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ABSTRACT 

 

The regional gravimetric geoid model for South Korea is developed by using 

heterogeneous data such as gravimetric measurements, a global geopotential model, and a 

high resolution digital topographic model. A highly accurate gravimetric geoid model, 

which is a basis to support the construction of the efficient and less costly height system 

with GPS, requires many gravimetric observations and these are acquired by several 

kinds of sensors or on platforms. Especially airborne gravimetry has been widely 

employed to measure the earth’s gravity field in last three decades, as well as the 

traditional measurements on the earth’s physical surface. Therefore, it is necessary to 

understand the characters of each gravimetric measurement, such as the measurement 

surface and involved topography, and also to integrate these to a unified gravimetric data 

base which refers to the same gravitational field. This dissertation illustrates the methods 

for combining two types of available gravity data for South Korea, one is terrestrial data 

obtained on the earth’s surface and another is airborne data measured at altitude, and 

shows an accessible accuracy of the geoid model based on these data. 

It is found that there exists some bias between terrestrial and airborne gravimetric data 

probably due to their different properties, and the bias is significantly reduced by the 

terrain effects determined by the Bouguer reduction. Therefore, the gravimetric data 

should be merged to a unified data base in terms of the Bouguer gravity anomaly. The 

reductions are the important roles not only to combine gravimetric data, but also to 

satisfy the boundary conditions of the Stokes’s integral. The Stokes’s integral is applied 

to the unified gravimetric data set in order to model the geoid undulation for South Korea. 

Also the systematic effects on the fundamental equation of physical geodesy are 

numerically demonstrated on the gravity anomaly and geoid undulation. These are shown 

to be negligible. In addition, the limitations of the Stokes’s integral caused by truncation 

of the integration area and discontinuity of data are reduced by the empirical application 

of the Stokes’s kernel modification and the Remove-Compute-Restore technique. 

The demonstration of accuracy of the developed geoid model, which is compared to 

GPS/leveling, shows the model based on the gravity anomaly with respect to the terrain 

effects have better accuracy than the model based on the free-air gravity anomaly. The 

achievement on the precision of geoid undulation, computed on a 2 arcmin grid, is 5.6 cm 

in standard deviation. This model is based on the airborne-only gravity data considering 

not only the terrain effects but also the downward continuation. The bias in the 

gravimetric geoid of about 15.5 cm, determined from the comparison with the 

GPS/leveling data, agrees with previously determined values. 
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CHAPTER 1 INTRODUCTION 

 

1.1  Background 

 

The Geoid as a fundamental surface of physical geodesy is defined as an equipotential 

surface that is the closest to mean sea level; it is usually used as a mathematical model to 

represent the physical feature of the earth (Heiskanen and Moritz, 1967). The geoid is 

emphasized in physical geodesy because it is referred to in geodetic measurements and it 

serves as a reference surface for the vertical system (Torge, 2001). The orthometric 

height ( ), a geometric distance between the geoid and the earth’s surface that follows 

along the curved plumb line, has traditionally been used as the vertical system in many 

countries. It has usually been measured by leveling, which has required an additional 

orthometric correction in order to transform the leveled height into the orthometric height 

and has taken much time and cost. More directly, the orthometric height can be 

determined by subtracting the geoid undulation ( ) from the ellipsoidal height ( ).    

          ( 1 ) 

The geoid undulation is a height from a reference ellipsoid to the geoid; its direction is 

normal to the ellipsoid, and the ellipsoidal height as the sum of the orthometric height and 

the geoid undulation is defined by a distance from the ellipsoid to the earth’s surface. It is 

a very simple and cost-efficient method if the ellipsoidal height and the geoid undulation 

are known. Ellipsoidal height is very accurately accessible through the Global Positioning 

System (GPS), but the geoid undulation still has limitations in terms of the precision and 

accuracy. Height system modernization in many countries is based on determining the 

orthometric height by GPS and a geoid model, instead of leveling, therefore there is a 

strong need for modeling an accurate geoid undulation for global or regional areas. 

The development of a geoid model requires gravimetric measurements on or above the 

earth's surface, where key parameters are spatial extent, station separation and accuracy 

(Torge, 1989).  The measurement of gravity is categorized according to absolute and 

relative, static and kinematic, or in terms of coverage. Absolute gravimeters observe two 

fundamental quantities, distance and time; on the other hand, relative gravimeters 

measure one of the fundamental quantities. The relative gravimeter has made it possible 

to measure more gravity stations efficiently. The absolute gravity value is determined 

from a relative gravimeter by calculating the difference between times or locations and 

tying in with the absolute gravity station. The static gravimeter is fixed on the earth’s 
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surface, and it is more stable, but measurement points tend to be more irregularly 

distributed. On the other hand, kinematic gravimetry means that the gravimeter is 

attached on moving platforms, such as airborne or shipborne, and it is faster, more 

efficient, and points are more regularly distributed. Terrestrial, airborne, and satellite 

gravimetry will be introduced shortly as the typical measurements of gravity in accord 

with geodetic purposes such as geoid model determination.  

As a static and relative approach, terrestrial gravimetry has been a very common and 

traditional method for regional and local gravity surveys since the development of static 

spring gravimeters. These measure the relative gravity point by point on the earth’s 

surface, requiring only the accessibility of the station. The accuracy of terrestrial 

gravimetric data depends on errors in gravity measurement and uncertainties of the 

gravity reductions, which handle topographic masses above the geoid and a change of 

reference surface for measurements (Torge, 1989); thus the accurate three-dimensional 

position of the point as well as the gravity value is necessary. Generally nations have 

designed gravity control networks along roads or vertical control networks, and surveyed 

gravity and position then tied the measurements to absolute gravity stations. The airborne 

method, which is kinematic and relative, has been recently adopted to obtain gravity field 

information for regional areas. It is very suitable for large, inaccessible areas, such as 

mountains and coastlines. It provides relative gravity quantities at certain intervals of 

time along survey profiles. The accuracy of airborne data depends on errors in the 

position of aircraft and calibration parameters. The absolute gravity of airborne 

measurement is determined by connecting to ground control points.  

Satellite systems have the advantage of acquiring more global and uniformly distributed 

data for the earth’s static gravity field and/or its temporal variation. In particular, 

CHAllenging Minisatellite Payload (CHAMP), Gravity Recovery and Climate 

Experiment (GRACE), Gravity field and steady-state Ocean Circulation Explorer (GOCE) 

have been designed for measuring the earth’s gravity field during the last couple of 

decades. The CHAMP mission had adopted Satellite-to-Satellite Tracking (SST) using 

the GPS in high-low mode, and measured perturbing accelerations caused by the earth’s 

gravitation (Reigber et al., 2002). The GRACE mission, using SST of two identical 

satellites in low-low mode, had observed ranges and range rates between satellites and 

perturbing accelerations (Tapley et al., 2004). The most recent mission, GOCE, was 

mainly designed to measure the stationary gravity field of the earth and construct a very 

accurate geoid model; it measured the gravitational acceleration differences, called the 

gravity gradients using a gradiometer (Pail et al., 2010). Each satellite mission has a 

different type of sensor, measurement, resolution, and accuracy, but all have contributed 

to the generation of global or regional geoid models in the form of spherical harmonic 

coefficients. 

Based on gravimetric measurements, a large number of geoid models for global or 

regional areas have been published. Two different types of solutions exist for the geodetic 

boundary value problem with gravimetric measurements as a boundary condition. One is 

the spherical harmonic expansion, which is useful for global representation, and the other 

is Stokes’s integral, which has benefits for regional areas. During the last few decades, 
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Global Geopotential Models (GGMs) have been developed by several organizations, such 

as the Ohio State University (OSU), International Centre for Global Earth Models 

(ICGEM), and National Geospatial-Intelligence Agency (NGA); they have been used to 

represent the long wavelengths (low frequencies) of the gravity field for the entire earth. 

For example, the Earth Gravitational Model 1996 (EGM96) was developed to degree and 

order 360, and was used widely as a reference field to determine regional geoid models or 

to study the spectrum of the earth’s gravitational field (Rapp and Pavlis, 1990, and 

Lemoine et al., 1998). Recently, the NGA published Earth Gravitational Model 2008 

(EGM08) with maximum degree and order 2160, which included a GRACE-derived 

spherical harmonic coefficient model, ocean-wide altimetry-derived gravity anomalies, 

and additional terrestrial data. Compared with GPS/Leveling the estimated global 

accuracy of the model is 13.0 cm in geoid height (Pavlis et al., 2012). A consortium of 

institutes in Europe composed GOCO, a combination of GOCE data with complementary 

gravity field information. Since 2010, they have published the satellite-only gravity field 

model series, GOCO01S, GOCO02S and GOCO03S, based on the satellite missions such 

as GOCE and GRACE. GOCO01S is the model to degree and order 200, GOCO02S and 

GOCO03S are the updated versions with degree and order 250. The difference of latter 

two models is the durations of used GOCE mission data, which are 8 months for 

GOCO02S and 18 months for GOCO03S. The accuracy of GOCO02S compared to 

GPS/leveling is estimated at 6.8 cm in Germany, 11.5 cm in Japan, and 15.4 cm in 

Canada (Pail et al., 2010; Gioiginger et al., 2011). Also, the accuracy of GOCO03S 

estimated only in Germany is 5.5 cm (Mayer-Guerr et al., 2012). In addition, the 

European Space Agency (ESA) project GOCE High-level Processing Facility (HPF) 

computed gravity models using GOCE Satellite Gravity Gradiometry (SGG) data alone 

or combined with SST data such as GRACE in three different approaches. One of the 

models, called GO_CONS_GCF_2_DIR, was based on GOCE, GRACE, and LAser 

GEOdynamics Satellites (LAGEOS) (Pail et al., 2011). The details will be shown in 

Chapter 3. Regional geoid models have been developed in some countries; in particular, 

the United States, Canada, Australia, and the European Union have made continuous 

efforts to determine and improve the geoid model representing each country or region. 

The National Geodetic Survey (NGS) in the United States recently published the 

gravimetric geoid models, called UGSS2009 and UGSS2012, which were based on 

terrestrial gravity data, the Danish National Space Center 08 (DNSC08) altimetry-derived 

anomalies, and a Digital Elevation Model (DEM) from the Shuttle Radar Topography 

Mission (SRTM). The model took the accurate long-wavelength contents from GRACE 

through adopting EGM08, and finally had 5 cm accuracy with 1 ʹ by 1 ʹ resolution (Wang 

et al., 2011). National Resource Canada developed the Canadian gravimetric Geoid 

Model 2010 (CGG2010), and it used terrestrial and marine gravity measurements, 

DNSC08 altimetry-derived anomaly, and the Canadian Digital Elevation Data (CDED). 

They combined GOCO01S with EGM08 in order to acquire better long wavelength 

information of their territory. CGG2010 has 2 ʹ by 2 ʹ resolution and its accuracy was 

estimated from 2 to 10 cm in standard deviation (Huang et al., 2012). Geoscience 

Australia also published their latest gravimetric quasi-geoid model for Australia, called 

AUSGeoid09. The gravimetric component of the model used terrestrial gravity 

measurements, DNSC08 altimetry-derived anomalies, and the GEODATA-DEM9S 

Australian DEM. The model took the very high degree and order EGM08 model, so the 
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contribution of the actual measurements beyond EGM08 was quite small (Featherstone et 

al., 2010). The European Gravity and Geoid Project (EGGP), under IAG Commission 2, 

developed European Gravimetric Geoid (EGG) models and published them in 1997 and 

2007. They gathered terrestrial and marine gravity data from the countries in Europe, and 

focused on merging all data sources with due the consideration of the reference datum. 

The latest EGG07 model was based on the terrestrial and marine gravity data, and the 

SRTM and Global 30 Arc-Second Elevation Data Set (called GTOPO30) (Denker et al., 

2009). It included the European Improved Gravity model of the Earth by New technique 

GRACE- and LAGEOS-based combination gravity field model, EIGEN-GL04C, in order 

to represent the long wavelength contents of the gravity field of continental Europe. More 

details will be given in Chapter 5.  

 

1.2  Statement of problem 

 

Theoretical developments for a geoid model have been studied by many geodesists 

during the last century, but they have also exhibited practical or numerical problems 

when applied to real data. Ideally, Stokes’s integral assumes integration over the entire 

earth with continuous anomalous gravity, called gravity anomaly, on the geoid with the 

additional condition that there is no mass above it (Hofmann-Wellenhof and Moritz, 

2006). However, in practice the integral is reduced to a limited area and gravity 

anomalies exist discontinuously on or above the earth’s surface. The gaps between 

theoretical and practical aspects incur several kinds of errors, which geodesists have tried 

to reduce. Those classical issues are related to modifying the computation and reduction 

methodologies optimally for the area of interest, which depend on the type or density of 

observations, topographical characteristics, and size of the area of interest. The latest 

research topics focus on handling heterogeneous data in order to combine all available 

observations optimally and produce more accurate geoid models. Moving platforms such 

as airborne, shipborne, and satellites are employed to measure the gravity field; moreover, 

global high resolution GGMs and topographic models are now available. Thus new 

research is demanded in order to understand the characteristics of different measurement 

types, develop reductions from the measurement surfaces, analyze spectral contents, and 

finally unify all possible data. In addition, it is known that additional gravimetric 

measurements are needed for precise geoid computation beyond even the very high 

degree and order GGMs. For example, recently published EGM08 has 5 arcmin spatial 

resolution and globally 13.0 cm uncertainty as described in the previous section. Such 

models are not sufficient for the requirements of higher spatial resolution and greater 

accuracy such as 1 cm or 5 cm, which means that additional gravity measurements are 

needed.  

In this dissertation, all practical computations are done for South Korea, which is a 

limited area with 5 deg by 5 deg in latitude and longitude. The territory of South Korea 

includes mountains over 1,500 m in elevation and a thousand islands, meaning a 
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complicated topography, and its west half is relatively smoother than the east half. South 

Korea’s government has continually made an effort to acquire gravity measurements for 

the territory during the last two decades. Due to the topography, more terrestrial gravity 

measurements are regularly located on the west half than the other, where measurements 

usually follow vertical control networks or roads. In 2008 and 2009, an airborne gravity 

survey was conducted for the territory including all coastal areas. The airborne gravity 

measurements are very regularly distributed over the entire territory, but they are 

measured at about 3,000 m altitude.  

Terrestrial and airborne measurements do not seem to be consistent; thus it is very critical 

to determine the cause of the inconsistency. Both data sets are considered with respect to 

reduction from the measurement surfaces in order to satisfy the boundary conditions for 

Stokes’s integral as well as generate a unified dataset. In order to develop the most 

accurate geoid model, we need to choose the optimal long-wavelength field model from 

an existing GGM, as well as modify Stokes’s integral in order to reduce the truncation 

error incurred by limitation to data in the relatively small area of South Korea.  This 

dissertation will investigate the development of a regional gravimetric geoid model for 

South Korea based on gravity data on the terrestrial surface as well as data newly 

measured by an airborne gravimeter, and analyze the contributions of the latter, 

particularly with respect to the recent GGMs which were developed without the airborne 

gravity data of South Korea. 

 

1.3  Objectives and chapter description 

 

The purpose of this dissertation is to determine a regional gravimetric geoid model using 

heterogeneous data. The detailed objectives are listed here. The first objective is to 

develop a geoid model for South Korea, and demonstrate the accuracy of the regional 

geoid model using additional measurements when it is compared to the recently 

published very high degree geopotential model. EGM08 has 5 arcmin (about 9 km) 

spatial resolution and as high as 6.0 cm uncertainty for the geoid undulations by 

GPS/leveling in South Korea. It is a quite good accuracy compared to 13.0 cm 

uncertainty for globally distributed geoid undulations, which are determined by 

GPS/leveling and confined to only land area (Pavlis et al., 2012). However, higher spatial 

resolution and better accuracy, such as 1 cm or 5 cm, for the regional geoid model are 

needed for many reasons. Therefore, this analysis will be compared to a geoid model over 

South Korea, which is developed by using additional gravimetric measurements, and 

show a possible improvement on the accuracy.  

The second objective concerns the reduction issues, which are related to the reference 

surface and the masses above the geoid. Two conditions are required in order to use 

Stokes’s integral as a computation method for geoid height.  As a boundary condition, all 

measurements are located on the geoid and no mass should be above this surface. In 

reality, however, the measurements are located on or above the earth’s surface and 
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masses exist above the geoid, requiring consideration of gravity reductions like terrain 

corrections and downward continuations in order to satisfy both boundary conditions.  

The third objective is the development of an optimal methodology for combining 

heterogeneous data, which include satellite, airborne, terrestrial gravimetric data, and a 

high resolution digital terrain model. Because these data have different features, like 

spatial resolutions, accuracies, measurement surfaces, and related reduction issues, 

methodologies are needed to combine them optimally in order to achieve the goal 

accuracy for the geoid model and to analyze the contribution of additional measurements 

(e.g., airborne gravimetry). In particular, it is very critical to verify the consistency 

between terrestrial and airborne and merge these two dataset together in order to ensure 

that they represent the same gravitational field.   

The fourth objective is to modify Stokes’s kernel function and determine the integration 

area for geoid computation in order to minimize the truncation error associated with the 

limited integration area and the discontinuity of the data (Featherstone, 2013). In addition, 

the maximum degree of GGMs, describing the long wavelength information of the 

gravity field for a regional area, should be determined to combine them with the gravity 

data in the region. Various studies have proven that the accuracy of geoid undulations 

based on locally distributed data depends practically on the kernel function, the size of 

integral area, and the maximum degree and accuracy of reference GGMs (Wang et al., 

2011; Huang et al., 2012; Featherstone et al., 2010). Therefore, the optimal choice among 

them should be determined for South Korea.  

The fifth objective is to verify or reduce approximation errors and side effects incurred 

during the development of geoid model. Stokes’s integral is based on anomalous gravity 

values as boundary condition and the boundary is the geoid surface. It includes many 

approximations such as linearization, simplifications of directional derivatives, and 

approximating the boundary as a sphere. Their effects on the regional area are expected 

to be small and negligible, but still should be considered. 

