neglected, but it can be neglected since our statistical method always does the
computation for a center point. Also we determine the extent of topography based on the
variance of the truncation error using the residual terrain before the Bouguer plate
correction is involved, i.e., the finite Bouguer plate error will affect the total topography
effect but not affect our extent determination.

iv. FFT method for airborne data

When dealing with airborne gravity gradient data, we compute the terrain effect
for the topography above the geoid (see figure 2.4). Tziavos et al. (1988) computes the
terrain effect for airborne gravity and gradiometry using the residual terrain referring to
the reference plane which is the average height of the topography in the area. Thus their
total terrain effect is the sum of the gravitational effect of a Bouguer plate associated with
the average height of the topography and the effect of the residual terrain relative to that
height. The advantage of using an average height is faster convergence of their binomial
series expansion comparing to the series expansion with respect to the zero plane, as done
by Sideris (1984). Here, we do not separate the topography into a Bouguer plate plus the
residual terrain in order to make our results consistent with the terrain effect computed by
Bell Geospace at Vinton Dome, LA and Parkfield, CA.

The residual height oh in (2.21), (2.22), (2.23), (2.24), (2.32) should be changed to
topographic height, h, which will result in

(2.42)
h 2
. (x)=G dx’ 2.43
k09=Grfl [ Xk(|x XJ (2.43)
h(x,%,) .
() =Gpl[ [FdxdA (2.44)
A 0
where = \/(xl — X2+ (X, = X5) 7 + (X, —X5)?, (2.45)
and
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1
Fll r3 r5 I:12 r5 F13 r5
1 3(x,-X5) 3(x, = X5)(X; —X3)
F,, = 2 : Fyy = 2 25 373 (2.46)
r r r
1 3(X;—X3)
P e r°
with F; = F

ki *

Similar to the derivation for the residual terrain of ground data, the functions, F (X5)
were expanded into Taylor series and after the integration with respect to x,, it can be

expressed as convolution form, provided that x, = constant:

I (x) = sz F D ©)*h" (2.47)
Thus the terrain effect of the topography can be derived as

L&l
r,()=6p-31Y =

o I(FE™)-3(h™) (2.48)
n=1 '1-

Here, F{"™ is the (n-1)th derivative of F, (x,) and evaluated at x, =0, however x; # 0

but it should be constant.

They are easily derived, for example, for F,,:

1 3x? 9 15x3

F33 (0) =-——+ 3 Fss (O) 3 73 )
0 0 O rO
" 9 90x2 105x: 225x, 1050x3 945x°

F33 (0) = 5 7 2 + 9 2 33(3) (O) 2 - 9 3 + 11 3 ' (2.49)

0 rO rO r-0 rO rO
£ () _ 225 4725 14175x] 10395

33 11 13
r-0 rO rO rO

where ry = /(X — %) + (X, = X,)? + X2 (2.50)

We neglect the terms in the Taylor expansion for orders of height higher than one, thus
the terrain effect for gradients can be expressed as
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[y (X)=Gp- I[3(F; (0)- s(h)+— 3(F;(0)-3(h*)] (2.51)

where F, (0),F; (0) come from (2.49).

Also, a numerical implementation of equation (2.51) requires using the discrete
Fourier transform, or equivalently the Fast Fourier Transform (FFT) which is described
in method iii. It should be pointed out that when computing the terrain effect for the

airborne observation points, the computation height, x, , in equation (2.50) should be

constant for all (x,,x,) in order to express equation (2.32) as a series of convolution and

such that we can use the FFT technique for fast computations.
v. FFT method combined with right rectangular prism model method

When we expand the kernel functions F; (x,) into Taylor series using equation

(2.31), we need to be careful about the convergence of the series especially for dense
topography grids or in rough areas. Tsoulis (1998) expanded the terrain effect integral for
gravity into a binomial series and thus formed the convolution. He also pointed out that
the degrees of expansion as well as the convergence condition for the validity of the
series affect the final result.

Tsoulis (1998) divided the total terrain effect of the topography into the effect of a

Bouguer plate of a height equal to h; minus the deviation of the actual terrain from this

plate, i.e., the terrain correction of the residual terrain. We also applied the same
procedure for the gravitational gradients, see equation (2.10). The vertical component of
the residual topographic attraction at P is equal to the vertical derivative of equation
(2.21),

h(x.y)-h, h(x,y)-hy

8,04,%,0)=Cpf] | a( Gpjj [ —ddi (2.52)

0

It is easy to integrate (2.52) with respect to x, first and one obtains after a few steps

(Tsoulis,1998)

-1/2

JIA=Gp|[ & 1-[1+[hphn WA (2.53)
s s

h(x,y)-h,

A, (%, %,,0) = Gpﬂ (-

[x—x'

X3=0
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h —h
Let x = (———)*, Tsoulis (1998) expands equation (2.53) into a series which involves
s

1/2

the convolution by using the binomial expansion of (1+x) ™ “ according to

1+ x) ™2 _1-ly 18, 185,
2 24 2:4-6
under the precondition that —1< x <1. This convergence condition means the slope of
the terrain surrounding the computation point should not exceed 45° (Forsberg, 1985;
Tsoulis, 1998; Tsoulis, 2001). After substituting (2.54) into (2.53), we have
h,—h)*> 3(h,—-h)* 5(h —h)°
5gZ(Xl,X2,0)=GpJ.J[( p283) - ( 255 ) + (1p6s7) -

(2.54)

- JdA (2.55)

After expanding the numerators in (2.55) into polynomials, h can be moved outside the

integral and equation (2.58) can be expressed as a series of convolutions between powers

of 1 and powers of h. Thus these convolutions can be computed using the convolution
S

theorem and the FFT methods. When the source point is close to the observation point,
the binomial series may not converge, so the FFT method will not give an accurate result.
Tsoulis (1998) solved this problem for the gravity terrain correction by combining the
FFT method and the right rectangular prism method, thus both the computational
efficiency and the accuracy of results are obtained. Tsoulis (2001) proposed a
combination method which applied the FFT method to all DEM data except for a small
zone surrounding the computation point which, where the analytical right rectangular
prism formula was used. He tested this combination method for a DEM area with extent
of 15 km by 20 km and resolution of 50 m. His results showed that the combination
method overcomes the convergence problem, which will happen for the rough terrain
area. At the same time, the results still maintain the computation efficiency of FFT
method, while keeping satisfactory agreement with the prism summation method. We
also use this combination method to solve our Taylor series converge problem, where the
FFT method is applied for the outer area where the series convergence holds; while the
prism summation method is applied for inner area.

Studies in the published literature seldom discussed the convergence problem for
gradient terrain correction. Their computation using the FFT method starts from the
spectrum of the vertical gravitational components, where they assume the convergence
problem is solved for the gravity terrain correction, for example, using the method of
Tsoulis (1998, 2001). Based on their previous computations for the gravity terrain
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correction, Tziavos et al. (1988) also computed the terrain corrections for the gradient
tensor using the formulas from (2.56) to (2.61). Since V is a harmonic function and
satisfies Laplace's equation, it can be proved (Tziavos et al., 1988) that the spectra of the
gradients and the spectrum of the vertical gravitational component have the following
relationships

(6T, = 3(6T,) = 27, - () (2.56)
3(,) = () = 24t - 3(89,) (2.57)
SCHEEAREES (2.59)
S(T,) = 3(0T,) =~ 3(a,) (260)
S(r,) = 2 5@, (2.61)

where f =(f”+ f2)"2.

However, we do not use this method to compute the terrain correction for
gravitational gradients. Jekeli and Zhu (2006) provide and compare other methods to
compute the terrain correction for gravitational. One method is the numerical integration
method (see equations (7), (9), (13), (14)); another method is the same as we described in
previous section (iv: FFT method for airborne data). But, the convergence problem is not
well discussed, so now we solve the convergence problem by using a combination
method similar to the method of Tsoulis (1998).

Tsoulis (1998) used the binomial series expansion to express the terrain correction
for vertical gravitational components as convolutions, whereas, we use the Taylor series
expansion. We can show that the convergence condition of the Taylor series is the same
as that of the binomial series by showing that the two series are the same. The function,

Fi, is expanded into a Taylor series with respect to variable X, and the different orders
of derivatives of F, are evaluated at x, =0. Thus, the function F, can be expressed as
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a series of different powers of x, (2.31). At the same time, the function, F;., can also be
expanded into a series of different powers of x, using the binomial expansion as shown

below. First, since F; has the expression (2.46) for airborne data, we express the term,

1

—,as:

r

Y T TG %=Xy (2:62)
r S+ (X3 —X3)

Let x= (% ) (2.63)

thus 1 = 1(1+ x) 2, so it can be expanded into series of different powers of x by using
r s

the binomial expansion of (2.54). The result has the expression

Q1-=x+

X — X°+--9). 2.64
2 2-4 2-4-6 ) ( )

r s

Thus, the terms, % and is in equation (2.46) can also be expanded into series of
r r
different powers of x by using the series expression of i, we derived above, as:
r
1 1 1. 1.3 2 1-3-5 N

—==0-3

+
r S 2 2-4 246

+o0)3; (2.65)

1 1 1 1-3 1-.3-5
= (- EXH X - X2 +-)°. 2.66
re S5( 2 2-4 2-4-6 ) ( )

Substitute (2.63), (2.65) and (2.66) into (2.46) and compute the powers 3, 5 of the series
in (2.65), (2.66); then compute all terms, rearrange and merge the terms which have the

same power of x,. At last, we can express Fi , as a general series with respect to

different powers of x,:
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Fic = A+ A+ Ag(X3)" + A (%) +-+- (2.67)

where A, A,, A, A,,--- are the coefficients.

