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Abstract 

Ocean tides, resulting from the gravitational attractions of the Moon and the Sun, 
represent 80% of the ocean surface topography variability with a practical importance for 
commerce and science over hundreds of years. Tides have strong influence on the 
modeling of coastal or continental shelf circulations, play a significant role in climate due 
to its complex interactions between ocean, atmosphere, and sea ice, dissipate their energy 
in the ocean and solid Earth, and decelerate the Moon’s mean motion. Oceanographic 
studies and applications, including coastal or continental shelf ocean circulations, also 
require observations to be ‘de-tided’ using ocean tidal forward prediction models before 
geophysical or oceanographic interpretation, particularly over coastal regions.  Advances 
in satellite radar altimetry technology enabled a globally sampled record of sea surface 
height (SSH) and its changes over the past two decades, particularly after the launch of 
TOPEX/POSEIDON satellite. This geophysical record enables numerous scientific 
studies or discoveries, including improved global ocean tide modeling.  
 
Several contemporary ocean tide models have been determined either through the 
assimilation of satellite altimetry and coastal tide gauge data, often referred to as 
‘assimilation models’ (e.g. FES2004, NAO.99b and TPXO6.2/7.1/7.2), or via the use of 
altimetry observations in an ‘empirical modeling’ approach to solve for tidal constituents 
based on a-priori tide models, including assimilated models (e.g. DTU10, 
EOT08a/10a/11a, GOT00.2/4.7).  However, ocean tide model accuracy is still much 
worse, up to an order of magnitude, in the coastal regions or over partially or 
permanently sea-ice or ice-shelf covered polar ocean, than that of models in the deep 
ocean.  
 
Here observation-based, empirical ocean tide models with 0.25o×0.25o spatial resolution, 
the OSU12 models, has been determined using improved multi-satellite altimetry data 
from TOPEX, Jason-1/-2, Envisat, and GFO, and based on a novel approach via spatio-
temporal combination, along with a robust estimation technique. We first demonstrate the 
effectiveness of the spatio-temporal combination approach when comparing with various 
ocean tide solutions under different data weighting schemes (i.e. equally weighted 
solution, the weighted solution based on spatial (co-)variances, and the weighted solution 
based on temporal (co-)variances).  The generated tide models show substantial 
improvement near coastal regions when compared against contemporary ocean tide 
models using assessment from independent tidal constants of tide gauges and from 
variance reduction studies using altimetry data. The improvement is particularly apparent 
in regions with high hydrodynamic variability, yet the model accuracy is still region-
dependent. The model is available at: http://geodeticscience.org/oceantides/OSU12v1.0/ 
 
For the first time, the potential seasonality of ocean tides in subarctic regions has been 
demonstrated. A statistically significant difference in variance reduction of multi-mission 
altimeter SSH anomalies are observed in the subarctic ocean study region during summer 
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and winter seasons.  The variability in the SSH anomalies during winter are 15–30% 
larger than those of summer, and we hypothesize that seasonality of tides contributes to 
the observed SSH variability. The subsequent seasonal ocean tide solutions estimated 
using observations only in the winter and in the summer seasons, reveal detectable 
seasonal tidal patterns in the Chukchi Sea near the eastern Siberia region where it is 
known to have seasonal presence of sea-ice covers. 
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Chapter 1: Introduction 
 

1.1 Ocean Tides and its Modeling Development 
Ocean tides, which is a kind of the rise and fall of the sea level as observed from 

coasts around the world, are a geophysical phenomenon resulting from the gravitational 
attraction of the Sun and the Moon acting on the Earth. They are the principal variable 
component of ocean surface topography of the global ocean (Ray, 1993; Le Provost et al., 
1994). They have a strong influence on modeling coastal or continental shelf circulations, 
and on short-term (e.g., half daily, daily, fortnightly, monthly) mass variations, with the 
later having a significant impact on the Earth rotation and on the change the length of day 
(Gross, 1993; Ray et al., 1994). They dissipate their energy in the ocean and solid Earth, 
decelerate the Moon’s mean motion, and play a significant role in climate due to its 
complex interactions between ocean, atmosphere, and sea ice (Shum et al, 2001). 
Historically, one of the practical applications of the ocean tide prediction is global trading 
and commerce. Ocean tides have been used for navigation safety when ships approach 
the harbors and the coasts.  

Due to the fundamental importance of ocean tides, scholars engaged themselves to 
advance scientific understanding of ocean tides during the past two centuries. Since the 
establishment of Newton’s equilibrium theory which explained the forces that generate 
tides, Laplace (1775) formulated his dynamic equations, called Laplace Tidal Equations 
(LTE), based on the concept of a hydrodynamic response of the ocean to the tide-
generating force in the form of partial differential equations. Despite the plausible theory, 
it is impossible to obtain an analytical solution since the equations strongly depend on the 
bathymetry and the shape of the ocean basin. The account for the non-linearity, such as 
bottom friction and advection terms, also renders the partial differential equations to be 
solved numerically nowadays. Until the late 19th and early 20th century, Darwin (1883) 
provided a practical and efficient method, called harmonic analysis, for the tidal analysis1 
and prediction. Newcomb’s solar theory (1895) and Brown’s lunar theory (1905) on the 
solar and lunar ephemerides, respectively, facilitated the initial development of tidal 
sciences. Doodson (1921) formulated a set of numbers, called Doodson Numbers, to 
describe the major tidal frequencies. The aforementioned scholars provided a solid 
foundation to ocean tide theory and its practical prediction methodology along with 
future development. 

With the continuous interest in the physics of the global ocean and its circulation, and 
their effect on climate and the Earth system as a whole, sea level was measured by tide 
gauges along continental coastlines at 739 coastal sites (refers to coastal tide gauges), and 

 
1 Tidal analysis refers to the usage of the sea level measurements to solve for the amplitude and phase lag 
of different tidal constituents, according to their respective astronomical frequencies, via least-squares.  
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by tide gauges or bottom pressure recorders at islands at 102 deep-sea sites (refers to 
pelagic tide gauges)2. Continuous installation of additional tide gauges is anticipated. 
Though the understanding of ocean tides has been further improved based on the long-
term observations, our knowledge of ocean tides remains limited in the vicinity of 
coastlines and mid-ocean islands. Moreover, sea level measurements far away from 
coasts made by bottom pressure gauges is slow and not cost-effective (Pugh, 1987).  

Satellite altimetry, an active remote sensing technique introduced in the 1970s, 
provided a synoptic means of observing the global ocean and other surfaces on the Earth 
as well as extra terrestrial bodies. On the Earth, this initiative was driven by the initial 
quest to improve our understanding of global ocean circulations. Due to its orbital design, 
the satellite revisits at the same location for each cycle at a pre-defined temporal period 
along its ground tracks. Therefore, the acquired sea surface height (SSH) data from 
satellite altimetry can be analogously served as tide gauge measurements at each location 
in a global sense. Despite its spatial and global coverage, the temporal sampling is 
relatively sparse when compared to tide gauge records.  

Thanks to precise orbit determination techniques, along with the improvement in 
instrumental, media, and geophysical corrections, the accuracy of satellite altimetry 
improved significantly since the launch of TOPEX/POSEIDON in 1992. Owing to its 
near-global coverage, the altimeter range accuracy of ± (2–3) cm, and the optimal orbital 
configuration for adequate spatial (e.g., equatorial cross-track separation of ~100 km) and 
temporal (i.e., approximately weekly) sampling, it makes a significant advancement in 
the study of the general circulation of the world’s ocean (Fu et al., 1994). Since then, 
other missions, such as ERS-2, GFO, Envisat, Jason-1, and Jason-2, have been launched 
to extend the geophysical and oceanographic observations, in particular for the study of 
ocean’s role in climate change, including sea-level rise, general ocean circulation and 
heat transport.  

Before the launch of TOPEX/POSEIDON, the first altimetry-data derived ocean tide 
model by Cartwright and Ray (1990a, b, 1991) is based on 2.5 years of altimetry data 
from Geosat. It is more accurate than the, then state-of-the-art, hydrodynamic tide model 
derived by Schwiderski (1980), which was derived using bathymetry data and 
assimilating the tidal constants (i.e., amplitude and phase of tides) computed from global 
tide gauge records into a hydrodynamic tidal equation via a finite difference method.  

Since then, more than ten ocean tide models were developed in the mid-1990s, 
primarily because of the availability of TOPEX/Poseidon altimetry and the fact that 
ocean tides are the major contributor to SSH variation. These models serve the 
oceanographic and geophysical communities who are ultimately interested in the studies 
of tidal dissipation, and in the removal of tidal signals from their measurements prior to 
any oceanographic and geophysical modeling (Shum et al., 1997). 

In addition to practical applications such as navigation safety near the coasts and co-
tidal chart generation for mariners (Fang et al., 2004), ocean tide models also have a 
variety of applications in scientific research. Examples include, but are not limited to, (a)  

 
2 These are the comprehensive (i.e., both pelagic and coastal) tide gauge datasets for the entire world. The 
locations of the tide gauges are shown in Figure 5.1. 
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study of regional tidal dynamics and dissipation (Han, 2000; Zu et al., 2008); (b) 
operational ocean circulation modeling (Han et al., 2010), and climate forecast (Escudier 
and Fellous, 2009); (c) inference of ocean tidal loading serving as a correction to GPS 
and gravimetric measurement for study of regional dynamics of the solid Earth (Inazu et 
al., 2009; Yuan et al., 2009) and its internal structure (Ito and Simons, 2011).  

The accurate prediction of ocean tides serves as a critical correction for spaceborne 
measurements. It is either directly provided as a geometric correction for the Earth-based 
satellite altimetry data, or indirectly modeled as orbital perturbation sources for the 
spaceborne gravity sensors, such as Gravity Recovery And Climate Experiment 
(GRACE) or Gravity field and steady-state Ocean Circulation Explorer (GOCE) (Bosch 
et al., 2009). These model corrections also enable an improved quantification and 
modeling of global general ocean circulation (Fu and Cazenave, 2001), including 
climate-sensitive signals of mass variations or transport. Most of the above-mentioned 
applications require a gridded global ocean tidal forward prediction model. 

While the ocean tide models derived from satellite altimetry have an accuracy of 2–3 
cm RMS (root-mean-square) error in the deep ocean, their uncertainties inflate 
significantly near coastal regions or over shallow seas and underneath ice-covered polar 
ocean (Shum et al., 1997, 2001; Ray et al., 2011). The model accuracies are also region-
dependent, and vary among different models. A similar conclusion was found by Fok et 
al. (2010).  

There are two reasons for the above claims. Firstly, the temporal sampling rate of 
altimetry data is insufficient which is limited by the satellite orbital design. The sampling 
period at the same location is longer than the half daily and daily period of major ocean 
tidal signals. This refers to tidal aliasing effect. Furthermore, when the data are sampled 
very close to coasts, the data are further flagged by the contamination of the land surface, 
and/or by the fact that the tide is on the ebb sometimes. As a consequence, this magnifies 
the tidal aliasing effect, which is unfavorable for the accurate determination of ocean 
tides using satellite altimetry. Secondly, the tidal prediction is complicated by the non-
linearity in dynamic tidal motion and local hydrodynamic processes. This is due to the 
shape and bathymetry of the coast, in particular, when a complicated estuary system is 
present. The overtide and compound tide are but one of the consequences that lower the 
accuracy of ocean tides determination using satellite altimetry. The measurements from 
coastal tide gauges are also prone to localized tidal effects which may not be 
representative a few kilometers away from the coasts. In view of the above 
considerations, ongoing investigation is necessary for a better data-constrained ocean tide 
model with improved spatial and temporal resolution from multi-satellite altimetry, 
particularly in the coastal regions.  
 

1.2 Contemporary Ocean Tide Models Using Satellite Altimetry 
The global ocean tide models can be classified into three groups: (1) hydrodynamic 

model; (2) assimilation model; and (3) empirical model.  
Hydrodynamic models are derived by solving the Laplace Tidal Equations (LTE) 

using a finite difference or finite element method based on the bathymetry data around 
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the world, with the tidal heights from tidal constants of nearly all tide gauge records as 
boundary conditions (or data constraints). Schwiderski’s (1980) model and the Grenoble 
model derived by Le Provost et al. (1994) belong to this model type.  

Assimilation models are derived either by assimilating altimetry data only, or in 
combination with tide-gauge data, into the hydrodynamic model. The NAO.99b model 
(Matsumoto et al., 2000) assimilates altimetry data only, whereas the TPXO6.2/7.1/7.2 
(Egbert and Erofeeva, 2002) and FES94.1/99/2004 (Lefevre et al., 2000) models 
assimilate both the altimetry data and the tide gauge data.  

Empirical models are derived from altimetry data only using (a) response analysis 
(Munk and Cartwright, 1966) extended with orthotide formalism (Groves and Reynolds, 
1975; Cartwright and Ray, 1990b), (b) harmonic analysis, or (c) Proudman functions 
(Sanchez and Pavlis, 1995). The empirical models could be subdivided into (i) semi-
empirical and (ii) purely empirical. The semi-empirical models use a-priori tidal 
constants from a background ocean tide model, such as the FES model, for residual tidal 
analysis (hereinafter called incremental tidal analysis) 3 . Examples for these models 
include GOT00.2/4.7 (Ray, 1999), EOT08a/10a/11a (Savcenko and Bosch, 2008), and 
DTU10 (Cheng and Andersen, 2011). The models derived from Cartwight and Ray 
(1990a, b), Ray et al. (1994), Desai and Wahr (1995), and Smith (1999) are purely 
empirical.  

The hydrodynamic modeling approach provides robust information of the physics of 
ocean tides and their dynamic characteristics in space. This approach includes the insight 
and the understanding of tidal regimes, and the dependency on specific parameters such 
as bottom topography, advection and bottom friction, tidal loading, and self-attraction. 
However, their solutions are merely in agreement with in-situ observations in a 
qualitative manner (Le Provost, 2001), because the approach heavily depends on the 
availability and the quality of the bathymetry and tide gauge data for different regions. 
Some fine (empirical) tunings of effects – such as a topographic drag and a bottom 
friction coefficient – in specific regions are required to obtain a better solution 
(Matsumoto et al., 2000; Arbic et al., 2004), and the cost of computation is enormous. 
The assimilation modeling approach also suffers from the same weaknesses, as this 
modeling approach exhibits a certain similarity with the hydrodynamic one, except for 
the inclusion of altimetry data.  

On the contrary, the empirical modeling approach offers less physical insight and 
understanding into the tidal dynamics, but a simple, effective, and practical method for 
accurate tidal analysis and prediction at a fixed location, provided that adequate altimetry 
data observations are available. In addition, this approach also does not require tide gauge 
data so that the accuracy comparison against tide gauges is independent. The accuracy of 
ocean tide models computed from this approach is, in general, higher than that of the 
hydrodynamic modeling approach.  

 
3 Residual tidal analysis refers to solve for incremental tidal constants which is then added back to the 
background tide model for the full ocean tide model. This is achieved by bilinear interpolating to the actual 
locations of the satellite altimeter ground tracks from the nearby grids of the background tide model. Note 
that the altimetry data used in the background tide model is also repeatly used in the residual ocean tide 
modeling.  
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Empirical models, no matter if purely empirical or semi-empirical, are derived using 
two methods, in which a spatial smoothing step is required after the solution has been 
made (Eanes and Bettadpur, 1995; Ray, 1999). The first method is to conduct a tidal 
analysis at each location along the ground track of TOPEX satellite altimeter, followed 
by a spatial interpolation onto a regular grid (Andersen, 1994, 1995a; Desai and Wahr, 
1995) with homogeneous weighting applied to the corresponding altimeter data, which is 
referred to as two-step method. When GFO and Envisat data are included, an iterative 
solution step has to be made. This is achieved by using a predetermined TOPEX-alone 
regular gridded tidal analysis solution as a background ocean tide model for the 
incremental tidal analysis of GFO and Envisat altimeter data, because their tidal aliasing 
effects are much worse than that of TOPEX. The tidal aliasing effects of GFO and 
Envisat worse than that of TOPEX are due to their respective temporal sampling period at 
17-day and 35-day interval, as will be illustrated in section 3.2 of this dissertation.  

The second method is to acquire multi-satellite altimeter data at a search distance 
from a predefined regular grid center location. The data are not reduced to the grid center 
location a priori but are reduced in the least-squares solution process through weighting 
the data in space via the Gaussian distance decay function (Smith, 1999; Savcenko and 
Bosch, 2008; Bosch et al., 2009), which is referred to as one-step method. The underlying 
reason of this method is to mitigate the tidal aliasing effect by the usage of more data 
from multi-satellite altimeter with distinct spatial and temporal coverage. Most 
contemporary models (i.e. GOT00.2/4.7, EOT08a/10a/11a, and DTU10) were made via 
incremental tidal analysis based on FES tide model as background model.  

Note that in the modeling process, the radial displacement of ocean tidal loading are 
computed from direct computation of ocean tide estimates (Desai, 1996; Ray, 1999) in an 
iterative fashion, from the 7% rule of ocean tides (Andersen, 1999) for the empirical 
models, or they are computed from other ocean tidal loading models to correct the 
altimetry measurements before empirical modeling.  
 

1.3 Problem Statement and Research Methodology 
In summary, the accuracy of 2–3 cm RMS (root-mean-square) error in the deep ocean 

can be achieved for most ocean tide models, but notably larger uncertainties are found 
among the ocean tide models near the coasts in the presence of a high hydrodynamic 
and/or in the seasonally frozen (i.e. ice-covered) polar ocean. The error of the global tide 
models against coastal tide gauges can exceed tens of centimeters or even a few meters at 
some fixed locations. This is attributable to flagged altimetry data very close to the coast, 
and the presence of non-linear dynamic tidal motion caused by local hydrodynamic 
processes. The model accuracies are also region-dependent, and vary among different 
models. 

Even though the assimilation model, FES2004, has assimilated altimetry and 670 tide 
gauges (all over the world) into the hydrodynamic model, the model accuracy near 
coastal regions is still region-dependent even when compared with the same tide gauge 
data used.  
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The semi-empirical approach generates a full ocean tide models which are dependent 
on tide gauge data, since FES model is mostly used as background ocean tide model for 
incremental tidal analysis. As a consequence, this causes the final accuracy assessment 
invalid to a certain extent when compared with the tide-gauge-derived harmonic 
constants. In contrast, the purely empirical approach is a viable alternative because it 
utilizes altimetry data only. This also allows an independent comparison of the derived 
model with the tide gauge data.  

This study aims to generate a purely empirical global ocean tide model with 
0.25o×0.25o spatial resolution. The resulting solution is referred to as OSU12 ocean tide 
model. A one-step orthotide response analysis is employed for the OSU12 model 
generation via a novel spatio-temporal combination approach for data weighting and a 
robust estimation technique for potential outlier downweighting, using improved multi-
satellite altimetry data from TOPEX, Jason-1/-2, Envisat, and GFO. 

It is impossible to tell which process – spatial, temporal, or a combination of both – is 
dominant in particular sea regions for modeling the remaining errors (i.e. unmodeled 
ocean circulation signal, error in geophysical corrections and random noise, etc) that 
behave as if stochastic noise. In contrast to previous one-step solution method for 
empirical ocean tide modeling, a spatio-temporal combination approach is developed in 
this dissertation that simultaneously considers both spatial and temporal (co-)variances 
for weighting altimetry data in a balanced sense. Particular emphasis is paid on spatial 
(co-)variances based on bathymetry depth for a substantial improvement along the 
world’s coastal regions and over continental shelves when compared to existing models.  

Besides the usage of a longer data time span (similar to current EOT08a/10a/11a and 
DTU10 models, except Jason-2 data was excluded), and an improved quality of multi-
mission satellite radar altimetry (i.e., TOPEX/ Jason-1 and their tandem mission, GFO 
and Envisat mission) data over the past few years, the potential improvement lies in an 
appropriate spatial and temporal (co-)variance specification for  the novel spatio-temporal 
combination approach: (1) Spatial (co-)variance is designed via the modification of 
dynamic interpolation method (Andersen, 1999) that considers the rapid distance decay 
property near coasts in Shallow Ocean. This is because tidal dynamic characteristics 
changes significantly when tidal wave from the Deep Ocean enters into the continental 
shelf and shallow water regions where highly varying bathymetry depths are present; (2) 
Temporal (co-)variance is assigned by considering the noise level of each altimeter for 
each 1-Hz along-track measurement together with the total error budget from different 
error sources. In contrast, previous tide models were generated by weighting each 
observation homogeneously (i.e. equally weighted) or in space based on Gaussian decay 
function with respect to grid location of the tidal solution.  

To examine the effectiveness of the spatio-temporal combination approach, a 
sensitivity analysis is conducted for an accuracy comparison against the equally weighted 
solution, the weighted solution based on spatial (co-)variances, and the weighted solution 
based on temporal (co-)variances under the same settings using independent tidal 
constant from coastal tide gauges. Evaluations are made to the resulting ocean tide 
model, OSU12, through (i) an external comparison with other contemporary models 
using independent tidal constants from pelagic and coastal tide gauges around the world, 
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and (ii) an internal comparison via a variance reduction test using all altimetry data, 
including independent Jason-2 altimetry data. 

Chapter 2 introduces the basic theory of ocean tide generation and analysis 
techniques. Chapter 3 introduces the principle of satellite altimetry, its data 
characteristics and associated corrections, and the tidal aliasing effect due to under 
sampling in terms of observed time interval. Chapter 4 provides a review of ocean tides 
modeling approaches and the developed weighting technique via spatio-temporal 
combination approach for the ocean tides modeling. Chapter 5 presents the detailed 
analyses and the associated results, and the evidences of seasonal tidal variation in 
Subarctic Ocean. Chapter 6 concludes the work in this dissertation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Chapter 2: Theory of Ocean Tides and Tidal Analysis 
 

In this chapter, we review the theory of the gravitational forces of the Sun and the 
Moon acting on the Earth that cause periodic deformations of the non-rigid Earth, 
including the ocean, which are known as tides. The mathematical development of these 
forces can be developed into a series of harmonic waves based on the tide-generating 
potential will be presented in section 2.2. We describe, in brief, the procedures to derive 
the amplitudes of the sea surface elevations associated with the tidal harmonics from 
Doodson (1921) and Cartwright and Taylor (1971), and Cartwright and Edden (1973).  
These classical treatises assumed that the Earth is comprised of only ocean, and that there 
is an equilibrium response of the oceans to the tide-generating forces. The assumption is 
not entirely correct for true ocean tides representation, for instance, in regions with high 
dynamic oceanic variability where tidal mixing, internal tides, and barotropic response 
for non-tidal features are dominant. However, the theory based on equilibrium tides does 
serve as an important reference system for tidal analysis (Pugh, 2004). 
 

2.1 Tide-generating Potential and its Species 
According to the Newtonian law of gravitational attraction, the gravitational force 

acting on a mass particle of the Earth at an arbitrary point P, near and outside the surface 
of the Earth, with mass , by the mass of the perturbing terrestrial body, PM M , is given 
by: 

 
2
P

P

R

MGM
F          (2.1) 

where G is the universal gravitational constant and  is the distance between the Earth 
surface of the arbitrary point P and the center of the other body, either the Moon or the 
Sun. Thus, the gravitational potential at point P due to the Moon or the Sun is 

PR

 
P

P R

GM
U           (2.2) 

This is the conventional definition in geodesy. Note that an alternative convention 
involving a negative sign in equation (2.1) is adopted in physics. For the positive 
definition of the gravitational potential in geodetic convention, an increase in potential 
can be thought as an increase of the sea level of the ocean surface.  
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Figure 2.1 The geometric concept for tidal harmonic potential development 

 
Applying the cosine law for the EPB  as shown in Figure 2.2, the distance between 

the Earth surface at the arbitrary point P and the center of the perturbing body can be 
represented as 

2

1

2

2

cos21









r

R

r

R
rR ee

P         (2.3) 

Hence, the potential  can be expanded into a series of Legendre polynomials with 
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where cos  is a function of  and  as provided in equation (2.7). We use )(cos lP  to 

represent the Legendre polynomial of degree . The tide-generating potential on the 

Earth’s surface at point P caused by the Moon can be expressed as 

l

)(cos),,(
2

 l

l

l

e
e P

r

R

r

GM
RU 











       (2.5) 

where  is the mean radius of the Earth, r and eR   are the geocentric distance and zenith 

distance of the planetary body, respectively. Notice that the terms for  and 0l 1l

)s

 are 
absent in equation (2.5) since the focus here is the deformation due to tides. Because the 
ratio , denoting approximately the sine of the parallax of the attracting body (i.e., the 

Moon or the Sun), is a very small value (Taff, 1985), the fourth term and all higher order 
terms are neglected. With the substitution of the relevant expression of (c2

re /R

o P e 
main term ( 2l  equation (2.5) is thus given as 

, th
 in)
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Figure 2.2 Geometric relationship between geocentric longitude and latitude ( , ) for P, right ascension 

and declination position ( , ) of the planetary body B, and the zenith distance   and hour angle H. 

 
The planetary body is usually at a different orbital plane inclined to the equatorial 

plane of the Earth, in which its position ( , ) is kept changing such that the direction of 
the generated tidal bulge changes instantaneously with a different hour angle H at the 
observer position ( , ). Using spherical trigonometric formulas, one relates the above 

quantities to the zenith distance   (Figure 2.3), which is given by 
Hcoscoscossinsincos         (2.7) 

where 
  GH          (2.8) 

in which G  is the Greenwich sidereal time. Thus, )(coslP  can be expanded (e.g. 

Hobson, 1965) into  
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   (2.9) 

By substituting equation (2.9) into equation (2.5),  
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,  (2.10) 
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where  denotes the associated Legendre function of degree l  and order m, and )(xPlm m0  

is the Kronecker delta symbol defined as  

         (2.11) 








0when    ,0

0     when,1
0 m

m
m

Focusing on all the terms for degree 2l  with the substitution of the relevant 
expressions for )(sin20 P , )(sin21 P , and )(sin22 P , one gets the corresponding main 

part of the tide-generating potential of the planetary body as 
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(2.12) 

The above derivation explicitly illustrates the physical reasoning for the differences in the 
tidal species. One can see that the first term with 0m

2

 is the long-period species, having 
a period of half of year for the sun and half a month in case of the Moon since the 
variations with the square of the sine of the tide-generating body’s declination; the 
second term with  is called the diurnal species, containing H and thus showing once 
per day variation, while the third term with 

1m
m  is called the semi-diurnal species, 

containing 2H and thus showing twice per day variation.  
 

2.2 Harmonic Expansion of the Tide-generating Potential 
The tide-generating potential, as manifested from equation (2.12), is a function of the 

time-dependent position of the attracting bodies (i.e., either the Sun or the Moon) that are 
treated as point masses or bodies with uniform densities. The motion of the Sun and the 
Moon can be described by six astronomical angles approximately linear with time, such 
that the tide-generating potential can be developed into a series of corresponding 
harmonics (Smith, 1999).  