Chapter 2 introduces the details of the basic theories for the geoid model computation and 

the methodologies for the measurement reduction. Chapter 3 describes the gravimetric 

measurements, the global geopotential model and high resolution topographic model, 

which are used in this dissertation, and includes possible and reliable combination 

methods of gravimetric measurements considering the topographic reduction and the 

analytic continuation. In Chapter 4, the kernel modification method and the Remove-

Compute-Restore (RCR) technique, which are concerned with overcoming the limitations 

of Stokes’s integral, are introduced and verified with simulated and actual data. Chapter 5 

reviews regional geoid models developed in several nations, and compares them with the 

developed geoid model for South Korea, which is also verified by comparing it with 

EGM08 as well as GPS/leveling geoid undulations. Chapter 6 summarizes the results of 

this study and proposes future work.  
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CHAPTER 2 THEORETICAL BACKGROUND OF GEOID 

DETERMINATION 

 

This chapter focuses on introducing the theories belonging to the determination of the 

geoid undulation. Section 2.1 describes the geodetic boundary value problem, how we 

solve it in order to determine the gravity potential and ultimately estimate the geoid 

undulation. Section 2.2 summarizes the well-known computation formula, which is called 

Stokes’s integral, for the geoid undulation based on the gravity measurement. Section 2.3 

considers the various effects of approximations incurred during the development of the 

theoretical relationship between gravity data and the geoid undulation. Section 2.4 

describes the reduction methods applied to the actual measurements so that they satisfy 

the boundary condition for Stokes’s integral, also explains harmonic continuation 

methodologies and how they are applied in the reductions. Finally Section 2.5 introduces 

the Remove-Compute-Restore (RCR) technique that is required in order to include the 

low frequency gravity field of the earth, and it summarizes the geoid modeling 

considering all reductions and corrections with proper equations. 

 

2.1  Geodetic Boundary Value Problem and Bruns’ equation 

 

The geoid undulation is the height from a reference ellipsoid to the geoid, and its 

determination starts from defining both surfaces. The geoid is a continuous equipotential 

surface of the gravity potential such that it closely approximates mean sea level, and it is 

perpendicular to the direction of gravity. The potential on the geoid is denoted 

         ( 2 ) 

where the gravity potential is the resultant of gravitational and centrifugal potentials, and 

   indicates a constant. The gravitational potential ( ) is due to the mass attraction of the 

earth, and the centrifugal potential ( ) is caused by the rotation of the earth. 

The reference ellipsoid is chosen to represent the earth with the normal gravity potential, 

 . Defining normal gravity potential makes it easy to handle the gravity potential 

mathematically because the residual between the actual and normal gravity field, called 

disturbing potential,  , is a quite small. At an arbitrary point,  , the disturbing potential is  
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             ( 3 ) 

The disturbing potential outside of the earth satisfies Laplace’s equation, which means 

the Laplace operator ( ) applied to   is zero, because the centrifugal potentials are 

cancelled and it is assumed to be a mass-free area.  

                      ( 4 ) 

The Geodetic Boundary Value Problem (GBVP) refers to the problem of determining the 

earth’s physical surface and exterior gravity field from geodetic measurements such as 

gravity and potential difference (Moritz, 1980; Torge, 2001). Depending on the given 

boundary condition, the classical GVBP is one of three kinds; the first is Dirichlet’s 

problem if the given boundary values are the potential. The second is Neumann’s 

problem if the normal derivative of the potential is given. If the boundary value is a linear 

combination of potential and its normal derivative, the GBVP is called Robin’s problem. 

The classical solution of GBVP is given in the form of spherical harmonic expansions or 

integral formulas, if the boundary is a sphere (Heiskanen and Moritz, 1967) 

The disturbing potential relates to the geoid undulation based on a linearization, as 

follows. The normal gravity potential,   ,  in Equ ( 3 ) is extended from the normal 

gravity potential at the corresponding point,  , on the reference ellipsoid by Taylor series 

expansion. And then, Equ ( 3 ) becomes  

      [   
   

  
|
   

  
 

 

    

   
|
   

    ]    ( 5 ) 

where   is a distance from   and  , and indicates the geoid undulation,  . If only the 

first derivative of the normal gravity potential is considered, it is replaced by the 

magnitude of normal gravity on the ellipsoid,    , which is directly perpendicular to the 

ellipsoid.  

  
  

  
 
(     )

  
       ( 6 ) 

   equals    on the geoid surface. Often an assumption is made that the normal gravity 

potential on the reference ellipsoid,   , is equivalent to   . Then Equ ( 6 ) is simplified  

  
  

  
       ( 7 ) 

Equ ( 6 ) is the generalized or extended Bruns’s equation; Equ ( 7 ) is called Bruns’s 

equation. They show the relation between the disturbing potential and the geoid 

undulation.  
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2.2  Determination of geoid undulation 

 

The gravity anomaly is defined and used as a boundary condition in order to model the 

disturbing potential and geoid undulation. In Section 2.2 and 2.3, it is assumed that the 

gravity anomaly refers to the geoid surface and there is no mass above the surface. The 

assumptions are related to reduction problems which will be dealt with in Section 2.4.  

 

2.2.1 Gravity anomaly  

The gravity anomaly (  ) is a difference between magnitudes of gravity,  , at   on the 

geoid, and normal gravity,  , at   on the reference ellipsoid. The magnitude of normal 

gravity,  , is computed by Somigliana’s formula (Heiskanen and Moritz, 1967).  

  
      

         
  

√               
     ( 8 ) 

where  ,   are semi- major and minor axes of the ellipsoid, and   ,    are normal gravity 

at the equator and the pole of the ellipsoid, respectively. The gravity anomaly has 

traditionally been adopted as the boundary value to model the disturbing potential, and 

ultimately the geoid undulation, which is Stokes’s integral. We have, 

          
   

  
 
   

  
       ( 9 ) 

where the directions of derivatives are along the normal to ellipsoid ( ) and to the geoid 

( ). The gravity anomaly is simplified by approximations and assumptions; first, the 

direction of the normal to the geoid is approximated by the normal to the ellipsoid: 

    
   

  
 
   

  
      ( 10 ) 

A Taylor series expansion of normal gravity,  , is: 

      
   

  
|
   

  
 

 

    

   
|
   

        ( 11 ) 

The Taylor series expansion is inserted into Equ ( 9 ), and where the first approximation 

is used.  

   

  
 
   

  
 (        

   

  
)    ( 12 ) 

Then, 
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      (   
   
  
|
   

  
 

 

    
   

|
   

    )

  
   
  

 
   
  

 
   
  
|
   

  
 

 

    
   

|
   

     

( 13 ) 

Second, only the normal gravity and its first derivative are considered. Third, the gravity 

potential at   is assumed to be equivalent to the normal gravity potential at   when 

Bruns’s equation is applied, (of course    is constant): 

    
   

  
 

 

  

  

  
|
   

        ( 14 ) 

This, called the fundamental equation of physical geodesy, is the boundary condition of 

Robin’s problem because it is in the form of a linear combination of potential and its 

normal derivative. Furthermore, if the derivative along the normal to the ellipsoid is 

approximated as the radial derivative and normal gravity is approximated as shown, 

 

  
 

 

  
   

  

  
      

  

  
   

 

 
    ( 15 ) 

Then the fundamental equation of the physical geodesy is simplified as 

    
  

  
 
 

 
      ( 16 ) 

The effects, caused by all these approximations and assumptions on the gravity anomaly 

will be given in Section 2.3.   

 

2.2.2 Stokes’s integral  

The disturbing potential at an arbitrary point satisfying the Laplace’s equation is given by 

Pizzetti’s formula using the gravity anomaly as a boundary condition on the sphere 

(Heiskanen and Moritz, 1967):  

   
 

  
∬   (     ) ( )  
 

    ( 17 ) 

Pizzetti’s formula assumes, first, the total mass difference between the geoid (earth) and 

ellipsoid is zero which makes the zero-degree harmonic equal to zero. Second, it assumes 

the coordinate origin is at the center-of-mass, then the first-degree harmonics are also 

zero. There is a significant approximation here, as well, namely the spherical 

approximation that 1) assumes the integration surface, the geoid is a sphere, and 2) that 

the spherical form of the fundamental equation of phsycial geodesy is used.  ( ) is 

called Stokes’s function,  
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 (   )  ∑
    

   
  (      )

 
              ( 18 ) 

where   is the computation point,   is the integration point over unit sphere,  , and    is 

Legendre’s polynomial. The     is the central angle between   and   computed by 

                               (     )   ( 19 ) 

Stokes’s function is also expressed in 

 (   )  
 

      
     

   

 
         (     (   

   

 
     

   

 
)) 

( 20 ) 

Pizzetti’s formula is combined with Bruns’s equation, and then the geoid undulation is 

determined by  

   
 

    
∬   (     ) ( )  
 

     ( 21 ) 

This is Stokes’s integral which shows that the geoid undulation is computed by an 

integral over the entire sphere with continuous gravity anomaly on it. It is noted that the 

disturbing potential should satisfy Laplace’s equation above the geoid and that the gravity 

anomaly is given on the geoid. In other words, there is no mass above the surface on 

which the gravity anomaly is located.  

By the assumptions, which are that zero and first degree harmonics are zero, the geoid 

undulation computed by Stokes’s integral refers to the ellipsoid that fits best to the global 

geoid and is called the best fitting ellipsoid, not a priori defined ellipsoid. Also, Stokes’s 

integral assumes that the gravity potential on the geoid is equivalent to the normal gravity 

on the ellipsoid. Therefore, for an arbitrary and defined ellipsoid, the extended Bruns’s 

equation should be combined with Pizzetti’s formula. The geoid undulation with respect 

to this ellipsoid then includes a constant, called   . Usually    is determined by the 

spherical harmonic model for the disturbing potential and satellite altimetry (Bursa et al., 

1999). In general (Heiskanen and Moritz, 1967)  

   
 

 

   

 
 
 

 
        ( 22 ) 

where   is the gravitational constant,    is difference of mass between the geoid and the 

ellipsoid,    is difference between gravity potential on the geoid and normal gravity 

potential on the ellipsoid. By defining the reference ellipsoid such as     , then    

only includes the second term in Equ ( 22 ). Moreover, if     , then    would be zero.  
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2.3  Systematic effects 

 

The approximations made in the previous section affect the gravity anomaly, and 

consequently the geoid undulation estimated by Stokes’s integral. The errors or 

corrections are expected to be small and negligible for a regional or local area, but they 

are systematic and still worthy of consideration. The directional derivative, linear, and 

spherical approximations and the atmospheric and ellipsoidal corrections are depicted in 

this section.  

 

2.3.1 Atmospheric correction 

The atmospheric effect has to be removed from the gravity anomaly defined by Equ ( 9 ). 

The normal gravity is defined by semi-major axis of the ellipsoid (  ), geocentric 

gravitational constant of the earth (  ), dynamical form factor of the earth (  ), and 

angular velocity of the earth ( ). Among them,    includes the atmosphere, so that the 

atmosphere correction,    , should be added to the measured gravity (Rapp and Pavlis, 

1990), which accounts for the attraction of atmospheric masses above the measurement 

point as if they are below, as assumed for the normal gravity (spherically layered 

atmosphere).  

   [    ]                 
   [ ]              [  ]   ( 23 ) 

 

2.3.2 Directional Derivative error  

As first approximation in Section 2.2, the derivative of the gravity potential with respect 

to the plumb line is approximated by the derivative with respect to the perpendicular to 

the ellipsoid. Equs ( 10 ) and ( 9 ) show the approximation, and the directional derivative 

error is estimated by the difference.  

   
(       )

 
   

  
 
   

  
     ( 24 ) 

In this section,   is an error on the indicated subscript and incurred by the superscript. 

The derivative with respect to the plumb line is related to the derivative with respect to 

the normal to the ellipsoid according to 

 

  
     

 

  
  

 

   
  

 

   
     ( 25 ) 

where   is the total deflection of the vertical with north and east components,   and,   

respectively, and,   and    are distances in the north and east directions (Jekeli, 1981). 

Combing Equs ( 25 ) to ( 24 ), the directional derivative error is  
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   ( 26 ) 

where  
   

  
      . If the gravity potential is replaced by the sum of disturbing and 

normal gravity potentials, the derivative of the normal gravity potential with respect to 

distance in longitude is zero because it depends only on the latitude. Then   

   
(        )

 
 

 
(     )   (

  

   
 

  

   
)   

  

   
     ( 27 ) 

Here, it is assumed that the total deflection of the vertical is quite small. The derivatives 

of   are replaced by the components of the deflection of the vertical multiplied by the 

normal gravity, and then 

   
(        )

 
 

 
(     )  ( 

  

   
    )      

  
 

 
(     )   

  

   
 

( 28 ) 

The second term in Equ ( 28 ), the derivative of the normal gravity potential with respect 

to the north distance is 

  

   
 

 

   
 (   )  

  

  
∑ (

 

 
)
  
√
 (    )

    
    ̅    (    )

 
         ( 29 ) 

where    is the gravitational constant of the earth,   is the semi-major axis of the 

ellipsoid, and     are spherical harmonic coefficients of the normal gravitational potential.  

 

2.3.3 Linear approximation error 

When the normal gravity potential at   was substituted with a Taylor series expansion 

with respect to the point,  , only the linear terms for the potential and the normal gravity 

were considered in the derivations of Bruns’s equation and the fundamental equation of 

the physical geodesy. The ignored higher order derivatives generate the linear 

approximation errors on the geoid undulation and the gravity anomaly, but only the 

second order derivative is considered in computing this error because third and higher 

order derivatives are very small. From Equs ( 6 ) and ( 5 ), the linear approximation error 

on the geoid undulation is 

  
(           )

 
 

   

  

  
|
 
       ( 30 ) 

The linear approximation error on the geoid undulation is simply estimated by using the 

spherical approximation, Equ ( 15 ). It is less than 0.5 mm if the geoid undulation reaches 
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to 50 m. For the derivation of the fundamental equation of the physical geodesy, the 

linear approximation error in the gravity anomaly is the difference between Equs ( 14 ) 

and ( 13 ).  
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(
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) (
  

  
)
 

      ( 31 ) 

 

2.3.4 Spherical approximation error 

The fundamental equation of the physical geodesy in spherical approximation assumes 

that the derivative along the ellipsoid normal is the same as the derivative along the radial 

direction. The error is denoted as 

   
(              )

   (              )        ( 32 ) 

This is the difference between Equs ( 16 ) and ( 14 ). The first term on the right side in 

Equ ( 14 ) can be written using 

 

  
 

 

  
           

 

   
        ( 33 ) 

where   is the first eccentricity of the ellipsoid. The second term in Equ ( 14 ) is simply 

replaced by 
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  (    )  
     

   
     )    ( 34 ) 

   is the dynamical form factor of the earth and   is the angular velocity of the earth. 

Then, Equ ( 14 ) with Equs ( 33 ) and ( 34 ) becomes 
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( 35 ) 

Finally, Equ ( 32 ) is determined with Equs ( 16 ) and ( 35 ). 

   
(            )

            
  

   
 (   

  

  
  (    )  
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( 36 ) 
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2.3.5 Ellipsoidal correction  

The boundary, assumed as the sphere, more accurately should be an ellipsoid. This 

spherical approximation is corrected by the so-called ellipsoidal correction, which is 

added to the geoid undulation determined by Stokes’s integral derived under the spherical 

approximation. Fei and Sideris (2000) gave a nice review of previous researches done by 

Molodensky et al. (1962), Moritz (1980), Martinec and Grafarend (1997), and derived an 

alternative ellipsoidal correction for the disturbing potential and then the geoid 

undulation through Bruns’s equation: 

     
( )      

( )
      ( 37 ) 

where the first term on the right side,   
( )

,  is computed by the Stokes’s integral under 

the spherical approximation, and the second term called the ellipsoidal correction is 

determined by  

  
( )
   

(  )
 

 

  
∬  ( )( ) (         )   

    ( 38 ) 

  
( )

 is the resultant of   
(  )

 and an integral of   
( )

 with kernel  (         ).   
(  )

  

consists of   
( )

 and low-degree geopotential coefficients of the disturbing potential: 

  
(  )  (
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(
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√  

  
(                    )) 

( 39 ) 

where    is an average value of gravity,      are the unit-less harmonic coefficients of 

the disturbing potential. Also the kernel, a simplified version of  (         ) (under 

the assumption  (         )   ), is given by 

 (         )  
           

      
     

 
             

   
 

( 40 ) 

The detailed derivations are given in Fei and Sideris (2000). The ellipsoidal correction 

(    
( )

) is expected to be very small because the flattening of the ellipsoid is only about 

0.003, but it is significant. However, higher-order effects can be neglected (Heiskanen 

and Moritz, 1967; Fei and Sideris, 2000).  
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2.4  Reductions 

 

The boundary for Stokes’s integral must satisfy the conditions that it is free of mass in the 

exterior and that the gravity anomalies are located on it (Heiskanen and Moritz, 1967). In 

reality, masses exist between the geoid and the earth’s physical surface, and also gravity 

is measured on or above the earth’s surface. The gravity reduction handles the masses 

above the geoid and transfers gravity values to the geoid.  

 

2.4.1 Topographic effects 

Topographic masses exist between the geoid and the measurement surface. These masses 

must be completely removed and relocated on or under the geoid. The topographic 

masses above the geoid generate a gravitational potential according to Newton’s density 

integral with a constant density ( ), and the negative vertical derivative of the potential is 

the corresponding gravitational attraction. In this chapter, two well-known methods are 

introduced to handle the topographic masses above the geoid: Bouguer reduction and 

Helmert’s second condensation. While the purpose of the Bouguer reduction is to 

completely remove the topographic masses above the geoid (Heiskanen and Moritz, 

1967), Helmert’s second condensation method condenses them into the geoid in the form 

of an infinitely thin layer (Heck, 2003). Both reductions guarantee that Laplace’s 

equation is satisfied outside the geoid. Instead of the full topography above the geoid, 

also a long-wavelength elevation surface is considered with respect to which the residual 

topography enters in the reductions. This process has the advantage of preventing the 

subtraction of duplicate topographic effects when the Global Geopotential Model (GGM) 

is applied to the geoid computation in the Remove-Compute-Restore procedure (Forsberg, 

1994).  

The effect caused by the regional topography contributes to the short wavelength 

information of the gravity field, so removing or modeling of the topographic effect 

smooth the gravity measurements (Jekeli and Serpas, 2003; Huang and Veronneau, 2005). 

The local topographic reductions also tend to remove the correlation between the free-air 

anomalies and height. In this section, the equations of each reduction method are 

summarized. The Bouguer reduction and Helmert’s second condensation follow the study 

of Jekeli and Serpas (2003), and the RTM method follows the study of Forsberg (1994). 