The convergence condition of (2.67) can be obtained from the convergence condition of

(2.64), which is ((2—2%)2 <1.
S

By comparing (2.31) and (2.67), we are expanding the same function F; into two series

of powers of x,, thus the two series are the same and share convergence conditions. So it
. Xy — X .
is easy to see that the convergence condition is (———=)* <1 for our Taylor series.

S

So when the integration point is close to the computation point, or the terrain
between the integration point and the computation point has the ratio of height difference
to horizontal distance greater than one, there exist the dangers that the Taylor series does
not converge in theory. In order to avoid this kind of convergence problem, we modify
our FFT method and divide the terrain around the computation point into an inner zone
and an outer zone. The inner zone was selected to include the terrain where the
convergence condition does not hold, and its effect was computed using the prism
summation method. While the outer zone was selected to include the terrain where the
convergence condition holds (i.e., the slopes between the source point and the
computation point are less than 45°) and its effect was determined using the FFT method
with a modified kernel function (Tsoulis, 1998; Tsoulis, 2001).

The above method was applied to our terrain correction computations for the
gradients on the ground or for airborne data. First, we modified our kernel functions

F{ in (2.33) for ground data or (2.49) for airborne data as follows:

= (1) _
FY =

{ 0 ‘xl—xi‘sRllz and ‘XZ—XIZ‘SRZ/Z (2.68)

Fe otherwise
where R, R, are the selected horizontal distances of the inner zone.
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The terrain correction or terrain effect within the inner zone is computed using the right
rectangular prism method by (2.14), (2.15), (2.16) for ground gradients, or (2.18), (2.19),
(2.20) for airborne gradients. Next, we combine the inner zone result with the outer zone

result for each observation point. So, finally our formula for the terrain correction of the
residual terrain at ground is

él—‘jj (X) — érouter (X) + érinner (X)

i i

=Gp[3(I(F;)-3(h)) - h, -3*(3(&3)~S(h))+%s*(3(ﬁ,j)-S(hZ))

—hp:xﬁpwp)+%hj:qﬁpmpn

N M . . g+al2 bj+b/2 hi_hpi
inner *Minner X, — X X —X
-Gp ) tant i = X)X = X))

= (X; =x;)r

X =a;—al2 X,=b; b/ 2 X,<0

(2.69)
ST 5 (X) = T (X) + ST 1" (x)

= Go[S ™ (3(F,)- S() -, - T (S(F}) - S+ TH((F)-3(h))

—m-SG}me+%h§£KﬁQmpn

NinnerXMinner hi_hp

+Gp Y. In(x, =X +T)

i=1

aralz  |BDI2

X =a;—al2

X,=b;—b /2 X4=0

(2.70)
And the formula for the terrain effect of gradients at airborne altitude is

T, (X) = T2% (%) + T ()

= Gp- I [S(F (0): S) +  S(F, 0)- ()] -

h:
a2 b2 [f

Ninner XMinner v _
Gp Z tanfl (Xk Xk)(xl XI)

= (X; = x))r

X =a;—al2

x,=bi-b/2|, g

(2.71)
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ij (X) — F;)kuter(x) + F}Ener (X)

=Gp-s*[saf,-km)-S(h)%S(F}k (0)- 3(h)] +

NinnerXMinner a+al?2 bi +b/2 hi
i

Gp In(x, — X +T1)

i=1

X =a;-al2

x;=bi-b/2|, _q

(2.72)

The DEM we used for our analysis comes from the 3" SRTM data (around 90 m
resolution) in an area defined by latitude: 29.977°~30.323°% and longitude: -93.753°~-
93.437° , which is also the terrain correction area for the Air-FTG at Vinton Dome, LA;
see Chapter 4.3, Figure 4.17. We selected the 3 x 3 grid points around the observation
point as the inner zone. Thus the minimum horizontal distance between a source point in
outer zone and the observation point is 1.5 times the grid resolution, which is about

15-R-—— - —=139m in X, direction, and about
3600 180
15-R-c0os(30°)-—— . ~120m in X, direction. At the same time, the maximum
3600 180

height difference between the observation point and the source point is about 80 m which
can be seen from Table 4.4. Thus, both these two horizontal distances are greater than 80
m, which ensures that the convergence condition holds in outer zone. Also in our
computations, the observation point height is selected at constant flight altitude of 80 m.
The topography density is set to 1 gm/cc in order to compare our results with those of
Bell Geospace, who used this density value (as a scale factor). We make an assumption
that the result from the right rectangular prism method is the true value. The two
differences between the normal FFT (method iv) and the true value, and between the
modified FFT (method v) and the true value are computed, respectively, and shown in

Figure 2.5 for a W-E profile (I',,, for example), together with the contribution of the

topography outside the inner zone. It is shown that the normal FFT method has an error
of about 10 E, while the modified FFT method only has an error of about 0.1 E. This
means that the difference of these two errors is caused by the inner zone topography,
because the Taylor series does not converge within the inner zone. It also shows that the
modified FFT method reduces the effect of the inner zone errors significantly, leaving
only sub-Eo6tvos error.
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Differences: Normal FFT - Analytical Prism summation. (h=80m)
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Figure 2.5 Normal FFT method comparing with the combination method and its outer
zone contribution

2.2.2 Extent determination by Geostatistical methods

One common problem of the terrain correction for gravity or gravity gradients is
how much terrain should be included, and furthermore the extent used should be based on
our application of gravity gradiometry. For example, for the application of subsurface
exploration, the grid spacing error, the instrument error, the size of observation area, the
signal of the subsurface object, and the noise of the background etc., should all have an
influence on the determination of the required topographic data extent. The more area of
terrain is included, the more computation effort and cost of exploration will be needed, so
our purpose is to find an efficient way to determine the extent of the topographic data
based on the actual need of our application. One direct method is to compute the terrain
correction for gradients at a certain extent based on given DEM data, then increase the
extent and repeat the computation until we can see that the latter topography we included
no longer has a significant contribution compared to the previously included topography.
Such a method has the problem that it needs great computational effort in order to
analyze the problem for a given regional terrain, as detailed in the previous sections. Also
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this method needs a large area DEM data around the observation area which may not be
available for every situation. In order to learn how much contribution the remote
topography will have on our observations; an alternative method is developed by
applying classical truncation theory and a geostatistical analysis. The geostatistical
analysis method is an efficient method based on a stochastic representation of the
topography that can quantify the errors in truncating the terrain effect.

Sprenke (1989) used this method for optimizing the distance to which terrain
corrections are made. His method is similar to ours, but differs in three ways. First, the
topography simulation method is different although both are based on the geostatistical
method. He only used statistics from a profile of the area to simulate the radial zone
elevation around the observation station, and then the elevations in the subarea of the
radial zone are simulated by a uniform distribution of elevations. However we simulate
the whole topography by extending the covariance model to higher frequencies and our
covariance model is based on the statistics of all points within an area. Second, the
truncation error computation method is different; Sprenke used the direct numerical
integration, while we use the spectrum method. The difference of these two methods was
discussed by Jekeli and Zhu (2006). Third, Sprenke computed the truncation error for
gravity, while we compute the variance of truncation error for gravity gradients. Also his
extent determination is based on the error while ours based on the variance of error.
Furthermore, we also consider the error in the differences of terrain effect at two
neighboring points. This is important because usually the remote terrain has similar
gravitational effect on a pair of observation points, which are separated by a short
distance. That is, in this case the effect is like a bias and can be neglected under certain
situations; and, thus the required extent maybe significantly smaller.

i. PSD of terrain correction (effects)

The 2-D convolution of our signals g, h can be computed in the frequency domain by
using equation (2.29) according to the convolution theorem, assuming the signals g,h
are finite power signals. Then the power spectral density of the function, c, is given by

(Dc(fl' f2)=C*(f1’ fz)C(flffz)’ (2-73)
where * denotes the complex conjugate.

Apply (2.73) to our terrain effect of the residual terrain, JI';, (x), calculated in equation

(2.34), we can apply the periodogram method to compute the power spectral density of
the terrain effect of the gradients for ground data, as

(Darjk (f,, f,)= [S(érjk )]* 'S(érjk) (2.74)
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Also by applying (2.73) to our terrain effect of the topography, I'; (x), calculated in

equation (2.48), we have the power spectral density of the terrain effect of the gradients
at altitude,

(I)rjk (f1’ fz) = [S(ij )]* 'S(ij)

2 N l" (n-1)\ ~fhN\1* = 1,, ("-1)\ ~/fJN (275)
=(Gp) [ZH\S(FW )-3(hM)] -[ZHJ(Fjk )-3(h")]

ii. Truncation theory applied to geostatistical analysis

We assume a planar approximation since the terrain correction for gravity gradiometry is
presumed to be a very local phenomenon. Although for the extent determination of the
terrain effect, we are interested in the distant zone effect, we still can take the planar
approximation for the purpose of a comparative analysis. Also, it is anticipated that the

gradient effect decreases very fast when the distance enlarges, since the function, F,,

involves the high orders (order 3 and 5) of inverse distance (see (2.26), (2.46)).
Nevertheless, the effect of mountainous terrain can still be large at large distances; then if
larger areas are analyzed, the spherical approximation may need to be used instead.
However, we confine our analysis to the planar case and also assume that the terrain of
the distant zone is a stochastic process and is a stationary, ergodic process. For terrain
that involves rapid changes from one kind of topography (i.e., mountainous area) to
another (i.e., flat plains), the above assumption may not be suitable and will cause the
geostatistical analysis to be inapplicable. Therefore, our analysis is somewhat restricted
to cases where the assumptions of stationarity hold over the area of our geostatistical
analysis. Equations (2.34) or (2.47) show that the terrain effect can be expanded in a
series of convolutions of different powers of topography, h (or residual terrain,oh) and

the corresponding kernel functions Fj(k”‘l) (0). These functions depend on the distance

between the integration point and the evaluation point; they are singular at the origin and
yield strongly singular integrals for ground gravity gradiometry observations. However
we don’t need to worry about their behavior at zero distance since our analysis concerns
the truncation error in restricting the terrain correction area A to a finite region where the
distance in this error expression is always greater than zero. The truncation theory is
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developed below in general terms for a single convolution (2.28), and it can be applied to
as many of the terms in equation (2.34) or (2.47) as needed.

