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Abstract 

 

The inverse problem of estimating parameters (i.e, location, depth) of subsurface 

structures can be considered as an optimization problem where the parameters of a 

constructed forward model (gravitational model) are estimated from gravimetric 

observations collected on or above the Earth’s surface by minimizing the difference 

between the  predicted model and the observations. This problem could be solved by 

traditional techniques such as the iterative Least-Squares Solution, or by innovative 

methods such as random search techniques. This dissertation presents a Monte-Carlo 

optimization method called Simulated Annealing (SA) to estimate the parameters of 

subsurface structures from airborne gravity gradient measurements. The SA algorithm is 

a directed random search technique and is based on Monte-Carlo sampling (Metropolis 

Algorithm) where the sequence of parameters is generated from a Markov chain with a 

convergent  target distribution that depends on a parameter called “temperature”. The 

Metropolis algorithm is applied sequentially to generate a sequence of parameters, at a 

fixed temperature, and then the temperature is slowly decreased to zero as the SA 

algorithm proceeds. Reducing the temperature enables the algorithm to narrow its search 

space, thereby increasingly focusing on the solution that minimizes the cost function. The 

algorithm is terminated when no further change occurs in the cost function, according to 

a predefined termination criterion. This technique is implemented for two applications 

where the parameters of a simulated anomaly, due to a right rectangular prism buried in a 

real field, and a real anomaly, due to a fault buried in a real field, are estimated. It is 

shown that the SA algorithm is able to estimate the parameters (location, depth and 

orientation angle) of the prism from one or more observation profiles of gravity gradients, 

according to the degree of the noise level of observations that are used.  In the second 

application, the parameters of the real fault are estimated. Here, it is shown that the SA 

algorithm provides a very good estimate of the dip angle. It is thus shown that the SA 

algorithm is a robust inversion technique that may be applied to the geophysical inverse 

problem using gravitational gradients.  
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Chapter 1: Introduction 

 

1.1 Global Optimization Techniques for Inverse Problems 

 

Detecting the shape of a geophysical object under the Earth’s surface from surface 

measurements of the gravity or magnetic field is a geophysical inverse problem that is ill-

posed insofar as its solution is non-linear and, most likely, non-unique. Generally, an 

inversion problem can be considered as an optimization process that looks for a suitable 

model that best fits certain observed data, by minimizing an error function representing 

the discrepancy between the survey data and the model description (Montesinos et al., 

2005). For nonlinear problems, the solution can often be obtained iteratively by starting 

from approximate initial values for a linearized model, and its validity basically depends 

on a good choice of the starting values. Linearized inversion techniques based on gradient 

approximations and/or matrix inversion may also suffer from some numerical instabilities 

due to ill-conditioned matrices (Sambridge and Mosegaard, 2002). Moreover, since the 

inversion of potential field data is an inherently non-unique problem, these mostly local 

techniques may not always be suitable unless some additional constraints are introduced 

to reach stable solutions (Montesinos et al., 2005). In this sense, global optimization 

techniques should be considered among a number of alternatives that may be applied 

with success to geophysical inverse problems. 

 

In global optimization methods, the solution for an inverse problem is obtained by 

searching the entire parameter space, for instance by random walk rather than any 

deterministic mathematical procedure. Once a forward model is established, the inverse 

problem can be solved by randomly jumping inside the parameter space with trial and 

error and comparing the subsequent forward model to the observations. Some global 

optimization techniques choose a particular set of parameters from the parameter space 

by random walk, compute the discrepancy between the computed forward model and the 

observations in the form of a cost function or “energy” function, and then move to 

another set of parameters in the parameter space by random walk. This is continued until 

the difference between the model and the observed data is minimized (Roy, 2008). These 

methods do not use derivative information of the cost function. Therefore, they have less 

possibility of getting trapped in local minima. Since the solution is obtained directly by 

sampling the parameter space, numerical instabilities due to ill-conditioned matrices are 

also widely eliminated. Therefore, these techniques are referred to as global optimization 

tools (Roy, 2008).   
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The global optimization methods based on random walk sampling in parameter space 

include Monte-Carlo Inversion, Simulated Annealing, and Genetic Algorithms. The 

Monte-Carlo inversion is an unguided random walk technique while Simulated 

Annealing and Genetic Algorithms are guided random walk techniques (Roy, 2008). 

These methods are also called heuristic methods which means that they look for optimal 

or near-optimal solutions without guaranteeing absolute optimality. One of the drawbacks 

of heuristic methods is that they are in general computationally expensive. Moreover, a 

model resolution may not be obtained as easily as in the gradient-based techniques. 

 

1.2 Background 

 

Subsurface detection and estimation is a kind of geophysical inverse problem where one 

makes inferences about the structure of buried bodies, without accessing them, by using 

the mathematical tool of inversion. The subsurface detection and estimation problem may 

vary, depending on the selected model parameters. Model parameters to be estimated 

could be density contrast or geometric parameters of the subsurface structure (i.e., depth, 

horizontal coordinates, and shape of the anomalous body), which leads to linear and 

nonlinear inversion problems, respectively. The methods involving the estimation of 

density contrasts for elements of a partitioned subsurface can use a linear approach 

whereas the methods considering the geometric properties of the subsurface structure as 

unknowns and assuming that the density contrast is known involve nonlinear inversion 

techniques (Montesinos et al., 2005). The second case can be considered as fitting the 

response of an idealized or assumed subsurface Earth model to the finite set of actual data 

collected on the Earth’s surface. Here, synthetic data are generated from the idealized or 

assumed Earth model (forward model) and then a solution of the model parameters of 

interest is obtained iteratively until an acceptable match is achieved between the observed 

data and the synthetic data (Sen and Stoffa, 1995).  

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

As noted in the previous section, fundamentally, there are two types of optimization 

approaches, either a gradient-based approach or a random search (Tarantola, 2005). 

Monte-Carlo methods are pure random search techniques that pick model parameters 

uniformly at random in the parameter space and compare the resulting forward model 

with the observations. The pure Monte-Carlo Search techniques are computationally very 

expensive since they evaluate all possible models in the parameter space (Sen and Stoffa, 

1995). Markov-Chain Monte-Carlo (MCMC) methods are directed search techniques 

which utilize a probabilistic transition rule to determine the chance of moving from one 

model parameter to another in the parameter space. They generate sequences of model 

parameters from a Markov chain in equilibrium whose distribution is a certain target 

distribution. The simulated annealing method uses this MCMC scheme to simulate model 

parameters iteratively from the target distribution that is controlled by a parameter called 

temperature. As the temperature decreases slowly to zero during the execution of the SA 

algorithm, the generated values from the Markov chain with target distribution 

concentrate more and more on the neighborhood of globally minimum solution. 
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The Simulated Annealing (SA) algorithm is based on the Metropolis algorithm which 

was originally introduced by Metropolis et al. (1953) to sample from an equilibrium 

distribution of an interacting particle system. The relationship between this method and 

any general optimization problem was first proposed by Kirkpatrick et al. (1983) who 

applied it for multivariate or combinatorial optimization problems (the problem of 

finding the minimum of a function based on many parameters) in which the global 

minimum of a given function defined in a discrete domain was found. Bohachevsky et al. 

(1986) presented a generalized SA algorithm for the continuous variable problem. Corana 

et al. (1987) presented SA algorithms which optimize functions having many local 

minima over an n-dimensional continuous parameter space. Goffe et al. (1994) provided 

extensions and a detailed overview of the implementation of Corana’s algorithm and 

applied it to four econometric problems.  

 

The use of Simulated Annealing (SA) in geophysical inverse problems was first 

introduced by Rothmann (1985). Since this introduction, the method has been applied to 

many geophysical inverse problems such as 2-D resistivity inversion using very fast 

simulated annealing (Chunduru et al., 1996), seismic inversion to estimate two-way travel 

times and reflection coefficients (Mosegaard and Vestergaard, 1991), inversion of 

magnetics and resistivity survey data (Dittmer and Szymanski, 1995), airborne 

electromagnetic inversion (Yin and Hodges, 2007), and one-dimensional seismic 

waveform inversion (Sen and Stoffa, 1991). Roy et al. (2005) employed a very fast 

simulated annealing algorithm to both synthetic and real airborne gravity data collected 

over Lake Vostok, East Antarctica, to estimate the depth of the lake and the thickness of 

the sediments.  Nagihara and Hall (2001) estimated a salt body’s thickness by minimizing 

the difference between the measured and the model-predicted gravity response. They 

modeled a salt body by a simple geometry consisting of a source volume that was divided 

into a number of blocks. They tested the SA algorithm using synthetic data with and 

without noise.   

 

With the work of Kirkpatrick et al. (1983), the Simulated Annealing has been applied to 

many science and engineering applications such as image restoration (Geman and 

Geman, 1984), reconstruction of coded images (Smith et al., 1985), and some geodetic 

applications such as the first-order design of geodetic network (Berne and Baselga, 

2004), the second-order design of geodetic networks (Baselga and Asce, 2011), and a 

global optimization solution of iteratively reweighted least-squares adjustment (robust 

estimation) (Baselga, 2007). However, no attempt has been made to solve the problem of 

finding the subsurface structure from real observed airborne gravity gradients using the 

simulated annealing method. Therefore, in this study, a Simulated Annealing algorithm, 

based on the work of Corana et al. (1987) is adopted in order to detect and characterize 

subsurface anomalies from airborne gravity gradient measurements.  

 

In this study, gravity gradients are obtained from an airborne gravity gradiometer survey 

system. Gravity gradients have much higher sensitivity to short wavelength anomalies 

than gravitational accelerations since gradients are the second derivatives of the 
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respective field. This property makes gravity gradiometry a suitable technique to detect 

near-subsurface mass anomalies. The most important advantage of gravity gradiometry is 

its insensitivity to common mode linear accelerations of the moving vehicle since it 

measures differences in accelerations. Therefore, unlike in airborne gravimetry, the 

problem of separating the gravitational signal from the linear accelerations of the vehicle 

can be avoided (Jekeli, 1988). Furthermore, gravity gradiometry can measure more than 

one gradient of the several components of the gravity vector, which can lead to better 

subsurface detection in comparison to single component measurements. 

The subsurface estimation problem has been studied extensively using nonlinear or 

iteratively linearized inversion techniques, and their advantages and limitations have been 

published in the literature. The main aim of this research is to address some advantages of 

using the Simulated Annealing method and to show its success in comparison to available 

inversion techniques in terms of locating and characterizing any subsurface structure 

from gravity gradients. The algorithm will be tested to detect a simulated anomaly due to 

a rectangular prism buried in a real field and to estimate parameters of a real anomaly due 

to a fault buried in a real field. In real world applications, the first example can be 

considered as characterizing voids which can be modeled as a right rectangular prism. In 

the second application, the estimation of parameters of a real fault in the Wichita uplift 

region of southwestern Oklahoma is attempted. Therefore, the second application is 

important for earthquake studies.  Fault detection is also important in hydro-geological 

studies and in mineral and petroleum exploration since many minerals are associated with 

faults or cracks in geologic provinces. 

 

1.3 Organization of this Dissertation 

 

This dissertation is designed as follows: Chapter 2 introduces gravitational gradients, and 

gives a brief overview of airborne gravity gradiometry. Chapter 3 reviews Markov chains 

in finite state space and explains the theory about how they are used in Markov-Chain 

Monte-Carlo (MCMC) methods. This is followed by the Metropolis algorithm which is 

the basis of the Simulated Annealing (SA) method, described in detail for the subsurface 

anomaly estimation problem. Chapter 4 includes numerical experiments, and Chapter 5 

contains conclusions and some comments for future research.  
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Chapter 2: Airborne Gravity Gradiometry 

 

2.1 Gravitational Gradient 

 

According to Newton’s Law of gravitation, the gravitational potential, V , at a point in a 

Cartesian coordinate system, ( , , )x y zx , due to a closed volume v with density  , is 

defined by 

 

                                zdydxdGV
v





  xx

x
x

)(
)(


,                                            (2.1) 

 

where 
222 )()()( zzyyxx  xx  is the distance between the source  point 

( , , )x y z   x =  and the computation point ( , , )x y zx , G is Newton’s gravitational 

constant, 1231110672.6  kgsmG (Moritz, 2008). The gravitational acceleration is the 

gradient of the gravitational potential, and it is a 13  vector evaluated at ( , , )x y zx , 

 

            [ , , ] [ , , ] ( )T T

x y z

V V V
g V g g g g

x y z

  
   

  
x ;                                (2.2) 

 

 represents the gradient vector operator in Cartesian coordinates. Each component of the 

vector g  indicates the acceleration of gravitation in a coordinate direction at the point x . 

 

The gradient of the (transposed) gravitational acceleration vector is a 33  matrix, called 

the gravitational gradient tensor,  

 

2 2 2

2 2 2

2 2 2

( )x

T

yx z

T

xx xy xz

yT x z
yx yy yz

zx zy zz

yx z

V V Vgg g

x x x y x zx x x

gg g V V V
g

y y y y x y y y z

gg V V Vg

z x z y z zz z z

     
                 
        

                                  
  
           

. 

                                                                                                                                        (2.3) 
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With ),,(),,(
321

xxxzyx  , the gravitational gradient tensor can be rewritten as 

 

                                

























333231

232221

131211

,                                                         (2.4) 

 

which is used mostly in later chapters. The diagonal and off-diagonal elements of   are 

the in-line and cross gradient terms, respectively (Jekeli, 2006). Figure 2.1 shows all 

tensor components in an East-North-Up (ENU) reference frame.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The gradient tensor elements are given in units of Eötvös, 
9 21E 1 10 s    named after 

Rolánd Eötvös who devised the first torsion balance gradiometer in 1890 to perform his 

gravitational investigations (Szabó, 1998). Each element in the matrix   indicates the 

rate of change of a gravitational vector’s component with respect to its position in a 

coordinate direction (x, y, z). For example, zz  is the vertical change of the z component  

( zg ) of g  in the z direction. Similarly, xy  is the horizontal change of the x component   

( xg ) of g  in the y direction.  

 

 The sum of the diagonal elements of   satisfies Laplace’s equation in free space 

)0(  , 

 

xx


 

zz
  

y
g  

yy


 
yx

  

yz


 

xy


 

xz


 

xg  

zx

                                
 

zg  

z y 

x 

zy  

Figure 2.1: Gravitational gradient tensor components in the ENU frame (Bell 

Geospace, 2008) 
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                                      0
zzyyxx

.                                                       (2.5) 

 

Moreover, the gravitational gradient tensor is a symmetric matrix about its diagonal, 

 

                                   yxxy  ,     zyyz  ,      zxxz  .                                                    (2.6)         

 

Thus, there are 5 independent gradient tensor elements, two on the diagonal and the three 

off-diagonal elements in the gravitational gradient tensor matrix. In addition, the 

gravitational potential, V, satisfies Poisson’s equation in the Earth’s interior (Jekeli, 

2006), 

 

                              GV
zzyyxx

42  .                                           (2.7) 

 

2.2 Airborne Gravity Gradiometry 

 

The theoretical foundation of moving-based gradiometry naturally depends on Newton’s 

Second Law of Motion that is satisfied in an inertial frame (nonrotating frame), the         

i-frame,  

 

                                                         
iii

agx  ,                                                           (2.8)     

    

where 
i

x  is the kinematic acceleration of a moving body obtained from the position 

vector 
i

x , 
i

a  is the specific force sensed by an accelerometer mounted on the body, and 
i

g is the gravitational acceleration. Here, the superscript indicates in which frame the 

coordinates of the vectors are given, and each dot represents time derivatives. 