Consider the following geometry;   is the evaluation point and    is the projection of   

onto the earth’s surface. Also Q is the integration point and    is defined as the radial 

projection of   onto the level surface of   . They all are described in a spherical 

coordinate system, and the distance,  , between two points , (     ) and (        ) is 

                       ( 41 ) 

  is a sum of the radius of the geoid,  , and the height,  , above the geoid (Figure 1).  
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Figure 1. The geometry for reduction methods  

 

 Bouguer reduction 2.4.1.1

 

The refined Bouguer reduction eliminates the gravitational effect of all masses (with 

assumed constant density) above the geoid surface from the observed gravity. The 

gravitational potential at   due to the masses is  

(      )    ∭
  

    
     ∬ ∫

  

    
  

    

   
   ( 42 ) 

where   is Newton’s gravitational constant and   is the volume of the topography. Here, 

an additional variable    is defined as an integration point within the mass distribution 

with vertical limits   and   . We may separate the masses into a Bouguer shell (       ), 
which has a constant thickness (   ), and a residual topography with respect to it. 

(      )  
        

  
     ∬ ∫

  

    
  

    

      
    ( 43 ) 

where                
 (  

   

 
 
   
 

   
) . The gravitational component of the 

topographic effect is defined by the negative vertical derivative of the potential.  
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( 44 ) 

Then, the terrain effect at   is exactly computed by  

(      ) 
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   ( 45 ) 

where     and      are 

    √  
  (   )     (   )        ( 46 ) 

     √  
  (    )     (    )       ( 47 ) 

Define another distance,   , between   and the radial projection of   onto the sphere of 

radius,   : 

   √  
                  ( 48 ) 

If     and      in Equs ( 46 ), ( 47 ) are replaced by the exact relations with    ,  

    √
   

 
  
  

 

 
  
    (   )    ( 49 ) 

     √
    

 
  
  

  

 
  
    (    )    ( 50 ) 

Under several approximations (see the Appendix A), Equ ( 45 ) simplifies to  

(      ) 
        

   
  

 
∬

 

  
(
      

 
 
 

  
 (  (      )  (  

     
 )))  

 

 

( 51 ) 

The Bouguer reduction, alone, generates a large change of gravitational potential, and 

ultimately geoid surface, thus creating an unacceptably large indirect effect.  
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 Helmert’s second condensation 2.4.1.2

 

Helmert’s second condensation assumes that the topographic masses above the geoid 

after removal are condensed onto the geoid as an infinitely thin layer; thus this reduction 

only considers the residual between the removed (      ) and the restored (       ) 

effects. 

(   )  (       )  (      )     ( 52 ) 

The potential caused by the surface layer, which has surface density  (   )    (   ), 
is derived similar to Equ ( 42 ). 

(       )     
 ∬

  

   
     ( 53 ) 

The potential can also be separated into the effect of a spherical layer of uniform surface 

density,    , and the residual effect with respect to it.  

(       )  
        

  
     ∬

      

   
    ( 54 ) 

where            
     . The gravitational component of the topographic effect is 

the negative vertical derivative, so it is exactly estimated by 

(       )   
 (       ) 
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( 55 ) 

Then the effect of a reduction by the Helmert’s second condensation, Equ ( 52 ), is 

exactly computed by Equs ( 45 ) and ( 55 ). 
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( 56 ) 

Similar to the Bouguer reduction given in Equ ( 51 ), the effect of a reduction by the 

Helmert’s second condensation is approximately determined by (see Appendix A) 

   (  )    
  

 
∬

  
    

 

  
   

 
    ( 57 ) 
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Since Helmert’s second condensation restores topographic effects removed by the 

Bouguer reduction, its indirect effect on geoid undulation is comparatively small.   

 

 Residual Terrain Model  2.4.1.3

 

The Residual Terrain Model (RTM) only accounts for the residual topographic effect 

with respect to a smooth mean elevation surface. The formula for RTM is similar to Equ 

( 45 ), but with respect to the mean surface (    )  

(     )    
  

  
∬ (

    

   
 
       

      
)  

 
    ( 58 ) 

where       is a reference hight at integral point,  ,     is given in Equ ( 46 ) and        

is defined by 

       √  
  (       )

 

    (       )       ( 59 ) 

The RTM has an advantage when we need to estimate or filter only the shorter 

wavelengths of the topographic effect with respect to the reference mean elevation 

surface. For example, if the geoid modeling includes a reference geopotential model 

through the Remove-Compute-Restore (RCR) principle and the reference geopotential 

model includes the long-wavelength topographic effect. We can then use the RTM in 

order to include the terrain effects without a duplicate accounting of the longer 

wavelengths of the topography. The terrain effect with respect to the RTM decreases in 

magnitude as the resolution or detail of the reference surface increases (Forsberg, 1984). 

This means that errors in modeling the terrain effect are also reduced. The mean or 

reference elevation surface (    ) usually refers to the spatial resolution of maximum 

degree (    ) of the reference geopotential model (Forsberg, 1994).   
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2.4.2 Indirect effect 

Changing the masses above the geoid generates effects on the gravitational potential and 

its derivatives, called the direct effect, and on the geoid as well, which is called the 

indirect effect. In other words, the indirect effect is the difference between the geoid, 

which should be determined, and the co-geoid that is computed from the gravity anomaly 

with applied topographic reduction. Moreover, Stokes’s integral should be applied to the 

gravity anomaly on the co-geoid not on the geoid because of the indirect effect, so that 

the gravity anomaly on the geoid should be again reduced to the co-geoid. This is called 

the secondary indirect effect on the gravity anomaly.  

The geoid undulation relates to the co-geoid undulation by 

                        ( 60 ) 

where           is a distance from the ellipsoid to the co-geoid surface, and    is the 

indirect effect, given with Bruns’s equation by 

   
  
(        )

 
     ( 61 ) 

  
(        )

 is the change of potential caused by changing the masses, so it depends on the 

reduction method. Generally, gravity reductions must be done so as to minimize the 

indirect effect when they are used to model the geoid undulation. Bouguer’s reduction 

creates a large indirect effect because the effect of the total mass above the geoid is 

completely removed from the actual measurement. On the other hand, Helmert’s second 

condensation has less indirect effect because it redistributes the masses onto the geoid as 

an infinite layer. Thus, Helmert’s gravity anomaly is generally used to develop a geoid 

model rather than the Bouguer gravity anomaly (Heck, 2003; Jekeli and Serpas, 2003). 

For Helmert’s second condensation, the indirect effect is (Wichiencharoen, 1982) 
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     ( 62 ) 

The secondary indirect effect is a difference of gravity anomalies on geoid and co-geoid 

surfaces, and it is based on a simple first order analytic continuation in free air 

   
(            )

                    
  

  
    

 

 
           ( 63 )  
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2.4.3 Analytic continuation 

The solution of Laplace’s equation is a harmonic function, and every harmonic function 

is analytic. It means that the function is continuous and has continuous derivatives of any 

order in the area where the function satisfies Laplace’s equation. The disturbing potential 

exterior to the surface enclosing all masses is harmonic, also     in spherical 

approximation is harmonic because it also satisfies Laplace’s equation. Any harmonic 

function can be expanded into a Taylor series or extended by another analytical method 

such as Poisson’s integral. The harmonic or analytic continuation is useful for reducing or 

relocating the gravity anomaly where it satisfies Laplace’s equation, and combining 

measurements taken on difference surfaces, such as satellite orbit, airborne altitude, and 

on the topography. In this section, we introduce: Free-air reduction, Poisson’s integral 

and Taylor series expansion methods.  

 

 Free-air Reduction 2.4.3.1

 

The gravity anomaly defined by Equ ( 9 ) indicates the gravity is on the geoid and the 

normal gravity refers on the reference ellipsoid. The classical free-air reduction simply 

reduces the gravity at the earth’s surface to the geoid by analytic continuation. It is 

premised on the assumption that the space above the geoid is mass-free. The free-air 

gravity anomaly is  

       
         (   

  

  
   )        ( 64 ) 

where   is on the measurement surface,   is the corresponding point on the reference 

ellipsoid, and   is an orthometric height. If only the first derivative is considered, and it 

is approximated by an average value of the first derivative of normal gravity with respect 

to the normal to the ellipsoid, then that free-air reduction is 

   
  

  
   

  

  
         [

    

 
]       ( 65 ) 

 

 Possion’s integral 2.4.3.2

 

The Poisson’s integral can be applied to any harmonic function,  , in order to determine 

the function exterior to a spherical boundary. It is given by 

 (     )  
 (     )

  
∬

 (       )

  
  

 
    ( 66 ) 

where the boundary sphere has radius   and   is defined in Equ ( 48 ). It shows that the 

harmonic function on the sphere with radius   can be determined from the harmonic 
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function on the sphere with radius,  . As mentioned,     is harmonic so that it is 

expressed with Poisson’s integral as  

   (     )     (     )
 (     )

  
∬
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∬
   (       )     (     )

  
  

 

 

( 67 ) 

where we have 

 (     )

  
∬

 

  
  

 
 
 

 
     ( 68 ) 

 (The derivation of Equ ( 68 ) is given in Appendix B). Then the gravity anomaly on an 

arbitrary point above the geoid is explicitly determined from    on the geoid 

(approximated by a sphere with radius  ).  

  (     )  
  

  
  (     )  

  (     )

   
∬
  (       )    (     )

  
  

 

 

( 69 ) 

This is called the upward continuation by Poisson’s integral. On the other hand, the 

downward continuation, which evaluates the harmonic function on the geoid or earth’s 

physical surface from values in the exterior space, requires an iterative or inverse 

approach (Vanicek et. al., 1996). With the initial assumption,   ( )(     )  
  (     ), the gravity anomaly on the sphere,  , is computed from the gravity anomaly 

exterior to the sphere, iteratively:  

  ( )(     )  
  

  
  (     )  

 (     )

  
∬
  (   )(       )    (   )(     )

  
 

 

( 70 ) 

It is the downward continuation of the gravity anomaly by Poisson’s integral.  
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   Talyor series  2.4.3.3

 

Downward continuation by a Talyor series introduces another spherical surface,   , 

which has       . The gravity anomaly on the sphere with radius,   , moves to the 

point, (     ).  

  (     )    (      )  
 (  )

  
|
    

(    )  
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( 71 ) 

The vertical derivative of gravity anomaly is (Heiskanen and Moritz, 1967) 
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( 72 ) 

This method would be appropriate for airborne gravimetric data, which has nearly 

constant altitude.  

In addition, we can use the Least Square Collocation (LSC) or a spectral method in order 

to analytically continue the gravity anomaly from an exterior surface to the geoid or the 

earth’ surface, and vice versa. The LSC method requires auto-covariances and cross-

covariances under the assumption that the measurements satisfy all premises of the LSC. 

The covariance matrices are typically computed by using an analytical model that 

empirically fits the physical statistics of the measurements. The spectral method of 

analytic continuation is typically based on the planar approximation using the Fast 

Fourier Transformation (FFT) (Forsberg, 2002).   
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2.5  Remove-Compute-Restore principle and chapter summary  

 

The geoid undulation computation using Stokes’s method shows that the integration is 

done for the entire unit sphere,  ; however, practically it is limited to an area where the 

gravity measurements exist. The gravity anomalies given in the limited area cannot 

resolve the long wavelengths or the trends of the gravity field. Therefore they are 

complemented by a low-degree spherical harmonic expansion of the field (Global 

Geopotential Model, GGM) according to the Remove-Compute-Restore (RCR) principle 

(Hofmann-wellenhof and Moritz, 2006). The gravity anomaly generated from the model 

is subtracted from the measured gravity anomaly, and the residual is used to compute a 

residual geoid undulation by the Stokes’s integral over a cap,   , centered on the 

evaluation point. The geoid undulation calculated from the GGM is then restored to the 

residual geoid undulation. Equ ( 21 ) is modified by the RCR technique according to 

 

 (   )  
 

    
∬ (  (     )     ( 

    )) ( )  
 

   (   )  ( 73 ) 

With long-wavelengths of the geoid provided by   , it is now better justified to limit the 

integration area to a neighborhood,   . Here, the subscript,  , means the quantities come 

from the reference model.  

The residual gravity anomalies in Equ ( 73 ) include errors such as commission and 

omission errors. Especially, when the RCR technique is applied, it is necessary to 

determine how much error from the reference model is included in the final geoid 

computation. The commission and omission errors on the geoid undulation can be 

formulated according to the following: 
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( 74 ) 

The first term is the commission error due to the error in the measured gravity anomaly, 

the second is the commission error due to the error in the reference model, and the third 

explains the omission or truncation error. The omission error is defined as neglecting 

harmonic coefficients higher than the highest degree in the model. The errors from the 

reference model (second and third terms in Equ ( 74 )) can be expressed by (Jekeli, 1980) 
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          ( 75 ) 

where    are the Fourier (Legendre) coefficients of the error kernel,   ( )  

{
        
 ( )       

 ,  

   ∫  ( )  (    )
  

  
              ( 76 ) 

If Stokes’s integral was evaluated over the entire sphere,  , the error in the GGM would 

cancel in the RCR process. However, the integral is always practically limited to    and 

the error from the GGM increases generally with the maximum degree of the reference 

model ( Equ ( 75 )). If there is no gravity data, only the second and third integrals over 

the entire sphere exist in Equ ( 74 ) and they come from the reference model itself. 

(Featherstone, 2013). 

It is basically required to determine the maximum degree (    ) of the GGMs for the 

RCR technique, and the chosen      is related to the spatial resolution,   , according to 

 

                 ( 77 ) 

     decides the contribution of the reference model and determines how much the 

gravimetric measurements beyond the resolution defined by      contribute to the geoid 

undulation computation. The recently launched satellite missions gave very accurate low 

degree harmonics, and those would make the RCR technique more reliable.  
 In summary, this chapter explains the theories and formulas for the gravimetric 

geoid undulation computation, based on Bruns’s equation and Stokes’s integral, and the 

related assumptions and approximations. Also, the reduction methods applied to the 

gravity measurements were introduced to satisfy the conditions for the boundary values 

of Stokes’s integral. The boundary value,    , including several corrections due to 

approximations and reductions is 

   (  )    ( )      ( )         
(           )( ) 

    
(        )( )     

(            )( ) 

( 78 ) 

The atmosphere correction, linear and directional derivative errors refer to Equs ( 23 ), 

( 31 ) and ( 28 ), the second indirect effect comes from Equ ( 63 ).      indicates the 

applied topographic reductions and harmonic continuation. The geoid computation is 

done by the combination of Stokes’s integral (Equ ( 21 )), the ellipsoidal correction (Equ 

( 37 )), RCR procedure (Equ ( 73 )), and indirect effect caused by changing of 

topographic masses.  
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If    
  also includes the terrain effects, it can be written by 

   
 ( )     

 ( )       ( )    ( 80 ) 

Based on Equs ( 78 ) and ( 80 ) with only consideration of the terrain effects, the residual 

gravity anomaly in Equ ( 79 ) will be 

   ( )     
 ( )     ( )      ( )  (   

 ( )       ( ))

    ( )     
 ( )  (    ( )       ( )) 

( 81 ) 

The bracket in Equ ( 81 ) explains the residual terrain effects caused by the difference 

between total and reference topography. In other words, it is the Residual Terrain Model 

(RTM), which means that only residual shorter wavelengths of the topographic field with 

respect to the reference surface are considered and applied in the geoid computation. The 

reference surface is determined by the spatial resolution of the reference geopotential 

model.  

Another issue on the practical evaluation of Stokes’s integral is the singularity of 

Stokes’s function. If we set up a near zone (  ) around the computation point, which has 

small angular radius  , then Stokes’s kernel in Equ ( 20 ) is 

 ( )  
 

 ( )
 
  

 
      ( 82 ) 

where   is the straight-line distance from the integral to computation point. From Equs 

( 73 ) and ( 82 ), the computation of geoid undulation in the near zone is  

   
  

   
∬

(   ( )    
 ( ))

 
  

  
    ( 83 ) 

The singularity can be solved by using planar coordinate approximation,    and   , and 

defining the polar coordinate system,   and  , passing through the computation point. 

Changing the variables of integration with respect to the new coordinate system are 

                            ( 84 ) 

Then, the geoid computation in the near zone given by Equ ( 83 ) is 
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Finally, the geoid undulation is determined by combining Equs ( 22 ), ( 79 ), and ( 83 ).  
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CHAPTER 3 CONSTRUCTION OF UNIFIED GRAVITY 

ANOMALY DATASET 

 

All gravity measurements should have consistency and satisfy the conditions of the 

boundary value problem. The gravimetric measurements have different character 

according to sensors, platforms, or measurement surfaces, and they should be analytically 

combined in order to generate a unified gravimetric dataset. Moreover, in developing a 

geoid model one requires additional information such as a Global Geopotential Model 

(GGM) for long wavelength components and topographic models for high frequency 

content of the earth’s gravity field. This chapter describes all available data which are 

used to get numerical results for South Korea, and suggests a method to combine the 

datasets.   

 

3.1  Datasets for South Korea 

 

The South Korea peninsula is an area 5 deg by 5 deg in latitude and longitude. The north 

boundary of South Korea faces North Korea, and the other sides are surrounded by ocean. 

Topographically, the western half of the mainland is relatively lower and smoother than 

the other half, especially considering the high mountains in the northeast and south 

central areas. The neighboring sea is studded with thousands of islands, large and small. 

Two types of gravimetric observations are used to develop the geoid model for South 

Korea: terrestrial and airborne gravimetric measurements. Both data are expected to 

complement each other. The properties of each measurement, with the strengths and 

weaknesses of each, are introduced in the following sub-sections. In addition, 

GPS/leveling data exist for the area of interest and will later be used as an independent 

set to verify the accuracy of the GGM and the developed geoid model.  

First of all, it is necessary to introduce the reference coordinate system and the ellipsoid. 

South Korea adopted the World Geodetic System 1984 (WGS84) for its horizontal 

coordinates and the Korea Geodetic Datum 2002 (KGD 2002) for vertical control. 

WGS84 is a right-handed, earth-fixed orthogonal coordinate system which defines the 

origin and three axes in order to uniquely determine the coordinates of any point on or 

above the earth. The origin is the earth’s center of mass, the Z-axis is directly associated 

with the IERS Reference Pole (IRP), the X-axis is associated with the mean Greenwich 
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meridian, and the Y-axis is determined by the right-handed convention. The geometric 

center of the WGS84 ellipsoid coincides with the origin of the WGS84 coordinate system, 

and the rotational axis of the ellipsoid of revolution is the Z-axis. KGD 2002 is based on 

the mean sea surface that the National Geographic Information Institute (NGII) 

determined by tide gauge measurements at Incheon Bay during 1913 - 1916 and had set it 

as zero. In 1964, the origin of heights was set up by Inha Technical College by a precise 

leveling survey from the mean sea surface, and it is located on the north-east side of the 

South Korea peninsula. 