Equation (2.28) is analogous to one convolution term in equation (2.34), or (2.47),
where ¢ corresponds to a contribution to the terrain effect, g corresponds to the kernel

function F; (or a higher order derivative of F; ), and h corresponds to a power of the

terrain. If h is used only in some finite domain around the computation point, (X, X,),

. T T T T i . .
that |s,—31§x1—x1 331, —?ngz - X, S?Z’ then the error in c is the truncation

error:

sx)= | [h0G XG0 =X, X, = X )dxdx; (2.76)

‘xl—xi‘>T1/2‘x2—xé‘>T2 12

We define a new kernel:

, , X, — X, X, = X5), [X =% | >T, /20r|X, —=X,|>T,/2

Q(Xl—xl,xz —Xz): g( 1 1172 2) ‘ 1 '1‘ 1 ‘ 2 2.‘ 2 (277)
0, ‘xl—xl‘§T1/2and‘x2—XZ‘STZ/Z

so that the truncation error can be expressed as a convolution over the plane:

£(x,%) = | [0, %) 80x =, %, = ) dx . (2.78)

—00—00

Applying this to the series of convolutions in equations (2.34) or (2.47), we get the
truncation error of the terrain effect of gradients on the ground beyond the finite extent:

- - 1 = ~(E l ~(E'
Ear, (%, X,) =Gp[F; *h—h_-F, *h+§ij *h? -h, -\S(ij)(0,0)+5h§ - 3(F;)(©0,0) +---]

2.79
Also, the truncation error in the terrain effect of gradients at altitude is: e
or, (% %,) = Gpni;% EeD(©)=h", (2.80)
where
. FOD0), [, —X|>T,/20r|x, —X,[>T,/2
Fi 0= { ' o,( | “xi = xj < Ti/2 an(‘j \12 —i\ < 2T2 12 (2:81)

The spectrum of the truncation error can be computed by the convolution theorem, such
as for (2.80):
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~ 1 - n- ~(RhN
Er, (f1 1) =GpY S F)-5(h7), (2.82)
n=1 -

The above first Fourier transform holds for any topography but it has to be computed for

each extent (T,,T,).

Thus the power spectral density of the truncation error can be computed by:

D, (f,, f,) =E"(f,, F)E(f, f,), (2.83)
And the covariance function of the error is just the inverse Fourier transform of

d, (f, f,), given by

¢E(Sl,82):S_l(E*(fl, fz)E(fp fz))- (2.84)

where s;,s, are the horizontal distances along x;, X, directions between a pair of
observation points.
The value of the covariance function at zero distance (s, =0,s, =0) gives the

variance of the truncation error for the observation point at the center of the computation
area, due to the neglect of the remote zone beyond the limited extent. The variance of the
truncation error represents the statistical variation of the errors for an observation point
always centered within its data area. The needed extent of the terrain correction can be

determined by evaluating the variance for the (T,,T,) that is less than some threshold

value, such as the variance of the gradient measurement error, typical values of 102 E2,
Furthermore, for a pair of points separated by a specified distance, s, we can
formulate the variance of the error difference as a function of the size of the limited

extent, (T,,T,). Since the effect of the remote zone will be nearly the same for two

neighboring points of interest, it behaves like a bias among many points within a smaller
area of computation and could be calibrated by other methods. Therefore, for such points

in a limited area, the determined values of (T,,T,) may be smaller if the bias is not a

concern. For points further apart, the effect of the remote zone will have a larger
difference and it will not behave like a bias. In this case, we need to increase the values of

(T,.T,) further in order to reduce the truncation effect until it behaves like a bias.
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We define the error difference as

Az(S) = e x0) =@ xP) = g, — 5, (2.85)

at two points, (x,x{") and (x?,x{?), separated by distance s . Again, with the
assumption of a stationary stochastic process, its variance is:
var(Ae) = E((Ae)?) = E(g +&7 —2¢,2,) = 24,(0,0) - 24, (5,,S,) - (2.86)

We make the assumption that all errors have zero mean in order to derive (2.86), and here
E is expectation operator. If this is not the case, we can redefine the error to satisfy this
requirement, since we are only interested in the variance of the error. For a particular

distance, (s,,s,), the covariance of the difference of errors depends on(T,,T,). It is the
covariance for the effect of the remote zone beyond (T,,T,) computed for all pairs of

points with distance (s,,S,) , where each point of a pair theoretically is centered within the

same size data area. Thus, we find the specific value of (T,,T,) which yields a chosen

variance of the difference of the errors; again, e.g., less than the variance of the

measurement error. Usually, we determine the extent (T,,T,) only for the distance

s=4/s2+s?, and then it has the limitation that we need to assume the difference of

errors is isotropic, which is not always the case. Another limitation is that our error
estimation is for the points centered within the survey area, so when the observation
points are actually near the edge, the result will be biased by the different geometry of the
correction; and this will be left for future research.
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Chapter 3
Topography Simulation

3.1 Reciprocal distance covariance model

In the previous chapter, we developed a method to determine the extent of terrain
correction for gravity gradients by applying the truncation theory and a geo-statistical
analysis. However such an analysis, the results of which are given in Chapter 4, should
also be confirmed by simulations using traditional terrain correction calculations.
Although we have very good topographic data already, such as SRTM 1" DEM for the
entire US, we may still need higher resolution data for terrain correction applications
using very local gravity gradiometry, which is sensitive to very local mass distributions.
For example, a ground gravity gradiometry observation area may extend only about a few
hundred meters in length and width. In order to determine the extent of terrain correction
for such a local area, we need high resolution DEM, higher than 30m, even up to a few
meters. By developing a method of simulating different spectra and resolution of the
topography, we have complete control of every element to see how they affect our results
of extent determination.

The simulation procedure is as follows. In chapter 3.1, based on the reciprocal
distance covariance model (Moritz, 1980), we use its high frequency part as the PSD
model of high frequency topography. Jekeli (2003) used the model to study the gravity
field from the terrain and thus the low frequency part of the model is fitted with gravity
field. Here, we only simulate the high frequency topography by extending the PSD model
of low frequency topography to higher frequencies. Thus, the parameters of the low
frequency part of the model are not needed in our application. However, it is also noted
that sometimes when people study the ocean bottom topography, the satellite radar
altimetry is used and thus the topography or the bathymetry is modeled from gravity
field. In our application, by fitting an isotropic empirical PSD of DEM data with the PSD
model of topography, we find appropriate parameters of the covariance model at high
frequencies. By using the high frequency information of the fitted PSD model, we
simulate the very high frequency part of topography (i.e., higher than 30 m resolution),
and combine this with the part up to 30m resolution (which comes from the DEM data).
The spectrum of the topography can be derived from the PSD of the topography where
they are related with each other by the periodogram method. After we have the spectrum
of the topography, the inverse Fourier transform can be applied to produce the realized
topography. Thus we obtain the simulated topography with an arbitrarily high resolution.
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Although modeling the PSD of the topography does not explicitly depend on a
model for the gravitation, the forms of the two models are similar due to the fact that in
many cases gravitation and topography are linearly correlated at the higher frequencies.
Therefore, the following development is based on potential and gravitation, which are the
original quantities for which the reciprocal distance model was designed. Later, we
simply interpret the gravitation PSD model with appropriate scaling as a model for the
topography. We assume that both the disturbing potential, T, and the topography in a
region are stationary, isotropic stochastic processes on the plane. Under such an
assumption, a standard model for the covariance function of T, called the reciprocal
distance model (Moritz, 1980), is

0'.2

¢T(AX1’AX2;X31X'3):ZJ: J ; (3.1)

=i \/(1+ a; (% +X3)) +als?

where
' ' 2 2
AX; =X =X, AX, =X, —X,,S =+/AX," +AX,” , and where J,o |, are parameters

whose values are selected to fit an empirical determination of the covariance or power
spectral density (PSD) of the disturbing potential or one of its derivatives.
The PSD model corresponding to equation (3.1) is given by:

L ol ‘
CDT(fl,fz;Xg,xg):Z—e’a f ) (3.2)
=S

where the magnitude of the spatial frequencies, f, and f, is given by

N (33)

That @, depends only on f is a consequence of ¢, depending only ons, which means

that the potential field is assumed to be statistically isotropic.
The gravity anomaly is defined as Ag, =g, —,, Where g is the gravity at a point P of
the geoid, y, is the normal gravity at a point Q of the reference ellipsoid, and P is

projected onto the point of Q by means of the ellipsoidal normal. With the planar
approximation of the earth, the auto-covariance function for gravity anomalies, according
to the rules of propagation of covariance (Moritz, 1980), is given by
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:az_¢T (3.4)

Pra.s XXy

The corresponding PSD relationships in the frequency domain between the potential and
its vertical derivatives are given by (Jekeli 2003):

Dpgng = (27zf)2CDT . (3.5)