 

Assume that the body contains a set of accelerometers, and rotates and accelerates with 

respect to the inertial space. Define the body and accelerometer frames, b-frame and   a-

frame, respectively, and assume the two frames to be parallel to each other. Assume that 

the accelerometer is mounted on the body with a displacement or lever arm vector,         

b . Then the translation between the b-frame and the a-frame is obtained from the 

position vectors, 
i

accelx  and 
i

bodyx ,   

 

                                                    
i

body

i

accel

i xx b .                                                        (2.9) 

 

To obtain accelerations of the b-frame from sensed accelerations in the a-frame, firstly 

one can take the time derivative of eq. (2.9) twice. The kinematic acceleration in the 

inertial space is then expressed as 
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                                                     ii

body

i

accel xx b  .                                                    (2.10) 

 

Rotation from the b-frame to the i-frame can be defined by a 33  transformation matrix 

denoted by i

bC  (Jekeli, 2001). This matrix is an orthogonal matrix, and the following two 

relationships hold for this matrix:     b

i

Ti

b

i

b CCC 
1

 and ICC i

b

b

i  , where I is the 

identity matrix. Rotating the vector b  from the b-frame to the i-frame is defined by 
bi

b

i C bb  . Additionally, the first and the second derivative of the vector 
ib  with the 

assumption that the accelerometer is fixed to the body ( 0b
b ) are respectively, 

bi

b

i C bb    and bi

b

i C bb   . 

Inserting the term bi

b

i C bb   into the eq. (2.10) and applying eq. (2.8) to the eq. (2.10),  

we have, 

 

                                    
bi

b

i

body

i

body

i

accel

i

accel Cgaga b .                                           (2.11) 

 

To obtain accelerations in the b-frame, the rotation matrix b

iC  is applied to the eq. (2.11),  

 

                                   
bi

b

b

i

b

accel

b

body

b

body

b

accel CCggaa b ,                                       (2.12) 

 

where, 
b

accela  is the sensed accelerations in the a-frame, but with coordinates in the b-

frame, 
b

bodya  is the acceleration of the body, 
b

body
g  and 

b

accel
g  are the gravitation of the 

origin of the b-frame and of the location of the accelerometer, respectively, and the last 

term represents rotation of the b-frame with respect to the i-frame.  Supposing that two 

accelerometers are differentially close to each other within the body, then the gradient of 

the acceleration sensed by these two accelerometers is given by 

 

                                              
( ) ( )

bb

b i

i bb T b T

ga
C C


  

 b b
,                                            (2.13)  

 

because the terms 
b

bodya , 
b

body
g  and i

b

b

i
CC   do not depend on 

bb  explicitly. Hence, the 

linear acceleration of the vehicle 
b

bodya  is removed and the gravitational gradients, 
( )

b

b T

g

 b
 

can be obtained from the sensed accelerations by the gradiometer, 
( )

b

b T

a

 b
 and the 

rotational acceleration, i

b

b

i CC  . Here, the derivatives of the vector a  with respect to Tb  is 

defined by  
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1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

T

a a a

b b b

a a aa

b b b

a a a

b b b

   
 
   

   
  

    
   
 
   

b
.                                                 (2.14) 

 

If the platform on which a gradiometer is attached is stabilized in inertial space, then the 

rotational acceleration term in eq. (2.13) drops out since 0i

bC . In this case, the 

gradiometer senses directly gravitational gradients. Otherwise, rotations of the platform 

with respect to inertial space must be determined by gyroscopes. To obtain the 

gravitational gradients / ( )
bb b Tg    b  in a different frame, an additional rotation is 

required; for example, the gradients in an Earth-fixed frame, the e-frame, are obtained by 
b

e

be

b

e CC  . 

 

Gravity gradiometers were first deployed in aircraft, ships and helicopters. The currently 

deployed airborne gravity gradiometer instrument (GGI) was developed by Bell 

Aerospace for the Navy to aid submarine inertial navigation, and tested by the Air Force 

Geophysical Research Laboratory for the purpose of measuring the Earth’s regional 

gravitational field (Jekeli, 1993). Currently it is operated by Bell Geospace Inc. among 

others. The GGI consists of two pairs of opposing accelerometers mounted on a rotating 

disc as illustrated in Figure 2.2.  

 

 
Figure 2.2: Bell Geospace's GGI (Bell Geospace, 2012) 

 

Each pair of accelerometers is placed on the disc in diametrically opposite direction with 

the sensitive axes being in the plane of the disc and orthogonal to the radius from the 

center. The input axes of the opposing pairs point in opposite direction so that, when their 
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signal is summed up, the common-mode linear accelerations are eliminated. Taking the 

difference of the two, such sums of the outputs also eliminate the rotational acceleration 

about the spin axis. To eliminate imbalance in the scale factor of the accelerometer pairs 

and their misalignment, the GGI disc is rotated at a frequencey  . Rotating the GGI disc 

at frequency   modulates the gradients at twice the rotation frequency since each 

accelerometer pair measures a particular gradient twice per revolution (Jekeli, 1988). 

This mechanism allows the gradient signal to modulate at a higher frequency and to 

eliminate low frequency noise due to individual accelerometers. 

 

Using additional  pairs of accelerometers on such a disc will increase the presicion and 

add some redundancy to the measurements (Jekeli, 2006). As illustrated in Figure (2.3), 

Bell Geospace’s gravity gradiometer consists of three GGI discs that are mounted 

mutually orthogonally on a local-level stabilized platform such that each GGI makes an 

angle (35.264
o
) with the horizon. This structure is named the umbrella configuration. 

 

 
Figure 2.3: Three GGIs (Bell Geospace, 2012) 

 

The umbrella configuration reduces the size of the platform, improves the calibration of 

the gradiometer and makes it easier to exchange GGIs within the triad. Each GGI senses 

two outputs. Therefore, three mutually orthogonal discs produce three cross gradient 

terms 122 , 132 , 232 , and the differences of the in-line gradient terms, )( 2211  , 

33 11( )  , )( 3322  . The sum of these three differences is zero whether the Laplace’s 

equation is satisfied or not (Jekeli, 1988). Thus, Bell Geospace’s gradiometer measures 5 

independent tensor elements, three cross and 2 in-line gradients. By utilizing Laplace’s  

equation and the symmetry of the tensor, one can determine the rest of the tensor 

components (e.g., 11 22 33 11 11 22 33 11
( ) ( ) 2 3           ). 

 

The improvement of the noise level of the airborne gravity gradiometer has been 

incremental since most current systems are the modification of the first operational 

system, tested in 1986 by Bell Aerospace (Zhu and Jekeli, 2009). The noise level for the 

currently deployed airborne gradiometer platform by Bell Geospace is 2 to 3 E up to   
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200 m spatial wavelengths detectibility for 
33
  with the aircraft speed of 55 m/s 

(Murphy, 2010). 

 

A full-tensor Gravity Gradiometer is carried on the satellite, GOCE (Gravity Field and 

Steady-State Ocean Circulation Explorer), launched in 2009. The GOCE gradiometer 

includes three pairs of opposing three-axis accelerometers which produce all 9 tensor 

components independently with some redundant measurements. The purpose of the 

GOCE mission is to measure the Earth’s gravitational field with accuracy of ±1 mGal and 

also to determine the geoid with accuracy of ± (1-2) cm at a spatial resolution better than 

100 km (ESA, 1999). Due to the much coarser spatial resolution of the data compared to 

airborne data, the GOCE gradients are not considered in this study, but could be used in 

inversion problems associated with larger and deeper subsurface structures at lithospheric 

scales. 
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Chapter 3: Markov-Chain Monte-Carlo Method 

 

3.1 Introduction to Markov-Chain Monte-Carlo 

 

The Monte-Carlo methods are broadly defined by a branch of mathematical statistics that 

deals with experiments that make use of random numbers to investigate a certain problem 

(Hammersley and Handscomb, 1964). The Monte-Carlo methods were developed by the 

research scientists S. Ulam and J. von Neumann in the Los Alamos National Laboratory 

in New Mexico in the late 1940s. The name “Monte Carlo” was suggested by N. 

Metropolis, and used later in the title of the first published Monte-Carlo paper by Ulam 

and Metropolis in 1949 ( Metropolis, 1987; Eckhardt, 1987;  Brooks et al. 2011).  

 

The first Markov-Chain Monte-Carlo (MCMC) technique, which is known as the 

Metropolis algorithm today, was published by Metropolis and his coworkers in 1953. 

They introduced a modified Monte-Carlo method that could overcome the problem of 

sampling in high-dimensional spaces encountered by regular Monte Carlo methods 

(Robert and Casella, 2004).  The idea of the method is to construct a Markov chain whose 

stationary distribution is the target distribution from which to sample from. Since 

samples are generated sequentially with the property that the drawn sample only depends 

on the realization of the last sample generated (Gelman et al., 2004), the sequence of 

points generated is not independent anymore but instead forms a stochastic process 

named a Markov Chain.  If the chain is run for a sufficiently long time, drawn samples 

from the chain can be considered as a dependent sample from the target distribution and 

used to calculate important characteristics of the target distribution (Brooks, 1998).  The 

Metropolis algorithm is one option to implement the Monte-Carlo method. Other popular 

methods to implement the Monte-Carlo method based on Markov chains include the 

Metropolis-Hastings algorithm (Hastings, 1970) and the Gibbs Sampler (Geman and 

Geman, 1984).   

 

Another application of Monte-Carlo methods is the optimization in which a set of model 

parameters is found that best fit observed data. Simulated Annealing (SA) is such a 

Monte-Carlo optimization technique, developed to find a global minimum of a function 

which may have many local minima. It can be seen as a sequence of applying the 

Metropolis algorithm where a scale parameter called “temperature” is introduced in the 

target distribution and allowed to decrease slowly to zero according to a “cooling” 

schedule as the SA algorithm proceeds. Applying the Metropolis algorithm sequentially 

at decreasing values of the temperature, effectively narrows the parameter space of the 
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target distribution, thus leading to optimal estimates. The iteration is terminated when a 

predefined cost function exhibits no significant change.  

Since in the Metropolis algorithm, the generation of successive states can be explained by 

a time-homogeneous Markov chain theory, the next section presents this theory briefly 

and discusses the conditions under which a Markov chain converges to samples from the 

desired target distribution.  

3.2 Markov Chains 

 

Hastings (1970) indicates that the simulation of a Markov chain based on Markov-Chain 

Monte-Carlo methods using pseudo-random number generators in a computer is a finite 

state-space Markov chain (Robert and Casella, 2004). So, this section reviews Markov 

chains defined on a discrete/finite state-space and explains their properties that are 

needed for convergence to the desired target distribution. The theory of the discrete-time 

Markov chains can also be extended in continuous time state space. In this case, the 

properties of Markov chains that are needed to converge to the stationary distribution will 

be similar to the ones for the discrete-time state-space (see Tierney, 1994; 1996 and 

Robert and Casella, 2004). The concept of stationary distribution and detailed balance 

remain the same as for the discrete-time state-space (see Gilks et al., 1996). 

 

A Markov chain is a special kind of discrete-time stochastic process, which involves 

characteristic sequences of random variables (Gamerman and Lopes, 2006). This special 

discrete-time stochastic process can be defined as a collection of random variables 

}0:{ )( nX n  take values at discrete times, n=0,1,2,3,…., from a finite/discrete           

state-space },....,,{
10 k

S  . Such a discrete-time stochastic process is called a 

Markov chain if the future state only depends on the given present state of the process, 

and not on its past states (Trivedi, 1982), 

 

     )Pr(),.......,Pr(
101

)1()()0()1()(


 

njnj i
nn

ii
nn XXXXX ,          (3.1) 

 

where },.......,0{, kij l  , l=0,……..,n-1. A discrete-time Markov chain is called stationary 

or homogeneous in time if the probability of moving from any state 
i

  to any other state 

j
  in one step does not depend on the time n when the step is being made (Isaacson and 

Madsen, 1985). For a homogeneous Markov chain, one-step transition probabilities are 

defined as (i, j=1,….,k) 

 

                        
)Pr()( )1()()1(

i
n

j
n

jiijij XXpp   ,      1n .             (3.2) 
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All probability moves made between states in S can be recorded in a matrix, P. The 

matrix P includes all information about the movement made between states in S. It is 

called the transition probability matrix P and its (i,j)-th element is given by 
ijp   

(Isaacson and Madsen, 1985). The one-step transition matrix P with (k+1)
2
 elements is 

defined as 

 

                                             



















kkk

k

pp

pp

P







0

000

.                                                        (3.3) 

 

The transition matrix P is doubly-stochastic since its elements satisfy the following two 

properties: 

 

                                                        10 
ij

p                                                              (3.4a) 

 

and the normalization conditions (Isaacson and Madsen, 1985),  

 

                                                   
i

ijp 1  and   
j

ijp 1                                            (3.4b) 

 

Eq. (3.4) means that any change in the state of a variable must be in the state space, S, 

almost surely, i.e., with probability equal to 1. An n-step transition probability of a 

homogeneous Markov chain is the probability of moving from any state i  to any other 

state j in n steps, 

 

              
( ) ( ) ( ) (0)( ) Pr( )n n n

ij i j j ip p X X        ,         1n                            (3.5) 

 

and the n-step transition probability matrix is denoted by 
)(nP . For the homogeneous 

Markov chain, the transition probability matrix does not change with time (Stewart, 

2009),  

 

  
(1) (0) (2) (1) (3) (2)Pr( ) Pr( ) Pr( ) ....ij j i j i j ip X X X X X X                   

                                                                                                                                      (3.6a) 

 

If the two step transition probability matrix is computed from the law of total probability, 
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(2) (2) (2) (0) (2) (1) (0)

0 0

(2) (1) (0) (1) (0)

0 0

Pr( ) Pr( , )

Pr( , ) Pr( )

ij j j i

i

j i i

i

P p X X X X X

X X X X X

             

           




     (3.6b) 

 

and from the Markov chain property in eq. (3.1), the eq. (3.6b) becomes 

 

                       

(2) (2) (1) (1) (0)

0

2

0

Pr( ) Pr( )

.

j i i

i

ij i

i

P X X X X

p p P P P

        

   




                    (3.6c) 

 

The above equation can be generalized for the n-step transition probability matrix. 

Therefore, it follows that for the homogeneous Markov chain, the n-step transition 

probability matrix is the multiplication of the one-step transition probability by itself n 

times, ( ) .......n nP P P P P     , for 1n .  Additionally, IPP  0)0(  is the identity 

matrix. 