After the first development of harmonic expansion by Darwin (1883), Doodson 
(1921) derived the first comprehensive expansion of the tide-generating potential, using 
Brown’s lunar theory and with the position of the sun and moon with respect to ecliptic, 
i.e. the plane of the Sun’s apparent orbit around the Earth, in terms of ecliptic longitude 
and latitude. The expansion includes over 400 terms when compared to that with 39 
terms as derived by Darwin (1883). It is currently expanded over 20000 terms 
(Kudryavtsev, 2004). Each species  in the 2nd degree term  of the tide-generating 

potential can be written as 
mU2 2U

))(cos()(2  mtGU kk
k

kmm        (2.13) 

where )(mG  are Doodson’s geodetic coefficients with the first three terms (in case of 

the Moon) given as 
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       (2.14)  

R  is the mean distance from the moon (or the sun) to the Earth, k  are the coefficients of 

the harmonic expansion, and k  are additive phase corrections, which are multiples of 

2  introduced to obtain a series of all positive coefficient k  and cosine functions only 

for attaining uniformity for a particular tidal constituent k (Casotto, 1989).  
The Doodson arguments at Greenwich, k , are expressed as 

sk FpENDpChBsAt  ')(        (2.15) 

where , NN  hst   and are the fundamental angles that 

represent Greenwich mean solar time, mean longitudes of the moon, the sun, the lunar 
perigee, the lunar node, and the solar perigee, respectively. The variation of  and 

can be expressed through polynomials of time T (in units of the Julian century) from 

noon of December 31 1899 (UT), based on Brown’s lunar theory and Newcomb’s theory 
of the sun (Doodson, 1921; Casotto, 1989; Smith, 1999), given as: 
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  (2.16) 

The relationship between the angles is illustrated in Figure 2.4. 
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Figure 2.3 Relationship between Greenwich mean solar time, , Greenwich mean lunar time,t  , the 

Moon’s mean longitude, , and the Sun’s mean longitude, h  (Smith, 1999). s

 
The argument number ABC.DEF in equation (2.15) can be expressed in the combination 
of 

)5)(5)(5).(5)(5(. 654321  FEDCBAkkkkkk     (2.17) 

which is known as the Doodson number that denotes each tide constituent, such that the 
Doodson arguments at Greenwich can be written in 

)()()( 00 tttt kkk          (2.18) 

where the frequency of each tide constituent k, , and the astronomical argument at 

epoch , are given by: 
k

0t )( 0tk

sk pkNkpkhkskk  )5()5()5()5()5( 654321     (2.19) 
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   (2.20) 

The Doodson number lays out a foundation to expressing astronomical arguments for 
practical harmonic tidal analysis, described in section 2.3.2. 
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Because of the availability of accurate lunar and solar ephemerides via numerical 
integration of orbits of planetary bodies, the astronomical constants, and the advancement 
in computers, the tide-generating potential has been recalculated with their expansion 
(Cartwright and Tayler, 1971, and Cartwright and Edden, 1973) in the following form, 
which follows the tidal response formulation (Munk and Cartwright, 1966) as follows: 









 



 2 0

* ),()(Re
l

l

m
lmlm WtcgU         (2.21) 

where g is the Earth’s mean gravity acceleration on the surface and ),( lmW  are the 

complex spherical harmonics defined as 




 im
lm

m
lm eP

ml

mll
W )(sin

)!(

)!(

4

12
)1(),(




      (2.22) 

The time varying complex conjugate coefficients  correspond to the Greenwich 

equilibrium tide of degree l  and order . For tides, with 

*
lmc

m 2l , the coefficients are  
))((*

2
0)1( kkm ti

k
k

m
m eBc           (2.23) 

where  represents the equilibrium tidal amplitude as tabulated in Cartwright and 

Taylor (1971), and Cartwright and Edden (1973). The term  is introduced to 

obtain all positive amplitudes 

kB
mm 0)1( 

kB  and cosine arguments in the harmonic expansion. A 

more details on the review and harmonic expansion development can be found in Wenzel 
(1997).  
 

2.3 Tidal Analysis 
 The above two sections illustrate the tide-generating potential as well as its harmonic 

expansion. However, the equilibrium response of ocean tides may not be entirely correct 
for true representation of ocean tides near coasts, although long-period tides having a 
period of a month or longer should be expected to closely follow the equilibrium theory 
(Lambeck, 1988). 

In 1775, Laplace formulated a dynamic tidal theory, called Laplace tidal equations 
(LTE), to describe the horizontal currents and associated tidal elevations of the ocean 
caused by the tide-generating forces. These equations provide a physical theory to the 
expression of the sum of both the solid-Earth and the ocean tides, which will be described 
in detail in the following sections. Two practical methods for ocean tidal analysis, called 
harmonic and response tidal analyses, respectively, will be described. 
 

2.3.1 Laplace Tidal Equations 
The Laplace tidal equations (LTE) describe the horizontal currents and associated 

tidal elevations of the ocean as a result of the tidal forcing. The three equations, based on 
the conservation of momentum (horizontal) and the conservation of mass (vertical), are 
as follows (Laplace, 1775): 
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     (2.24) 

The first two equations are the horizontal momentum equations that give the horizontal 
acceleration of the water in the ocean as a consequence of the total tide-generating 
potential   (Hendershott, 1981). The third equation is the mass conservation equation, 
such that the net flux into or out of the area of local bathymetry depth  is balanced by 

a corresponding change in water level (e.g. Pugh, 1987). In the equations (2.24), 
bH

e is the 

Earth’s mean rotation rate in which the Coriolis parameter sin2 e  is formed; ),t,(u   

and ),(v , t  are the east and north component of the depth-mean velocity (i.e., the 

horizontal tidal currents), and c  is the tidal height which is composed of ocean tides, 

ocean tidal loading, and the tidal deformation of the solid earth. Note that the geocentric 
tidal height is the sum of ocean tide and ocean tidal loading which is observed by the 
satellite altimeter. The above equations are numerically solved for ), cv,(u   driven by the 

total tide-generating potential  . The inputs are (i) the bathymetry depth with respect to 
the mean sea surface and (ii) the tidal height computed from harmonic constants derived 
from tide gauge measurements that serve as open boundary conditions (or data 
constraints); the output includes the ocean tides and the ocean tidal loading. The solid-
Earth body tide is relatively well known and therefore given. 

To illustrate the concepts of all tidal components generated from the total tide-
generating potential, one should learn that the composition of the total tide-generating 
potential  , truncated at degree 2, can be expressed as (Ray, 1998): 

 UUUU  22        (2.25) 

where  is the tide-generating potential, 2U 2U is the additional potential caused by the 
redistribution of mass inside the Earth in response to the tide-generating potential,  is 

the potential induced by ocean tide, and 
U

U is an additional potential generated from the 

ocean tidal loading, called the loading potential. Each component of  is described in 
detail below for a clear explanation of the term cg  in equation (2.24). 

With tide-generating potential , the tidal deformation of the solid earth given by 2U

g

Uh
e

22          (2.26) 

The additional potential  in response to the tide-generating potential can be 
expressed as 

2U

          (2.27) 222 UkU 

15 
 



where  and  are the second-degree Love numbers, assumed to be independent of 
frequency (Munk and MacDonald, 1975).  

2h 2k

U  , being the potential induced by ocean tide, can be expressed in terms of spherical 

harmonics as 


l

llgU            (2.28)  

where l is the l-th degree spherical harmonic of the ocean tide with 
e

w
l l 




12

3


 , and 

w and e are the mean density of the ocean water and the Earth, respectively. This 

potential causes the deformation of the solid earth in form of the ocean tidal loading: 

ll
l

lol h   ' ,          (2.29) 

and is an additional potential caused by the ocean load tides that can be expressed as U

ll
l

lkgU   '         (2.30) 

where  and  are the load Love numbers of degree l. Hence, the term '
lh '

lk cg  in 

equation (2.24) is rewritten as: 
   
    .11 ''

222

22

ll
l

ll

olec

hkgUhkg

UUgUUggg



 

 



                  (2.31) 

Notice that, as the term  UUg ol   in equation (2.31) depends on the solution of 

the ocean tide, equation (2.24) has to be solved iteratively. Due to slow convergence, an 
alternative procedure was proposed to approximate the term   ll

l
ll hk   ''1  in 

equation (2.31) by a simple scaling relationship to the tidal height. Accad and Pekeris 
(1978) and Schwiderski (1983) suggested the relationship to be 0.085   or 0.07  , 
respectively. Note also that the non-linearity term such as the bottom friction and 
advection terms have to be taken into account in equation (2.24) in the case of shallow 
water. 
 

2.3.2 Harmonic Analysis 
Tides are periodic in nature, and it can be expressed as the sum of sinusoids. The 

standard approach to determine the tides is referred to as ‘harmonic analysis’. At time t, 
the harmonic expression of the ocean tidal height,  , at a location (φ, λ), can be 
expressed as  

 
k

kkkk GtHt )],()(cos[),(),,(      (2.32) 
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where  and )(tk k  share the same definition as in equations (2.13) and (2.23), and 

),( kH and ),( kG  are the unknown amplitudes and Greenwich phase lags of the 

tidal constituent k which will be determined through a least-squares process. 
Equation (2.32) is not in linear form. For a convenient least-squares estimation and to 

avoid the singularities at the point of zero amplitude of any harmonic constituent of the 
tide, which refers to as an ‘amphidromic point’, it can be decomposed into the cosine and 
sine functions in linear form through the trigonometric addition formula as 

)])(sin(),())(cos(),([),,( kk
k

kkkk tStCt      (2.33) 

where 

)sin(

)cos(

kkk

kkk

GHS

GHC




         (2.34) 

which are called in-phase and quadrature amplitude terms, respectively, that constitutes 
the tidal (harmonic) constants4. Their relation to the amplitude and phase lag is given by  

)arctan(

22

k

k
k

kkk

C

S
G

SCH




         (2.35) 

Because the lunar nodal tidal effect occurs with a cycle of 18.61 years, the nodal 
correction has to be applied to take into account of the slow variation for the longitude of 
the lunar node. Notice that it is strictly to the lunar tidal constituents. Therefore, the lunar 
nodal factor, , and the nodal angle, kf k , are introduced to the harmonic expression of 

the tidal height in equation (2.33) (e.g., Munk and Cartwright, 1966; Schureman, 1971) 
and expressed as 

))(sin(),())(cos(),(),,( kkk
k

kkkkkkk tSftCft     (2.36) 

Both of them depend on the longitude position of the lunar node with slow variation in 
time throughout the cycle.  
 
 

2.3.3 Response Analysis 
Notwithstanding the convenience of harmonic analysis for the harmonic constants 

(i.e.,  ), it has the inability of resolving frequencies close to each other due to 

limitation of the data time span. Munk and Cartwright (1966) developed the response 
analysis method that relates the equilibrium tide, , (an input), to the ocean tidal 

height at a fixed location, 

,kC kS

)(*
2 tc m

),,( t , (an output), by the response weight function , 

)t,,(2w m  , (a system), with the assumption of the credo of smoothness in which sharp 

resonance peaks are presumably not occurred for the ocean responses to gravitational 
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quantities which are always interchangeable in this context. 



forcing. This idea, which is originated from electrical engineering, has a conceptual 
advantage that distinguishes the equilibrium tide from the ocean dynamic system. It also 
permits an analysis in spectral domain. Though it is fundamentally designed for linear 
systems, it can be extended to non-linear equations that describe shallow water tide 
propagation (Pugh, 1987). Therefore, the ocean tidal height is expressed as a convolution 
of the equilibrium tide, )(*

2 tc m , and the response weight function, ),,(2 tw m  . 

Considering only the main 2tides ( l ), the ocean tide height   (the outp  
and at location (φ, λ) is given by  


 

2
* (Re),,( wtct

ut) at time t

(2.37) 




 0

2 )
m

m 2 (*) m

)  

 s

n th

,, t

Ts

  

where  
        

is the equilibrium tide of

i

      (2.39) 

where 

    

(2.38) ()()( 22 tibtat mm *
2c m

econd order, expressed in an equivalent form to equation 
(2.23), where )(2 ta m and )(2 tb m  are the real and imaginary parts of the equilibrium tide 

representation that conta e nodal parameters implicitly and,  hence, no nodal 
correction factor has to be included in the analysis. The response weight function (i.e., the 
system) can also be represented as  

 
S

twtw (),(),,( 
 Ss

msm )22

)(t  is the unit impulse function. T  is the time lag inte s
 is t

rval, u ually taken as two 
days. S he number of response weights which is generally be chosen as 1 or 2. Thus, 
the response method represents the ocean tides as a weighted sum of past and future 
values of the equilibrium tide. Note that the use of future values of equilibrium tide 
(negative values of s) is reserved for a better illustration of the mathematical concept.  

The response weight msw2  can be further written as  
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where  and are the respo ts that will be determined from

such that the response weights are represented in the spectra
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height observations through a least-squares process. Note that the response weights 
define the admittance function of each tidal constituent with angular frequency k  

through a Fourier transform of itself, which is given as 
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l domain. Inserting equations 
(2.39) and (2.40) into equation (2.42), one obtains 
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    (2.44) 

It should be noted that the time lag interval
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 T and the num
smoothness which should only be applied to luni-solar gravitational tidal forcing on the 
oce

ber s govern the degree of 

an (i.e., dominant tides) according to Munk and Cartwright (1966). The obtained 
admittance function allows a number of small tides to be inferred by interpolation in the 
spectral domain which is assumed to be well defined by the dominant tides, thereby, 
making it easier to separate tidal constituents with very close frequencies than that of the 
harmonic analysis. Though it has fewer parameters to be solved when compared to 
harmonic analysis, the stability of the tidal solution is, in general, better.  

Equation (2.44) yields the admittance parameters that provide an equivalent 
expression to describe the tides in the spectral domain as the harmonic coefficients would 
in equation (2.34). The relation between admittance and harmonic coefficients is given by 
(Cartwright and Ray, 1990b; Smith, 1999): 
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where kB  is the equilibrium a

Notice that the functions and in equation (2.38) are not orthogonal, which 

n it is based on (2.41). 
 

To ensure orthogonal basis functions and to avoid an ill-conditioned normal matrix, 
uced by Groves 

where usually is adopted since it is shown to be su
ral sites (Alcock and Cartw

mplitude in (2.23). 

 ma2 m

may result in an ill-conditioned normal matrix whe

b2  

2.3.4 Orthotide Formulation and its Relation to Harmonic Constants 

the orthogonalized convolution method for the tidal prediction was introd
and Reynolds (1975). This leads to the so-called orthotide formulation that exhibits 
similarity with equation (2.41), in which the tidal height can be written as  
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fficient in practice for accounting 
right, 1978; Cartwright and Ray, 

1990b). (m
jU nd ),( m

jV  are the unknown coefficients of the orthotide functions 

to be determined via a weighted least-squares adjustment. )(tPm
j  and )(tQm

j  are the 

orthotide s, de linear combinations of )(2 Tsta m  fun fined by  and )( Tstb2m  , 

that generate the coefficients for the design matrix with the ex ons fo irst few 
orthotide functions  ( j=1,2,3), following Cartwright and R epres

pressi r the f
ay (1990b), r ented as: 
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where the first few coefficients of and  are listed in Table 2.1.  
Table 2.1 Orthotide coefficients 
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Expression for the transformation 

Cartwright and Ray (1990b): 
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.4 Chapter Summary 
We briefly illustrated the fundamental forces of the terrestrial bodies (such as the Sun 

 the Earth and thereby generating tides. The forces can be 
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and the Moon), exerting on
anded into a series of harmonics based on the tide-generating potential. Laplace tidal 

equation is introduced as a fundamental basis for physical understanding of tides and its 
dynamics. For practical tidal estimation and prediction, harmonic analysis is described as 
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the 

the standard method. We also introduce the method of response analysis for the response 
weight that allows tide to be inferred via interpolation in the spectral domain which can 
be later converted back to tidal constants. Its orthogonal representation is also described.  

Due to the aforementioned disadvantage of inability to resolve tidal frequencies close 
to each other in the harmonic analysis method, the response analysis method that ensures 

orthogonality of the basis functions and avoids any ill-conditioned normal matrix is 
employed in this dissertation.  
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Chapter 3: Satellite Altimetry Technique 

Before the advent of satellite altimetry, ocean tides have historically been measured 
along the coastlines by tide gauges and at islands either by tide gauges or by bottom 
pressure rec n tides in the deep 
cea

bservations with an approximate weekly 

plied to the altimeter measurements, in section 
3.1

ra of satellite altimetry, tide gauges have been the only data source for 
cean tide modeling. They are mostly located near coastal regions for the accurate 

ents are ultimately for 
 purposes.  

spa

alti

ographic signals of interest along with data noise (Parke et al., 1987), when 

 

orders. Hence, the empirical knowledge of global ocea
o n remained largely unknown.  

The advent of satellite altimetry enables the global ocean tides to be observed in the 
deep ocean. It also addresses a vast number of fundamental and interdisciplinary 
scientific questions, thanks to the satellite orbital design allowing synoptic means of 
global ocean surface (or land surface) height o
(or longer) temporal sampling. The accuracy of satellite altimeter measurement has been 
improved since the launch of TOPEX/POSEIDON in the 1990s, primarily due to 
precision orbit determination techniques, gravity field and other force modeling, along 
with the improvement in instrumental, propagation media (e.g., troposphere and 
ionosphere), and geophysical corrections.  

In this chapter, we illustrate the difference of measurements through satellite 
altimetry when compared to those by tide gauges, particularly in terms of spatial and 
temporal data sampling. We review a measurement principle of satellite altimetry, 
together with corrections that have to be ap

. Sampling aliasing effect, in particular tidal aliasing, is introduced to gain a better 
understanding on the temporal sampling aspects of altimeter data. This will be discussed 
in section 3.2.  
 

3.1 Sea Surface Height measurement in satellite altimetry 
Before the e

o
measurement of ocean tides and sea level, in which the measurem
maintaining the ship cargo safety and other navigation application

Sea level observations from tide gauges are taken at a regular interval of 5, 10, 15, 
and 30 minutes. This temporal sampling rate of sea level allows accurate determination of 
ocean tides. However, due to their locations along coasts and the sparseness of the global 
tide gauge network, tide gauge measurements provide limited knowledge about the 

tial characteristics of tides in the open ocean.  
Compared to tide gauges, satellite altimetry measures sea surface height for 

monitoring global sea level variation and ocean tides in a synoptic manner. However, it 
has an approximate weekly (or longer) temporal sampling rate at certain fixed locations 
on the Earth, due to the orbital design of the so-called Exact Repeat Orbits for satellite 

metry.  
The main difference of tide gauges and satellite altimetry lies in both the spatial and 

the temporal sampling characteristics (Figure 3.1). It is apparent that the temporal 
sampling of the tide gauge data is more than sufficient to separate the tides well from 
other ocean
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com

 over the ocean. Measurement principles of satellite 
alti

 
 

 
  

pared to that of satellite altimetry. However, sea level measurements are sampled 
globally using satellite altimetry.  

Satellite altimetry uses radar to measure the round trip travel time taken by a radar 
pulse to the sea surface and return back to the satellite receiver. Because of the favorable 
property of a relatively flat water surface with waves, the pulse-limited radar altimetry is 
designed to be especially operated

metry are described in the following subsection.  
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2  

 
Figure 3.1 Tide gauge locations (red triangle) and theoretical altimeter tracks (blue – TP; green – GFO; red 
- Envisat) [top panel] in Gulf of Mexico region and the time series of both tide gauge and TOPEX altimetry 

measurements around the tide gauge, 1993–1999, in the Louisiana wetlands (yellow squares) [bottom 
panel]. 
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3.1.1 Measurement principle of satellite altimetry   
The concept of satellite altimetry was first envisioned at NASA’s Williamstown 

Conference in 1969 (Kaula, 1969) and the technique of satellite altimetry had, 
subsequently, been demonstrated a few years later during the SKYLAB missions in 
1970s (Seeber, 1993). Following the success of this experiment, new and improved 
altimetry missions have been launched over the past two decades. Table 3.1 lists the basic 
information about past, present, and planned future satellite radar and laser altimetry 
missions, along with their orbital characteristics and repeat-orbit periods. 

 
 

 
Figure 3.2 The schematics of satellite altimetry observations (Courtesy of AVISO) 
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Table 3.1 Satellite radar and laser altimetry missions 

Mission Launch period 
Inclination 
(degree) 

Repeat Period 
(days) 

GEOS-3 Apr 1975 – Dec 1978 115 N/A 
SEASAT Jul 1978 – Sept 1978 108 17.0505 
SEASAT Sept 1978 – Oct 1978 108 3 

GEOSAT GM Mar 1985 – Nov 1986 108 N/A 
GEOSAT ERM Nov 1986 – Dec 1989 108 17.0505 

ERS-1 July 1991 – Jun 1995 98.5 3, 35, 168 a 

TOPEX/POSEIDON Aug 1992 – Dec 2005 66 9.9156 
ERS-2 Apr 1995 – Jun 2003 98.5 35 
GFO May 1998 – Sept 2008 108 17.0505 

JASON-1* Nov 2001 – present 66 9.9156, 406 b 
ENVISAT Mar 2002 – present 98.5 35 
ICESat-1 Jan 2003 – Aug 2010 94 8, 91 c 
JASON-2 June 2008 – present 66 9.9156 
CryoSat-2 Apr 2010 – present 90, 92 c 2, 369 d 

HY-2A Aug 2011 – present 99.35 14 
SARAL /AltiKa e Sum 2012 98.55 35 

Sentinel-3 2013 98.65 27 
Jason-3 Apr 2014 66 9.9156 

ICESat-2 Early 2016 92 91 
a. The three-day repeat periods refer to the mission phases for the calibration and ice observations primarily 
following the InSAR observational requirements, the nominal mission orbit, and the geodetic phase, 
respectively. 
b. JASON-1 has interleave/tandem/geodetic mission phases. 
c. The validation orbit and the mission orbit have the 8-days and 91-day repeat period, respectively. 
d. The validation orbit and the mission orbit have their inclination and repeat period of 92-deg and 369 days 
with sub-cycle of 30 days. 
e. Satellite with ARgos & ALtika (SARAL) is a French-Indian mission for the monitoring of the 
environment: Altimetry (AltiKa) and contribution to ARGOS system (http://smsc.cnes.fr/SARAL/). 
 

The measurement principle of an Earth orbiting satellite radar altimeter is 
geometrically illustrated in Figure 3.2 which can be mathematically expressed as (Parke 
et al., 1987; Wagner, 1989):  

sMSSaltorbssh hhhhh          (3.1) 

where  is the sea surface height with respect to a predetermined reference ellipsoid, 

 is the satellite orbital altitude with respect to the International Terrestrial Reference 

Frame (ITRF) and relative to the reference ellipsoid,  is the altimeter range (or height) 

from the satellite to the sea surface that is determined by multiplying the speed of light 
with a half of the measured two-way travel time of the radar/laser pulse transmitted from 
the altimeter antenna and reflected by the sea surface,  is the mean sea surface 

(MSS) comprising geoid undulation and dynamic sea surface topography,  is the 

sshh

orbh

alth

MSSh

sh
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(instantaneous) sea surface height (SSH) anomaly5. The orbit is determined by satellite 
tracking data including Doppler Orbit determination and Radiopositioning by Satellite 
(DORIS), Satellite Laser Ranging (SLR), Precise Range And Range-Rate Equipment 
(PRARE), and Global Positioning System (GPS). 
  
 

 
Figure 3.3 Sea surface height (SSH) anomaly residuals, after instrumental, geophysical, and media 

corrections, were applied, including the ocean tide correction using NAO.99b (Matsumoto et al., 2000) 
ocean tide model. 

The main goal of satellite radar altimetry is to study the general ocean circulation and 
to enrich the understanding of the role of ocean circulation in Earth’s climate at global 
(i.e., gyre and basin) scales (Fu et al., 1994). Other applications of the altimetry 
measurements include ocean tides, marine geodesy and geophysics, ocean wave height, 
wind speed (Chelton et al., 2001), hydrology, ice-sheet elevation and sea-ice freeboard 
elevation changes, and even solid-Earth geodynamics applications (Lee, 2008). When the 
tidal fluctuations and sea level variations due to changes of solar heating, atmospheric 
pressure, and wind are excluded, the precise instantaneous sea surface height, , 

obtained from altimetry measurements represents the sum of MSS and the SSH anomaly 
residual

sshh

6 (Calman, 1987).  

                                                 
5 In oceanography, Sea Surface Height (SSH) anomaly refers to the Mean Sea Surface subtracted from 
SSH. In geodetic science, anomaly is usually thought of as gravity anomaly, which is the difference in 
gravity on geoid at point P and ellipsoid at point Q. 
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6 Sea Surface Height (SSH) anomaly residuals, after all known geophysical corrections are applied, are the 
general ocean circulation signals that are subject to further modeling. Residuals refer to the prediction of 
the random errors after the least-squares adjustment solution process. 



Figure 3.3 illustrates the spatial variation of SSH anomaly residuals after 
instrumental, geophysical, and media corrections were applied, along with the subtraction 
of mean sea surface (MSS). Substantial ‘non-tidal’ dynamic oceanic variability is present 
for some coastal regions with a well-known feature, called ‘west boundary current’, due 
to the general ocean circulation. 
 

3.1.2 Corrections to altimeter radar measurements  
Direct altimetry measurements from an Earth-orbiting platform require several 

corrections to achieve the desirable sea surface or land surface topography measurements. 
Orbit error is one of the major errors resulting from inaccurate Earth’s gravity model used 
for precise orbit determination (POD) (Tapley and Rosborough, 1985), even during or 
before the TOPEX/Poseidon era. Other errors include (conservative and non-
conservative) forcing models (e.g. atmospheric drag, solar and Earth radiation pressure), 
solid Earth and ocean tides, satellite-originated thermal forces, the measurement errors in 
various tracking systems (e.g., DORIS, SLR, PRARE and GPS) such as measurement 
sampling, atmosphere delay, and other related sources, and the errors in the terrestrial 
reference frame and its realization. They all contribute to the total error budget.  

The effect of any orbit error must be removed from the satellite altitude before it is 
used to derive the sea surface height (SSH). Current POD accuracy for a typical modern 
satellite altimeter, e.g., Jason-2, is better than ±2 cm (Bertiger et al., 2010), even for the 
near-real-time (NRT) operational Geophysical Data Record (GDR) products (Desai and 
Haines, 2010). The standard error of ±2 cm is adequately small for ocean tide modeling. 
Hence, equation (3.1) is a good representation for  provided that the altimeter height 

measurement, , has been corrected for systematic effects.  One should also notice 

other innovative orbit determination procedures, such as the reduced-dynamics approach 
(Bertiger et al., 2010) and the purely geometric approach (Kwon et al., 2003), as opposed 
to the dynamical approach (Tapley et al., 1994a,b).  The reduced-dynamics and the 
purely geometric approaches are based on the fact that there are abundant tracking data 
available, i.e., high-low GPS to Low Earth Orbiters (LEO) or altimeter satellite tracking 
data, and DORIS tracking data of modern altimetry satellites. 

sshh

alth

To obtain accurate (i.e., rather bias-free) SSH observations from satellite altimetry, 
three major kinds of corrections have to be applied to the altimeter height measurements. 
They are classified as: (i) instrument corrections, (ii) media propagation corrections, and 
(iii) geophysical corrections.  In addition, the instrument bias and the corrections are 
calibrated using either absolute calibration sites (Haines et al., 1990; Christensen et al., 
1994; Shum et al., 2001), or relative calibrations are performed by comparing to other 
concurrently flying satellite altimeters. These three types of correction are elaborated in 
details below. 
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(i) Instrument corrections:  
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r to sensor related corrections. They include Doppler-shift 
cor

of 
the 

enter of the 
alti

 refer to the offset caused by the deviation of the beam 
dire

instrumental errors, the bias of the altimeter range 
mea

i) Media corrections:  
fer to the media propagation correction due to radar pulse 

pas

e 
firs

is a correction for the dry-air component in the 
trop

et tropospheric correction is a correction for the integrated water vapor content 
in 

(iii) Geophysical corrections:  
r to systematic geophysical effects that can be modeled 

and

Instrument corrections refe
rection, center-of-mass offset, nadir pointing error, instrument temperature and clock 

(Ultra Stable Clock, or USO) related corrections, and some internal calibration biases.  
Doppler-shift is due to the Doppler frequency shift, caused by the radial velocity 
satellite. It affects the time delay measurement and, therefore, the range.  
Center-of-mass offset accounts for the difference between the phase c
meter antenna, where the radar pulse is both transmitted and received, and the mass 

center of the satellite on which the orbit computation is based.  The satellite mass center 
changes, depending on the spacecraft, as a function of fuel usage, and required operations 
of a particular satellite including solar panel motions, and orientation changes (i.e. 
satellite yaws) of the satellite. 