3.2 Topography simulation using covariance model

In order to relate the gravity field with topography, it is a reasonable assumption
that the high frequency anomalies of the gravity field are generated principally by the
terrain variations. For example, Wang and Rapp (1990) applied the assumption of linear
relationship between free-air gravity anomalies and topographical heights in geoid
undulation computations. Voigt (2006) also points out that local gravity field effects are
strongly correlated with the topography and the case of high frequency terrain effects in
gravity field modeling was studied using 1'x1" DEM. However, Vanicek and Kleusberg
(1987) did not make such an assumption for the effects of terrain in Helmert's 2nd
condensation method. Martinec et al. (1993) also pointed out that both methods, Vanicek
and Kleusberg (1987) as well as Wang and Rapp (1990), are approximate for different
reasons and there are cases when the mass distribution in the earth creates the gravity
field which behaves opposite to the above assumption. Here we apply the assumption of
Wang and Rapp (1990) to our application, realizing also that it is particularly applicable
to the higher frequencies representing the local features of the topography and gravitation
(Jekeli, 2006). To simplify the relationship between the gravitational field and the
topographic heights, we approximate the topography by its Helmert condensation
(Heiskanen and Moritz, 1967) onto the geoid. The topographic masses thus are modeled
as a two-dimensional mass layer on the geoid with density equal to ph at any point,
where p is the crustal density (constant) and h is the terrain elevation at this point. From
the equation (2.1), we have the potential V at a point P, due to such a layer is given by

V (X) =GpH2dA, (3.6)

where G is Newton’s gravitational constant, A represents the integration area and I is
the distance between the computation point and the integration point. With planar

coordinates, we have 1 =./(x, — X/)? + (X, —X,)? +x and (x;,X,) are coordinates of the

integration points on the geoid.
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Equation (3.6) is a convolution of h with the inverse distance, r* and can be written as

V(X) =Gph-r™. We can apply the convolution theorem (2.30), (2.31) to (3.7) and also

—27%5 f

we have the 2-D Fourier transform of ; as le which is a Hankel

VX + X2+ %]

transform. Thus it is shown that the Fourier transform of the potential at the level x, >0

IS given by
3(V) = %S(h)e‘m , (3.7)

Equation (2.70) gives the relationship between power spectral density and spectra.

Therefore, we obtain the (cross-) PSD of the potential at two levels, x, and x,, by

substituting (3.7) into (2.70)
Dy (F%) = (SV)' SV) = ()7, (e 79, (3.8)

From equations (3.5) and (3.8) we can get the PSD of the vertical derivative of V by
D, (F:%,%;) = (22Gp)* @, (F)e o), (3.9)

Equation (3.9) gives the relationship between the PSD of gravity anomaly with PSD of
topography which is based on our assumption that gravity anomaly is linearly related
with the topography elevation.

The next step is to synthesize the topography in space domain from the discrete PSD.

We assume that the topography height signal is a finite power signal and that it is

truncated at T,,T, along the two directions of a region and so can be treated as a finite

energy signal; and we apply the Fourier transform to it. From equation (2.70), we have:
. 1 .
@, (., f.) = [im (E(T Hr r, (f £)H. 5 (1, £,))) - (3.10)

T Ty 1T2

Therefore, the PSD of the topography can be estimated from its spectrum by the

periodogram. We want to synthesize the topography on a 2-D grid, h, , (evenly spaced,

AX,,AX,) where k; =0,...,N, =Lk, =0,...,N, —1. We use discrete Fourier transforms

and estimate the PSD by ignoring the limit and the expectation in (3.10):
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1

ci)h(f11 f,) ZMH;B(H’ fz)HTl,T2 (i, f,). (3.11)
where f, =— N, /2 ,...0,..., Nl/z_l; , :__NZ/Z .0, N,/2-1
N,Ax, N, Ax, N,AX, N,AX,

and H, ;. (f,, f,) is the discrete spectrum of topography height for the interval T,,T, .

So the spectrum of topography, H, . (f;, f,), on our synthesized grid can be computed

according to:

Hnl,nz = ( n.n, T1C, nz)\/NlAXlNZAXZ \/q)h(nl’ nz) 1 (3.12)
where b, . ,c, . are assumed to be normally distributed random variables:
b, .. ~N(O,@/V2)%),c,, ~N(@O 1/V2)?). (3.13)

By substituting (3.12) back into (3.11), the square-root of the periodogram of H . is

V@, (n,n,)

n1 N,

Since b, , ,c, . are normally distributed and independent, we have

1. 7 TNg,Nn

b,, -0 -
\/( W )24 Nevy-e ut ”2 =2 [b? (3.14)
1/\/_ ) ny,N,
And by using the law of propagation of variances, (3.14) has the variance o> = 2, thus we

can derive that the standard deviation of Jbri,nz +C§1,n2 is 1. Therefore, the standard

deviation of the square-root of ®, is \/®, (n,,n,), forall n,,n,.

Thus, the inverse discrete Fourier transform of H_ = vyields a realization of the

corresponding topography.
3.3 Simulation results

The topographies in two areas (Figure 3.1) were selected to compute the empirical
PSD and thus to select the proper parameters in (3.1) to make the PSD of the reciprocal
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distance covariance model fit the empirical model. Area 1 represents relatively smooth
terrain, and Area 2 is a rough mountainous terrain. The topographies simulated in smaller
Area 1_a (using the PSD of Area 1) and Area 2_a (using the PSD of Area 2) are based on
DTM2006 5'data; while the topographies simulated in smaller Area 1_b (using the PSD
of Area 1) and Area 2_b (using the PSD of Area 2) are based on SRTM 30" data.

Figure 3.1 Four Areas (1_a, 1_b; 2_a, 2_b) of Simulated Topography.
Two kinds of low frequency terrain data were used for the simulation. Datasetl is coming
from the DTM2006 model which uses spherical harmonic expansion (to harmonic degree
2160) of Earth's topography made available by the EGM2008 development team (Pavlis
et al., 2007). Datasetl has resolution5’ and is computed for large Area 1 (Latitude:
42°~48° Longitude: 259°~269°) and large Area 2 (Latitude: 37°-~44° Longitude:
250°~257°), respectively, for the purpose of empirical PSD computation. The software
we used is NGA's harmonic synthesis program; both it and the spherical harmonic
coefficients of the topographic elevation, are downloaded from the NGA website:
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/first_release.html. Dataset2
is the SRTM (Shuttle Radar Topographic Mission) global dataset (Farr et al., 2007) and
its resolution is 30" . Dataset2 is downloaded for large Area 1 and large Area 2,
respectively, also for the purpose of empirical PSD computation; and, it is downloaded
from website: http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10008 1.
The datasetl (5’ resolution) for large Area 1 has 72x120 grid points, while for large Area
2 has 84>84 grid points. The dataset2 (30" resolution) for large Area 1 has 720>1200
grid points, while for large Area 2 has 840>840 grid points.
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http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/first_release.html
http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10008_1

Datasetl, Dataset 2 were also used to model the low-frequency terrain data in our
simulation sub-Areas, i.e., Dataset 1 for Area 1 a (latitudes: 47° ~49.7°, longitudes:
263° ~ 265.7° ) and Area 2 a (latitudes: 35° ~37.7° , longitudes: 250° ~ 252.7°);
Dataset2 for Area 1 b (latitudes: 42° ~ 44.7°, longitudes: 259° ~ 261.7°) and Area 2_b
(latitudes: 37° ~ 39.7°, longitudes: 250° ~ 252.7°), respectively.

First, the empirical PSD, (d)h)kbkz of topography data was computed using the

periodogram method, i.e., equation (3.11) evaluated for our two-dimensional grid dataset
of Areal and Area2. Next, the isotropic empirical PSD was computed by averaging the 2-
D discrete PSD values within each radial frequency band using following equations

1 N

Dyerore( £, ) =WZ((i)h(fr))i (3.15)
i=1
where f =, f?+f7 , is radial frequency; Af =min( L : L ) and

N,AX; N,AXx,
r= Interg(Af—;) is the radial frequency band number, N is the total number of ((i)h)kl,kz

whose radial frequency is located between the frequency band [f,, f, ).

The angular units for the downloaded grid data of Area 1 and 2 have been converted to
horizontal distance units using Ax, = Rcos¢dA; Ax, = Rd¢, where R is the radius of the
earth, ¢ is the average latitude of the area. Also the horizontal frequency units can be
obtained from the units of Ax;,Ax,. The fitted reciprocal distance covariance model,

especially the lower frequency parameters were obtained such that the various
components of the reciprocal distance model are tangent to (osculating) the empirical
power law PSD, as described in section 28 of Freeden et al. (2010). The following figures
(Figure 3.2; Figure 3.3) show the isotropic empirical PSD of two datasets (blue line:
DTM2006 5 grid; green line: SRTM 30" grid), the global DTM2006 degree variances
(black line) and the PSD of the fitted reciprocal distance covariance model (red line) in
Area 1 and Area 2 respectively. For Area 1, the global DTM2006 degree variances up-
shift with respect to the local empirical PSD, indicating that the topographic features of
Area 1 are not represented well by the global topographic PSD. On the other hand, Area 2
is a relatively mountainous area and the local topographic feature is more consistent with
the degree variances of the global topography (and bathymetry). Also the low frequencies
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of DTM2006 degree variances do not fit well with the covariance model because the low
frequencies of the covariance model come from the gravity potential, which means that
the low frequencies of DTM2006 are not consistent with that of the gravity field.
However, this will not affect our topography simulation since we only use the high
frequency part of the covariance model. The PSD magnitude jump (for blue line and

green line) occurs where the radial frequency, f. exceeds the Nyquist frequencies

1
f)y == (f,)y =
(T 2% (f2)n 2%,

. The reason is that not enough data information exists along

the radial direction when reaching the boundaries of the square.
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PSD of h : m?/(cy/m)?

PSD of h : m/(cy/m)?
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Figure 3.2 Empirical PSD and Reciprocal Distance model PSD in Area 1.
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Figure 3.3 Empirical PSD and Reciprocal Distance model PSD in Area 2.
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The parameters ajz and «; in equation (3.1) that are the selected values to fit empirical

PSD's are shown in Table 3.1. Although the table gives the all parameters corresponding
to whole frequencies, we only use the parameters representing the high frequency part of
the covariance model to simulate the topography.