 

Let )(n

jp  be the probability that a state j  occurs at time step n and is defined by   

)Pr( )()(
j

nn
j Xp  . Then, )(n

jp is the component of the state probability row vector, 

 

                                              },.......,,{ )()(

1

)(

0

)( n

k

nnn pppp .                                             (3.7) 

 

From the total probability law, the state probability vector at time step n can be computed 

as follows,                                                                                                     

 

      
i

ij
n

i

i

i
n

j
n

i
nn

j ppXXXp )1()1()()1()( }Pr{}Pr{ .              (3.8) 

 

In matrix notation, the equation (3.8) is expressed as  

 

                                                       Pnn )1()(  pp .                                                          (3.9) 

 

If )0(p is the initial state probability vector defined by ],........,,[ )0()0(

2

)0(

1

)0(

kpppp ,  then 

 

                                            

(1) (0)

(2) (1) (0) (0) 2

p p ,

p p (p ) p ,

P

P P P P



  
                                   (3.10) 

 

and after iterating eq. (3.10), the following expression is obtained: 
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                                                     nn P)0()(
pp  ,                                                           (3.11) 

 

or in summation form, 

 

                                                  
)()0()( n

ij

i

i

n

j ppp  ,                                                      (3.12) 

 

which indicates that the probability distributions of a homogeneous Markov chain can be 

computed from one-step transition probabilities and the initial probability vector )0(p  

(Trivedi, 1982).  

 

A basic concern with Markov chains in a simulation problem is their asymptotic behavior 

as the number of steps or iterations gets larger, n . A key concept is the stationary 

distribution,   (Gamerman and Lopes, 2006). To ensure that the generated states of a 

Markov chain eventually come from a stationary distribution, which is also our target 

distribution, the chain should satisfy three conditions: Firstly, the chain has to be 

irreducible, meaning that it must be possible to move from any state i  to any other state 

j  in a finite number of steps with nonzero probability. Secondly, the chain should be 

aperiodic. A Markov chain is called aperiodic if the maximum common divider of all 

possible numbers of steps it takes for the chain to come back to the starting point is equal 

to 1 (Liu, 2002). Finally, the chain must be positive recurrent. When the Markov chain is 

irreducible and includes only a finite number of states, then these states become positive 

recurrent. If a Markov chain is irreducible, finite and aperiodic, then it becomes an 

ergodic chain (Stewart, 2009).  

 

An n-step transition probability )(n

ijp  of a finite, irreducible and aperiodic Markov chain 

does not depend on either n or i as n . In this case, the limiting state probabilities 

exist and are expressed by (Trivedi, 1982) 

       

                                                      ( )lim ,n

j ij
n

p


                                                          (3.13) 

 

which implies that nP  converges independently of the initial starting distribution to a 

matrix   with identical rows π  as n gets larger. 
j

 is an element of the steady-state or 

equilibrium vector π  for the Markov chain, satisfying the following two properties: 

 

                                                  0, 1j j

j

   .                                                     (3.14) 

 

Clearly, π  satisfies the following property 
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)1()( limlim 


 n

j
n

j
n

j
n

pp  ;                                          (3.15) 

 

therefore, by inserting )(n

jp  from equation (3.8) into the above equation,  

 

                             
( 1) ( 1)lim (lim )n n

j i ij i ij
n n

i i

p p p p  

 
   ,                                        (3.16) 

 

we have, 

                                                     
i

ijij
p .                                                         (3.17) 

 

 The above equation can be written in matrix form as, 

 

                                                             Pππ  ,                                                           (3.18) 

 

which states that π  is an eigenvector of P with eigenvalue 1. Any vector fulfilling eqs. 

(3.18) and (3.14) is called a stationary probability vector of the Markov chain (Trivedi, 

1982). It should be noted that for a finite and irreducible Markov chain, there exists a 

unique stationary distribution. If the Markov chain is additionally aperiodic, then this 

stationary distribution becomes also the unique steady-state distribution of the Markov 

chain.  

 

Since also 
i

ijij
p  from eq. (3.17), we have with eq. (3.4b) 

 

                                                 ( ) 0j ji i ij

i

p p   .                                                 (3.19) 

 

A sufficient condition for this equality is the detailed balance (microscopic reversibility) 

condition (Wood and Parker, 1957), 

 

                                                          
jijiji

pp   .                                                      (3.20) 

 

Therefore, the problem of creating a Markov chain with a given stationary distribution 

becomes equivalent to find transition probabilities ijp  that satisfy the detailed balance 

condition (Gamerman and Lopes, 2006). The detailed balance condition does not 

uniquely determine the transition probabilities. One way of constructing transition 

probabilities with desired properties is to use the Metropolis, respectively the  

Metropolis-Hastings algorithm, which is presented in the next sections. 
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3.3 Metropolis-Hastings Algorithm 

The Metropolis algorithm solves the inverse problem of the usual Markov chain problem 

where the transition probabilities are known and the equilibrium distribution is sought. 

Here a particular equilibrium distribution is desired or known, and the transition 

probabilities need to be determined (Wood, 1968).  

The transition probabilities are chosen in such a way that, as the number of generated 

states increases, the distribution of the states produced by this Markov chain converges 

towards the given target distribution. To achieve this, it is sufficient to satisfy the detailed 

balance condition given in eq. (3.20). The transition probabilities are chosen in the form 

of  

 

                                                   ijijij qp                          for    i j                         (3.21) 

 

where ijq  indicates a value of an arbitrary irreducible proposal distribution with 

1
j

ijq  and is a conditional probability that the state j  is generated from the given 

current state, i . ij denotes an acceptance probability. The proposal distribution values, 

ijq , can be used as transition probabilities in eq. (3.20), but it may not satisfy the detailed 

balance condition. For example, if we have the following inequality, 

 

                                                       i ij j jiq q  ,                                                          (3.22) 

 

the acceptance probability can be used to adjust ijq . The choice of the acceptance 

probability is determined by the following argument: The above inequality indicates that 

transitions from the state i  to the state j  are made more often than in the other 

direction. Therefore, ji  should be set as large as possible, and it can be at most 1 since 

it is a probability. Then, since ij  is determined by requiring that ijp satisfies the 

detailed balance condition, we have 

 

                                                ,

i ij ij j ji ji

j ji

q q

q

   






                                                         (3.23) 

 

 which implies that ijijijij qq  / . Similarly, one can consider the case where the 

inequality in eq. (3.22) is reversed to derive ji
 
(Chib and Greenberg, 1995).  As a result, 

ij is set to 
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min 1, ,         if 0

( )

           1,                         if 0.

j ji

i ij

i ijij i j

i ij

q
q

q

q



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

  
  

       




                        (3.24) 

This acceptance probability is called the Metropolis-Hastings (M-H) acceptance 

probability (Hastings, 1970), and simulations following this scheme use the so-called    

M-H algorithm. As can be seen in eq. (3.24), the computation of the acceptance 

probability depends on the ratio, ij  / , so the normalization constant of the desired 

distribution,  ,  does not need to be known (Hastings, 1970). The off-diagonal elements 

of the Metropolis-Hastings transition matrix are (Tierney, 1994) 

                                          ,ij ij ijp q              if  i j                                           (3.25a)   

and from eq. (3.4), we have 1 1ii ij ij ij

j i j i

p p q 
 

     , or explicitly 

 

                                        (1 )ii ii ij ij

j i

p q q 


   .                                                     (3.25b)    

 

Thus, ijp  can be expressed as 

 

                                    

( ) (1 )ij ij ij i il il

l i

p q j q  


 
   

 
  ,                                        (3.26) 

 

where ( )i   denotes the Dirac-function on {0,....., }k ; it is 1 when i j , otherwise it is 

zero. It is noted that 1ii  , as obtained from eq. (3.24).  The off-diagonal term indicates 

the probability of proposing a new candidate and accepting it. The diagonal term denotes 

the probability of remaining in the current state either due to the probability of rejecting 

the proposed candidate, (1 )il il

l i

q 


 , or of no move being made, iiq . To show that   is 

the stationary distribution for the generated Markov chain, it is sufficient to show that, for 

any pairs of states j i   , the following equality holds (Green, 1995) 

 

                                                 i ij ij j ji jiq q    .                                                       (3.27)    

 

It follows from eq. (3.27) and eq. (3.24) that 
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  

  
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                                           min , .i ij j jiq q                                                      (3.28)      

 

By denoting the ratio, /ji j ji i ijq q   , eq. (3.28) can be rewritten as  

 

                            

min{ , / }

min{1, } ,

i ij ij j ji j ji ji

i ij

j ji j ji ji

j ji

q q q

q
q q

q
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
  





 
                                        (3.29)   

     

which satisfies the detailed balance condition since 1/ ji ij   (Tierney, 1998). 

Therefore:    

                       

( ) (1 )i ij i ij ij i il il

l i

p q j q    


 
   

 
   ,       

                                  

( ) (1 )j ji ji j li li j ji

l i

q i q p    


 
    

 
  .                               (3.30) 

 

and thus,   is the stationary distribution of the Markov chain generated by the 

Metropolis-Hastings algorithm. When the chain reaches a stage where   is the stationary 

distribution for the chain, then this distribution is kept the same for all subsequent stages. 

Namely, if the probability distribution of the chain at any step n is  , then the probability 

distribution of the next step is Pππ   (Gamerman and Lopes, 2006).  
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The realization of the transition probabilities in eq. (3.25) is given in the following 

pseudo-code. 

 

 

 

 

 

 

 

 

 

 

 

 

If the proposal distribution is chosen to be symmetric, jiij qq  , then the acceptance 

probability in eq. (3.24) collapses to the Metropolis acceptance probability  

                                           ( ) min 1,
j

ij i j

i


 



 
     

 
.                                 (3.31)

                                          

 

Simulations following the above scheme are applications of the Metropolis algorithm. 

The form of the acceptance probability given above is not unique since there may be 

many acceptance functions generating a Markov chain with desired properties. For 

example, Barker (1965) replaced the above ratio by )/( jij   , which again satisfies 

the detailed balance condition. However, Peskun (1973) showed that the form given 

above is optimal among many alternatives in terms of statistical efficiency (Tierney, 

1994). 

3.3.1 The Choice of the Proposal Distribution 

To implement the M-H algorithm, a proposal distribution needs to be specified. There are 

many options for ijq . We here present the most frequently chosen distributions that 

appear in the literature. For more alternatives see Chib and Greenbeerg (1995) and 

Tierney (1994).  

- Random Walk Metropolis algorithm: If )()( 1 ijjiij qq  , where 1q  is a 

multivariate distribution, then the chain driven by this transition probability is called a 

   Initialize the chain, 0 , and set the iteration number n=0. 

1. Generate a sample j  from a proposal distribution, 0( , )jq      

2. Compute 
0 j  

3. Generate a random variable   from a uniform distribution U(0,1) 

            if  0 j  ,   then set 1n j    

                else set 1n n    

            Update n to n+1,  

4. Repeat step 1 through 3. 

Figure 3.1: The Metropolis-Hastings algorithm 
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random walk chain since the new candidate is in the form of zij  , where z  is a 

random variable with its distribution independent of the chain. If 1q  is symmetric about 

the origin, then ijq  is symmetric and the simple form of the acceptance probability given 

in eq. (3.31) can be used.  Common choices for 1q  include the uniform distribution, a 

multivariate normal or a t-distribution. A simulation that uses this generating scheme is 

called a random walk Metropolis algorithm.  

The Metropolis algorithm can be used to generate samples from any target distribution 

either known explicitly or up to a normalization constant. For illustration purposes, here 

we present an example provided in the paper of Hastings (1970). The target distribution 

is the normal standard distribution (0,1)N  given by 

                                      21 1
exp ( )

22
j j



 
   

 
,                                              (3.32) 

and the proposal distribution is the uniform distribution on [ , ]  , where 0  . The  

new candidate is generated as j i z    , where ~ ( , )j i iU       . Due to the 

symmetric proposal distribution, the ratio in the acceptance probability will be 

                                     
21

exp ( )
2

j

ij i j

i






 
    

 
.                                               (3.33) 

Using the scheme given in Figure 3.1, random samples are generated for the case  = 1. 

The Figure 3.2 illustrates the result. 

 

 
Figure 3.2: Random walk Metropolis algorithm, U(-1,1) 
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The top graph shows the sequence of the generated samples obtained during 5000 

iterations without discarding any samples. The bottom graph shows that a density 

histogram of these samples fits the target distribution. With the choice of 1   and the 

initial value of the chain, 0 0.1   , the chain converges to the target distribution 

starting from the initial value.   

- Independence Sampler: If 1( ) ( )ij i j jq q    , then the new candidate is generated 

independently of the current state of the chain. In this case, the acceptance probability is 

expressed as  

                                           
1

1

( )
min 1,

( )

j i

ij

i j

q

q






 
  

  
.                                                     (3.34) 

The simulation that uses the above scheme is called the independence sampler or 

independent Metropolis-Hastings algorithm.  In this algorithm, although the new 

candidate is generated independently of the current state, the resulting sample is not 

independent since the acceptance probability of the new candidate depends on the current 

state (Robert and Casella, 2004). 

3.4 Metropolis Algorithm 

The original paper by Metropolis et al. (1953) deals with the equilibrium properties of a 

large system of particles at a given temperature T. It presents the first MCMC algorithm 

executed on a digital computer. This algorithm has been extensively studied in statistical 

physics (Hammersly and Handscomb, 1964). It can be considered a special case of the 

random-walk Metropolis algorithm, which was later generalized by Hastings (1970). The 

validation and feasibility of this algorithm has been studied extensively by Wood (1968) 

and Fosdick (1963).  

The equilibrium distribution considered by Metropolis et al. (1953) is also used in our 

application. It is given by the Boltzmann distribution (Binder, 1988), 

                                             






 


Tk

E

Z B

j

T

j

)(
exp

1
 ,                                                 (3.35) 

where 
B

k  is the Boltzmann constant, T is the temperature, 
j

  is the state of the system, 

)(
j

E 
 
is the energy of the state 

j
 , and 

T
Z  is the normalization constant (known as 

partition function in statistical physics).  
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For the Boltzmann distribution, the Metropolis acceptance probability, given in eq. 

(3.31), is expressed as  

                    

( ) min 1, min 1,exp( )
j

ij i j

i

E

T


 



   
        

  
,                            (3.36) 

where ( ( ) ( ))j iE E E      is the change in the energy. The ratio in the acceptance 

probability is denoted by 

                                                     exp( )ij

E

T



  .                                                     (3.37) 

The implementation of this algorithm is given in the following pseudo-code. 

 

 

 

 

 

 

 

 

 

 

 

 

This algorithm is the basis for the simulated annealing. Kirkpatrick et al. (1983) 

developed the simulated annealing algorithm where a cost function replaces the energy.  

The Metropolis algorithm is applied to generate a set of parameter values that produce a 

given energy defined by a temperature. The temperature is reduced sequentially 

according to a cooling schedule until no more change in the cost function (energy) is 

obtained for the generated parameters.  

 Start with state 0  at random with energy 0( )E   

 Do over random moves 

         1j j r     ,    

where   is the maximum allowed displacement, r is a random number in the 

range [1,-1]  

        Calculate )( jE   for a new candidate 

               1( ) ( )j jE E E       

                1, exp /j j E T     

           if 0E , then 1j j   . 

          if 0E , then accept j with probability,   1, exp /j j E T       

 End Do 

Figure 3.3: Pseudo-code for the Metropolis et al. (1953) algorithm 
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3.5 Simulated Annealing 

 

The Simulated Annealing (SA) algorithm can be implemented in two ways, using 

homogeneous and inhomogeneous algorithms. The homogeneous algorithm can be 

described by a sequence of homogeneous Markov chains, each generated at a fixed 

temperature, where the temperature is reduced between subsequent Markov chains. Since 

each Markov chain reaches an equilibrium condition at every temperature T, it is assumed 

to be of infinite length (van Laarhoven and Aarts, 1987). In practice, the equilibrium 

condition is approximately achieved by performing enough transitions at the respective 

temperature T. In our SA algorithm, the equilibrium is reached when the average cost 

function does not change after a number of iterations.  