Nadir pointing corrections
ction from the vertical; the range measurement, hence, results in a slant-range to the 

point offset from the nadir point. 
Besides the aforementioned 
surement toward the troughs of ocean waves, due to the sea state, should be taken 

into account. It arises from three interrelated effects: tracker bias, skewness bias, and 
electromagnetic (EM) bias (Rummel, 1993). Sometimes, the sea-state bias is categorized 
as a geophysical correction.  
 
(i

Media corrections re
sing through ionosphere and troposphere before reaching the sea surface (Figure 3.1). 

They include the ionospheric correction and, both dry and wet tropospheric corrections. 
The ionosphere delay is a frequency-dependent correction, in which the effect of th
t-order ionosphere correction is between 5 cm and 20 cm given the frequency domain 

of 14GHz (Lorell et al., 1982). It is generally corrected by combining the onboard dual-
frequency altimeter measurements.   

The dry tropospheric correction 
osphere. As it cannot be measured directly by sensors onboard the satellites, the dry 

troposphere delay is usually corrected by models such as the one by Saastamoinen 
(1972).   

The w
the troposphere, which is comparatively more difficult to model than its dry-air 

component counterpart. It can be corrected either using direct measurements from the 
onboard microwave radiometer (Tapley et al., 1982), or from models such as the 
European Centre for Medium-Range Weather Forecasts (ECMWF) model (Faugere et al., 
2011). 

 

Geophysical corrections refe
, consequently, be corrected. These consist of the barotropic response of the ocean to 

the atmospheric pressure, i.e., an inverted barometer (IB) model, and corrections for 



various tidal effects including the solid Earth body tides, ocean tides, ocean tidal loading, 
and the pole tide. 

The atmospheric barotropic correction is to remove the effect due to the ocean surface 
deformation under the atmospheric loading. The inverted barometer (IB) model says that 
1 millibar increase in atmospheric pressure will result in 1 cm decrease in the ocean 
surface height (Ponte et al., 1991; Dorandeu and Le Traon, 1999).  

The solid Earth body tide correction accounts for the periodic variations in both land 
and sea surface, due to the tidal deformation of the underlying non-rigid Earth, including 
the sea-floor, under the attraction of the astronomical bodies (Moon and Sun) (Munk and 
MacDonald, 1975). It can be derived from the tide-generating potential, introduced in 
Chapter 2 using Love numbers with the assumption of an elastic Earth with uniform 
density of mass. Detailed information can be found in Chapter 6 of the IERS Conventions 
(2010) and in the papers by Cartwright and Taylor (1971) and Cartwright and Edden 
(1973). Incorporation of physically plausible assumptions about a lateral inhomogeneity 
for the 3-D elastic Earth model has currently been proposed along with a viscoelastic 
structure (Latychev et al., 2009); however, the result for the maximum change in the 
amplitude under this assumption is below the 1 mm level which should be negligible in 
view of the altimetry measurement quality of ±2 cm level.  

Ocean tides represent a substantial time-variable component that is responsible for 
sea surface deformation. The correction for ocean tides can be computed from some 
available forward tide models, which will be introduced in section 4.1. Ocean tides also 
cause an oceanic mass redistribution with the associated load change on the crust, 
thereby, producing time-varying deformations of the earth. This is called the ocean tidal 
loading effect (Ray, 1998). Similar to the solid Earth body tide, the displacement of the 
earth crust caused by ocean tidal loading can be derived from the tide-generating 
potential (Cartwright and Taylor, 1971; Cartwright and Edden, 1973). Schwiderski 
(1980) proposed the 7% rule for ocean tidal loading, meaning that the ocean tidal loading 
height is about 7% of the corresponding ocean tidal height, though a value of 8.5% was 
suggested previously by Accad and Pekeris (1978). The ocean tidal loading correction, 
first theoretically formulated by Farrell (1972), can be computed numerically from major 
constituents of the ocean tides by using available program (Agnew, 1997). 

The pole tide is a tidal response of both solid-Earth and the oceans to the centrifugal 
potential caused by small perturbations to the Earth’s rotation axis (known as polar 
motion). The perturbations occur at an annual period and 433-day period (also called the 
Chandler wobbles) with amplitude of ~6 mm (Wahr, 1985; Desai, 2002). Its correction 
can be computed if the location of the pole, as a function of the polar motion angles, is 
known.  

 
The observed sea surface height and its anomaly 

With the introduction of the above corrections to the altimeter range measurements, 
one can rewrite equation (3.1) in a more complete form as  

ehhhhhhhhhhhh

ehhehh

IBpoleolsolwetdryionossbinstrtbMSS

sMSSssh
obs
ssh





:

 (3.2) 
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where  is the potential satellite bias,  is the height due to sea level trend,  is the 

instrument correction,   is the sea state bias correction,   is the ionosphere 

correction,   is the dry troposphere correction,   is the wet troposphere 

correction,   is the solid earth tide correction, 

bh th instrh

ssbh ionoh

dryh

solh

weth

  is the ocean tide correction (which is 

the signal of interest and thus to be modeled in this dissertation),   is the ocean tidal 

loading correction,  is the pole tide correction,   is the inverted barometer 

correction; e includes the error in the altimetry measurement, the error in geophysical 
corrections, and the (unmodeled) general ocean circulation signal. Although the use of 
existing numerical general ocean circulation model is a possibility for the removal of 
general ocean circulation signal, it is subject to further scientific investigation before 
serving as a geophysical correction because altimeter data has already been assimilated 
into the general ocean circulation model that makes itself no longer independent of 
altimeter data. Desai (1996) conducted an experiment to analyse the effect of including 
general ocean circulation model (without altimetry data assimilation) as a correction to 
altimeter measurement for empirical ocean tide modeling, but the effect is negligible. A 
similar conclusion was found when an experiment is conducted using ECCO ocean 
circulation model (KF080) in the Gulf of Mexico region. These findings are consistent 
with other research contributions; indicating that the statistical distribution of the SSH 
anomaly residuals behaves similar to stochastic noise (Desai, 1996; Niedzieski and 
Kosek, 2009). Therefore, the error in geophysical corrections, the unmodeled general 
ocean circulation signal and measurement noise are regarded as stochastic noise for the 
ocean tide modeling.  

olh

poleh IBh

In satellite altimetry context, the media and geophysical corrections can be served as 
signal to be modeled or to be removed, depending on a particular research interest. In this 
dissertation, since the ocean tide effect is the signal of interest, it should be regarded as 
signal in the observations and not be treated as a correction.  

Based on equation (3.1) and (3.2), the observed instantaneous sea surface height 
(SSH) anomaly, , from satellite altimetry, after applying the instrument correction 

and the environmental corrections except that for the ocean tides, can be expressed as 

obs
sshah

ehh

hhhhhhhhhhhh

tb

IBpoleolsolwetdryionossbinstrMSS
obs
ssh

obs
ssha





  
(3.3) 

Note that equation (3.3) should be applied to the same along satellite track location 
( , ) only. In this dissertation, our solution approach used the original  at (obs

sshah ,

c

) at 

time epoch t to estimate the ocean tides at a predefined grid center location ( c , ). 

Hence, one should take into account both the (co-)variance in space and in time 
simultaneously for data weighting using one-step empirical method, which will be later 
described in section 4.2. 
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3.2 Tidal Aliasing 
 The estimation of ocean tides using satellite altimetry is limited by the temporal 
sampling property due to the fundamental satellite orbit design. Because all altimetry 
satellites have a repeat periods of a few days or more (i.e., 9.9156-day for TOPEX/Jason-
1/Jason-2; 17.0505-day for GFO; 35-day for Envisat), the diurnal (daily) and semi-
diurnal (half-daily) tides at a fixed location appears as long-period signals. This refers to 
tidal aliasing effect.  
 Shannon sampling theorem stated that it is necessary to sample the signal at a rate at 
least twice the frequency  of the signal, i.e.kf kN ff 2 , where  is the Nyquist 

frequency, in order to fully reconstruct the original analog signal. In other words, a signal 
with period  can be fully reconstructed if the sampling values are obtained at an 

interval of less than

Nf

kT

2kT , at least. Otherwise, the signal of period  will be aliased to a 

longer period 
kT

P , which is referred to as aliased period. As a consequence of the aliasing 

effect, one has to wait P instead of  to fully reconstruct the signal of frequency .  kT kf

 Since the presence of data noise, unmodeled ocean circulation signal, and potential 
data gaps due to flagged data for particular cycles in altimetry data, the observations have 
to be collected more than just an aliased period P . 
 The tidal aliased period for satellite altimetry with repeat period P can be computed 
as below (Parke et al., 1987). The phase change, P , of a given tidal constituent k of 

period  within the range kT  , , is given by 

   
k

P T

P


 2
               (3.4) 

such that the resulting principal alias period, P , for a given tidal constituent k is  

    
P

P

P







2

               (3.5) 

An alternative formula for the aliased period can be found in Wang (2004). 
 Apart from the aliasing effect, another issue is the separation of different tidal 
constituents with very close frequencies. The criterion, known as Rayleigh criterion, for 
separating two neighboring tides is that they should at least differ in phase by a cycle 
with a minimum required data time span,  (also known as Rayleigh period). It is given 
by (Smith, 1999):  

rT

  221 rT                         (3.6) 

where 1  and 2 are the aliased angular frequencies. Thus, it can be simplified as  
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111

TTTr

                    (3.7) 

where 11 2 T , 22 2 T . 
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Table 3.2 Tidal aliased periods (diagonal) and Rayleigh periods (off-diagonal) in days for TOPEX/Jason-
1/-2, GFO, and Envisat, with repeat periods P of 9.9156, 17.0505, and 35 days, respectively. (Courtesy of 

Smith, 1999) 

 M2 S2 N2 K2 K1 O1 P1 Q1 Mf Mm Ssa Sa 

 TOPEX/Jason-1/-2 
M2 62 1084 245 220 97 173 206 594 87 50 94 75 
S2  59 316 183 89 206 173 384 94 52 87 70 
N2   50 116 69 594 112 173 134 62 68 57 
K2    87 173 97 3355 349 62 40 165 114 
K1     173 62 183 116 46 33 3355 329 
O1      46 94 134 173 69 61 52 
P1       89 316 61 40 173 118 
Q1        69 76 46 112 86 
Mf         36 116 45 40 
Mm          28 33 30 
Ssa           183 365 
Sa            365 
 GFO 

M2 317 361 62 121 393 175 341 97 88 52 431 2407 
S2  169 75 183 4464 341 175 132 116 61 2232 314 
N2   52 128 74 97 53 175 215 317 73 61 
K2    88 175 393 90 475 317 91 169 115 
K1     175 317 183 128 113 60 4464 338 
O1      113 116 215 175 74 296 164 
P1       4464 75 70 45 190 398 
Q1        74 954 113 125 93 
Mf         69 128 110 85 
Mm          45 59 51 
Ssa           183 365 
Sa            365 
 Envisat 

M2 95 95 3169 196 128 365 128 328 519 349 196 128 
S2  ∞ 97 183 365 75 365 133 80 130 183 365 
N2   97 209 133 328 133 365 446 393 209 133 
K2    183 365 128 365 487 142 446 ∞ 365 
K1     365 95 ∞ 209 102 201 365 ∞ 
O1      75 95 173 1236 179 128 95 
P1       365 209 102 201 365 ∞ 
Q1        133 201 5253 487 209 
Mf         80 209 142 102 
Mm          130 446 201 
Ssa           183 365 
Sa            365 

 
 Table 3.2 illustrates the tidal aliased periods and Rayleigh periods of the most 
prominent tidal constituents for TOPEX/Jason-1/-2, GFO, and Envisat, respectively. The 
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aliased periods are shown in the diagonal whereas the off‐diagonal elements are the 

Rayleigh period indicating the minimum data time span required for separating the tidal 
constituents from each other. The tidal signal is, in general, aliased into periods longer 
than 20 days (Andersen, 1995a).  
 Though the orbit configuration for the TOPEX-class satellites was designed to 
optimally recover ocean tides (Parke et al., 1987), the two largest semidiurnal 
constituents, M2 and S2, are aliased into 62-day and 59-day period respectively. In 
addition, at least ~3 years are required to separate M2 from S2. This serves as a critical 
period to the design of the data time span for interleaved mission to ensure the 
separability of M2 and S2 tides. Moreover, ~9 years (3355 days) of time series are 
required to separate the K2/P1 and K1/Ssa pairs. Note that K1 is also aliased to the period 
very close to semiannual signal (Ssa) (i.e. 173-day) that also causes the separation 
problem between these two tides.  
 The aliased and Rayleigh periods for GFO and sun-synchronous Envisat satellites are 
larger than that of TOPEX. That means more data are necessary to obtain reliable tidal 
estimates at the same location. For GFO, M2 tide is aliased to the period close to the 
period of annual signal (Sa) (i.e. 317-day). P1 tide is aliased to the period of ~12 years 
(4464-day), however, the entire data time span of GFO lasted for 8 years only. Therefore, 
it is not possible for GFO altimetry data to solve for P1 tide. It is also difficult to separate 
M2/Sa tidal pair without 6 years of data time span. The tidal pairs for S2/K1, S2/Ssa, K1/ Ssa 
also exhibit similar aliased period, as mentioned from the above. 
 Due to sun-synchronous orbit of Envisat satellite, S2 always has the same phase 
during every repeat period. Hence, S2 tidal constituent appears as a constant height all the 
time and it is thus impossible for Envisat to solve for. In addition, the M2/N2 tidal 
constituent pair requires ~9 years (3169-day) of data time span for the separation. The 
diurnal constituents K1 and P1 have the alias period of exactly 1 year (365-day). That 
causes them inseparable from the annual signal (Sa) and from each other.  
 The aforementioned facts detail the requirement of minimum time span for a full 
periodic tidal signal recovery and the difficulty in the separation among tidal constituents 
using harmonic analysis at the same location. In contrast, the response formalism 
(together with its orthogonal representation) does not have the above requirements 
because the determined response weights are, in principle, independent of the Raleigh 
criterion (Andersen, 1994). In other words, once the response weights have been 
determined, a solution for any constituent can be inferred even for S2 constituent for sun-
synchronous satellite. However, the determined tides are not guaranteed to be of good 
quality. Longer data time span is always required for better tidal estimates. Ray et al. 
(2011) also argues that the assumption of smooth admittance across tidal band for the 
response formalism is no longer valid when compound tides have significant amplitudes. 
 TOPEX altimetry data, though the presence of aliasing effect, serve as a backbone to 
ocean tide determination because its tidal aliasing and Rayleigh periods are far better than 
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that for GFO and sun-synchronous Envisat satellites. The two-step empirical approach 
based on along-track solution is not preferable, since the two major tidal constituents, M2 
and S2, requires ~62 days to be solved and ~3 years to be separated from each other for 
TOPEX mission. It also renders the ill-conditioned design matrix for GFO and Envisat if 
a gridded tidal solution based on TOPEX alone is not initially determined to serve as a 
constraint. In contrast, the one-step empirical approach acquires different altimetry 
satellite data within a certain distance from the pre-defined grid center. This allows multi-
satellite data from different along-, adjacent-, and crossover- tracks to be utilized together 
to achieve an empirical mitigation of the tidal aliasing effect.  
 

3.3 Chapter Summary 
We introduce the principle of satellite altimetry and illustrate the fundamental 

difference in spatial and temporal sampling characteristics of satellite altimetry when 
compared to tide gauges. Necessary instrumental, media, and geophysical corrections of 
sea surface height (SSH) measurements are briefly described for the ocean tide modeling. 
This provides a foundation for the linear observation setup for a weighted least-squares 
solution in section 4.2.  

We also introduce the tidal aliasing effect due to fundamental satellite orbit design 
that the repeat period of altimetry satellites is far longer than that of the diurnal (daily) 
and semi-diurnal (half-daily) tidal signals at a fixed location. This provides a better 
understanding on the requirement of time span for the full tidal signal recovery and for 
the separation among tidal constituents using harmonic analysis at the same location. The 
response analysis, in contrast, does not have the above requirements since a solution for 
any constituent can be inferred once the response weights have been determined, even the 
S2 constituent from data of sun-synchronous satellite (e.g., Envisat). Nevertheless, more 
data on temporal scale is always required for better tidal estimates.  
 TOPEX altimetry data is served as a backbone to ocean tide determination, no matter 
which empirical approach to be used. To mitigate tidal aliasing effect, the one-step 
empirical approach has its own merit in allowing multi-satellite data of different time 
span from different along-, adjacent- and crossover- tracks to be utilized together. 
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Chapter 4: Ocean Tides Modeling using Satellite Altimetry  
 
In this chapter, we provide a review of ocean tides modeling approaches using 

satellite altimetry. Based on the review, we illustrate the observation equation setup for 
the ocean tide estimation on a regular grid, followed by proposing a spatio-temporal 
combination approach that accounts for spatial and temporal (co-)variances 
simultaneously for data weighting in a weighted least-squares solution process. Particular 
emphasis is paid on the representation of spatio-temporal combination, and spatial and 
temporal (co-)variance model specifications. Outlier detection criteria and robust 
estimation technique are introduced for iterative re-weighting scheme. 

 

4.1 A Review of Ocean Tides Modeling Approaches Using Satellite Altimetry 

Satellite altimetry brought a new era in the study of ocean tides. It allows one to 
generate a global ocean tide model from satellite altimetry based on equation (3.3) using 
the tidal analysis methods described in Chapter 2. Three different approaches are applied 
to generate ocean tide models. They are (1) hydrodynamic model; (2) assimilation model; 
and (3) empirical model.  

In the following subsection, some representative global ocean tide models, along with 
their revised versions, are reviewed and classified based on their approaches and 
methodologies. 

 

4.1.1 Hydrodynamic modeling 

The Laplace tidal equations (LTE), originally established by Laplace in 1775, and 
discussed in section 2.3.1, is a dynamic tidal theory that describe the motion of ocean 
water as a result of tidal forcing. These equations provide a solid foundation on the 
dynamic principle of ocean tides. Due to the impossibility of obtaining an analytical 
solution of the LTE, numerical methods have been the main driver to model ocean tides, 
not to mention the non-linearity terms – such as bottom friction and advection – 
incorporating into the dynamic equations for shallow water regions.  



Hydrodynamic models are derived by solving the LTE numerically, using bathymetry 
data as input of depths, and ocean tidal constants observed by tide gauges around the 
world as the boundary conditions (or data constraints). This modeling approach includes 
simultaneously the solid-earth body tides, the ocean tidal loading, and the self-attraction 
to solve for the ocean tidal height in the dynamic equations.  

However, topographic drag and the bottom friction coefficient, describing the tidal 
dissipation over the continental shelves and the shallow water regions, are of crucial 
importance. In numerical modeling, empirical fine tuning of these two parameters in 
specific regions are taken place to obtain a better solution, no matter realistic or not 
(Matsumoto et al., 2000; Arbic et al., 2004). As a consequence, the tidal energy 
dissipation is poorly simulated, in general.  

Some models have treated this problem by using linear or quadratic parameterization 
of bottom friction and by including the shallow areas in their domain of integration. 
Some other models have treated this problem by assuming the ocean as frictionless, but 
allowing energy to radiate through boundaries in the shallow water areas where energy is 
dissipated.  

One way to overcome this weakness is to increase the resolution. Another way is to 
use the finite element method which improves the modeling of rapid changes in ocean 
depth, the refinement of the grid in shallow waters, and the description of the 
irregularities of the coastlines (Le Provost, 2001). However, a good bathymetry model is 
required. 

Two global hydrodynamic models have been derived in the past literature. The first 
global numerical model was developed by Schwiderski (1980). It is constructed by 
incorporating tide-gauge derived tidal constants and the best available bathymetry data 
into the hydrodynamic interpolation scheme to solve for the LTE numerically. Despite 
the dependence on the quality of the observations used and the existence of large errors in 
this model, it had been the best available model for more than a decade until the era of 
satellite altimetry. The spatial resolution of Schwiderski’s model is 1o 1o, except for 
some semi-enclosed basins such as the Mediterranean Sea. It includes 8 major 
constituents (M2, S2, N2, K2, P1, K1, O1, Q1) and 3 long-period tides (Ssa, Mm, Mf).  

The other model, which was developed by Le Provost et al. (1994), is called FES94.1 
model. This model is a modification of LTE that includes bottom friction parameterized 
through a quadratic dependency on local tidal velocities, particularly for shallow water 
regions. The equations were numerically solved by the finite element method (Le Provost 
and Vincent, 1986). The FES94.1 model, with a resolution of 0.5o 0.5o, has a full 
coverage of the world ocean including marginal seas and high latitudes, especially in 
areas semi-covered by ice or under permanent ice shelves in the Weddel Sea and the Ross 
Sea. This makes it as the default solution in most empirical models for the region beyond 

72o, due to limitation of the spatial coverage of TOPEX and GFO satellites.  However, 
this model is undefined in the Mediterranean Sea. It includes 8 major constituents (M2, 
S2, N2, K2, P1, K1, O1, Q1) and 5 secondary constituents (Mu2, Nu2, L2, T2, 2N2), linearly 
deduced by the admittance function along with nodal modulations and equilibrium long-
period tides. 




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4.1.2 Assimilation modeling  
The assimilation modeling approach, which is essentially the hydrodynamic 

approach, was proposed to integrate altimetry data and/or tide gauge data into the 
hydrodynamic model for overcoming the weakness in Deep Ocean without data. Three 
current global models are reviewed as an illustration in this modeling approach. 

The NAO.99b is a global ocean tide model developed by Matsumoto et al. (2000). It 
was based on the hydrodynamic tidal equations derived by Schwiderski (1980) with the 
inclusion of advection terms and ocean tidal loading computation. It assimilated ~ 5 years 
of TOPEX altimeter data into the hydrodynamic model. The sea surface height (SSH) 
anomalies were analyzed through the response method with orthotide formulation. The 
free-core nutation (FCN) resonance (Wahr, 1981 and Wahr and Sasao, 1981)7 and the 
radiational potential effect (Cartwright and Ray, 1994)8 were taken into account in the 
analysis. The tide model was provided on a 0.5o 0.5o grid.  

The TPXO model, with the ongoing updated versions TPXO6.2, TPXO7.1, and the 
latest TPXO7.2, was developed by Egbert et al. (1994) using the inverse scheme OTIS 
(Oregon State University Tidal Inversion Software) to assimilate tide gauge and altimetry 
observation data into the hydrodynamic equations by the representer approach (Egbert et 
al., 1994, Egbert and Erofeeva, 2002). The eight major semidiurnal and diurnal tides are 
provided together with two long-period tides (Mf, Mm) in the form of tidal harmonic 
constants on a 0.25o 0.25o full global grid.  

The FES model, with the ongoing update versions FES98/99, FES2002, and the latest 
FES2004, is a series of models representing an improvement over its predecessor FES98 
and FES94.1 (Lefèvre, 2000), in which only tide gauge data are assimilated into 
hydrodynamic equations. In FES99, 670 tide gauges and 687 TOPEX altimetric 
crossover data sets were assimilated by a revised representer method, similar to TPXO 
models, to improve the accuracy for the FES98 model (King et al., 2005). For both 
models, FES99 and FES2002, the solutions are provided on a 0.25o 0.25o global grid. 
The latest model, FES2004, which assimilated ERS-1/-2 altimetry data in addition to 
TOPEX, is provided on a 0.125o 0.125o global grid (Lyard et al., 2006). 

It should be noted that both hydrodynamic and assimilation modeling approach 
assimilate tide gauge data as the boundary conditions into hydrodynamic models to 
compute ocean tides. Thus the evaluation using ground-truth tide gauge records is not 
completely independent, for instance in case of FES2004 or the TPXO models. In 
addition, the semi-empirical models (i.e., the GOT00.2/4.7, EOT08a/10a/11a, and 
DTU10 model), which used these models as background model for higher spatial 
resolution, would render the dependence on the ground-truth tide gauge records. As a 

                                                 
7 Free core nutation (FCN) resonance is a normal mode of the Earth, consisting of a relative rotation 
between the fuild core and mantle together with associated deformation described by frequency-dependent 
love numbers of degree 2. 
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8 Solar radiation is a factor that affects S2 and T2 tides indirectly. Therefore, this radiational effect in form 
of radiational potential has to be included within the gravitational potential of S2 tide. This model 
correction is done by rescaling the S2 amplitude with 0.97 and phase lagged by 5.9o. 
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result, it makes the external accuracy comparison with tide gauges not meaningful since 
the models have already utilized the tide-gauge-derived harmonic constants.  

 

 

 

4.1.3 Empirical modeling 
The empirical modeling approach neither requires the knowledge of the bathymetry 

or coastal geometry, the bottom friction coefficient and the topographic drag, and the 
advection terms governing the tidal dissipation, nor the numerical scheme to solve for 
hydrodynamic equations. It requires sufficient altimetry data available only for the ocean 
tide determination. When both the hydrodynamic and the empirical modeling approaches 
are inter-compared, the empirical modeling approach offers a simple, effective, and 
practical method for tidal analysis and prediction.  

Though it offers less physical insight and understanding when compared to the 
hydrodynamic modeling approach, one can get into a more accurate representation of 
ocean tides to quantify tidal dissipation and other related quantities. The hydrodynamic 
and/or assimilation modeling approach also suffers from computational resource 
requirement, due to its numerical nature, and the fact that inaccuracy arises from 
inadequate bathymetry data and unknown friction and viscosity parameters (Ray et al., 
1996; Matsumoto et al., 2000).  

As a result, many empirical ocean tide models are derived from satellite altimetry 
data only, owing to the high precision altimeter measurements and better orbit 
determination techniques since 1990s. Note that the altimeter measures geocentric tidal 
height which includes ocean tide and ocean tidal loading, as well as solid Earth tide. 
After correcting for solid Earth tide effect, one can solve for both ocean and ocean tidal 
loading (i) in an iterative fashion (Ray, 1999), (ii) using the 7% rule of ocean tide for the 
ocean tidal loading correction (Andersen, 1999), or (iii) the altimetry measurements are 
previously corrected from forward loading models. Ocean tides are then determined via 
harmonic analysis, response analysis (Munk and Cartwright, 1966) extended with 
orthotide formalism (Groves and Reynolds, 1975; Cartwright and Ray, 1990b) or 
Proudman functions (Sanchez and Pavlis, 1995). 

There are two ways to generate the empirical models: (1) indirect analysis of 
altimetry data from the background ocean tide model (called “semi-empirical method”) 
and (2) direct analysis of altimetry data (called “purely empirical method”). In the first 
method, the SSH is preliminarily corrected with an a-priori ocean tide model, followed 
by using the incremental SSH anomaly for the incremental tidal solution, which is later 
added back to the a-priori model to get the new full model. In the second method, a full 
tide solution is derived by using the SSH anomaly derived from satellite altimetry 
directly. 



Empirical models, no matter purely empirical or semi-empirical, are derived from two 
methods. The first method is to conduct the along-track tidal analysis from TOPEX 
altimeter data, followed by spatial interpolation onto a regular grid (Andersen, 1994, 
1995; Desai and Wahr, 1995). Note that homogeneous weighting was applied to the 
corresponding altimeter data. This amounts to the following two-step method; when GFO 
and Envisat data are included, an iterative solution step from TOPEX data has to be 
conducted. In other words, a predetermined TOPEX-alone regular gridded tidal analysis 
solution is served as a background ocean tide model for the incremental tidal analysis of 
GFO and Envisat altimeter data. This is because the tidal aliasing effect of GFO and 
Envisat satellites are much worse than that of TOPEX, as discussed in section 3.2.  