Table 3.1 Reciprocal Distance Model Parameters

Area l Area 2

j o’(m¥sh) | a(Um) j s (m's) | a(lm)

1 10° 3x10” 1 10° 3x10”

2 3300 9.69x107 2 3300 9.69%10
3 130 4.76x10° 3 640 7.56x10°
4 32.4 8.94x10° 4 951 9.73x10®
5 3.4 2x107° 5 79.9 2.18x10°
6 0.3205 4.48%10° 6 6.71 4.88x10"°
7 2.01x107 110 7 0.564 1.09x10*
8 2.53x10° 2.25x10% 8 4.74x107 2.44>10*
9 1.59x10* 5.03x10™ 9 3.98x10° 5.47x10™
10 1.994x10° | 1.13x10° 10 3.34x10™ 1.23x10°3
11 1.565x10° | 2.52x10° 11 2.81x10° 2.74x10°
12 3.93x10° 5.64x107 12 2.36x10° 6.14x107
13 2.47x10° 1.26x102 13 1.98x107 1.37x102
14 1.55x10%° | 2.83x10? 14 1.66x10° | 3.08x107
15 0.74x10"% | 6.33x107 15 1.4x10° 6.89x107

The DTM2006.0 5 dataset (approximate 9.2 km resolution) has largest Nyquist
frequency about 5.4x10° cy/m. If we need to simulate the topography with 20m
resolution, which has Nyquist frequency 2.5x107 cy/m, then the PSD models with the
parameters of Table 3.1 are suitable to simulate the topography with frequencies between
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5.4x10° cy/m and 2.5x10% cy/m within Area 1 or Area 2. The reason is that those
parameters in the reciprocal distance model of potential include the high frequency
information of the empirical PSD of topography which indicates a power law, consistent
with the known properties of the Earth’s topography. Therefore, we can extend it to the
higher frequencies for our simulated topography. This extension of our PSD of
topography from the 5’ resolution empirical DTM2006 data up to frequency of 10 cy/m
is reasonable and was verified by the empirical PSD of real SRTM 30" data (Figure 3.2,
and Figure 3.3). We assume that this extension also holds for topography with even
higher frequency, i.e., the Nyquist frequency of our simulated topography. This is
combined with the DTM2006 5" topography to obtain the total simulated topography.
For the SRTM 30" dataset (approximate 920m resolution), the simulation is for
frequencies approximately between 5.4x10™ cy/m and 2.5x10 cy/m. Four topographies
were simulated for smaller Areas 1_a, 1 b, 2_a, 2_b, respectively; each area covers about
300 km by 300 km with 20 m resolution.

Figure 3.4 shows the simulation result for Area 1_a using the PSD of Area 1 and the
DTM 2006 5’ dataset; Figure 3.5 shows two W-E profiles of Figure 3.4.

The similar figures for the simulated topography of Areas 1 b, 2_a, 2_b are shown in
Figure 3.6~3.10.
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It can be seen from the above figures that the data (low frequency part of
topography) provide the information needed to determine the PSD model and act as the
smooth part of topography in the simulated results. If the data include higher frequency
information (which also means less simulated topography), the better is the total
simulated topography. This explains why the topography simulated from the SRTM 30"
DEM data looks much better than from the DTM 2006 5" data. Also it can be seen that
the rough Area 2 has larger magnitude for high frequency topography than the smooth
Area 1 because the PSD of h for high frequency has larger magnitude in rough Area 2
than in planar Area 1.

In order to know how reasonable our simulated topography is, for our selected
Area 1_a, we simulated the topography up to resolution 30" on top of the DTM2006 5'
data; also we simulated the topography up to resolution 3" on top of the SRTM 30" data.
Then we compared these to the real SRTM data which has the same resolution as our
simulated topography. These comparisons for Area 1 a are shown in Figures 3.12, and
3.13. A West-East profile at latitude 47.33° of Figure 3.12, 3.13 is shown in Figures 3.14,
and 3.15. It can be seen that our simulation is closer to real data when simulation starts
with higher frequency data, i.e., simulated topography based on SRTM 30" data is better
than based on DTM2006 5" data. Also the topography simulated in relatively rough areas
is better than in flat areas. It is because our simulation is based on the stationary property
of the high frequency topography signal, whereas, from the actual data we can see that
the topography signal at high frequencies is not stationary, especially at the boundary
between rough area, flat area and lake area. To improve the simulation results, two kinds
of methods can be applied. In the first method we can smooth the simulated topographic
signal for different subareas thus further simulating a kind of non-stationarity. In the
second method we can divide the large simulation area into several subareas based on the
topographic characteristics of flatness, such as flat or mountainous. Each subarea includes
only one kind of topography and the stationarity can be assumed to hold within each
subarea, while the stationarity between these subareas does not hold. The covariance
models of PSD are fitted with the empirical data of each subarea, respectively, and then
we simulate the topography for each subarea, respectively. Finally, the total topography is
obtained by combining the simulation results of these subareas. However we did not
apply such methods in our truncation error computations by geostatistical analysis, which
may affect the validity of the results in applications where significant non-stationarity
exists.

By using this latter method, we can simulate ultra-high frequency topography
(e.g., resolution up to 10 m) based on a model implied by the spectral attenuation of the
prior low frequency DEM data. We use this simulated topography to test and verify the
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method described in chapter 2 which determines the extent of terrain correction needed
for specific applications. This part will be described in the next chapter.
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Latitude=47.33(degree) profile for Area1l__a
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Figure 3.14 Profile of low frequency data, simulated topography, and real topography
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Figure 3.15 Profile of low frequency data, simulated topography, and real topography
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Chapter 4
Terrain Correction for Ground-based and
Airborne Gravity Gradiometry

4.1 Truncation error verification by deterministic method

In this section, we will verify the geostatistical methods by comparing with the
deterministic method. The geostatistical method which we described in chapter 2.2.2 uses
the statistics of the residual topography data or the geostatistics of our simulated
topography to compute the variance of the truncation error. The deterministic method
applies the analytical right rectangular prism method to the topography directly and
computes the truncation error in space domain. Then by applying a Monte Carlo analysis,
that is, by repeating the computation many times (such as, 1000 times) to get a large
sample. Thus the variance of the truncation error is computed statistically based on the
sample. In chapter two, we developed the geostatistical method where the data extent of
the terrain correction can be determined by setting the criterion such that the truncation
error is smaller than the typical gravity gradiometry instrument error, provided that we
neglect other errors first. Since gravity gradients are very local signals, also for our
application of subsurface detection, we need to quantify the extent of needed topographic
data for the terrain correction of gravity gradients for a small observation area, say
several hundred meters or a few kilometers. To aid in this investigation we also
developed a method to simulate the ultra-high resolution topography based on the
reciprocal distance covariance model that is constructed from given low, as well as high
resolution data. In order to verify the procedure of extent determination using the geo-
statistical method for local gravity gradiometry, i.e., to verify the variance of truncation
error, we need to compare it with the actual error variance determined by the
deterministic method using the simulated topography.

First, we use the method described in chapter three to simulate topography with
the resolution of 1 meter. The PSD covariance model was fitted to the low resolution
SRTM 30" and high resolution SRTM 1" DEM data in Area 1 (Figure 4.1) and the
parameters used for the reciprocal distance covariance model are listed in Table 4.1.
Although the table gives the all parameters corresponding to whole frequencies, we only
use the parameters which represent the high frequency part (higher frequency than 1"
DEM) of the covariance model to simulate the topography. The simulated 1 m resolution
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topography (over an area, 3 km by 3 km) is shown in Figure 4.2 together with the SRTM
1" DEM and also two profiles are shown in Figure 4.3, respectively.
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Figure 4.1 PSD covariance model with empirical PSD
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Table 4.1 Parameters of Reciprocal Distance Covariance model for Area 1

j o2 (m?/s" a (1/m)

1 1<10° 3x10”

2 3.3x10° 9.69x10"
3 1.3<10° 4.76x10°
4 3.24x10* 8.94x10°
5 3.4 2107

6 3.205x10" 4.48x10°
7 2.01x10% 1<10™

8 2.53x10° 2.25%10™
9 1.59<10" 5.03x10™
10 9.97x10° 1.13x107
11 1.565%10° 2.52x10°
12 7.86%10® 5.64x10°
13 1.482x10° 1.26107
14 9.3x10°1° 2.83x10%
15 9.74x10™ 5.93x10
16 1.74x10™ 2.08x10™
17 1.8<10" 8.48x10"
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We apply the geostatistical procedure of Chapter 2 to compute the truncation error
variance on the basis of this simulated topography. This means that we determine the
covariance model for the truncation error for each truncated area according to equation
(2.84). Then, the variance of the error is the covariance at zero distance, and the variance
of the error difference between two neighboring points is given by equation (2.86). The
results of the truncation error variance on the basis of this simulated topography are listed
in Table 4.2, 4.3. In this way, we determine the extent of topographic data needed to
make sure the variance of truncation error is smaller than the variance of instrument error,
for example, 0.01 E2. Also we can determine the needed extent of topography data for a
pair of points through the variance of truncation error difference.

Through the analysis in section 4.2, we will find that the extent determined for the
truncation error of one point is much larger than the extent determined for the truncation
error difference of a pair of points, provided the same criterion is used where the variance
of instrument error is 0.01 E2. Since our simulated topography has only a 3 km by 3 km
area, the variance of truncation error for one point will not reach the criterion even if the
topography within the whole simulation area is included.

So for these simulated data, we only determine the extent of data for a pair of
points separated by a certain distance, for example, up to 500 m, for local gradient
observations. That is, in a local gradiometer survey over an area of about 500 m, only the
variations in the gradients relative to the mean would be of interest.

The above describes the procedure of using the geostatistical method to compute
the variance of truncation error difference (2.86). In this procedure, the FFT method was
used to compute the convolution in (2.76) or (2.77) which means that the data are
assumed to be periodic with period 3 km. For the observation point near the edge of the
simulated area, the correction area is still 3 km by 3 km (determined by the kernel
function area) and centered on the observation point. In effect, this will make the total
topography area 6 km by 6 km which is achieved by the periodicity.