 

The inhomogeneous algorithm is described by a single inhomogeneous Markov chain. 

The temperature is decreased between subsequent transitions (van Laarhoven and Aarts, 

1987). In this case, the Markov chain does not need to reach a stationary distribution at 

every temperature T. Only the homogeneous algorithm is considered in this study. 

Choosing an initial temperature, the rate of decreasing temperature, the number of 

transitions generated at each temperature, and the termination criterion forms the cooling 

schedule. The initial temperature 0T  is chosen high enough so that almost all transitions 

are accepted, i.e., the probability of transitions occurs with probability close to 1, 

)1~( 0/


 TE
e . In our algorithm, at each temperature the selection of new candidates for the 

Markov chain is controlled so that about fifty percent of the total transitions are accepted. 

The length of the Markov chain is the number of transition steps performed at each 

temperature. In our algorithm, it could be defined by length= L m , where m is the 

number of variables of the problem, and L is a fixed number of iterations performed at 

every temperature T for each variable. In this study, a geometric cooling schedule, first 

proposed by Kirkpatrick et al. (1983), will be considered and introduced in the next 

section. One typical termination criterion, also considered in this study, is to terminate the 

algorithm when the average cost does not change significantly for a few consecutive 

values of the temperature, T. 

In the following, we present a homogeneous SA algorithm based on the Metropolis 

algorithm in a continuous domain as introduced by Corana et al. (1987). 

3.5.1 Simulated Annealing (SA) for the Subsurface Anomaly Detection Problem 

 

The goal of the optimization problem is to estimate geometric parameters (e.g., depth, 

horizontal location and shape) of subsurface structures from airborne gravitational 

gradients by minimizing a specified error function. For the inversion problem, a forward 

problem needs to be specified corresponding to the structure to be estimated. Two 

structures are considered; an infinite horizontal dip-slip fault and a right rectangular 

prism of constant density contrast with the assumption that the density contrasts in both 
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cases are known. The cost function is defined as a sum of the squared differences 

between the observed and the model-predicted gravitational gradients,  

 

                                      2

1

( ) [ ( )]
n

i obs i pred

i

       ,                                               (3.38)                                                                    

 

where i obs  are observed gravitational gradients at the i
th

 location, )( predi  are synthetic 

gravitational gradients computed using forward modeling at these observation points, 

1 2[ , ,...., ]T

mX X X X  is the vector of size 1m  that includes the model parameters to be 

estimated, and n is the number of observation points along the chosen survey tracks. The 

goal of the inversion is to find a vector  , the estimate of X, that produces the smallest 

objective function )(  among all possible solutions.  

 

The SA algorithm proceeds as follows. At a given initial temperature, 
0

T , the algorithm 

starts with a configuration given or chosen randomly. That is, the initial realization of the 

random vector X is ],...,,[ 00

2

0

1

0

m , within predefined search domains for each 

parameter,  

 

                                          mmm ulul  0
1

0
11 .,,......... ,                                      (3.39) 

 

 

where ),.....,( 1 mll  and ),.....,( 1 muu  are lower and upper boundaries, respectively. Here, 

any combination of 00
2

0
1 ,....,, m  will be considered a configuration. With the given 

initial configuration, the gravitational gradient response is computed by using the forward 

model. Then, the objective function for this configuration, )( 0 , is computed. Next, a 

new configuration is obtained by displacing the value, h , of one element of the model 

parameter vector, X , as follows; 

 

                                                  1 0

h h hr      ,                                                         (3.40) 

 

subject to 1

h h hl u   . Here  h  indicates the element in the vector   that is perturbed 

(h=1,……,m); h is the h
th

 component of the step length vector 1 2[ , ,......., ]m    ; r is 

a random number drawn from a uniform distribution between [-1,1]. 

 

Then, the corresponding objective function is computed at, 1 0 1 0

1[ ,...., ,......., ]h m     . If  

1( )   is smaller than the current cost function, )( 0 , the new configuration is accepted 

unconditionally. If 
1( )   is smaller than the optimum function, 

( )( )k

opt  , that is 
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recorded  so far, it is recorded as the new optimum function, ( )(k

opt
 ), and the related point, 

1 , is also recorded as the current optimal point ( opt ). If  
1( )   is greater than )( 0 , 

the transition  to the new configuration, 
1 , is made by the Metropolis acceptance ratio,  

 

                                    
0 1

01

( ( ) ( ))
exp

kT


    
  

 
,                                               (3.41) 

 

where Tk is the “current temperature” at the k
th

 iteration (k=0,1,2, …..). The value   is 

computed and compared with a value  , randomly drawn from the uniform distribution 

between [0,1]. If the value    is smaller than or equal to   (  ), then the transition 

is accepted, and the new state 
1  replaces the old state 

0 . If the value   is larger than 

 (  ), the transition is rejected. Then the next search starts from the previous 

configuration. Since each time only one component in the vector   is perturbed, the 

above acceptance- perturbation procedure is repeated until all m components in the vector 

  are displaced. The above steps are repeated L , times for each variable, where L  is a 

predefined integer. The length of the Markov chain is TN L m   where, after every 

mL   iterations, the step length is dynamically adjusted within the chain at a fixed 

temperature as follows: Corana et al. (1987) suggested a variation in the step length so 

that roughly 50%  of  the total transitions is accepted since too many or too few accepted 

transitions lead to a waste of computational effort.  The computation of the h
th

 element, 

h  , of the step vector is based on its number of accepted points, hM , from its last L

iterations; 

  

                      
/ 0.6

1 if 0.6
0.4

h
h h h h

M L
c M L

 
 

     
 

 

                         if 0.4
0.4 /

1
0.4

h
h h

h
h

M L
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c





   

 
 

 

                                (3.42) 

                          if 0.4 0.6 .h h hL M L       

 

Here, 1)( mhc  is the vector of size 1m  that determines the magnitude of the step length 

being adjusted. 
1( )h mM 
 is the vector of size 1m  that records the number of the 

accepted points for each component in the vector   every L m   iterations. After the step 

length is adjusted, each recorded entry in the vector 
h

M  is set to zero. These adjustments 

to each component of the step length vector is repeated 
T

N  times at the fixed 
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temperature. After TN L m   realizations of the Markov chain, equilibrium presumably 

is reached and then the temperature is reduced.   

 

Before the temperature reduction, the termination criteria are checked. The SA algorithm 

is terminated if the difference between the final cost function 
k

  at the current 

temperature and the current best optimal cost function )(k

opt
  is smaller than a given 

threshold ( ), and the differences between  the cost function values at the preceding E  

temperature reductions and the final cost function 
k

  at the current temperature is 

smaller than the error tolerance  ( ) 

 

                                         )(k
optk ,        k=0,1,…..,                                         (3.43a) 

                                        
*

k k v    ,      v=1,…., E ,                                         (3.43b)  

 

The suggested value for E  is 4. At the beginning of the algorithm, *

k v  is set to 
0( )k  . The second  termination criterion means that, in addition to satisfying eq. 

(3.43a), if, after 4 successive temperature reductions, the difference between 4 final cost 

function values recorded at the end of each temperature and the optimal current function 

value is smaller than the error tolerance ( ), the algorithm is terminated. If the 

termination criteria are not met, the temperature is reduced. The temperature is reduced 

by a geometric cooling schedule, 

 

                                                     
kTk

TT 



1

,                                                          (3.44) 

 

where 
T
  is the constant temperature reduction rate between 10  T . The final 

optimum cost function and final optimum configuration are used to start the next search 

for the optimum point and cost function at the new temperature.  After another 

TN L m   cycles at the new temperature, both termination criteria are checked. If they 

are not met, the same procedure is repeated until the termination criteria are satisfied. 

 

Corana et al. (1987) suggested the following values of the parameters that control the SA: 

 

                               

20,

max(100,5 ),

2, 1,......, ,

4,

0.85.

T
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Some of the above parameters are used in our numerical examples. The choice of initial 

temperature 0T  and TN  depends on the problem at hand. In our case, they depend on the 

size of the problem and the quality of the observations that are used. They could be 

defined by trial and error. 

 

A pseudo-code of this algorithm is given in Figure 3.4. 
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Define the initial parameters,  L , TN , hc , E , T , 0T , h , ,
0   

Set l=0 

Compute )( 0  

Set 
0

opt    and 
0( )opt           

       Do until termination criteria are satisfied 

              Do i=1, TN  

              .    Set  0hM   

              .   Do j=1, L  

              .       Do h=1, m 

                           1l l

h h hr       

              .             Compute 
1( )l   

              .                   If 
1( ) ( )l l     then 

              .                        Set 
1l l   and ( )l  =

1( )l  , 

                                        to 1h hM M  , to 1l l   

              .                   If 
1( )l  < opt  then 

              .                       Set opt =
1( )l   , 

1l

opt

    

              .                    If 
1( ) ( )l l     then 

              .                        Compute the Metropolis ratio 

              .                        If it is accepted, then 

                                           Set 
1l l  , 

1( ) ( )l l    , 

              .                             to 1h hM M  ,  to 1l l   

              .   End Do 

              .   End Do 

              .      Adjust the step length, h , (h=1,..,m) 

              .      Set h h    

               End Do 

                     Check the termination criteria  

                        If they are satisfied, then terminate the algorithm 

                               Else 

                                  Reduce the temperature, 

                                  opt    and ( )  = opt  

             End Do 

Figure 3.4: Pseudo-code for the simulated annealing algorithm 
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Chapter 4: Numerical Experiment 

 

4.1 Case I: A right rectangular prism 

 

It is assumed that there is an anomaly buried below the Earth’s surface, and the 

gravitational gradient effects due to this anomaly are observed or simulated at some 

points along survey profiles on or above the surface. The task is to locate the anomaly 

from one or more observation profiles of the gravitational gradients. The subsurface 

anomaly is modeled as a right rectangular prism of constant negative density contrast 

which can be defined by seven parameters; width (b), length (a), height (c), depth (d) and 

origin coordinates of the prism (x0, y0), and orientation angle ( ) defined by rotating the 

prism about the z-axis (Jekeli and Abt, 2010). Figure 4.1.a-b describes the right 

rectangular prism defined in a local east-north-up (ENU) coordinate system. 

 

 

 

 

 

 

 

 

 

                                 

 

 

 

 

 

 

 

 

In case that 
o0 , all the coordinate axes are aligned with the prism sides. Gravitational 

gradients due to such a right rectangular prism can be calculated by the following 

formulas (Jekeli and Abt, 2010) 
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b) 

x 

Figure 4.1: Definition of a right rectangular prism's parameters in an ENU coordinate 

system 
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where      222
zzyyxxr  , (x, y, z) are the coordinates of the computation 

point of the gravitational gradient effect and ),,( zyx   are the variables of integration 

over the source body. 
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The study in this section focuses on two different cases, where the subsurface anomaly is 

crossing the observation profiles orthogonally or at a certain azimuthal angle. For both 

cases, possible observation noise has been investigated with the further assumption that 

the sought anomaly is buried in a geologic background. The geologic background can be 

described as a local gravitational gradient field, provided by a Bell Geospace Inc. survey 

(Bell Geospace, 2008). The gravity gradiometer survey was performed over Vinton 

Dome, Louisiana, in July 2008 to test the new FTG full tensor gravity gradiometer 

installed in an aircraft, BT-67 C-FTGI, shown on the left and right of the Figure 4.2, 

respectively. 

 

        
Figure 4.2: FTG gradiometer and aircraft (Bell Geospace, 2008) 

          

The location of the Vinton Dome region is situated in south-western Louisiana near the 

Texas border. The survey region lies between latitudes 30.07
o 

and 30.23
o
 in the north-

south direction and longitudes -93.66
o
 and -93.53

o
 in the east-west direction. The 

airborne gravitational gradients were collected at the ground speeds of 215 km/hr at the 

average altitude of 84.9 m.  The data interval between points along the survey tracks is 

not equally spaced, but is approximately ranging from 47 to 55 m. Points along the tracks 

have coordinates in the WGS 84 coordinate system. The survey profiles are 16.7 km long 

in the north-south direction. Gravitational gradients are de-biased, de-noised, and terrain 

corrected using a topographic density of 1.8 gm/cm
3
 (Figure 4.3).   
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Figure 4.3: Terrain corrected 33 map with density of 1.8 gm/cm

3
 (Bell Geospace, 2008) 
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There are 53 measured survey profiles along the north-south direction. In this study, three 

observation profiles (L31, L371 and L841) which are indicated with red circles in Figure 

4.4 are considered.  

 

 

 
Figure 4.4: Flight lines and chosen gradiometer survey tracks (L31, L371 and L841) (Bell 

Geospace, 2008) 

 

 

 



36 

 

The first profile is one of the most westerly profiles of the field, the second is about 4 km 

away from the first one, and the third is one of the most easterly profiles of the field and  

about 10 km away from the first profile. 

 

For this application, the north-south direction is set as the y-axis and the east-west 

direction is set as the x-axis in the system of coordinates. A prism of constant density is 

placed such that its length is parallel to the east-west direction in the field, as shown in 

Figure 4.5. It is also parallel to the horizontal plane. The origin of the coordinates is 

chosen to be at the center of the prism. The prism has a length of a=12 km, a width of 

b=100 m, and a height of c=100 m. 

 

 
Figure 4.5: The position of the sought anomaly 

 

The measurement points on the survey tracks are at flight altitude. The flight altitudes are 

GPS altitudes referenced to WGS84. They are also measured and given in the FTG data 

file. Therefore, z coordinates of the measurement points are computed as flight altitude 

plus depth (d) of the subsurface prism as illustrated in Figure 4.6. 
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Figure 4.6: Setting up the coordinate system for the forward problem 

 

Since we are searching for the anomaly along the profiles in the y direction, the x0 origin 

coordinate of the prism is assumed to be known. Therefore, the origin coordinate y0 is 

considered as the unknown parameter here. The cost function is defined as  

 

                                     2

1

( ) [ ( )]
n

i obs i pred

jk jk jk

i

       ,                                         (4.3) 

 

where  j=1,2,3, k=1,2,3, i=1,….n, and n is the number of observation points along the 

chosen tracks. 
obs

jk
  denotes observed or simulated gravitational gradients in a vector of 

size 1n . 
obs

jk
  is always considered to be a vector in our computations; therefore, in case 

of using the second profile, it is just added to the end of the first profile.   indicates the 

unknown parameters, which for this test is a vector of size 13 , for the parameters

1 0[ , , ]T

m d y   . In case that the geologic background is included, i obs

jk  will be the 

combination of the signal generated by the subsurface anomaly itself plus the chosen 

observation profile from the gradiometer survey. Otherwise, 
i obs

jk
  includes only the 

known signal generated by the subsurface anomaly. In contrast, )(
pred
jk

i  is the 

computed gravitational gradient using the forward model with particular parameter values 

according to the Monte Carlo/ Simulated Annealing algorithm. In other words, the 

gravitational gradient from the geologic background is like a correlated noise imposed on 

the signal of the anomaly. 
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We firstly implement the Metropolis algorithm at a fixed temperature T (i.e., no SA) to 

estimate the depth and location parameters (d, y0) of the prism for the case where the 

anomaly crosses the survey track orthogonally. Search domains are defined by 

1m<d<300 m and -7300 m<y0<9500 m. In our application, the Metropolis algorithm can 

be considered as the inner loop (Metropolis cycle) of the simulated annealing (SA) in 

Figure 3.4, with the modification that instead of adjusting the step-length periodically for 

TN  times, we perform L  iterations for each variable at a fixed temperature, T where the  

step-length,   is fixed. In addition,  termination criteria are introduced and checked after 

every L m   iterations (m=2). The termination criteria are met if the differences between 

the previous  4 cost functions and the current one, and the difference between the current 

cost function and the optimum cost function are all smaller than or equal to   61 10

[E
2
]. If the termination criteria are not met, another L m   iterations are performed until 

the termination criteria are achieved. For this application, L =20,   is set as 0.1, and the 

temperature is 
5 23 10 [E ]T   . Initial values are chosen as 0 10y  m and  d=2 m. The 

observations are simulated vertical gravitational gradients, 33 , (j=k=3), along the survey 

track L31 without geologic background. The true parameters of the location and depth are 

y0=0.0 m and d=150 m. Figure 4.7 illustrates a plot of the cost function for this 

application. 