It is also necessary to choose a reference ellipsoid for the normal gravity filed. Geodetic 

Reference System 1980 (GRS80) is used to compute the normal gravity. It had been 

chosen at the XVII General Assembly of the International Union of Geodesy and 

Geophysics (IUGG) for geodetic and geophysical applications. GRS80 is defined by four 

parameters, which are the semi-major axis of the ellipsoid ( ), the gravitational constant 

of the earth (  ), the dynamical form factor of the earth (  ), and the angular velocity of 

the earth ( ). Table 1 describes the defining parameters for WGS84, KGD2002, and 

GRS80 (and some derived parameters for the latter). The following sub-sections explain 

the terrestrial and airborne gravimetric, and GPS/Leveling measurements and include the 

results of an analysis of the consistency of both gravimetric measurements.  

 

Table 1. Parameters for reference datum and reference ellipsoid 

Geodetic Coordinate 

system 

WGS84 

Semimajor axis of the ellipsoid          

Flattening of the ellipsoid                 

Vertical datum KGD2002 

Location 253, Yonghyun-dong 

Num-Ku Incheon, Korea 

Coordinates                        

Orthometric height for origin 

point 
         

Reference ellipsoid for 

the normal field 

GRS80  

Semimajor axis of the ellipsoid          

Geocentric gravitational constant 

of the earth 
                 

Dynamic form factor of the earth             

Angular velocity of the earth                     

Semiminor axis of the ellipsoid               

Normal gravity at the equator                  

Normal gravity at the pole                  
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3.1.1 Terrestrial gravity measurement 

Terrestrial gravimetry consists of point measurements of the earth’s gravity field on its 

physical surface. Terrestrial gravity on a complex physical surface contains all spectral 

information of gravity. The acquisition of terrestrial gravity measurements takes much 

time, effort and requires accessibility to an area. The terrestrial gravimetric data for South 

Korea had been acquired by several organizations for their own purposes during the last a 

couple of decades. The Korea Institute of Geoscience and Mineral Resources (KIGAM), 

Pusan National University (PNU), and the National Geographic Information Institute 

(NGII) had collected terrestrial gravimetric measurements more recently. The terrestrial 

gravimetric data measured by the KIGAM are concentrated in the western half of South 

Korea, and the data by the PNU are distributed in the north- and south-central areas. Also, 

the terrestrial data constructed by the NGII are at some of the vertical and horizontal 

bench marks, and the Unified Control Points (UCP). The Bureau Gravimetrique 

International (BGI) and the University of Leeds also have gathered gravity measurements, 

but they were measured several decades ago and included ill-defined information about 

reference coordinate systems and reduction procedures. Therefore, the terrestrial gravity 

data from the BGI and the University of Leeds were not included in the terrestrial dataset 

considered here.  

The total number of terrestrial gravimetry measurements is 18677, and the dataset 

includes horizontal coordinates (latitude, longitude), heights (orthometric heights), the 

height anomaly, gravity, and free-air gravity anomaly. The normal gravity for the gravity 

anomaly is determined by using GRS80. The height anomaly is generated from the 

EGM08 geopotential model with degree and order 2160 (Pavlis et. al., 2012). The 

computation method of the height anomaly will be described in Section 3.2. The range of 

the terrestrial free-air gravity anomaly values is from -18.840 mgal to 174.369 mgal, 

22.438 mgal in the mean and 21.909 mgal in standard deviation. The spatial resolution 

for terrestrial data is about 35 km in the northeast quadrant and about 3 km in the 

southwest quadrant, where the northeast quadrant is less dense than the other because 

there is limited access due to the high mountains. Table 2 shows the statistics of the 

terrestrial gravity dataset, and Figure 2 shows the distribution and values of the terrestrial 

free-air gravity anomaly. 

 

 

 

Table 2. Statistics of each property of terrestrial data 

 Mean St.Dev. Maximum Minimum 

Orthometric Height (m) 171.254 215.138 1668.600 -3.600 

Height anomaly (m) 26.636 2.149 30.200 17.497 

Free-air gravity anomaly (mgal) 22.438 21.909 174.369 -18.840 
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Figure 2. Free-air gravity anomalies of terrestrial data for South Korea. [unit : mgal] 
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3.1.2 Airborne gravity measurement 

Airborne gravity at flight level yields a band-limited spectrum of gravity.  The airborne 

method has better consistency of measurement accuracy and no limitation on 

accessibility of survey area (e.g., mountains, coastlines) (Forsberg et al., 2000). Generally 

with airborne gravimetry comes a measurement of an ellipsoidal height using GPS, so it 

is possible to compute the gravity disturbance, but this is transformed to the gravity 

anomaly in this dissertation. The airborne gravity anomaly is determined by the total 

gravity minus the normal gravity, which is extended from the normal gravity on the 

reference ellipsoid by the free-air reduction. It uses the altitude which is obtained by 

subtracting the height anomaly from the altitude of measurement above the ellipsoid, and 

which is assumed to be equal to altitude of the measurement above the geoid. Total 

gravity values are the measurements tied to the ground reference station and the national 

gravity network 

The airborne gravity anomaly will be used to generate a unified gravimetric dataset with 

terrestrial data. South Korea sponsored the airborne gravity survey from December 2008 

to January 2009 (Olesen, 2009), aimed at constructing a precise geoid model. There were 

35 tracks in the north-south direction, 11 tracks in the east-west direction and 5 additional 

tracks in the Kangwon-area (total: 51 tracks). The airborne altitude was nearly constant at 

almost 3000 m. The raw data were preprocessed by time synchronization with GPS and a 

k-factor, which determines the scale factor relating gravimeter spring beam velocity and 

the spring tension (Forsberg et al., 2000). There were also corrections for the Eötvös 

effect, cross-coupling, tilt/bias effect, GPS error, and lever arm effect (Olesen, 2009).  

The total number of processed airborne gravimetric measurements was 27436. The 

airborne set includes horizontal coordinates (latitude, longitude), height (ellipsoidal 

height), the height anomaly, the gravity, and the free-air gravity anomaly with respect to 

GRS80. The free-air gravity anomaly also includes the atmospheric correction. The 

height anomaly at the locations of the airborne data is generated from the EGM08 

geopotential model with degree and order 2160 (Pavlis et. al., 2012). The cross-track 

spatial resolution or the interval between tracks was 10 km in the east-west direction and 

50 km in the north-south direction. Airborne measurements were filtered by the 150 

second Butterworth filter which reduced the resolution to about 5.2 km (Olesen, 2009), 

but the final airborne gravimetric data were generated at 1 km spatial interval in each 

track. The range of values of airborne free-air gravity anomalies is from -26.680 mgal to 

118.120 mgal, 26.698 mgal in the mean and 17.797 mgal in standard deviation.   

 

Table 3 shows the statistics of the airborne gravity dataset, and Figure 3 shows the 

distribution and values of the airborne free-air gravity anomaly.  
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Table 3. Statistics of each property for airborne data 

 Mean St.Dev. Maximum Minimum 

Ellipsoidal altitude (m)   3321.569 2772.566 

Height anomaly (m) 26.194 2.323 30.004 20.358 

Free-air gravity anomaly (mgal) 26.698 17.797 118.120 -26.680 

 

 

 

Figure 3. Free-air gravity anomalies of airborne data for South Korea. [unit : mgal] 
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3.1.3 Consistency between gravimetric measurements 

Terrestrial and airborne gravity measurements have differences in spatial resolution, 

accuracy (including random and systematic error), acquiring surface, and topographic 

effect. The gravimetric data are compared to each other in order verify whether they are 

consistent or not, and to quantify existing differences.  

The terrestrial data are measured on the earth’s surface at elevations less than 1800 m, 

while the airborne set was acquired at airborne altitude, approximately 3000 m above the 

geoid. However, Tables 2 and 3 showed that the terrestrial free-air gravity anomalies 

have the mean of 22.4 mgal, and the standard deviation of 21.9 mgal, whereas 

corresponding values for the airborne data are 26.7 mgal and 17.8 mgal. According to 

Newton’s law of gravitation, the gravitational attraction increases as the measurement 

point is closer to the mass. The simple statistics of both measurements show that the 

terrestrial data seem to have less energy than the airborne data.   

Datasets are separately regularized to grids with equiangular spacing of 30 arcsec in order 

to compare them in a more systematic way. That is, the measurements in a grid cell are 

averaged and referred to the coordinates of the center of cell. The cell without a 

measurement is just blank. The regularized terrestrial data occupy 14239 cells, the 

airborne data are in 21175 cells, and the number of commonly occupied cells is 1368. 

Figure 4 shows the distributions of the regularized datasets. The common points in both 

regularized datasets refer to the same coordinates, and the differences in the data, 

terrestrial minus airborne, have the following statistics. The mean difference is -9.0 mgal 

and the standard deviation is 11.6 mgal ( 
 

Table 4). As with the previous indication, the terrestrial gravimetric measurements have 

generally smaller values than the airborne measurements. This inconsistency problem, 

manifested in the significant bias between the data types, should be analyzed and solved 

in order to unify all gravity measurements. A possible cause of the inconsistency is that 

the terrestrial data especially in mountainous areas are primarily along roads in valleys 

where the gravitational effect of the topographic masses above is in the opposite direction 

than for the airborne data. Therefore, handling the topographic gravitational effects is 

probably the key to combining the gravimetric datasets (Section 3.3).  

 

 

 

Table 4. The difference between the terrestrial and the airborne free-air gravity for 

common cells after regularization with 30 arcsec interval [unit : mgal] 
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Mean St.Dev. RMS Maximum Minimum 

-8.970 11.565 14.636 42.115 -58.600 

 

 

 

 

 

Figure 4. Distributions of the regularized data at 30 arcsec resolution : The blue-dot is 

regularized terrestrial, the green-dot is regularized airborne, and the red-square is 

common point 
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3.1.4 GPS/leveling data 

GPS/leveling is a method to determine the geoid undulation by subtracting the 

orthometric height from the ellipsoidal height at a point (Equ ( 1 )). The ellipsoidal height, 

 , is measured by GPS and the orthometric height,  , is available from leveling (and 

gravimetry). As an independent measurement, the GPS/leveling undulation is suitable for 

verification of developed geoid models based on the gravimetric measurements. NGII 

had constructed the Unified Control Point (UCP) network which covers South Korea with 

10 km regular interval, and they supplied GPS/leveling undulations at the network. 

The total number of GPS/leveling stations for South Korea is 1032. GPS/leveling data 

include horizontal coordinates (latitude, longitude) and the computed geoid undulation. 

The range of values of the geoid undulation by GPS/leveling is from 21.292 m to 29.977 

m (Table 5), and the distribution is given in Figure 5.  

 

Table 5. The statistics for GPS/leveling data in South Korea [unit : meter] 

Mean St.Dev. Maximum Minimum 

26.471 2.163 29.977 22.292 

 

Figure 5. Geoid undulation determined by GPS/Leveling [unit : meter]  
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3.2  Global Geopotential Models (GGMs) 

 

Global Geopotential Models provide long wavelength information of the earth’s gravity 

field and contribute to the regional geoid model through the Remove-Compute-Restore 

(RCR) technique. The recent developments of GGMs have been based on satellite-only 

solutions or solutions that combine satellite and terrestrial measurements; and, they have 

been produced in the form of spherical harmonic expansions (Torge, 2001). As one of the 

combination models, Earth Geopotential Model 1996 (EGM96) is an expansion of 

spherical harmonics up to degree and order 360 (Lemoine et al., 1998). Recent satellite 

missions such as CHAllenging Minisatellite Payload (CHAMP), Gravity Recovery and 

Climate Experiment (GRACE), and Gravity field and steady-state Ocean Circulation 

Explorer (GOCE), aimed specifically to measure the global gravitational field of the earth, 

have contributed to improve the long wavelength accuracies of GGMs (Reigber et al., 

2002; Tapley et al., 2004; Pail et al., 2010; Mayer-Guerr et al., 2012). The newly 

published Earth Geopotential Model 2008 (EGM08) up to degree 2190 has included the 

harmonics from the GRACE mission for its lower degrees (Pavlis et al., 2012). In 

addition, recently published satellite-only GGMs such as GOCO03S (Mayer-Guerr et al., 

2012) and GO_CONS_GCF_2_DIR (Pail et al., 2011) are based on the GOCE mission 

launched by ESA in 2009. In this chapter, GGMs are introduced and analyzed with 

respect to actual measurements for South Korea. This section introduces the models, 

estimates the errors inherent in the models, and also verifies the possible contribution of 

the additional gravity measurements for geoid computation in South Korea.  

 

3.2.1 Earth Gravitational Models 1996 and 2008 

Earth Gravitational Model 1996 (EGM96), which had been developed collaboratively by 

NASA Goddard Space Flight Center (GSFC), the National Imagery and Mapping Agency 

(NIMA), and the Ohio State University (OSU), is a spherical harmonic model of the 

earth’s gravitational field up to degree and order 360, and its spherical resolution is 30 

arcmin (about 55 km) at the equator. As an updated version of EGM96, Earth 

Gravitational Model 2008 (EGM08) was developed and published by the National 

Geospatial-Intelligence Agency (NGA) (Pavlis et al., 2008; Pavlis et al., 2012). It is also 

a fully normalized spherical harmonic model of the earth’s gravitational field up to 

degree and order 2160 and with degrees up to 2190. The spatial resolution of EGM08 is 5 

arcmin (about 9 km) at the equator. Compared to EGM96, EGM08 has the advantage of 

employing the satellite-only gravity model from GRACE, ITG-GRACE03S, up to degree 

and order 180 (Mayer-Guerr, 2007).  

Area-mean free-air gravity anomalies on a global 5 arcmin grid were generated for the 

development of EGM08 by merging terrestrial gravity data, altimetry-derived gravity 

anomalies computed at the Danish National Space Center (DNSC) and the Scripps 

Institution of Oceanography/National Oceanic and Atmospheric Administration 
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(SIO/NOAA), airborne gravity, and filled-in gravity anomalies using forward modeling 

based on a Residual Terrain Model (RTM). ITG-GRACE03S is then combined with the 

gravitational information based on the area-mean free-air gravity anomalies by least 

square combination.  

The omission error in the geoid undulation due to the finite resolution of EGM08 is less 

than 1 cm globally determined by a power law model for its power spectral density 

(Jekeli, 2009). The commission error caused by the errors on the observations is 

estimated as 18.3 cm in geoid undulation (Pavlis et al., 2008; Pavlis et al., 2012). The 

accuracy compared to independent GPS/Leveling datasets, which include 12387 points 

and are globally distributed over 52 countries and territories, was estimated as ±13.0 cm 

after removing a bias, and ±10.3 cm after a removing a linear trend. The details are given 

in Pavlis et al. (2012).   

NGA provides the fully-normalized, unit-less, spherical harmonic coefficients of the 

earth’s gravitational potential,   ̅ ,   ̅ , and the associated error standard deviations, 

       ̅ ,        ̅  (http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008). 

The spherical harmonic expansion of the earth’s gravitational potential is   
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( 87 ) 

where the scaling parameters are                        ,              . 

Both zero-tide and tide-free coefficients are provided with the consideration of the tide 

effect. The zero-tide model includes the permanent gravitational effect of Earth tides, and 

the tide-free coefficients have all tide effects removed. The models will be analyzed using 

GPS/leveling undulations and combined with gravity measurements in Stokes’s integral, 

both of which include the permanent Earth-tide effect. Therefore, we use the zero-tide 

coefficient model.  

Eliminating the defined normal gravitational potential generates the disturbing potential, 

and the gravity quantities such as gravity anomaly, height anomaly, and geoid undulation 

are based on the following equations. The spherically approximated gravity anomaly is 

determined by Equ ( 16 ), and the height anomaly is determined by 

  
 

 
       ( 88 ) 

and, the geoid undulation is approximated by 

    
   

 ̅
       ( 89 ) 

where                and  ̅ is mean normal gravity along the plumbline (usually 

approximated by a constant   ).  
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The offset in geoid undulation caused by the difference between the best-fitting and the 

WGS84 ellipsoid,            , is determined by (Rapp, 1993) 

             √             
   

√         
       

    (         )      
      

( 90 ) 

where    is the difference in semi-major axis,    is the difference in flattening, and    is 

the mean geodetic latitude for South Korea . The parameters for the best-fitting ellipsoid 

come from (Bursa et al. 1999). From (Jekeli et al. 2012), we have 

                                ( 91 ) 

 

3.2.2 Global Geopotential Models based on GOCE 

Recently, the European Space Agency (ESA) launched the Gravity field and steady-state 

Ocean Circulation Explorer (GOCE) in order to map the earth’s gravity field. It carried a 

full-tensor gradiometer consisting of 6 three-degree-of-freedom accelerometer pairs 

oriented in three orthogonal directions over a very short baseline. All nine components of 

the differential acceleration tensor were measured independently, though not all with 

equal precision. The gravitational gradients are derived from them and angular 

accelerations and velocities derived from symmetry properties and star tracker data 

(Rummel et al., 2011). 

ESA has generated various levels of data products and provides them to the scientific and 

engineering research communities for geodetic and geological studies. The level-2 

products are fully normalized spherical harmonic coefficients for the gravitational 

potential. The GOCE High-level Processing Facility (HPF) computes gravity models 

using GOCE Satellite Gravity Gradiometry (SGG) data alone or combined with Satellite-

to-Satellite Tracking (SST) data such as GRACE in three different ways; the direct, time-

wise, and space-wise approaches (Pail et al., 2011). These three approaches give very 

similar results when compared to other satellite-only or combined models. The direct 

approach, giving the GO_CONS_GCF_2_DIR model, uses the EIGEN-5C combined 

gravity model, as prior information so it is superior to the time- and space-wise 

approaches at the degrees and orders higher than 150. The GO_CONS_GCF_2_DIR 

model is based on two months of GOCE, GRACE, and LAser GEOdynamics Satellites 

(LAGEOS) data, and is expanded up to degree and order 240. The accuracy of this model 

is globally estimated as 10 cm in geoid undulation, 3 mgal in gravity anomaly for degrees 

up to 200 (Pail et al., 2011).  