On the other hand, the deterministic method was also used to compute the the
truncation error difference for a pair of points using the prism summation model
described in chapter 2.2.1 in order to verify the above geostatistical method. Then the
variance of the error difference was computed using the Monte Carlo method. We first
compute the truncation error for one observation point using the simulated topography
centered on this observation point, and then the computation was repeated for another
observation point. The truncation error difference was obtained by subtracting one
truncation error from the other. These two observation points should have the distance of
500 m which is the same as that in the geostatistical method; also the direction along the
pair of points should be random. The computation was repeated one thousand times for
such a pair of points and then the variance was computed.
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It should be pointed out that for the deterministic method, the pair of points
selected at random should appear in an area that is consistent with the area of data used in
the geostatistical method. Since the simulated 3 km by 3 km topography used in the latter
in effect covers an area 6 km by 6 km due to the periodicity assumption of FFT, also the
pair of observation points for the deterministic method should be at the center of 3 km by
3 km area extended periodically to cover 6 km by 6 km. Another case is that if real
instead of simulated data are used for the computations, they usually will be padded with
zeros in order to reduce the cyclic convolution error. To be consistent with the
geostatistical method, the errors should also be computed using data in a zero-padded
area. Figure 4.4 shows the diagrams of these two cases. For the above two cases, the
actual computation area is four times larger than the simulated topography area. So, due
to the computation capability and speed of our computer, we set our simulated
topography with ultra-high resolution of 1 m to cover only a small area of 3 km by 3 km.

For our verification of the geostatistical method by using the deterministic
method, we first select the data area as 1 km by 1 km, and then increase this with steps of
0.5 km until it reaches the whole simulated area of 3 km by 3 km.
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Figure 4.4 Diagram of deterministic method to compute variance of error difference.
The variance of truncation error differences coming from the geostatistical
method in section ii of chapter 2.2.2 was compared with that from the deterministic
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method described above. Table 4.2 shows results for the case of padding beyond the 3 km
x 3 km area by zeros; Table 4.3 shows results for the alternative case of padding data

periodically. Both results use the terrain correction for T3 as an example.

Data padded by zeros

Extent Variance (E?) Variance (E?)*
(km) (truncation error difference) (actual error difference)
1 3.430 3.638
1.5 0.662 0.700
2 0.156 0.163
2.5 0.0265 0.0256
3 0 0

Table 4.2 Case 1: Variance of geostatistical method VS deterministic method

Data padded periodically

Extent Variance (E?) Variance (E?)*
(km) (truncation error difference) (actual error difference)
1 8.875 8.730
15 0.9798 0.9776
2 0.2502 0.2562
2.5 0.1004 0.1069
3 0 0

Table 4.3 Case 2: Variance of geostatistical method VS deterministic method

* denote the results based on 1000 random Monte Carlo samples

From the above results, it can be seen that the truncation error variances from the
geostatistical analysis are consistent with those from the deterministic method. Here the
good agreement is due to the fact that we compute the variance of truncation error using
topography that is simulated with the same PSD that is used for the geostatistical method.
Also it is confirmed that the two methods yield consistent results for other distances
between points. Therefore we confirm that our method of determining the extent of
terrain correction is correct by using the geo-statistical method and the corresponding
procedure described in chapter two. Also, if we pad data periodically instead of with
zeros, the variance we get is larger due to the extra signal that contributes to the
truncation error beyond the data area. As the extent increases, the excluded area becomes
smaller, so the variance will also be smaller correspondingly. If we wish the variance of
the truncation error for a pair of points with distance separated by 500 m to be smaller
than 1 E? as our criterion, then the minimum extent for this simulated case should be 1.5
km. The truncation effect of the topography beyond this extent is larger for a single
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observation point, but most of this just act like a bias, when considering a pair of points.
The above conclusions are obtained for the topography we simulated in Area 1, which is
a relatively smooth area; if the topography has another character, the consistency between
the two methods still holds; however the values of the variances would be different.

4.2 Extent of terrain correction for ground-based gravity

gradiometry

Now we apply the geostatistical method described in chapter 2.2.2 to determine
the extent of terrain correction required for a possible set of ground-based gravity
gradiometry observations. Since we compute only the truncation error or its variance, the
integration area excludes a certain area around the observation points; and thus, since the
integration source point will not approach the computation point, there are no
convergence issue for the series developments in chapter 2, specifically (2.31), (2.32).
The DEM we select to compute the terrain is the SRTM 3" DEM (about 90 m resolution)
within an area of latitude: 35°N~40°N and longitude: 110°W~105°W. The terrain
elevation data were downloaded from website
“http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp”. The location and image of the
DEM data are shown in Figure 4.5. The residual topography is computed for the ground
reference plane at altitude of 2317.2 m which is the average altitude of the DEM area.

4000

3500

2500

Latitude (degree)
w
~
(9]

r ¥,
250.83 251.67 252.5 253.33 254.17 255
Longitude (degree) (meter)

Figure 4.5 SRTM 3" DEM data for ground gravity gradiometry
When we compute the truncation error variance for the terrain correction using the
geostatistical method, we expand the integral kernel using the Taylor series (2.31) in
order to form the convolution and then apply the convolution theorem. Thus we need to
evaluate which order of expansion is needed, i.e., determine the maximum n in (2.34).
We did a test for Tszat one point, as well as for a pair of points separated by 0.9 km, 4.5
km, 9 km, 18 km, 45 km, 90 km, 180 km, 270 km, and 360 km, respectively. The results
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were computed for expansions of order one and order four and are shown in Figures 4.6,
4.7. Figure 4.6 for the variances at one point shows that the difference between these two
orders is only 102 E? for the extent beyond 80 km; and it is even smaller for pairs of
points, as shown in Figure 4.7. Therefore, the Taylor series expansion up to order one is
enough for the extent determination. It should be pointed out that neglecting terms in
Taylor expansion of order higher than one is only reasonable for the determination of the
terrain correction extent. If we also want to compute the terrain correction using Taylor
expansion of order one, then the method (v) in chapter 2.2.2 must be used, i.e., the inner
zone must be computed separately using the prism summation method.

]_04 r r
—%— Expasion upto order 1

B

©— Expansion upto order 4

10> & difference: order 1- order 4
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w o -
§ %\%\%’\5\9\
S 0% i
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(]
<
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©
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10°

10°

0 100 200 300 400 500 600

extent(km)

Figure 4.6 Differences of truncation error variances between Taylor expansion order 1
and order 4 for one observation point
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Figure 4.7 Differences of truncation error difference variances between Taylor
expansions order 1 and order 4 for pairs of points separated by different distances
Next, the 5° x5° DEM area was divided into 5 concentric sub-areas with side arc

lengths 0.4167°,0.8333°,2.5°,4.1667°,5° , respectively. Then the variance of the

truncation error was computed using the given DEM data within each sub-area by
applying equations (2.81), (2.82), (2.83), (2.84). The results were plotted versus the
extent of terrain correction in the same Figure 4.8 for all 5 sub-areas (Tss, for example).
The variance of the error is not exactly equal to zero when the truncation extent is equal

to the total sub-area. The reason is that we extend the area of the kernel function, Ifj(k“‘l’ ,

to four times larger than the data area, which means we are assuming there is always
terrain outside the data area. If we truncate the kernel function outside the original data
area to be zero (which means there is no extra terrain outside the data area), then the
variance of truncation error will be very close to zero (see right plot of Figure 4.8).
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It is shown that the extent of the terrain correction needs to reach 400 km in order that the
truncation error variance is smaller than 10 E?, or 230 km for variance to be smaller than
10" E2. It should be noted that these results are obtained for a single observation point.
For a pair of points separated by a certain distance the terrain effect mostly cancels, even
if the surrounding topography would generate a large terrain effect for one observation
point. So if we consider the truncation error difference for a pair of points, then the extent
needed will decrease significantly. The variance of the truncation error difference for a
pair of points, separated by 0.9 km, 4.5 km, 9 km, 18 km, 45 km, 90 km, 180 km, 270
km, and 360 km was computed and is shown in Figure 4.9, which also shows the variance
of the absolute truncation error for one point. It can be seen that the extent needed on the
basis of the error difference variance is dramatically smaller than the extent determined
from the variance of the total error, especially for points separated by a short distance.
With the separation increasing, the required extent also becomes larger. For
example, if we want the variance of the error difference to be smaller than 10 E?, then
the extent only needs to be 35 km for points separated by 0.9 km, or 85 km for points
separated by 4.5 km, etc. These results are obtained for the gravity gradient Ts3. The
results for gravity gradients Tii, T, Ti3, T2, To3 are shown in Figure 4.10 ~4.14,
respectively. It is noted that the required extent of the terrain correction for gravity
gradients Ti3, T3 are much less than for the other gravity gradient components. It is

because in the Taylor expansion of (2.32), F, (0) =0, Fj'k (0) = 0 for Ty3, To3 considering
(2.26); while F; (0) =0, Fj'k (0) =0 for the other gravity gradient components. F, (0) is

associated with the residual terrain, oh; but Fj'k (0) is associated with the higher-order

residual terrain, oh?. Also, from Figure 4.9 ~4.14, it is noted that the error variance for a
single point is not always greater than the variance for a pair of points separated by large
distance. The reason is that the covariance in (2.86) for a pair of points separated by large
distance may be negative in certain cases.
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Figure 4.11 Ti,: Variance of truncation error and error difference for different distance
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T23 truncation error
10

T
m— absolute error
——e— 0.9km
*  4.5km H
—*— 9km
18km
——*— 45km
90km
——— 180km
—&— 270km
7 360km

10°

10°

10

10"

10°

Variance of Error Difference (EZ)

. ——%

10 —
hd .
10-10 o
L4 °
10" —

0 100 200 300 400 500 600
T (km)

Figure 4.14 T,3: Variance of truncation error and error difference for different distance
79



4.3 Terrain correction for airborne gravity gradiometry

4.3.1 Terrain correction of Air-FTG at Vinton Dome, LA

A survey was done by Bell Geospace Inc. (BGI) using the Air-FTG (Full Tensor
Gravity Gradiometry) installed on a BT67 fixed wing airplane in 2008 over the Vinton
Dome located in the south-west of Louisiana close to the Texas boarder (Figure 4.15).
The flight lines are between latitudes 30.07° ~ 30.23°, and longitudes -93.66° ~ -93.53°.