 

          
Figure 4.7: The cost function for the depth and location parameter 
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Figures 4.8.a-b) show profiles of the cost function taken at location y0=0.0 m and at 

depth=150 m. 

 

  
Figure 4.8.a-b): Profile of the cost function at y0 =0.0 m (right) and at depth=150 m (left) 

 

Figures 4.8.a-b indicate that the cost function is symmetric with respect to the location 

but not symmetric with respect to the depth. The estimated parameters are given in Table 

4.1. 

 

Table 4.1: Estimated parameters of the prism using the Metropolis algorithm at a single 

temperature, T 

Location-( y0 ) 

[m] 

Depth (d) 

[m] 

( ) Cost Function 

[Eotvos
2
] 

-0.00004 150.00001 0.0000000011 

 

The results presented in Table 4.1 are obtained if the starting value for the location 

parameter is close to the actual value.  For example, if the location parameter is chosen 

between [-600, 600] and any value is chosen for the depth parameter within the search 

domain, the algorithm finds the minimum of the cost function. When the starting value 

for the location parameter is chosen far away from the actual one, the Metropolis 

algorithm does not converge to the global minimum of the cost function. This happens 

because the cost function has a local minimum with respect to the location parameter as 

illustrated in Figure 4.9.  Figure 4.9 shows a profile of the cost function taken at fixed 

depth=150 m for an extended domain.  
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Figure 4.9: A profile of the cost function at fixed depth=150 m 

 

Therefore, we use the simulated annealing algorithm for this application. 

 

4.1.1 Subsurface Anomaly Detection from Vertical Gravity Gradients using 

Simulated Annealing (SA) 

 

For the implementation of the SA algorithm, the following parameters are chosen: 

termination criterion,   21101  [E
2
], the parameter for the step-length adjustment, 

0.2,....,1  mhc ; and the number of successive temperature reductions to check the 

termination criterion, E =4. The other parameters to define SA will be provided in each 

case when needed. In the following, the size of the anomaly will be described and the 

plots of signals will be shown with and without geologic background for each case, 

respectively; afterwards, the corresponding results will be presented. 

 

a) The anomaly is orthogonal to the survey tracks 

 

(i) In this case, the generated signal due to the subsurface prism is known and an attempt 

will be made to locate it from simulated observations of 33  without including geologic 

background. To simulate one observation profile, the following parameters for the 

subsurface prism are used: width of b=100 m, length of a=12 km, height of c=100 m, 

depth of d=150 m, and density contrast of  = - 2670 kg/m
3
. The data spacing varies 

around 54 m, with 310 points along the profile.  

 

For the SA implementation, the search domains for the depth (d) and location (y0) are 

defined as 1m<d<300 m, -7300 m<y0<9500 m, respectively. The parameters that control 
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the SA are chosen as follows. The initial temperature is defined as 
0

T =200 [E
2
]; TN =5, 

T
  =0.85 and L =20. At each temperature, TN L m  =5*20*2 iterations have been 

performed. Figure 4.10 shows the simulated signal due to the subsurface anomaly 

computed at 310 points at the average altitude of 84 m along the survey track L31 and 

Table 4.2 presents estimated parameters for that anomaly. 

 

            
                          Figure 4.10: Sought signal profile 

 

Table 4.2: Estimating parameters of the prism using no geologic background 

Location-y0 

[m] 

Depth 

(d)[m] 

( ) Cost Function 

[Eotvos
2
] 

120.7 10   150 230.4 10  

 

 

As can be seen in Table 4.2, the estimated parameters are perfectly estimated. The 

algorithm is very successful in locating the prism if the generated signal does not include 

any geologic background.  

 

(ii) In this case, to test the capability of the SA algorithm in estimating the prism’s 

parameters, various possible observation noises from the geologic background have been 

included. Specifically, six different cases were investigated where the strength of the 

simulated signal gets weaker in the geologic background. This can be achieved by 

varying the depth of the anomaly so that it becomes less visible in the geologic 

background. Keeping the same size values as before, the six different depths range from 

60 to 250 meters. Each simulated signal, combined with the same geologic background, 
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is then treated as the observed gradient. Figure 4.11 shows one of the chosen observation 

profiles from the gradiometer survey for this application. 

 

 
Figure 4.11: 33  gradiometer survey track (L31) data without embedded anomaly signal 

 

The search domain for the location is defined as -7300 m<y0<9500 m. For the first four 

cases, the search domain for the depth is 1m<d<300 m, and for the last two cases, it is 

defined as 1m<d<500 m. The parameters that control the SA algorithm are chosen as 

follows: initial temperature 0T =5000 [E
2
], TN =20, 

T
  =0.85, L =20, initial step length 

 =100.  At each temperature, TN L m  =20*20*2 iterations are performed.  

The Figures 4.12.a)-f) illustrate the simulated anomaly plus gradiometer survey data for 

the six different cases, respectively.           
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Figure 4.12.a-f): Simulated anomalies generated for six different depths of 60, 80, 100, 

150, 200 and 250 m, respectively, plus gradiometer survey data on track L31 
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Table 4.3: Summary of estimated depth and location using one gradiometer survey track 

L31 plus simulated signal of 
33
 , true y0 =0.0 m 

True Depth 

d[m] 

Estimated 

Location-y0 [m] 

Estimated 

Depth-d [m] 

60   3.5   62 

80   6.6   85 

100  11.2 108 

150  33.3 173 

200  79.0 241 

250 146.4 292 

 

The criterion of the SA algorithm to estimate the prism parameters successfully is based 

on the size of the anomaly. Therefore, in this application, a criterion for a “good 

estimate” for the location parameter is fulfilled if the estimated location value falls in the 

range of true location  50 m. In addition, a criterion for “good estimate” for the depth is 

fulfilled if the estimated depth value falls in the range of the true depth  50 m. Thus, as 

can be seen from Table 4.3, the location estimate is reasonable except for the cases where 

the depth is 200 m or 250 m. The algorithm basically breaks down at the depths of  200 m 

and 250 m for the location estimate while the depth estimations are still good enough, 

considering the size of the anomaly. For example, the estimated locations of the anomaly 

for the last two cases are about 29 m, respectively 96 m away from the side of the prism 

facing north in the y-direction. Therefore, to locate the anomaly is not really possible 

although the depth estimation is adequate.  This is so because the signal-to-noise ratio for 

these two signals is small.  

 

To characterize the signal-to-noise ratio for the six different cases, the following formula 

is used, 

 

                                                
1SNR ( )Ts s  ,                                                            (4.4) 

 

where s is the sought signal vector generated by the subsurface prism, and   is the noise 

covariance matrix, which depends only on the horizontal coordinate differences between 

points along the survey track (Abt, 2011). The covariance matrix is based on a reciprocal 

distance model, given by (Jekeli, 2003) as 

 

                             

 

2

2
2 2

( , ; , )

1 ( )

j

T

j
j j j

x y z z

z z r




 

  

  
 ,                                (4.5) 

 

where y y y   , x x x    are the horizontal coordinate differences, 
2

j  and j are 

the model parameters.  Horizontal coordinate differences, x , y  are computed by 
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taking difference between the coordinates of the first and second points. Thus, the 

distance is defined by 

 

                                                      2 2r x y   .                                                       (4.6) 

 

All points lie at the height of 84z z  m. The above covariance model is for the 

disturbing potential, T. Covariances for the gravity gradients can be derived by applying 

the law of error propagation to eq. (4.5). With the following notation, 

 

                                                1 ( ),j j z z      

                                                    
2 2 2

j j jM r    ,                                                        (4.7) 

 

the covariance function for 33  is computed in (Jekeli, 2003) as follows: 

 

                                 
33

2 2

2 2 2 2 4 4

9/2

3
8 24 3

j j

j j j j j j

j j

r r
M

 
        ,                                 (4.8) 

 

where j  and 
2

j  are values adjusted to the geologic background for the Vinton Dome 

region (Abt, 2011); they are provided in Table 4.4. 

 

                    Table 4.4: Covariance model parameters 

2 5

1 1 10    

                
2

2 3500    

 
2

3 778    

 
2

4 300    

 
2

5 20    

 
2

6 0.2    

 
2

7 0.02   

 
2

8 0.08   

7

1 3 10    

 
7

2 7.7 10  

 
6

3 3 10    

 
6

4 8.5 10  

 
5

5 2 10    

 
5

6 6 10    

 
4

7 1 10    

 
4

8 2 10    

2 4

9 3 10     

 
2 6

10 9 10    

  
2 7

11 4 10     

 
2 8

12 4 10  

 
2 9

13 5 10    

 
2 11

14 6 10  

 
2 12

15 5 10  

 
2 13

16 5 10  

 

4

9 4.8 10    

 
3

10 1.3 10    

 
3

11 3 10    

 
3

12 5 10    

 
2

13 1.1 10    

 
2

14 3 10    

 
2

15 5 10    

 
1

16 1.2 10    
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To compute covariances along the gradiometer survey track L31, 0x   is set and, since 

the data interval is not equally spaced between points, the average of coordinate 

differences 54.198 my  is used. Table 4.5 summarizes the computed signal-to-noise 

ratios for the six different cases. 

 

Table 4.5: Signal-to-noise ratio for different depths of the anomaly 

True Depths 

d [m] 
SNR 

60 602.2 

80 238.4 

100 108.8 

150 24.2 

200   8.2 

250   3.6 

 

From Table 4.5, the signal-to-noise ratio is relatively small for the anomaly depths         

of 200 m and 250 m. It can be concluded from these tests that the SA algorithm estimates 

both the location and the depth from one observation profile of vertical gravitational 

gradients if the signal-to-noise ratio is 24 or greater for this case according to the criterion 

of “good estimate” that was established before. 

 

Weights may also be considered in the cost function,  

 

                            ( ) ( ) ( )
T

i obs i pred i obs i pred

jk jk jk jk jkP           ,                             (4.9) 

 

where P  is an n n  symmetric positive-definite weight matrix, j=k=3 and i=1,…,n 

(n=310). It is obtained from inverting the covariance matrix  ,  
1P   . The covariance 

matrix is defined by 

 

                                                         
33 inst    ,                                                      (4.10) 

 

where 
33

  is the computed covariance matrix for the geologic background gradients,  

33 , and inst  is the covariance matrix for the instrument noise. inst  is a diagonal matrix 

where the diagonal elements show the variances 2

inst  of the instrument noise for the 

gradiometer, and the off-diagonal elements are zero. The standard deviation, inst  of the 

instrument noise for the gradiometer is ± 3 E. Thus, inst  consists of diagonal elements 

with variances of 2 9inst  E
2
. There is no correlation between the geologic background 

gradient, 33 , and the observation noise. The Table 4.6 presents the estimated results 

from the SA algorithm using these weights in the cost function. 
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Table 4.6: The depth and location estimations using one gradiometer survey profile L31 

plus simulated signal of 
33
 , using weights in the cost function, true y0 =0.0 m 

True Depth 

d [m] 

Estimated 

Location-y0 [m] 

Estimated 

Depth-d [m] 

60 -2.8 59 

80 -4.2 78 

100 -5.5 96 

150 -7.5 142 

200 -3.0 192 

250 23.8 271 

 

Whenever a weight matrix is considered in the cost function,  the estimated location and 

depth parameters are much better in comparison to the results provided in Table 4.3. It 

can be concluded that, if weights are available and used in the cost function, it gives 

better estimated results. In this case, one observation profile is adequate to locate the 

anomaly.  

 

To investigate whether the anomaly can be better located by having additional 

observations, a second profile from the gradiometer survey is used, as illustrated in 

Figure 4.13.  

 

 
Figure 4.13: Gradiometer survey data of the second chosen track (L371) 
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The data interval for this profile is about 55 m. There are 305 points along the profile. 

Using additional observations improves the estimates, particularly for the cases where the 

depth is 200 m and 250 m. 

 

Table 4.7: Summary of depth and location estimation using two gradiometer survey 

tracks (L31 & L371) plus simulated signal of  
33
 , true y0 =0.0 m 

True Depth 

 d [m] 

Estimated 

Location-y0 [m] 

Estimated 

Depth-d [m] 

60   3.2  61 

80   5.5  82 

100   8.8 103 

150 22.6 158 

200 46.5 213 

250 81.1 266 

 

In this case, the anomaly can be located except for the last case where the location 

estimation is not good enough since the estimated location of the anomaly is about 31m 

away from the side of the prism facing north in the y-direction. Therefore, the anomaly 

may not be located accurately in this case, although the depth estimation is adequate. 

Another gradiometer survey track which is further away from the first one is finally used 

as shown in Figure 4.14. There are 325 points along this profile, and its data interval is 

about 51 m. 
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Figure 4.14: Gradiometer survey data along the third chosen track (L841) 

 

The Table 4.8 provides the estimated location and depth for the six different depths. In 

these cases, both the depth and location estimates are very good. 

 

Table 4.8: Summary of depth and location estimation using two gradiometer survey 

tracks (L31 & L841) plus simulated signal of 33
 , true y0=0.0 m 

True Depth 

 d [m] 

Estimated 

Location-y0 [m] 

Estimated 

Depth-d [m] 

60 -0.1  58 

80  0.4  78 

100  1.2  97 

150  5.6 147 

200 14.1 197 

250 27.5 248 

 

In addition, computations were performed for the case where the three tracks are chosen 

close to each other. For this, L761, L801 and  L841 were used, where L761 and L801 are 

approximately 1 km, resp, 0.5 km away from  L841. 
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Table 4.9: Summary of depth and location estimation using three gradiometer survey 

tracks (L761, L801 & L841) plus simulated signal of 
33
 , true y0=0.0 m 

True Depth 

 d [m] 

Estimated 

Location-y0 [m] 

Estimated 

Depth-d [m] 

60 -1.02 59 

80 -1.45 79 

100 -1.91 98 

150 -2.83 147 

200 -2.84 196 

250 -1.36 246 

 

Comparing the results of the Tables 4.7, 4.8 and 4.9, the location estimation is improved, 

especially for the last two depths, when three survey tracks were used to estimate the 

prism location and depth. This indicates that, if more than two tracks are used, or when 

the number of observation points is increased, these parameters for all six different depth 

cases can be estimated sufficiently well. 