The second method is to acquire multi-satellite altimeter data at a certain distance 
from a regular grid. This is followed by weighting the data spatially based on Gaussian 
distance decay in the least-squares solution process (Eanes and Bettadpur, 1995; Smith, 
1999; Savcenko and Bosch, 2008; Bosch et al., 2009). This amounts to a one-step 
method. No temporal weighting has been applied. The rationale is the mitigation of the 
tidal aliasing effect empirically by utilizing more along-tracks and cross-tracks of multi-
satellite altimeters with distinct spatial and temporal coverage. Note that most current 
ocean tide models conduct the incremental tidal analysis based on FES2004 background 
model.  

The first altimetry-derived model was given by Cartwright and Ray (1990a, b, 1991). 
This model was obtained through response analysis using the orthotide formulation, 
based on 2.5 years of Geosat altimetry data. Since the launch of TOPEX in 1992, more 
than 20 global tide models have been developed from the altimetry data. Considering the 
limit of content, only five representative empirical models will be described as an 
illustration of different modeling approaches in this classification. 

The DW95 model is a purely empirical ocean tide model, developed by Desai and 
Wahr (1995, 1996). The most updated version 7.0 was estimated from the observations 
performed for the repeat cycles between 10 and 229 of the TOPEX altimeter mission. 
The orthotide response formulation is utilized to solve for the diurnal and semidiurnal 
ocean tides through admittance that linearly interpolated in spectral domain across 
narrow bandwidths around each of the monthly (Mm), fortnightly (Mf), and termensual 
(Mt) tidal components. This is a purely empirical model without reference to any a-priori 
tide model or any direct or indirect information from the dynamics of the tides. The tidal 
solution is estimated in grid size of 2.834o in longitude by 1o in latitude followed by 
spatial interpolation onto 1o×1o grids within the limit of the TOPEX spatial coverage of 

66o. Beyond   66o, this model is extended with the Schwiderski’s model. 
The CSR4.0 model is the revision of the older version CSR3.0 (Eanes and Bettadpur, 

1995). The CSR ocean tide model series was developed by Eanes and others by using 
TOPEX altimetry data and the orthotide formulation. The CSR4.0 model is obtained 
using response analysis of about 6.4 years of the TOPEX altimetry data that solves for 
incremental sea surface height (SSH) anomaly based on CSR3.0. Note that FES94.1 
serves as a background model for CSR3.0. The corrections were produced in 3o 3o grids, 
followed by spatial interpolation onto 0.5o  0.5o gridded resolution based on a 
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convolution with the 2-D Gaussian function. This model includes 8 major tidal 
constituents. 

The GOT model, with the ongoing update versions GOT99.2b, GOT00.2, and the 
latest GOT4.7, was initially developed at NASA’s GSFC, and is known as SR94 
(Schrama and Ray, 1994) and SR95.0/.1. Altogether, 232 cycles of TOPEX altimetry 
data were used to derive the solution for 8 major semidiurnal and diurnal tides. The tides 
were computed based on FES94.1 background model. The FES94.1 default model was 
directly utilized outside the latitude limit of the TOPEX data ( 66o). With better orbit 
information available, all cycles of 10-day TOPEX data, complemented by 81 35-day 
cycles of ERS-1/2 data in shallow seas and in polar seas, are used to solve for the 
geocentric tide. This is followed by determining the ocean tides and ocean tidal loading 
in an iterative manner. Also note that the a-priori models used in the GOT model include 
not only FES94.1 model, but also some local and regional hydrodynamic models (Ray, 
1999). The latest model, GOT4.7, is supplemented with more altimetry data and is 
extended to include the S1 and M4 constituents, in addition to 8 major constituents. Minor 
tides, which are inferred by the admittance function from the major tides, are also 
available for computation with the software package. The tidal solutions are given on a 
0.5o 0.5o grid. 

The DTU10 model is a current global ocean tides model developed by the Technical 
University of Denmark in 2010 (Cheng and Andersen, 2011). It was generated by using 
the response method for an incremental analysis of multi-missions altimeter data based 
on FES2004 background model. Phase A and four years of phase B data from multi-
mission altimetry measurements (TOPEX/POSEIDON and Jason-1/2), all cycles of the 
altimeter datasets from ERS-2, Geosat Follow On (GFO), and Envisat were used at 
latitude coverage of ±66o. The altimeter data are generated from the Radar Altimeter 
Database System (RADS) database. Outside the coverage of these altimetry data, the 
model was relaxed to the FES2004 default model. It includes 8 major semidiurnal and 
diurnal tides, with the S1 and M4 constituents taken from the GOT4.7 model. The tidal 
solutions are given on a 0.125o 0.125o grid. The model grid also extended onto the land 
for proper accuracy assessment when compared against coastal tide gauges. The missing 
grids were covered based on the DTU10BAT bathymetry land mask. 

The EOT model, with ongoing update versions EOT08a, EOT10a, and the latest 
EOT11a, was developed at the Deutsches Geodätisches Forschungsinstitut (DGFI). 
EOT08a used entire cycles of TOPEX/Jason-1, GFO, ERS-1/-2/Envisat altimeter data 
with refined orbit, new data pre-processing techniques, and improved geophysical 
corrections, to derive the solution for 8 major tides, together with the 2N2 and M4 
constituents. The tides were computed based on FES2004 background model. Different 
strategies for the transition to polar oceans were separately applied to each tidal 
constituent, as described in detail by Savcenko and Bosch (2008). The successor models, 
EOT10a and EOT11a, utilized more SSH datasets for an incremental tidal analysis from 
Jason-1/-2 and Envisat and excluded ERS-1 and GFO datasets, based on EOT08a as 
background model. The data were upgraded by means of a newer orbit and improved 
geophysical corrections for the incremental tidal solution based on the same background 
model, followed by determining the ocean tides and ocean tidal loading in an iterative 
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manner (Savcenko and Bosch, 2010, 2011). The S1, Mm, and Mf constituents were 
included in the solution, using harmonic tidal analysis, and the transition zone was 
refined at latitudes higher than ±62o. The tidal solutions are given on a 0.125o 0.125o 
grid. 

 

 

 

4.2 A Novel Spatio-Temporal Combination Approach 
In this dissertation, the one-step empirical method, which acquires multi-satellite 

altimeter data at a search area from a predefined regular grid center location, is employed. 
Each grid was set up at a constant 0.25o interval in both latitude and longitude direction. 
A search area for acquiring multi-satellite altimeter data is defined as a 3×3 data window, 
corresponding to 0.75o× 0.75o for the tidal analysis at the grid center ),( cc   (Figure 

4.1).  
Since altimetric satellites repeat sampling the sea surface height (SSH) at the same 

location ),(  every 10-day for TOPEX, 17-days for GFO, or 35-day for Envisat, 
respectively, each location along the satellite altimetry ground track contains the time 
series of SSH anomaly. The tidal solution at the grid center, ),( cc  , is then estimated 

using these SSH anomaly time series at different locations via weighted least-squares in 
one-step. Note that the time series at different locations is not first reduced a-priori to the 
grid center, but is reduced and solved simultaneously at once in a weighted least-squares 
process. 

 

 Figure 4.1 Schematic diagram of the search area to acquire TOPEX (Blue), GFO (Yellow), and Envisat 
(Red) altimeter data for different satellite ground tracks with an angular distance 

22 )()cos)(( ccd   from each predefined regular grid center location ),( cc  . 
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Moreover, different satellite altimeters have different data time span and ground 
tracks. For example, TOPEX altimeter data were collected between Aug 1992 and Dec 
2005, whereas that of GFO was collected between Jan 2000 and Nov 2007 (Table 3.1 for 
details). The SSH measurements at different time epochs are sampled independently. 
Similar situation applies to that in space because the sampling locations from different 
satellite passes for each altimeter satellite are pre-defined due to satellite orbit design. 
Hence, no covariance information is available among different altimeter datasets at 
different time epochs and at different locations.  However, empirical temporal and spatial 
correlation relationships do exist and can be constructed as will be discussed in section 
4.2.2, but it is not considered in this dissertation as a matter of time efficiency and 
simplicity.  

 

4.2.1 Observation Equation Setup 
Figure 4.1 defines the basic setup for the observation equation. The time series of 

SSH anomaly observations of each location in space, ),,( t , for different satellite 
altimetry ground tracks are used to estimate the tidal solution at the grid center location 

),( cc  .  An appropriate (co-)variance matrix for data weighting both in space and in 

time simultaneously has to be constructed, instead of just equally weighted or weighting 
in space that have been applied in the previous literature for one-step empirical method. 
Note that the weight matrix usually comes from the inversion of the covariance matrix in 
geodetic science, but exceptions are not uncommon in geographical (Fotheringham et al., 
2002), geodetic, and geophysical applications (Junkins et al., 1973; Guo et al., 2006; 
Sabaka et al., 2010). 

The orthotide formulation, an orthogonal representation of the response method for 
the eight major tides proposed by Groves and Reynolds (1975), is adopted to estimate the 
unknown coefficients of orthotide functions. A modification to the orthotide formulation 
is made to include satellite pass biases, trend, seasonal signals (i.e., annual , semi-

annual ), long period tidal components (i.e., monthly , fortnightly ), and short 

period tidal components (i.e.,  and ). Therefore, the observed instantaneous SSH 

anomaly at time t, , without ocean tidal correction is expressed in an 

extended orthotide formulation as: 
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where  and are the orthotide functions calculated from the tide generating 

potential,  is the reference time epoch, 

)(tPm
j

0t

)(tQm
j

)(tk are the Doodson arguments at Greenwich 

for each constituent, k  are the additional phase corrections,  andkf k  are nodal factors 

and angles, respectively, applied to the lunar constituents (i.e., M  in this case), and 4

),(e ,,, tcc   includes the random noise, and the errors due to geophysical and media 

corrections, the altimeter temporal measurement noise at location ),(   due to the 
general ocean circulation signal at time epoch t, and the error due to spatial variation of 
the general ocean circulation around the pre-defined grid center location ), cc(   since 

tides are not estimated at the observed locations but at ),( cc  .  

At least 26 unknown parameters are to be solved, depending on the number of 
satellite altimeter passes within the search area. The unknown parameters to be estimated 
in equation (4.1) are listed as follows:  

(1) ),( ccia  is the local bias of satellite altimeter pass i;  

(2) ),( ccb   is the local sea-level trend;  

(3)  and are the unknown location-dependent coefficients of 

orthotide functions, which can later be converted back to amplitude and phase of major 
tidal constituents through equation (2.45) and (2.49);  

),( cc
m
jU  ),( cc

m
jV 

(4) ),( cckC   and ),( cckS   are the unknown in-phase and quadrature amplitudes 

for the four long-period tides (i.e. , , , ) and other short-period tides (i.e., 

, ).   
aS saS mM fM

4M 1S
In this study, both spatial and temporal (co-)variances will be taken into account 

simultaneously in a balanced manner for data weighting of the tidal solution introduced 
in the following sub-section. They have to be defined according to the underlining spatial 
variation of the general ocean circulation around grid center, ),( cc  , and the overall 

temporal measurement noise (including the altimetry measurement noise due to the 
general ocean circulation and an overall error budget including other errors due to 
geophysical and media corrections) at a particular time t, respectively.  

 

4.2.2 Weighted Least-Squares Solution, Representation of Spatio-Temporal 
Combination, and Covariance Model Specification 

 
Weighted Least-Squares Solution 

Though the sea surface height (SSH) anomaly measurements still contain the 
remaining errors due to the general ocean circulation signal, the error in geophysical and 
media corrections, and the random noise (as discussed in section 3.1.2), the response tidal 
analysis formulation is assumed to be linear; therefore, let us consider the Gauss-Markov 
model (Koch, 1999) which is defined as follows: 
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eAy   ,  with     (4.2) ),0(~ 2
0 eQe  1:  PQQ ey

where y is the n × 1 observation vector, collecting the observed instantaneous SSH 
anomalies without ocean tides correction at each epoch time t, , affected by 

the n × 1 random error vector e, A is the n × m coefficient matrix with full column rank, 

),,( thobs
ssha 

  is the (unknown) m × 1 parameter vector to be estimated, such as the satellite pass 
biases, sea-level trends and coefficients of orthotide functions, P is the symmetric and 
positive-definite n × n weight matrix (still to be specified), and  is the variance 

component of unit weight, with cofactor matrix  identical to  the inverse 

weight matrix. is the covariance matrix that is proportional to or by . 

2
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:  PQQ ey

 2
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Based on the principle of , the weighted LEast-Squares Solution (LESS) 
of the unknown parameter vector 

minPeeT

  is given by 

cN 1ˆ  , with    yAPAcN T ,:,        (4.3) 
with the corresponding residual vector and its cofactor matrix given as 
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where   PQPAANIR e
T

n ~
1   . The matrix R, sometimes called the redundancy 

matrix, contains useful information in the sensitivity analysis for the effects of outliers 
(Huber, 1981; Ding and Coleman, 1996), with the property that 

mnrRtrr
n

i
i  

1

)(: , for 10  ir  if P is diagonal,   (4.6) 

represents the total redundancy or the degree of freedom (r) of the model, where  is the 

i-th diagonal element of R, called the redundancy number, that indicates the good control 
or high reliability when redundancy numbers close to 1 (Schaffrin, 1997). The estimated 
variance component is given by: 

ir

r

ePe T ~~
ˆ 2

0           (4.7) 

which indicates the goodness-of-fit between the model and the observations. 
 
Representation of Spatio-Temporal Combination 

Contemporary empirical ocean tide models are estimated by equally weighted 
solution or spatially weighted solution based on spatial (co-)variances. However, because 
of the availability of the space-time data, it is justifiable that both spatial and temporal 
(co-)variances has to be taken into account simultaneously, no matter for spatio-temporal 
process prediction or for data weighting in the gridding process. The latter is the main 
theme of this dissertation study. Hereafter, we refer the data weighting approach to as 
spatio-temporal combination. A brief literature review about the development is 
described, and the spatio-temporal combination approach is then proposed.  

Gridding is a process to convert spatially (and temporally) scattered individual data 
points with distinct random errors into values at regular grids. Simple or Ordinary 
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Kriging (equivalent to least-squares collocation (LSC) or the representer method), spline 
minimum curvature, nearest neighbor, polynomial regression, expression using radial 
basis function such as multi-quadrics, and triangulation are common methods, principles, 
and algorithms that can deal with spatial and/or temporal data for the aforementioned 
purpose.  

Both the spatial and temporal processes were separately developed at the beginning of 
1970s, since the data are obtained either in space or in time (Kyriakidis and Journel, 
1999). The spatial processes, particularly in the field of geophysics and geodesy (Jordan, 
1972; Moritz, 1978), were modeled based on covariance functions for least-squares 
collocation, whereas the temporal processes were usually modeled using time series 
analysis technique, such as autoregressive and moving-average processes (Box and 
Jenkins, 1976).  

Thanks to the advance of satellite geodesy, a large amount of space-time datasets are 
available. Considerable attention has been paid to analyzing spatio-temporal phenomena 
as a whole recently (De Cesare et al., 2002; Cheng, 2004). The fundamental concept of 
analyzing spatio-temporal phenomena is to express a spatio-temporal covariance function 
(with spatial lag  and temporal lag s t ) in a product (Rodriguez-Iturbe and Meija, 
1974) or an addition (Rouhani and Hall, 1989) of pure spatial and purely temporal 
covariance functions; and hence, the pure spatial and temporal covariance matrices. The 
expression of spatio-temporal covariance function in product model has been recently 
applied to the mapping of the spatio-temporal sea surface height (SSH) anomaly residuals 
(Le Traon et al., 1998).  

However, it is impossible to tell which expression – the addition or the product form 
– is a better representation when the exact process is unknown. To accommodate both 
expressions, a product-sum modeling concept was proposed (De Cesare et al., 2001, 
2002). Note that both spatial and temporal covariance models are being used for 
prediction. However, in this dissertation, the concept is merely utilized to develop the 
spatio-temporal combination approach for data weighting. Note also that the temporal 
(co-)variances in this dissertation may not be entirely stationary because the measurement 
noise level time epochs t and tt   may be entirely different depending on the sea state 
governed by the general ocean circulation signal. This will be described later in this 
section.  

In this dissertation, the spatio-temporal combination approach is to define the 
covariance matrix,  , to weight spatio-temporally obtained altimetry data in the 
weighted least-squares process. The covariance matrix, based on the conventional 
covariance matrix setup in geodetic science, can be expressed as (De Cesare et al., 2001, 
2002): 

STSTTTSS

STTS

QQQ 222  


       (4.8) 

where , , and SQ TQ       ][: ijTijSTSST QQQQQ    are the nn observation cofactor 

matrices for the spatial (co-)variance, the temporal (co-)variance, and the Hadamard 
product for the multiplication of the spatial and the temporal covariance function in 
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matrix form, respectively. The Hadamard product results in a symmetric and positive-
definite matrix. , , and  are the scaling factors to be determined, called variance 

components, for space only, time only, and their product, respectively. The modeling 
solution employing this covariance matrix with specific estimates , , and   for 

data weighting is referred to as OSU12vce model. 

2
S 2

T
2
ST

2ˆ S 2ˆT 2ˆ ST

Besides the conventional covariance matrix setup in geodetic science in equation 
(4.8), an empirical data weighting scheme is not uncommon in the form of a conjectured 
weighting function or a set of ad-hoc procedures whenever a better result can be obtained 
and/or no precision information is provided for the description of data quality. This 
scheme has been applied in geographical (Fotheringham et al., 2002), geodetic, and 
geophysical applications (Junkins et al., 1973; Grafarend et al., 1980; Guo et al., 2006; 
Sabaka et al., 2010). Based on such a conjecture, another covariance matrix,  , may be 
written as: 

 2
0

1

2
0











 STSTTTSSS

S PPPP 




 1

n

2
0

ST
ST P

P

2
0

T
T P

 Q





1
T

  (4.9) 

where , P , and  are the  inverse of n SS QP 1
T

1:  STST Q   cofactor matrices for 

the spatial (co-)variance, the temporal (co-)variance, and the Hadamard product, 
respectively while S , T , and ST  are known as “weight components”. The model 

solution employing this covariance matrix with specific estimates S̂ , T̂ , and ST̂  

refers to OSU12sw model. 
The cofactor matrices  and  will be specified below. The techniques of 

determining the variance components for the equation (4.8) and the weight components 
for the equation (4.9) will be illustrated in section 4.2.3. 

TQSQ

 
Covariance Model Specification 

To completely define the covariance matrix,  , for data weighting, both the temporal 
and spatial (co-)variances have to be specified. The temporal (co-)variance can be 
specified by temporal noise and assumption of serial correlation structure. We describe 
more in detail on the spatial (co-)variance modeling because tides are prone to localized 
effects that are quite different even when only a few kilometers apart, particularly near 
coastal regions and over continental shelves, in order to improve the ocean tides along the 
world’s coastal regions and over continental shelves when compared to existing models.  

Note that the cofactor matrices for spatial (co-)variance, , and for the temporal (co-

)variance, , are assumed to be diagonal throughout the study, as mentioned, for time 
efficiency and simplicity because matrix size increases with the number of observations 
that poses difficulties for the matrix inverse and for matrix multiplications in the 
weighted least-squares solution process, even for the block-diagonal matrices.  

SQ

TQ

For temporal (co-)variances, we take into consideration the noise level of each 1-Hz 
along-track measurement for each altimeter plus the total error budget from different 
error sources. Significant wave height (SWH) is a quantity that describes the wind-driven 
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wave heights, calculated from the standard deviation of the highest 30% of the measured 
sea-surface wave displacement (Stewart, 2007). The value of SWH, which is one of the 
measurements of radar altimeter, depends on the sea state of a fixed location at a 
particular time epoch t. In other words, if the sea state of the location is not stable at a 
time epoch t, the standard deviation of the measured sea-surface wave displacement is 
high, and hence, the SWH value.  

Figure 4.2 depicts approximately linear relationship between SWH and altimeter 
noise (Fu et al., 1994). This relationship can be used to recover the altimeter noise level 
approximately from the SWH measurement at a different time epoch t. The sum of the 
variance of the altimeter noise, the variance of random orbit error of each satellite, and 
the variance of other random errors form the variance of the total noise, , at time t for 

the temporal variance. Since each measurement for each time epoch is independent, the 
off-diagonal element (i.e. covariance) is assumed to be zero in this dissertation for 
simplicity. Hence, the diagonal of the cofactor matrix for the temporal variance, 

2
t

 iiTQ , is 

formed as , so that heterogeneous temporal variances are considered and incorporated, 

instead of homogenous one. An overview of the major error components in the altimeter 
measurement corrections and SSH measurements nowadays are listed in Table 4.1. 

2
t

 
 

 
Figure 4.2 The relationship between altimeter noise and Significant Wave Height (SWH) (Adopted from Fu 

et al., 1994) 

 
Table 4.1 Standard deviation (±cm) of sea surface height (SSH) measurements of TOPEX/POSEIDON, 

GFO and Envisat 

Major error sources TOPEX/Jason-1/-2 GFO Envisat 
Orbita 2.0/1.5/1.5 5.0 2.0 

Ionosphereb 0.5 0.5 0.5 
Troposphereb 1.2 1.2 1.2 
Other errors 2.0 2.0 2.0 

Altimeter noisec 1.6-3.0 2.0-5.0 1.8-2.3 
a. Reference: TOPEX/Jason-1/-2 (Bosch, 2004; Menard et al., 2003; Desai and Haines, 2010), GFO 
(Lemoine et al., 2006), and Envisat (Rudenko et al., 2012), respectively. 
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b. Reference to Menard et al., 2003. 
c. Altimeter noise range for Significant Wave Height (SWH) between 2 m and 5 m. 
 

For spatial (co-)variances, we take into account the rapid distance decay property near 
coasts in Shallow Ocean. In other words, for the altimeter measurements very close to the 
pre-defined grid-center estimate,  a very small variance should be assigned for the 
gridded tidal estimates, in particular very close to the coast to preserve the locality of 
tides. This is because tidal dynamics, changes significantly when the tidal wave enters the 
continental shelf and shallow water regions from the deep oceans as manifested from the 
tidal wavelengths. Our method significantly modifies the method described by Andersen 
(1999).  

Andersen (1999) proposed an isotropic Markov covariance function (i.e. an 
exponential model) that incorporates the tidal wavelength property of diurnal and semi-
diurnal waves for the least-squares collocation of the obtained along-track tidal solutions 
when entering shallow water regions, since two-step empirical method is employed. The 
presence of a highly varying water depth also changes the tidal wave property near the 
coasts. The covariance function below is utilized for the least-squares collocation 
estimates of each tide reduced from the along-track tidal solution to the grid 
center ),( cc  : 

)
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0 )
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1()( m

d

m

e
d

CdC 



 

        (4.10) 

where   is the error variance, 0C )( m is a correlation length (also called characteristic 

length) which is a function of the tidal wavelength, 22 )()cos)(( ccd    is 

the distance between the observations at ),(   and the grid center ),( cc  , as defined in 

Figure 4.1, and  is the tidal wavelength for each tidal species m which is related to the 

bathymetry depth  (Pugh, 1987) for the correlation length which is given by:  
m
Hb

mbm TgH 2/1)(         (4.11) 

where g is the acceleration due to gravity and  is the period of each tidal species m. 

The bathymetry depths versus tidal wavelengths for diurnal, semi-diurnal, and quarter-
diurnal constituents are tabulated in Table 4.2. The value of correlation length governing 
the decay is empirically defined based on the range of bathymetry depth in shallow water 
(Andersen, 1999). Similar but different empirical values of correlation length have 
currently been implemented in the DTU10 model (Cheng and Andersen, 2011).  

mT

 
Table 4.2 Tidal wavelength versus depth for different tidal species. 
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Wavelength (km) 
Depth (m) 

Diurnal Semi-diurnal Quarter-diurnal 
5000 19811 9905 4953 
1000 8860 4430 2215 
500 6265 3132 1566 
100 2802 1401 700 



10 886 443 221 

 
In contrast, spatial (co-)variances are specified differently for data weighting in one-

step least-squares solution process in this dissertation instead of gridding along-track tidal 
estimates by least-squares collocation in two-step. The diagonal of the cofactor matrix for 
the spatial variance,  is formed as,  iiSQ

 




cos),(

2
,

Λdw

s
Q iiS          (4.12) 

where  is the location-dependent variance of general ocean circulation signal as 

shown in Figure 3.3, 

2
,s

cos
),Λ

 is the function taking into account the latitude convergence of 
the poles, and  is the function that takes into consideration of the tidal 
wavelength changes in shallow water regions via Gaussian distance decay property for 
the diurnal, semi-diurnal, and quarter-diurnal tidal species included in the observations. 
Hence, the longer the distance between the observation locations and the grid center, the 
larger the variance. Because the tidal species (i.e., diurnal, semi-diurnal, and quarter-
diurnal) can be independently separable through harmonic analysis or other means, it can 
be expressed in the product form as, 
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where  is set to 1, m 2 , and 2 to account for half the decrease in tidal wavelength from 

diurnal to semi-diurnal, and from semi-diurnal to quarter-diurnal species (Table 4.2), and 
  is an empirical value that scale all m , with m =1 (diurnal), m =2 (semi-diurnal), and 

m =3 (quarter-diurnal), with  31 2 Λ  is the vector for the tidal wavelength of 

the three tidal species. Note that the bathymetry depth in this dissertation is extracted 
from ETOPO1 global relief model, which is a 1 arc-minute model of Earth’s surface that 
integrates land topography and ocean bathymetry (Amante and Eakins, 2009). 

The characteristics of spatial (co-)variances used in this study are illustrated in Figure 
4.3. It demonstrates rapid inflation of variances when entering into the shallow ocean. 
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Figure 4.3 Characteristics of spatial (co-)variances for the equation (4.5) under different depths for 40  

and   22
, 100 cms 

 
In fact, possible empirical covariances, for the block-diagonal cofactor matrix  or 

for , can be incorporated when both temporal and spatial correlations are substantial. 

For the temporal cofactor matrix, , the noise in the data time series may be assumed to 
have a serial correlation structure. The estimated covariances from the autoregressive 
coefficient can then be assigned to the off-diagonals of the cofactor matrix for the 
weighted least-squares solution (Cochrane and Orcutt, 1949). It has been applied to 
observed VLBI rates (Iz and Chen, 1999) and tide gauge data analysis (Barbosa et al., 
2008). However, it failed to get a better solution when compared to ordinary least-squares 
(OLS), even for measurements with higher sampling rate when compared to that of 
satellite altimetry, and for a magnitude of autoregressive coefficient estimate up to 0.6 in 
the above two contributions. This can be successful only when the magnitude of 
correlation coefficient is close to 1 (Iz, 2008).  

TQ

SQ

TQ

An attempt for this method has been made. However, the magnitude of the 
autoregressive coefficient is less than 0.08 in our altimetric tidal analysis in the Alaska 
sea region with slightly inflated estimated standard deviation in the tidal estimates, when 
compared to that of weighted LESS. The small magnitude of the autoregressive 
coefficient is attributable to the long repeat periods of satellite altimetry (9.9156-day for 
TOPEX/Jason-1/Jason-2; 17.0505-day for GFO; 35-day for Envisat).  
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For spatial cofactor matrix, , the locations of the altimeter ground tracks were 

fixed due to the fundamental orbit design. Arrangement in block-diagonal matrices is 
possible provided that a pre-defined spatial covariance function is an appropriate 
representation. An effort should be paid to data re-structuring. Note that the block 
diagonal or full covariance matrices would increase the computation time as compared to 
diagonal matrix due to a series of multiplications of several matrices along with their 
matrices’ inversion. An approximation algorithm based on Monte Carlo’s simulation can 
lessen the amount of computation time (Kusche, 2003), particularly for the variance 
component estimation technique which will be described in the below section. But how 
much the gain in time efficiency is still a matter in practice. 