A consortium of institutes in Europe composed GOCO, a combination of GOCE data and 

complementary gravity field data. In 2010, they published the satellite-only gravity field 

model GOCO01S based on GOCE and GRACE. It is a spherical harmonic model up to 
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degree and order 224, and its accuracy (only up to degree and order 200) compared to 

GPS/leveling is estimated at 14.3 cm in Germany, 13.0 cm in Japan, and 17.0 cm in 

Canada (Pail et al., 2010). GOCO02S was based on 8 months data of GOCE mission and 

developed for the degree and order up to 250,  and its accuracy (only up to degree and 

order 200) compared to GPS/leveling is estimated at 6.8 cm in Germany, 11.5 cm in 

Japan, and 15.4 cm in Canada (Gioiginger et al., 2011). Most Recently, GOCO03S used 

the extended data up to 18 months of the GOCE mission and was developed for degree 

and order up to 250. The accuracy of GOCO03S in Germany is estimated as 5.5 cm 

compared to GPS/leveling (Mayer-Guerr et al., 2012).  

 

3.2.3 Analysis of Global Geopotential Models for South Korea 

The accuracies in the reviewed GGMs are evaluated by comparisons with independent 

datasets, such as the geoid undulation and the gravity anomaly, described in Section 3.1 

for South Korea. These gravity quantities for each model are computed in the same way 

as EGM08 (Refer to Equs ( 16 ), ( 88 ) and ( 89 )). This analysis then determines which 

model to adopt as reference for South Korea, and also shows their accuracy. Moreover, 

the analysis will be used to show the contribution of additional measurements beyond the 

maximum degree of the GGMs in the development of the geoid model for South Korea.  

First, the geoid undulations based on the GGMs are compared to GPS/leveling data at 

their locations shown in Figure 5. As shown in Equs ( 88 ) and ( 89 ), the geoid 

undulation is corrected from the height anomaly which is first determined by GGMs. The 

correction requires an orthometric height, but GPS/leveling for South Korea does not 

include it separately. So we use the SRTM elevations as substitution for the orthometric 

height, and compute the geoid undulation from the GGMs. The difference between the 

geoid undulations is 

                           ( 92 ) 

   usually indicates the precision of the geoid undulation generated from GGMs, under 

the assumption that the geoid undulation by GPS/leveling is significantly more precise 

than by GGMs. However,               also includes errors incurred by the leveling and 

GPS. The standard deviations of the GPS/leveling for South Korea, which indicate the 

precision, are estimated as 1 cm for orthometric height by leveling and 2 cm for 

ellipsoidal height by GPS (Jekeli et al., 2012) 

From Table 6 we see that GPS/leveling has slightly better consistency (about 5.6 cm in 

standard deviation) with EGM08 than the most recent GOCE model (GOCO03S) when 

both models use only degree and order up to 250. EGM08 with degree and order 2160 

compares even better to GPS/leveling, where the differences have a mean of 17.3 cm and 

a standard deviation of 6.0 cm. Figure 6 shows the differences between GPS/leveling and 

EGM08 degree and order up to 2160 in the map. The large difference in the mean, given 

in second column of Table 6, comes from    which is caused by the assumptions 

described in Section 2.2.2. In Equ ( 92 ),       is a geoid undulation with respect to the 
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best-fitting ellipsoid and the global geoid surface, however               refers to the 

WGS84 for the ellipsoidal height and KGD2002 for the orthometric heights. As given in 

Section 3.2.2 the difference (           ) between the WGS84 and the best-fitting 

ellipsoid was            . The offset of vertical datum (       ), difference between 

the global to the KGD2002 geoid surface, was estimated as             by Jekeli et al. 

(2012). The sum of differences seems to generate the large mean difference between 

GGMs and GPS/leveling. If we re-write Equ ( 92 ) with respect to the reference surfaces,  

        
      

       
        

 (             )  (               ) 

  (                )  (            ) 

  (                   ) 

( 93 ) 

Therefore,    in Equ ( 93 ) is estimated as       cm.  

 

Table 6. Statistics for    [unit : cm]  

Model (Nmax) Mean St.Dev. Maximum Minimum 

GOCE(250) 15.6 25.3 87.7 -45.9 

EGM08(250) 17.4 19.7 70.4 -41.8 

EGM08(2160) 17.3 6.0 39.3 -7.3 
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Figure 6. The comparison of geoid undulations measured by GPS/leveling and generated 

from EGM08 (         ) [unit : cm] 

 

Second, the gravity anomalies generated from the GGMs are compared to the terrestrial 

and airborne gravimetric data described in Section 3.1. As an input for computing the 

GGM gravity anomaly we use the geodetic latitude, longitude, and ellipsoidal height and 

they are changed to spherical coordinates in computing the spherical harmonic series. 

The ellipsoidal height for terrestrial gravity is approximated by the sum of the 

orthometric height and the height anomaly. Tables 7 and 8 show the statistics of the 

comparison at the actual measurement points. EGM08 and GOCE models yield similar 

results (up to degree and order 250), but EGM08 has the slightly better results in standard 

deviations when compared to the terrestrial and airborne data. The lower degree 

harmonics reflect the ‘trends’ of the gravity field, so if the lower degree harmonics of the 

global geopotential model are removed from the measurements, the residual only 

includes the shorter-wavelength gravity field and is smaller than the original data. If we 

compare Tables 7 and 8, the residual terrestrial gravity anomalies have values 6 mgal to 9 

mgal in the mean and 14 mgal to 20 mgal in standard deviation, while the airborne data 

have smaller residuals. Therefore, we conclude that the airborne data have better 

agreement with the GGMs than the terrestrial data.  
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Table 7. Statistics of comparison between terrestrial measurements and GGM free-air 

gravity anomalies (unit : mgal)   

Model (Nmax) Mean St.Dev. Maximum Minimum 

GOCE(250) -6.391 19.428 144.383 -57.159 

EGM08(250) -8.159 18.354 140.777 -58.571 

EGM08(2160) -8.666 13.575 122.815 -86.808 

 

Table 8. Statistics of comparison between airborne measurements and GGM free-air 

gravity anomalies (unit : mgal)  

Model (Nmax) Mean St.Dev. Maximum Minimum 

GOCE(250) 1.226 12.217 101.634 -38.515 

EGM08(250) 0.886 11.692 100.254 -33.793 

EGM08(2160) 0.681 3.715 34.716 -17.431 

 

 

Based on the comparison results of the GGMs with independently measured data, 

EGM08 has slightly better precision than the GOCE model so it is chosen as a reference 

model for the RCR technique. The residual gravity anomalies are computed on a regular 

grid with 30 arcsec interval as described in Section 3.1.3.  

                     ( 94 ) 

Tables 9 and 10 show the statistics of the residual free-air gravity anomaly of terrestrial 

and airborne datasets, respectively. As the maximum degree used for EGM08 increases, 

the airborne data have less difference with EGM08 but there is no improvement in the 

comparison to the terrestrial data. It means, again, that the EGM08 model is not 

consistent with terrestrial data as well as with the airborne measurements. Therefore, it 

seems that the use of higher degree and order for the reference GGMs does not improve 

the consistency between terrestrial and airborne. Even though higher maximum degrees 

do not contribute to the data combination (based on the comparisons shown in Table 11), 

the various maximum degrees of the reference model for RCR technique will be tested in 

Chapter 4 in order to decrease the truncation error of the geoid model due to the practical 

application of the Stokes’s integral.  
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Table 9. Residual free-air gravity anomalies of terrestrial measurements at regularized 

locations (unit : mgal) 

Nmax Mean St.Dev Maximum Minimum 

36 -0.577 22.265 153.830 -38.429 

72 -2.680 25.294 156.165 -48.036 

90 -3.990 19.837 145.397 -44.753 

120 -6.220 19.903 140.374 -54.053 

180 -6.763 19.413 144.761 -57.502 

240 -8.700 18.378 135.722 -56.215 

360 -9.283 16.818 134.526 -67.640 

720 -9.716 16.096 118.128 -73.236 

2160 -8.813 13.981 122.785 -85.540 

 

Table 10. Residual free-air gravity anomalies of airborne measurements at regularized 

locations (unit : mgal) 

Nmax Mean St.Dev Maximum Minimum 

36 5.834 18.549 92.854 -46.283 

72 5.441 20.835 92.029 -41.091 

90 3.212 15.140 86.367 -48.595 

120 1.753 14.459 88.459 -42.075 

180 1.587 13.428 83.927 -37.501 

240 1.114 11.991 79.619 -36.541 

360 1.072 9.261 70.444 -35.013 

720 0.854 6.562 51.770 -28.824 

2160 0.826 3.643 23.878 -15.034 

 

Table 11. The difference between the residual terrestrial and the airborne free-air gravity 

for common cells (1368) after regularization [unit : mgal] 

Nmax Mean St.Dev Maximum Minimum 

36 -9.108 11.564 41.984 -58.671 

72 -9.173 11.560 41.813 -58.548 

90 -9.213 11.605 41.958 -59.047 

120 -9.233 11.664 42.409 -59.682 

180 -9.297 11.693 42.467 -59.557 

240 -9.445 11.708 41.897 -59.656 

360 -9.446 11.748 42.251 -60.922 

720 -9.429 11.986 41.847 -63.912 

2160 -9.123 11.949 40.339 -62.932 
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Table 12 is summary of comparison results of various maximum degree of EGM08 with 

GPS/leveling. The standard deviations are dramatically changed up to degree 360, but 

they are only improved by about 6.7 cm from degree 360 to 2160. The results would be 

used to verify the contributions of additional gravimetric dataset beyond the maximum 

degree of reference model.  

 

 

Table 12. Statistics for    [unit : cm] : This results are based on the Zero-Tide 

coefficients of EGM08.  

Nmax Mean St.dev Maximum Minimum  

72 -24.9 113.9 192.3 -288.4 

90 -7.2 42.8 68.1 -150.3 

180 14.0 32.5 93.1 -84.5 

240 16.9 23.1 83.9 -51.1 

360 17.7 12.7 59.2 -25.6 

720 18.0 8.3 50.0 -13.2 

2160 17.3 6.0 39.3 -7.3 
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3.3  Topographic effect for South Korea 

 

Topographic reductions for the gravity anomalies may contribute to finding a key to 

unify the terrestrial and airborne gravity measurements as well as satisfying the 

conditions of the boundary value problem, solved by Stokes’s integral. The numerical 

computation of the topographic effects described in section 2.4 requires a height data set, 

typically available as a Digital Elevation Model (DEM) or Digital Terrain Model (DTM). 

Nations or international organizations have produced topographic models or maps as 

essential geo-information, which have a variety of resolution, accuracy, and reference 

datum. The topographic effects depend primarily on resolution, but also on accuracy of 

topographic models, as well as the reduction methods. This section summarizes a 

topographic model and gives the numerical results of the topographic effects on the 

terrestrial and airborne data. 

 

3.3.1 Shuttle Radar Topography Mission (SRTM) 

The National Aeronautics and Space Administration (NASA), the National Geospatial-

Intelligence Agency (NGA), and the German and Italian Space Agencies cooperated in 

the project, Shuttle Radar Topography Mission (SRTM), to map the earth’s land 

topography using radar altimetry from the Shuttle spacecraft. The result was the most 

detailed global DEM of the earth. SRTM used two synthetic aperture radars with a very 

small base to height ratio, and the phase-difference measurements were derived from the 

radars to determine topography. The DEM from SRTM covered the land areas from 60º 

north to 56 º south in latitude, and heights are referred to the WGS84 geoid. The DEM 

comes in several different types of resolution sampled from 1 arcsec by 1 arcsec data. 

The model with 3 arcsec resolution is available to the public and the accuracy was 

estimated as better than 16 m globally (Farr et al., 2007).   

Figure 7 shows the SRTM topography model based on the 3 arcsec grid for South Korea. 

The elevation of topography for South Korea is less than 1800 m, and its mean is about 

230 m. As described in a previous section, the eastern half of the territory is more rough 

and higher than the western half and high mountains exist in the north-east and south-

central areas. The accuracy of SRTM for South Korea is verified by comparing to the 

averaged and interpolated orthometric heights associated with the terrestrial gravity data 

set, and it has a mean of -5.7 m and a standard deviation of 17.8 m.  
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Figure 7. Topography of South Korea (SRTM ; 3 arcsec by 3 arcsec)  

 

 

3.3.2 Topographic effects on gravimetric measurements 

The Bouguer reduction, Equs ( 45 ) and ( 51 ), and the Helmert’s second condensation, 

Equs ( 56 ) and ( 57 ), are applied to the terrestrial and airborne data sets. Computing 

terrain effects, especially at the terrestrial measurement locations, has a numerical 

singularity problem if the computation and integral points are very close to each other but 

not at exactly same location. It seems that more investigation is needed in order to verify 

the required distance between the computation and integral points when the singularity 

causes numerical problems. In this dissertation, we use the data regularization described 

in Section 3.1.3 to compute topographic effects with no apparent singularity problems. 

After the regularization, the computation points refer to the coordinates of center of the 

grid cells, and the computation of terrain correction (integral in Equ ( 45 )) is ignored for 

the integral cell that is the same as the computation cell.   

The topographic effects based on 30 arcsec averaged SRTM are determined for the 30 

arcsec regularized datasets. These are shown in Figure 8 and their statistics are given in 

Table 13 which also includes the differences between the exact and approximation 

equations described in Section 2.4.1 and Appendix A We used only the exact equations 
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since the tests with the approximate formulas indicated the possibility of obtaining 

unsatisfactory results, especially for the airborne data. While the topographic effects by 

the Bouguer reduction are very slightly larger in the mean and less in the standard 

deviation for the terrestrial than the airborne data, the Helmert’s second condensation 

effects for the terrestrial data are much larger than for the airborne data. It may be caused 

by the relationship between topographic masses and measuring surfaces. That is, the 

topographic masses above the geoid are completely below the airborne altitude, so the 

removed topographic effects at altitude are large but the removed/restored effects are 

small. In the case of terrestrial points, the topographic masses above the Bouguer shell act 

in the upward direction, so the removed topographic effects are smaller. In addition, the 

terrestrial data are affected more by removing and restoring masses because these are 

closer to the masses than the airborne data. The terrain effects summarized in this section 

will be more analyzed further in Section 3.3.3 in order to explain the gap between 

terrestrial to airborne data and how these affect the consistency.  

 

 

Table 13. Topographic Effects, computed by the Bouguer reduction (      )  and 

including the Helmert’s second condensation (   ) , on the terrestrial and airborne 

gravity measurements using the 30 arcsec SRTM data [unit : mgal] 

  Equation Mean St.Dev Maximum Minimum 

Terrestrial        Exact 38.180 47.724 331.233 -3.771 

Approximate 38.344 48.205 339.310 -3.887 

Difference -0.164 0.646 0.406 -9.023 

    Exact 2.017 6.393 35.962 -44.352 

Approximate 1.859 6.801 33.379 -52.257 

Difference 0.158 0.633 8.896 -0.407 

Airborne        Exact 37.797 48.412 307.567 0.183 

Approximate 37.843 48.738 327.963 0.183 

Difference -0.046 1.148 7.790 -20.396 

    Exact -0.032 0.782 2.093 -16.767 

Approximate -0.043 1.664 6.509 -36.828 

Difference 0.011 1.132 20.061 -7.912 
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Figure 8. Terrain effects are computed at 30 arcsec regularized locations using averaged 

30 arcsec SRTM data. The exact formulas only are used. (a) upper-left : the refined 

Bouguer reduction effects (      ) for terrestrial data, (b) upper-right : the terrain effects 

(   ) by the Helmert’s second condensation at terrestrial data, (c) bottom-left : the 

refined Bouguer reduction effects (      ) for airborne data, (d) bottom-right : the terrain 

effects (   ) by the Helmert’s second condensation at airborne data 
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3.3.3 Consistency analysis  

The refined Bouguer anomaly is determined by subtracting the terrain effect,       , 

from the free-air terrestrial and airborne gravity anomalies, and the Helmert anomaly is 

computed by subsequently adding the effect of the condensation layer to the Bouguer 

anomaly. No downward continuation is applied to the airborne data. We have 

                  ( 95 ) 

where        is given by Equ ( 45 ), and 

               ( 96 ) 

where     is given by Equ ( 56 ). The integration area was the same 4.5 degree by 5 

degree area in latitude and longitude direction for all computations. The terrain effects 

(given in Table 13) are subtracted or added to the regularized free-air gravity anomalies, 

then Table 14 indicates the statistics of the gravity anomalies for the terrestrial and 

airborne data. As expected by the statistics of the estimated terrain effects, the Bouguer 

gravity anomalies have large variations, but the Helmert anomalies are similar to the free-

air anomaly especially in case of airborne data.   

The terrestrial and airborne gravity anomalies are compared to determine the effects of 

terrain reductions on the consistency between the two. The data distribution is given in 

Figure 4. Table 15 gives the comparison results of the free-air, Bouguer, and Helmert 

gravity anomalies at the commonly occupied cells in 30 arcsec resolution. While the 

difference between terrestrial and airborne free-air gravity anomaly has a mean value of -

9.0 mgal and a standard deviation of 11.6 mgal, the Bouguer gravity anomaly differs only 

-0.5 mgal in the mean and 7.0 mgal in the standard deviation. The Helmert gravity 

anomaly has slightly better consistency in standard deviation than the free-air gravity 

anomaly. Therefore, it is clear that the terrain effect is a key parameter when combining 

the two different types of measurements; and we conclude that we have the best 

consistency between terrestrial and airborne gravity anomalies when applying the 

Bouguer reduction. 