 

4.1.2 Least-Squares Solution (LESS) within the Gauss-Helmert Model 

 

The nonlinear Gauss-Helmert Model (GHM) is represented by 

 

                              
1 11

( , ) 0
n mn

b Y e
 
   ,        e   ~  

12(0, )o
n n
P




,                                       (4.11) 

 

where 
mrmn RRb  :  is a multivariate nonlinear function, Y  is the 1n  vector of 

observations, e   is the 1n  vector of random errors,   is the 1m  unknown parameter 

vector, P  is the symmetric positive-definite nn  weight matrix, 
1Q P  is the nn  

cofactor matrix,  2

o  is the unknown variance component, Qo

2  is the covariance 

matrix for the errors, n   is the number of observations, m   is the number of parameters, 

and r  is  the redundancy number in the model ( r n m  ). By denoting   as the 1n  

expected observation vector (Schaffrin and Snow, 2010),  

 

                                                    
{ }Y e E Y    ,                                                     (4.12) 

 

the Least-Squares objective function for the model in eq. (4.11) is minimized according 

to 

 

           ( ) ( )T Te Pe Y P Y     =min.    subject to          ( , ) 0b Y e   .                 (4.13)          

                                                                            

The Taylor series expansion of ( , ) 0b Y e    about o  and 
o , by neglecting the 

higher order terms, leads to 
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
.                (4.14) 

 

By replacing o  and o  with 
j  and 

j  ( j=0,1,…), and by substituting Y e    in the 

term j   in eq. (4.14), 

 

                                     ( )j je Y       ,                                                            (4.15) 

 

and after inserting this term into the expansion given in eq. (4.14) , the identity 

 

,, ,

( , ) ( , ) ( , )
( ) ( ) ( ) ( , ) 0.

j jj j j j

j j j jT T T

b b b
e Y b

d d d 

  
 

  

     
           


 

                                                                                                                                    (4.16)      

 

 

is obtained. After defining 
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j j j j

r m

w b B Y 
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the linearized GHM is expressed as 

 

                         ( ) ( )

( 1)

j j

j jw A B e   ,      e   ~  2 1(0, )o P   .                                       (4.17)      

  

The solution is performed iteratively as follows (Snow, 2012): 

 

               
1

1 1
( ) ( ) 1 ( ) ( ) ( ) ( ) 1 ( )

( 1)
ˆ ( ) ( ) ( ) ( )j T j j T j j T j j T

j jA B P B A A B P B w


 
 


 
  

           (4.18) 

 

with the residual vector 

 

                         ̃     =  
1

1 ( ) ( ) 1 ( ) ( )

( 1)
ˆ( ) ( ) [ ]j T j j T j

j jP B B P B w A 


 

                            (4.19) 
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Pope (1972) indicates some pitfalls on updating jw  
( )jA , 

( )jB , 
1

ˆ
j  and 1

ˆ
j   during the 

execution of the algorithm. For example, 1
ˆ

j   is updated by subtracting the most recent 

predicted error vector  ̃       from the observation vector Y, not from the adjusted 

observation vector obtained from the previous iteration, while 
1

ˆ
j  is updated by adding 

the estimated incremental parameter vector 
( 1)
ˆ

j 
 to the vector ˆ

j , which is obtained 

from the previous iteration. One should notice that, at the first iteration for j=0, 
( ) ( )o

oB Y  in eq. (4.16d) drops out, due to ˆo Y  . However, in subsequent iterations, 

the points of expansion ( ,j j ) are set equal to the solution from the previous iteration. 

Therefore, for subsequent iterations the initial values are numerically defined by  

 

                                             
1 ( 1)

ˆˆ
j j j     ,                                                             (4.20) 

                                             
1

ˆ   j Y     ̃     ,                                                            (4.21)     

              

and one should consider the extra term in the jw  vector which amounts to 

 

                                   
( )( , ) ( ) ( , )j

j j j j jw b B Y b Y       .                                  (4.22) 

 

This procedure is iterated until the change in 
1

ˆ
j  and  ̃(j+1)

 is smaller than the given 

termination criteria,   and   : 

                                  

                              
( 1)
ˆ

j      and  ‖ ̃       ̃   ‖      .                                       (4.23)                 

 

Linearization 

 

The aim is to estimate the location, y0, and the depth, d, of the prism using the LESS as 

explained above. The observations are the vertical gravitational gradients, 33 , observed 

at some points above the earth’s surface. By denoting the observables as  , the 

observation equation can be written as  

 

                                                33 e   ,                   e   ~  2(0, )o I .                       (4.24)                                

 

The nonlinear model according to eq. (4.11) reads 
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where 

                

                           
2 2 2

0r x x y y y z d z          . 

 

The equation (4.25) is linearized as in eq. (4.16) as follows: The derivative with respect 

to the location, y0, is  
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                                                                                                                                      (4.26) 
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which equals to 
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Rearranging the terms inside the parentheses in eq. (4.27) leads to 
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                                                                                                                                      (4.28) 

 

The derivative with respect to the depth, d , is 
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Rearranging the terms inside the parentheses in eq. (4.30) leads to 
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                                                                                                                                      (4.31) 

 

According to the linearized model given in eq. (4.16), the vector 310 1( )jw   is given as 
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In addition, there is 
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1
ˆ

j j     with   
0

:
y

d

 
   

 
unit in m. 

 

Firstly, the depth parameter is estimated for the six different depth cases where 

( ) 33

0 310 1

jA
d



 
   

 
; ( )

310 310

jB I   ; 310 310P I   and : d  . The estimated parameters 

are provided in Table 4.10.  

 

 

Table 4. 10: LESS within the Gauss-Helmert Model in case P=I, termination criterion       

 = 10
-4

. True location y0=0.0 m 

True depth 

 d [m] 

Initial Depth 

d0 [m] 

No. of 

iterations 

Estimated 

Depth-d [m] 

60 140 8 62 

80 170 8 84 

100 200 8 108 

150 2 11 172 

200 500 11 246 

250 600 9 325 

 

 

From the Table 4.10, it can be concluded that the depth parameter is estimated even if the 

initial values for the depth parameter is chosen far away from the actual value. Secondly, 

the location and depth parameters are estimated for the six different depth cases. It is 

possible to estimate the location and depth parameters when the initial values for the 

parameters are chosen appropriately. It is found that the least-squares solution is highly 

dependent on the starting values in this case. If the initial value for the location parameter 

is chosen far away from the true value, the LESS does not converge to the global 

minimum of the cost function. This is due the fact that the cost function has local minima 

with respect to the location parameter as illustrated in Figure 4.9. If the initial value for 

the location parameter is chosen within the large well of the cost function, the LESS 

gives the same results that are computed from the SA algorithm (see Table 4.3). 
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Table 4.11: LESS within the Gauss-Helmert Model in case P=I, termination criterion     

 = 10
-4

. True location y0=0.0 m 

True 

depth 

[m] 

Initial 

Location 

(y0)0[m] 

Initial 

Depth d0 

[m] 

No. of 

iterations 

Estimated 

Location-y0 

[m] 

Estimated 

Depth-d [m] 

60 10 150 8   3.5 62 

80 15 190 9   6.6 85 

100 30 190 9  11.2 108 

150 35 210 10  33.3 173 

200 40 250 11  79.0 241 

250 50 300 10 146.4 292 

 

 

Finally, the weighted LESS is performed to estimate the location and depth parameters. 

The weights are computed by inverting the covariance matrix given in eq. (4.10). 

Similarly, the LESS gives the same results obtained from the SA algorithm (see Table 

4.6) if the initial values for the parameters are chosen appropriately. Table 4.12 presents 

the weighted LESS for the location and depth parameter. 

 

Table 4.12: LESS within the Gauss-Helmert Model in case 
1P   , termination criterion 

 =10
-4

. True location y0=0.0 m 

True 

depth 

[m] 

Initial 

Location 

(y0)0[m] 

Initial 

Depth d0 

[m] 

No. of 

iterations 

Estimated 

Location-y0 

[m] 

Estimated 

Depth-d [m] 

60 20 100 6 -2.8 59 

80 30 150 9 -4.2 78 

100 15 180 9 -5.5 96 

150 35 200 9 -7.5 142 

200 40 300 12 -3.0 192 

250 45 320 23         23.8 271 
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b) The anomaly crosses the survey tracks at a certain orientation angle 

 

(i) In this case, the simulated observations of 33  are used to estimate the depth, the 

location, and additionally the orientation angle of the prism with the assumption that 

there is no geologic background. The prism is rotated around the z-axis with an angle   

as illustrated in Figure 4.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This orientation is described by the following rotation matrix, 

 

                                    























100

0)cos()sin(

0)sin()cos(

3 



R .                                              (4.32) 

 

To compute the gravitational gradients, firstly the coordinates of the measurement points 

are transformed into the u-system by                                                     

 

                                                    
3( )u R x  ,                                                           (4.33)                           

 

where,  , ,u u v w  is the system obtained by rotating the x- system so that the axes of the 

u system are parallel to the prism’s sides. Replacing  , ,x x y z  by  , ,u u v w  and 

referring the limits of integration to the u-system, [ / 2, / 2]u a a   , [ / 2, / 2]v b b   , 

[ / 2, / 2]w c c   , the same formulas as in eq. (4.1) are used to compute the gravitational 

y 

x 

u 

v 


 

Figure 4.15: Rotated rectangular prism 
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gradient tensor, 
u , in the u-system. To compute the gradient tensor in the original        

x-system, the following transformation is applied:  

 

                                                
3 3( ) ( )x T uR R      .                                              (4.34) 

 

To simulate one observation profile, a prism is chosen with the following parameters: 

width b=100 m, length a=16 km, height c=100 m, depth d=150 m,    orientation angle    

 = 40
o
, and density contrast  = - 2670 kg/m

3
.  

 

For this application, the search domains for depth (d), location (y0) and orientation angle  

( ) are  defined as 1m<d<300 m,  -7300 m<y0<9500 m, and 0
o
< <90

o
, respectively. In 

this case, the SA algorithm’s parameters are chosen as: initial temperature 0T =500 [E
2
], 

TN =50, 
T
  =0.85, and L =20. At each temperature TN L m  =50*20*3 iterations have 

been performed. Figure 4.16 shows the gravitational gradients due to the prism as 

simulated at 310 points at an average altitude of 84 m along the survey track L31; and 

Table 4.13 presents the estimated parameters for that anomaly.   

 

       
                         Figure 4.16: Sought signal profile 

 

Table 4. 13: Estimated parameters of the prism using no geologic background 

Location-y0  

[m] 

Depth (d) 

[m] 

Orientation Angle  

( ) [
o
] 

( ) Cost Function 

[Eotvos
2
] 

110.9 10   150 40.0 230.2 10  
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Again, the prism parameters are perfectly estimated. It should be noted that the location 

parameter refers to the origin of the prism (that is, its center). However, Figure 4.16 

shows that the peak of the simulated signal is where the anomaly crosses the survey track 

L31 as illustrated in Figure 4.17. 

 

 
Figure 4.17: The position of the oriented anomaly in the field 

 

Also, Figures 4.18 and 4.19 illustrate the cost function with respect to its parameters for 

this simulation. 
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Figure 4.18: The plot of the cost function for depth d, and location y0, and  =40

o 

 
Figure 4.19: The plot of the cost function for depth d, and orientation angle  , and 

y0=0.0 m 
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Plots of the profiles of the cost functions in Figures 4.18 and 4.19 at the fixed depth of 

150 m over an extended domain are illustrated in Figures 4.20 and 4.21. The cost 

function has local minimum with respect to both the location and orientation angle 

parameters in this case. 

 

 
Figure 4.20: A profile of the cost function as function of  location parameter at fixed 

depth 150 m, and orientation angle, 40    

 

 
Figure 4.21: A profile of the cost function as function of orientation angle at fixed depth 

150 m and location 0 0.0 my   
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(ii) In these cases, each of the six simulated signals plus the gradiometer survey data that 

were used are shown in Figure 4.22. 

 

                                 

              

     
Figure 4.22: Simulated signals for six different depths 60, 80, 100, 150, 200 and 250 m, 

respectively, plus survey track L31,  =40
o 
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It is not possible to obtain good estimates of the location parameter from one observation 

profile because of adding the observation noises to the simulated signal and estimating 

the orientation angle. Table 4.14 presents the estimated parameters of the prism in these 

cases. The search domains for the location (y0) and orientation angle ( ) are set as           

-7300 m<y0<9500 m,  0
o
< <90

o
, respectively. For the first four cases, the depth search 

interval is 1 m<d<300 m and for the last two cases, it is 1m<d<500 m. The initial 

temperature is 0T =5000 [E
2
], TN =100, 

T
 =0.85, and L =20. At each temperature 

TN L m  =100*20*3 iterations were performed. 

 

Table 4.14: Summary of estimated depth, location and orientation angle, using one 

gradiometer survey track L31 plus simulated signal of 
33
 , true y0 =0.0 m and              

true  = 40
o
 

True 

Depth d 

[m] 

Estimated 

Location-y0 

[m] 

Estimated 

Depth-d 

[m] 

Estimated 

Orient. Angle 

( ) [
o
] 

60 144.6 61 38.8 

80 225.5 81 38.2 

100 309.6 101 37.5 

150 458.5 153 36.3 

200 346.0 210 37.3 

250 -929.6 282 47.7 

 

As can be seen from Table 4.14, while the depth estimations are good, the location 

estimations are not good, when considering the size of the anomaly. For example, for the 

first case, the estimated location is about 94 m away from the side of the prism facing 

north in the y-direction. Therefore, a second observation profile (Figure 4.13) in 

combination with the first is used to estimate the same prism parameters. When 

simulating the gravitational gradients along this second observation profile for the depth 

of 150 m, the plot of the simulated anomaly is as illustrated in Figure 4.23. 
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Figure 4.23: Simulated signal 

33
  (true depth =150 m) and survey track L371 

 

The search domains for the location (y0) and orientation angle ( ) are set as                     

-7300 m<y0<9500 m, 0
o
< <90

o
, respectively. For the first four cases, the depth interval 

is 1 m<d<300 m and, for the last two cases, the depth interval is 1m<d<500 m. The initial 

temperature is 0T =5000 [E
2
], and TN =100, 

T
 =0.85, and L =20. At each temperature 

TN L m  =100*20*3 iterations were performed. The Table 4.15 provides the estimated 

parameters of the prism when using two observation profiles. 

 

 

Table 4.15: Summary of estimated depth, location and orientation angle, using two 

gradiometer survey tracks (L31 & L371) plus simulated signal of 33
 , true y0=0.0 m and 

true  =40
o 

True 

Depth d 

[m] 

Estimated 

Location-y0 

[m] 

Estimated 

Depth-d 

[m] 

Estimated 

Orient. Angle 

( ) [
o
] 

60  -2.7   60.2 40.007 

80  -4.4   80.5 40.022 

100  -6.7 101 40.045 

150 -16.7 154 40.154 

200 -36.1 211 40.370 

250 -71.1 274 40.748 
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According to these results, one can conclude that, when the anomaly is oriented with an 

arbitrary angle, then at least two observation profiles of vertical gradients are needed to 

locate the anomaly in the presence of background geologic signal. For the first five cases, 

the SA algorithm provides enough information to locate the anomaly. Although the depth 

and orientation angle estimates for the depth=250m are good, the location estimation is 

not good enough if the size of the anomaly is considered.  