Arkansas

iMississippi

S

Observation area
0.5°>0.5° Terrain Correction Area
1°x1° Terrain Correction Area

2°>2° Terrain Correction Area

Figure 4.15 Vinton Dome Air-FTG survey locations and terrain correction areas
Figure 4.16 shows the location of the survey lines (South-North flight lines) and tie lines
(West-East flight lines). There are a total of 53 survey lines separated by 250 meters and
the center 18 survey lines are separated by 125 meters. Each survey line is about 16.7 km
long. There are 17 tie lines separated by 1000 meters. Each tie line is about 11.7 km long.
The survey area is a relative flat area, so the flight clearance does not vary much. The
statistics of the terrain and flight altitude of the survey area are listed in Table 4.4.
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Figure 4.16 Survey line position and two center lines as profile
Bell Geospace computed the terrain correction based on a modeling package that uses 3-
D prism to represent the topography. Their computation assumes a density of 1.0 gm/cc,
so the true value (assuming constant density) is simply a scaled version of their result.
The terrain corrections for gravity and gravity gradients were computed using the
topographic mass above the geoid. The terrain data they use is the SRTM 90 m DEM
which extends 10 km in all directions beyond the survey area.
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Min Max Std. Dev. Mean

Terrain -1.81 24.40 4.18 7.30
Altitude 53.55 116.34 8.26 85.17
Clearance 43.88 108.76 7.40 77.87

It is of interest to compare our terrain corrections with Bell Geospace’s and also
to check if the extent of terrain that Bell Geospace used for their terrain correction is
reasonable or not under the criterion that the variance of truncation error should be
smaller than the variance of instrument error. First, a SRTM 3" DEM dataset (Figure
4.17) was downloaded from http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp within
latitudes: 29.977°~30.323° and longitudes: -93.753°~-93.437°. Then the method (ii) (i.e.,
space prism summation) in chapter 2.2.1 was used to compute the terrain corrections at
the observation positions on the flight line. Figure 4.18 shows the terrain corrections of
all gravity gradients for the T90 tie line profile using Bell Geospace’s and our results;
while Figure 4.19 shows their differences. Figure 4.20 shows the terrain corrections of all
gravity gradients for the L461 survey line profile using Bell Geospace’s and our results;

Table 4.4 Flight altitude statistics (m)

while Figure 4.21 shows their differences.
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Figure 4.17 SRTM 3" DEM used for the terrain correction

It can be seen from these figures that the two results are basically consistent with
each other and have a difference of about 35 E for all gradients except for T;,, where the
differences are smaller. It should be noted that Bell Geospace’s corrections are the result
of de-noising (using a 150 meter cut-off wavelength) and represent a line leveled result,
which means the long wavelength noise was removed for inline and cross line
observations, including the terrain correction. Using the wavelength filter to the terrain
correction is equal to assume there is no actual topography outside their terrain correction
area; furthermore it is similar to assume that the outer topography have similar effect on
pair of points and can be neglected. This is what causes the differences between the two
results. Bell Geospace extended 10 km (0.09° for latitude, 0.104° for longitude
considering the Earth’s curvature) along all direction of their observation area which
result in their terrain correction area between latitudes 29.980° ~ 30.320°, and longitudes
-93.764° ~ -93.426° while our area is between latitudes 29.977° ~ 30.323° and

83



longitudes -93.753°~-93.437°. The DEM data within these two areas are not exactly same
and this is the another reason that cause the difference.
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Next, we should determine the required extent of the terrain correction. Since we
do not know the largest data area that will cause the variance of truncation error to
converge for any particular extent, we select three DEMs concentric with the observation
area, respectively 2° x2°, 1°x1°, and 0.5° x0.5°. The SRTM 3" DEM data for these
three areas were downloaded from the website
http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10008 2. Figure 4.15 outlines the
three DEM areas with Vinton dome observation area: the outer area is2° x 2° with ranges
in latitudes: 29.15°~31.15° and longitudes: -94.6°~-92.6°; the second is the 1° x1° area
between latitudes: 29.65°~30.65° and longitudes: -94.1°~-93.1° and the third is the
0.5° x0.5° area between latitudes: 29.9°~30.4° and longitudes: -93.85°~-93.35°. The
innermost red area is the observation area bounded by latitudes: 30.07° ~ 30.23° and
longitudes: -93.66° ~ -93.53°.

We use the geostatistical procedure described in chapter 2.2.2 to compute the
variance of truncation error and variance of truncation error difference for three different
sizes of DEMs by using equations (2.81) ~ (2.84). The observation height is set at h,=80
m, which is about the average flight altitude. Next the extent of terrain correction was
determined by letting the variance be smaller than the variance of typical instrument

error, for example, high-accuracy airborne gradiometers with accuracy of 0.1 E/+Hz

(Jekeli, 2006); the results were shown in Figure 4.22, 4.23. Since the observation area is
about 11.7 km x 16.7 km, so we set a pair of computation points separated with distance
20.7 km which is the longest distance within the observation area. It can be shown from
the results in Figure 4.22 that the extent needed is about 35 km for 0.5° x0.5° area; 55
km for 1° x1° area, and 110 km for 2° x 2° area based on the criterion of making the
variance smaller than 107 E2. For any pair of points separated by 20.7 km, it can be seen
from Figure 4.23 that the extent needed from each point is about 25 km for 0.5° x0.5°
area; 35km for 1° x1° area, 45 km for 2° x 2° area based on the same criterion. Here the
required extent differs for three different sizes of area and does not converge quickly
even when the area size increases to 2° x 2° because the topography in this area shows
strong non-stationarity which is the assumption of our geostatistical analysis. On the
other hand, if the topography is stationary, then these lines will converge quickly when
the area size increasing (see Figure 4.8, Figure 4.32, 4.33 cases). Considering that the
observation area is about 11.7 km x 16.7 km, and that Bell Geospace selected a DEM that
extended 10 km along all directions of observation, their total extent of the DEM for the
terrain correction is about 37 km, so their extent is enough to make sure the variance of
truncation error for a single point is smaller than the criterion we set in terms of the
variance of instrument error (i.e., 10 E?).
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Figure 4.22 Variance of truncation error for three different sizes of DEM
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Figure 4.23 Variance of truncation error difference for three different sizes of DEM
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4.3.2 Terrain correction of Air-FTG at Parkfield, CA

Bell Geospace also collected Air-FTG observations near Parkfield, California,
from September 15, 2004 to September 17, 2004. Figure 4.24 shows the location of the
survey area which covers about 100 km? Figure 4.25 shows the location of Air-FTG
survey flight lines (Bell Geospace, 2004). The northwest-southeast flight lines are survey
lines and the northeast-southwest flight lines are tie lines. There are 49 survey lines
separated by 200 meters. Each survey line is about 11.2 km long. There are 10 tie lines
separated by 1000 meters. Each tie line is about 10.3 km long. Table 4.5 shows the
information of the terrain, altitude and clearance of the survey area. Bell Geospace uses
the same procedure, method, and software package as that used for Vinton Dome area
(Bell Geospace, 2008) to compute the terrain correction. The DEM data used for the
terrain correction is the SRTM 1" dataset with about 30 m resolution.

Observation Area

0.42°>0.42° Terrain Correction

0.83°>0.83° Terrain Correction

1.25°x1.25° Terrain Correction

1.95°x1.95° Terrain Correction

Figure 4.24 Location of survey area and terrain correction areas
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Unit: m Min Max Std. Dev. Mean

Terrain 410 1064.3 108.0 705.7
GPS Altitude 839.4 1350.5 109.9 1096.4
Ground Clearance 183.4 674.5 93.5 390.7

Table 4.5 Flight altitude statistics
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Figure 4.25 Air-FTG survey flight lines
Zhu (2007) also computed the terrain correction using the direct numerical integration
methods. He used the USGS 1" DEM within the area defined by latitude:
35°52'28" ~ 36°0438 and longitude: —120°4153" ~ —120°2530" ; whereas, we used the
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space prism summation method described in chapter 2.2.1. Two different sources of
SRTM 1" DEM data were used for our computation, respectively; one dataset (named as
DEM1) was downloaded from
http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10008 2 and covers the same area
as that of Zhu (2007), the other dataset (hamed as DEM2) is the dataset from the USGS
website. The difference between the DEM1 and DEM2 datasets are shown in Figure 4.26,
with their statistics listed in Table 4.6. The two DEMSs have differences of about & m,
but the means of the terrain heights for two DEMs are almost same.

Difference of two DEM data (same area)
LW U T N BT T i L T T IR

36.07~ ‘r‘; s 7l 6
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W p 6

}
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-120.67 -120.64 -120.61 -120.59 -120.56 -120.53 -120.50 -120.47 -120.45
Longitude (degree)

Figure 4.26 Height difference between DEM1 and DEM2 (unit: meter)

Min Max Mean Std.