 

Table 14. Statistics of gravity anomalies with topographic effects using 30 arcsec 

averaged SRTM at the regularized data with 30 arcsec interval [unit : mgal] 

  Mean St.Dev Maximum Minimum 

Terrestrial Free-air gravity anomaly 20.934 21.721 174.369 -18.790 

Bouguer gravity anomaly -17.246 33.940 85.923 -196.968 

Helmert gravity anomaly 22.951 20.200 159.813 -14.115 

Airborne Free-air gravity anomaly 27.326 17.851 115.420 -26.680 

Bouguer gravity anomaly -10.471 36.280 47.841 -192.547 

Helmert gravity anomaly 27.294 17.500 104.710 -26.647 
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The free-air, Bouguer, and Helmert gravity anomalies at the regularized 30 arcsec grids 

given in Table 14 are averaged to lower resolutions such as 5, 3, 2, and 1 arcmin. Again, 

it is emphasized that the terrain effects determined by the Bouguer reduction and the 

Helmert’s second condensation are based on 30 arcsec SRTM data. As in Table 15, the 

terrestrial and airborne data are compared in terms of the free-air, Bouguer, and Helmert 

gravity anomalies. In Table 16, the parenthetical values in the second column indicate the 

number of commonly occupied cells between averaged terrestrial and airborne data at 

each resolution. The comparisons of the Free-air and Helmert gravity anomalies are 

almost the same even if the data resolution is changed. On the other hand, the Bouguer 

gravity anomalies have different consistency depending on the data resolutions; 

especially the higher resolution data have the smaller differences in the mean. The reason 

why the lower resolution have worse consistency is probably because the terrestrial data 

do not represent the cell with larger grid size. As a conclusion, we should combine the 

terrestrial and airborne Bouguer gravity anomalies at 30 arcsec resolution.  

 

 

Table 15. Statistics of differences between terrestrial and airborne gravity anomalies at 

commonly occupied cells (1368). [unit : mgal] 

 Mean St.Dev RMS Maximum Minimum 

Free-air gravity anomaly -8.970 11.565 14.636 42.115 -58.600 

Bouguer gravity anomaly -0.408 6.987 6.999 31.038 -42.150 

Helmert gravity anomaly -7.217 8.097 10.846 27.794 -44.050 

 

Table 16. Statistics of differences between terrestrial and airborne gravity anomalies at 

commonly occupied cells on lower data resolution [unit : mgal] 

 Data resolution Mean St.Dev RMS Maximum Minimum 

Free-air 

gravity 

anomaly 

5 arcmin (1216) -7.903 10.125 12.844 59.000 -60.600 

3 arcmin (2085) -7.218 12.104 14.093 59.852 -55.995 

2 arcmin (2509) -7.718 13.156 15.253 62.837 -60.457 

1 arcmin (2411) -7.953 12.609 14.907 62.737 -59.350 

Bouguer 

gravity 

anomaly 

5 arcmin (1216) 4.203 12.156 12.862 80.073 -68.086 

3 arcmin (2085) 2.743 13.844 14.113 66.578 -86.752 

2 arcmin (2509) 2.365 14.002 14.200 69.053 -71.341 

1 arcmin (2411) 0.918 11.500 11.536 49.130 -65.279 

Helmert 

gravity 

anomaly 

5 arcmin (1216) -6.462 7.249 9.711 53.438 -38.105 

3 arcmin (2085) -6.039 7.929 9.967 53.457 -38.629 

2 arcmin (2509) -6.383 8.422 10.568 53.631 -40.506 

1 arcmin (2411) -6.561 8.332 10.605 37.879 -45.087 
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3.4  Downward continuation applied to airborne measurement 

 

3.4.1 Validation of algorithms 

This section analyses the algorithms for analytic downward continuation described in 

Section 2.4. It is based on using the EGM08 model, instead of the actual measurements, 

because the gravity anomalies thus generated at different altitudes are mutually consistent 

and the tests can focus on the effect of downward continuation. Basically, two regular 

grids of gravity anomalies for 4.5 deg by 5 deg in latitude and longitude are generated 

with 5 arcmin and 30 arcsec intervals, and at altitude 3000 m and on the earth’s surface, 

using the EGM08 (zero-tide) model to nmax 2160. The earth’s surface for the 5 arcmin 

data is represented by the interpolated heights of the actual terrestrial data, and for the 30 

arcsec data we used the 30 arcsec SRTM elevation model. The gravity anomaly at 

altitude 3000 is downward continued to the earth’s surface because the downward 

continuation must be done in harmonic field. The generated free-air gravity anomalies at 

altitude 3000m are downward continued to the geoid surface first, then these are again 

upward continued to the earth’s surface, according to the methods introduced in Section 

2.6. The downward (and upward) continued gravity anomalies, from at the altitude 3000 

to the earth’s surface, are compared to the free-air gravity anomalies generated from 

EGM08 at the earth’s surface.  

The statistics in Table 17 for 5 arcmin resolution and Table 18 for 30 arcsec resolutiuon 

are only for the land area. The second rows in both tables show the differences in gravity 

anomalies generated by EGM08 at the different surfaces without downward continuation. 

The third and fourth rows in each table show the statistics of the differences after 

downward continuation. For the Taylor series method, we considered only up to first 

derivatives of gravity anomaly in Equ ( 71 ). These reveal that the differences of the two 

datasets decrease significantly when the downward continuation is applied. The analytic 

methods have similar statistics. Figure 9 shows the effect of downward continuation at 

two profiles at 127.725 deg in longitude and at 37.150 deg in latitude, and for the 30 

arcsec simulated data. The gravity anomaly at airborne altitude (blue-line) is smoother 

than the gravity anomaly at the earth’s surface (green-line), and the downward continued 

gravity anomaly (red-line) is closer to the green-line. The 5 arcmin and 30 arcsec datasets 

have very similar results which are not surprising because EGM08 essencially has no 

power beyond the 5 arcmin resolution. We conclude that the algorithms are working for 

the simulated data by EGM08.  
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Table 17. The effects of downward continuation on gravity anomalies generated by 

EGM08. The statistics are only for the land area with 5 arcmin grids. 

 Mean St.Dev RMS Maximum Minimum 

No downward continuation  0.645 5.047 5.088 24.717 -16.236 

Poisson’s integral 0.173 1.260 1.272 6.100 -4.716 

Talyor Series 0.198 1.810 1.821 8.121 -5.746 

 

Table 18. The effects of downward continuation on gravity anomalies generated by 

EGM08. The statistics are only for the land area with 30 arcsec grids. 

 Mean St.Dev RMS Maximum Minimum 

No downward continuation 0.214 4.369 4.375 24.251 -17.329 

Poisson’s integral 0.153 1.075 1.086 9.362 -6.112 

Talyor Series 0.007 0.890 0.890 7.925 -5.431 
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Figure 9. Both profiles are extracted from the simulation data with 30 arcsec interval. 

Blue-line means the gravity anomaly at the airborne altitude approximated to 3000 m, 

green-line is the gravity anomaly at the earth’s surface, and red-line is downward 

continued gravity anomaly from the airborne altitude to the earth’s surface. (Top) Profile 

at 127.725 deg in longitude. (Bottom) Profile at 37.150 deg in latitude.  
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3.4.2 Numerical computation results of each methods 

The analytic continuation is required to combine the gravity data measured on different 

surfaces; especially the downward continuation is necessary for the geoid computation 

using airborne gravity data or combined with terrestrial. Many studies have introduced 

the numerical computations of downward continuation and demonstrated the effects on 

the gravity anomaly or geoid undulation (Vanicek et al., 1996; Novak and Heck, 2002; 

Novak et al., 2003; Forsberg and Olesen, 2007; Hwang et al., 2007).  In this section, the 

analytic downward continuation is applied to the actual airborne gravity anomalies. It is 

expected that the downward continued airborne gravity anomalies diverge even more 

from the terrestrial anomalies because, the airborne anomalies are already larger than the 

terrestrial anomalies as shown in Section 3.1, and the downward continued anomaly onto 

the earth’s surface will be larger in magnitude than at airborne altitude.  

The downward continuation requires fully occupied grids by the gravity anomalies for 

South Korea, and the grids can be filled by interpolating airborne data or using EGM08. 

In order to avoid the interpolation error, the empty cells of airborne data are filled with 

the gravity anomalies generated from EGM08 at airborne altitude. It is assumed that the 

airborne data and EGM08 have good agreement as shown in Section 3.2, and thus they 

are assumed to be complementary for this purpose. The fully occupied data grid at 

airborne altitude is downward continued to the averaged 30 arcsec SRTM surface. Then, 

we extract the cells occupied by airborne measurements from the entire downward 

continued data, and these are compared to the terrestrial gravity anomalies at commonly 

occupied cells. The downward continuation is applied to the free-air, Bouguer, and 

Helmert gravity anomalies. The terrain effects, used to generate the Bouguer and Helmert 

airborne gravity anomalies, are also applied to gravity anomalies generated from EGM08 

for the empty cells.  

 

 

 

 

 

Table 19 summarizes the comparison results between terrestrial and airborne gravity 

anomalies before and after downward continuation by Poisson’s integral. We recognize 

the downward continuation of airborne data decreases the consistency with respect to the 

terrestrial data for every type of gravity anomaly. Especially the effect of downward 

continuation on the Bouguer gravity anomaly is very large. Therefore, the downward 

continuation is not used to combine the terrestrial and airborne, but it is worth to 

demonstrate its effect on modeling the geoid undulation.  
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Table 19. The comparison results between terrestrial and airborne gravity anomalies at 

commonly occupied cells of 30 arcsec resolution data (the number of cell : 1368).   

  Mean St.Dev RMS Maximum Minimum 

Free-air 

gravity 

anomaly 

No downward 

continuation -8.970 11.565 14.636 42.115 -58.600 

Poisson’s 

integral -8.806 12.564 15.343 40.923 -61.829 

Bouguer 

gravity 

anomaly 

No downward 

continuation -0.408 6.987 6.999 31.038 -42.150 

Poisson’s 

integral -10.098 17.023 19.793 56.287 -88.433 

Helmert 

gravity 

anomaly 

No downward 

continuation -7.217 8.097 10.846 27.793 -44.050 

Poisson’s 

integral -7.281 9.370 11.866 26.992 -45.840 

 

 

We still have many questions on the downward continuation, so there need to be further 

investigations on the analytic continuation even though we do not include the downward 

continuation to data combination in this dissertation. As future work, we may apply the 

downward or upward continuation to the gravity anomaly and terrain effects separately, 

as well as by other method such as the Least Square Collocation or the higher order 

Taylor series, in order to reduce the difficulty on the downward continuation of the 

Bouguer gravity anomaly and combine the airborne data to terrestrial data with better 

consistency.  

  



59 
 

3.5  Summary  

 

This section summarizes the entire Chapter 3 and suggests a methodology to unify 

different types of gravimetric measurements based on the analysis results given in 

previous sections. Section 3.1 introduced the terrestrial, airborne, and GPS/leveling 

measurements for South Korea. The consistency test showed that the free-air terrestrial 

gravity anomaly is less than airborne data contrary to our expectation based on the 

Newton’s law of gravitation. Section 3.2 described the recently published Global 

Geopotential Models (GGMs) such as EGM08 and GOCO03S. Compared to the actual 

measurements, EGM08 has slightly better consistency than GOCO03S if we use only the 

degree and order 250. In addition, the higher maximum degree for the GGMs leads to 

better agreement with airborne data while it is hard to see the contribution of higher 

maximum degree on the consistency with terrestrial data. GGMs will be used to prove the 

contribution of additional measurements on the geoid modeling as well as the Remove-

Compute-Restore principle. Section 3.3 included the terrain effects according to the 

Bouguer reduction and Helmert’s second condensation, which are required to satisfy the 

boundary conditions for the Stokes’s integral. Moreover, the refined Bouguer reduction 

increases the consistency between the terrestrial and airborne data. The differences 

between the Bouguer gravity anomalies are reduced to almost zero in the mean and 7 

mgal in standard deviation. Therefore, we conclude the terrain effect is a critical issue to 

explain the inconsistency problem and to merge the two gravimetric data to the unified 

set. As another reduction issue, the downward continuation was applied to simulated and 

actual data in Section 3.4. The simulation data, generated from EGM08, showed that the 

downward continuation helped to reduce the differences of gravity anomalies generated 

at two different surfaces. However, it did not have an advantage on the consistency with 

the terrestrial data when applied to the actual airborne gravity data.   

Therefore, the gravimetric terrestrial and airborne measurements are merged to a unified 

dataset in terms of the Bouguer gravity anomaly. We just averaged terrestrial and 

airborne for the commonly occupied cells, but later outlier detection or combination 

weights will be considered. The Bouguer gravity anomalies in the unified data vary from 

-197 mgal to 86 mgal as shown in Table 20 and Figure 10. The total number of 30 arcsec 

cells for the land area is 171012, and 27192 cells are occupied by the unified data. They 

cover 16% of the land area. The unified data will be averaged to lower resolutions, and 

the averaged data at the lower resolution cover a larger percentage of the land area. We 

will also demonstrate the effects of data resolution on the geoid undulation.   

 

Table 20. The unified gravimetric data for South Korea includes the refined Bouguer 

gravity anomalies at 30 arcsec regularized point. [unit : mgal] 

mean St.Dev. Maximum Miminum 

-13.087 35.639 85.923 -196.968 
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Figure 10. The distribution of unified data [unit : mgal] 

  

The combined Bouguer gravity anomaly data will be used to compute a geoid model with 

the consideration of restoring the effects of Bouguer reduction. As described in Section 

2.4, the Bouguer reduction generates a large effect on the gravity anomaly and ultimately 

a huge indirect effect on the geoid undulation, so the Bouguer gravity anomaly is not 

suitable for computing the geoid undulation. In order to keep the consistency between the 

terrestrial and airborne data and reduce the variation of the gravity values and indirect 

effects, the condensed layer as given in Equ ( 55 ) is restored to the unified Bouguer 

gravity anomaly data. Figure 11 shows the flow to generate the unified data and prepare a 

dataset for modeling geoid undulation. The combined Bouguer gravity anomalies are 

merged to the Bouguer gravity anomalies generated from EGM08 and 30 arcsec SRTM 

data in order to fill the cells without measurements. We have the entire grids occupied by 

the Bouguer gravity anomaly for South Korea, and then add the terrain effects caused by 

the condensed layer. As a resultant, we have the Helmert gravity anomaly for South 

Korea. As an additional test, the downward continuation of the airborne free-air gravity 

anomaly, which was omitted at the combination procedure, is considered to demonstrate 

the effect on the geoid computation.  
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Figure 11. Flowchart of data combination  
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CHAPTER 4 STOKES’S INTEGRAL MODEL 

 

Stokes’s integral in Equ ( 21 ) says that the gravity anomaly multiplied by Stokes’s kernel 

(Equ ( 18 )) is continuously integrated over the entire sphere. However, the integral area 

must be reduced to a relatively small area where data are available, and also evaluated by 

summation using discretized finite compartments. Truncation errors, due to the limited of 

area are reduced by the Remove-Compute-Restore (RCR) technique and modification of 

Stokes’s kernel. Indeed, various studies have proven that the accuracy of geoid heights 

based on locally distributed data depends practically on the size of integral area, the 

maximum degree of the reference GGMs, and the kernel modification (Wong and Gore, 

1969, Forsberg and Featherstone, 1998). 

As described in Section 2.6, the RCR technique supplements longer wavelength 

information to the truncated Stokes’s integral by removing the low frequency gravity 

anomaly from the measurements and restoring the low frequency geoid undulation to the 

computed residual geoid undulation. The effect of the RCR technique on the geoid model 

depends on the maximum degree (nmax) of the reference model and the errors embedded 

in it. There are several possible methods to modify Stokes’s kernel. The methods 

suggested by Molodensky et al. (1962), Wong and Gore (1969), Meissl (1971), and 

Vanicek and Kleusburg (1987) are widely used. Recently, Featherstone (2013) gave a 

very nice review about most of the published kernel modifications, which are categorized 

as deterministic, stochastic, combined, and band-limited.  

In this study, the kernel modification by Wong and Gore will be practically applied for 

South Korea in order to reduce the truncation error. This chapter introduces the kernel 

modification, and includes the analysis of the effects of the RCR technique, and 

numerical test results on the choice of spherical capsize of the integral. Also, the 

systematic effects described in Section 2.3 are numerically estimated.  
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4.1  Introducing the Kernel modifications 

 

Wong and Gore (1969) modified Stokes’s kernel by removing low degree Legendre 

polynomials from Stokes’s function given in Equ ( 18 ). The modified kernel is defined 

by 

 ( )               ( )         ( )   ( 97 ) 

where 

       ( )  ∑ (
    

   
)  (    )

 
       ( 98 ) 

Legendre Polynomials are recursively computed by 

  (    )      (    )       

  (    )   
   

 
    (    )  

    

 
        (    )   ( 99 ) 

  is arbitrary, but should be less than or equal to     .  The effect of this modification is 

that the low frequency errors in the gravity anomaly have less influence on the residual 

geoid undulation (Featherstone, 2013).  

 

4.2  Estimate model error based on simulation data  

 

In this section, we focus on the geoid modeling error for South Korea based on the 

simulation data. These simulated gravity anomaly data derived from EGM08 are 

subjected to the same RCR procedure as the actual data to compute the geoid undulations 

by the Stokes’s integral. First, we generate the free-air gravity anomalies based on 

EGM08 with degree and order 2160 on the whole grid with 30 arcsec interval for South 

Korea. These refer to the geoid surface approximate to 30 m in height. Second, various 

maximum degrees (    ) for the RCR technique will be used to find a proper     . The 

size of integration area is changed with respect to     , and the computation point is 

always located at the center of the area. Third, we will apply the kernel modification 

developed by Wong and Gore, and finally the computed geoid model is compared to the 

geoid undulation generated from EGM08 (         ) at GPS/leveling locations as 

representative of the region. It is expected that the comparison results only include the 

model error due to the truncation. 

Table 21 shows the statistics of the differences between the estimated geoid model by the 

Stokes’s integral and generated geoid undulations from EGM08 at GPS/leveling location. 

The first column in Table 21 is the      of EGM08 for the RCR principle, and second 



64 
 

column is the size of integration area related to the     . Third is the parameter ( ) used 

for the Wong and Gore’s kernel modification. Table 21 generally shows that there exist 

truncation errors caused by the practical application of the Stokes’s integral and these are 

reduced by the RCR principle and kernel modification. The modeling errors vary from 

3.7 cm to 18.1 cm in standard deviation depending on      without the kernel 

modification. The maximum degrees (    ) of 72, 120 or 180 are too low to represent 

the lower wavelengths of the gravity field for South Korea, because the error already 

reaches from 2.8 cm to 7.4 cm in standard deviation when we apply the best 

combinations of      and  . Therefore, we should use 240 or higher for     . The 

model error with          decreases to less than 2 cm when we use Wong and Gore’s 

kernel modification with   varying from 90 to 110. The best precision is 1 cm or less in 

standard deviation when we use 360 degree for      and Wong and Gore’s kernel 

modification with   between 110 and 130. Figure 12 shows the estimated model error 

distribution for          and      .  