 

If a third gradiometer survey track L841 is used to estimate the same parameters of the 

prism (Figure 4.24), then the location estimation for the last case is improved. Table 4.16 

presents the estimated parameters of the prism using two tracks, L31 & L841. As can be 

seen, the estimated parameters are good enough to locate the anomaly in all six cases. 

 

 
Figure 4.24: Simulated signal 33

  (true depth =150 m) and survey track L841 

Table 4. 16: Summary of estimated depth, location and orientation angle, using two 

gradiometer survey tracks (L31 & L841) plus simulated signal of  33
 , true y0=0.0 m and 

true  =40
o 

True 

Depths 

d [m] 

Estimated 

Location-y0 

[m] 

Estimated 

Depth-d 

[m] 

Estimated 

Orient. Angle 

( ) [
o
] 

60 -0.2 58 39.988 

80 -0.05 77 39.987 

100 0.3 96 39.987 

150 2.05 141 39.996 

200         5.2 187 40.017 

250 10.01 236 40.053 
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4.1.3 Subsurface Anomaly Detection from Gravity Cross-Gradients using Simulated 

Annealing (SA) 

 

The aim of this section is to investigate whether the anomaly can be better located by 

using gradients other than the vertical-vertical gravitational gradient. In the previous 

section, the depth, location, and orientation angle of the prism were estimated using one, 

two or three observation profiles. Here, the same computations were performed but using 

gravitational cross-gradients, 23 , 13 , 12 . The focus is on the last two cases, presented 

in the previous section. These are the cases where the depths of the anomaly are 200 and 

250 meters, respectively. In this case, the geologic background will also be represented 

by the measured gravitational cross-gradients. For implementation of the SA, the same 

search domains, termination criteria, annealing schedule, and prism parameters are used. 

Also, the same gradiometer survey profiles L31, L371 and L841 are used. In the 

following, the plots of the simulated signals and gradiometer survey tracks are presented 

for both cases where the anomaly crosses the survey tracks orthogonally or at a certain 

azimuthal angle; afterwards, the corresponding results will be presented. 

 

a) The anomaly crosses to the survey tracks orthogonally: Figures 4.25. a)-b) show 

the plots of the gradiometer survey data and the simulated signal of 23   generated along 

the survey track, L31. 

 

 
Figure 4.25: The plots of simulated signals of  23  for depths 200 m (left) and 250 m 

(right), and gradiometer survey track (L31) 

  

The magnitude of the gradients 13  and 12  of the simulated signal in comparison to the 

geologic background is small and is not shown here. Therefore, the SA algorithm is not 

able to locate the anomaly either from one or two observation profiles of these gradients. 

On the other hand, the anomaly can be located from one observation profile of  23  

successfully since in this case the strength of the simulated signal is high in comparison 
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to the geologic background. Especially, the location estimation is very good compared to 

the results obtained from one observation profile of 33 . Table 4.17 shows the estimated 

parameters of the prism using one observation profile, 
23
 , from gradiometer survey plus 

the corresponding anomaly signal.  

 

 

Table 4.17: Summary of depth and location estimation using one gradiometer survey 

track (L31) plus simulated signal of 23 , true y0=0.0 m 

True Depth 

 d [m] 

Estimated 

Location-y0 [m] 

Estimated 

Depth-d [m] 

200 -23.1 175 

250 -35.0 210 

 

 

b) The anomaly crosses the survey tracks at a certain azimuthal angle: The Figures 

4.26. a-f) illustrate the plots of the gradiometer survey data along track L31 and simulated 

signals of 13 , 12 , 23 , respectively. As can be seen from Figures 4.26.a,b,c,d,e,f, the 

strength of the simulated signals is high in comparison to the geologic background. In 

this case, the location parameter is not estimated accurately from one gradiometer survey 

track.  Therefore, the anomaly can be located from two observation profiles of gradients 

12 , 13  and 23 . In this case, the estimates for location and depth are much better than 

the ones estimated from 33 . The location is estimated especially well from 13  gradients 

for the case that the depth is 250 m. However, the depth estimate is worse than the ones 

estimated from gradients 12  and 23 . The Table 4.18 present the estimated parameters of 

the prism from gradients 12 , 23  and 13 . 
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Figure 4.26: The plots of simulated signals of 12 , 13 , 23  for depths 200 m (left) and 

250 m (right), and gradiometer survey track L31,  =40
o 
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Table 4.18: Summary of depth, location and orientation angle estimation, using two 

gradiometer survey tracks (L31 & L371) plus simulated signal of 12 , 23 , 13 , true   

y0=0.0 m and true  =40
o 

True 

Depth 

d [m] 

Estimated 

Location-y0 

[m] 

Estimated 

Depth-d [m] 

Estimated 

Orient. Angle 

( )[
o
] 

12
  

200 11.1 197 39.864 

250 26.2 251 39.703 

23  

200 19.1 198 39.732 

250 33.3 245 39.518 

13  

200  10.4 208 39.983 

250         7.1 262 39.995 

 

 

According to the above results, one can conclude that, in comparison to the vertical 

gravitational gradients, the location of the prism is estimated much better from the three  

gravitational cross-gradients, separately.  If the three gravitational cross-gradients are 

combined to estimate the prism parameters, the estimated results, especially for the 

location parameter, are much better (Table 4.19). 

 

Table 4.19: The depth, location and orientation angle estimation, using three gradiometer 

survey tracks (L31, L371, L841) plus simulated signal of  12 , 23 , 13 , true y0 =0.0 m 

and true  =40
o 

True 

Depths 

d [m] 

Estimated 

Location-y0 

[m] 

Estimated 

Depth-d [m] 

Estimated 

Orient. Angle 

( )[
o
] 

12
 , 13 , 23  

200 -2.3 204 40.110 

250        -4.0 249 40.144 
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4.2 Case 2: Infinite horizontal dip-slip fault 

 

The task is to estimate the parameters of a real fault in the Wichita uplift region from 

gravitational gradients. The Wichita province consists of the uplifted basement portion of 

Southern Oklahoma. It is bounded by major fault zones in the north and the south as 

illustrated in Figure 4.27. 

 

 

              
 

 

 

 

 

 

 

 

 

 

Waurika-Muenster 

Fault 

Figure 4.27: Basement geology of the Wichita uplift region (for explanation of rock 

types, see Ham et al., 1964, plate 1 from which this figure was extracted). The purple 

lines indicate gradiometer survey tracks 
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Gradiometer Survey System (GGSS) was flown over a large part of the Texas/Oklahoma 

border in 1987, including the Wichita uplift region (Jekeli, 1993). The survey was flown 

at approximately 1000 m above the ground with an aircraft speed of 400 km/hr. There are 

19 survey tracks available, considered the best for gravity field modeling and therefore of 

geophysical interest. These tracks are in both the north-south and the east-west directions 

and data along some of these tracks are illustrated in Figures 4.28 and 4.29.  

 

 

                                
Figure 4.28: 33  survey tracks, T27, T24 and T25 in the east-west direction 
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Figure 4.29: 33  survey tracks, T31, T33 and T35 in the north-south direction 

 

The survey profiles T24, T27 and T25 include 3000, 1850 and 1575 observation points, 

and T31, T33 and T35 include 2533, 1775 and 1945 observation points, respectively. 

Basement rocks of the region were investigated in outcrops and in samples obtained from 

boreholes (Ham et al., 1964).  Figure 4.30 shows the D-D' cross section of the Waurika-

Muenster fault over the Wichita uplift region. The location of the fault, associated with 

the blue rectangular blocks in Figure 4.30, is assumed to be known, but its parameters 

should be estimated. These might include dip angle,  , the lower and upper plane of the 

western horizontal slab, 1Lz , 2Lz , and the lower and upper plane of the eastern horizontal 

slab, 1Rz , 2Rz . 

 

33.5 34 34.5 35 35.5 36 36.5
-60

-40

-20

0

20

40

60

80

latitude [degree]

[E
o

tv
o

s
]


33

 profile [T31]

33.2 33.4 33.6 33.8 34 34.2 34.4 34.6 34.8 35 35.2
-60

-40

-20

0

20

40

60

80

100

120

latitude [degree]

[E
o

tv
o

s
]


33

 profile [T33]

33 33.5 34 34.5 35 35.5
-80

-60

-40

-20

0

20

40

60

80

100

[degree]

[E
o

tv
o

s
]


33

 profile [T35]



73 

 

   
Figure 4.30: D-D' cross-section in Figure 4.27. For explanation of rock types, see Ham et 

al., 1964, plate 1 from which this figure was extracted 

 

The north-south direction defines the y-coordinate axis, and the east-west direction 

defines the x-coordinate axis. z-coordinates denote the altitude of points which consists of 

ellipsoidal terrain elevation plus flight altitude. The average altitude of the measurement 

points is set as 1300 m, for both the north-south and the east-west survey tracks. The 

altitude of the GGSS data was not well determined. However, accuracy of the altitude is 

not considered critical for gravity gradient measurements. 

 

The forward model is defined as an infinite horizontal dip-slip fault of constant density 

contrast with the assumption that, in the strike direction, the fault is extended to infinity. 

Figure 4.31 shows the fault model and its parameters, defined in an East-North-Up 

coordinate system. The fault parameters are defined as follows:   is the dip angle, 1Lz , 

2Lz  define the lower and upper plane of the western horizontal slab, and 1Rz , 2Rz  define 

the lower and upper plane of the eastern horizontal slab.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The formulas to compute gravitational gradient effects due to such a fault are given in 

Appendix A: 
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Figure 4.31: Definition of the dip-slip fault plane and associated parameters 
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Since the fault is oriented with a certain angle, an orientation angle is introduced to the  

forward model. As shown in Figure 4.32, the orientation angle is defined with respect to 

the y-axis. In this case, the (x,y,z) coordinate system is rotated into (u,v,w) system by 

azimuth  . The fault intersects the u-axis at 
0 cos( )x     and the coordinates of the 

computation points on the x-axis in the (u,v,w) system are cos( )u x     . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The gravitational gradient due to this fault is obtained by first calculating the 

gravitational gradient tensor in the (u,v,w)-system,  
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using 
0 cos( )x     and cos( )x     in place of 

0u  and u , respectively, in the formulas 

(4.35). To compute the gravitational gradient tensor in the (x,y,z)-system, the tensor is 

rotated, 

 

                                  ( , , ) ( , , )

3 3( ) ( )x y z u v w TR R    ,                                                      (4.37) 

 

where the rotation matrix is defined as 
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Figure 4.32: Geometry for an rotated fault crossing the x-axis 
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SA is now implemented using the east-west survey tracks, after defining appropriate  

search domains and approximate values for  the parameters to be estimated. From the    

D-D' cross section, it is seen that the dip angle is around 90
o
. However, not all the depth 

parameters of the fault are likely well known. Depending on how to define these 

parameters affects the accuracy of the estimated parameters. This can be seen from the 

following simple simulations of the fault model. From the cross-section, the following 

fault parameters are chosen with fixed values: 85o  ; 0 0x  [m]; 2 3500[m]Lz   ; 

2 1200[m]Rz   ; orientation angle o0  ; the elevation of measurement points, z=0[m] 

and the density contrast is 
30.30 g/cm  . As can be seen from Figures 4.33 and 4.34, as 

the lower planes of the right and left horizontal slabs 1Rz , 1Lz
 
change, namely the 

thicknesses of the right and left slab increase,  the magnitude of the simulated signal 

becomes larger. This shows the sensitivity of the simulated signal with respect to these 

depth parameters. Therefore, it is difficult to estimate these depth parameters using only 

information taken from the D-D' cross section. 

 

 
Figure 4.33: 33  gradients due to dip-slip fault by varying the lower plane of the slab 
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Figure 4.34: 13  gradients due to dip-slip fault by varying the lower plane of the slab 

 

From the Figures 4.27 and 4.30, approximate values for the parameters may be inferred  

as follows: 90o  ; 0 11008.30x   [m]; 2 150[m]Rz   ; orientation angle o120  ; and 

according to the simulations in Figures 4.33 and 4.34,  the other parameters are set as 

1 9500Lz   [m]; 2 4500[m]Lz   ; and 1 3500[m]Rz   . The density contrast is assumed 

to be 
30.5 g/cm  (Robbins and Keller, 1992; Coffman, et al., 1986). The search 

domains for the parameters are, therefore, defined by -1 m <
2R

z < -4000 m,                       

-3500 m< 2Lz <-9500 m,  30 < < 180
o
,  and 45< < 100

o
.  

 

In the cost function as defined in eq. (4.3),  obsi

33  represents the vertical gravitational 

gradient from the GGSS survey, and predi

33  is the computed gravitational gradient using 

the forward model. The SA parameters are 50TN  , 20L  , 0.5
T
  ; the initial 

temperature is 0 9000T  [E
2
], the termination criterion is   21101  [E

2
], and the 

number of successive temperature reductions to check the termination criterion is E =4. 

 

The Table 4.20 presents the results of estimating some combinations of three fault 

parameters from three gradiometer survey tracks. 
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Table 4.20: Estimated fault parameters using T24, T27 and T25 survey tracks of 33 . The 

fault parameters inferred from the geologic maps are approximately  =90
o
 ;  

2R
z = -150; 

 =120
o
; 

2L
z = - 4500 

 [degree] 
2R

z [m]  [degree] 
2L

z  [m] 

71 -2104 99 - 

99 -3459 - -6006 

 

 

In the present SA algorithm, it is assumed that the gravitational gradient observations are 

due to a single anomaly. However, there are many different additional anomalies 

surrounding the fault whose parameters need to be estimated. Therefore, the gravitational 

gradient effects of different anomalies are also included in the observation profiles. In 

addition, the true values of the fault parameters are unknown, especially the 1Rz , 1Lz  

parameters. These parameters are used to construct the forward model, for which many 

simplifications were made. For example, 
2R

z ,
2L

z  are chosen with the assumption that the 

real fault consists of the right and the left horizontal rectangular blocks. In fact, the real 

fault does not possess any defined mathematical shape. Therefore, no conclusion can be 

reached about the success of the SA algorithm on estimating these depth-related 

parameters. However, some comments on the dip angle estimation are in order since it 

can be inferred from Figure 4.30 that the dip angle is close to 90
o
. From Table 4.20, it can 

be concluded that the SA algorithm is able to estimate the dip angle. The dip angle is not 

estimated correctly when estimated together with two depths parameters. On the other 

hand, the dip angle is estimated more accurately together with one depth parameter.  

 

If the north-south direction survey tracks are used, then the observations are along the y-

direction. In this case, the geometry of the observations relative to the fault are such that 

the fault intersects the u-axis at 
0 sin( )y     and the coordinates of the observation 

points in the (u,v,w) system are sin( )u y      as illustrated in Figure 4.35.  
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Replacing 
0u  and u with 

0 sin( )y     and sin( )y     in the formulas (4.35), the 

gravitational gradient tensor is computed in the (u,v,w)-system, 

 

                                           




















3332

2322

),,(

0

0

000
wvu

.                                                   (4.39) 

 

Then, these are rotated back to the (x,y,z)-system using the same rotation matrix as in eq. 

(4.38).  