Differences (m) -7.42 6.85 0.01 1.0

Table 4.6 Statistics of difference between DEM1 and DEM2
Figure 4.27 shows our results using the DEM1 dataset compared with corresponding
results from Jekeli and Zhu (2006) and Bell Geospace (2004) with respective differences
shown in Figure 4.28. Figures 4.29, Figure 4.30 show results similar to Figure 4.27, and
Figure 4.28, but for DEM2 dataset.
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It can be seen from Figure 4.27, 4.29 that the three results are basically consistent with
each other. Figures 4.28, 4.30 show that the differences with respect to Bell Geospace
(2004) are between #2 E using either the DEM1 dataset or the DEM2 dataset.
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The differences of the terrain corrections for all gravity gradients between the
DEM1 and DEM2 datasets are shown in Figure 4.31. Using the prism summation method
these differences vary about #0.4 E, which means the error of the DEM has little weight
on the terrain corrections.
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Figure 4.31 Differences of terrain corrections between DEM1 and DEM2 for Line 241
Next we select four DEM areas concentric with observation area, i.e.,
1.95° x1.95°, 1.25° x1.25°, 0.83° x0.83°and 0.42° x0.42°, respectively. The SRTM 3"
DEM data are downloaded from the website
http://webmap.ornl.gov/wcsdown/wcsdown.jsp?dg_id=10008 2. Figure 4.24 shows the
sketches of these DEM areas, where the innermost red area is observation area.
Following the same procedure as for the Vinton Dome area, we computed the variance of
the truncation error and of the truncation error difference for four different sizes of
DEMs. Then, the extent of the terrain correction was determined based on the variance.
Since the observation area is about 10 km x 10 km, we considered a pair of computation
points separated by 14 km, which is the longest distance within the observation area. The
observation plane height is the average flight altitude of 1096.4 m. The results (for
gradient Ts3) are shown in Figures 4.32, and 4.33.
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Figure 4.32 Variance of truncation error for four different sizes of DEM
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It can be seen from Figure 4.32 that even if we corrected all the terrain within
1.95° x1.95°, we still cannot reach the goal of making the variance smaller than 102 E?.
If we use the more realistic variance, such as 1 E?, then the extent needed is 120 km for
one single point and 40 km from each point for a pair of points within the 1.95° x1.95°
DEM area in Parkerfield. It is because the area is rougher and the altitude of flight above
the ground is much higher than for the Vinton Dome area. Likewise, for any pair of
points separated by 14 km, the extent needed is about 120 km which is much larger than
Bell Geospace’s DEM correction area of about 16 km x 16 km.

4.3.3 Extent of terrain correction for different characters of topography

In the previous section, we determined the extent of terrain correction by
computing the variance of truncation error through the geostatistical methods. The
different types of topography can be quantified by geostatistics, so we can relate them
directly to the corresponding required extent of terrain correction. For a specific
observation area, we can just compute the geostatistics of the terrain around the
observation area and find the required extent easily through a modeled relationship, thus
avoiding extensive trial-and-error computations.

We selected three areas which contain distinctive characters (mostly flat, medium
rough and mountainous) of topography and computed the covariance model of the terrain
height, i.e., fitted an isotropic PSD to the empirical PSD of the height. The locations of
three areas are shown in Figure 4.34.
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500
[ Kilometers

Figure 4.34 Three areas with distinctive characters of topography

Area 1 is 2° x2° with a range of latitudes: 42° ~ 44°, and longitudes: —101° ~ -99°,
and represents medium rough terrain. Area 2 is 5°x5° with a range of latitudes:
35° ~40°, and longitudes: —110° ~ —105°, and represents mountainous terrain. Area 3
is 2° x2° with a range of latitudes: 29.15° ~31.15°, and longitudes: —94.6° ~ -92.6°,
and represents the mostly flat terrain. The reciprocal distance covariance model was fitted
to the empirical PSDs of these three areas. We also determined the required extent of
these three areas by using the geostatistical method. The results of these three covariance
model and the corresponding variance of truncation error is given in Figure 4.35 for a
single point, and in Figure 4.36 for a pair of points.

From the left plot of Figure 4.35 we can see that the PSD magnitude for the
mountainous topography is 100 times that of the mostly flat topography comparing at
medium wavelength; the corresponding extent determined for a certain variance
magnitude of truncation error is about 4 times larger. For example, the required extent is
400 km for Area 2, while about 100 km for Area 3 provided the variance of truncation
error is 10 E% For a pair of points separated by about 20 km, the required extent is 160
km for Area 2, while 40 km for Area 3 for the same truncation error variance.
Alternatively, for a variance of 107 E2, the required extent is 100 km for Area 2, and 25
km for Area 3. Thus, if we know the geostatistics of the terrain around our observation
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area, we can easily know the required extent through the relationship. For other types of
topography, the result can be obtained by interpolation.
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Chapter 5
Conclusion

In this study we developed a method to estimate the required extent of terrain
correction of gravity gradients for geophysical studies based on a geostatistical method
and truncation theory. The truncation theory was developed and applied to Forsberg’s
FFT method for the computation of the power spectral density and thus the covariance of
the terrain. The truncation error represents the gravity gradient effect of neglecting the
remote terrain beyond the specified area defined by truncation extent T. The variance of
the error is based on the covariance analysis of the terrain in the neighborhood of the
computation point. Therefore the necessary extent for the terrain correction of gravity
gradients can be determined such that the truncation error variance is below a chosen
value, e.g., the variance of the gradient measurement error. However, the effect of the
remote zone will be nearly the same for two neighboring points of interest. The effect
acts like a bias and like other biases is not of particular interest in a gravity gradient
survey. For close points, the value of T will be smaller to obtain the same variance of
error difference; for points further apart, the value of T will be larger. So if we consider
the variance of the error difference for close points, then the needed extent of terrain
correction should be decreased dramatically compared to the extent needed for single
point.

The geostatistical analysis of the required extent can be done for different spectra
of topography (smooth and rough). We confirmed the predicted truncation errors in each
case by simulations using traditional terrain correction methods. We developed a method
to simulate the different types of topography (smooth or rough with the desired
resolution) based on the reciprocal distance covariance model. The low frequency part of
topography can be obtained from known models, such as DTM2006, or from other
available models, such as the SRTM DEM. Through the topography simulation, we can
obtain different characters (smooth or rough), resolutions (even ultra-high resolutions)
topography and also verified our procedure of geostatistical method for the determination
of required extent of the terrain. We simulated 20 m resolution topographies based on
DTM2006 5" and SRTM 30" data for two different types of area (smooth and rough),
respectively.

We also validated our methods with the usual deterministic method by applying
the analytical terrain correction formulas using the right rectangular prism to the
simulated topography. The deterministic variances of the error or error difference are
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computed from one thousand error samples in a Monte Carlo fashion by randomly
selecting computation points within the same area used in the geostatistical method.
These analyses show that two methods produce consistent results for our 3 km by 3 km
high resolution (1 m) topography simulation. They differ only by 0.2 E? for a small
truncation extent of 1 km; by 0.007 E? for a truncation extent of 2 km, and by 0.0009 E?
for a truncation extent of 2.5 km. For a local gravity gradiometric survey (within 3 km by
3 km), the minimum extent we need to compute the terrain correction is 1.5 km in order
that the variance of truncation error is smaller than 1 E%. An extent of 2.5 km is needed in
order to reduce the truncation error variance to 0.1 E?.

Our previous result is based on an ultra-high resolution of topography for a very
local survey. Considering the regional survey, the needed extent of terrain will also
increase; at the same time, the curve line of the truncation error variance versus the extent
should converge when we increase the outer boundary of the terrain. From our
computation results, it shows that the curve line will converge quickly if the terrain is
stationary; furthermore, the speed of convergence is slow if the terrain is not stationary.
And based on the 3" resolution DEM of such an area, it is concluded that the extent of
terrain correction need to reach 400 km in order that the truncation error variance is
smaller than 102 (E?), or 230 km in order that the truncation error variance is smaller
than 10" (E?). It can be seen that the extent determined from the variance of truncation
error difference for pairs of points is much less (especially for points separated by short
distance) than that from the variance of truncation error for a single point. With the
separated distance increasing, the required extent also increases. The simulation shows
the required extent is 35 km for points separated by 0.9 km, 85 km for points separated
by 4.5 km, 120 km for points separated by 9 km, 165 km for points separated by 18 km,
240 km for points separated by 45 km. And the above result is obtained from terrain
correction of gravity gradient Tss. It is also concluded that the required extent for the
terrain correction on gravity gradients T3, T,z are much less than for other gravity
gradient components.

We analyzed Bell Geospace’s terrain correction computed for the Air-FTG
observations at Vinton Dome, LA, and Parkfield, CA. Our computations of the terrain
correction are consistent with Bell Geospace’s result and that of Zhu (2007). The
differences between these methods are about 35 E for Vinton Dome area; 2 E for
Parkfield, CA area. Also by our geostatistical analysis, the extent needed is about 35 km
for the terrain correction of gravity gradients in the Vinton Dome area, which agrees with
Bell Geospace’s assumed area, but it is about 120 km for the Parkfield area, which does
not agree with Bell Geospace’s use of only about 20 km. The reason why the latter needs
much larger DEM extent is the much rougher terrain than in the vicinity of the Vinton
Dome area. Also the flight clearance above the ground at Parkfield is much higher than
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for Vinton Dome. Finally we determined the required extent for three different areas of
typical topography, which are represented by mostly flat, medium rough and
mountainous terrain. We also characterize these topographies using the reciprocal
distance of covariance model, and we set up an empirical model between the required
extent and the characteristic terrain. Thus the required extent for other characteristic
terrain can be interpolated easily.

Further research still needs to be carried out to study the effect of different DEM
resolution and of mass density variations on the determination of needed extent. Also our
geostatistical method relies on some basic assumptions such as the stationarity, isotropy
of the terrain, etc. However these assumptions may not be valid in some actual cases, thus
the sensitivity of these assumptions should be tested and analyzed in future research. Also
the future work should be done is to extend our theory to satellite altitude and solve the
problem using the spherical approximation.
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