 

 

 

Table 21. The model errors based on the simulated data. The comparison is done at the 

coordinates of GPS/leveling data [Unit : cm] 

     Window size   mean St.Dev. Maximum Minimum 

72       No mod. 14.7 18.1 47.4 53.5 

36 -1.3 7.4 14.2 16.1 

54 -9.0 15.1 35.9 41.5 

120       No mod. 0.9 11.8 32.4 31.2 

36 0.3 4.1 10.9 -10.6 

54 0.1 4.1 7.6 -10.6 

72 -0.2 7.3 19.6 -19.1 

180       No mod. 0.6 7.8 18.9 -21.5 

54 0.3 3.1 8.2 -8.5 

72 0.2 2.8 6.5 -8.0 

90 0.2 3.7 9.5 -10.6 

240           No mod. 0.0 6.7 16.7 17.4 

72 0.1 2.5 6.0 -6.4 

90 ~ 110 0.1 1.8 ~ 1.9 5.2 ~ 5.6 -5.1 ~ -4.8 

360       No mod. 0.1 3.7 13.9 -9.3 

72 0.1 1.8 6.0 -4.5 

90 0.0 1.4 4.1 -3.8 

100 0.0 1.2 3.7 -3.6 

110 ~ 130 0.0 0.9 ~ 1.0 2.5 ~ 3.3 -3.4 ~ -3.1 

150 0.0 1.1 3.1 -3.9 
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Figure 12. The differences of geoid undulations between those estimated by Stokes’s 

integral and those generated from EGM08. (              ) [unit : cm] 

  



66 
 

4.3  Numerical evaluations of systematic effects 

 

The errors incurred during the derivation of the fundamental equation of the physical 

geodesy were formulated in Section 2.3. The numerical assessments of the effects of 

model approximation, such as directional derivative, linear approximation and ellipsoidal 

correction, for South Korea are based on the gravity quantities generated from EGM08 up 

to degree and order 2160.  

The directional derivative effect refers to Equs ( 28 ), ( 29 ) and the linear approximation 

of the gravity anomaly uses Equ ( 31 ). The spherical approximation is based on Equ 

( 36 ).  Table 22 summarizes the statistics of the systematic effects caused by the linear, 

directional derivative, and spherical approximation. As seen in Table 22, the linear 

approximation is very small; hence, it is so negligible, but the spherical approximation 

varies from -116.6 micogal to 189.3 microgal and the directional derivative has a range 

from -96.2 microgal to 54.4 microgal. The spherical approximation would be decreased 

after applying the ellipsoidal correction. The directional derivative error on the geoid 

undulation is computed by the Stokes’s integral given in Equ ( 21 ).  

 

Table 22. Statistical results of approximation errors on gravity anomaly [unit : microgal] 

 Mean St.Dev. RMS Maximum Minimum 

Linear approximation -0.016 0.004 0.016 -0.008 -0.024 

Spherical Approximation 18.307 36.971 41.255 190.218 -121.003 

Directional Derivative -10.391 18.287 21.033 56.547 -96.691 
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Figure 13. The systamatic effects on the gravity anomaly casued by (Top) Linear 

approximation (Bottom) Spherical approximation [unit : microgal] 
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Table 23. Statistical results of approximation errors on geoid undulation [unit : mm] 

 Mean St.Dev RMS Maximum Minimum 

Directional Derivative -2.220 0.690 2.325 -0.900 -4.600 

 

 

 

 

Figure 14. (Top) The directional derivative error on gravity anomaly [ unit : microgal] 

(Bottom) The directional derivative error on geoid undulation [unit : mm] 
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The ellipsoidal correction is determined by Equs ( 37 ) through ( 40 ). If we compare Equ 

( 37 ) and ( 79 ),   
( )

 in Equ ( 37 ), which is used to compute the ellipsoidal correction, is 

the residual geoid undulation estimated by the Stokes’s integral.  The ellipsoidal 

correction,   
( )

, consists of two terms; the first, Equ ( 39 ), is the simple analytical 

function of   
( )

 and the first three geopotential coefficients of the disturbing potential. 

And the second, Equs ( 38 ) and ( 40 ), is an integral of   
( )

 with kernel  (         ) 

over the entire sphere.  

For the second term, the attenuation of the kernel permits the truncation of the integral to 

the area of interest. However, because   
( )

 is already a long-wavelength signal, the area 

of integration must be extended considerably.  Even for the large area used for this 

purpose, the neglected area on the integral can generate large edge effects (Jekeli et. al., 

2009). The large effect of   
( )

 reaches about 70 cm, but the ellipsoidal correction 

combined with           is less than 5 mm.  
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Figure 15. The effects of ellipsoidal correction (Top)   
(  )

  (Bottom) 
 

  
∬  ( )( ) (         )   
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CHAPTER 5 VALIDATION OF DEVELOPED GEOID MODELS 

 

5.1  Recently published regional geoid models 

 

Nations have constructed and maintained geodetic and gravimetric networks in order to 

serve the fundamental mission, which is to provide the geodetic control and gravity-field 

information for their territories (Torge, 2001). Determining the geoid surface establishes 

the reference for a vertical datum, and modeling of the geoid undulation contributes to 

the height system modernization, which makes the determination of orthometric height 

easier and less costly through the use of GPS. The development of a national geoid model 

involves a huge amount of data, a reference model such as a GGM, and requires detailed 

theory and methodology as shown in the previous chapters. This chapter describes how 

some national geoid models have been developed, focusing on the background, the 

methodology, and the accuracy. It also provides a comparison to the development of the 

geoid model for South Korea.  

 

5.1.1 South Korea 

In South Korea, many organizations had continuously measured the gravity field for their 

purposes such as constructing a unified geodetic network and and for geologic 

exploration since the 1960's. However, there existed no standard or regularized procedure 

to measure and maintain gravimetric data (Park et al., 2011). The geoid model 

developments were started in the 1990’s, but the estimated precisions have been about 15 

cm (Park et al., 2011; Bae et al., 2012). For example, the Korean gravimetric GEOID 98 

(KGEOID98), the first Korean national geoid model developed by the National 

Geography Institute had an accuracy of 16.4 cm in the mean and 42.2 cm in standard 

deviation when compared to 14 points of GPS/leveling (Yun, 2002). Many studies of the 

time focused on the use of optimal global geopotential models rather than improving in 

quality and quantity of gravimetric measurements, in order to improve the precision of 

the gravimetric geoid model.  

With increasing demands for reliable gravimetric data in the late 2000’s, the National 

Geographic Information Institute (NGII) made plans to construct the Unified Control 

Points (UCP) including geodetic coordinates and gravimetric measurements over the 

entire territory with 10 km spatial resolution, to measure gravity at the vertical 
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benchmarks, and to set up a standard procedure for processing and maintaining 

gravimetric measurements (Park et al., 2011). In addition, many studies supported by the 

NGII have constructed precise regional geoid models based on the more reliable and 

greater amount of gravimetric data. The Korean Land Specialization Research Project 

started in 2008 by the Ministry of Land, Transport and Maritime Affairs obtained new 

gravimetric measurements in the form of terrestrial and airborne data, as well as 

additional GPS/leveling, and developed both gravimetric and hybrid geoid models (Bae 

et al., 2012). The gravimetric geoid model used 14287 terrestrial data, 27343 airborne 

data and 41260 shipborne, and altimetry- derived DNSC08 data. It was based on Sokes’s 

integral with the RCR technique using EGM08 up to degree and order 360. The 

topographic effect was also applied, based on the SRTM elevation model, but its 

computation methodology and effect are not clear. Compared to 1096 GPS/leveling data, 

the accuracy of the gravimetric geoid model was -14.3 cm in the mean and 5.5 cm in 

standard deviation. The development procedure and the precision of measurements are 

given in the study of Bae et al., (2012). Another geoid model, presented by Lee et al., 

(2012), is a hybrid geoid model in Korea, called KGEOID10. The gravimetric portion of 

the model was based on 8296 terrestrial gravimetric measurements with EGM08 up to 

degree 2160 for the RCR technique. Its accuracy reached -163 cm in mean and 12.3 cm 

in standard deviation (Lee et al., 2012) when compared to 1185 GPS/leveling data. Lee 

and Kim (2012) published the geoid model, called JNUGEOID2010, which was based on 

8316 terrestrial gravity measurement, DNSC08, and EIGEN-GL04C model up to degree 

360 for RCR technique. It was developed at 1 arcmin resolution, and its accuracy reached 

12.6 cm in mean and 18.0 cm in standard deviation when compared to 735 GPS/levling 

data (Lee and Kim, 2012). The accuracies of introduced geoid models are the results 

estimated by comparing to separate GPS/leveling data sets, and these are considerably 

different. The causes may come from not only the used gravity data, geoid computation 

methodologies but also the accuracy of the used GPS/leveling data.   

  

5.1.2 Other countries 

The National Geodetic Survey (NGS) in the United States has developed and published 

precise gravimetric geoid models, G96SSS, G99SSS, USGG2003, and recently 

USGG2009 (Smith and Milbert, 1999; Smith and Roman, 2011; Wang et al., 2012).  

Before the latest model development, NGS had basically used Helmert’s second 

condensation, Stokes’s integral and RCR technique for the geoid model computations, 

simply called the Helmert-Stokes scheme. The recently published USGG2009 was 

developed with a totally different methodology, called harmonic downward continuation, 

which is suitable for using the ultra-high degree reference geopotential model. While the 

Helmert-Stokes scheme uses residual Helmert’s gravity anomaly (approximately Faye 

anomaly) which is the difference between the Helmert’s gravity anomaly and the 

reference Helmert’s gravity anomaly on the topographic surface, the harmonic 

continuation method uses the residual gravity anomaly on the physical surface, which is 

the difference between the free-air gravity anomaly and reference free-air gravity 

anomaly, and also uses the topographic effect separately computed by Residual Terrain 
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Model (RTM). However, the topographic effect is computed at the level of the potential 

and is applied like the reference geoid undulation to the residual geoid undulation using 

Bruns's formula.  Continuation of the terrain effect down to the geoid is accomplished by 

a spherical harmonic development of the effect. NGS concluded that the new method 

yielded slightly better results than the previous method (Wang et al, 2012). USGG2009 

included the latest DNSC08 altimetry-derived anomalies for the ocean, SRTM-DTED1 

3arcsec DEM for the topographic reductions, and EGM08 as a reference model. The 

accuracy of USGG2009 was estimated as 6.3 cm in the standard deviation, compared 

with 18,398 benchmarks of GPS/leveling (Wang et al, 2012).  

Natural Resources Canada has published the gravimetric geoid model series in the last 

two decades, and recently the Canadian Gravimetric Geoid Model of 2010 (CGG2010), 

(Huang and Veronneau, 2013). They have also followed the Helmert-Stokes scheme, but 

improved on the kernel modification of Stokes’s integral, the quantity and quality of data, 

and the global geopotential model. The most recently published CGG2010 was based on 

the Canadian Gravity Database (CGDB) which included terrestrial, shipborne and 

airborne gravity data. Canadian Digital Elevation Data (CDED) was used to compute the 

terrain effects by Helmert’s second condensation method. Also, they combined 

GOCO01S and EGM08 for better accuracy of the long wavelengths in the RCR 

technique. The accuracy of CGG2010 with 2 arcmin by 2 arcmin resolution was 

estimated from 2 to 10 cm in standard deviation (Huang and Veronneau, 2012).  

Geoscience Australia published gravimetric geoid models, AUSGeoid98 and 

AUSGeoid09. AUSGeoid09 at 1 arcmin by 1 arcmin grids used terrestrial gravity data, 

DNSC08 for the ocean area, and the RCR technique with EGM08 model to degree and 

order 2190, and modified the Stokes’s kernel deterministically in order to overcome the 

limitation of Stokes’s integral and improve the accuracy of the model as compared to 

EGM08. The magnitudes of the residual gravity anomalies with respect to EGM08 were 

very small; therefore, the contribution of the measurements beyond the EGM08 on the 

geoid undulation was also quite small. This indicated that EGM08 could be used alone as 

a gravimetric model over Australia. However, it has been offered that development of a 

gravimetric-quasi geoid model fitted to this vertical datum is still necessary, primarily 

because of the gap between the Australian Height Datum and the gravimetric-quasi geoid. 

The accuracy of the gravimetric component of AUSGeoid09 was estimated as 22.2 cm in 

standard deviation when AUSGeoid09 was compared to 911 GPS/leveling benchmarks 

across Australia (Featherstone, 2010).  

The International Association of Geodesy (IAG) Geoid and Gravity Commission has 

continuously developed the representative geoid models for continental Europe, including 

the gravimetric geoid models, European Gravimetric Geoid 1997 (EGG97) and European 

Gravimetric Geoid 2007 (EGG07). The recent EGG07 model achieved improvements in 

the terrestrial and marine gravity under international cooperation. The developers 

concluded that accurate global geopotential models played an important role in 

improving the accuracy of the European geoid model (Denker et al, 2005); therefore, the 

EIGEN-GL04C geopotential model, being a combination of CHAMP, GRACE and 

terrestrial data, was adopted for the RCR technique. For the short wavelength information, 
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the high resolution European DEM was created using SRTM3 and GTOPO30, in order to 

use it for terrain reduction according to the Residual Terrain Model (RTM). The EGG07 

covers an area from 25 ºN to 85 ºN in latitude and 50 ºW to 70 ºE in longitude with a 1 

arcmin by 1 arcmin grid. The accuracy is 3 - 5 cm at the continental scale and 1 - 2 cm 

over shorter distances up to a few hundred km (Denker et al, 2008).  Table 24 gives a 

summary of the major gravimetric geoid models with essential characteristics and 

reported precision.  Further details may be found in the listed references. 

 

 

 

 

 

 

 

Table 24. Summary of geoid models 

 United State Canada Australia Europe 

Reference Wang et al., 

2012 

Huang and 

Veronneau, 

2012 

Featherstone, 

2010 

Denker et al, 

2008 

Model name USGG2009 CGG2010 AUSGeoid09 EGG07 

Model 

resolution 
                        

Precision 6.3 cm 2 - 10 cm 22.2 cm 3 - 5 cm  

Modeling 

Method 

Harmonic 

continuation 

method 

Stokes’s 

integral 

Stokes’s 

integral 

Molodensky 

scheme 

RCR model 

(    ) 

EGM08 (2160) Combined 

GOCO01S and 

EGM08 (224) 

EGM08 (2190) EIGEN-GL04C 

(360) 

Gravimetric 

data 

Terrestrial 

Shipborne 

DNSC08 

Terrestrial 

Shipborne 

Airborne  

Terrestrial, 

DNSC08 

Terrestrial 

Shipborne 

Airborne 

ArcGP project 

KMS2002 

Terrain 

reduction 

(Digital Terrain 

Model) 

RTM (SRTM-

DTEM1 3”) 

Helmert’s 

second 

condensation 

(CDED) 

RTM 

(GEODATA-

DEM9S) 

RTM (National 

DEMs, 

SRTM3, 

GTOPO30) 
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5.2  Numerical computation of geoid undulation  

 

In this section, the geoid model is numerically computed by the terrestrial, the airborne, 

and the combined data. In Section 5.2.1, the indirect and secondary indirect effect 

formulated in Section 2.4 are determined by using the SRTM heights at 30 arcsec 

resolution. And, the numerical results of the determined geoid undulation are summarized 

in Section 5.2.2. 

 

5.2.1 Indirect and secondary indirect effects 

The indirect effects and secondary indirect effect caused by the Helmert’s second 

condensation are determined by Equs ( 62 ) and ( 63 ) based on averaged SRTM height 

averaged over 30 arcsec by 30 arcsec spherical grids. Table 25 summarizes the statistics 

of the indirect and secondary indirect effects, and Figure 16 shows both effects on a map. 

The largest indirect effect reaches -11.3 cm, and the RMS is about 1 cm, so the indirect 

effect is significant in the geoid computation. The maximum effect of the secondary 

indirect effect is about -35 microgal, and it is negligible.  

 

Table 25. Numerical results of indirect and second indirect effects used SRTM elevation 

averaged to 30arcsec 

 Unit  Mean St.Dev RMS Max Min 

Indirect Effect cm -0.3 0.9 0.9 0.0 -11.3 

Second indirect Effect microgal 1.0 2.7 2.9 34.9 0.0 
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Figure 16. (Top) The indirect effect on gravity anomaly [ unit : cm] (Bottom) The 

secondary indirect effect on the gravity anomaly [ unit : microgal], caused by Helmert’s 

second condensation. 
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5.2.2 Geoid Determination 

The geoid models are computed by the Stokes’s integral based on the actual 

measurements. Based on Section 4.2, we use 240 and 360 for maximum degree of the 

RCR technique and Wong and Gore’s kernel modification with      and       

truncation parameters, respectively. The geoid models are developed by using the 

terrestrial data only, the airborne data only, and the unified data, which are combined 

with EGM08 for ocean areas and land grid cells with no data (Figure 11). The 30 arcsec 

regularized data are averaged to lower-resolution data, such as 5, 3, 2, and 1 arcmin. The 

developed geoid models are compared to GPS/leveling measurements at their location by 

inverse-distance weighted linear interpolation.  

First, the developed geoid undulations are based on the free-air gravity anomalies. As 

shown in Table 26, the airborne-only models have mostly consistent accuracies, 

compared to GPS/leveling, between 18.8 and 16.0 cm in the mean and from 7 to 5.9 cm 

in standard deviation. If these are compared to the accuracy of EGM08 for South Korea 

(Table 6), we find slightly better results for the airborne-only data case on 2 arcmin and 1 

arcmin grids data. There is no improvement using airborne data at 3 arcmin or 5 arcmin 

in resolution. On the other hand, the accuracies of geoid models based on the terrestrial-

only or unified data vary considerably depending on the data resolution. Especially, the 

standard deviations for data with 5, 3, and 2 arcmin resolution are larger than 10 cm. It is 

probably due to the fact that the point terrestrial data at “lower resolution” do not 

represent the mean gravity value at these resolutions.  

 

Table 26. The accuracy of the developed geoid models based on the free-air gravity 

anomaly. [unit : cm] 

Data 

Resolution 

         ,              ,       

 mean St.Dev. mean St.Dev. 