 

For the implementation of the SA method, the same approximate fault parameters are 

used as before, except that the location is given by 0 3836.22y  [m]. Therefore, also the 

same search domains are used. The Table 4.21 shows several cases of the estimated 

parameters of the fault. 
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Figure 4.35: Geometry for an rotated fault crossing the y-axis 
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Table 4.21: Estimated fault parameters using T31, T33 and T35 survey tracks of 33 . The 

approximate fault parameters;  =90
o
 ; 

2R
z = -150;  =120

o
; 

2L
z =-4500 

No. of survey 

tracks 

 [degree] 
2R

z [m]  [degree] 
2L

z  [m] 

T31, T33,T35 
91 -4000 - -3632 

93 -4000 144 - 

T33 
100 -1515 - -9500 

100 -669 176 - 

 

In this case, from Table 4.21, it is seen that the SA algorithm is successful in estimating 

the dip angle from the three survey tracks. The orientation angle is also reasonably well 

estimated from the three survey tracks of 33 gradients. It seems that the north-south 

survey profiles are most suitable for estimating this parameter. This is so because the 

gradients in the east-west direction have lower amplitudes. This can be explained by the 

fact that the geologic structure is elongated roughly in the east-west direction. The dip 

angle is not estimated well from one survey track of 33  gradient. In the following 

applications the north-south gradiometer survey tracks were used. 

 

The other gradients are now considered to estimate the fault parameters.  In this case, the 

cross gradients, 12  and  13  are not zero, but their magnitudes are not as significant as 

that of the gradients 22  and 23 . Therefore, 22  and  23  gradients are considered as 

observations to estimate the fault parameters. Table 4.22 presents the estimated 

parameters of the fault from the 22  and 23
 
gradients. 

 

Table 4.22: Estimated fault parameters using T31, T33 and T35 survey tracks of  22    

and 23  gradients.  =90
o
 ; 

2R
z = -150;  =120

o
; 

2L
z = -4500 

Gradient  [degree] 
2R

z [m]  [degree] 
2L

z  [m] 

22  81 -4000 141 - 

80 -4000  -3500 

23  81 -188 170 - 

88 -4000 - -5870 

 

It can be concluded that the dip angle can be estimated reasonably well from both the 23  

and the 22
 

gradients. Also, the orientation angle can be estimated from the 22
 

gradients.   
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Weights in the cost function were also considered when the 33  gradients constitute the 

observations.  

 

                       ( ) ( ) ( )
T

i obs i pred i obs i pred

jk jk jk jk jkP                                            (4.40) 

 

where P  is a n n  symmetric positive-definite weight matrix, usually defined by 

inverting the covariance matrix   , 
1P   ,  where j=k=3 and i=1,…,n. For this purpose, 

the same covariance function as given in eq. (4.8) is used, but with different model 

parameters, 
j  and 2

j . These parameters are adjusted values to the gravitational field 

for Oklahoma/Texas region as presented in Table 4.23. 

             

             Table 4.23: Covariance model parameters 

2 5

1 2 10    

                
2 4

2 1 10    

  
2 4

3 7.5 10     

 
2 2

4 1.42 10    

  
2 1

5 7.5 10     

 
2

6 36   

  
2

7 778   

 
2

8 3500   

 
2

9 110000   

  3

1 1 10    

 

  4

2 6 10    

 

  4

3 3 10    

 

 4

4 1.51 10    

 

  5

5 4.5 10    

 

  5

6 1.45 10    

 
6

7 4.9 10    

 
7

8 7.7 10    

 
7

9 4.16 10    

 

 

The single track T33 is used for this application. The distance between consecutive points 

along this track is approximately 110 m. All points lie at the height of 1000z z  m. 

The small interval of 110 m for the measurement points causes covariance matrix to be 

very ill-conditioned. Therefore, instead of using all 1775 points along the track, only 355 

points were used, namely every 5
th

 point along the track. So the point spacing along the 
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survey track T33 is set as, 440 my   and 0 mx  . The covariance matrix,  , is used 

as defined in eq. (4.10). Table 4.24 presents the estimated fault parameters. 

 

Table 4.24: Estimated fault parameters using T33survey track of 33  gradients using 

weights in the cost function. The approximate fault parameters;  =90
o
; 

2R
z = -150;        

 =120
o
; 

2L
z =-4500 

 [degree] 
2R

z [m]  [degree] 
2L

z  [m] 

68 4000 90 - 

73 -3237 - -3500 

 

As can be seen by comparing Tables 4.21 and 4.24, using appropriate weights in the cost 

function improves the dip angle estimation.  
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Chapter 5: Conclusions 

 

In this study, the Simulated Annealing (SA) algorithm is used to estimate various 

parameters of subsurface structures from airborne gravitational gradients.  The method is 

tested for two different applications where parameters are estimated from observations of 

a simulated signal due to a rectangular prism buried in a real field, and from observations 

of a real signal due to a fault buried in a real field.  In the first application, two cases were 

considered where one or more observation profiles are orthogonal to the anomaly and, 

then where the anomaly crosses these profiles at a certain azimuthal angle. The capability 

of the SA algorithm is tested in the presence of gravitational gradients due to a geologic 

background for both cases, which also include 6 different anomaly depths that determine 

the strength of the simulated signal. The depth, location, and orientation angle from 

vertical gravitational gradients, 
33 , are estimated for these various cases. Furthermore, 

the least-squares solution (LESS) for the depth and location parameters of the prism are 

compared with the results from the SA algorithm. Moreover, the weights for the 

observational noise (geologic background and instrument noise) are taken into account in 

the cost function for the implementation of the SA algorithm. Finally gravitational cross 

gradients (
12
 , 13

 , 23
 ) are used to estimate the same parameters. In this case, special 

attention is given to the cases where the generated signal due to the prism is small relative 

to the geologic background signal. 

 

It is shown that the SA algorithm is capable of estimating the depth, location and 

orientation angle of the subsurface prism from gravitational gradients for the 6 different 

depth cases. In case that the profiles are orthogonal to the anomaly, one observation 

profile of the vertical gravitational gradients is enough to estimate parameters according 

to the established criterion. It can be concluded that if the signal-to-noise ratio is close to 

1, the SA algorithm clearly fails. The LESS within the Gauss-Helmert model is not 

uniformly successful since it diverges if the initial values for the parameters are not 

chosen appropriately. This is the case when the location parameter is estimated together 

with depth parameter. Since the cost function has local minima with respect to the 

location parameter, the performance of LESS depends very much on the initial values for 

this parameter. If it is not chosen within the global minimum well of the cost function, the 

solution does not converge to the correct solution. It is thus concluded that the simulated 

annealing algorithm is a stable technique, but that it also starts to break down when the 

signal-to-noise ratio is small.  When using the weights for the observational noise in the 
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cost function, it is shown that the results, especially the location estimation, turn out 

much better.  In case that the subsurface anomaly crosses the survey tracks at a non-

orthogonal angle, thus displacing the orthogonal projection of the prism centroid away 

from the crossing point, the SA algorithm is not able to estimate both the location of the 

centroid and the orientation angle from one observation profile of vertical gravitational 

gradients. Rather, at least two observation profiles are required to estimate these 

parameters of the prism. 

 

When using gravitational cross gradients in the case that the anomaly crosses the survey 

tracks orthogonally, estimating the location of the prism from one observation profile of  

23
  gradients, compared to the vertical gravitational gradients, is much better. This is 

because the signal-to-noise ratio is higher for this particular case of the corresponding 

geologic background gradient. The other two gravitational cross gradients (
12
 , 13

 ) are 

not suitable to detect the anomaly in this particular simulation since the signal-to-noise 

ratio is very small for these gradients. The choice of suitable gradient tensor component 

for estimation depends on how the coordinate system is established and how the anomaly 

is positioned in the field. If the anomaly (a long prism) is positioned in the field in such a 

way that its length is parallel to the east-west direction in an East-North-Up coordinate 

system, then there is not much change in the east-west direction and the gradients,        

12
 , 13

  are close to zero. 

 

In case that the anomaly crosses the survey tracks non-orthogonally, the parameters of the 

anomaly including the orientation can be estimated from three gravitational cross 

gradients (
12
 , 13 , 23

 ) provided that two profiles are used since the location of the prism 

centroid cannot be estimated accurately from one observation profile. In comparison to 

the results obtained for the vertical gravitational gradients, especially the location 

estimation, is much better. It can be concluded that in the first case where the east-west 

anomaly is orthogonal to the north-south survey track, any of two gravitational gradients, 

23
 , 33 , and in the second case where the anomaly is oriented arbitrarily, any of four 

gravitational gradients 
12
 ,

23
 , 13 , 33

  can be used to estimate the location, depth and 

orientation of the subsurface prism.  

 

To test the SA algorithm on an actual anomaly, the parameters of a real fault in the 

Wichita uplift region of south-western Oklahoma are estimated from three observation 

profiles of airborne gravity gradients that were provided in both the north-south and the 

east-west directions. It is concluded that the dip angle is especially well estimated from 

the given gradients crossing the fault in the north-south direction.  No conclusion could 

be reached on the depth parameters since the estimation problem particularly ill-posed for 

these parameters as formulated.  Using appropriate weights in the cost function does not 

appear to improve the estimation of any of the parameters except for the dip angle.  
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In summary, the presented SA algorithm locates the anomaly if there is a known anomaly 

in a field, but with unknown parameters, i.e., location and depth. The algorithm is not 

able to detect an anomaly in the field if no information is available about it. It is shown 

that the SA algorithm estimates the parameters of a single anomaly according to the 

degree of noise level of the observations that are used.  One of the strengths of the SA 

algorithm is that it is an inherently stable algorithm. Since it is based on a Monte Carlo 

method applied to a forward model, numerical instabilities due to inversion of ill-

conditioned matrices are eliminated. Moreover, derivatives of highly nonlinear and 

complex functions need not be computed. That is, nonlinear models are inverted without 

linearization. In addition, the algorithm is designed to achieve a solution that corresponds 

to the global minimum of the cost function. As such it is superior to LESS which may 

yield a solution for a local minimum or simply diverge if the initial parameter values are 

not close to the true values. On the other hand, it is difficult to get any accuracy or 

precision information for the estimated results, in contrast to the LESS. The successful 

implementation of the SA algorithm also depends critically on the annealing schedule as 

well as initial parameters for the Markov chain. For example, choosing the initial 

temperature requires some experience with the problem to be solved. Since the algorithm 

searches the parameter space with some randomness, the results may be different for 

different runs of the SA algorithm (i.e., for different starting values, and for different 

random seed numbers) and a reasonable termination criterion must also be implemented. 

 

For future research, the SA algorithm may be tested to estimate the parameters of two or 

more different anomalies. Further investigations need to be performed to obtain accuracy 

information of the estimated results from the SA.  
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Appendix A: Gravitational Gradients due to infinite horizontal dip-slip fault 

 

The logarithmic potential of an infinitely extended 3-D body with constant cross-section 

in the u-w plane is given by (Telford et al., 1990, pp.8) 
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where 
2 2( ) ( )r u u w w     , u and w are the coordinates of the computation points 

defined in an East-North-Up coordinate system and u  and w  are the variables of the 

integration over the elements of the source body. The computation points are on or above 

the earth surface, 0w w  .  The gravitational acceleration, is the first derivative of the 

gravitational potential with respect to u and w, 
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and it is expressed in vector form as 
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Gravitational gradients are then expressed by 
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where its elements are given by 
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Therefore, the gravitational gradient matrix can be written as 
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Consider a semi-infinite horizontal slab with finite thickness that ends on an inclined 

fault plane as illustrated in Figure A.1. 
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To find the gravitational gradients, from eq. (A-4), the following equation needs to be 

integrated  
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with respect to w  as a function of u . The integration limit for u starts at 0
cotu w   

and ends in infinity,  . The limits of the integration, 1R
w z  , 2R

w z  , are the right 

lower and upper planes of the slab, respectively. To integration with respect to u ,  
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obtained by utilizing the Table of integrals (Burington, 1948, pp. 84) 
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Equation (A-8) can be expressed as in eq. (A-9), as follows, 
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Figure A.1: Definition of right horizontal slab 
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Therefore, the integration in eq. (A-8) is expressed as 
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Then, the integration in eq. (A-7) becomes 
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To compute the integration term in eq. (A-11), we need to find an expression for dw . 

From Figure A.1, the following relationship is defined for  , 
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If w   is left alone in the left hand side of  eq. (A-12), we have 
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The derivative of eq. (A-13) is computed with respect to    

 

              

0

2 2
0

2 2 2

( tan )(tan tan )
tancos cos

(tan tan ) cos (tan tan )

w u uw
w u u

dw d d

 
   

    

 


  
  

 
  (A-14) 

 

The denominator of eq. (A-14) can be rewritten as 
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If the term in eq. (A-15) is inserted into the denominator of eq. (A-14), then 
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From eq. (A-12), the angle   is obtained as 
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and from Figure A.1, we can see that the angle,   is  
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Defining another angle,   as 
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the equation (A-16) is expressed as 
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Then, the integral in eq. (A-11) becomes 
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The limit of the integration in eq. (A-17) is then defined by 
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Using the following information, 
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The integration in eq. (A-17) is computed as integration by part (Burington, 1948, pp. 61) 
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By inserting eq. (A-23) into the integral in eq. (A-21) leads to 
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To find the vertical gravitational gradient ( )
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R , the derivative of eq. (A-25) is computed 

with respect to w. Then,  
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where the terms 2
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From Figure A.1, the following relationships are established 
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Therefore, from eq. (A-28) and eq. (A-29), eq. (A-27) is further rearranged as 
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Similarly, ( )
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R  is obtained taking derivative of eq. (A-25) with respect to u as follows; 
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where the terms 2
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 are given by 
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which can be further simplified using eq. (A-29) as 
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As can be seen from eq. (A-6), the diagonal elements of the gravitational gradient matrix 

satisfy Laplace’s equation. Thus, the 
11

  gradients are   
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R R                                                               (A-34) 

 

Similar derivations can be computed for the left horizontal slab. Figure A.2 shows the 

geometry of the left horizontal slab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case, the integration limit for u starts at   and ends at 0
cotu w  ; and the 

limits of the integration, 1L
w z  , 2L

w z   are the lower and upper left planes of the slab, 

respectively. The integration in eq. (A-10) becomes 
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Figure A.2: Definition of the left horizontal slab 
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                                   (A-35) 

 

Similarly, the integral term in eq. (A-35) can be rewritten as from eq. (A-21) 

 
2 2 2

1 1 1

2

1

1 0 0

2

0 2

cot (( )cos sin )cos
tan ( )

sin

( )
(( )cos sin )cos

sin

L L

L L

z z

z z

u u w u u w
dw dw d

w w

u u w d









   
   



 
   



    
   




  

  


 

           2
0 2 2 1 1

sin
(( )cos sin )cos ( )cot ( )cot ln

sin 1
u u w


        



  
         

  
 

 

Inserting the above integral into the eq. (A-35) leads to 
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                                                                                                                                    (A-36) 

 

Similarly if the derivative of eq. (A-27) is computed with respect to w, then the vertical 

gravitational gradients are obtained as 
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where the terms 2
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and 
( )
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L  is  the derivative of eq. (A-36) with respect to u: 
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where the terms 2
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Similarly, from the gradient tensor matrix, the following relationship holds, 
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