SQ

Note also that one requires the estimation of ~ 500,000 gridded tidal solutions for the 
global ocean tide model at a 0.25o×0.25o resolution, with number of observations per 
gridded tidal solution vary from 80 (e.g., for coastal regions where an estuary system is 
present) to 35000 (e.g., at latitude higher than 60o in deep ocean) in this dissertation. This 
is a computationally demanding task. A feasibility study of incorporating block-diagonal 
empirical covariance matrices has to be conducted for altimetry data before the operation.  
 

4.2.3 Techniques for Spatio-Temporal Combination 
Two techniques for the spatio-temporal combination approach are proposed. The first 

technique is the application of variance component estimation (VCE) of type repro-
BIQUUE that correlates the spatio-temporal multisatellite altimeter data in a balanced 
manner with the covariance matrix specified in equation (4.8) for data weighting. The 
second technique is a set of empirical procedures to specify the conjectured weight 
components in equation (4.9).  

Since the advancement of satellite geodesy together with ground-based observations, 
it brings about heterogeneous data sets with different precision information no matter 
whether from satellites or other sensors. These data sets have to be properly correlated 
when they are combined in order to obtain the best information on the parameters from 
weighted least-squares solution.  
 
Variance Component Estimation (VCE) technique 

In geodetic science, variance component estimation originated from Helmert (1907, 
1924); it is a statistical technique that uses least-squares residuals to estimate 
heterogeneous variance components, usually by iteratively reweighting the heterogeneous 
datasets. A review of different types of VCE can be found, for example, in Schaffrin 
(1983), Fotopoulos (2003), and van Loon (2008). It has been applied gyrocompass 
azimuth observation variance analysis (Kleusberg and Grafarend, 1981). Contemporary 
applications include GPS position time series, network adjustment and analysis 
(Schaffrin and Iz, 2001; Yang et al., 2005; Amiri-Simkooei, 2009), regional 
GPS/leveling/geoid network unification (Kotsakis and Sideris, 1999; Fotopoulos, 2003), 
and satellite gravity data analysis (van Loon, 2008). It is anticipated that the application 
of VCE theory is continuously growing given multiple data sources from different 
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satellites, airborne measurements, and ground-based stations, along with better 
computational resources.  

The fundamental concept of a Variance Component Model (VCM) is to define the 
stochastic model, (i.e. the variance-covariance matrix)   in equation (4.8), with the 
following covariance structure 
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The partition of the matrices, Cij, is based on different distinct groups of observation 
datasets. Then, the (co-)variance components, ,2

1 12 ,...,  , which are collected in the 

 vector 

2


12/)1(   , are to be determined. Hence, the general structure is given by 
(see, e.g., Grafarend et al., 1980; Schaffrin, 1983), 
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For most applications in geodetic science, different groups of observation datasets are 
uncorrelated with each other, such that the covariance matrix can be simplified as 


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i
iii Q          (4.17) 

In this case, the Helmert estimates of the variance component, collected in the 1 vector 

, are obtained from  T22
2

2
1    

qH ̂           (4.18) 
where 

)ˆˆ( jjiiij QWQWtrH   and      (4.19) eQeq ii
T

i
~)ˆˆ(~ 11  

with  1111 ˆ)ˆ(ˆˆ   TT
n AAAAIW . Let 0 be the initially assigned covariance 

matrix, then iteration is performed in equation (4.3), (4.4), (4.18), and (4.19) to estimate 
̂  which is used to determine ̂  until no elements in the vector ̂

(ˆ k
 of the estimated 

variance components is changed in the k-th iteration (i.e., ); this solution )1)(ˆ k
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represents the reproducing Best Invariant Quadratic Uniformly Unbiased Estimates 
(repro-BIQUUE) according to Schaffrin (1983). Note that, in this case of uncorrelated 
observation groups, the above VCM of the Helmert type also represents MInimum Norm 
Quadratic Unbiased Estimates (MINQUE) (Grafarend et al., 1980; Koch, 1999). If the 
different observation groups are correlated, it is neither of Helmert type nor MINQUE, 
just the repro-BIQUUE. The number of iterations required will depend on the data 
precision and the initial values.  

Similarly to the conventional practice for iterative reweighting of the heterogeneous 
datasets, we apply the above VCE procedures to the spatio-temporal combination 
approach in equation (4.8). Note that  in equation (4.17) can be a full cofactor matrix 

without the loss of generality. More explicitly, the equation (4.8) can be rewritten in 
diagonal matrix form as, 
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Helmert’s VCE technique, in the case, is to obtain  TSTTS
222 ˆˆˆˆ    iteratively by 

equation (4.18) with equation (4.19) in the form of:  
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where  1111 ˆ)ˆ(ˆˆ   TT
n AAAAIW

1222  STTS 

 TSTTS
222 ˆˆˆˆ   are

. The initial covariance matrix, , is assigned 

by setting . Then the iteration is performed in equation (4.3) and (4.4) 

for equation (4.21) and (4.22) iteratively until the estimated variance components in 

vector  no longer changed in the k-th iteration (i.e., )1()( ˆˆ  kk  ). 

solution employing this VCM is referred to as OSU12vce model. This 

0

The model 
technique should provide a theoretical basis for optimal spatio-temporal data weighting.  
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rocedures for conjectured weight component estimation 
Besides the conventional covariance matrix setup in geodetic science in equation 

e describe a set 
of e

con
spa eig

mponents,  

 
Empirical p

(4.20) and the theoretically sound technique for iterative re-weighting, w
mpirical procedures that estimates the weight components in equation (4.9) and that 

also generates a good result in this dissertation.  
Because the set of observations is obtained in space-time, the cofactor matrices SQ , 

TQ , and Q  fundamentally have the same diST mension in this dissertation. Note that 

temporary empirical ocean tide models are achieved by equally weighted solution or 
tially w hted solution based on spatial (co-)variances. One can also conduct an 

experiment on the trial of any cofactor matrix for data weighting. Our empirical 
procedures are as follows: 

Step 1: Using the equations (4.3), (4.4), and (4.7) within three separate models, one 
can estimate the variance co

r

ePe SS
T

S
S

~~
~ 2  , 

r

ePe TT
T

T
T

~~
~ 2  , and 

r

ePe STST
T

ST
ST

~~
~ 2    

independently and respectively, f e trial of  rom th nn  
)variance, 

cofactor matrix for the spatial  
(co-)variance, , the temporal (co- , and the Hadamard 1 PQ

ST

SS TT

product, 1ST PQ , via a weighted least-squares process. Note that Se

1 PQ
~ , Te~ , and STe~  

indicate the residual vectors that are predicted based on SQ , T , and , respectively. 

The approximated weight components 2

Q STQ
~ˆ  SS  , 2~ˆ  TT  , and 2~ˆ  ST  in this 

procedure are obviously different from inverse the variance compone 2ˆ 2ˆT , and 
2ˆ ST  estimated by the VCE technique above.     

Step 2: The approximated weight components, 

ST

nts S , 

S̂ , T̂ , and ST̂  are then used to 

ify the covariance matrix, spec  , in equation (4.9 this tured covariance 
mat  l st-  so

ted solution, the 
wei

d down-weighting. 
 

In both pre-processing and post-processing steps for any kind of observations, data 
outliers – the observations inconsistent with the rest of the data set (Barnett and Lewis, 
1994) – are ubiquitous and have a significant influence on the geodetic parameter 

). Then, conjec
rix is used for the data weighting in the weighted ea squares lution. The model 

solution employing the empirical procedure refers to OSU12sw model.  
To examine the effectiveness of both OSU12vce and OSU12sw model solution, a 

comparative analysis is conducted to test against the equally weigh
ghted solution based on spatial (co-)variances, and the weighted solution based on 

temporal (co-)variances with the same model specification, which will be shown in 
Chapter 5. 

In the next sub-section, we will describe the robust estimation technique for outlier 
detection an

4.2.4 Outlier Detection and Robust Estimation  
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985; Kubik et al., 1985; Rangelova et 
al.,

he above-mentioned methods should converge asymptotically by the 

estimation (Krarup et al., 1980; Jørgensen et al., 1
 2009). Even for a small number of undetected outliers (<0.2% of all data points), the 

influence is substantial (Kern et al., 2005). They have to be detected and removed, or 
controlled to ensure minimal distortion of the final parameter estimates. 

The control of the influence of the outliers falls into three categories: (i) the empirical 
procedures by setting thresholds such as the upper/lower bound with respect to the mean 
(Barnett and Lewis, 1994) or median value (Hampel et al., 1986; Rousseeuw and Leroy, 
1987), and the maximum allowable rates of change from one value to the next (e.g., Kern 
et al., 2005); (ii) the conventional outlier detection test procedures based on statistical 
testing (e.g., Baarda 1968; Pope, 1976) followed by their removal; and (iii) the robust 
estimation techniques (e.g., Andrews, 1974; Krarup et al., 1980; Huber, 1964, 1981; 
Hampel et al., 1986; Yang, 1999). The first category is usually utilized in a pre-
processing step for preliminary data screening for apparent and large blunders, whereas 
the latter two are performed during or after the geodetic parameter estimation process in 
an iterative fashion. 

While the conventional outlier detection test procedures provide a significant insight 
into both theoretical and practical considerations, the custom of detecting one susceptible 
error at a time may render this procedure ineffective. It is because the resultant residuals 
are sensitive to and potentially biased by outliers in other observations (Yang 1999; Guo 
et al., 2010) due to the minimization of the sum of weighted squared residuals within a 
Gauss-Markov (or any other) model. As a result, this causes good observations to be 
flagged (Baselga, 2007), and potential loss of information when data points are 
irregularly distributed over large areas with minimal data for the estimation process 
(Rangelova et al., 2009). Some of these effects can be reduced, however, by following 
the strategy of Koch (1983). On the other hand, they are also computationally expensive 
when multiple outliers are suspected to exist for a large scale LESS problem (Kern et al., 
2005). In contrast, the robust estimation techniques provide less influence on the 
estimates. This was shown by several outlier simulation studies for classical geodesy 
problems, such as geodetic network analysis and GPS positioning (Jørgensen et al., 1985; 
Hekimoglu and Erenoglu, 2007; Knight and Wang, 2009; Sisman, 2010). Given the huge 
amount of data acquired both in space and in time since the advance of satellite geodesy, 
the application of robust estimation technique in geodetic parameter estimation is slowly 
gaining attention in the geodetic community (Krarup et al., 1980; Awange and Aduol, 
1999). This technique is particularly helpful when a large-scale LESS problem is solved 
and multiple outliers are presented, as long as a diagonal cofactor matrix can be assumed.  
 
Outlier detection 

Conventional practices include Baarda’s data snooping, Pope’s tau test, t-test, and F-
test. These tests use the normal, the τ, the t or the F- statistic to test against a critical or 
hreshold value for outlier detection and down-weighting certain observations in the t

robust estimation. T
central limit theorem (e.g., Johnson and Wichern, 1992) when a large sample of 
observations is involved and provided that observations are independent. 
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s: 

Arranging the i-th residual in standardized or studentized form yields the test statistic 
for data-snooping (Baarda, 1968), the τ (Pope, 1976), the t (student), and the F (Fisher) 
test, with critical values of their corresponding distributions respectively a
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under the null hypothesis that the means of is not significantly different from zero, 

where α is the error probability

f         (4.26) 

i

, 0

e~  

  is the square-root of the variance component, 0̂  is 

the square-root of the estimated variance component, and i0̂  is the square-root of the 

estimated variance component exc ding the suspected outlier in the i-th observation, and 
r denotes the degree of freedom. W en a large data sample (i.e., over 100 observations) is 
used, equation (4.24) and (4.25), together with their critical values, can be approximated 
by equation (4.23) (Kavouras, 1982, pp.44–48).  

Extra large data samples (i.e., over 1000 observations) are common in satellite 
geodesy measurements nowadays. It renders the equations (4.23) through (4.26), more or 
less, impractical because eQ~  is computationally 

lu
h

expensive for the matrix multiplication 

when the number of observations becomes too large as can be seen from equation (4.5). 
Since e~  is an underestimate of e, so, too, eQ~  is an underestimate of ye QQ   as 

manifested from equations (4.4) and (4.5).  
Therefore, the following modification of the Thompsonized residual of equation 

(4.24), despite being an approximation, is applied in common practice (van Loon, 2008) 
via 
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because 0̂  is an indicator of goodness-of-fit in its squared form instead of 0  
is statistic has a slightly different distribution than the 

which is  

usually unknown. Note that th
 distribution, since Pope’s τ 0̂  and yQ  are used. The sensitivity is also less than that of 

equation (4.23) to (4.25), because eQ~  is smaller than yQ , in the Lӧwner partial ordering; 

as manifested from equation (4.5). However, the computations are extremely fast since 
all quantities have been com This test statistic is used for the outlier puted beforehand.  
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mple of independently distributed random 
from the probability density function 

detection and the down-weighting incorporated into the robust estimation technique 
described below. 
 
Robust estimation 

The M-estimator was introduced by Huber (1964) as a generalized form of maximum 
ikelihood estimator. Consider a sal

variables nyyy ,...,, 21  )( ii Ayf  , where   is the 

vector of location parameters that are sought, with iii Aye  . The maximum 

likelihood function for the estimation of   is replaced by the minimum of the log-
likelihood
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der to minimize M. Equation (4.26a) can be rewritten in matrix notation, in which 
the normal equations are obtained as 

 

in or

  0ˆ)~(~)~(  AyePAeePA TT       (4.30) 
such that the vector of the location or unknown parameters is found as 
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Because the weight matrix 
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ting as follows: 

 general, depends on the residuals which are 
unknown, this equation may have to be solved through iterative reweigh
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n, after a properly chosen matrix )~( )(keP  that is responsible for 

down-weighting the observation

computation is initially started with 

s according to the size of the normalized value iv . The 

PeP k )~( )(  when k = 0. A new weight m trix is a
then computed from the residuals using equation (4.35) below iteratively. The iteration is 

repeated until the difference  
 )(2)1(2

0 ˆˆ
kk

, in addition to the conventional practice 0

  )()1( ˆˆ kk , where δ is a small threshold value, because equation (4.31) is a global 
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tor 

weights, potentia

. This 
wei

indicator of goodness-of-fit particularly for a large number of observations. Note also that 
the parameters with a small value in the vec ̂  can be very sensitive to changes in the 

lly causing a problem for the convergence of the overall vector ̂ . 
Previous comparative studies on different weight updates showed a mixed 

performance (Hekimoglu and Erenoglu, 2007; Knight and Wang, 2009; Sisman, 2010), 
except for the weight updates developed by Yang (1999) that exhibited an average 
performance amongst all existing weight functions for the robust M-estimat nio

ght update, together with equation (4.24), is given as follows: 
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cvi                                   

where  and  are chosen as 2.57 and 4.00 re ctively in th

The above described methodology is employed for global ocean tide modeling, using 
multi-mission altimeter data with distinct sp l and temporal resolution and different 

lias ta used and the 

 

r altimeter data from TOPEX, 
son-1, GFO, and Envisat, which have differe  inclinations, and hence, different spatial 

and temporal resolutions (Table 4.3). Jason-2 data is not included in  
hrough sea surf  height 

(SS

trac cations 
via

 the 
red

 

if,

spe

atia

nt

0c 1c is study. 

tidal a ing characteristics. We will describe the multi-altimetry da
computational procedures involved in the next subsection. 

4.2.5 Altimetry Data Used and Computational Procedures  
The tidal analysis is conducted using multi-mission rada

Ja
the tidal analysis but

ace

k lo

it is served for an external validation of the ocean tide models t
H) anomaly variance reduction test as will be described in Chapter 5.  
The ground tracks of altimetric satellites do not repeat exactly every cycle but they 

drift within 3-km along-track and 1-km cross-track with respect to nominal ground tracks 
(Yi, 1995), due to non-gravitational perturbing forces such as air drag and solar radiation 
pressure on the satellite. 1-Hz SSH has to be reduced to nominal ground 

 gradient correction because these gradients across the drifting ground tracks cause an 
apparent increase in oceanic variability (Brenner et al., 1990; Dorandeu et al., 2003). 

Preprocessing of those data was made through the updates and the retrieval of the 
stackfile data system. This system provides gradient-corrected and edited data at their 
respective nominal locations (Guman, 1997; Kruizinga 1997; Yi, 2010) of the 
Geophysical Data Record (GDR). The average value (i.e. MSS) is subtracted from

uced 1-Hz SSH data time series at each location along the satellite altimetry ground 
track. Note that the MSS of each location is updated whenever new cycles of data 
become available.  Mission specific correction models and better orbits are upgraded 
when they become available. 
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ltimeter data used for the ocean tide modeling 

Mission/Phase Time Span  Cycles Source 

 
Table 4.3 A

TOPEX/POSEIDON Aug 1992 – Dec 2005 4 – 479 MGDR-B (NASA) 
GFO Jan 2000 – Nov 2007 37 – 204 GDR NOAA 
Jaso 1 (version C) Nov 2001 – Apr 2010 1 – 303 GDR-C (CNES/NASA) 
Envisat /CNES 
Jason-2 June 2008 – Apr 2010 1 – 66 GDR-C (CNES/NASA) 

 
n-

Mar 2002 – Jul 2009 10 – 80 GDR ESA

 
A geophysical model of oceanic response to hig nc riations, 

tmosp
8), is used to rep rted barom B) deviation 
 from the static arent alo st coastal regions or in-land 

as (Figure 4.4). This indicates that a potential improvement of SSH anomaly data is 
ant

h-freque y atmospheric va
called Dynamic A heric Corrections (DAC) (Carrère and Lyard, 2003; Pascual et 
al., 200 lace the static inve eter (I correction. The 
of DAC IB correction is app ng mo
se

icipated, provided that DAC is indeed a more accurate representation of atmospheric 
pressure forcing.  

In addition to other standard corrections, the SSH anomaly data time series is also 
corrected with the ocean tidal loading effect using the NAO.99b ocean tidal loading 
model, the radiational potential effect (Cartwright and Ray, 1994), and the free core 
nutation (FCN) resonance effect (Matsumoto et al., 2000), as described in section 4.1.2.  
 

 
Figure 4.4 The standard deviation of the difference between Static Inverted Barometer (IB) Correction and 

Dynamic Atmospheric Correction (DAC) 

Because the tidal aliasing effect should be mitigated by a shorter effective sampling 
period, altimeter data from different satellite nearby adjacent and crossing ground tracks 
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are acquired at each grid center through a search area of 0.75o×0.75o around the grid 
center for the tidal analysis (Figure 4.1). The search area at this size preserves locality of 
ocean tides, since ocean tides can be very different even for a few kilometers apart, 
particularly near the coasts. This additional sampling from nearby adjacent and crossing 
ground tracks provides useful information for a better tidal signal recovery (Knudsen, 
1994; Smith, 1999). Note that the neighboring grids may use partly the same data due to 
the search area for each grid center separated by 0.25o as shown in Figure 4.5. This 
partial overlapping use of data among the neighboring grid points generates the spatially 
correlated tidal estimates among grid points, and hence, ensuring the coherence and 
smoothness of the tidal estimates, because tides should, by nature, be smoothed. Any 
abrupt spatial change should be attributed to improper handling of biases among its 
neighborhood, such as satellite biases. In addition, no solution is attempted at those grid 
centers where insufficient data are present (i.e., number of observations is less than three 
times the number of parameters) or only Envisat data are available because of fewer data 
cycles and its aliasing effect, as discussed in section 3.2. For computational efficiency 
and simplicity, spatial and temporal correlations among data are not empirically 
estimated, though they can be obtained as mentioned from the beginning of section 4.2.2.  

Grids without tidal estimates are filled through interpolation. For higher latitude 

regions (i.e., 66 ), they are filled by the GOT4.7 model. In the process, General 

d mask at 1/16o×1/16o gridded rMapping Tool (GMT) lan esolution was utilized to 
identify the land surface so that no tidal estimates are filled onto the land surface. Hence, 
an initial ocean tide model of this dissertation is determined. 

 

 
Figure 4.5 Concept of the tidal solution approach 

 



As discussed in section 3.1.2, though the observed SSH anomaly contains general 
ocean circulation signals, tidal signals, and errors (geophysical and media corrections) 
and data noise, the observation model assumes the remaining error as random noise. This 
causes the non-linearity in the solution process. To mitigate the non-linearity in the 
estimation procedure, an incremental tidal analysis is conducted to estimate the remaining 
tidal signals from the initial determined (background) ocean tide model using the same 
combination technique, More explicitly, the incremental observations, 

, are utilized for solving incremental corrections of ocean tides 

 (

),,(),,( tth pred
obs
ssha  

at predefined gridded location cc  , ), where ),,( tpred   

ear interpolat

is the tidal height predicted 

odel by bilin ing the tidal constants to the from initial gridded ocean tide m
actual observed location (  , ) along the sate ground tracks. The effect of 
initial and incremental tidal analysis can be seen in Figure 5.6 and Figure 5.7. 

llite altimeter 

Note also that TOPEX, GFO, and Envisat ground tracks are different in locations as 
well because of the orbit design. It should be pointed out that the SSH anomaly 
measurements have been used twice, i.e. once in the initial ocean tide model, and once in 
the incremental tidal analysis. This should be avoided in a typical Least-squares solution 
(Chen, 2007, pp.33-34), so we can only apply the procedure above when a better tidal 
solution can be achieved.  

Standard deviation of tidal constant estimates is a good indicator to decide if the 
follow-up incremental tidal analysis is of good quality. The incremental tidal constants 
with standard deviation the final solution. ny 
abrupt changes in magnitude of incremental tidal constants were excluded for the final 
solution.  
 

specification of spatial and
de an empir

 

 larger than ±10 cm were not included in  A

4.3 Chapter Summary 
We provide a comprehensive review on the global ocean tide modeling approaches 

using satellite altimetry. We focus on formulating the problem for the observation 
equation setup and the novel spatio-temporal combination approach for weighting 
multisatellite altimetry data both in space and in time simultaneously based on the 

 temporal (co-)variances in the weighted least-squares solution 
process. We also discuss the possibility to inclu ical block-diagonal structure 
of the cofactor matrices for both the spatial and the temporal covariances. The robust 
estimation technique is also utilized for potential outlier down-weighting in the least-
squares solution process. The complete computational procedures, the usage of multi-
satellite altimetry data, and their corrections, are detailed. 
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apter 5: Ocean Tide Modeling Solutions and Accuracy Analysis 

 this chapter, we show the result of two global ocean tide models based on the 
n using multiple mission satellite radar altimetry data. 

Par

es and Tidal Solutions under 
ifferent Weighting Schemes  

To assess the accuracy of ocean tides models, tide-gauge-derived harmonic constants 
.e. amplitude and phase or equivalently in-phase and quadrature amplitudes defined in 
ction 2.3.2) are necessary to serve as a reference ground truth since their longer 
mporal sampling when compared to the altimetry-derived harmonic constants. Two sets 
f ‘ground truth’ harmonic constants, provided by Dr. Richard D. Ray, were used for this 
urpose: (1) Deep ocean tidal constants derived from 49 island and 53 bottom pressure 
corder (pelagic) stations, all together 102 sites9 (Shum et al., 1997); and (2) coastal 

cean tidal constants derived from 739 coastal sites (Figure 5.1).  
 

 

Ch
 

In
spatio-temporal combinatio

ticular emphasis is paid on the accuracy assessment both globally and regionally, 
when compared to other contemporary models.  

The sea ice has been melting rapidly in the Arctic Ocean during the past two decades. 
While most research effort is paid on the climate variability and the sea-level trend 
projection due to sea ice melt, accurate tidal prediction in the ice-covered polar oceans 
remains elusive. Potential evidences for seasonality of ocean tides based on altimetry data 
is also studied in this chapter.  
 

5.1 External Accuracy Assessment Using Tide Gaug
D

(i
se
te
o
p
re
o

                                                 
9 In ocean tide community, the harmonic constants derived from these 102 sites situated in deep ocean, 
which refers to ST102p dataset, are called ‘pelagic tidal constants’. 



 
Figure 5.1 The locations of both pelagic (white stars) and coastal (red triangles) tide gauges. 

 
Since the final gridded tidal constants vary in space only, the final tidal harmonic 

constants near the tide gauges (i.e. ground truth values) can be bilinear interpolated for 
the evaluation of the gridded ocean tide models. Note that not all eight major tidal 
harmonic constants are present in the provided tide gauge records, especially near the 
coasts. 

The evaluation was made by computing the RMS difference of harmonic constants 
for ea round 
truth data, which is defined as (Andersen, 1995b): 
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where )(iC sol
k , )(iC ref

k , )(iS sol
k and )(iS ref

k  are the in-phase and quadrature amplitudes 

terms, defined in equation (2.34), for the ocean tide solution and the reference ground 
truth da

N

ta respectively for each location i. N is the total number of locations where the in-
pha

discrepancy of the model against the 
reference ground truth, which is defined as: 

se and quadrature amplitudes are computed. Root Sum of Squares (RSS), accounting 
for the total deviation of the M major constituents for each model against the reference 
ground truth data, is an indicator of the overall 





M

j
jRMSRSS

1

The Root Sum of Squares of the In-phase and Quadrature amplitudes (RSSIQ) for the 

2         (5.2) 

reference ground truth data over M major constituents is also computed. This served as a 
denominator for the assessment of the overall fraction of error of the ocean tide models 
against the ground truth data obtained from RSS, which is defined as: 
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As a consequence, discrepancy D is defined as a relative error between the model and the 
tide-gauge derived harmonic constants, which can be computed as: 

%100
RSSIQ

RSS
D         (5.4) 

Larger values of D indicate larger error in the tested ocean tide models against the ground 
truth data.  

This section is divided into two parts. First, the aforementioned tide gauges are used 
to test the effectiveness of the proposed spatio-temporal combination approach against 
the equally weighted solution, the weighted solution based on spatial (co-)variances, and 
the weighted solution based on temporal (co
then, the global ocean tide models are made s

data.  
Recall that the spati

the value 

-)variances under the same settings. Only 
ince it is a computationally demanding task 

as mentioned in section 4.2.2. Second, we provide an accuracy assessment of two newly-
made ocean tide models (i.e. OSU12sw and OSU12vce) as compared against 
contemporary ocean tide models using these reference ground truth 

o-temporal combination approach employed in this study requires 
  to be empirically determined for the best scale of correlation length. 

roach and spatial weight based on specified (co-)variances. The reason of 
Therefore, ocean tidal gridded solutions near coastal tide gauges are estimated using the 
proposed app
using coastal tide gauges only is that the proposed approach has a negligible effect in 
Deep Ocean as shown in Figure 4.3. It was found that the best   values for OSU12sw, 
OSU12vce, and the weighted solution based on spatial (co-)variances are 90, 40, and 30, 
respectively, based on the result from initial and incremental tidal analysis (Figure 5.2).  
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Figure 5.2 Ground truth comparison of ocean tide solutions near 507 coastal tide gauges based on initial 

(upper) and incremental (lower) tidal analysis using spatio-temporal combination approach(i.e. OSU12sw 
and OSU12vce) and the weighted solution based on spatial (co-)variances (i.e. spatial weight).  
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Figure 5.3 Ground truth comparison of ocean tide solutions near 102 pelagic and 507 coastal tide gauges 

for the spatio-temporal combination approach(i.e. OSU12sw and OSU12vce), the equally weighted 
solution (i.e. equal weight), the weighted solution based on spatial (co-)variances (i.e. spatial weight), and 

the weighted solution based on temporal (co-)variances (i.e. temporal weight) based on initial and 
incremental tidal analysis.  