5 arcmin 1 Airborne only data 18.8 7.0 18.1 6.9 

2 Terrestrial only data -12.4 16.5 -5.7 14.2 

3 Unified data -4.0 13.6 0.7 11.9 

3 arcmin 1 Airborne only data 17.5 6.1 17.2 6.0 

2 Terrestrial only data -7.2 14.3 -1.8 12.4 

3 Unified data -2.1 12.7 2.0 11.1 

2 arcmin 1 Airborne only data 17.2 6.0 17.0 5.9 

2 Terrestrial only data -2.4 12.3 1.8 10.7 

3 Unified data 1.0 11.1 4.3 9.8 

1 arcmin 1 Airborne only data 16.7 5.9 16.7 5.8 

2 Terrestrial only data 6.7 8.7 8.9 7.8 

3 Unified data 8.0 8.1 9.9 7.4 

30 arcsec 1 Airborne only data 16.2 6.3 16.0 6.3 

2 Terrestrial only data 12.9 6.7 13.4 6.5 

3 Unified data 12.9 6.7 13.4 6.5 
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The Stokes’s integral and kernel modification are applied to the gravity anomalies 

considering the terrain effects and downward continuation.  

 

 

Table 27 includes the statistics of the errors of geoid models with data resolution of 2 

arcmin, 1 arcmin, and 30 arcsec, respectively. “No Terr.Effect” is based on the free-air 

gravity anomaly, the same as Table 26, “Terr.Effect” means the geoid model based on the 

Helmert gravity anomaly following the procedure in Figure 11. “Terr.Eff+DCd” is based 

on the gravity anomaly with both the terrain effects and downward continuation applied 

to the airborne data. The downward continuation is done only for the free-air airborne 

gravity anomaly because it is more stable compared to the Bouguer or Helmert gravity 

anomaly. The geoid model includes the indirect effect caused by the considered terrain 

effects.  

Airborne-only data only (2 arcmin resolution) in  

 

 

Table 27 yield slightly better results in the mean (0.5 cm improvement) with the terrain 

effects, or in the standard deviation (0.5 cm improvement) with the terrain effects and 

downward continuation. The geoid model based on the terrestrial-only data has 2 - 3 cm 

improvement in standard deviation, and considerable difference in the mean.  

With 1 arcmin data grid, the geoid models with terrestrial-only or unified data have better 

accuracy when the terrain effects are applied. These are still slightly worse than the geoid 

model based on airborne-only data. However, it seems that the terrestrial data contribute 

to reduce the mean value from 16.6 cm to 14.9 cm. Also, the downward continuation 

slightly reduces the standard deviation of the error (about 0.5 cm).  

In case of 30 arcsec resolution data, it is close to or very slightly worse than the 

developed geoid undulation based on 1 arcmin. As shown in  

 

 

Table 27, the accuracies of developed geoid model at 30 arcsec grid are consistent among 

the different data inputs. It appears that the measurements contribute to the development 

of the geoid model at the higher resolution even though most of the “data” are EGM08 

values. In addition, the terrain effects, particularly on the terrestrial data, improve the 

accuracy of the geoid model as well as enabling more accurate data combination.   
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Table 27. . The accuracy of the developed geoid models, which are based on the Helmert 

gravity anomaly with or without downward continuation. [unit : cm] 

Data Resoultuion 2 arcmin  

  No Terr.Effect Terr.Effect Terr.Eff+DCd 

  mean St.Dev mean St.Dev mean St.Dev 

         

     

1 Airborne only  17.2 6.0 16.6 6.1 17.0 5.6 

2 Terrestrial only -2.4 12.3 17.6 9.5   

3 Unified data 1.0 11.1 18.4 7.7 18.9 7.4 

         

      

1 Airborne only  17.0 5.9 16.5 6.0 16.7 5.6 

2 Terrestrial only  1.8 10.7 17.3 8.6   

3 Unified data 4.3 9.8 17.9 7.1 18.2 6.8 

Data Resoultuion 1 arcmin  

  No Terr.Effect Terr.Effect Terr.Eff+DCd 

  mean St.Dev mean St.Dev mean St.Dev 

        , 

     

1 Airborne only  16.7 5.9 16.4 6.1 16.6 5.6 

 2 Terrestrial only 6.7 8.7 13.8 7.0   

 3 Unified data 8.0 8.1 14.7 6.3 14.9 5.9 

        , 

      

1 Airborne only  16.7 5.8 16.4 6.0 16.6 5.6 

 2 Terrestrial only 8.9 7.8 14.4 6.7   

 3 Unified data 9.9 7.4 15.0 6.1 15.2 5.7 

Data Resoultuion 30 arcsec  

  No Terr.Effect Terr.Effect Terr.Eff+DCd 

  mean St.Dev mean St.Dev mean St.Dev 

        , 

     

1 Airborne only  16.2 6.3 16.9 6.4 17.0 5.9 

 2 Terrestrial only 12.9 6.7 15.1 6.4   

 3 Unified data 12.9 6.7 15.1 6.4 15.4 5.9 

        , 

      

1 Airborne only  16.0 6.3 16.9 6.3 16.9 5.8 

 2 Terrestrial only 13.4 6.5 15.5 6.2   

 3 Unified data 13.4 6.5 15.5 6.2 15.6 5.7 
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5.3  Validation of the developed geoid model 

 

In this section, we validate the accuracy of the developed geoid models and the effect of 

the combined gravimetric data on the model. The procedure of determination and 

validation of geoid undulation in Section 5.2 is summarized by Figure 17. The residual 

gravity anomaly is determined by subtracting the gravity anomaly generated by EGM08 

(nmax = 240 or 360) from the Helmert gravity anomaly as a resultant of the data 

combination given in Figure 11. The residual gravity anomaly is used as an input to 

compute the residual geoid undulation by the Stokes’s integral with Wong and Gore’s 

kernel modification (M = 90 or 120). The geoid undulation from EGM08 (nmax =240 or 

360) is restored to the residual geoid undulation, thus resulting in the developed geoid 

model. Finally, it is compared to the geoid undulation acquired by GPS/leveling at the 

locations of GPS/leveling by inverse distance weighted linear interpolation. It is also 

compared to the geoid undulation generated from EGM08 (nmax : 2160).  

 

 

 

 

 

 

Figure 17. The flowchart of determination and validation of geoid undulation 
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We choose geoid models, developed by nmax = 360 for the RCR technique and M = 120 

for Wong and Gore’s kernel modification at 2 arcmin and 1 arcmin resolution given in  

 

 

Table 27, in order to study them in details. The models using airborne data only and the 

combined-data case are only considered. Figure 18 shows the differences between the 

geoid at 2 arcmin resolution and the GPS/leveling geoid undulations. The left part is for 

the airborne-only case and the right one is based on the combined data. The circles with 

the solid line in the left figure indicate the improvements and the circle with the dashed 

lines indicate worse results when compared to the differences between EGM08 (     
    ) and GPS/leveling shown in Figure 6. The circles with the dashed lines in the right 

figure show the worse results when we use the combined gravity data instead of the 

airborne-only data. It appears that the terrestrial data included in the combined data do 

not contribute to the accuracy of geoid model. 

 

 

 

Figure 18. The differences between the developed geoid at 2 arcmin resolution and 

GPS/leveling geoid undulations [unit : cm]. On the left, the developed geoid model is 

computed using airborne-only data. The circles with solid line denote improved areas 

when compared to EGM08 (         ), and the circle with dashed lines indicates 

worse results. For the right, the developed geoid model is based on the combined data 
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and the circles with dashed lines indicate worse results when compared to the geoid 

model based on the airborne-only data. 

 

Similar to the previous analysis, Figure 19 shows the differences between the developed 

geoid at 1 arcmin resolution and the GPS/leveling geoid undulations. The left part is for 

the airborne-only case and the right one is based on the combined data. The left figure is 

very close to the left Figure 18, but the right one is quite different. In the right Figure 19, 

the two circles with solid lines located in the center-west and the south-east areas show 

improvements when compared to the geoid model based on airborne-only, as well as 

geoid undulations generated from EGM08. But, the circle with dashed lines located on 

the north-east area has worse differences. While the terrestrial data do not increase the 

accuracy of geoid model at 2 arcmin resolution (the right in Figure 18), these data at 1 

arcmin resolution seem to contribute to an increase in accuracy of the geoid model. In 

summary, the geoid undulations at 2 arcmin resolution (airborne-only) and 1 arcmin 

resolution (airborne-only and combined data) are determined with precision better than 6 

cm in standard deviation when compared to GPS/leveling geoid undulation. The statistics 

of the developed geoid models and of EGM08 (         ) compared to GPS/leveling 

seem to show that the effects of additional gravimetric data, which are used to model the 

geoid undulations, are quite small. Figure 20 shows the error distributions of geoid 

models based on the airborne-only, combined data at 1 arcmin resolution, and generated 

from EGM08, compared to GPS/leveling. However, the local improvements by the 

additional airborne or terrestrial data in some areas are evident in Figures 18 and 19.  
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Figure 19. The differences between the developed geoid at 1 arcmin resolution and 

GPS/leveling geoid undulations [unit : cm]. On the left, the developed geoid model is 

computed using airborne-only data. The circles with solid lines indicate improved areas 

when compared to EGM08 (         ), and the circle with dashed line indicates 

worse results. For the right, the developed geoid model is based on the combined data. 

The circles with solid line in the center-west and south-east area shows improved results, 

but the circle with dashed lines in the north-east area indicates worse results when 

compared to the geoid model based on airborne-only data.  

 

Figure 20. Histogram for the accuracies of geoid undulations compared to GPS/leveling 
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We conclude that the airborne data slightly contribute to the development of an accurate 

geoid undulation model. Terrestrial data contribute to the accuracy of geoid undulation 

differently according to the data resolutions, therefore, there is a need for more densely 

distributed terrestrial data in the territory in order to improve the accuracy of the geoid 

undulation. As a future work, we can refine the combination methods focusing on the 

improvement in the geoid model accuracy. Outlier detection on the data or applying 

different weighting schemes on the data combination, which is mentioned in Section 3.5, 

may also be considered.    
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CHAPTER 6 CONCLUSION AND FUTURE WORK 

 

As an infrastructure for nations, the height system had been traditionally constructed and 

managed by labor intensive leveling. Since the ellipsoidal height has been accessible due 

to the developments of GPS, it is available to build and maintain the height system easily 

and efficiently if we know the accurate geoid undulation. This is called height system 

modernization, and the accurate geoid undulation is consequently a fundamental 

component for it. The aim of this dissertation is the determination of an accurate 

gravimetric geoid model for South Korea. It requires densely and extensively distributed 

gravimetric measurements. In this study the available terrestrial and airborne gravity data 

for South Korea are evaluated for their contribution to the geoid modeling effort. 

Especially, the airborne gravity data were collected in 2008 - 2009 for the development 

of a precise geoid model. Due to the characteristic of the measuring methods, the two 

types of gravimetric data have differences in data accuracy, resolution, coverage, and 

topographic reduction. Therefore, it is also very important to merge the terrestrial and 

airborne gravity data to a unified data base, which is based on understanding their 

characteristics.  

 

The consistency test shows that the difference between comparably regularized terrestrial 

and airborne data at commonly occupied geographic grid cells has a mean value of 9 

mgal, and 12 mgal in the standard deviation. Moreover, the terrestrial gravity anomaly 

measured at the earth’s surface is smaller than the airborne gravity value acquired on 

airborne altitude, approximately 3000 m above the geoid. It is contrary to the expected 

attenuation of gravity fields according to Newton’s law of gravitation, and is due to the 

fact that the space between levels with terrestrial measurements and airborne 

measurements is not empty but contains topographic masses.  

This dissertation clearly shows that the terrain effect is the most important parameter to 

consider in order to enhance the consistency of available gravimetric data and produce a 

unified data base referring to the same gravitational field. The Bouguer reduction affects 

the terrestrial and airborne gravity data differently depending on the measurement 

surfaces, and is required to achieve the better agreement of the two gravimetric data. The 

terrestrial Bouguer gravity anomalies differ from the airborne Bouguer gravity anomaly 

by -0.7 mgal in the mean and 7.0 mgal in standard deviation. The bias is significantly 

reduced from -9 mgal, and the standard deviation also has about 5 mgal improvement. 

The terrain reduction also affects the accuracy of the geoid undulation, especially for the 

terrestrial data. The geoid undulation based on the Helmert gravity anomaly, which 
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combines the Bouguer gravity anomaly with the restored condensation layer (Helmert’s 

second condensation method), is more precise than based on the free-air gravity anomaly.  

Another considered reduction method is the downward continuation of the airborne 

gravity data. It is a necessary reduction in order to combine them with other gravimetric 

measurements, as well as to compute the geoid undulation. However, the downward 

continuation in this study decreases the consistency between terrestrial and airborne data 

for any type of gravity anomaly. After downward continuation, the airborne Bouguer 

gravity anomaly agrees less with the terrestrial Bouguer anomaly. While the downward 

continuation does increase the difference between two data types, the geoid undulation 

computed from downward continued airborne data has slightly better accuracy, 5.6 cm 

versus 6.1 cm in standard deviation.  

In addition, there are available Global Geopotential Models (GGMs) such as EGM08, 

and GOCO03S based on recently acquired GOCE data. Based on the comparisons 

between the GGMs and the gravimetric measurements, the GGMs have good consistency 

with the airborne but not the terrestrial data. So, removing a reference gravity anomaly 

generated from GGMs does not contribute to an increase in the consistency of terrestrial 

and airborne gravity data. 

 

The numerical computation of the geoid undulation is done by the Stokes’s integral with 

the consideration of Global Geopotential Models (GGMs) and the Remove-Compute-

Restore (RCR) technique, combined with a kernel modification. In preparation for the 

determination of the geoid undulation, the systematic effects due to the approximations 

and assumptions in the application of the fundamental equation of physical geodesy are 

numerically estimated on the gravity anomaly and geoid undulation. The linear 

approximation error is less than 1 microgal and the directional derivative error is less than 

0.1 mgal for the gravity anomaly. The spherical approximation error, approximately less 

than 0.2 mgal on the gravity anomaly, is reduced by the ellipsoidal correction which is 

less than 5 mm on the geoid undulation. Therefore, we conclude that these effects in the 

regional area are small and negligible.  

The RCR technique and kernel modification by Wong and Gore are applied to reduce the 

truncation error caused by the limitation of the integration area. EGM08 is chosen as the 

reference model to represent the long-wavelength gravity field for South Korea, because 

it has slightly better agreement with the gravity data than GOCO03S. The model error in 

the Stokes’s integral is empirically estimated by simulation data, and it is less than 1 cm 

if we use degree 360 for RCR and 120 for the kernel modification.  

The Stokes’s integral is applied to the gravity anomalies, such as the airborne-only data, 

terrestrial-only data, and combined data, in order to determine the geoid model, and the 

accuracy is demonstrated by comparing it to independent geoid undulation data 

determined by GPS/leveling. The results illustrate the influence of each gravimetric data 

on the determination of geoid undulation. The most accurate geoid model has errors 16.6 

cm in the mean and 5.6 cm in standard deviation when we use airborne-only data at 1 
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arcmin resolution with the terrain effect and downward continuation applied. Another 

model, which is based on the combined data at 1 arcmin resolution, including the terrain 

effect and downward continuation, has errors 15.2 cm in the mean and 5.7 cm in standard 

deviation. The large difference in the mean can be explained by the datum offset,   , 

which is caused by the differences of the reference ellipsoids and datum for the 

gravimetric and GPS/leveling geoid undulations. It is numerically determined as 14.5 cm 

for South Korea (Jekeli et. al, 2012).  

The airborne-only data geoid models have slightly improved accuracy when the 

downward continuation and the terrain effect are applied. For this computation, the 

downward continuation is only applied to the airborne free-air anomaly in order to avoid 

instability in the downward continuation, and then the terrain effect is applied. The 

terrestrial-only and combined data geoid models improve comparatively more in 

accuracy than the airborne-only data model when the terrain effect is applied. However, 

the results imply that the combined data do not improve the accuracy of the geoid 

undulation compared to the airborne-only data case.  

The geoid models developed in this dissertation can be also compared to the similar geoid 

model for South Korea computed by Bae et al. (2012). Their model was based on 

terrestrial, airborne, and shipborne gravimetric data, and has 5.5 cm precision compared 

to GPS/leveling. The precision of EGM08 is estimated as 13.0 cm globally (Pavlis et al., 

2012), and it is estimated as 6.0 cm for South Korea. Based on this statistic, the geoid 

model developed in this study is improved by only 0.4 cm. But, the spatial distribution of 

the errors show that the geoid model has improvements in the south-east and center-west 

areas.  
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The main contribution of this dissertation is that the bias between terrestrial and airborne 

gravity anomaly data is explained and reduced by applying the terrain effect through the 

Bouguer reduction. It is shown that the downward continued airborne gravity data 

generate more accurate geoid undulations especially in localized analysis even though it 

does not improve the consistency with respect to the terrestrial data. While the terrain 

effect on the terrestrial data increases the accuracy of geoid model based on it, denser 

terrestrial data are required to improve the precision of the geoid undulation. Therefore, 

the key aspects of future research are 

- Downward continuation of airborne gravity data : The terrain-reduced 

Bouguer gravity anomaly has the best consistency between airborne and 

terrestrial data, however, there is a difficulty in downward continuation of this 

anomaly. As a possible solution, downward continuation could be applied 

separately to the airborne free-air gravity anomaly and the gravitational 

attraction of the topographic masses. It may contribute to better consistency 

with respect to the terrestrial data.   

 

- Combination of terrestrial and airborne : Outlier detection of the gravimetric 

data, especially the terrestrial data, and appropriate weights on the data 

combination may improve the accuracy of the geoid undulation. In addition, a 

better interpolation method could be used to fill in areas with no data.  
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APPENDIX A 
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Second, we look at the effect caused by Helmert’s second condensation, Equ ( 55 ). The 

last two terms in integral are replaced by Equ ( 56 ) under the same approximations, 
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Second, we look at the effect caused by Helmert’s second condensation, Equ ( 55 ). The 

last two terms in integral are replaced by Equ ( 55 ) under the same approximations, 

    
 

(
     

 

  
  

 

  
)  (

   

   
 
    
    

)

 
    
 

(
     

 

  
  

 

  
)

 
 

  
(
    
  

 
 

  
 (  (    )  

 

 
(     

 ))) 

 
    
 

     
 

  
  

 

  
 (  (    )  

 

 
(     

 )) 

  
   (    )

  
  

 

  
 (  (    )  

 

 
(     

 )) 

  
 

   
 
(     

 ) 

  



98 
 

 

 

APPENDIX B 

 

From H&M (Equ 1-122),  
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