 
These respective   values are subsequently employed for generating the global 

gridded ocean tide models and testing against the equally weighted solution, the weighted 
solution based on spatial (co-)variances, and the weighted solution based on temporal 
(co-)variances. It was found that spatio-temporal combination approach has a good 
performance in both Deep and Shallow Ocean among different weighting schemes 
(Figure 5.3).  

Note that OSU12sw model is based on conjectured weight component estimates for 
the covariance matrix, the test of the OSU12sw solution robustness has also been 
conducted to examine the changes using the coastal tide gauges. If the change is 
negligible, the solution is robust. This test is conducted by distorting the estimated weight 
components, S̂ , T̂ , and ST̂ , by ±5%, ±7%, and ±10%, individually. It was found that 

the change of the solution is negligible, no matter for initial and incremental tidal analysis 
(Figure 5.4). 
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Figure 5.4 Robustness test for the OSU12sw solutions using 507 coastal tide gauges under the distortion of 

2~
S (Var_S), 2~

T (Var_T), and 2~
ST (Var_ST), by ±5%, ±7%, and ±10% for initial and incremental tidal 

analysis.  

 
Eleven contemporary ocean tide models were included in the comparison: DTU10 

(Cheng and Andersen, 2011), EOT08a/10a/11a (Savcenko and Bosch, 2008), FES2004 
(Lyard et al., 2006), GOT00.2/4.7 (Ray, 1999), TPXO6.2/7.1/7.2 (Egbert and Erofeeva, 
2002), OSU12sw and OSU12vce (this study). Pelagic and coastal tide gauges were used 
where bilinear interpolation of the model harmonic constants is possible for all current 
ocean tide models.  

It should be noted again that some of the ocean tide models included tide gauge (and 
altimetry) data either as constraints (or assimilated into hydrodynamic models to compute 
ocean tides) or directly used the data to estimate tides. Thus the evaluation using ground-
truth tide gauges may not be completely independent for some of the models, e.g., 
FES2004 or the TPXO models. In addition, the empirical models (i.e. EOT08a/10a/11a, 
GOT00.2/4.7, and DTU10), which used these models for incremental tidal analysis, 
would have much higher spatial resolution and better coverage in coastal regions, as 
FES2004 model affords higher spatial resolutions than purely empirical ocean tide 
models. 
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The two purely empirical models in this study, OSU12sw and OSU12vce, 
demonstrate a comparable performance in terms of accuracy assessment when compared 
to other ocean tide models using pelagic tide gauges. M2 tide is shown to have a 



substantial improvement (Table A.1 in Appendix A). However, the accuracy is still at 2–
3 cm level, representing ~7.5% relative error with respect to the total tidal signal of the 
pelagic tide gauges. This is primarily due to tidal aliasing effect into the ocean tidal 
solution arising from under sampling. When it is compared to other models using coastal 
tide gauges, the models in this study have a substantial improvement over other models 
(Figure 5.5), which indicates an improvement of ~2–3% over GOT4.7 model (i.e. second 
best model). Note that OSU12vce has ~1500 gridded estimates (i.e. <0.3%) less than 
OSU12sw which is due to numerical instability arising from the variance component 
estimation (VCE) algorithm. OSU12sw is also slightly better than OSU12vce.  
 

 
Figure 5.5 Ground truth comparison of ocean tide models at both 102 pelagic and 549 coastal tide gauges.  

 

5.2 Internal Accuracy Assessment Using Variance Reduction Test 
Tide is the major signal in ocean. The best model should minimize most variation of 

SSH anomaly residuals (King et al., 1995). Therefore, standard deviation of SSH 
anomaly along satellite tracks and that of SSH anomaly residuals after the removal of 
tidal height predictions of ocean tide models are computed over the entire sea region to 
investigate how much the oceanographic variability be minimized in this assessment.  

The SSH anomaly residual of location ),(   at time epoch time t, , is 

defined as: 

),,( thres
ssha 

),,( thres
ssha   =  – (diurnal + semidiurnal tides) – LP   (5.5) ),,( thobs

ssha 
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where  is the observed instantaneous SSH anomaly as defined in equation (3.3), the 

diurnal and semidiurnal tides are predicted by the ocean tide models, and the equilibrium 
long-period (LP) tides  are calculated based on Cartwright and Edden (1973) (which was 
adopted in the GOT00.2 and GOT4.7 models) for consistency.  

obs
sshah

Note that the gridded global ocean tidal constants of diurnal and semi-diurnal 
constituents are bilinear interpolated to the positions of SSH anomaly along satellite 
tracks before the prediction and subtraction from . Hence, the variance of SSH 

anomaly  and its residual  after ocean tide correction for each location s along 

satellite altimeter tracks are computed as 
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where  ),( ss
obs

sshah   and ),( ss
res

sshah   are the mean SSH anomaly and its residual 

respectively, and   is the number of observations at location s along satellite altimeter 

ground tracks. Consequently, the standard deviation of  and  within the entire sea 

region of each altimeter p can be computed, respectively, as 
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where mp is the total number of along satellite ground track locations for each altimeter p 
within the entire sea region. The SSH variance explained (VE) by ocean tides for each 
altimeter data is computed as: 
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Hence, the overall SSH variance explained (VE) by ocean tides for all altimeter data 
are computed by: 
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where q is the total number of satellite altimeters. 
 

 

 
Figure 5.6 Overall sea surface height (SSH) variance explained by ocean tides (in percent) for ocean tide 
models. Note that deep and shallow oceans are bathymetry depth greater than 1000 m and less than 1000 

m, respectively. Jason-2 altimeter data serves as an independent data for validation.  

The overall statistics of the deep, shallow, and overall ocean in the variance reduction 
test was summarized in Appendix A (Table A.3, Table A.4, and Table A.5). Figure 5.6 
displays the SSH variance explained (VE) by the ocean tides for the deep, shallow, and 
overall ocean. It indicates OSU12 models in this study minimize the most variation of 
SSH anomaly and hence, attaining the maximum variance explained by ocean tide as 
manifested in its percentage. Note also that Jason-2 altimeter data was excluded in the 
generation of the OSU12 model solutions and therefore, serving an independent data used 
for the evaluation when it is compared to DTU10 and EOT08a/10a/11a models in which 
Jason-2 data has been included in the models already. Nevertheless, it is still comparable 
to all other models. 
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It is surprising that ~78% of SSH anomaly variation is explained by the ocean tides in 
Shallow Ocean when compared to that of Deep Ocean (i.e. ~70%), since it is expected 
the barotropic response of ocean circulation and hydrodynamic effects near shallow sea 
would dominate the SSH variability. As a result, it is worthwhile investigating the 
percentage of SSH variability explained in Shallow Ocean, particularly over high 
hydrodynamic regions. This serves as a guideline for those who are ultimately interested 
in modeling regional ocean dynamics. The result will be shown in the next sub-section. 

To demonstrate the uniform improvement of the OSU12 model solutions for the 
globe, we produce indexes sorted by the standard deviation of SSH anomaly residuals per 
grid for visual comparison purpose besides the overall statistics. The model yielding the 
minimum SSH anomaly residual variation is assigned to 1 whereas the one with the 
maximum SSH anomaly residual variation is assigned to 11, because eleven models were 
included in the comparison. The results are shown in Figure 5.7 (i.e. OSU12sw), Figure 
5.8 (i.e. OSU12vce), Figure 5.9 (i.e. DTU10), Figure 5.10 (i.e. EOT11a), Figure 5.11 (i.e. 
GOT4.7), Figure 5.12 (i.e. FES2004), and Figure 5.13 (i.e. TPXO7.2). Note that a further 
reduction of SSH anomaly residual variation for OSU12sw and OSU12vce models is 
achieved via incremental tidal analysis (Figure 5.7 and Figure 5.8).  

 
 
 
 
 
 
 
 
 
 



 

 
Figure 5.7 Index of the minimum SSH anomaly residual variation (OSU12sw) before (upper) and after 

(lower) incremental analysis 
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Figure 5.8 Index of the minimum SSH anomaly residual variation (OSU12vce) before (upper) and after 

(lower) incremental analysis 

 

74 
 



 
Figure 5.9 Index of the minimum SSH anomaly residual variation (DTU10) 

 
Figure 5.10 Index of the minimum SSH anomaly residual variation (EOT11a) 
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Figure 5.11 Index of the minimum SSH anomaly residual variation (GOT4.7) 

 
Figure 5.12 Index of the minimum SSH anomaly residual variation (FES2004) 
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Figure 5.13 Index of the minimum SSH anomaly residual variation (TPXO7.2) 

 

5.3 Global Result and Coastal Assessment 
No apparent difference is observed for OSU12sw and OSU12vce models, while the 

difference of M2 tide between OSU12sw/vce and EOT11a ocean tide model as shown in 
Figure 5.14. The Greenwich phase lag contours at coastal regions for EOT11a model are 
denser than that of OSU12sw/vce, due to finer spatial resolution of EOT11a model (with 
FES2004 as background model). Noticeable difference in the pattern of amplitude is 
found, e.g. Indian Ocean. 
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Figure 5.14 Global M2 co-tidal chart of OSU12vce (upper) and  EOT11a (lower) ocean tide models. 

 
Besides the global result, coastal or shallow sea regions with high dynamic oceanic 

variability are of great interest to physical oceanographers. A regional assessment was 
also conducted for the ocean tide model evaluation study. 

Six coastal or shallow sea regions with high dynamic oceanic variability were chosen 
in the tide model evaluation study. They are the Gulf of Mexico and Northwest Atlantic 
(GMNA), Patagonia Shelf, Southeast Australia, Indonesia, Northeast Pacific, and Sea of 
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Japan coastal regions. These regions are shown in Figures 5.15 through 5.20, with the 
standard deviation of multisatellite altimetry SSH anomaly residuals using OSU12vce 
model as the tide correction, together with locations of tide gauge sites with pelagic tidal 
constants used for tide model comparisons.  

The percentage for the discrepancy D of the ocean tide models against the selected 
ground truth data, based on RSS and RSSIQ, were calculated to assess the fraction of 
error. Comparison of this percentage among the ocean tide models reveal a large 
disagreement between the ocean tide models and the tidal records at coastal sites, 
particularly in the GMNA, Northeast Pacific and Southeast Australia regions, where the 
disagreement exceeds 40% (Figure 5.21). The disagreement of other regions is, on the 
other hand, ~25% in general. This implies the tidal variability in shallow water is not well 
represented.  

The ocean tide models, when compared to the coastal tide gauge constants, display 
heterogeneous performance over Patagonia Shelf and Southeast Australia regions, 
showing different approaches in handling the regional hydrodynamics near the coast, in 
particular FES2004 and TPXO6.2/7.1/7.2 models since these models were generated 
from hydrodynamic assimilation approach.  

DTU10, EOT08a/10a/11a, and GOT4.7 models show an improved result over 
FES2004 and GOT00.2 model, since DTU10 and EOT08a/10a/11a models are indeed 
based on FES2004 as a-priori model and GOT4.7 model is a successor of GOT00.2. 
TPXO6.2/7.1/7.2 models exhibit heterogeneous performance when compared with tidal 
constants in coastal sites, depending on the investigated regions. Overall, the 
OSU12sw/vce models demonstrate an ‘above average’ performance when compared to 
other ocean tide models as against the coastal tide gauge constants, in particular 
outperform in Southeast Australia and Sea of Japan regions.  

Comparison of tidal constants of these models with in situ data at respective pelagic 
sites (depicted with star symbol in the Figures 5.15 – 5.20) was conducted in a similar 
fashion (Figure 5.21). The percentage of the disagreement among ocean tide models 
reveals a relatively better agreement between the ocean tide models and the tidal constant 
at pelagic sites than that at coastal sites, where the disagreement is less than 10% in 
general except Indonesian sea and Sea of Japan. The ocean tide models, compared 
against the pelagic tidal constants, demonstrate homogeneous performance for all the 
regions selected in this investigation, except for Sea of Japan regions. It is also 
indistinguishable which version of TPXO models could provide better result when 
compared with tidal records at pelagic sites, depending on investigated regions. 

Note that pelagic sites are scarce in all the study regions. For example there are only 2 
pelagic sites around Sea of Japan. As a result the analysis associated with pelagic data 
test in these sites could be statistically insignificant. 

 



 
Figure 5.15 Standard deviations of SSH anomaly residuals at along satellite track locations and location of 
tide gauge sites used as the ground truth (pelagic sites shown as stars and coastal sites as triangles) in the 

Gulf of Mexico and Northwest Atlantic region.  

 

 
Figure 5.16 Standard deviations of SSH anomaly residuals at along satellite track locations and location of 
tide gauge sites used as the ground truth (pelagic sites shown as stars and coastal sites as triangles) in the 

Patagonia Shelf region.  
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Figure 5.17 Standard deviations of SSH anomaly residuals at along satellite track locations and location of 
tide gauge sites used as the ground truth (pelagic sites shown as stars and coastal sites as triangles) in the 

Southeast Australia region.  

 

 
Figure 5.18 Standard deviations of SSH anomaly residuals at along satellite track locations and location of 
tide gauge sites used as the ground truth (pelagic sites shown as stars and coastal sites as triangles) in the 

Indonesian Sea region.  
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Figure 5.19 Standard deviations of SSH anomaly residuals at along satellite track locations and location of 
tide gauge sites used as the ground truth (pelagic sites shown as stars and coastal sites as triangles) in the 

Northwest Pacific region.  

 
Figure 5.20 Standard deviations of SSH anomaly residuals at along satellite track locations and location of 
tide gauge sites used as the ground truth (pelagic sites shown as stars and coastal sites as triangles) in the 

Sea of Japan region.  
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Figure 5.21 Ground truth comparison of ocean tide models at pelagic (upper) and coastal (lower) tide 

gauges with number of tide gauges indicated in x-axis. 
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Figure 5.22 Sea surface height (SSH) variance explained by ocean tides (in percent) for ocean tide models 

in Northeast Pacific region. Jason-2 altimeter data serves as an independent data for validation. 

 
Figure 5.23 Sea surface height (SSH) variance explained by ocean tides (in percent) for ocean tide models 

in Gulf of Mexico and Northwest Atlantic region.  
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Figure 5.24 Sea surface height (SSH) variance explained by ocean tides (in percent) for ocean tide models 

in Patagonia Shelf region.  

 
Figure 5.25 Sea surface height (SSH) variance explained by ocean tides (in percent) for ocean tide models 

in Sea of Japan region.  
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Figure 5.26 Sea surface height (SSH) variance explained by ocean tides (in percent) for ocean tide models 

in Indonesian sea region.  

 
Figure 5.27 Sea surface height (SSH) variance explained by ocean tides (in percent) for ocean tide models 

in Southeast Australia region.  
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It was shown in Figure 5.6 that the SSH variability explained by ocean tides for 
shallow water regions is ~80%. However, Sea of Japan where ocean tide models present 
the least SSH variance explained by ocean tides (i.e. ~51%).  As a matter of fact, all 
regions show heterogeneous variability explained by ocean tide corrections for the deep 
ocean SSH variance reduction study (Figure 5.22 through Figure 5.27). This is mostly 
because the areas with high standard deviations of SSH anomaly residuals are located in 
the western boundary current (e.g., Gulf Stream) (Figure 5.15). For example, in GMNA 
region, the main cause of this result is the transport of warm water from Caribbean Sea 
through Yucatan Channel generates the loop current in the eastern Gulf (east of the ca. 
272.5oE longitude) (Sheinbaum et al., 2002). This loop current eventually spreads and 
forms anticyclonic (warm-core) eddies at the central of the Gulf (ca. 266 – 272.5oE 
longitude) and their associated cyclonic (cold-core) eddies (ca. west of 266oE longitude); 
these are the primary circulatory features of the region (Davis et al., 2001) as could be 
seen from Figure 5.15 of this study, and from Plate 3 of Leben et al. (1990) that used 
Geosat altimetry data without ocean tide correction. As a consequence, the interaction of 
ocean tides with the aforementioned non-tidal circulation features causes tidal mixing due 
to the shape of this ocean basin. Given the coarse temporal resolution of satellite 
altimetry, the altimetry observations are unable to capture or separate the tides accurately, 
not to mention the tidal mixing phenomena.  

Overall, the OSU12sw/vce model shows a minimum residual oceanographic 
variability when compared to other models, both in Shallow and Deep Ocean. 
 

5.4 Seasonal Variations of Ocean Tides in the Sub-Arctic Ocean 
Sea ice in the Arctic Ocean is sensitive to small changes in vertical oceanic heat flux, 

and is undergoing rapid thinning during the past decades (Holloway and Sou, 2002; 
Kwok and Untersteiner, 2011). Its spatial coverage and change or diminishment in Arctic 
Ocean is important information for assessing large-scale climate changes (Renganathan, 
2010). The measurement of the sea-ice freeboard height change and its mapping via 
satellite laser or radar altimetry is the quantity for describing its thickness and coverage. 
However, accurate knowledge of dynamic ocean topography, the geoid, and ocean tides 
are required (Kwok and Untersteiner, 2011; Renganathan, 2010).  

Indeed, there are evidences that seasonally sea-ice-covered ocean causes seasonality 
of tidal signals (Kagan et al., 2008; Renganathan, 2010), which would affect the accuracy 
of sea-ice freeboard height change retrieval using satellite altimetry. The sea-ice cover 
also has a substantial effect on ocean tides in the Arctic Ocean. Recent simulation study 
on ice-induced changes of the tidal dynamics over the Siberian continental shelf shows 
that the sea-ice covers caused a decrease in tidal amplitudes and an increase in tidal 
phases, and hence changing the tidal dynamic characteristics and its energy dissipation 
(Kagan et al., 2008). A more recent simulation study on seasonal variations of M2 tide in 
the Arctic Ocean concluded that the change in tidal amplitude and in phase do not exceed 
a few centimeters and a ten of degree (i.e., 10o) for summer and winter seasons, 
respectively (Kagan et al., 2011).  
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In addition to sea-ice, significant seasonal modulation of ocean tides was found over 
high latitude region (e.g. European shelf), as revealed by using TOPEX altimeter and tide 
gauge data to estimate the seasonal modulation constituents of ocean tides 
(Leeuwenburgh et al., 1999; Huess and Andersen, 2001). However, the aforementioned 
studies focus on either the use of tidal hydrodynamic models to either simulate or 
examine seasonal variations of M2 tide or seasonal modulation of M2 tidal constituent in a 
European Shelf where strong tidal mixing and surge are present. No experiment study has 
been conducted to reveal the potential seasonality of ocean tides using satellite altimetry 
data. 

Here we use multi-mission satellite altimetry at latitude between 60o and 72o in the 
sub-Arctic Ocean, with the data span tabulated in Table 4.3, to test the hypothesis 
whether plausible evidences of the seasonality of tidal signals exist in the seasonally ice-
covered sub-Arctic Ocean through empirical ocean tide modeling.  

Indeed, the feasibility of an empirical ocean tide modeling solution using GFO and 
Envisat around Antarctica Ocean has been demonstrated (Yi et al., 2006). It was shown 
to have a comparable accuracy with the TPXO6.2 and FES2004 models, which are 
hydrodynamic models with data assimilation at latitude higher than ±66o. Similarly, it can 
be applied in Arctic Ocean. The altimeter data used and preprocessing for this study can 
be found in section 4.2.5. 

To quantify and detect the seasonal variation of ocean tides, tidal analysis 
methodologies described in Chapter 4 and variance reduction test (i.e., internal accuracy 
assessment) are conducted, with the implicit assumption that the variance reduction 
ability by ocean tide models is different during summer and winter season. Notice that we 
define the winter season between September and March, whereas summer season is 
defined between March and September per year for the separation of data time span. The 
data amount per grid point is sufficient for robustness of the seasonal ocean tidal solution 
owing to the altimeter tracks converging in the polar ocean.  

Seven global and regional ocean tide models were used for the aforementioned 
purpose: DTU10 (Cheng and Andersen 2011), EOT11a (Savcenko and Bosch 2008), 
FES2004 (Lyard et al. 2006), GOT4.7 (Ray 1999), NAO.99b (Matsumoto et al. 2000), 
TPXO7.2 (Egbert and Erofeeva 2002), and the AOTIM-5 regional tide model (Padman 
and Erofeeva 2004). All the tide models did not use Jason-2 altimetry data in the solution, 
except for the DTU10 and the EOT11a models. In other words, Jason-2 data are not 
independent in the evaluations of these two tide models. 

All (6) global ocean tide models exhibit similar performance, except for AOTIM-5 
regional tide model, which has a substantially worse performance (Shum et al. 2006) 
(also Table 5.1). Multi-mission altimetry SSH anomaly residuals after tidal corrections 
using the 7 global and regional tide models is at 9–12 cm RMS (the regional model 
AOTIM-5 is excluded in the residuals computation) in the Subarctic Ocean. The overall 
SSH anomaly variation (before and after ocean tide correction) shows substantial 
differences between summer and winter seasons (Tables 5.2 and Table 5.3), with larger 
SSH anomaly variation for all altimeter data during winter season when compared to that 
of summer. Bold values in Table 5.1 through Table 5.3 are associated with the tide 
models with the best performance. The variation of SSH anomaly residuals during 
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summer season is lower than that of during winter season by 15–30%, no matter it is 
before or after ocean tide correction. This is particularly evident in TOPEX and Jason-1 
interleave, and Jason-2 altimeter data, since the data time span covered less than three 
years only.  

A variance reduction test was also conducted for the seasonal tide models (Tables 5.2 
and 5.3). Except TOPEX and Jason-2 altimeter data primarily due to ±66o coverage, our 
investigation focuses on a higher latitude region. Substantial improvement in the variance 
reduction of all altimeter data during summer season was made when compared to the 
empirical model without seasonal tides determination in this study (Table 5.2 and Table 
5.3). Only GFO and Envisat demonstrate an improvement during winter probably due to 
the fact that major tidal variation occurred around Chukchi Sea where latitude is higher 
than 66o, where it is beyond the range of TOPEX/Jason coverage. Hence, the GFO and 
Envisat altimeter observations are more sensitive to the changes.  

The seasonality of ocean tides is also apparent from the Jason-2 along track SSH 
anomaly residual variation, particularly in Siberian continental shelf (e.g. Sea of Okhotsk 
and Bering Sea) and northern Atlantic Ocean (Figure 5.28). 
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Table 5.1 Standard deviations of SSH anomaly residuals of the empirical seasonal ocean tide model along satellite tracks in subarctic ocean (in cm) for 

entire data without separation into summer and winter seasons. Stdev (before) and Stdev (after) are the standard deviation of the SSH anomaly before and 
after ocean tide correction, respectively; RSS Stdev (before) and RSS Stdev (after) are the Root Sum of Squares of the standard deviation of the SSH 

anomaly before and after ocean tide correction for the entire altimeter data, respectively; VE is the variance explained by ocean tide correction for the entire 
region. 

Stdev (after) 
Model TOPEX/ 

Poseidon 
TOPEX 

Interleave 
GFO Envisat 

Jason-1 
Interleave 

Jason-1 Jason-2 

RSS 
Stdev 
(after) 

VE (%) 

Stdev 
(before) 

55.67 53.56 47.53 48.54 52.82 54.92 55.91   

DTU10* 10.23 9.14 10.12 9.84 11.93 9.28 11.21 27.23 80.51 
EOT11a* 10.33 9.15 10.30 9.86 11.91 9.32 11.24 27.36 80.41 
FES2004 10.42 9.26 10.50 10.04 12.02 9.48 11.51 27.78 80.11 
GOT4.7 10.27 9.14 10.10 9.85 11.90 9.27 11.24 27.24 80.50 

NAO.99b 10.58 9.33 10.96 10.33 11.89 9.43 11.43 28.05 79.92 
TPXO.7.2 10.30 9.22 10.53 10.13 11.89 9.32 11.27 27.57 80.27 
AOTIM5 26.47 26.33 24.96 24.45 27.65 26.31 26.27 - - 
OSU12 10.43 8.95 9.94 9.69 12.01 9.17 11.28 27.15 80.56 

 RSS Stdev (before) = 139.69 cm 
*Model used Jason-2 data for ocean tide solutions. Bold values indicate the lowest residual and better overall variance reduction for the respective test. 
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Table 5.2 Standard deviations of SSH anomaly residuals of ocean tide models along satellite tracks in subarctic ocean (in cm) during summer season.  

Stdev (after) 
Model TOPEX/ 

Poseidon 
TOPEX 

Interleave 
GFO Envisat 

Jason-1 
Interleave 

Jason-1 Jason-2 

RSS Stdev 
(after) 

VE (%) 

Stdev 
(before) 

55.37 53.06 47.14 48.19 51.66 54.88 55.13   

DTU10* 9.32 8.54 9.08 9.14 9.96 8.58 9.78 24.38 82.38 
EOT11a* 9.45 8.51 9.34 9.16 9.99 8.61 9.86 24.57 82.24 
FES2004 9.56 8.63 9.57 9.39 10.15 8.81 10.25 25.13 81.84 
GOT4.7 9.37 8.49 9.00 9.14 9.95 8.53 9.82 24.34 82.41 

NAO.99b 9.68 8.71 9.94 9.67 9.78 8.69 9.89 25.12 81.85 
TPXO.7.2 9.42 8.59 9.51 9.46 9.94 8.64 9.84 24.75 82.11 

OSU12 9.48 8.27 9.01 9.11 10.02 8.44 9.91 24.33 82.42 
This study 
(Summer 
Model) 

9.49 8.14 8.96 9.04 10.09 8.42 10.07 24.34 82.41 

 RSS Stdev (before) = 138.37 cm 
*Model used Jason-2 data for ocean tide solutions. Bold values indicate the lowest residual and better overall variance reduction for the respective test. 
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Table 5.3 Standard deviations of SSH anomaly residuals of ocean tide models along satellite tracks in subarctic ocean (in cm) during winter season. 

Stdev (after) 
Model TOPEX/ 

Poseidon 
TOPEX 

Interleave 
GFO Envisat 

Jason-1 
Interleave 

Jason-1 Jason-2 

RSS 
Stdev 
(after) 

VE (%) 

Stdev 
(before) 

56.26 54.57 48.20 47.56 54.73 55.15 56.86   

DTU10* 10.94 9.59 10.87 10.10 13.18 9.85 12.17 29.17 79.37 
EOT11a* 11.01 9.65 10.97 10.11 13.13 9.90 12.17 29.25 79.32 
FES2004 11.08 9.75 11.15 10.24 13.21 10.03 12.34 29.57 79.09 
GOT4.7 10.96 9.64 10.89 10.07 13.12 9.89 12.18 29.18 79.36 

NAO.99b 11.28 9.81 11.68 10.44 13.24 10.05 12.42 29.99 78.79 
TPXO.7.2 10.99 9.69 11.27 10.31 13.12 9.90 12.23 29.45 79.17 

OSU12 11.03 9.40 10.83 10.02 13.24 9.70 12.27 29.12 79.41 
This study 

(Winter 
Model) 

11.19 9.46 10.70 9.90 13.27 9.78 12.35 29.17 79.37 

 RSS Stdev (before) = 141.41 cm 
*Model used Jason-2 data for ocean tide solutions. Bold values indicate the lowest residual and better overall variance reduction for the respective test. 



 

 

  

Figure 5.28 Standard deviation of residual SSH anomaly during summer season (left) and during winter 
season (right) for Jason-2 altimeter data (Cycle 1–66) over Subarctic Ocean with ocean tides corrected by 
GOT4.7 tide model, indicating the potential seasonality of ocean tides. Note that winter season is defined 

between September and March, whereas summer season is defined between March and September. 

 
We also examine the difference in amplitude and in phase for seasonal ocean tide 

solutions estimated from altimetry data during summer season and winter season. In 
general, all ocean tidal constituents respond differently in the presence of potential sea-
ice coverage. A few centimeter changes in amplitude and a ten of degree changes in 
phase are observed for most regions that agree well with the findings from Kagan et al. 
(2011), except around Chukchi Sea near eastern Siberia region where noticeable spatial 
changes in tidal amplitude and phase are observed, particularly for S2 and K1 tides at 
latitude higher than 66o (Figures 5.29 and 5.30).  
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Figure 5.29 Amplitudes of M2 (top) and S2 (middle) and K1 (bottom) tides during summer season (left) and 
their difference with that during winter season (right) over the Subarctic Ocean. Note that the positive 

difference indicates the amplitude in summer season is larger than that of winter. 
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Figure 5.30 Phase of M2 (top) and S2 (middle) and K2 (bottom) tides during summer season (left) and their 
difference with that during winter season (right) over Subarctic Ocean. 
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In principle, the presence of sea ice should provide a damping effect on ocean tidal 
amplitudes and thus an increase in tidal phases (Kagan et al. 2008). However, the 
seasonal ocean tides determined from altimeter observations reveals that the S2 and K1 
tidal amplitude can be increasing during winter season when compared to that in summer. 
Note that the positive difference in amplitude represents the tidal amplitude in summer 
season is larger than that of winter for a correct interpretation (Figure 5.28). The changes 
in tidal amplitude can be larger than 10 cm, whereas the tidal phase varies significantly 
around the region. We speculate the variations in the tidal solutions or the larger observed 
winter amplitudes of tides could be due to substantial amount of seasonal sea ice 
freeboard movement around the region, presumably due in part to energetic ocean 
dynamics, with the evidence that spatial extent of the sea ice has been observed to be 
changing rapidly every month (see Figure 7.8 to 7.13, Renganathan (2010) and from 
National Snow and Ice Data Center (NSIDC)).   

The above result provides an evidence for seasonal tidal pattern as manifested in the 
variance reduction difference of altimeter SSH residual anomaly data during summer and 
winter season. The subsequent empirical seasonal (winter and summer) ocean tide model 
separately derived from satellite altimetry data, yields both qualitative and quantitative 
explanation on the seasonal tidal pattern, in particular around Chukchi Sea near eastern 
Siberia region where the presence of large amount of sea ice freeboards does contribute 
to the significant changes in M2, S2, and K1 amplitude and the large variation in phase 
around the region. These results are newly found and reported in this sub-section.  
 

5.5 Chapter Summary 
The OSU12sw and OSU12vce ocean tide models developed in this study shows a 

comparable or a better performance among other contemporary ocean tide models, both 
in terms of external and internal accuracy assessment, particularly near the coast.  

We first quantify the difference in variance reduction for multi-mission altimeter SSH 
anomaly residual during summer and winter seasons, with the winter residual 15–30% 
larger than that of summer. Experimental seasonal ocean tide solutions derived from 
satellite altimetry revealed that the recovered winter and summer tidal constituents differ 
by a few cm in amplitude and tens of degrees in phase. Relatively large seasonal tidal 
patterns, in particular M2, S2, and K1 tides, were found in the Chukchi Sea near eastern 
Siberia region coincident with the seasonal presence of sea-ice. This result also justifies 
the necessity for an improved mean sea surface model to produce more accurate satellite 
altimetry sea surface height (SSH) anomaly data, which in turn will allow advancement 
of ocean tide models accounting for seasonality in the Arctic Ocean.  
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Chapter 6: Conclusion and Future Work 
 
Ocean tides, the main variable component in ocean surface topography, are of the 

scientific and practical importance over hundreds of years, including their constraints on 
Earth rotation and Earth’s ocean bottom tidal dissipation, and the meridional overturning 
circulation; their corrections to various spaceborne geodetic measurements allowing more 
accurate quantification of climate-change signals, and their applications to ship 
navigation safety and recreational beach usage.  

Current advance in satellite altimetry brings about accurate surface height 
observations in a synoptic mean over the past two decades. This globally sampled data 
records enables significant improvement in global ocean tide modeling. Though ocean 
tides have been determined accurately to within ±(2–3) cm RMS accuracy in the deep 
ocean, no contemporary tide models are equally well represented to all coastal regions or 
shallow seas where ocean tidal dynamics are highly complicated due to the presence of 
non-linearity in dynamic tidal motion caused by local hydrodynamic processes that is 
constrained from the shape and bathymetry of the coast. Despite the gain in physical 
understanding of ocean tidal dynamics near the coastal regions using hydrodynamic and 
assimilation modeling, these two solution approaches depend heavily on the availability 
and the quality of the bathymetry and tide gauge data for different regions. Empirical 
fine-tunings of the solution is required.  

In this dissertation, we first developed a novel spatio-temporal combination approach 
that simultaneously considers both spatial and temporal (co-)variances for weighting 
multisatellite altimetry data in a balanced manner for the gridded ocean tide solutions. 
This approach were examined and proven to be effective when compared to the equally 
weighted solution, the weighted solution based on spatial (co-)variances, and the 
weighted solution based on temporal (co-)variances under the same settings, using 
independent tidal constants from pelagic and coastal tide gauges. We speculate this 
approach can be further applied to other spatio-temporally obtained datasets for better 
parameter estimation, provided good spatial and temporal (co-)variance model 
specifications.  

Two versions of purely empirical ocean tide models, called OSU12sw and 
OSU12vce, are generated by a set of empirical procedures and by variance component 
estimation technique, respectively. We demonstrate comparable ocean tide model 
solutions when compared to contemporary models in the Deep Ocean, whereas the model 
in this study indicates a further improvement along the Shallow Ocean (i.e., ~2–3% 
improvement over the GOT4.7 model) in the external assessment based on independent 
tide constants from coastal gauges. The model also has a good performance in 
minimizing the overall sea surface height (SSH) anomaly residual.  

Because of the seasonal presence of sea ice cover, an accurate tidal prediction in the 
polar oceans remains elusive. A hypothesis testing on the potential seasonality of ocean 



 

tides in Subarctic Ocean was conducted. We first found a substantial difference in 
variance reduction for multi-mission altimeter SSH anomaly residuals during summer 
and winter seasons, with the sea surface height anomaly residuals in winter (15–30%) 
larger than that of summer. This result provides an evidence for seasonal tidal pattern. 
Experimental seasonal ocean tide solution was derived from satellite altimetry. It reveals 
that the recovered winter and summer tidal constituents differ by a few cm in amplitude 
and tens of degrees in phase, in general. Particularly large seasonal tidal patterns were 
found in the Chukchi Sea near eastern Siberia region where they show coincidence with 
the seasonal presence of sea ice, in particular M2, S2, and K1 tides. This result also 
justifies the necessity for an improved mean sea surface (MSS) model to produce more 
accurate satellite altimetry SSH anomaly data, which in turn will allow the advancement 
of ocean tide models by accounting for the seasonality in both the Arctic and Antarctic 
Ocean.  

Further improvement of ocean tide modeling also lies in a better sea-state bias, 
waveform retracking along coastal regions, and over icy and sea-ice surfaces. More 
current and future altimetry missions, such as CryoSat-2, HY-2A, SARAL/Altika, 
Sentinel-3, Jason-3 and ICESat-2, will further enhance both the spatial and the temporal 
resolution of multi-altimeter data, particularly in higher latitude regions beyond TOPEX-

class satellites (i.e., 66 ), and thus, the spatial resolution of ocean tide model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

98 
 



 

99 
 

 
 

Bibliography 

 

Accad, Y. and C. L. Pekeris, Solution of the tidal equations for the M2 and S2 tides in the 
world oceans from a knowledge of the tidal potential alone, Phil. Trans. R. Soc., A290, 
235–266, 1978. 

Alcock, G. A. and D. E. Cartwright, Some experiments with orthotides, Geophys. J. Roy. 
Astron. Soc., 54, 681–696, 1978. 

Agnew, D. C., NLOADF: A program for computing ocean-tide loading, J. Geophys. Res., 
102(B3), 5,109–5,110, 1997. 

Amante, C. and B. W. Eakins, ETOPO1 1 Arc-minute global relief model: procedures, 
data sources and analysis, NOAA Technical Memorandum NGDC-24, National 
Geophysical Data Centre, NESDIS, NOAA, Department of Commerce, Boulder, 2009. 

Amiri-Simkooei, A. R., Noise in multivariate GPS position time-series, J. Geod., 83, 
175–187, 2009. 

Andersen, O. B., Ocean tides in the northern North Atlantic and adjacent seas from ERS 
1 altimetry, J. Geophys. Res., 99(C11), 25,557–25,573, 1994. 

Andersen, O. B., Global ocean tides from ERS-1 and TOPEX/POSEIDON altimetry, J. 
Geophys. Res., 100(C12), 25,249–25,259, 1995a. 

Andersen, O. B., Intercomparison of recent ocean tide models, J. Geophys. Res., 
100(C12), 25,261–25,282, 1995b. 

Andersen, O. B. Shallow water tides in the northwest European shelf region from 
TOPEX/POSEIDON altimetry, J. Geophys. Res., 104(C4), 7729–7741, 1999. 

Andrews D., A robust method for multiple linear regression, Technometrics 16, 523–531, 
1974. 

Arbic, B. K., S. T. Garner, R. W. Hallberg, H. L. Simmons, The accuracy of surface 
elevations in forward global barotropic and baroclinic tide models, Deep Sea Res. II, 51, 
3069–3101, 2004.  

Awange, J. L. and F. W. O. Aduol, An evaluation of some robust estimation techniques 
in the estimation of geodetic parameters, Surv. Rev. 35 (273), 146–162, 1999. 

Baarda W., A testing procedures for use in geodetic networks, Publ 2(5), Netherlands 
Geodetic Commission, Delft, Netherlands, 1968. 

Barbosa, S. M., M. E. Silva, and M. J. Fernandes, Time series analysis of sea-level 
records: Characterising long-term variability, Non-linear time series analysis in the 
geosciences, Lecture Notes in Earth Sciences, 112, 157–173, 2008. 



 

100 
 

Barnett, V., and T. Lewis, Outliers in Statistical Data, 3rd edn. John Wiley, Chichester, 
1994. 

Baselga, S., Critical limitation in use of τ test for gross error detection, J Surv Eng ASCE 
133 (2), 52–55, 2007. 

Bertiger, W., S. D. Desai, A. Dorsey, B. J. Haines, N Harvey, D. Kuang, A. Sibthorpe, 
and J. P. Weiss, Sub-centimeter precision orbit determination with GPS for ocean 
altimetry, Mar. Geod., 33(S1): 363–378, 2010. 

Bosch, W., Geodetic application of satellite altimetry, International Association of 
Geodesy Symposia, 126, 3–21, In: Satellite Altimetry for Geodesy, Geophysics and 
Oceanography, C. Hwang, C. Shum, and J. Li, Springer, 2004. 

Bosch, W., R. Savcenko, F. Flechtner, C. Dahle, T. Mayer-Gurr, D. Stammer, E. 
Taguchi, and P. Canceil, Residual ocean tide signals from satellite altimetry, GRACE, 
gravity fields, and hydrodynamic modeling, Geophys. J. Int. 99 (178), 1185–1192, 2009.  

Box, G. E. P., and G. M. Jenkins, Time Series Analysis: Forecasting and Control, San 
Francisco: Holden-Day, 1976. 

Brenner, A. C., C. J. Koblinsky, and B. D. Beckley, A preliminary estimate of geoid-
induced variations in repeat orbit satellite altimeter observation, J. Geophys Res. 95, 
3033–3040, 1990.  

Brown, E. W., Theory of the motion of the Moon, Mem. Roy. Astron. Soc. 57, 51–145, 
1905. 

Calman, Y. Introduction to sea-surface topography from satellite altimetry, John Hopkins 
APL Technical Digest, Laurel Md, 8(2), 206–211, 1987. 

Carrère, L., and Lyard F., Modelling the barotropic response of the global ocean to 
atmospheric wind and pressure forcing - comparisons with observations, Geophys. Res. 
Lett., 30(6), 1275–1278, 2003. 

Cartwright, D. E. and R. J. Taylor, New computations of tide-generating potential, 
Geophys. J. Roy. Astron. Soc., 23, 45–74, 1971. 

Cartwright, D. E. and A. C. Edden, Corrected Tables of Tidal Harmonics, Geophys. J. 
Roy. Astron. Soc., 33, 253–264, 1973. 

Cartwright, D. E. and R. D. Ray, Observations of the Mf ocean tide from Geosat 
altimetry, Geophys. Res. Lett., 17(5), 619–622, 1990a. 

Cartwright, D. E. and R. D. Ray, Oceanic Tides From Geosat Altimetry, J. Geophys. 
Res., 95(C3), 3069–3090, 1990b. 

Cartwright, D. E. and R. D. Ray, Energetics of global ocean tides from Geosat altimetry, 
J. Geophys. Res., 96(C9), 16,897–16,912, 1991. 

Cartwright, D. E. and R. D. Ray, On the radiational anomaly in the global ocean tide with 
reference to satellite altimetry, Oceanologica Acta, 17(5), 453–459, 1994. 



 

101 
 

Casotto, S., Nominal ocean tide models for TOPEX/POSEIDON orbit determination, 
Ph.D. dissertation, Center for Space Research, The University of Texas, Austin, 1989. 

Chelton, D. B., J. C. Ries, B. J. Haines, L.-L. Fu, and P. Callahan, Satellite Altimetry, pp. 
1–122. In: Satellite altimetry and earth sciences: A handbook of techniques and 
applications, Lee-lueng Fu and Anny Cazenave (Eds.), Academic Press, 2001. 

Chen, Y.Q., Recovery of terrestrial water storage change from low-low satellite-to-
satellite tracking, Rep. 485, Geodetic Science and Surveying, School of Earth Sciences, 
Ohio State Univ., Columbus, OH, USA, 2007. 

Cheng, C. C., Investigations into Green’s Function as Inversion-Free Solution of the 
Kriging Equation, with Geodetic Applications, Rep. 472, Dept. of Civil and 
Environmental Engineering and Geodetic Science, Ohio State Univ., Columbus, OH, 
USA, 2004. 

Cheng, Y. and O. B. Andersen, Multimission empirical ocean tide modeling for shallow 
waters  and polar seas, J. Geophys. Res., 116, C11001, doi:10.1029/2011JC007172, 2011. 

Christensen, E. J., B. J. Haines, S. J. Keihm, C. S. Morris, R. A. Norman, G. H. Purcell, 
B. G. Williams, B. D. Wilson, G. H. Born, M. E. Parke, S. K. Gill, C. K. Shum, B. D. 
Tapley, R. Kolenkiewicz, and R. S. Nerem, Calibration of TOPEX/POSEIDON at 
Platform Harvest, J. Geophys. Res., 99(C12), 24,465–24,485, 1994. 

Cochrane, D., and G. Orcutt, Application of least squares regression to relationships 
containing autocorrelated error terms, J. Am. Stat. Assoc., 44, 32–61, 1949. 

Darwin, G. H., Report of a committee for the harmonic analysis of tidal observations, 
Brit. Ass. Rep., 48–118, 1883. 

Davis, R. W., J. G. Ortega-Ortiz, C. A. Ribic, W. E. Evans, D. C. Biggs, P. H. Ressler, R. 
B. Cady, R. R. Leben, K. D. Mullin, and B. Würsig, Cetacean habitat in the northern 
oceanic Gulf of Mexico. Deep-Sea Res. I 49: 121–142, 2001. 

De Cesare, L. D.E Myers, and D. Posa, Estimating and modeling space-time correlation 
structures, Statistics & Probability Letters, 51, 9–14, 2001. 

De Cesare, L. D.E Myers, and D. Posa, FORTRAN programs for space-time modeling, 
Computers and Geosciences, 28, 205–212, 2002. 

Desai, S. D. and J. M. Wahr, Empirical ocean tide models estimated from 
TOPEX/POSEIDON altimetry, J. Geophys. Res., 100(C12), 25,205–25,228, 1995. 

Desai, S. D. Ocean tides from TOPEX/POSEIDON altimetry with some geophysical 
applications, PhD Dissertation, Dept. of Aerospace Engineering Sciences, University of 
Colorado, 1996. 

Desai, S. D., Observing the pole tide with satellite altimetry, J. Geophys. Res., 107(C11), 
3186, doi:10.1029/2001JC001224, 2002. 

Desai, S. D. and B. J. Haines, Precise near-real-time sea surface height measurements 
from the Jason-1 and Jason-2/OSTM missions, Mar. Geod., 33(S1): 419–434, 2010. 



 

102 
 

Ding X., and R. Coleman, Multiple outlier detection by evaluating redundancy 
contributions of observations. J. Geod., 70, 489–498, 1996. 

Doodson, A. T., The harmonic development of the tide-generating potential, Proceedings 
of the Royal Society, 100, 305–329, 1921. 

Dorandeu, J. and P. -Y. Le Traon, Effects of global mean atmospheric pressure variations 
on mean sea level changes from TOPEX/POSEIDEN, Journal of Atmospheric and 
Oceanic Technology, 16(9), 1279–1283, 1999. 

Dorandeu, J., M. Ablain, and P. -Y. Le Traon, Reducing cross-track geoid gradient errors 
around TOPEX/Poseidon and Jason-1 nominal tracks: Application to calculation of sea 
level anomalies, Journal of Atmospheric and Oceanic Technology, 20(12), 1826–1838, 
2003. 

Eanes, R. and S. Bettadpur, The CSR3.0 global ocean tide model, Center for Space 
Research, Technical Memorandum, CSR-TM-95-06, Univ. of Texas at Austin, 1995. 

Egbert, G. D., A. F. Bennett, and M. G. G. Foreman, TOPEX/POSEIDON tides estimated 
using a global inverse model, J. Geophys. Res., 99(C12), 24,821–24,852, 1994. 

Egbert, G. D. and S. Y. Erofeeva, Efficient inverse modeling of the barotropic ocean 
tides, Journal of Atmospheric and Oceanic Technology, 19, 183–204, 2002. 

Escudier, P. and J. –L. Fellous. 2009. The Next 15 years of Satellite Altimetry: Ocean 
surface topography constellation user requirements document. By Collecte Localization 
Satellites (CLS) and Orange Bleue Conseil avaiable at 
http://www.aviso.oceanobs.com/es/actualitades/news-detail/index.html?tx_ttnews 
[tt_news]=609&tx_ttnews[backPid]=276&cHash=1a212e08df  

Fang G., Y. Wang, Z. Wei, B. H. Choi, X. Wang, and J. Wang, Empirical cotidal charts 
of the Bohai, Yellow, and East China Seas from 10 years of TOPEX/Poseidon altimetry. 
J. Geophys. Res. 109: C11006, doi: 10.1029/2004JC002484, 2004. 

Farrell, W. E., Deformation of the Earth by surface loads, Rev. Geophys. And Space 
Phys., 10, 761–797, 1972. 

Faugere Y., A. Ollivier, and J. F. Legeais, Envisat GDR quality assessement report 
(cyclic), Cycle 095, Technical note SALP-RP-P2-EX-21121-CLS095, 2011 available at 
http://www.aviso.oceanobs.com/html/donnees/calval/validation_report/en/welcome 
_uk.hml   

Fok, H. S., H. B. Iz, C. K. Shum, Y. Yi, O. Andersen, A. Braun, Y. Chao, G. Han, C. Y. 
Kuo, K. Matsumoto, and Y. T. Song, Evaluation of ocean tide models used for Jason-2 
altimetry corrections, Mar. Geod., 33(S1), 285–303, 2010. 

Fotheringham, A. S., C. Brunsdon, and M. Charlton, Geographically weighted regression: 
The analysis of spatially varying relationships, Wiley, Chichester, Hoboken, NJ, 2002. 



 

103 
 

Fotopoulos, G. , An analysis on the optimal combination of geoid, orthometric and 
ellipsoidal height data, PhD thesis, Dept of Geomatics Engineering, University of 
Calgary, Alberta, Canada, 2003. 

Fu, L. L., E. J. Christensen, C. A. Yamarone Jr., M. Lefebvre, Y. M´enard, M. Dorrer, 
and P. Escudier, TOPEX/POSEIDON mission overview, J. Geophys. Res., 99(C12), 
24,369–24,381, 1994. 

Fu L-L. and A. Cazenave, Satellite altimetry and earth sciences: a handbook of 
techniques and applications. San Diego, Calif.; London: Academic Press, 2001. 

Grafarend, E., A. Kleusberg, and B. Schaffrin, An introduction to the variance-
covariance-component estimation of Helmert type, Zeitschrift für Vermessungswesen, 
105, 161–180, 1980. 

Gross, R. S., The effect of ocean tides on the Earth's rotation as predicted by the results of 
an ocean tide model, Geophys. Res. Lett., 20, 293-296, 1993. 

Groves, G. W. and R. W. Reynolds, An orthogonalized convolution method of tide 
prediction, J. Geophys. Res., 80(30), 4131–4138, 1975. 

Guman, M. D., Determination of global mean sea level variations using multi-satellite 
altimetry, Report CS-97-3, Center for Space Research, The University of Texas at Austin, 
Austin, Texas, 1997.  

Guo, J., J. Ou, and H. Wang, Robust estimation for correlated observations: two local 
sensitivity-based downweighting strategies, J. Geod., 84, 243–250, 2010. 

Guo, J. Y., O. Dierks, J. Neumeyer, and C. K. Shum, Weighting algorithms to stack 
superconducting gravimeters data for the potential detection of the Slichter modes, J. 
Geodyn., 41, 326–333, 2006. 

Haines, B. J., G. H. Born, G. W. Rosborough, J. G. Marsh, and R. G. Williamson, Precise 
orbit computation for the Geosat Exact Repeat Mission, J. Geophys. Res., 95(C3), 2871–
2885, 1990. 

Han G., Three-dimensional modeling of tidal currents and mixing quantities over the 
Newfoundland Shelf. J. Geophys. Res., 105(C5), 11407-11422, 2000. 

Han, G., S. Paturi, B. deYoung, Y. Yi, and C.K. Shum, A 3-D data-assimilative tide 
model of Northwest Atlantic. Atmosphere-Ocean, 48(1), 39–57, 2010. 

Hampel F. R., E. M. Ronchetti, P. J. Rousseeuw, W. A. Stabel, Robust Statistics. The 
approach based on influence functions. Wiley, New York. 1986. 

Hekimoglu, S., and R. C. Erenoglu, Effect of heteroscedasticity and heterogeneousness 
on outlier detection for geodetic networks, J Geod 81, 137–148, 2007. 

Helmert, F. R., Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate, 
Zweite Auflage, Teubner, Leipzig, Germany, 1907. 



 

104 
 

Helmert, F. R., Die Ausgleichsrechnung nach der Methode der kleinsten Quadrate, 3. 
Aufl., Teubner, Leipzig, Germany, 1924. 

Hendershott, M. C., Long Waves and Ocean Tides, In: Evolution in Physical 
Oceanography, edited by B.A. Warren and C. Wunsch, MIT Press, pp. 292–341, 1981. 

Hobson, E. W., The Theory of Spherical and Ellipsoidal Harmonics, Cambridge 
University Press, 1965. 

Holloway, G. and T. Sou, Has Arctic sea ice rapidly thinned? J. Climate, 15, 1691–1701, 
2002. 

Huber, P.J., Robust estimation of a location parameter, Annals Math. Stat. 35(1): 73–101, 
1964. 

Huber, P.J., Robust Statistics, Wiley, New York, 1981. 

Huess, V. and O. B. Andersen, Seasonal variation in the main tidal constituent from 
altimetry. Geophys. Res. Lett., 28(4) 567–570, 2001. 

IERS Conventions, Gérard Petit and Brian Luzum (eds.). (IERS Technical Note ; 36) 
Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 179 pp., 
2010. 

Inazu, D., T. Sato, S. Miura, Y. Ohta, K. Nakamura, H. Fujimoto, C. F. Larsen, and T. 
Higuchi, Accurate ocean tide modeling in southeast Alaska and large tidal dissipation 
around Glacier Bay. J. Oceanogr. 65: 335–347, 2009. 

Iz, H. B., and Y. Q. Chen, VLBI rates with first order autoregressive disturbances, J. 
Geodyn., 28, 131–145, 1999.  

Iz, H. B., Polar motion modeling, analysis, and prediction with time dependent harmonic 
coefficients, J. Geod., 82, 871–881, 2008.  

Ito, T., and M. Simons, Probing asthenospheric density, temperature, and elastic moduli 
below the western United States, Science, 332, 947–951, 2011. 

Johnson R. A., and D. W. Wichern, Applied Multivariate Statistical Analysis, 3rd edn, 
Prentice-Hall, Englewood Cliffs, New Jersey, 1992. 

Jordan, S. K., Self-consistent statistical models for the gravity anomaly, vertical 
deflections, and undulation of the geoid, J. Geophys. Res, 77, 3660–3670, 1972. 

Jørgensen, P. C., Kubik, K., Frederiksen, P., and W. Weng, Ah, robust estimation!. 
Australian Journal of Geodesy, Photogrammetry, and Surveying, 42, 19–32, 1985. 

Junkins, J. L., G. W. Miller, and J. R. Jancaitis, A weighting function approach to 
modeling of irregular surfaces, J. Geophys. Res, 78, 1794–1803, 1973. 

Kagan, B. A., D. A. Romanenkov, and E. V. Sofina, Tidal ice drift and ice-generated 
changes in the tidal dynamics/energetic on the Siberian continental shelf. Continental 
Shelf Research, 28, 351–368, 2008. 



 

105 
 

Kagan, B. A., E. V. Sofina, and A. A. Timofeev, Modeling of the M2 surface and internal 
tides and their seasonal variability in the Arctic Ocean: Dynamics, energetic and tidally 
induced diapycnal diffusion. Journal of Marine Research, 69, 245–276, 2011. 

Kaula, W. M., The terrestrial environment: solid earth and ocean physics, NASA Rep. 
study at Williamstown, MA, NASA CR-1579, 1969. 

Kavouras, M., On the detection of outliers and the determination of reliability in geodetic 
network, Technical Report No. 87, Dept. of Geodesy and Geomatics Engineering, 
University of New Brunswick, Fredericton, N. B., Canada, 1982. 

Kern, M., T. Preimesberger, M. Allesch, R. Pail, J. Bouman, and R. Koop, Outlier 
detection algorithms and their performance in GOCE gravity field processing, J. Geod., 
78, 509–519, 2005. 

King, C., D. Stammer, and C. Wunsch, Tide model comparison at CPMO/MIT. Working 
paper for the TOPEX/POSEIDON science working team tide model study. Dept. of 
Earth, Atmos., and Planet. Sc., MIT, Massachusetts, 1995. 

King, M., N. T. Penna, P. J. Clarke, and E. C. King, Validation of tide models around 
Antarctica using onshore GPS and gravity data, J. Geophys. Res., 110, B08401, 
doi:10.1029/2004JB003390, 2005. 

Kleusberg, A., and E. W. Grafarend, Expectation and variance component estimation of 
multivariate gyrotheodolite observation II, Allg. Vermessungsnachrichten 88, 104–108, 
1981. 

Knight, N. L. and J. Wang, A comparison of outlier detection procedures and robust 
estimation methods in GPS positioning, J. Navigation, 62, 699–709, 2009. 

Knudsen, P., Global low harmonic degree models of the seasonal variability and residual 
ocean tides from TOPEX/POSEIDON altimeter data, J. Geophys. Res., 99(C12), 24,643– 
24,655, 1994. 

Koch, K. R., Outlier tests and reliability measures. Vermessungswesen und 
Raumordnung, 45, 400–411, 1983 (in German). 

Koch, K. R., Parameter estimation and hypothesis testing in linear models, 2nd edition, 
Springer Berlin, 1999. 

Kotsakis, C., and M. G. Sideris, On the adjustment of combined GPS/leveling/geoid 
networks, J. Geod., 73, 412–421, 1999. 

Krarup, T., K. Kubik, and J. Juhl, Gӧtterdaemmerung over least squares adjustment, In: 
Proceedings of International Society for Photogrammetry 14th Congress, Vol. 33, 
Hamburg, 369–378, 1980. 

Kruizinga, G., Validation and applications of satellite radar altimetry. PhD dissertation. 
Center of Space Research, University of Texas at Austin, 1997. 

Kubik, K., W. Wang, and P. Frederiksen, Oh, gross errors!. Australian Journal of 
Geodesy, Photogrammetry, and Surveying, 42, 1–18, 1985. 



 

106 
 

Kudryavtsev, S. M., Improved harmonic development of the Earth tide-generating 
potential. J. Geod., 77(12), 829–838, 2004. 

Kusche, J., A Monte-Carlo technique for weight estimation in satellite geodesy, J. Geod., 
76(11–12), 641–652, 2003. 

Kwok, R., and N. Untersteiner, The thinning of Arctic sea ice. Phys. Today, 64(4), 36-41, 
2011.   

Kwon, J. H., D. Grejner-Brzezinska, T.-S. Bae, and C.-K. Hong, A triple difference 
approach to low Earth orbiter precision orbit determination, Journal of Navigation, 56 
(3), 457–473, 2003. 

Kyriakidis, P. C., A. G. Journel, Geostatistical space-time models: A review, Math Geol., 
31 (6), 651–684, 1999. 

Lambeck, K., Geophysical Geodesy, The Slow Deformation of the Earth, Oxford 
University Press, 1988. 

Laplace, P. S., Recherches sur quelque points du systeme du monde, Mem. Acad. Roy. 
Soc., 75–182, 1775. 

Latychev K., J. X. Mitrovica, M. Ishii, N. Chan, and J.L. Davis, Body tides on a 3–D 
elastic earth: Toward a tidal tomography, Earth Planet. Sci. Lett., 277, 86–90, 2009. 

Leben, R. R., G. Born, J. D. Thompson, and C. A. Fox, Mean sea surface and variability 
of the Gulf of Mexico using geosat altimetry data. J. Geophys. Res. 95 (C3): 3025–3032, 
1990. 

Lee, H. K., Radar altimetry methods for solid earth geodynamics studies, Rep. 489, 
Geodetic Science and Surveying, School of Earth Sciences, Ohio State Univ., Columbus, 
OH, USA, 2008. 

Leeuwenburgh, O., O. B. Andersen, and V. Huess, Seasonal tide variations from tide 
gauges and altimetry. Phys. Chem. Earth (A), 24(4), 403-406, 1999. 

Lefevre, F. F. H. Lyard, and C. Le Provost, FES98: A new global tide finite element 
solution independent of altimetry, Geophys. Res. Lett., 27(17), 2717–2720, 2000. 

Lemoine, F. G., N. P. Zelensky, D. S. Chinn, B. D. Beckley, and J. L. Lillibridge, 
Towards the GEOSAT Follow-On precise orbit determination goals of high accuracy and 
near-real-time processing, AIAA/ASS Astrodynamics Specialist Conference, Keystone, 
Colorado, August 21–24, 2006.  

Le Provost, C. and P. Vincent, Extensive test of precision for a finite element model of 
ocean tide, J. Comput. Phys., 65, 273–291, 1986. 

Le Provost, C., M. L. Genco, F. Lyard, P. Vincent, and P. Canceil, Spectroscopy of the 
world ocean tides from a finite element hydrodynamic model, J. Geophys. Res., 99(C12), 
24,777–24,797, 1994. 



 

107 
 

Le Provost, C., Ocean tides, In: Satellite altimetry and earth sciences, Lee-lueng Fu and 
Anny Cazenave (Eds.), International Geophysics Series, Vol. 69, Academic Press, 267–
303, 2001. 

Le Traon, P. Y., F. Nadal, and N. Ducet, An improved mapping method of multisatellite 
altimeter data, J. Atmos. Oceanic Technol., 15, 522–534, 1998. 

Lorell, J., E. Colquitt, and R. J. Anderle, Ionospheric correction for SEASAT altimeter 
height measurement, J. Geophys. Res., 87(C5), 3207–3212, 1982. 

Lyard F., F. Lefevre, T. Letellier, and O. Francis, Modelling the global ocean tides: 
Modern insights from FES2004. Ocean Dyn. 56 (5–6): 394–415, 2006. 

Matsumoto, K., T. Takanezawa, and M. Ooe, Ocean tide models developed by 
assimilating TOPEX/POSEIDON altimeter data into hydrodynamic model: A global 
model and a regional model around Japan, J. Oceangr., 56, 567–581, 2000. 

Menard, Y., L.-L. Fu, P. Escudier, F. Parisot, J. Perbos, P. Vincent, S. Desai, B. Haines, 
and G. Kunstmann, The Jason-1 mission, Mar. Geod., 26(3), 131–146, 2003. 

Moritz, H., Least-squares collocation, Rev. Geophys. Space Phys., 16, 421–430, 1978. 

Munk, W. H. and D. E. Cartwright, Tidal spectroscopy and prediction, Phil. Trans. Roy. 
Soc. A, 259(1105), 553–581, 1966. 

Munk, W. H. and G. J. F. MacDonald, The Rotation of the Earth, Cambridge University 
Press, 1975. 

Newcomb, S., Astronomical constants (The elements of the four inner planets and the 
fundamental constants of astronomy), Supplement to the American Ephemeris and 
Nautical Almanac for 1897, US Government Printing Office, Washington, DC, 1895. 

Niedzielski, T. and W. Kosek, Forcasting sea level anomalies from TOPEX/Poseidon and 
Jason-1 satellite altimetry, J. Geod., 83, 469–476, 2009. 

Padman, L. and S. Erofeeva, A Barotropic Inverse Tidal Model for the Arctic Ocean, 
Geophys. Res. Lett., 31(2), L02303, doi:10.1029/2003GL019003, 2004. 

Parke, M. E., R.H. Stewart, D. L. Farless, and D. E. Cartwright, On the choice of orbits 
for an altimetric satellite to study ocean circulation and tides, J. Geophys. Res., 92(C11), 
11,693–11,707, 1987. 

Pascual, A., M. Marcos, and D. Gomis, Comparing the sea level response to pressure and 
wind forcing of two barotropic models: Validation with tide gauge and altimetry data, J. 
Geophys. Res., 113, C07011, doi:10.1029/2007JC004459, 2008. 

Ponte, R. M., D. A. Salstein and R. D. Rosen, Sea level response to pressure forcing in a 
barotropic numerical model, J. Phys. Oceanog., 21, 1043-1057, 1991. 

Pope, A., The statistics of residuals and detection of outliers, NOAA Technical Rep. No. 
66, National Geodetic Survey, Rockville, Maryland, 1976. 

Pugh, D. T., Tides, Surges and Mean Sea-Level, John Wiley & Sons, 1987. 



 

108 
 

Pugh, D., Changing Sea Levels: Effects of Tides, Weather and Climate, Cambridge 
University Press, 2004. 

Rangelova, E., G. Fotopoulos, and M. G. Sideris, On the use of iterative reweighting 
least-squares and outlier detection for empirically modeling rates of vertical 
displacement, J. Geod., 83, 523–535, 2009. 

Ray, R. D., Global ocean tide models on the eve of TOPEX/POSEIDON, IEEE Trans. 
Geosci. Remote Sens., 31(2), 355–364, 1993. 

Ray, R. D., D. J. Steinberg, B. F. Chao, and D. E. Cartwright, Diurnal and semidiurnal 
variations in the Earth's rotation rate induced by oceanic tides, Science, 264, 830–832, 
1994. 

Ray, R.D., R. J. Eanes, and B. F. Chao, Detection of tidal dissipation in the solid earth by 
satellite tracking and altimetry, Nature, 381, 595–597, 1996. 

Ray, R.D., Ocean self-attraction and loading in numerical tidal models, Mar. Geod., 21, 
181–192, 1998. 

Ray, R. D., A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2. 
NASA Tech Memo – 209478, 1999. 

Ray, R. D., G. D. Egbert, and S. Y. Erofeeva, Tidal predictions in shelf and coastal 
waters: Status and prospects. In: Coastal Altimetry, Springer, 191–216, 2011. 

Renganathan, V., Arctic sea ice freeboard heights from satellite altimetry. PhD 
dissertation, Dept. of Geomatics Engineering, University of Calgary, 2010. 

Rodriguez-Iturbe, I., and J. M. Meija, The design of rainfall networks in time and space. 
Water Resources Research 10, 713–728, 1974.  

Rouhani, S., and T. J. Hall, Space-time kriging of ground water data. Proceedings 3rd 
International Geostatistics Congress. (Avignon, France), Kluwer Academic Publishers, 
Dordrecht, Vol. 2, 639–651, 1989. 

Rousseeuw, P. J., Leroy A.M., Robust Regression and Outlier Detection. Wiley, New 
York, 1987. 

Rudenko, S., M. Otten, P. Visser, R. Scharroo, T. Schone, and S. Esselborn, New 
improved orbit solutions for the ERS-1 and ERS-2 satellites, Adv. Space Res., 49, 1229–
1244, 2012. 

Rummel, R., Principle of satellite altimetry and elimination of radial orbit errors, In: 
Satellite altimetry in geodesy and oceanography, Lecture Notes in Earth Sciences, 50, 
191–241, 1993. 

Saastamoinen, J., Atmospheric correction for the troposphere and stratosphere in radio 
ranging of satellites, Geophysical Monograph 15, American Geophysical Union, 1972. 

Sabaka, T. J., D. D. Rowlands, S. B. Luthcke, and J. -P. Boy, Improving global mass flux 
solutions from Gravity Recovery and Climate Experiment (GRACE) through forward 



 

109 
 

modeling and continuous time correlation, J. Geophys. Res., 115, B11403, 
doi:10.1029/2010JB007533, 2010.  

Sanchez, B. V. and N. L. Pavlis, Estimation of main tidal constituents from TOPEX 
altimetry using a Proudman function expansion, J. Geophys. Res., 100(C12), 25,229–
25,248, 1995. 

Savcenko, R. and W. Bosch, EOT08a – empirical ocean tide model from multi-mission 
satellite altimetry. In: Report No. 81 Deutsches Geodätisches Forschungsinstitut (DGFI), 
München, Germany, 2008. 

Savcenko, R. and W. Bosch, EOT10a – a new result of empirical ocean tide modeling, 
Ocean Surface Topography Science Team (OSTST) Meeting, 18-20 October, Lisbon, 
Portugal, 2010. 

Savcenko, R. and W. Bosch, EOT11a – a new tide model from multi-mission satellite 
altimetry, Ocean Surface Topography Science Team (OSTST) Meeting, 19-21 October, 
San Diego, USA, 2011. 

Schaffrin, B., Varianz-Kovarianz-Komponenten-Schätzung bei der Ausgleichung 
heterogener Wiederholungsmessungen, Publ. DGK C-282, Deutsche Geodätische 
Kommission, München, 1983. 

Schaffrin, B., Reliability measures for correlated observations, J Surv Eng ASCE, 123(3), 
126–137, 1997.  

Schaffrin, B., and H. B. Iz, Integrating heterogeneous data sets with partial 
inconsistencies, in: M.G.Sideris (ed.), Gravity, Geoid and Geodynamics 2000, Springer 
Series, IAG-Symp., Berlin, 123, 49–54, 2001. 

Schrama, E. J. O. and R. D. Ray, A preliminary tidal analysis of TOPEX/POSEIDON 
altimetry, J. Geophys. Res., 99(C12), 24,799–24,808, 1994. 

Schureman, P., Manual of Harmonic Analysis and Prediction of Tides, U.S. Coast and 
Geodetic Survey, Special Publication No. 98, 1971. 

Schwiderski, E. W., Ocean Tides, Part I: Global Ocean Tidal Equations, Mar. Geod., 3, 
161–217, 1980. 

Schwiderski, E. W., Atlas of Ocean Tidal Charts and Maps, Part I: The Semidiurnal 
Principal Lunar Tide M2, Mar. Geod., 6(3–4), 219–265, 1983. 

Seeber, G., Satellite Geodesy, Walter de Gruyter, Berlin, 1993. 

Sheinbaum J., J. Candela, A. Badan, and J. Ochoa, Flow structure and transport in the 
Yucatan Channel. Geophys. Res. Lett. 29 (3): 10.1029/2001GL013990, 2002. 

Shum, C. K., P. L. Woodworth, O. B. Andersen, G. D. Egbert, O. Francis, C. King, S. M. 
Klosko, C. Le Provost, X. Li, J. M. Molines, M. E. Parke, R. D. Ray, M. G. Schlax, D. 
Stammer, C. C. Tierney, P. Vincent, and C. I. Wunsch, Accuracy assessment of recent 
ocean tide models, J. Geophys. Res., 102(C11), 25,173–25,194, 1997. 



 

110 
 

Shum, C. K., N. Yu, and C. S. Morris, Recent advances in ocean tidal science. J. Geod. 
Soc. Japan, 47(1), 528–537, 2001. 

Shum, C. K., Y. C. Yi, H. K. Li, K. Matsumoto, T. Sato, X. C. Wang, Y. Chao, X. L. 
Deng, H. B. Iz, Coastal Ocean Tide Modeling Using Satellite Altimetry. Ocean Surface 
Topography Science Team (OSTST) Meeting, Venice, Italy, 2006. 

Sisman, Y., Outlier measurement analysis with the robust estimation, Scientific Research 
and Essay, 5(7), 668–678, 2010. 

Smith, A. J. E., Application of satellite altimetry for global ocean tide modeling. PhD 
Dissertation. Delft Institute for Earth-Oriented Space Research, Delft University Press, 
1999. 

Stewart, R. H., Introduction to Physical Oceanography, 2007, 
http://oceanworld.tamu.edu/resources/ocng_textbook/contents.html. 

Taff, L. G. , Celestial Mechanics, A Computational Guide for the Practitioner, John 
Wiley & Sons, 1985. 

Tapley, B. D., J. B. Lundverg, and G. H. Born, The SEASAT altimeter wet tropospheric 
range correction, J. Geophys. Res., 87, 3213–3220, 1982. 

Tapley, B. D., and G. W. Rosborough, Geographically correlated orbit error and its effect 
on satellite altimetry, J. Geophys. Res., 90(C6), 11,817–11,831, 1985. 

Tapley, B. D., J. C. Ries, G. W. Davis, R. J. Eanes, B. E. Schutz, C. K. Shum, M. M. 
Watkins, J. A. Marshall, R. S. Nerem, B. H. Putney, S. M. Klosko, S. B. Luthcke, D. 
Pavlis, R. G. Williamson, and N. P. Zelensky, Precise orbit determination for 
TOPEX/POSEIDON, J. Geophys. Res., 99(C12), 24,383–24,404, 1994a. 

Tapley, B. D., D. P. Chambers, C. K. Shum, R. J. Eanes, J. C. Ries, and R. H. Stewart, 
Accuracy assessment of the large-scale dynamic ocean topography from 
TOPEX/POSEIDON altimetry, J. Geophys. Res., 99(C12), 24,605–24,617, 1994b. 

Van Loon, J.P., Functional and stochastic modeling of satellite gravity data. PhD 
Dissertation. Delft Institute for Earth-Oriented Space Research, Delft University Press, 
2008. 

Wagner, C. A., Summer school lectures on satellite altimetry, Lecture Notes in Earth 
Sciences, Theory of satellite geodesy and gravity field determination, 25, Springer-
Verlag, 1989. 

Wahr, J. M., Body tides on an elliptical, rotating, elastic, oceanless Earth, Geophys. J. R. 
Astr. Soc., 64, 677–703, 1981. 

Wahr, J. M. and T. Sasao, A diurnal resonance in the ocean tide and in the Earth’s load 
response due the resonant free “core nutation”, Geophys. J. R. Astr. Soc., 64, 747–765, 
1981. 

Wahr, J.M., Deformation induced by polar motion, J. Geophys. Res., 90, 9363–9368, 
1985. 

http://oceanworld.tamu.edu/resources/ocng_textbook/contents.html


 

111 
 

Wang, Y., Ocean tide modeling in the Southern Ocean, Rep. 471, Geodetic Science and 
Surveying, School of Earth Sciences, Ohio State Univ., Columbus, OH, USA, 2004. 

Wenzel, H.- G., Tide-generating potential for the Earth, Lecture Notes in Earth Sciences, 
66, 9–26, 1997. 

Yang, Y., Robust estimation of geodetic datum transformation, J. Geod., 73, 268–274, 
1999. 

Yang, Y., Xu, T., and Song L., Robust estimation of variance components with 
application in global positioning system network adjustment. J. Surv. Eng. ACSE, 131(4), 
107–112, 2005. 

Yi, Y., Determination of gridded mean sea surface from TOPEX, ERS-1 and GEOSAT 
altimeter data, Rep. 434, Dept. Geod. Sci. Surv., The Ohio State Univ., Columbus, Ohio, 
1995. 

Yi, Y., K. Matsumoto, C. K. Shum, Y. Wang, and R. Mautz, Advances in southern ocean 
tide modeling. J. Geodyn., 41, 128–132, 2006. 

Yi, Y., The Ohio State University stackfiles for satellite radar altimeter data, Rep. 495, 
Geodetic Science and Surveying, School of Earth Sciences, Ohio State Univ., Columbus, 
Ohio, USA, 2010. 

Yuan, L. G., X. L. Ding, P. Zhong, W. Chen, and D. F. Huang. 2009. Estimates of ocean 
tide loading displacements and its impact on position time series in Hong Kong using a 
dense continuous GPS network. J. Geod. doi: 10.1007/s00190-009-0319-0. 

Zu, T., J. Gan, and S. Y. Erofeeva, Numerical study of the tide and tidal dynamics in the 
South China Sea. Deep-Sea Research I, 55, 137–154, 2008. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

112 
 

 
 
 

Appendix A: Tables for Overall Results 
 

Table A.1 Ground truth comparison of ocean tide models at 102 pelagic tide gauge stations (in cm). Note 
that D is the percentage value representing the discrepancy of the ocean tide models against the ground 

truth data (i.e.RSS/RSSIQ×100%). Bold values indicate the models with the best performance in this test. 
Note that bold values indicate the best model solution over a particular tidal constituent and/or the overall 

discrepancy in terms of RSS and D (%). 

Model M2 S2 K1 O1 N2 P1 K2 Q1 RSS D (%) 

 RSSIQ = 39.01 cm 
DTU10 1.39 0.92 0.98 0.74 1.52 0.82 1.09 0.39 2.93 7.51 
EOT11a 1.43 0.94 0.95 0.73 1.54 0.80 1.08 0.38 2.95 7.56 
EOT10a 1.41 0.93 0.96 0.73 1.55 0.80 1.07 0.37 2.94 7.53 
EOT08a 1.44 1.06 0.98 0.73 1.57 0.84 1.11 0.40 3.04 7.78 
FES2004 1.45 0.95 1.00 0.75 1.56 0.83 1.10 0.40 3.01 7.71 
GOT00.2 1.45 1.03 1.01 0.85 1.51 0.77 1.05 0.39 3.00 7.70 
GOT4.7 1.46 1.01 1.01 0.76 1.54 0.76 1.05 0.37 2.99 7.67 

TPXO.6.2 1.46 0.92 1.04 0.81 1.56 0.70 1.06 0.36 2.98 7.64 
TPXO.7.1 1.41 0.92 1.07 0.79 1.57 0.70 1.08 0.37 2.98 7.61 
TPXO.7.2 1.43 0.92 1.07 0.86 1.57 0.69 1.07 0.37 3.00 7.66 
OSU12sw 1.30 1.12 0.91 0.72 1.57 0.71 1.11 0.44 2.94 7.55 
OSU12vce 1.30 1.15 0.92 0.73 1.56 0.71 1.10 0.44 2.95 7.56 

 

Table A.2 Ground truth comparison of ocean tide models with common tide gauges at 739 coastal tide 
gauge stations (in cm).  

Model 
M2 

(548) 
S2 

(549) 
K1 

(546) 
O1 

(541) 
N2 

(487) 
P1 

(501) 
K2 

(505) 
Q1 

(367) 
RSS D (%) 

 RSSIQ = 75.06 cm 
DTU10 18.27 8.51 7.43 4.57 5.31 2.62 2.89 1.25 22.96 30.58 
EOT11a 20.38 9.23 8.52 4.61 5.38 3.16 3.10 1.24 25.38 33.82 
EOT10a 20.61 9.37 8.61 4.98 5.51 3.12 3.11 1.26 25.75 34.30 
EOT08a 20.06 9.10 8.16 4.78 5.36 3.04 3.08 1.20 24.97 33.26 
FES2004 21.73 9.73 8.86 5.22 5.64 3.16 3.32 1.29 26.96 35.92 
GOT00.2 17.16 8.52 6.10 3.98 4.89 2.27 3.05 1.16 21.44 28.57 
GOT4.7 17.08 8.34 6.11 3.74 4.80 2.21 3.12 1.11 21.25 28.31 

TPXO.6.2 25.20 11.37 5.53 4.11 7.18 2.12 3.67 1.39 29.72 39.59 
TPXO.7.1 25.38 14.61 5.57 3.84 6.84 2.80 4.81 3.89 31.51 41.98 
TPXO.7.2 24.82 17.61 5.64 4.94 7.06 2.29 4.21 2.00 32.54 43.35 
OSU12sw 15.95 7.85 6.20 3.87 4.98 2.25 2.62 1.62 20.21 26.92 
OSU12vce 16.88 8.28 5.74 3.79 4.95 2.07 2.73 1.57 20.96 27.92 
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Table A.3 Standard deviations of residual SSH anomaly of ocean tide models along satellite tracks in the overall ocean. Stdev (after) are the standard 
deviation of the SSH anomaly after ocean tide correction; RSS Stdev (before) and RSS Stdev (after) are the Root Sum of Squares of the standard deviation 
of the SSH anomaly before and after ocean tide correction for the entire altimeter data, respectively; VE is the variance explained by ocean tide correction. 
Note that bold values indicate the best model solution over a particular altimeter data and/or the overall variance reduction, and Jason-2 altimeter data were 

not included in the generation of the OSU12 model solution. 

Stdev (after) 
Model TOPEX/ 

Poseidon 
TOPEX 

Interleave 
GFO Envisat 

Jason-1 
Interleave 

Jason-1 Jason-2 

RSS 
Stdev 
(after) 

VE (%) 

Stdev 
(before) 

34.70 34.55 34.88 33.19 34.15 33.87 35.24   

DTU10 10.61 9.52 10.55 10.31 11.54 9.87 11.41 27.96 69.26 
EOT11a 10.62 9.51 10.56 10.28 11.52 9.88 11.39 27.94 69.28 
EOT10a 10.64 9.52 10.57 10.30 11.55 9.87 11.41 27.97 69.24 
EOT08a 10.65 9.54 10.56 10.30 11.55 9.89 11.43 28.00 69.21 
FES2004 10.71 9.61 10.63 10.37 11.60 9.95 11.51 28.17 69.03 
GOT00.2 10.64 9.57 10.58 10.32 11.56 9.90 11.44 28.03 69.18 
GOT4.7 10.62 9.52 10.54 10.29 11.54 9.88 11.41 27.95 69.26 

TPXO.6.2 10.71 9.64 10.63 10.38 11.58 9.94 11.49 28.16 69.03 
TPXO.7.1 10.67 9.59 10.60 10.37 11.55 9.91 11.46 28.09 69.11 
TPXO.7.2 10.65 9.57 10.59 10.35 11.56 9.91 11.44 28.04 69.16 
OSU12sw 10.80 9.33 10.40 10.20 11.64 9.77 11.52 27.91 69.31 
OSU12vce 10.78 9.32 10.40 10.19 11.61 9.76 11.49 27.87 69.35 

 RSS Stdev (before) = 90.94 cm 
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Table A.4 Standard deviations of residual SSH anomaly of ocean tide models along satellite tracks in the in Shallow ocean with depth less than 1000 m (in 

cm).  

Stdev (after) 
Model TOPEX/ 

Poseidon 
TOPEX 

Interleave 
GFO Envisat 

Jason-1 
Interleave 

Jason-1 Jason-2 

RSS 
Stdev 
(after) 

VE (%) 

Stdev 
(before) 

54.14 53.61 54.23 52.46 53.08 53.51 54.68   

DTU10 11.18 10.52 11.36 11.33 12.02 10.46 12.19 29.93 78.92 
EOT11a 11.37 10.68 11.46 11.38 12.04 10.56 12.34 30.22 78.72 
EOT10a 11.45 10.74 11.53 11.42 12.13 10.60 12.42 30.39 78.60 
EOT08a 11.41 10.72 11.48 11.41 12.13 10.61 12.44 30.35 78.63 
FES2004 12.07 11.29 12.10 11.86 12.56 11.36 13.08 31.91 77.53 
GOT00.2 11.47 10.97 11.65 11.51 12.25 10.70 12.49 30.66 78.41 
GOT4.7 11.20 10.57 11.27 11.25 12.06 10.49 12.26 29.94 78.92 

TPXO.6.2 12.07 11.77 12.26 12.17 12.83 11.31 13.08 32.34 77.23 
TPXO.7.1 11.88 11.41 12.04 12.15 12.45 11.02 12.93 31.74 77.65 
TPXO.7.2 11.56 11.09 11.75 11.75 12.25 10.78 12.60 30.95 78.21 
OSU12sw 11.42 10.03 10.93 11.02 12.20 10.21 12.43 29.66 79.12 
OSU12vce 11.42 10.07 10.97 11.05 12.14 10.19 12.38 29.64 79.13 

 RSS Stdev (before) = 142.02 cm 
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Table A.5 Standard deviations of residual SSH anomaly of ocean tide models along satellite tracks in the in Deep Ocean with depth greater than 1000 m (in 

cm).  

Stdev (after) 
Model TOPEX/ 

Poseidon 
TOPEX 

Interleave 
GFO Envisat 

Jason-1 
Interleave 

Jason-1 Jason-2 

RSS 
Stdev 
(after) 

VE (%) 

Stdev 
(before) 

32.78 32.72 32.96 31.22 33.02 32.38 33.07   

DTU10 10.57 9.44 10.49 10.23 11.52 9.84 11.34 27.81 67.75 
EOT11a 10.57 9.42 10.49 10.20 11.49 9.84 11.30 27.77 67.81 
EOT10a 10.57 9.43 10.49 10.21 11.52 9.82 11.32 27.79 67.78 
EOT08a 10.59 9.45 10.48 10.21 11.52 9.85 11.34 27.82 67.74 
FES2004 10.60 9.47 10.51 10.24 11.55 9.87 11.37 27.88 67.67 
GOT00.2 10.58 9.46 10.49 10.23 11.53 9.86 11.35 27.83 67.73 
GOT4.7 10.57 9.44 10.48 10.21 11.52 9.84 11.34 27.80 67.76 

TPXO.6.2 10.60 9.47 10.50 10.23 11.52 9.86 11.34 27.84 67.71 
TPXO.7.1 10.58 9.45 10.49 10.22 11.51 9.85 11.33 27.81 67.76 
TPXO.7.2 10.57 9.45 10.49 10.23 11.51 9.85 11.34 27.82 67.74 
OSU12sw 10.75 9.27 10.36 10.13 11.61 9.75 11.43 27.78 67.79 
OSU12vce 10.73 9.27 10.35 10.12 11.58 9.74 11.41 27.74 67.84 

 RSS Stdev (before) = 86.24 cm 
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